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Chapter 1

Introduction

Description Logics (DL) is a family of knowledge representation (KR) for-
malisms tailored to represent the knowledge of an application domain by first
defining the basic and derived concepts of the domain, and then using these
concepts to specify properties of objects and individuals in the domain. There-
fore a DL knowledge base (KB) is made up of two parts, the terminological part
(TBox) where the definitions of the basic and derived notions are stored, and
the assertional part (ABox), which records facts about individuals.

A common property of a group of individuals is described by a concept. Con-
cepts can be considered as unary predicates and interpreted as sets of objects.
Roles are interpreted as binary relations between objects. Thus, an ABox re-
sembles superficially a relational database with only unary and binary relations.
However a database represents only one interpretation, while an ABox encodes
a set of interpretations, namely all its models. The ABox does not assume its
information to be complete, but in a database the absence of information is
regarded as negative information. The partial knowledge of an ABox comes
out not only from lack of information, but also from disjunctive assertions like
i :C t D.

Such possibility of partial knowledge is very restricted, it only allows con-
junction of assertions. A less restricted representation is usually needed to deal
with interesting problems as planning and diagnosis. To be useful it would have
to have good expressivity to describe partial knowledge by means of disjunctions
or boolean constraints.

One way to tackle this problem is to use the Boolean ABoxes (BABoxes), in
which boolean combinations of ABox assertions are permitted. Given a TBox T
and a BABox B, to find whether (T, B) has a model we treat all the assertions
of the BABox as propositions. Then, all the propositional models, which are
ABoxes, can be obtained. If one of these models A, together with T has a
model; then (T, B) has a model. This process may be expensive because of the
exhaustive search. Therefore, a suitable translation from BABox to a regular
KB could make it better.

In [ABM02] such translation has been proposed. However it is not clear if
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this translation is really more efficient than an optimized method which tries
out all propositional models. The research reported in this thesis was done in
order to clarify this issue.

Our main results are that the translation approach is an adequate option for
BABoxes containing propositionally non trivial information, specifically when
the BABoxes are modally constrained. We give examples of DL’s in which the
translation approach is always needed.

Our work has several important consequences. We created a number of
examples which turned out to be revealing. They showed several mistakes in
RACER. We developed several optimizations to both the translation and the
model generation approach. Furthermore we created a random generator of test
examples.

Chapter 2 is a short introduction to Description Logics. Boolean ABoxes
are defined here as well. The two main approaches to check the consistency
of Boolean ABoxes, their algorithms and their optimizations are described in
Chapter 3. The last chapter contains the description of the implementations of
these algorithms, the testing and the description of the random generator of test
sets. In Appendix A we include the code of the algorithms and in Appendix B
we can find the formulation of some puzzles that were part of the preliminary
test of the implementations.
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Chapter 2

Description logics and

Boolean ABoxes

This chapter provides a brief introduction to Description Logics as a formal
language for representing knowledge and reasoning about it. It introduces the
syntax and semantics of the language and elements needed to build a knowledge
base as well as the standard inference problems. Finally it defines our main
object of study, Boolean ABoxes.

2.1 The language

Definition 1 Let C= {C1, C2, . . .} be a countable set of atomic concepts, R=
{R1, R2, . . .} be a countable set of atomic roles and I = {i1, i2, . . .} be a countable
set of individuals. For C,R,I pairwise disjoint, S = 〈C,R,I〉 is a signature. An
interpretation for a fixed signature S is a tuple I = 〈∆I , ·I〉, where

• ∆I is a nonempty set, called the domain of I.

• ·I is a function assigning an element iIj ∈ ∆I to each individual ij; a

subset CI
j ⊆ ∆I to each atomic concept Cj ; and a relation RI

j ⊆ ∆I ×∆I

to each atomic role Rj

Complex concepts and roles can be built inductively from atomic symbols
by means of constructors. Table 2.1 and 2.2 show some of them.

A language L is characterized by the constructors it allows. For a given
language L, C(L) denotes the set of complex concept expressions and R(L) the
set of complex role expressions which can be formed using the constructors of L.
We are particularly interested in the language ALC and its extensions. ALC al-
lows the universal concept (top), negation, disjunction, conjunction, existential
and universal quantification constructors.

To give an example of what can we express in ALC, we suppose that Ac-
countant and Employee are atomic concepts and Boss of is an atomic role.
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Then Accountant u ¬Employee, ∃Boss of.Employee t ∀Boss of.Accountant
are concepts describing intuitively, the set of individuals that are accountants
and not employees, and the set of individuals who are the boss of an employee
or the boss of only accountants, respectively.

Adding constructors to ALC we form more expressive logics. One of the
extensions of ALC is SHIQ, that is ALC plus qualified number restrictions,
role hierarchies, transitive and inverse roles. Following the previous examples,
the SHIQ concept ≤ 1Boss of.Employee express the set of individuals which
are the boss of at most one employee. The exact meaning of the role hierarchy
and the transitive and inverse roles constructors are detailed below. From now
on, we will assume the language we are working with is SHIQ.

Definition 2 (Knowledge base) Fix a description language L. A knowledge
base (KB) is a pair K = (T, A) where T is a TBox, and A is an ABox. A TBox
is a finite, possibly empty set of axioms of the forms C v D or R v S, where
C,D are in C(L) and R,S are in R(L). They are called general concept inclusion
axioms (GCI) and role inclusion axioms respectively. A role hierarchy R is a set
of role inclusion axioms. A terminology T is a set of GCIs. An ABox is a finite,
possibly empty, set of assertions of the forms i:C or R(i, j), where C ∈ C(L),
R ∈ R(L), and i, j are individuals.

The available knowledge of a KB is split into two parts. The information of
the TBox, aims to express the definitions of the basic and derived notions and
the way they are inter-related. This information is “generic” or “global,” being
true in every model of the situation and of every individual of the situation. The
ABox records “specific” or “local” information, being true for certain particular
individuals in the situation.

To illustrate the definitions above, consider the next example. Suppose we
are working in the specification of an office work environment, and we have the
concepts Secretary and Employee which represent the set of all secretaries in
the modelled domain and the set of employees respectively. We also have the
roles Boss of and Colleague which identify the binary relations in the modelled
domain between boss and subordinates and fellow workers respectively.

We can express with a GCI in the TBox that all the secretaries are employees,

Secretary v Employee

and with a role inclusion axiom that the relation between a boss and a subor-
dinate is a subset of the fellowship relation.

Boss of v Colleague

The statements saying that Pedro, a particular individual is an employee,

pedro:Employee

and is related to Pancho as his boss

Boss of(pedro, pancho)

are part of the ABox.
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Constructor Syntax Semantics
concept name C CI

top > ∆I

bottom ⊥ ∅
conjunction C u D CI ∩ DI

disjunction (U) C t D CI ∪ DI

negation (C) ¬C ∆I \ CI

existential quantif. (E) ∃R.C {i | ∃j ∈ ∆I .(〈i, j〉 ∈ RI ∧ j ∈ CI)}
universal quantif. ∀R.C {i | ∀j ∈ ∆I .(〈i, j〉 ∈ RI → j ∈ CI)}
qualified number restriction (Q) ≥ nR.C {i | ]{j | 〈i, j〉 ∈ RI ∧ j ∈ CI} ≥ n}

≤ nR.C {i | ]{j | 〈i, j〉 ∈ RI ∧ j ∈ CI} ≤ n}

Table 2.1: Concept constructors.

C, D denote concepts, R, S roles, i, j individuals, n a non-negative integer, ]M
the cardinality of M and (RI)+ the transitive closure of RI .

Constructor Syntax Semantics
inverse role (I) R− {〈i, j〉 | 〈j, i〉 ∈ RI}
transitive role R ∈ R+ RI = (RI)+

Table 2.2: Role constructors

Definition 3 Let R+, R+⊆ R, be the set of transitive atomic roles, meaning
with this, the set of atomic roles whose interpretation will be forced to be a
transitive relation. We define the function Inv on roles to avoid considering
roles such as R−−; this function returns Inv(R) = R− if R is an atomic role,
and Inv(R) = S if R = S−. We also define the function Trans which returns
true iff R is a transitive role. More precisely, Trans(R) = true iff R ∈ R+ or
Inv(R) ∈ R+. We define the relation v∗ as the transitive-reflexive closure of v
over R ∪ {Inv(S) v Inv(R) | S v R ∈ R}.

Continuing our example of KB, we can specify that the relation between
fellow workers is transitive, by stating

Trans(Colleague) = True

and that the subordinate relation is the inverse of the boss relation as

Inv(Boss of) = Subordinate of.

Definition 4 Let I be an interpretation, K a knowledge base, C, D concepts,
R, S roles, i, j, k individuals, T a terminology and R a role hierarchy.
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• I |= C v D if CI ⊆ D.I

• I |= i:C if iI ∈ CI .

• I |= R(i, j) if (iI , jI) ∈ RI .

• I |= T if for each C v D ∈ T , CI ⊆ DI.

• I |= R if for each R v S ∈ R, RI ⊆ SI .

• I |= K if for every φ ∈ K, I |= φ. We call I a model of the knowledge
base K.

• K |= φ, if for all models I of K we have I |= φ.

All roles in R+ should be assigned to a transitive relation over I for I to be
an acceptable model, that is, for all R ∈ R+, RI is transitively closed:

if (i, j) ∈ RI and (j, k) ∈ RI , then (i, k) ∈ RI

2.2 Boolean ABoxes

The format imposed by ABoxes is something too restrictive. For instance, in
planning and diagnosis one often needs to describe the partial knowledge of
the world using disjunctions or boolean constraints. In particular consider the
logical puzzle PUZ003-1 from TPTP [SS]:

There is a barbers’ club that obeys the following three conditions:

(1) If any member A has shaved any other member B - whether
himself or another - then all members have shaved A, though not
necessarily at the same time.

(2) Four of the members are named Guido, Lorenzo, Petrucio, and
Cesare.

(3) Guido has shaved Cesare. Prove Petrucio has shaved Lorenzo

We can express in FOL statement (1):

∀x∀y∀z(member(x) ∧ member(y) ∧ shaved(x, y) ∧ member(z) → shaved(z, x))

If we want to formalize this example in DL we find in statement (1) a role
assertion conditioned by other assertions. An informal notation to express such
conditioning would be:

i:Member, j:Member, Shaved(i, j), k:Member → Shaved(k, i)

for all i, j, k elements of {Guido, Lorenzo, Petrucio, Cesare}. Let us make this
intuitive notation more precise now.
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Definition 5 An ABox literal is an ABox assertion or its negation. An ABox
clause is a set of ABox literals. Let Pi, Qj be ABox assertions, n, m ≥ 0. An
ABox sequent has the form

P1, . . . , Pn → Q1, . . . , Qm

and it is interpreted as the ABox clause

{¬P1, . . . ,¬Pn, Q1, . . . , Qm}.

A Boolean ABox (BABox) is a set of ABox sequents. A unit clause is a singleton.

Let us define formally the semantics of BABoxes.

Definition 6 Let I be an interpretation and l1 a literal. I satisfies l1 if l1 is
positive and I |= l1, or if l1 = ¬l2 and I 6|= l2.
I |= {l1, l2, ..., ln}, if I |= li for some i.
I satisfies a BABox if it satisfies all its sequents.

Traditional ABoxes are BABoxes with only unit clauses of positive literals.
Every further KB will be considered boolean unless a different remark is made.

Suppose we formulate a problem with a traditional TBox and a BABox.
Now the issue is how to reason about this Boolean KB. The definition and
semantics of a BABox point to a suitable preprocessing of this input to get
something that a traditional DL system can deal with. By doing this we do not
lose the expressiveness of BABoxes and we are able to execute inferences over
the Boolean KB. The following chapter explains the details of the preprocessing
step and some optimizations, and in Chapter 4 we give technical details of the
implementation and the results of the testing.
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Chapter 3

Transforming Boolean

ABoxes

Boolean ABoxes provide an extended flexibility to formulate interesting prob-
lems. But, we want more than that, we also want to make inferences about the
information in the BABox, and we do not want to make these inferences by hand.
The expressive power of the language is sufficiently high to make this unfeasible
even for very small KBs. The solution is to use an automatic prover. RACER is
the first DL system for TBox and ABox reasoning in ALCQHIR+(D−) (SHIQ
plus a restricted form of concrete domains) [HM01a, HM], giving us the support
for the language we are dealing with and a high performance in the reasoning
tasks [HM01b]. However, the input format of RACER does not support boolean
assertions. What we need is a way to solve the problem of finding whether a
BABox is consistent without losing the facility to express and read easily the
BABox statements. The most obvious approach comes from the definition of
a BABox. A BABox can be seen as a propositional set. If we use a complete
propositional model generator, each propositional model represents a list of lit-
erals which in principle (with some modifications as we will see in Section 3.2)
can be fed into RACER to test if it is modally consistent. But this exhaustive
search may be time consuming. Another option could be the translation of the
whole BABox into an equisatisfiable KB in a format RACER can work with.
Such rewriting has already been proposed in [ABM02]. The details of this trans-
lation, the model search method and their implementations will be specified in
the first two sections of this chapter. Section 3.3 describes some optimizations
for these implementations.

3.1 Translation

We name a KB (T, A) Boolean, when T is a traditional TBox and A a BABox.
The first approach we describe in this chapter is the translation of a Boolean
KB in an equisatisfiable traditional KB. This translation can be thought as a
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pre-processor for RACER. It is fully described in [ABM02], and in this section
only the algorithm and some highlights are shown. Finally our version of the
algorithm and some modifications are explained.

3.1.1 The original idea

The algorithm to translate an ALC Boolean KB into a traditional KB proposed
in [ABM02] is:

input: a Boolean KB (T, A) whose BABox A is in clausal form.

• if R(i, j) occurs negatively or in non unit clauses, then uniformly replace
R(i, j) in A by i:∃ R .IamJ , and add the (∗) formulas described below to
the KB using a new atomic role FakeR and a new atomic concept IamJ
every time.
Define the KB (∗) as:

(∗1) R v FakeR
(∗2) FakeR(i, j)
(∗3) j:IamJ
(∗4) i: ≤ 1FakeR.IamJ .

The (∗i) give names to the KB elements. Notice that (∗1) is a TBox
statement and the other elements belong to the ABox.
intermediate result: a BABox without negated role assertions or role
assertions in non unit clauses.

• push negations inside using the validity ¬i:C ≡ i:¬C.
intermediate result: a BABox without negative literals.

• collect disjunctions concerning the same individuals using the validity i:C∨
i:D ≡ i:C t D.
intermediate result: a BABox in which every clause contains at most
one literal i:C for each i.

• repeatedly transform disjunctions concerning different individuals. From
KB ∪{{L1, . . . , Ln, i:C, j:D}} to KB ∪{{R(i, j)}, {L1, . . . , Ln, i:(Ct∀ R .D)}};
using a new symbol R every time.

output: a knowledge base (T ′, A′) in RACER format.

The algorithm is proved to preserve satisfiability in [ABM02], but no imple-
mentation is presented. This is the motivation for the following section.

3.1.2 The implementation

We provide an implementation of the previous algorithm in Haskell which follows
the lines of the pseudocode written below. The code of the implementation can
be found in Appendix A.
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We assume that we have a function subst with parameters A,B,C, where A

and B are literals and C a set of clauses, such function returns the result of re-
placing any occurrence of A in C by B. We also assume the existence of a function
substCl with parameters A,B,C, where A is a list of literals [l1,l2,...,ln], B is
a literal and C is a clause, substCl returns the result of replacing the occurrence
of all the literals of A in C by B. The function spreadImp returns the transforma-
tion of a set of sequents into a set of clauses. We also take account of functions
to generate new concepts and role names, they are called newConceptSymbol

and newRoleSymbol respectively. For the case of the generation of FakeR, the
function FakeRoleOf returns the specific ‘fake’ role name predefined for any role
R. This role name is unique for every R. This aspect differs from the original
algorithm. Another difference in our implementation is that the input can be
more expressive, accepting SHIQ Boolean KBs. The justifications for these
changes are made after the pseudocode.

input: A Boolean KB (T, A), where A is a set of ABox sequents.
output: A traditional KB (T ′, A′)

ba2racer(T,A)

{

B := spreadImp(A)

\* Step 1 *\

for every R(i,j) in B negated or in non unit clauses

{

FakeR := FakeRoleOf R;

IamJ := newConceptSymbol;

B := subst(R(i,j),i:∃ R.IamJ,B);

T := T ∪ { {R v FakeR} };

B := B ∪ { {FakeR(i,j)}, {j:IamJ}, {i:≤ 1FakeR.IamJ} };

}

\* Now B is a BABox without problematic

relational assertions *\

\* Step 2 *\

for every clause C in B

{

while ¬i:D in C

C = substCl([¬i:D],i:¬D,C);
}

\* Now B has no negative literals *\

\* Step 3 *\

for every clause C in B
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{

while i:D1,...,i:Dn in C and n > 1

C = substCl([i:D1,...,i:Dn],i:(D1t...tDn),C);
}

\* Now every clause in B has one literal i:D for each i *\

\* Step 4 *\

for every clause C in B

{

while C has two members i:D,j:E;

{

R = newRoleSymbol;

C = substCl([i:D,j:E],i:D t ∀ R.E,C);

B = B ∪ {R(i,j)};

}

}

\* Now B has only unit clauses, is an ABox *\

return(T,B)

}

We need to check that this implementation is “equivalent” to the intuitive
rewriting process we introduced in the first part of this section. We will provide
an explanation for every step marked in the pseudocode.

Step 1 differs from the original algorithm. In [ABM02] a new FakeR atom
is generated every time a ¬R(i, j) is found. Our approach considers for every
role R in a SHIQ KB only a new fixed unique role atom FakeR.

We define A[φ/θ] as the result of uniformly replacing φ with θ in A and
A[φ/θ][δ/ρ] as (A[φ/θ])[δ/ρ].

Let (T, A) be a SHIQ Boolean KB with the role assertions R(i1, j1), . . . ,
R(in, jn) negated or in non unit clauses over the same role R. Then, the KB ∗n

denotes the following:

• R v FakeR (axiom)

• FakeR(i1, j1)

...

• FakeR(in, jn)

• j1 : IamJ1

...

• jn : IamJn
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• i1: ≤ 1FakeR.IamJ1

...

• in: ≤ 1FakeR.IamJn

where FakeR is a new role atom and IamJi, 1 ≤ i ≤ n, are new atomic concepts.

We want to substitute the problematic role assertions similarly to the way
the original algorithm does it. Thus, it is necessary to prove the following
statement to support the substitution:
For a R(i, j) ∈ {R(i1, j1), . . . , R(in, jn)}

(∗n) |= R(i, j) ≡ i:∃ R .IamJ . (3.1)

Proof.

(3.1) is most easily proved by a (semi-formal) tableau argument1.
⇒

1) R(i, j)
2) ¬i:∃ R .IamJ
3) ¬j:IamJ (∀ rule on 1 and 2)
4) j:IamJ (∗n element)

⊥

⇐
1) i:∃ R .IamJ
2) ¬R(i, j)
3) R(i, k) (∃ rule on 1)
4) k:IamJ
5) FakeR(i, k) (by 3 and axiom)
6) FakeR(i, j) (∗n element)
7) j:IamJ (∗n element)
8) k = j (by 4,5,6,7 and ∗n element)

⊥ (by 2,3,8)

qed

Now, we are ready to prove the corrections of our modified version of the
role assertion handling.

Claim 1 Let (T, A) a be a Boolean KB with R(i1, j1), . . . , R(in, jn) occurring
negatively or in non unit clauses in A. (T, A) is satisfiable iff

∗n ∪ T ∪ A[R(i1, j1)/i:∃R.IamJ1] . . . [R(in, jn)/i:∃R.IamJn]

is satisfiable.

1The expansion rules can be found in Table 3.1
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Proof.

⇒
Let I |= (T, A). Expand I to I ′ by setting

(IamJk)I
′

= {jIk } for all IamJk such that 1 ≤ k ≤ n

FakeRI′

= RI
⋃

{(iIk , jIk )}
1≤k≤n

and I ′ is equal to I for all other symbols.
I ′ |= ∗n and still I ′ |= (T, A). Whence, by (3.1),
I ′ |= A[R(i1, j1)/i:∃R.IamJ1] . . . [R(in, jn)/i:∃R.IamJk]

⇐
Let I |= ∗n ∪ T ∪ A[R(i1, j1)/i:∃R.IamJ1] . . . [R(in, jn)/i:∃R.IamJn] then

I |= T and by (3.1) I |= A, whence I |= (T, A) qed

This proof justifies the process of continuously replacing the negated or non
unit role assertions by concept assertions, followed by the addition of the corre-
sponding elements of ∗n to the TBox. This is achieved in the first step as can
be observed in the pseudocode. After finishing, our BABox does not contain
negated role assertions or role assertions in non unit clauses, just like in the
original algorithm.

The further steps are devoted to the handling of concept assertions in order
to transform the BABox obtained of the first step into an ABox.

Step 2 and Step 3 follow from:

I |= ¬i:C ⇐⇒ I |= i:¬C (3.2)

I |= {i:C, i:D} ⇐⇒ I |= i:C t D. (3.3)

for any model I.
They realize exactly the same labor as in the original algorithm; that is,

they introduce the negations in the concept, and join in a single concept all the
concept assertions of a clause related to the same individual.

Step 4 At this point where we have either unit clauses with role assertions
or clauses with at most one positive concept assertion per individual. The last
step reduces the disjunction of concept assertions to the point we only have unit
clauses. It is justified by the following claim, explained in [ABM02]:

For any Boolean KB B, B ∪{{L1, . . . , Ln, i:C, j:D}} is satisfiable if
and only if B∪{{R(i, j)}, {L1, . . . , Ln, i:(Ct∀ R .D)}} is satisfiable.

(3.4)

As in [ABM02] we use a new role atom R every time.

We can conclude that after a Boolean KB has been transformed by our
implementation the output is an equisatisfiable traditional KB and RACER
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can be fed with this KB to execute inferences. This implementation fullfill the
idea of the original translation algorithm of [ABM02] and improves the handling
of role assertions. The technical details of the implementation of the pseudocode
showed in this section can be consulted in Appendix A.

There is another way to handle a BABox. This second approach is more
related to the semantics of BABoxes and is described in the next section.

3.2 Disjunction of knowledge bases

The translation approach focuses on transforming clauses into traditional as-
sertions. There is another way of solving the problem without initially using
reductions. The intuition is to regard assertions as propositions and test the
modal consistency of every propositional model.

Suppose we have a Boolean KB (T, A). By definition, a BABox is satisfiable
if at least one literal of every clause is satisfiable. If we take every assertion as a
proposition, we can generate all the propositional models Ai for the clause set.
Every Ai is a BABox with only unit clauses and (T, A) is consistent if and only
if (T, Ai) is consistent for some i.

In order to prove the consistency of any KB (T, Ai), we want to feed RACER
with it and test it. However, we need first to eliminate the negated role asser-
tions. One possibility is to use the translation of the previous section for negated
role assertions in a SHIQ KB. However, under certain conditions, it is possible
to erase the negated role assertions and preserve the validity.

We explain in this section these two approaches for the knowledge base con-
sistency checking based on the disjunction of KBs. We use the Davis-Putnam-
Logemann-Loveland (DPLL) method [DLL62] to search for the propositional
models and then we test them in RACER. The pseudocode for both procedures
is shown in the next subsection. We called the two procedures DPLL-RACER
procedures.

3.2.1 The implementations

The first DPLL-RACER procedure, dpllRacerTrans allows a SHIQ Boolean
KB as input. The second one, dpllRacer, is restricted to SHQ Boolean KBs.

We adapt the standard DPLL procedure to turn it in to an exhaustive model
generator. We use two variables; Sigma a BABox where all the clausal and
propositional handlings of DPLL are done; and Gamma a Boolean KB with only
unit clauses where the propositional truth assignments of every assertion are
saved. Thus, for an input Boolean KB (T, A), the initial call to any DPLL-
RACER procedure assigns Sigma to the set of ABox sequents A translated into
clauses, and Gamma to the KB (T, {}).

Sigma {l = val} is the result of applying the unit propagation of the literal
l when its truth value is val. Gamma + {l} adds the clause {l} to Gamma. The
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output of our DPLL-RACER procedures is True if the KB is consistent, and
False otherwise.

dpllRacerTrans applies our translation of negated role assertions explained
in Section 3.1 to the propositional model stored in Gamma with the function
transformR Afterwards, Gamma is passed to the function TestRacer which re-
turns the result of testing the consistency of Gamma in RACER.

dpllRacerTrans(Sigma,Gamma)

{

if Sigma == {} then

{

Gamma := transformR Gamma;

if (TestRacer Gamma) then True;

else return False;

}

if Sigma contains the empty clause then

return False;

if Sigma has a unit clause {l} then

dpllRacerTrans (Sigma {l = true}, Gamma + {l});

if dpllRacerTrans (Sigma {l = true}, Gamma + {l}) then

return True;

else dpllRacerTrans (Sigma {l = false}, Gamma + {~l});

}

dpllRacer uses a different approach to handle the negated role assertions.
First of all, it can only be used with a SHQ KB. dpllRacer uses the function
eraseR which applies to the input KB the role deletion procedure explained at
the end of this section. The output of this function is the modified KB without
any ¬R(i, j) or a KB with only the empty clause. We assume we have this func-
tion eraseR. We also assume the existence of the function emptyClause which
returns True if a KB contains the empty clause and False otherwise. Notice that
dpllRacer also uses the function TestRacer to check the consistency of Gamma.

dpllRacer(Sigma,Gamma)

{

if Sigma == {} then

{

Gamma := eraseR Gamma;

if (emptyClause Gamma) then

return False;

else

if (TestRacer Gamma) then True

else return False;

}

if Sigma contains the empty clause then

return False;
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if Sigma has a unit clause {l} then

dpllRacer (Sigma {l = true}, Gamma + {l});

if dpllRacer (Sigma {l = true}, Gamma + {l}) then

return True;

else dpllRacer (Sigma {l = false}, Gamma + {~l});

}

In both cases the DPLL method ensures the generation of all propositional
models of A. As it can be seen, if RACER returns that Gamma is consistent,
the process is done, otherwise the search continues. If no propositional model
is left, the inconsistency of (T, A) will be stated.

We have described two general algorithms to search a model of a Boolean
KBs. The difference between these algorithms is the way they handle the
negated role assertions when a propositional model is found. Both procedures
can be implemented as functions used in the same program, they only need to
be called according to whether the KB is SHQ or SHIQ.

In the next subsection we explain how the function eraseR works, and we
justify the deletion of the negated role assertions for SHQ. The code of these
procedures and the implementation of the disjunction of KBs approach can be
found in Appendix A.

3.2.2 Role assertion erasing

The previous section requires a function to erase the negated role assertions of
BABoxes with only unit clauses. In this section we describe this function and
prove that it preserves satisfiability.

Let (T, A) be a Boolean KB with only unit clauses and no unit clauses {P}
and {Q} such that, Q = ¬P . Notice that a Boolean KB produced by the DPLL-
RACER procedures before being tested with RACER satisfies this condition.

Definition 7 (T, A)�{¬R(i, j)} is defined as

T ∪ (A − {{¬R(i, j)}}) ∪ {{i:>}, {j:>}}

and (T, A)�{{¬R1(i1, j1)}, . . . , {¬Rn(in, jn)}} as

(. . . ((T, A)�{¬R1(i1, j1)})�{¬R2(i2, j2)}) . . . �{¬Rn(in, jn)}).

To prove the validity of the deletion we will make use of the tableau algorithm
for SHIQ described in [HST00]. The expansion rules of this tableau can be
seen in Table 3.1. We need first to state some definitions.

Definition 8 Let A be an ABox, T a terminology, and R a role hierarchy. We
define
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u-rule if 1.- C1 u C2 ∈ L(x) is not indirectly blocked, and
2.- {C1, C2} * L(x)

then L(x) −→ L(x) ∪ {C1, C2}
t-rule if 1.- C1 t C2 ∈ L(x) is not indirectly blocked, and

2.- {C1, C2} ∩ L(x) = ∅
then L(x) −→ L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule if 1.- ∃S.C ∈ L(x), x is not indirectly blocked, and
2.- x has no S-neighbor y with C ∈ L(y)

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}
∀-rule if 1.- ∀S.C ∈ L(x), x is not indirectly blocked, and

2.- there is an S-neighbor y of x with C /∈ L(y)
then L(y) −→ L(y) ∪ {C}

∀+-rule if 1.- ∀S.C ∈ L(x), x is not indirectly blocked, and
2.- there is some R with Trans(R) and R v∗S,
3.- there is an R-neighbor y of x with ∀R.C /∈ L(y)

then L(y) −→ L(y) ∪ {∀R.C}
choose-rule if 1.- (./ S.C) ∈ L(x), x is not indirectly blocked, and

2.- there is an S-neighbor y of x with {C,∼ C} ∩ L(y) = ∅
then L(y) −→ L(y) ∪ {E} for some E ∈ {C,∼ C}

≥-rule if 1.- (≥ S.C) ∈ L(x), x is not indirectly blocked, and
2.- there are not n S-neighbors y1, . . . , yn such that C ∈ L(yi)

and yi 6
.
= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C} and yi 6

.
= yj for 1 ≤ i < j ≤ n.

≤-rule if 1.- (≤ S.C) ∈ L(x), x is not indirectly blocked, and
2.- ]SF (x, C) > n there are S-neighbors y, z of x with not y 6

.
= z,

y is neither a root nor an ancestor of z, and C ∈ L(y) ∩ L(z),
then 1.-L(z) −→ L(z) ∪ L(y)

2.- if z is an ancestor of x
then L(〈z, x〉) −→ L(〈z, x〉)∪ Inv L(〈x, y〉)
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

L(〈x, y〉) −→ ∅
Set u 6

.
= z for all u with u 6

.
= y

≤r-rule if 1.- (≤ S.C) ∈ L(x), and
2.- ]SF (x, C) > n there are two S-neighbors y, z of x

which are both root nodes, C ∈ L(y) ∩ L(z), and not y 6
.
= z,

then 1.-L(z) −→ L(z) ∪ L(y) and
2.- For all edges 〈y, w〉:

i. if the edge 〈z, w〉 does not exists, create it with L(〈z, w〉) := ∅
ii. L(〈z, w〉) −→ L(〈z, w〉) ∪ L(〈y, w〉)

3.- For all edges 〈w, y〉:
i. if the edge 〈w, z〉 does not exists, create it with L(〈w, z〉) := ∅
ii. L(〈w, z〉) −→ L(〈w, z〉) ∪ L(〈w, y〉)

4.- Set L(y) := ∅ and remove all the edges to/from y.
5.- Set u 6

.
= z for all u with u 6

.
= y.

6.- Set y
.
= z.

Table 3.1: The complete tableaux expansion rules for SHIQ
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CT := u(¬Ci t Di) for Ci v Di ∈ T

Let U be a transitive role that does not occur in A, R or T .

RU := R ∪ {R v U, Inv(R) v U |R occurs in T ,A or R}

Definition 9 Let B be a Boolean KB, R(B) be the role hierarchy of B, R−(B)
the set of inverse statements of B, R+(B) the set of transitive role statements
of B, Rel(B) the set of relational assertions of B.

In order to preserve the validity during the deletion we will make use of the
following condition.

Assumption 1 (Weak) Let B be a Boolean KB. If {R(B), R−(B), R+(B),
Rel(B)} |= R(i, j) then {R(i, j)} ∈ B.

Theorem 2 Let (T, A) be a SHQ Boolean KB with only unit clauses, {{P},
{¬P}} 6⊆ A for any assertion P , and (T, A) satisfies Assumption 1. Let
{{¬R1(i1, j1)}, . . . , {¬Rn(in, jn)}} be the set of clauses of A containing a negated
role assertion. (T, A) is satisfiable iff (T, A)�{{¬R1(i1, j1)}, . . . , {¬Rn(in, jn)}}
is satisfiable.

Proof.

⇒
Straightforward.

⇐
Let B = (T, A)�{{¬R1(i1, j1)}, . . . , {¬Rn(in, jn)}}. B is a traditional KB,

then if B is consistent we can build a model using a tableau T expanding a
forest F with the algorithm described in [HST00]. We will prove by induction
over the length of the forest, that the expansion of this forest never produces
R ∈ L(〈xi

0, x
j
0〉) for any R(i, j) 6∈ B, i, j individuals in B.

First, we apply to B the internalization of the GCIs according to [HST00],
and we obtain the KB B′. B′ = A′ ∪ {a : CT u ∀U.CT | a occurs in B} ∪ RU ,
where A′ is the ABox of B.

Then we initialize the forest based on B′ as follows:

L(xa
0) := {C | C(a) ∈ B′},

L(〈xa
0 , xb

0〉) := {S | S(a, b) ∈ B′},
xa

0 6
.
= xb

0 for all the individuals in B′.

The initialization of 6
.
= was made in that way because we make the unique name

assumption as RACER does it.
In this stage no R ∈ L(〈xi

0, x
j
0〉) for any R(i, j) 6∈ B.

Suppose that at level n of the expansion of F , R 6∈ L(〈xi
0, x

j
0〉) for any

R(i, j) 6∈ B. We will try to use the rules of expansion of Table 3.1 to produce
R ∈ L(〈xi

0, x
j
0〉). The cases we need to check are:
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• If ∃R.C ∈ L(xi
0), then if xi

0 is not blocked, and has no R-neighbor y with
C ∈ L(y); the tableaux creates a new node y with L(〈xi

0, y〉) = {R} and
L(y) = {C}. But j is an individual in B′, then xj

0 is not y.

• If ≥ nR.C ∈ L(xi
0), then if xi

0 is not blocked, and there are not p R-
neighbors y1, . . . , yp of xi

0 with C ∈ L(ym) and ym 6
.
= yr for 1 ≤ m ≤ r ≤ p.

The algorithm creates p new nodes y1, . . . , yp with L(〈xi
0, ym〉) = {R},

L(ym) = {C}, and ym 6
.
= yr for 1 ≤ m ≤ r ≤ n. However j is an

individual in B′, so xj
0 can not be used as a new node ym for every ym,

1 ≤ ym ≤ p.

• ≤ −rule in this presentation of the tableau does not add new edges between
root nodes.

• ≤r-rule is designed to be complete when the unique name assumption is
not assumed. But RACER works under the unique name assumption and
hence the rule will never fire (see initialization).

If the expansion rules yield a complete and clash-free completion forest, the
tableau T based on F can be used to build a model I, such that I |= B.

In the construction of the model I we need to verify that I 6|= R(i, j) if
R(i, j) 6∈ B and i, j individuals in B. The transitivity closure can not be used
because Assumption 1 restrain the roles with individuals that can be formed;
and if we attempt to use R(i, k),R(k, j) with k not an individual of B (a new
node), we know that the forest never produced edges to support R(k, j). In the
case of the definition of every RI according to the role hierarchy we only add
roles between instances already connected. Because of the Assumption 1, no
new roles connecting individuals of B will be added. The roles added in this
construction are between individuals an non individuals (new nodes).

Therefore if the expansion rules yield a complete and clash-free comple-
tion forest, the tableau T based on F can be used to build a model I, such
that I |= (T, A)�{{¬R1(i1, j1)}, . . . , {¬Rn(in, jn)}} and I 6|= R(i, j), R(i, j) ∈
{Ri(i1, j1), . . . , Rn(in, jn)}; hence I |= (T, A) qed

We wanted to extend the deletion to SHIQ KBs, however we found coun-
terexamples. The next two SHIQ Boolean KBs satisfy Assumption 1, they
have only unit clauses and do not contain {P} and {¬P} for any assertion P ;
but the application of the deletion of negated role assertions as in Theorem 2
produces KBs that are not equisatisfiable.

Let B1 the following unsatisfiable Boolean KB in clausal form:

1. R− v S

2. {j:∃R−.C}

3. {j: ≤ 1S.C}

4. {S(j, i)}
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5. {i:C}

6. {¬R(i, j)}

Then B1�{¬R(i, j)} is:

1. R− v S

2. {j:∃R−.C}

3. {j: ≤ 1S.C}

4. {S(j, i)}

5. {i:C}

6. {i:>}

7. {j:>}

The construction of a model for B1�{¬R(i, j)} is shown in the following
figures. First we use the ∃−rule to expand j:∃R−.C and create a new node y.

y

j iS

R−,S

C

C

Then, with the ≤ −rule we have:

j iS

R

C

This counterexample shows that in SHIQ our deletion does not produce
an equisatisfiable KB. If C = >, the counterexample applies also for SHIN .
We did not make use of the transitive roles in B1. The following KB shows a
counterexample with transitive roles, and no number restriction.

Let B2 be the next unsatisfiable Boolean KB :

1. Trans(R) = True

2. P v R

3. P− v R

4. {i:∃P.C}

5. {¬R(i, i)}
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B2�{¬R(i, i)} is:

1. Trans(R) = True

2. P v R

3. P v R−

4. {i:∃P.C}

5. {i:>}

We expand i:∃P.C to construct a model of B2�{¬R(i, i)} represented by:

i yP ,R

R
R

C

These two cases show that we can not use the deletion as in Theorem 2 with
a SHIQ Boolean KB. As we saw at the beginning of this section, we use instead
the translation to handle the negated role assertions.

From Theorem 2 we can say that our problem in the case of a SHQ Boolean
KB has been reduced to find a way to satisfy Assumption 1. The following
operator is designed to achieve this condition.

Definition 10 Let B be a Boolean KB with only unit clauses and no unit
clauses {P} and {Q} such that, P = ¬Q. The operator ∗ over B is defined
as:

Initialize ∗B = {R(B), R+(B), Rel(B)}, then repeat until stabilization

(a) if R v S ∈ B and {R(i, j)} ∈ ∗B, then ∗B = ∗B ∪ {{S(i, j)}}

(b) if Trans(R) = True and {R(i, j)} ∈ ∗B then, for every {R(j, k)} appearing
in ∗B, ∗B = ∗B ∪ {{R(i, k)}}

If B has a finite number of elements, then a finite number of iterations are
needed to obtain ∗B.

∗B has only unit clauses, whence ∗B is propositionally consistent if {P} and
{¬P} are not clauses in ∗B. The following claim relates ∗B to Assumption 1.

Claim 3 Let Φ = {R(B), R−(B), R+(B), Rel(B)}. If Φ |= R(i, j) then
R(i, j) ∈ ∗B.

Proof.

Let M |= Φ, then M |= R(i, j) by definition. Assume R(i, j) 6∈ ∗B. We
will construct a model M′ such that M′ |= Φ and M′ 6|= R(i, j) and we will
prove the claim by contraposition. Let M′ = (∆M′

, ·M
′

) where ∆M′

= {i, j |
R(i, j) ∈ ∗B} and (a, b) ∈ SM′

iff S(a, b) ∈ ∗B.
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As R(i, j) 6∈ ∗B then M′ 6|= R(i, j). We want to prove that M′ |= Φ.
We discard the inverse constructor because we are working with SHQ. Let

S(a, b) ∈ Rel(B), then S(a, b) ∈ ∗B hence M′ |= S(a, b).
To verify M′ |=R+(B) let S ∈ R+(B), then SM′

should be transitive. Let
(a, b) ∈ SM′

iff S(a, b) ∈ ∗B and (b, c) ∈ SM′

iff S(b, c) ∈ ∗B, we want to prove
(a, c) ∈ SM′

. By the definition of ∗B we have S(a, c) ∈ ∗B iff (a, c) ∈ SM′

.
In the case of R v S ∈ R(B) we need to prove RM′

⊆ SM′

. We know that
(a, b) ∈ RM′

iff R(a, b) ∈ ∗B then by the definition of ∗B we have S(a, b) ∈ ∗B
iff (a, c) ∈ SM′

.
We can conclude that if M′ |= Φ and M′ 6|= R(i, j) then R(i, j) 6∈ ∗B whence

we prove the claim. qed

Now we are ready to explain how the deletion is made. The function eraseR

with a Boolean KB B uses the next algorithm:

1 Obtain ∗B, and set B = ∗B ∪ B

2 Set B′ = B. Apply unit propagation to B′, if B′ has an empty clause
return a Boolean KB with only one empty clause, otherwise return

B�{{¬R1(i1, j1)}, . . . , {¬Rn(in, jn)}}

where {¬Rk(ik, jk)} ∈ B and 1 ≤ k ≤ n.

For Theorem 2 and Claim 3 we know this deletion is correct.

We have proved in this subsection that the deletion executed by the func-
tion eraseR in dpllRacer is valid. We also showed some counterexamples to
explain why the deletion procedure is not used with SHIQ Boolean KBs. This
way we justify the division of methods made at the beginning of this section
where we explained the handling of Boolean KBs based on the disjunction of
KBs. We showed there two methods to transform a propositional model of a
Boolean KB in a format RACER can use. One of them uses partially the trans-
lation described in Section 3.1, changing the signature of the KB, and works for
SHIQ KBs. The other approach deletes the negated role assertions after some
handlings and keep the signature of the KB, but only works with SHQ KBs.

The next section explains some optimizations we use in the implementation
of the two approaches.

3.3 Optimizations

The procedures we described in the previous sections leave almost all the infer-
ences to RACER. They either translate the KB without concerning about the
contents of it, or treat it propositionally but without realizing any propositional
inference beyond the search method.
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Our main aim in this section is to show some propositional reductions that
can improve the performance of the search of a model and facilitate the work
to RACER.

3.3.1 Propositional reductions

There are several ways to optimize the process of satisfiability checking. The
simplest strategies to preprocess the input KB work in the propositional level.
They depend of what we want to reduce, number of clauses, number of dis-
junctions or number of expensive things to translate. What we try to minimize
with the procedures of this section is the size of the Boolean KB. A Boolean
KB of a smaller size is easier to translate, specially if we reduce the number
of elements difficult to translate, like role assertions. In the case of the DPLL-
RACER search, if we deal with small Boolean KB it takes less time to find a
model, and of course in a small traditional KB RACER will take less time to
check consistency.

First, we prepare the KB reducing the negations in the concept assertions,
afterwards we apply some propositional optimizations.

The negation of concept assertions

A strategy to improve the propositional reductions, and the DPLL-RACER
search is pulling out the negations. This process is better described with the
following pseudocode.

pullOutNot(C)

{

if C == Not(i:(Not C1)) then

pullOutNot(i:C1);

else if C == i:(Not C1) then

pullOutNot(Not(i:C1));

else

return C;

}

pullOutNot receives an assertion as parameter, and when this parameter
is a concept assertions it tries to eliminate the redundant negations. It does
not spread the negation to find the negation normal form of the concept, but a
procedure that obtains the NNF is not difficult to build. We did not create it
because the BABoxes used in the testing were already in NNF.

We pull out the negations just after we convert the sequents of the Boolean
KB into clauses. Afterwards the propositional reductions are made, and if
they do not determine the consistency of the input Boolean KB then either the
translation or the DPLL search is made.
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Three propositional reductions

The following reductions are implemented in both methods of handling Boolean
KBs. They work before the translation in one case and before the DPLL-
RACER procedure in the other case. The proofs for these reductions are
straightforward from the definition of a model for a BABox.

Reduction 1 (Duplicate Deletion) A Boolean KB (T, A) ∪ {{P, P, L1, . . . ,
Ln}} is satisfiable iff (T, A) ∪{{P, L1, . . . , Ln}} is satisfiable.

This reduction minimize the number of assertions in a clause erasing dupli-
cates.

Reduction 2 (Tautology deletion) A Boolean KB (T, A)∪{{P,¬P, L1, . . . ,
Ln}} is satisfiable iff (T, A) is satisfiable.

Reduction 2 points to the minimization of the set of clauses deleting trivially
satisfiable clauses that do not add valuable information to the model search, and
in the case of the translation, they add unnecessary elements to the KB.

Reduction 3 (Unit propagation) A Boolean KB (T, A)∪{{P}, {¬P, L1, . . . ,
Ln}} is satisfiable iff (T, A) ∪ {{P}, {L1, . . . , Ln}} is satisfiable.

This reduction is a step in de DPLL-RACER procedures, notwithstanding,
it is used before the translation and the DPLL search. The main idea of this
reduction is to find a propositional inconsistency. If such inconsistency is found
there is no need to translate or search for a model, and as it can be seen in
Section 4.1, the implementation of both approaches indicate if the inconsistency
is propositional and not related to the information in the KB.

As we can see, the reductions shown here help to reduce the size of a Boolean
KB deleting the unnecessary information. They are specially important because
they can reduce the number of difficult items to translate, specially in the case
of the unit propagation, when we have a unit clause with R(i, j), and the same
role assertion only appears negated in some non unit clauses. There are more
reductions that can be constructed; an example is the transformation in NNF of
all the concept assertions. Another idea related to the negated role assertions,
is to recognize the cases of SHIQ where we can apply the role deletion. Such
optimizations are left for further investigation.

In this chapter two ways to deal with a Boolean KB were explained. One of
them generates a new KB from the original input KB. Such KB has different
signature and can be tested in RACER to know the consistency of the input KB.
The other way generates many KBs and test them to return the KB consistency;
according to the DL used in the input KB, the KBs generated may or may not
have the same signature.

The next chapter describes the implementations of the two approaches and
the testing over them. Those implementations have already the reductions de-
scribed here. The code of these reductions can be found in Appendix A.
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Chapter 4

Implementation and testing

In the previous chapters we discussed two ways of handling BABoxes and some
optimizations for each case. We implemented both approaches in Haskell. The
first program, named ba2racer, executes our translation described in Section
3.1 over an input Boolean KB. ba2racer does not execute the ABox consistency
checking by itself. It returns a file with a traditional KB that can be used
as an input for RACER to check the consistency of the ABox. The second
program, ba2racerdpll implements the algorithm based on the disjunction of
knowledge bases of Section 3.2. Contrary to the first approach, ba2racerdpll
calls internally to RACER to check the consistency of the ABox. As output, this
program returns whether the input KB is consistent or not. If yes it generates
a file with the first consistent traditional KB produced by the algorithm. The
code of both programs can be found in Appendix A.

In this chapter we give technical details and preliminary testing of the two
programs mentioned. We describe the input format and how the programs
operate in the next section. Afterwards, we show the tests with hand crafted
cases taken from the TPTP database and comments on some mistakes found
in RACER. Finally we show the tests over random generated BABoxes. A
description of the random generator and the results of this testing can be found
in the last section of this chapter.

4.1 The input format and the programs

We presented in Section 2.2 an intuitive idea and the formal definition of a
sequent. Sequents are the core elements of BABoxes. A BABox can be seen as
a standard ABox where sequents can be used instead of assertions. Thus, our
knowledge bases consist of a BABox and a standard TBox. The use of RACER
as our selected DL system provides the input format for all the traditional
elements of a KB. Maintaining the RACER-like format except for assertions,
we provide a grammar for the input files of ba2racer and ba2racerdpll in
Table 4.1.
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input →
| kbelem input

kbelem → tbox statement
| sequent

tbox statement → (impl concept concept)
| (equivalent concept concept)
| (disjoint lconcepts)
| (define-role name transitive inverse parents)

transitive →
| :transitive t

inverse →
| :inverse name

parents →
| :parents (lnames)

sequent → latoms -> latoms .

latoms →
| atom latoms2

latoms2 →
| , atom latoms2

atom → (ins name concept)
| (rel name name name)

lconcepts → concept
| concept lconcepts

concept → name
| *top*

| *bottom*

| (and lconcepts)
| (or lconcepts)
| (not concept)
| (some name concept)
| (all name concept)
| (some name concept)
| (at-most num name concept)
| (at-least num name concept)

lnames →
| name lnames

name → [a,..,z,A,..,Z][a,..,z,A,..,Z,0,..,9, ,−]∗

num → [0,..,9]+

Table 4.1: The input format for Boolean KBs
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The input format allows us to use the DL SHIQ, that is, a logic supported
by RACER. Notice that the declaration of a concept assertion is made with the
word ins instead of the RACER keyword instance and we use rel instead
of related for the role assertions. We use these abbreviations to facilitate the
writing and reading of the BABox.

The programs ba2racer and ba2racerdpll can have the same file as input
but the output they produce is different. Let us explain the peculiarities of each
one.

An example of a typical run for ba2racer is:

bash-2.04$ ./ba2racer test.txt

test.txt is a file containing a Boolean KB in the format described in Table
4.1. ba2racer transforms the Boolean KB of the file test.txt in a traditional
KB and places it in the file test.txt.racer in RACER format. It adds the
line (abox-consistent?) at the end of the file, to indicate RACER that the
ABox consistency must be checked. Afterwards, we need to feed RACER with
test.txt.racer to know if the Boolean KB in test.txt is ABox consistent.
Let us show now the call to RACER for the example.

bash-2.04$ racer -f test.txt.racer

;;; RACER Version 1.7

;;; RACER: Reasoner for Aboxes and Concept Expressions Renamed

;;; Supported description logic: ALCQHIr+(D)-

;;; Copyright (C) 1998-2002, Volker Haarslev and Ralf Moeller.

;;; RACER comes with ABSOLUTELY NO WARRANTY; use at your own risk.

;;; Commercial use is prohibited; contact the authors for licensing.

;;; RACER is running on unknown computer as node Unknown

;;; The XML/RDF/RDFS/DAML parser is implemented with Wilbur developed

;;; by Ora Lassila. For more information on Wilbur see

;;; http://wilbur-rdf.sourceforge.net/.

;;; The HTTP interface based on DIG is implemented with CL-HTTP developed

;;; and owned by John C. Mallery. For more information on CL-HTTP see

;;; http://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html.

(IN-KNOWLEDGE-BASE TEST.TXTABOX TEST.TXTTBOX) -->

(TEST.TXTABOX TEST.TXTTBOX)

(ABOX-CONSISTENT?) --> T

The output of RACER (ABOX-CONSISTENT?) --> T indicates that the KB
of test.txt.racer is consistent, and as a consequence of the claims of Section
3.1 the Boolean KB of test.txt is consistent too. An output (ABOX-CONSISTENT
?) --> NIL will imply that both KBs are inconsistent.

It can occur that the input Boolean KB is propositionally inconsistent. In
this case ba2racer displays ABox not consistent. No further checking with
RACER is needed. The output file will contain an empty KB.
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For the case of ba2racerdpll, an example of a typical run is:

bash-2.04$ ./ba2racerdpll test.txt

ABox consistent, file .racer created

Similarly to the example of ba2racer, the input file test.txt has a Boolean
KB in our described format. The output of ba2racerdpll indicates whether
test.txt is ABox consistent or not displaying ABox consistent or ABox not

consistent respectively. There is no need to run RACER because ba2racerdpll
has already run it internally.

Every time ba2racerdpll finds a propositional model, it places the gen-
erated KB in a file and calls RACER with it as parameter. The file used to
store the generated KB is called <input file>.racer. The file is rewritten
every time a new consistency check is made in that run. Thus, for our exam-
ple, the KB generated by ba2racerdpll containing the model that satisfy the
disjunction of KBs in test.txt can be found in test.txt.racer. The last
line of this file is (abox-consistent?) like in the case of ba2racer. If the
response of ba2racerdpll is only ABox not consistent without the phrase
racer result, it means that the input Boolean KB was propositionally incon-
sistent and RACER was not called. The outputted KB will be empty in this
case.

After showing how the two programs can be run and their outputs, we are
ready to show in the next section examples of formulations of logical puzzles
and the description of some mistakes found in RACER.

4.2 Handcrafted cases

In order to get the examples to test ba2racer and ba2racerdpll, we formalized
in DL some puzzles of the TPTP Problem Library [SS]. These puzzles contain
situations where a representation of partial knowledge and conditioning of asser-
tions is required. Sequents allow us to express such things. The examples were
written using the grammar described in Table 4.1. We present in the following
subsection some of these formalized puzzles. After the examples, we describe
some problems found in RACER during their formulation.

4.2.1 TPTP puzzles

We outline some interesting formalizations for each problem in this section. The
complete examples can be found in Appendix B.

Every modelled TPTP problem can be split into two parts, a description of
the puzzle, followed by a conjecture which should be verified. What we first
did was to formalize each problem in a KB without the conjecture. Then we
checked if every KB was consistent. To prove the conjectures we negated the
formalizations that expressed them and added these new formalizations to the
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consistent KBs. We checked the inconsistency of the ABox in every new KB to
show the entailment of the conjecture by the initial KB.

The Dreadbury Mansion

The first example is the formalization of the well known puzzle of the Dreadbury
mansion. This problem can be found in the TPTP library under the name
PUZ001-1.p

Someone who lives in Dreadbury Mansion killed Aunt Agatha. Agatha,
the butler, and Charles live in Dreadbury Mansion, and are the only
people who live therein. A killer always hates his victim, and is never
richer than his victim. Charles hates no one that Aunt Agatha hates.
Agatha hates everyone except the butler. The butler hates everyone
not richer than Aunt Agatha. The butler hates everyone Aunt Agatha
hates. No one hates everyone. Agatha is not the butler. Therefore:
Agatha killed herself.

We explain below some of the formulations that we use for this puzzle. We
use the symbols agatha, butler and charles to represent Agatha, the butter
and Charles respectively. The role assertion (rel a b killed) states that a

killed b; (rel a b richer) states that a is richer than b; (rel a b hates)

states that a hates b.

In our formalization of the sentence ‘Someone who lives in Dreadbury Man-
sion killed Aunt Agatha’ we use a disjunction of positive role assertions, because
we know there are only three possible killers of Aunt Agatha.

->(rel charles agatha killed),

(rel agatha agatha killed),

(rel butler agatha killed).

To express the phrase ‘A killer is never richer than his victim’, we can say
that if an individual killed Agatha then such individual is not richer than her.
Sequents only use positive literals, so we express the previous statement with
a disjunction of negative role assertions with the role richer. In the specific
possibility of Charles being the killer we state:

(rel charles agatha killed),(rel charles agatha richer)->.

To express the full phrase we also state the cases of the butler and aunt Agatha
being the killer.

The declaration ‘The butler hates everyone Aunt Agatha hates’ can be rewrit-
ten as ‘If Agatha hates a person then the butler hates this person’, and it is easily
described with a sequent expressing an implications of role assertions.

(rel agatha agatha hates) -> (rel butler agatha hates).

(rel agatha charles hates) -> (rel butler charles hates).

(rel agatha butler hates) -> (rel butler butler hates).
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We can state ‘No one hates everyone’ using the at-most constructor saying
that everyone can hate at most 2 people.

->(ins agatha (at-most 2 hates *top* )).

->(ins charles (at-most 2 hates *top* )).

->(ins butler (at-most 2 hates *top* )).

The conjecture of the problem is ‘Agatha killed herself ’. We represent the
negated conjecture with a negated role assertion.

(rel agatha agatha killed)->.

When we tested the KB with the formulation of this puzzle without the
conjecture, ba2racer created a file with 53 assertions, and RACER replied
the consistency of the translated KB in 0.071 seconds. ba2racerdpll pro-
duced a consistent KB in 0.24 seconds. The number of calls to RACER from
ba2racerdpll was 4, and the average size of the produced ABoxes was 12.

We added to the previous KB the negated conjecture and the two pro-
grams replied that the new KB was inconsistent, hence we proved the fact
that aunt Agatha killed herself. ba2racer created a file with 49 assertions, and
ba2racerdpll had an average of ABox size of 13 assertions. The call of RACER
after running ba2racer last for 0.06 seconds. ba2racerdpll answered in 0.12
seconds after 4 calls to RACER.

The Barber Puzzle

The puzzle PUZ003-1.p of the TPTP library was already introduced in Section
2.2 and is shown again below.

There is a barbers’ club that obeys the following three conditions:

(1) If any member A has shaved any other member B - whether
himself or another - then all members have shaved A, though not
necessarily at the same time.

(2) Four of the members are named Guido, Lorenzo, Petrucio, and
Cesare.

(3) Guido has shaved Cesare.

Prove Petrucio has shaved Lorenzo

We also mentioned in that section an idea for a formalization. Let us be
clearer now. guido, lorenzo, petrucio and cesare are the individual names
representing Guido, Lorenzo, Petrucio, and Cesare respectively. member is the
concept name indicating the members of the barber’s club. shaved is the role
expressing the relation between barbers and shaved people.

1All the time values where obtained in a Linux Readhat 7.0, release 2.4.18-ict4, CPU:

Pentium III 800 Mhz Memory 250 Mb.
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Statement (1) express under what conditions a new role assertion of shaved
can be stated. We make the formalization of this phrase with the same idea of
Section 2.2. For all A, B, C elements of {guido, lorenzo, petrucio, cesare},
we add to the KB the following sequent:

(ins A member), (ins B member), (rel A B shaved),(ins C member) ->

(rel C A shaved).

Notice that when A, B are the same, it is not necessary to state twice (ins A

member) in the left side of the sequent.

To express statement (2), we use positive concept assertions of member.

-> (ins cesare member).

-> (ins lorenzo member).

-> (ins petruchio member).

-> (ins cesare member).

Sentence (3) is represented as a positive role assertion.

-> (rel guido cesare shaved).

The conjecture ‘Petrucio has shaved Lorenzo’ can be represented with a role
assertion. The negated conjecture is shown below.

(rel petrucio lorenzo shaved)->.

We run the two programs with the file containing the formalization of this
problem without the conjecture. We obtained that ba2racer generated a RACER
file with 61 assertions. When we feed RACER with the output file, it answered
that the translated KB was ABox consistent in 0.04 seconds. The file pro-
duced by ba2racerdpll had 11 assertions and RACER was called only once.
ba2racerdpll replied in 0.06 seconds.

In the case of the KB with the conjecture ba2racer and ba2racerdpll

detected that it was propositionally inconsistent, so no call to RACER was
needed in both cases.

The Mislabelled Boxes

The puzzle of the mislabelled boxes can be found in the TPTP library as
PUZ012-1.p. The problem states:

There are three boxes a, b, and c on a table. Each box contains
apples or bananas or oranges. No two boxes contain the same thing.
Each box has a label that says it contains apples or says it contains
bananas or says it contains oranges. No box contains what it says
on its label. The label on box a says “apples”. The label on box b
says “oranges”. The label on box c says “bananas”. You pick up box
b and it contains apples. What do the other two boxes contain?
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We use in this formalization the individual names apples, oranges, bananas
to represent apples, oranges and bananas respectively. boxa, boxb, boxc are the
individual names representing the box a, box b and box c respectively. We use
two roles, contains and label which establish the relation between a box and
its contents, and a box and its label.

For the phrase ‘Each box contains apples or bananas or oranges’ we have to
state a disjunction of the things each box can contain. For example for the box
a we have:

->(rel boxa apples contains),(rel boxa oranges contains),

(rel boxa bananas contains).

We add the same statement for the box b and the box c into the KB to express
the whole sentence.

The sentence ‘No box contains what it says on its label’ can be rewritten as:
if a box has a label l then the box does not contain l. The formalization for the
particular case of apples is shown as follows.

(rel boxa apples label),(rel boxa apples contains)->.

(rel boxb apples label),(rel boxb apples contains)->.

(rel boxc apples label),(rel boxc apples contains)->.

A similar idea is used to express that ‘No two boxes contain the same thing.’.

We want to prove that the box a contains bananas and the box c contains
oranges. We express the negated conjecture as follows:

(rel boxa bananas contains),(rel boxc oranges contains)->.

When we tested the KB containing the formalization without the conjec-
ture, ba2racer generates 42 assertions and ba2racerdpll 12 assertions for the
only call to RACER. When RACER is called after generating the translated
file with ba2racer, it replied in 0.04 seconds that the KB is ABox consistent.
ba2racerdpll answers after 0.04 seconds the same thing.

The KB with the conjecture is propositionally inconsistent and is detected
in both cases.

As we can see, in the last two cases the conjecture followed simply by propo-
sitional reasoning. Examples where modal reasoning is involved would be more
interesting. That was an aim for the testing over random BABoxes which are
described in Section 4.3. The initial tests over these puzzles were relevant be-
cause we discovered some mistakes present in RACER. They are described as
follows.
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4.2.2 Mistakes in RACER

In the initial faces of the formalization of the puzzles of the TPTP we ran into
problems with RACER. In some cases RACER returned unsound answers and in
others RACER broke down in an unexpected stack overflow. These things hap-
pened when we used the translation approach to check the consistency problem.
We illustrate in this section examples of the BABoxes with the problems.

Unsound behavior

The first problem was that RACER answered that a KB was not consistent
when in fact there was a model for the KB. The following example represents
one of the cases where RACER gave an incorrect answer.

The example was found in the formulation of the problem PUZ001-12 in
a consistent Boolean KB. It was rewritten using our algorithm of Section 3.1.
The translation was tested in RACER Version 1-6r1a, in a Pentium III Linux
Readhat 7.0, cpu Mhz 800, Memory 250 Mb. RACER Version 1-6r1a declared
the produced KB inconsistent.

To identify where did the mistake exactly lay, we reduced the BABox to
the smallest set of consistent sequents whose translation was still reported as
inconsistent by RACER. The result was the following BABox whose consistency
is trivially verified.

(rel a c h), (rel c c h) ->.

(rel a b h), (rel c b h) ->.

-> (rel a c h).

(rel a b h) ->.

To restrict even further we applied the same procedure to the translated
BABox, obtaining the KB shown below. If any element of the final file is erased,
RACER Version 1-6r1a answers that the ABox is consistent.

(in-knowledge-base PUZ001-1.pabox PUZ001-1.ptbox )

(signature

:atomic-concepts(iamj1 iamj3)

:roles(fakeh)

:individuals(a b c))

(define-primitive-role h :parents (fakeh))

(related a c fakeh)

(related a b fakeh)

(instance a (some h iamj1))

(instance a (at-most 1 fakeh iamj1))

(instance a (at-most 1 fakeh iamj3))

(instance c iamj1)

A model for the previous KB is represented in the following graph:

2The complete formulation can be found in Appendix B.
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c b

fakeh,h fakeh

iamj1

When we tested the previous KB in RACER, it returned

;;; RACER Version 1-6r1a

;;; RACER: Reasoner for Aboxes and Concept Expressions Renamed

;;; Supported description logic: ALCQHIr+(D)-

;;; Copyright (C) 1998-2001, Volker Haarslev and Ralf Moeller.

;;; RACER comes with ABSOLUTELY NO WARRANTY; use at your own risk.

;;; Commercial use is prohibited; contact the authors for licensing.

(IN-KNOWLEDGE-BASE PUZ001-1.PABOX PUZ001-1.PTBOX) -->

(PUZ001-1.PABOX PUZ001-1.PTBOX) (ABOX-CONSISTENT?) --> NIL

This mistake was found in other similar KBs. RACER is widely used, and
it was important to provide this information to the RACER team.

The next problem was also sent to the RACER team. It does not have to
do with the soundness of RACER. In this case RACER reaches a stack overflow
with a small KB.

Stack overflow

The second problem appeared when RACER did not report the consistency of
a small KB. The information of the output pointed to a stack overflow, but as
we mentioned before the KBs where the problem was found were too small to
produce such stack overflow. The following example of this error is part of the
specification in a Boolean KB of puzzle PUZ0019-13 of the TPTP. It was tested
and reduced under the same conditions of the first one. The resulting Boolean
KB was:

->(rel b r h),(rel b th h),(rel b pe h),(rel b s h).

This BABox was rewritten using the translation of [ABM02]. The translation
was also reduced to obtain the minimal KB where the problem existed.

(in-knowledge-base PUZ019-1.pabox PUZ019-1.ptbox )

(signature

:atomic-concepts(iamj2 iamj3 iamj4)

:roles(fake2 fake3 fake4)

3Not present in Appendix B due to its big size
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:individuals(b pe))

(define-primitive-role h :parents (fake2 fake3 fake4))

(instance b (some h iamj4))

(instance b (at-most 1 fake2 iamj2))

(instance b (at-most 1 fake3 iamj3))

(instance b (at-most 1 fake4 iamj4))

(related b pe fake3)

(abox-consistent?)

We also show in this case a model of the KB in the following graph.

b

pe y

fakeh3 h,fakeh2,fakeh3,fakeh4

iamj4

The output of RACER when we feed it with the KB was:

;;; RACER Version 1-6r1a

;;; RACER: Reasoner for Aboxes and Concept Expressions Renamed

;;; Supported description logic: ALCQHIr+(D)-

;;; Copyright (C) 1998-2001, Volker Haarslev and Ralf Moeller.

;;; RACER comes with ABSOLUTELY NO WARRANTY; use at your own risk.

;;; Commercial use is prohibited; contact the authors for licensing.

(IN-KNOWLEDGE-BASE PUZ019-1.PABOX PUZ019-1.PTBOX) -->

(PUZ019-1.PABOX PUZ019-1.PTBOX)

Error: An error of typeCONDITIONS:STACK-OVERFLOW occured,

arguments : COMMON-LISP:NIL

The RACER team received the details of the problems we found and they
promptly released the version 1.7 of RACER where the previous problems were
not present.

There was a last problem discovered during the random generation testing
described in the next section. Initially we wanted to test programs with ALCQ
KBs. However there is a mistake in version 1.7 of RACER concerned with the
use of the Q constructors in the BABox. Although the translation uses one
of the Q constructors (≤ nR.C), the mistake only arises when there are sev-
eral concept assertions using the Q constructors and n ≥ 2. RACER returns
unsound answers in some of these cases. The examples are rather large and
complicated to be shown here, however it is important to notice that this prob-
lem forced us to use only ALC in the generation of BABoxes described in the
next section. The RACER team has already received a report of this.
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4.3 Random generated cases

The problem with handcrafted tests is that they are hardly ‘exhaustive’. For
more intensive testing we need automatic generation of BABoxes. As our re-
search is novel there was no random generator of BABoxes previously avail-
able, so we implemented in Haskell a random generator of ALC BABoxes called
genBABox. We used this generator to test both programs over large sets of
BABoxes. Such tests are explained in the second part of this section.

4.3.1 The random generator

In this subsection we explain how the BABoxes generator, genBABox, operates.
First we show some samples of typical runs of the generator.

The run showed below exemplify how to obtain help about the desired input
parameters for the generator. Every time the program finds that the parameters
are insufficient or they have an incorrect type this output will be produced.

bash-2.04$ ./genBABox

genBABox filename #role-atoms #concept-atoms #instances #role-assertions

#concept-assertions #prob-of-modality(0..100) depth #clauses length-clause

numfiles

The following run fulfill the parameters required.

bash-2.04$ ./genBABox filename.txt 1 2 3 4 5 50 2 10 3 6

Finalized

When genBABox finishes we obtain the following files:

bash-2.04$ ls filename.txt.*

filename.txt.1 filename.txt.3 filename.txt.5

filename.txt.2 filename.txt.4 filename.txt.6

These files contain the generated BABoxes. Notice that the output files have
the same name of the value in filename but the extension is a number between
one and the value in numfiles.

We detail now the parameters taken by genBABox. The following explanation
shows the abbreviations that appeared above in the first run of genBABox and
the meaning and importance of each one. The values for the numeric parameters
are expected to be positive integers. Only in some cases a parameter can take
the value of 0.

• filename. As we saw before this parameter contains the file name that is
going to be taken as base name for the output files generated.
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• #role-atoms, #concept-atoms, #instances. These parameters indicate
the number of atomic roles, number of atomic concepts and number of
individuals that are used in the creation of the BABox. They define the
signature, which is the same for every BABox generated in the run. The
value of #instances can not be 0.

• #role-assertions and #concept-assertions. With these parameters
we set the number of role assertions and number of concept assertions.
They establish how many assertions are created every time a new BABox
is generated.

• #prob-of-modality. This number goes from 0 to 100 and sets the proba-
bility that a generated concept has ∀ or ∃ as its main connective equal to
#prob-of-modality/100. The probability of modality is discarded when
the depth is set to 1.

• depth. This parameter defines the depth of the produced concepts. The
depth cannot be set to 0. If the depth is 1 the concepts produced can be
of four types: atomic concepts, negated atomic concepts, disjunction or
conjunction of possibly negated atomic concepts. Disjunctions and con-
junctions are in RACER format, whence they take a list of arguments. The
length of the requested list is bounded by the value of #concept-atoms.
When the depth is n, the concepts that can be generated are: the concepts
generated with depth n-1, and the concepts produced by the application
of the constructors (t, u, ∃, ∀) to the concepts generated with depth
n-1. The constructors ∃ and ∀ are used only when #prob-of-modality

is bigger than 0.

The detailed explanation of the creation of a concept, and the use of the
probability of modality and the depth is given below under The creation
of assertions.

• #clauses. Initially the generator works with clauses and then it writes
them as sequents. The value in the parameter #clauses indicates the
number of clauses (sequents) that every BABox generated in the run will
have.

• length-clause. The clauses have always the same length and this is set
with this parameter. The length of clause can not be set to 0.

• numfiles. The generator can output several BABoxes in a run. This
number declares how many BABoxes are going to be generated. This
parameter can not be set to 0.

The process of generation of BABoxes runs a generator of ONE BABox
numfiles times. This generator of one BABox recieves all the parameters of
genBABox and one extra parameter indicating the number of call, between 1
and numfiles. We refer to this number as call. The generator for one BABox
follows these steps.
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1 Create role assertions and concept assertions.

2 Create a propositionally satisfiable set of ABox clauses.

3 Write a file with the BABox.

We explain these steps below. We use the abbreviations to represent the
values of the parameters received in the run.

The creation of the assertions

The creation of every assertion is made randomly. First we create #role-atoms
role atoms, #concept-atoms concept atoms, and #instances instances. Then
we create the assertions using these elements.

The creation of a role assertion is the easiest, it is made by choosing an atomic
role and a pair of individuals randomly. This process is repeated #role-asserti

ons times.
The case of concept assertions is more difficult. We first explain the cre-

ation of a single random concept in the following pseudocode of the function
genConcept. The parameters expected by this function are two, denoting depth
of the concept and probability of modality.

We assume the existence of the following functions: genRnd that takes 2 inte-
gers i, j as input and returns a random integer that is ≥ i and ≤ j; getRoleAtom
and getConceptAtom which return a randomly chosen atom of the list of role
or concept atoms respectively; and genSimpleConcept which returns a ‘simple’
concept, meaning with this a concept that is either a possibly negated concept
atom or a disjunction or conjunction of possibly negated concept atoms.

genConcept(depth, mod)

{

if depth == 1 or mod == 0 then

genSimpleConcept;

else

{

pro := genRnd 1 100;

if pro =< mod then

{

opt := genRnd 1 2;

case opt of

1: genSomeConcept(depth-1,mod);

2: genAllConcept(depth-1,mod);

}

else

{

opt := genRnd 1 4;

case opt of

1: getConceptAtom;

2: {c:=getConceptAtom; return (Not c);}

3: genAndConcept (depth-1,mod);

4: genOrConcept (depth-1,mod);
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}

}

}

The function genConcept does not use the probability of modality mod if it
is 0 or if the depth depth is 1, otherwise it will create a modal concept (∀, ∃)
with a probability of mod out of 100. The non modal cases include the atomic
concept, the negated atomic concept, and the disjunction and conjunction of
concepts.

In the case of the modalities, disjunction and conjunction genConcept calls
functions where depth and mod are passed as parameter. This is done because
these functions require the elaboration of more concepts, meaning with this
more recursive calls to genConcept. We explain later when these recursive calls
to genConcept occur.

Notice that the depth was diminished in one unit when genSomeConcept,
genAllConcept, genAndConcept, genOrConcept were called. This ensure the
termination of the concept construction because when the depth is equal to
1, genConcept creates only simple concept assertions using genSimpleConcept

and the recursion ends.
To illustrate the role of the depth in genConcept we give some examples of

the concepts that can be produced in a call. Suppose genConcept has an input
depth of 1. In this case genConcept discards the probability of modality and
calls genSimpleConcept. Assume we have three atomic concepts C1, C2, C3. We
show below some examples in RACER format of the concepts that genConcept
can create under these conditions:

C3

(not C1)

(and C1 (not C2))

(or C1 (not C2) C3)

If the value of the input depth of genConcept is 2, the value of the probability
of modality is bigger than 0, there is one atomic role R and the same atomic
concepts; we can expect genConcept to produce concept like the previously
mentioned concepts and like the following:

(not (and C1 C2))

(exists R C1)

(all R (and C1 (not C2)))

A bigger depth allows genConcept to create longer and more complex con-
cepts. This will be done in recursive calls to genConcept in the functions that
use the constructors to create concepts. We explain them in the following para-
graphs.

The functions genSomeConcept and genAllConcept are similar, they only
change in the operator to construct the concepts, which are exists and all re-
spectively. These functions obtain randomly an atomic role, and call genConcept
to get a concept. Then they apply the constructor to create the final modal con-
cept. We only describe genSomeConcept in the next pseudocode.
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genSomeConcept(depth,mod)

{

role := getRoleAtom;

conc := genConcept(depth,mod);

return (exist role conc);

}

The functions genAndConcept and genOrConcept work similarly to the pre-
vious functions, the difference is that they call several times to genConcept

by means of the function genListConcept. We assume the existence of this
function. genListConcept receives as input three numbers and returns a list
of concepts. The first number indicates the depth, the second the probability
of modality, and the third the length of the list. They are used to create the
concepts of the list. The third number sets the length of the list. We also as-
sume the existence of the function getLength which returns a random number
between 1 and the value in #concept-atoms.

Due to the similarity between genAndConcept and genOrConcept we only
reproduce the pseudocode for genAndConcept. In the case of genOrConcept we
use the constructor or instead of and.

genAndConcept(depth,mod)

{

length := getLength;

list := genListConcept(depth,mod,length);

return (and list)

}

To create a concept assertion we first generate a concept with the function
genConcept(depth,mod) where depth is the input depth of the program and
mod is the input probability of modality. Then we instantiate this concept to
an individual chosen randomly. We repeat the process #concept-assertions

times.

Now that we have a set of assertions we are ready to build our set of clauses.

The set of assertional clauses

The generator uses a satisfiable propositional set of clauses to build the set of
assertional clauses. It uses mkcnf written by Allen van Gelder to produce this
propositional set. In the call to mkcnf the parameter force is set, compelling
it to give a satisfiable propositional clause set. We do this because we do not
want unsatisfiable sets that will never be tested in RACER by ba2racerdpll.
The number of propositional variables used in mkcnf is set to the total number
of assertions.

mkcnf returns a set of clauses where the propositions are represented as
numbers. The numbers go from 1 to the total number of propositions. A
negative number represents the negation of a proposition.
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The generator enumerate the assertions and using this enumeration, it sub-
stitutes the propositions in the clause set by the assertions. A negated proposi-
tion is substituted by the negation of the assertion.

The final output

So far, the generator has produced a set of assertional clauses which must be
transformed into sequents. The program applies Definition 6 repeatedly to
the set of assertional clauses. This set now can be handled by the programs
described in Section 4.1. The final step is to write the set of sequents into a
file. The file name is built using filename and the value in call is used as the
extension of the file name.

We now have a tool to create random BABoxes. The wide number of pa-
rameters allows us to generate many interesting BABoxes for the tests of the
next section.

4.3.2 The testing

In this section we show the tests of the two programs for handling BABoxes
ba2racer and ba2racerdpll over random BABoxes. Given that we only had
two weeks (three weekends) for the testing, we organized the test in three parts.
First we had an exploratory part, then we made more refined testing and with
the results of these we designed the final tests. The major tests for each part
were mainly executed during the weekends. The modifications of the programs
and some minor tests where made during the week days.

Before we started the tests, we created some scripts to generate several
BABoxes and return the analysis of the testing of the two programs. We mea-
sured variables like: the median of the time spent to solve the consistency prob-
lem and the percentage of consistent BABoxes found. In the case of ba2racer
we did not measure the translation time, we were interested in the time RACER
spent to give an answer about the consistency of the translated BABox.

The main script allow us to test over a range of number of clauses under
the same parameters of BABox generation. The exploration of this range is
made in a number of points defined by an interval. We can also indicate how
many BABoxes will be checked in every point and a timeout for the responses.
The rest of the scripts realize smaller tasks and they were mainly used in the
exploratory part of the testing.

The exploratory part lasted one weekend and we detected errors in the ran-
dom generation. The first mistake was the incorrect seed initialization in the
calls to mkcnf. We also found a mistake related to the random generation in-
side of genBABox. Originally the program genBABox generated only one BABox
and multiple calls to genBABox were used to generate the required number of
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instances. We used the global random number generator of Haskell in all the
random tasks. According to [J+99] this random number generator is initialized
automatically in some system dependant fashion. The problem was that some-
times the generation was too fast and the same number was taken several times
as initializer. These two problems made genBABox produce several copies of the
same BABox. The generated data was not fully random, but we could still use
it. We fixed the problems modifying genBABox to initialize correctly the seed in
the call to mkcnf and providing the generation of multiple BABoxes with only
one call to genBABox.

The results of these tests let us tune and define which part of the test space
we could handle in the available time. Even with the excessive redundancy
produced by the problems described above we obtained some hints about where
shall we direct our tests. We detected some spaces with particular behaviors for
each program.

The refined tests gave us hints about where to focus the final part of the
testing. We defined the range where we could find a variation from satisfiable
to unsatisfiable BABoxes. We found some cases where we needed to know how
many times ba2racerdpll was calling RACER and the size of the produced
ABox. We made small modifications to the programs and the scripts to adjust
to these requirements. After the modifications ba2racer and ba2racerdpll

gave us a comment in the output file the size of the ABox and the number of
calls to RACER. In the case of ba2racerdpll, we were more interested in the
average size of all the ABoxes checked than in the particular size of the last
ABox emitted. Then, ba2racerdpll calculates this average and prints it as the
size of the ABox in every generated file. This way we have data even in the case
ba2racerdpll gets a timeout.

In some of these tests we observed that ba2racerdpll was much faster than
RACER with the output files of ba2racer. ba2racerdpll performed better
where the BABoxes tended to be merely propositional, and the consistency or
inconsistency of them was found after a few tries. ba2racer instead, had a good
performance when the information in the BABoxes was modally constrained.

We expected that in the final tests ba2racerdpll would have a good per-
formance in BABoxes with propositional inconsistencies, a small number of
propositional models, or with many modal models. This last case is given when
the information of the BABoxes is not modally constrained.

For the case of ba2racer, we considered that it would handle better the
cases where a modal model was difficult to search, this is, when the information
stored in the BABoxes has many modal constraints hypotheses, having many
propositional models, but a few modal models or maybe none.

The final tests were designed to check the two hypothesis based on the
previous tests. They focused on showing ranges where we could find a variation
from satisfiability to unsatisfiability and the particular performances of each
program.

The following parameters: 1 atomic role, 3 atomic concepts, 5 individuals,
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10 concept assertions, 10 role assertions, a probability of modality of 50, a depth
of 3, a length of clause of 3, 80 examples in every check point, timeout of 30 sec-
onds; will be called the initial configuration for the tests. In the following tests
we keep most of the previous parameters fixed and only vary one or two of them.
This initial configuration plays with a small number of role assertions, and the
following tests pretend to increment the modal constrains between the individ-
uals increasing the number of concept assertions and roles. We set the depth of
3 to allow concepts like ∀S.∃S.C. We tested seven different configurations.

Every test has figures where we represent the time of the run of RACER
over the translated BABoxes produced by ba2racer as Ttime and the time for
ba2racerdpll as Dtime. These points are the median of all the times obtained
for each case. The percentage of satisfiable instances is represented as Tsat for
the translation approach and Dsat for the other approach. The differences be-
tween Tsat and Dsat are due to time outs. In all the cases when both approaches
found an answer (sat or unsat) the answers coincided. The average of number
of calls to RACER inside ba2racerdpll is shown in the variable Dcalls. The
average of the size of the BABoxes is represented in Tsize and Dsize.

In the first test, shown in Figure 4.1, the range was set from 40 to 150
clauses and we established 23 measuring points with an interval of 5 and. We
can observe that the curve representing the proportion of satisfiable BABoxes
goes from a high amount to a small amount of consistent BABoxes. It is notable
that ba2racerdpll worked faster than the translation approach. The size of
the ABoxes in ba2racerdpll did not variate much along the test, however the
ABoxes produced by the translation grew significantly. Notice that RACER
over the translated files increased the time spent in the consistency checking in
the critic region where the Tsat curve changes from highly satisfiable to highly
non satisfiable.

The second test shown in Figure 4.2, took the same parameters of the first
one except the number of atomic roles. We increased the number of role atoms
in one unit to show that the same behavior remains even for a configuration
with two atomic roles. This configuration is more likely to occur in a real
formalization than one with only one atomic role. We used a range from 10 to
200 with an interval of 10. The curve from satisfiable to unsatisfiable here is
smother, after 150 clauses is unlikely to find satisfiable BABoxes but still we
find some.

ba2racerdpll showed again a good performance. We can see how the num-
ber of calls to RACER is reduced as the number of clauses increases showing
that it is easy for ba2racerdpll to detect a propositionally inconsistent BABox
because with more than 100 clauses there is only one propositional model.

So far we have only seen a nice behavior from the side of ba2racerdpll.
For the third and fourth tests in Figures 4.3 and 4.4, we will see a radical
change. The third test changes the initial configuration adding 10 more concept
assertions for a total of 20. The range of clauses is also expanded to 20-150 with
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Figure 4.1: Test with 1 atomic role and 10 concept assertions
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Figure 4.2: Test with 2 atomic roles and 10 concept assertions
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Figure 4.3: Test with 1 atomic role and 20 concept assertions
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Figure 4.4: Test with 2 atomic roles and 20 concept assertions
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an interval of 10. The fourth test keep the configuration of the third test but
uses 2 atomic roles and a range of number of clauses of 20-300 with an interval
of 20.

In these two tests we can appreciate that with a small number of clauses
there are occasions where the translation approach had a better performance
than ba2racerdpll. There are more timeouts than in the previous tests so we
can see a gap between Tsat and Dsat mainly in Figure 4.3.

We increased the number of concept assertions to 30 in the fifth test, shown
in Figure 4.5. We increased the timeout to 100 seconds in order to minimize
the number of timeouts an we had to reduce the number of BABoxes per data
point to 50 to make the tests set tractable. The rest of the configuration was
like the initial configuration. The range of the number of clauses was from 20
to 150 with an interval of 5.

We can see in the Figure 4.5 the notable increment on the calls to RACER
made by ba2racerdpll. The translation approach had a good performance until
the critic region, then it only reached timeouts. On the contrary, ba2racerdpll
recovers its good behavior in the unsatisfiable part of the graphic, this was due
to the decrease of number of available propositional models and its consequents
calls to RACER, as the size of the average KB did not show a big increase. In
the case of the translation the size of the average KB kept growing with the size
of the BABoxes.

In order to observe the progress of both programs we tested the initial con-
figuration with 70 concept assertions. The critic region was very difficult to
handle for both approaches, so we partitioned the sixth test in two subtests.
We used the range 20-100 and an interval of 10 for the satisfiable part, and
280-450 with an interval of 10 for the unsatisfiable section. Figure 4.6 belongs
to the satisfiable part of the test and shows how bad is the performance of
ba2racerdpll compared to the translation approach. The size of the ABoxes
produced by ba2racerdpll grew significantly, as well as the number of calls to
RACER. ba2racerdpll reached a timeout in more than a half of the examples
when the number of clauses was bigger than 30. We can see with these data
that ba2racerdpll is not able to handle very well satisfiable BABoxes which
are modally constrained because it has to check too many propositional models.
There were many timeouts in ba2racerdpll, so there is a big difference between
its satisfiability curve and satisfiability curve of the translation approach. The
unsatisfiable side of the test is shown in Figure 4.7. Here ba2racerdpll had
a good performance but not with a big difference of the performance of the
translation approach.

The seventh test followed the idea of test number six, partitioning the test
space in two to avoid the critical region. The Figures 4.8 and 4.9 schematize the
tests with the initial configuration but with 2 role atoms and 70 concepts. The
ranges of number of clauses where set to 20-150 and 290-450 for the satisfiable
and unsatisfiable section respectively. The interval in both cases was 10. The
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Figure 4.5: Test with 1 atomic role, 30 concept assertions, 50 BABoxes and 100
seconds of timeout
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Figure 4.6: Test with 1 atomic role and 70 concept assertions, satisfiable part
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Figure 4.7: Test with 1 atomic role and 70 concept assertions, unsatisfiable part
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Figure 4.8: Test with 2 atomic roles and 70 concept assertions, satisfiable part
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Figure 4.9: Test with 2 atomic roles and 70 concept assertions, unsatisfiable
part
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behavior of both programs was similar to the presented in the sixth test, and
as we saw in other cases where we add one role to the configurations, we had to
enlarge the ranges of the number of clauses to obtain the curves.

We have shown in this section that ba2racerdpll has a good performance
with BABoxes that represent information modally underconstrained. ba2racer-
dpll deals very well with BABoxes that have few propositional models and are
easy to declare consistent or inconsistent. On the contrary RACER does not
‘see’ these cases with the translation but it can handle better the modal con-
straints of the BABox. In this case ba2racerdpll spends time testing all the
propositional model it finds, and as we can see in the figures this strategy leads
to a timeout.

The shape of a ‘natural BABox’ in a knowledge representation enterprise
would be generally a BABox using 2 or more role atoms and more than 5
individuals. With respect of the concept atoms, the number would be higher
than 3, and it would be expected a high number of concepts assertions, and
among them a numerous set of concepts assertions constructed with the modals
∃ and ∀. These configuration points to modally constrained BABoxes. We
would not expect BABoxes whose consistency is easy to deduce propositionally,
otherwise we would not bother to represent such knowledge in a BABox if we can
deduce easily the consistency trying a few models. These BABoxes are expected
to be consistent, but we do not know for sure if they are. For all this reasons
we can locate such BABoxes in the critical region of the sat-unsat curve. As
we saw, ba2racer together with RACER behaves better than ba2racerdpll in
modally constrained BABoxes, and specially in the satisfiable part of the critical
region. Thus we would prefer to use ba2racer in these cases.

We described in this section the different test we effectuate with ba2racerdpll

and ba2racer. The testing were worthwhile, we found some mistakes in RACER
and the preliminary random testing indicates in which situations the programs
perform well. We also created a generator of BABoxes that was not available
before, and that can be useful for further tests
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Appendix A

The Code

A.1 ba2racer

BAFAssertions BAFParser

BAFMod BAFOpti

BAFTrans

ba2racer

58



BAFAssertions

----------------------------------------------------

-- --

-- Boolean ABox syntax, data types file --

-- --

-- Berna Martinez September, 2 2002 --

-- --

----------------------------------------------------

module BAFAssertions (

-- types

Concept(Conn,Top,Bottom,Neg,And,Or,Some,All,Atmost,Atleast),

Role(Role),

Sequent(Seq),

Atom(Ins,Rel,Not),

Iname(IN),

RoleInclusion(RoleInclusion),

KBelem(KBT,KBA),

KnowledgeBase(KB),

TboxAxiom(Impl,Equi,Disj,Rdef),

Transitive(TransitiveNot,Transitive),

Inverse(InverseNot,Inverse),

Parents(ParentsNot,Parents),

Clause,

-- Show

show,

-- Format list

formatList,

formatKB,

) where

import List

type Clause = [Atom]

{- Declared Types -}

data Atom

= Ins Iname Concept

| Rel Iname Iname Role

| Not Atom

deriving (Eq,Ord)

data Concept

= Conn String

| Top

| Bottom

| Neg Concept

| And [Concept]

| Or [Concept]

| Some Role Concept

| All Role Concept

| Atmost Integer Role Concept

| Atleast Integer Role Concept

deriving (Eq,Ord)
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data Role

= Role String

deriving (Eq,Ord)

data Iname

= IN String

deriving (Eq,Ord)

data Sequent

= Seq [Atom] [Atom]

deriving (Eq,Ord)

data RoleInclusion

= RoleInclusion Role [Role]

deriving (Eq,Ord)

data TboxAxiom

= Impl Concept Concept

| Equi Concept Concept

| Disj [Concept]

| Rdef Role Transitive Inverse Parents

deriving (Eq,Ord)

data KBelem

= KBT TboxAxiom

| KBA Sequent

data KnowledgeBase

= KB [TboxAxiom] [Sequent]

data Transitive

= TransitiveNot

| Transitive

deriving (Eq,Ord)

data Inverse

= InverseNot

| Inverse Role

deriving (Eq,Ord)

data Parents

= ParentsNot

| Parents [Role]

deriving (Eq,Ord)

instance Show Atom where

show (Ins n c) = "(instance " ++ (show n) ++ " " ++ (show c) ++ ")\n"

show (Rel n i r) = "(related " ++ (show n) ++ " " ++ (show i)

++ " " ++ (show r) ++ ")\n"

show (Not c) = "(not " ++ (show c) ++ ")\n"

instance Show Concept where

show (Conn c) = c

show (Top) = "*top*"

show (Bottom) = "*bottom*"

show (And c) = "(and " ++ (formatList (show c) ’,’ ’ ’) ++ ")"

show (Or c) = "(or " ++ (formatList (show c) ’,’ ’ ’) ++ ")"
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show (Neg c) = "(not " ++ (show c) ++ ")"

show (Some r c) = "(some " ++ (show r) ++ " " ++ (show c) ++ ")"

show (All r c) = "(all " ++ (show r) ++ " " ++ (show c) ++ ")"

show (Atmost i r c) = "(at-most " ++ (show i) ++ " " ++ (show r)

++ " " ++ (show c) ++ ")"

show (Atleast i r c) = "(at-most " ++ (show i) ++ " " ++ (show r)

++ " " ++ (show c) ++ ")"

instance Show Role where

show (Role r) = r

instance Show Iname where

show (IN n) = n

instance Show RoleInclusion where

show (RoleInclusion a b) = "(" ++ (show a) ++ " :parents (" ++

(formatList (show b) ’,’ ’ ’) ++ "))"

instance Show TboxAxiom where

show (Impl a b) = "(implies " ++ (show a) ++ " " ++ (show b) ++ ")"

show (Equi a b) = "(equivalent " ++ (show a) ++ " " ++ (show b) ++ ")"

show (Disj c) = "(disjoint " ++ (formatList (show c) ’,’ ’ ’) ++ ")"

show (Rdef a b c d) = "(define-primitive-role " ++ (show a) ++ (show b)

++ (show c) ++ (show d) ++ ")"

instance Show Transitive where

show (TransitiveNot) = ""

show (Transitive) = " :transitive t"

instance Show Inverse where

show (InverseNot) = ""

show (Inverse r) = " :inverse " ++ (show r)

instance Show Parents where

show (ParentsNot) = ""

show (Parents c) = " :parents (" ++ (formatList (show c) ’,’ ’ ’) ++ ")"

{- gives print format -}

formatList :: String -> Char -> Char -> String

formatList s a b = (map (\x -> (if x==a then b else x))(tail(init s)))

{- returns True if it is a Tbox element -}

isKBT (KBT _) = True

isKBT _ = False

{- transforms a set of kbelem in a Tbox,ABox -} formatKB ::

[KBelem] -> KnowledgeBase formatKB kb =

let

(tb,ab) = partition isKBT kb

tb1 = map (\(KBT x) -> x) tb

ab1 = map (\(KBA x) -> x) ab

in KB tb1 ab1
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BAFParser

----------------------------------------------------

-- --

-- Boolean ABox syntax, parser file --

-- --

-- Berna Martnez August, 20 2002 --

-- --

----------------------------------------------------

{

module BAFParse

where

import BAFAssertions

import Prelude

import Char

import IOExts

}

%name parse

%tokentype { Token }

%monad { P } { thenP } { returnP }

%lexer { lexer } { TokenEOF }

%token

instance { TokenInstance }

related { TokenRelated }

all { TokenAll }

some { TokenSome }

top { TokenTop }

bottom { TokenBottom }

neg { TokenNeg }

and { TokenAnd }

or { TokenOr }

imp { TokenImp }

impl { TokenImpl }

equi { TokenEqui }

disj { TokenDisj }

name { TokenName $$ }

num { TokenNum $$ }

tran { TokenTransitive }

inve { TokenInverse }

prnt { TokenParents }

defrol { TokenDefRole }

atmost { TokenAtmost }

atleast { TokenAtleast }

t { TokenT }

’(’ { TokenOB }

’)’ { TokenCB }

’,’ { TokenComma }

’.’ { TokenDot }

%%

Input:

{- empty -} { [] }

62



| KBelem Input { $1:$2 }

KBelem:

TboxAxiom { KBT $1 }

| Sequent { KBA $1 }

TboxAxiom:

’(’ impl Concept Concept ’)’ { Impl $3 $4 }

| ’(’ equi Concept Concept ’)’ { Equi $3 $4 }

| ’(’ disj LConcepts ’)’ { Disj $3 }

| ’(’ defrol Role Transitive Inverse Parents ’)’ { Rdef $3 $4 $5 $6}

Role :

name { Role $1 }

Transitive :

{- empty -} { TransitiveNot }

| tran t { Transitive }

Inverse :

{- empty -} { InverseNot }

| inve Role { Inverse $2 }

Parents :

{- empty -} { ParentsNot }

| prnt ’(’ LRoles ’)’ { Parents $3 }

LRoles :

{- empty -} { [] }

| Role LRoles { $1:$2 }

Concept :

name { Conn $1 }

| top { Top }

| bottom { Bottom }

| ’(’ and LConcepts ’)’ { And $3 }

| ’(’ or LConcepts ’)’ { Or $3 }

| ’(’ neg Concept ’)’ { Neg $3 }

| ’(’ some Role Concept ’)’ { Some $3 $4 }

| ’(’ all Role Concept ’)’ { All $3 $4 }

| ’(’ atmost num Role Concept ’)’ { Atmost (read $3) $4 $5}

| ’(’ atleast num Role Concept ’)’ { Atleast (read $3) $4 $5}

LConcepts :

Concept { [$1] }

| Concept LConcepts { $1:$2 }

Iname :

name { IN $1 }

Atom :

’(’ instance Iname Concept ’)’ { Ins $3 $4 }

| ’(’ related Iname Iname Role ’)’ { Rel $3 $4 $5 }

LAtoms :

{- empty -} { [] }
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| Atom LAtoms2 { $1:$2 }

LAtoms2 :

{- empty -} { [] }

| ’,’ Atom LAtoms2 { $2:$3 }

Sequent :

LAtoms imp LAtoms ’.’ { Seq $1 $3 }

---The Monad

{

data ParseResult a

= ParseOk a

| ParseFail String

type P a = String -> Int -> ParseResult a

thenP :: P a -> (a -> P b) -> P b

m ‘thenP‘ k = \s l ->

case m s l of

ParseFail s -> ParseFail s

ParseOk a -> k a s l

returnP :: a -> P a

returnP a = \s l -> ParseOk a

--the lexer

data Token =

TokenInstance | TokenRelated |

TokenNeg | TokenAnd | TokenOr | TokenImp |

TokenAll | TokenSome |

TokenTop | TokenBottom |

TokenOB | TokenCB |

TokenComma | TokenDot |

TokenName String | TokenNum String | TokenEOF |

TokenImpl |

TokenEqui | TokenDisj |

TokenT |

TokenInverse | TokenParents | TokenDefRole | TokenTransitive |

TokenAtleast | TokenAtmost

lexer :: (Token -> P a) -> P a

lexer cont s = case s of

[] -> cont TokenEOF []

(’*’:’t’:’o’:’p’:’*’:cs) -> cont TokenTop cs

(’*’:’b’:’o’:’t’:’t’:’o’:’m’:’*’:cs) -> cont TokenBottom cs

(’:’:’t’:’r’:’a’:’n’:’s’:’i’:’t’:’i’:’v’:’e’:cs) -> cont TokenTransitive cs

(’:’:’i’:’n’:’v’:’e’:’r’:’s’:’e’:cs) -> cont TokenInverse cs

(’:’:’p’:’a’:’r’:’e’:’n’:’t’:’s’:cs) -> cont TokenParents cs

(’\n’:cs) -> \line -> lexer cont cs (line+1)

(’\r’:cs) -> lexer cont cs

(’ ’:cs) -> lexer cont cs

(’,’:cs) -> cont TokenComma cs

(’-’:’>’:cs) -> cont TokenImp cs
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(’(’:cs) -> cont TokenOB cs

(’)’:cs) -> cont TokenCB cs

(’.’:cs) -> cont TokenDot cs

(’%’:cs) -> lexComment cs

(c:cs)

| isAlpha c -> lexVarCon (c:cs)

| isDigit c -> lexNum (c:cs)

| otherwise -> trace ((show c) ++ "\n") lexer cont cs

where

lexComment [] = cont TokenEOF []

lexComment (c:cs)

| c == ’\n’ = \line -> lexer cont cs (line+1)

| otherwise = lexComment cs

lexVarCon cs =

case span isStringPart cs of

("ins",rest) -> cont TokenInstance rest

("rel",rest) -> cont TokenRelated rest

("all",rest) -> cont TokenAll rest

("some",rest) -> cont TokenSome rest

("or",rest) -> cont TokenOr rest

("and",rest) -> cont TokenAnd rest

("not",rest) -> cont TokenNeg rest

("implies",rest) -> cont TokenImpl rest

("equivalent",rest) -> cont TokenEqui rest

("disjoint",rest) -> cont TokenDisj rest

("at-most",rest) -> cont TokenAtmost rest

("at-least",rest) -> cont TokenAtleast rest

("t",rest) -> cont TokenT rest

("define-role",rest) -> cont TokenDefRole rest

(name,rest) -> cont (TokenName name) rest

lexNum cs =

case span isDigit cs of

(num,rest) -> cont (TokenNum num) rest

isStringPart c

| isAlphaNum c = True

| c == ’_’ = True

| c == ’-’ = True

| otherwise = False

runParser :: String -> [KBelem]

runParser s = case parse s 1 of

ParseOk e -> e

ParseFail s -> error s

--this should be defined for all parsers

type Parse = P [KBelem]

parse :: Parse

happyError :: P a

happyError = \s i -> error (

"Parse error in line " ++ show (i::Int) ++ "\n")

}
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BAFMod

----------------------------------------------------

-- --

-- Boolean ABox Module --

-- --

-- Berna Martinez September, 03 2002 --

-- --

----------------------------------------------------

module BAFMod(

--functions

qsort,

treatParams,

spreadImp,

onlyOneDefRole,

unifyTbox,

signature,

)

where

import List

import BAFAssertions

{- qsort: sorting algorithm with elimination of duplicates -}

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort elts_lt_x ++ [x] ++ qsort elts_gr_x

where

elts_lt_x = [y | y <- xs, y < x]

elts_gr_x = [y | y <- xs, y > x]

{- return the parameters -}

treatParams :: [String] -> (Bool, String)

treatParams [] = (False, "")

treatParams (h:l) = (True, h)

{- spreadImp: spread de implication rule p -> q == ~p \/ q -}

spreadImp :: [Sequent] -> [Clause]

spreadImp cs = (map (\(Seq a b) -> (map Not a) ++ b) cs)

{- elem speial for Role names -}

elemRole :: Role -> [TboxAxiom] -> Bool

elemRole _ [] = False

elemRole a ((Rdef b _ _ _):cs)

| a == b = True

| otherwise = (elemRole a cs)

{- checks if there are two definitions for the same role -}

onlyOneDefRole :: [TboxAxiom] -> [TboxAxiom] -> (Bool,Role)

onlyOneDefRole [] _ = (False,(Role "null"))

onlyOneDefRole ((Rdef a b InverseNot c):cs) tb =

let

tb1 = filter ((/=) (Rdef a b InverseNot c)) tb

in if (elemRole a tb1)

then (True,a)
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else (onlyOneDefRole cs tb)

onlyOneDefRole ((Rdef a b (Inverse c) d):cs) tb =

let

tb1 = filter ((/=) (Rdef a b (Inverse c) d)) tb

in if (elemRole a tb1)

then (True,a)

else if (elemRole c tb1) then (True,c) else (onlyOneDefRole cs tb)

onlyOneDefRole (_:cs) tb = (onlyOneDefRole cs tb)

{-adds relations as parenst-}

addParent :: Parents -> [Role] -> Parents

addParent (ParentsNot) k = (Parents k)

addParent (Parents i) k = (Parents (qsort(union i k)))

{-unifies the axioms created with the axioms read-}

unifyTboxS :: [TboxAxiom] -> RoleInclusion ->[TboxAxiom]

unifyTboxS [] (RoleInclusion a i) = [(Rdef a (TransitiveNot)

(InverseNot) (Parents i))]

unifyTboxS ((Rdef a b InverseNot d):cs) (RoleInclusion j k)

| a == j =

let newd = addParent d k

in ((Rdef a b InverseNot newd):cs)

| otherwise =

let newcs = unifyTboxS cs (RoleInclusion j k)

in ((Rdef a b InverseNot d):newcs)

unifyTboxS ((Rdef a b (Inverse c) d):cs) (RoleInclusion j [k])

| a == j =

let newd = addParent d [k]

in ((Rdef a b (Inverse c) newd):cs)

| c == j =

let

kinv = (Role ((show k) ++ "inv"))

newax = (Rdef k (TransitiveNot) (Inverse kinv) (ParentsNot))

newd = addParent d [kinv]

in ([(Rdef a b (Inverse c) newd),newax] ‘union‘ cs)

| otherwise =

let newcs = unifyTboxS cs (RoleInclusion j [k])

in ([(Rdef a b (Inverse c) d)] ‘union‘ newcs)

unifyTboxS (c:cs) s = c:(unifyTboxS cs s)

unifyTbox :: [TboxAxiom] -> [RoleInclusion] ->[TboxAxiom]

unifyTbox tb [] = tb

unifyTbox tb ((RoleInclusion i j):cs)=

let

newtb = unifyTboxS tb (RoleInclusion i j)

in unifyTbox newtb cs

{- Creates the signature of the KB -}

signature :: [TboxAxiom] -> Clause -> String

signature tb ab =

let

rol1 = (qsort ((concatMap getRoleTB tb) ++ (concatMap getRoleAB ab)))

\\ (concatMap getRoleDfTB tb)

con1 = qsort ((concatMap getConnTB tb) ++ (concatMap getConnAB ab))

ind1 = qsort (concatMap getInamAB ab)

rol2 = formatList (show rol1) ’,’ ’ ’

67



con2 = formatList (show con1) ’,’ ’ ’

ind2 = formatList (show ind1) ’,’ ’ ’

in "(signature \n :atomic-concepts(" ++ con2 ++ ")\n :roles(" ++ rol2 ++

")\n :individuals(" ++ ind2 ++"))\n"

getRoleDfTB :: TboxAxiom -> [Role]

getRoleDfTB (Rdef a _ (Inverse c) _) = [a,c]

getRoleDfTB (Rdef a _ _ _) = [a]

getRoleDfTB _ = []

getRoleTB :: TboxAxiom -> [Role]

getRoleTB (Impl a b) = (getRoleC a) ++ (getRoleC b)

getRoleTB (Disj a) = concatMap getRoleC a

getRoleTB (Equi a b) = (getRoleC a) ++ (getRoleC b)

getRoleTB _ = []

getRoleAB :: Atom -> [Role]

getRoleAB (Ins _ b) = (getRoleC b)

getRoleAB (Rel _ _ c) = [c]

getConnTB :: TboxAxiom -> [Concept]

getConnTB (Impl a b) = (getConnC a) ++ (getConnC b)

getConnTB (Disj a) = concatMap getConnC a

getConnTB (Equi a b) = (getConnC a) ++ (getConnC b)

getConnTB _ = []

getConnAB :: Atom -> [Concept]

getConnAB (Ins a b) = (getConnC b)

getConnAB _ = []

getInamAB :: Atom -> [Iname]

getInamAB (Ins a b) = [a]

getInamAB (Rel a b c) = [a,b]

getRoleC :: Concept -> [Role]

getRoleC (Neg c) = getRoleC c

getRoleC (And c) = concatMap getRoleC c

getRoleC (Or c) = concatMap getRoleC c

getRoleC (Some r c) = r:(getRoleC c)

getRoleC (All r c) = r:(getRoleC c)

getRoleC (Atmost _ r c) = r:(getRoleC c)

getRoleC (Atleast _ r c) = r:(getRoleC c)

getRoleC _ = []

getConnC :: Concept -> [Concept]

getConnC (Conn n) = [(Conn n)]

getConnC (Neg c) = getConnC c

getConnC (And c) = concatMap getConnC c

getConnC (Or c) = concatMap getConnC c

getConnC (Some _ c) = getConnC c

getConnC (All _ c) = getConnC c

getConnC (Atmost _ _ c) = getConnC c

getConnC (Atleast _ _ c) = getConnC c

getConnC _ = []

formatList1 :: Clause -> Clause

formatList1 [(Not (Rel a b c))] = [(Ins a Top),(Ins b Top)]
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formatList1 [(Not (Ins a b))] = [(Ins a (Neg b))]

formatList1 c = c

BAFOpti

----------------------------------------------------

-- --

-- Boolean ABox Optimizations --

-- --

-- Berna Martinez September 9, 2002 --

-- --

----------------------------------------------------

module BAFOpti (

-- Resolution step

resStep,

pulloutNot,

unitProp1,

compCl,

denial,

simplify,

) where

import BAFAssertions

import List

{- pulloutNot: gets the negations out of the concept in an assertion -}

pulloutNot :: [Clause] -> [Clause]

pulloutNot cs = (map (map pulloutNotA) cs)

pulloutNotA :: Atom -> Atom

pulloutNotA (Not (Ins a (Neg b))) = pulloutNotA (Ins a b)

pulloutNotA (Ins a (Neg b)) = pulloutNotA (Not(Ins a b))

pulloutNotA c = c

{- returns if the empty clause is present in a set of clauses -}

empty :: [Clause] -> Bool

empty c = elem [] c

{- returns the negation of an assertion -}

denial :: Atom -> Atom

denial (Not c) = c

denial c = (Not c)

{- makes the propagation of one truth value -}

simplify :: Atom -> [Clause] -> [Clause]

simplify a c = map (filter ((/=) (denial a))) (filter (notElem a) c)

{- returns if a clause is not a tautology -}

isNotTaut :: Clause -> Bool

isNotTaut [] = True

isNotTaut (c:cs)

| elem (denial c) cs = False

| otherwise = isNotTaut cs
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{- unit propagation (step) optimization -}

{- returns only an empty clause if a contradiction is found -}

unitProp1 :: [Clause] -> [Clause] -> [Clause]

--propagate until no unit clauses

unitProp1 [] lc

|empty lc = [[]]

|otherwise = lc

unitProp1 (([c]):cs) lc

|empty lc = [[]]

|otherwise =

let

newlc = simplify c lc

newlc1 = unitProp1 newlc newlc

in

if (newlc1==[[]]) then [[]]

else (([c]):newlc1)

unitProp1 (([]):cs) _ = [[]]

unitProp1 (_:cs) lc = unitProp1 cs lc

{- executes the resolution step -}

resStep :: [Clause] -> [Clause]

resStep lc =

let

lc1 = nubBy compCl (filter isNotTaut (map nub lc))

--erase all the tautologies

in unitProp1 lc1 lc1 --applies unit propagation

{- if the two clauses are the same returns ture -}

compCl :: Clause -> Clause -> Bool

compCl a b = and (map (\x -> elem x b) a)

BAFTrans

----------------------------------------------------

-- --

-- Boolean ABox to Racer, translator module --

-- --

-- Berna Martinez September, 03 2002 --

-- --

----------------------------------------------------

module BAFTrans(

--functions

spreadRoles,

spreadDiff,

spreadSame,

spreadNot,

)

where

import List

import BAFAssertions

{- spreadNot: spread the negation rule in the instances of concepts -}
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spreadNot :: Atom -> Atom

spreadNot (Not(Ins a b)) = (Ins a (Neg b))

spreadNot c = c

{- spreadSame: joins all the concepts of the same instance in one assertion-}

spreadSame :: Clause -> Clause

spreadSame [] = []

spreadSame ((Ins a b):cs) =

let

(alike,rest) = partition (\(Ins c d) -> if a == c

then True else False) cs

in

if (alike==[])

then (Ins a b):(spreadSame rest)

else

(Ins a (Or (b:(map (\(Ins _ d) -> d) alike)))):(spreadSame rest)

spreadSame cs = cs

{- spreadDiff joins the instantiations related to different instances -}

spreadDiff :: [Clause] -> Integer -> [Clause]

spreadDiff [] _ = []

spreadDiff ([(Rel a b c)]:cs) i = ([(Rel a b c)]:(spreadDiff cs i))

spreadDiff (c:cs) i = let (newcl,newi) = (spreadDiffCl c i)

in newcl ++ (spreadDiff cs newi)

{-returns the new role assertions and clause-}

spreadDiffCl :: Clause -> Integer -> ([Clause],Integer)

spreadDiffCl [] i = ([],i)

spreadDiffCl [a] i = ([[a]],i)

spreadDiffCl ((Ins a b):(Ins c d):cs) i =

let

----NewRoleSymbol

newr = Role ("role" ++ (show i))

----NewRoleSymbol

newunit = [(Rel a c newr)]

newatom = (Ins a (Or [b,(All newr d)]))

(finalcls,finali) = (spreadDiffCl (newatom:cs) (i+1))

in (newunit:finalcls,finali)

{- spreadRoles: substitute the negated or not atomic roles -}

spreadRoles :: [Clause] -> [Clause] -> Int-> ([Clause],[RoleInclusion],[Clause])

spreadRoles prev [] _= (prev,[],[])

spreadRoles prev ([(Rel i j r)]:cs) count =

spreadRoles (prev ++ [[(Rel i j r)]]) cs count

spreadRoles prev (c:cs) count =

let

c1 = isThereRelation c

in if c1 == []

then spreadRoles (prev ++ [c]) cs count

else

let

(newprev,newnext,axiom,unitcl) = spreadRolesAux prev (c:cs) c1 count

(newcls,axioms,unitcls) = spreadRoles newprev newnext (count+1)

in (newcls,axiom:axioms,unitcl++unitcls)

spreadRolesAux :: [Clause] -> [Clause] -> Clause -> Int ->
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([Clause],[Clause],RoleInclusion,[Clause])

spreadRolesAux prev1 next1 [(Rel i j r)] count=

let

----FakeRoleOf

faker = Role ("fake" ++ (show r))

----FakeRoleOf

axiomrfr = (RoleInclusion r [faker])

ijrelfaker = [(Rel i j faker)]

----NewConceptSymbol

iamj = Conn ("iamj" ++ (show count))

----NewConceptSymbol

jiniamj = [(Ins j iamj)]

atmo1 = [(Ins i (Atmost 1 faker iamj))]

substit = (Ins i (Some r iamj))

newprev = subst (Rel i j r) substit prev1

newnext = subst (Rel i j r) substit next1

in (newprev,newnext,axiomrfr,[ijrelfaker,jiniamj,atmo1])

{-returns the role negated or in a non unit clause -}

isThereRelation :: Clause -> Clause

isThereRelation [] = []

isThereRelation ((Rel i j r):_) = [(Rel i j r)]

isThereRelation ((Not(Rel i j r)):_) = [(Rel i j r)]

isThereRelation (_:cs) = (isThereRelation cs)

{- Sustitution function for Relations (Atomic Level) -}

subst :: Atom -> Atom -> [Clause] -> [Clause]

subst a b c = (map (map (substCl a b)) c)

substCl :: Atom -> Atom -> Atom -> Atom

substCl a b (Not c)

| a == c = (Not b)

| otherwise = (Not c)

substCl a b c

| a == c = b

| otherwise = c

ba2racer

----------------------------------------------------

-- --

-- Boolean ABox to Racer, main file --

-- --

-- Berna Martinez September, 03 2002 --

-- --

----------------------------------------------------

module Main (main)

where

import System

import Char

import List

import BAFAssertions
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import BAFParse

import BAFMod

import BAFOpti

import BAFTrans

{-----------------------------------}

{- -}

{-----------------------------------}

ba2racer :: [TboxAxiom] -> [Clause] -> String

ba2racer tb ab =

let

(abox1,tbox1,unitcl) = spreadRoles [] ab 1

tbox2 = unifyTbox tb tbox1

abox2 = nub(concat ((spreadDiff (map (spreadSame . (map spreadNot)) abox1) 1)

++ unitcl))

call = ";calls:1\n"

size = ";size:" ++ (show (length abox2)) ++ "\n"

tbox = ((formatList (show tbox2) ’,’ ’\n’) ++ "\n") ++ "\n"

abox = (concatMap show abox2) ++ "\n"

sign = (signature tbox2 abox2) ++ "\n"

outp = call ++ size ++ sign ++ tbox ++ abox

in outp

{-----------------------}

{- Main ----------------}

{-----------------------}

main :: IO ()

main =

do {

args <- getArgs;

let {

(noerror, fname) = treatParams args;

} in

if noerror

then do {

fstr <- readFile fname;

let

(KB tb ab) = formatKB(runParser (map toLower fstr));

extension = ".racer";

inknldg = "(in-knowledge-base " ++ fname ++ "abox " ++ fname ++ "tbox )\n"

aboxcons = "(abox-consistent?)"

(rep,rn) = onlyOneDefRole tb tb

in if rep

then putStr ("Double definition of " ++ (show rn) ++ "\n")

else

case (resStep (pulloutNot(spreadImp ab))) of

[] -> putStr "ABox consistent\n" >>

writeFile (fname ++ extension) (";calls:0\n;size:0\n" ++ inknldg

++ "(instance a *top*)\n(abox-consistent?)\n")

[[]] -> putStr "ABox not consistent\n" >>

writeFile (fname ++ extension) (";calls:0\n;size:0\n" ++ inknldg

++ "(instance a *bottom*)\n(abox-consistent?)\n")

pf1 -> writeFile (fname ++ extension)

73



(inknldg ++ (ba2racer tb pf1) ++ aboxcons)

}

else putStr "ba2racer inputfile\n";

}
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A.2 ba2racerdpll

BAFAssertions BAFParser

BAFMod BAFOpti

BAFTrans

ARacerLex ARacerParse

BAFDpll

ba2racerdpll
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BAFDpll

----------------------------------------------------

-- --

-- Boolean ABox, Dpll Method --

-- --

-- Berna Martinez September 7, 2002 --

-- --

----------------------------------------------------

module BAFDpll (

giveAtom,

unitProp2,

isSHIQ,

testRacer,

eraseR,

transformR,

) where

import List

import System

import ARacerLex

import ARacerParse

import BAFAssertions

import BAFOpti

import BAFTrans

import BAFMod

{- Format an assertion for de role deletion approach -}

formatList1 :: Clause -> [Clause]

formatList1 [(Not (Rel a b c))] = [[(Ins a Top)],[(Ins b Top)]]

formatList1 [(Not (Ins a b))] = [[(Ins a (Neg b))]]

formatList1 c = [c]

{- is a SHIQ knowledge base? -}

isSHIQ :: TboxAxiom -> Bool

isSHIQ (Rdef _ _ (Inverse _) _ ) = True

isSHIQ _ = False

{- Unit propagation for -}

unitProp2 :: [Clause] -> ([Clause],[Clause])

unitProp2 c =

case (unitProp1 c c) of

[[]] -> ([],[[]])

c1 -> partition (((==) 1).length) c1

{- Give atom for Dpll -}

giveAtom :: [Clause] -> Atom

giveAtom c =

let

min = (minimum (map length c))

c1 = filter (((==) min).length) c

in moms c1
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{- moms heuristic -}

moms :: [Clause] -> Atom

moms c = maxi (genSameCount (concat c))

genSameCount :: [Atom] -> [(Int,Atom)]

genSameCount [] = []

genSameCount (c:cs) =

let

(a,b) = partition ((==) c) cs

c1 = (length a + 1,c)

in (c1:(genSameCount b))

maxi :: [(Int,Atom)] -> Atom

maxi c =

let

(_,atom) = maximum c

in atom

{- Generation of *B -}

gimmeFixPoint :: [TboxAxiom] -> [Clause] -> [Clause]

gimmeFixPoint tb ab =

let

ab1 = filter isRoleAssertion ab

ab2 = fixPoint tb ab1

in ab ‘union‘ ab2

fixPoint :: [TboxAxiom] -> [Clause] -> [Clause]

fixPoint [] c = c

fixPoint _ [] = []

fixPoint t a =

let

a1 = (concatMap (setFixPoint t a) a)

a2 = nubBy compCl ( a ++ a1 )

in

if (length a) == (length a2) then a

else fixPoint t a2

setFixPoint :: [TboxAxiom] -> [Clause] -> Clause -> [Clause]

setFixPoint t rn a = concatMap (fixPointRule a rn) t

fixPointRule :: Clause -> [Clause] -> TboxAxiom -> [Clause]

fixPointRule [(Rel a b c)] cl (Rdef d e f g)

| (c == d) =

let

tra = filter (((>) 0).length) (map (fixPointTra (Rel a b c) e) cl )

par = fixPointPar (Rel a b c) g

in tra ++ par

| otherwise = []

fixPointTra :: Atom -> Transitive -> Clause -> Clause

fixPointTra _ TransitiveNot _= []

fixPointTra (Rel a b c) Transitive [(Rel d e f)]

| ((c == f) && (b == d)) = [(Rel a e c)]

| otherwise = []
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fixPointPar :: Atom -> Parents -> [Clause]

fixPointPar a (Parents b) = map (fixPointPar1 a) b

fixPointPar _ ParentsNot = []

fixPointPar1 :: Atom -> Role -> Clause

fixPointPar1 (Rel a b c) d =

[(Rel a b d)]

{- returns true if in the unit clause there is a role assertion -}

isRoleAssertion :: Clause -> Bool

isRoleAssertion [(Rel _ _ _)] = True

isRoleAssertion _ = False

{- TestRacer -}

testRacer :: [TboxAxiom] -> [Clause] -> String -> Int -> Int -> IO (Int, Int, Bool)

testRacer tb ab name count size=

let

countn = count + 1

abtm = nub (concat (concatMap formatList1 ab))

tbox = (formatList (show tb) ’,’ ’\n’) ++ "\n"

abox = concatMap show abtm

sign = (signature tb abtm) ++ "\n"

sizen = size + (length abtm)

pcount = ";calls:" ++ (show countn) ++ "\n"

psize = ";size:" ++ (show (sizen ‘div‘ countn)) ++ "\n"

inknow = "(in-knowledge-base rabox rtbox )\n"

aboxcons = "(abox-consistent?)"

in

do{

err <- writeFile name (pcount ++ psize ++ inknow ++ sign ++ tbox ++ abox ++ aboxcons);

err1 <- system ("racer -f " ++ name ++" > tmp.tmp");

file <- readFile "tmp.tmp";

return (countn,sizen,(racParser(lexera file)));

}

{- eraseR -}

eraseR :: [TboxAxiom] -> [Clause] -> [Clause]

eraseR tb ab =

let

ab1 = gimmeFixPoint tb ab

(at1,ab2) = unitProp2 ab1

in case ab2 of

[[]] -> [[]]

[] -> at1

{- transformR -}

transformR :: [TboxAxiom] -> [Clause] -> ([TboxAxiom],[Clause])

transformR tb ab =

let

(abr,tbr,clr) = spreadRoles [] ab 1

tbox1 = unifyTbox tb tbr

abox1 = abr ++ clr

in (tbox1,abox1)
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ba2racerdpll

----------------------------------------------------

-- --

-- Boolean ABox to Racer, main file --

-- --

-- Berna Martinez September, 09 2002 --

-- --

----------------------------------------------------

module Main (main)

where

import System

import Char

import List

import BAFParse

import BAFAssertions

import BAFOpti

import BAFDpll

import BAFMod

{-----------------------------------}

{- -}

{-----------------------------------}

{-- call dpllRacer tb ab [] name --}

dpllRacer :: [TboxAxiom] -> [Clause] -> [Clause] ->

String -> Int -> Int -> IO (Int, Int, Bool)

dpllRacer tb ab at name count size =

let

(at1,ab1) = unitProp2 ab

at2 = at ++ at1

in case ab1 of

[] ->

let

res = eraseR tb at2

in

case res of

[[]] -> let var = (count,size,False) in do return var

abres -> testRacer tb abres name count size

[[]] -> let var = (count,size,False) in do return var

ab2 ->

let

a = giveAtom ab2

ab3 = simplify a ab2

in do {

(countn,sizen,res) <- dpllRacer tb ab3 ([a]:at2) name count size;

if res then return (countn,sizen,True)

else

let

a1 = denial a

ab4 = simplify a1 ab2

in dpllRacer tb ab4 ([a1]:at2) name countn sizen
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}

{-- call dpllRacerTrans tb ab [] name --}

dpllRacerTrans :: [TboxAxiom] -> [Clause] -> [Clause] ->

String -> Int -> Int -> IO (Int, Int, Bool)

dpllRacerTrans tb ab at name count size =

let

(at1,ab1) = unitProp2 ab

at2 = at ++ at1

in case ab1 of

[] ->

let

(newtb,newab) = transformR tb at2

in testRacer newtb newab name count size

[[]] -> let var = (count,size,False) in do return var

ab2 ->

let

a = giveAtom ab2

ab3 = simplify a ab2

in do {

(countn,sizen,res) <-

dpllRacerTrans tb ab3 ([a]:at2) name count size;

if res then return (countn,sizen,True)

else

let

a1 = denial a

ab4 = simplify a1 ab2

in dpllRacerTrans tb ab4 ([a1]:at2) name countn sizen

}

{-----------------------}

{- Main ----------------}

{-----------------------}

main :: IO ()

main =

do {

args <- getArgs;

let {

(noerror, fname) = treatParams args;

} in

if noerror

then do {

fstr <- readFile fname;

let

(KB tb ab) = formatKB(runParser (map toLower fstr));

extension = ".racer";

inknldg = "(in-knowledge-base " ++ fname ++ "abox " ++ fname ++ "tbox )\n"

aboxcons = "(abox-consistent?)"

(rep,rn) = onlyOneDefRole tb tb

in if rep

then putStr ("Double definition of " ++ (show rn) ++ "\n")

else

case (resStep(pulloutNot(spreadImp ab))) of
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[] -> putStr "ABox consistent\n" >>

writeFile (fname ++ extension) ";calls:0\n;size:0\n"

[[]] -> putStr "ABox not consistent\n" >>

writeFile (fname ++ extension) ";calls:0\n;size:0\n"

pf1 ->

do{

if (or (map isSHIQ tb))

then

do {

(tot,size,res) <-

dpllRacerTrans tb pf1 [] (fname ++ extension) 0 0 ;

if res

then putStr "ABox consistent, file .racer created\n"

else putStr "ABox not consistent, racer result\n"

}

else

do {

(tot,size,res) <- dpllRacer tb pf1 [] (fname ++ extension) 0 0 ;

if res

then putStr "ABox consistent, file .racer created\n"

else putStr "ABox not consistent, racer result\n"

}

}

}

else putStr "ba2racer inputfile\n";

}
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A.3 genBABox

BAFAssertions2 CNFAssertions

CNFParser

CNFLex

genBABox
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BAFAssertions2

----------------------------------------------------

-- --

-- Boolean ABox syntax, data types file --

-- --

-- Berna Martinez August, 20 2002 --

-- --

----------------------------------------------------

module BAFAssertions2 (

-- types

Concept(Conn,Top,Bottom,Neg,And,Or,Some,All,Atmost,Atleast),

Role(Role),

Sequent(Seq),

Atom(Ins,Rel,Not),

Iname(IN),

Clause,

-- Show

show,

-- Format list

formatList,

) where

import List

type Clause = [Atom]

{- Declared Types -}

data Atom

= Ins Iname Concept

| Rel Iname Iname Role

| Not Atom

deriving (Eq,Ord)

data Concept

= Conn String

| Top

| Bottom

| Neg Concept

| And [Concept]

| Or [Concept]

| Some Role Concept

| All Role Concept

| Atmost Int Role Concept

| Atleast Int Role Concept

deriving (Eq,Ord)

data Role

= Role String

deriving (Eq,Ord)

data Iname

= IN String

deriving (Eq,Ord)

data Sequent
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= Seq [Atom] [Atom]

deriving (Eq,Ord)

instance Show Atom where

show (Ins n c) = "(ins " ++ (show n) ++ " " ++ (show c) ++ ") "

show (Rel n i r) = "(rel " ++ (show n) ++ " " ++ (show i) ++ " " ++

(show r) ++ ") "

show (Not c) = "(not " ++ (show c) ++ ") "

instance Show Concept where

show (Conn c) = c

show (Top) = "*top*"

show (Bottom) = "*bottom*"

show (And c) = "(and " ++ (formatList (show c) ’,’ ’ ’) ++ ")"

show (Or c) = "(or " ++ (formatList (show c) ’,’ ’ ’) ++ ")"

show (Neg c) = "(not " ++ (show c) ++ ")"

show (Some r c) = "(some " ++ (show r) ++ " " ++ (show c) ++ ")"

show (All r c) = "(all " ++ (show r) ++ " " ++ (show c) ++ ")"

show (Atmost i r c) = "(at-most " ++ (show i) ++ " " ++ (show r) ++

" " ++ (show c) ++ ")"

show (Atleast i r c) = "(at-least " ++ (show i) ++ " " ++ (show r) ++

" " ++ (show c) ++ ")"

instance Show Role where

show (Role r) = r

instance Show Iname where

show (IN n) = n

instance Show Sequent where

show (Seq a b) = (tail(init(show a))) ++ "->" ++

(tail(init(show b))) ++ ".\n"

formatList :: String -> Char -> Char -> String

formatList s a b = (map (\x -> (if x==a then b else x))(tail(init s)))

CNFAssertions

----------------------------------------------------

-- --

-- MkCnf Syntax, data types file --

-- --

-- Berna Martinez September, 18 2002 --

-- --

----------------------------------------------------

module CNFAssertions (

-- types

Var(Var),

-- Show

show,

) where

{- Declared Types -}

data Var
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= Var Int

deriving (Eq,Ord)

instance Show Var where

show (Var n) = (show n)

CNFLex

----------------------------------------------------

-- --

-- MkCnf Syntax, lexer file --

-- --

-- Berna Martinez September, 18 2002 --

-- --

----------------------------------------------------

module CNFLex

where

import Prelude

import Char

import IOExts

data Token =

TokenVar Int | TokenEOL

lexer :: String -> [Token]

lexer [] = []

lexer (’-’:cs) = lexVarCon (’-’:cs)

lexer (’p’:cs) = lexComment cs

lexer (’c’:cs) = lexComment cs

lexer (’\n’:cs) = lexer cs

lexer (’\r’:cs) = lexer cs

lexer (’ ’:cs) = lexer cs

lexer (’0’:cs) = TokenEOL:lexer cs

lexer (c:cs)

| isDigit c = lexVarCon (c:cs)

| otherwise =

trace ((show c) ++ "\n") lexer cs

lexVarCon cs =

case span isDigitPart cs of

(num,rest) -> (TokenVar (read num)) : lexer rest

isDigitPart c

| isDigit c = True

| c == ’-’ = True

| otherwise = False

lexComment :: [Char] -> [Token]

lexComment [] = []

lexComment (c:cs)

| c == ’\n’ = lexer cs

| otherwise = lexComment cs
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CNFParser

----------------------------------------------------

-- --

-- MkCnf Syntax , parser file --

-- --

-- Berna Martinez September, 30 2002 --

-- --

----------------------------------------------------

{

module CNFParse

where

import CNFLex

import CNFAssertions

}

%name parse

%tokentype { Token }

%token

eol { TokenEOL }

num { TokenVar $$ }

%%

Input :

Clause { [$1] }

| Clause Input { $1:$2 }

Clause :

eol {[]}

| num Clause { (Var $1):$2 }

{

happyError :: [Token] -> a

happyError _ = error "Parse error"

}

genBABox

----------------------------------------------------

-- --

-- GenerateBoolean ABoxes, main file --

-- --

-- Berna Martinez September, 18 2002 --

-- --

----------------------------------------------------

module Main (main)

where

import System
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import Char

import List

import Random

import BAFAssertions2

import CNFLex

import CNFParse

import CNFAssertions

{-----------------------------------}

{- -}

{-----------------------------------}

{- namefile #rolenames #conceptnames #instancenames

#roleass #conceptass #probmod depth #clauses lengtcl numfil-}

treatParams :: [String] -> (Bool,String,Int,Int,Int,Int,Int,Int,Int,Int,Int,Int)

treatParams (n:rn:cn:ins:ra:ca:p:d:c:l:nf:cs) =

let

instn = read ins

length = read l

numfil = read nf

in

if (instn == 0 || length == 0 || numfil == 0)

then (False,"",0,0,0,0,0,0,0,0,0,0)

else (True,n,(read rn),(read cn),instn,(read ra),(read ca),

(read p),(read d),(read c),length,numfil)

treatParams c = (False,"",0,0,0,0,0,0,0,0,0,0)

genRnd :: Int -> Int -> IO Int

genRnd a b = getStdRandom (randomR (a,b))

{- modified version of show -}

show1 :: [Sequent] -> String

show1 [] = ""

show1 (c:cs) = (show c) ++ (show1 cs)

{- sets negative a propositional variable -}

mulNot :: Var -> Var

mulNot (Var k) = (Var (-1*k))

{- returns true if k is a negative propositional variable-}

divNeg :: Var -> Bool

divNeg (Var k) = k < 0

{- creates sequents of propositional variable clauses -}

{- list_of_assertions propositional_clauses -}

substCNF :: Clause -> [[Var]] -> [Sequent]

substCNF _ [] = []

substCNF lst (c:cs) =

let

(a,b) = partition divNeg c

a1 = substCNF1 lst (map mulNot a)

b1 = substCNF1 lst b

s1 = (Seq a1 b1)

cs1 = substCNF lst cs

in (s1:cs1)
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{- converts a propositional clause in an assertional clause -}

{-list_of_assertions propositional_clause-}

substCNF1 :: Clause -> [Var] -> Clause

substCNF1 _ [] = []

substCNF1 l ((Var n):cs) = (elemn n l):(substCNF1 l cs)

{- returns the element n of the list -}

elemn :: Int -> Clause -> Atom

elemn 1 (c:cs) = c

elemn n (_:cs) = elemn (n-1) cs

{- generates a list of concepts -}

{- size_of_the_list #conceptnames #rolenames depth-1

#instancenames #probmod -}

genListConcept 0 i j k l p =

do {

return []

}

genListConcept mem i j k l p =

do {

head <- genConceptN i j k l p;

tail <- genListConcept (mem-1) i j k l p;

let

list = (head:tail)

in return(list)

}

{- #instancenames -}

selectInstance :: Int -> IO Iname

selectInstance i =

do {

inam <- genRnd 1 i;

return (IN ("inam" ++ (show inam)));

}

{- #conceptnames #rolenames depth #instancenames #probmod -}

genNegConcept :: Int -> Int -> Int -> Int -> Int -> IO Concept

genNegConcept i j k l p =

do {

conn <- genConceptN i j k l p;

return (Neg conn);

}

{- #conceptnames #rolenames depth #instancenames #probmod -}

genAndConcept :: Int -> Int -> Int -> Int -> Int -> IO Concept

genAndConcept i j k l p =

do {

mem <- genRnd 2 i;

conlist <- genListConcept mem i j k l p;

return (And conlist);

}

{- #conceptnames #rolenames depth #instancenames #probmod -}

genOrConcept :: Int -> Int -> Int -> Int -> Int -> IO Concept

genOrConcept i j k l p =

do {
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mem <- genRnd 2 i;

conlist <- genListConcept mem i j k l p;

return (Or conlist);

}

{- #conceptnames #rolenames depth #instancenames #probmod -}

genSomeConcept :: Int -> Int -> Int -> Int -> Int -> IO Concept

genSomeConcept i j k l p =

do {

roln <- genRnd 1 j;

conn <- genConceptN i j k l p;

return (Some (Role ("roln" ++ (show roln))) conn);

}

{- #conceptnames #rolenames depth #instancenames #probmod -}

genAllConcept :: Int -> Int -> Int -> Int -> Int -> IO Concept

genAllConcept i j k l p =

do {

roln <- genRnd 1 j;

conn <- genConceptN i j k l p;

return (All (Role ("roln" ++ (show roln))) conn);

}

{- generates a list of concepts of depth -}

{- #conceptnames size_of_the_list -}

genConcept1L _ 0 = return []

genConcept1L i rest =

do {

conc <- genRnd 1 i;

opti <- genRnd 1 2;

tail <- genConcept1L i (rest-1);

case opti of

1 -> (return ((Conn ("conn" ++ (show conc))):tail))

2 -> (return ((Neg (Conn ("conn" ++ (show conc)))):tail))

}

{- create concepts for a depth of one -}

{- #conceptnames -}

genConcept1 :: Int -> IO Concept

genConcept1 i =

do {

conc <- genRnd 1 i;

opti <- genRnd 1 4;

len <- genRnd 2 i;

case opti of

1 -> (return (Conn ("conn" ++ (show conc))))

2 -> (return (Neg (Conn ("conn" ++ (show conc)))))

3 ->

do {

lst <- genConcept1L i len;

return (And lst);

}

4 ->

do {

lst <- genConcept1L i len;

return (Or lst);

}
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}

{- generate CONCEPTS -}

{- #conceptnames #rolenames depth #instancenames #probmod -}

genConceptN :: Int -> Int -> Int -> Int -> Int -> IO Concept

genConceptN i _ 1 _ _ = genConcept1 i

genConceptN i _ _ 0 _ = genConcept1 i

genConceptN i j k l p =

do {

conc <- genRnd 1 i;

opti <- genRnd 1 100;

if (opti <= p) then

do{

modu <- genRnd 1 2;

case modu of

1 -> genSomeConcept i j (k-1) l p

2 -> genAllConcept i j (k-1) l p

}

else

do{

pro <- genRnd 1 4;

case pro of

1 -> return (Conn ("conn" ++ (show conc)))

2 -> return (Neg (Conn ("conn" ++ (show conc))))

3 -> genAndConcept i j (k-1) l p

4 -> genOrConcept i j (k-1) l p

}

}

{- Generates a lists of concept assertions -}

{- #conceptass #conceptnames #rolenames depth #instancenames #probmod -}

genListConceptAss 0 _ _ _ _ _= return []

genListConceptAss m i j k l p=

do {

i1 <- selectInstance l;

c1 <- genConceptN i j k l p;

tail <- genListConceptAss (m-1) i j k l p;

let

head = (Ins i1 c1)

list = (head:tail)

in return(list)

}

{- #rolenames -}

{- Generates a role name -}

genRoleName :: Int -> IO Role

genRoleName i =

do {

reln <- genRnd 1 i;

return (Role ("roln" ++ (show reln)));

}

{- Generates a lists of role assertions -}

{- #roleass #rolenames #instancenames -}

genListRoleAss 0 _ _ = return []

genListRoleAss m i j =

do {
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i1 <- selectInstance j;

i2 <- selectInstance j;

r1 <- genRoleName i;

tail <- genListRoleAss (m-1) i j;

let

head = (Rel i1 i2 r1)

list = (head:tail)

in return(list)

}

{- Generates a list of #roleass + #conceptass assertions -}

{- #roleass #conceptass #probmod #rolenames #conceptnames

#instancenames depth -}

genListAssertions i j p k l m n =

do {

rolea <- genListRoleAss i k m;

conca <- genListConceptAss j l k n m p;

let

list = rolea ++ conca

in return(list)

}

{- Generates ONE BABox and puts it in namefile -}

{- namefile #rolenames #conceptnames #instancenames #roleass

#conceptass #probmod depth #clauses lengtcl -}

genBABoxFile na rn cn ins ra ca p d c l =

let

tot = ra + ca

in

do {

seed <- genRnd 1 10000;

lst <- genListAssertions ra ca p rn cn ins d;

err1 <- system ("./mkcnf " ++ (show tot) ++

" " ++ (show c) ++ " " ++

(show l) ++ " " ++ (show seed) ++

" -f> tmp.tmp");

fstr <- readFile "tmp.tmp";

let

pf = parse (lexer fstr)

seq = substCNF lst pf

in do {

writeFile na (show1 seq);

return True;

}

}

{- Generates several BABOxes and puts them in files -}

{- #filename #rolenames #conceptnames #instancenames

#roleass #conceptass #probmod depth #clauses lengthcl numfiles -}

genBABoxFileS name rn cn ins ra ca p d c l 1 =

genBABoxFile (name ++ ".1") rn cn ins ra ca p d c l

genBABoxFileS name rn cn ins ra ca p d c l nf =

do{

l1 <- genBABoxFile (name ++ "." ++ (show nf)) rn cn ins ra ca p d c l;

l2 <- genBABoxFileS name rn cn ins ra ca p d c l (nf-1);

return (l1 && l2)

}
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{-----------------------}

{- Main ----------------}

{-----------------------}

main :: IO ()

main =

do {

args <- getArgs;

let {

(noerror, fname) = treatParams args;

} in

if noerror

then do {

fstr <- readFile fname;

let

(KB tb ab) = formatKB(runParser (map toLower fstr));

extension = ".racer";

inknldg = "(in-knowledge-base " ++ fname ++ "abox "

++ fname ++ "tbox )\n"

aboxcons = "(abox-consistent?)"

(rep,rn) = onlyOneDefRole tb tb

in if rep

then putStr ("Double definition of " ++ (show rn) ++ "\n")

else

case (resStep(pulloutNot(spreadImp ab))) of

[] -> putStr "ABox consistent\n" >>

writeFile (fname ++ extension) ";calls:0\n;size:0\n"

[[]] -> putStr "ABox not consistent\n" >>

writeFile (fname ++ extension) ";calls:0\n;size:0\n"

pf1 ->

do{

if (or (map isSHIQ tb))

then

do {

(tot,size,res) <-

dpllRacerTrans tb pf1 [] (fname ++ extension) 0 0 ;

if res

then putStr "ABox consistent, file .racer created\n"

else putStr "ABox not consistent, racer result\n"

}

else

do {

(tot,size,res) <-

dpllRacer tb pf1 [] (fname ++ extension) 0 0 ;

if res

then putStr "ABox consistent, file .racer created\n"

else putStr "ABox not consistent, racer result\n"

}

}

}

else putStr "ba2racer inputfile\n";

}
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Appendix B

Examples

1 PUZ001-1.p

%-----------------------------------------------------------

% File : PUZ001-1 : TPTP v2.5.0. Released v1.0.0.

% Domain : Puzzles

% Problem : Dreadbury Mansion

% Version : Especial.

% Theorem formulation : Made unsatisfiable.

%English:

% Someone who lives in Dreadbury Mansion killed Aunt Agatha.

% Agatha, the butler, and Charles live in Dreadbury Mansion,

% and are the only people who live therein. A killer always

% hates his victim, and is never richer than his victim.

% Charles hates no one that Aunt Agatha hates. Agatha hates

% everyone except the butler. The butler hates everyone not

% richer than Aunt Agatha. The butler hates everyone Aunt

% Agatha hates. No one hates everyone. Agatha is not the

% butler. Therefore : Agatha killed herself.

%Someone who lives in Dreadbury Mansion killed Aunt Agatha.

%agatha, the butler, and charles live in Dreadbury Mansion,

->(rel charles agatha killed),(rel agatha agatha killed),

(rel butler agatha killed).

%and is never richer than his victim.

(rel charles agatha killed),(rel charles agatha richer)->.

(rel agatha agatha killed),(rel agatha agatha richer)->.

(rel butler agatha killed),(rel butler agatha richer)->.

%charles hates no one that Aunt agatha hates

(rel agatha agatha hates), (rel charles agatha hates) ->.

(rel agatha charles hates), (rel charles charles hates) ->.

(rel agatha butler hates), (rel charles butler hates) ->.
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%No one hates everyone

->(ins agatha (at-most 2 hates *top* )).

->(ins charles (at-most 2 hates *top* )).

->(ins butler (at-most 2 hates *top* )).

%agatha hates everyone except the butler

-> (rel agatha agatha hates).

-> (rel agatha charles hates).

%a killer always hates his victim

(define-role killed :parents (hates))

%The butler hates everyone Aunt agatha hates.

(rel agatha agatha hates) -> (rel butler agatha hates).

(rel agatha charles hates) -> (rel butler charles hates).

(rel agatha butler hates) -> (rel butler butler hates).

%The butler hates everyone not richer than Aunt agatha.

->(rel agatha agatha richer),(rel butler agatha hates).

->(rel butler agatha richer),(rel butler butler hates).

->(rel charles agatha richer),(rel butler charles hates).

%agatha is not the butler.

%default, unique name assumption included in RACER

Conjecture:

%agatha killed her self

(rel agatha agatha killed) -> .

2 PUZ003-1.p

%-------------------------------------------------------------

% File : PUZ003-1 : TPTP v2.5.0. Released v1.0.0.

% Domain : Puzzles

% Problem : The Barber Puzzle

% Version : Especial.

% English :

% There is a barbers’ club that obeys the following three

% conditions:

% (1) If any member A has shaved any other member B - whether

% himself or another - then all members have shaved A,

% though not necessarily at the same time.

% (2) Four of the members are named cesare, Lorenzo, Petrucio,

% and Cesare.

% (3) cesare has shaved Cesare.

% Prove Petrucio has shaved Lorenzo

%The Barber Puzzle

%One shaved then all shaved

(ins guido member),(rel guido guido shaved),
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(ins petruchio member)->(rel petruchio guido shaved).

(ins guido member),(rel guido guido shaved),

(ins lorenzo member)->(rel lorenzo guido shaved).

(ins guido member),(rel guido guido shaved),

(ins cesare member)->(rel guido cesare shaved).

(ins guido member),(ins petruchio member),

(rel guido petruchio shaved),

(ins lorenzo member)->(rel lorenzo guido shaved).

(ins guido member),(ins petruchio member),

(rel guido petruchio shaved),

(ins cesare member)->(rel cesare guido shaved).

(ins guido member),(ins lorenzo member),

(rel guido lorenzo shaved),

(ins petruchio member)->(rel petruchio guido shaved).

(ins guido member),(ins lorenzo member),

(rel guido lorenzo shaved),

(ins cesare member)->(rel cesare guido shaved).

(ins guido member),(ins cesare member),

(rel guido cesare shaved),

(ins petruchio member)->(rel petruchio guido shaved).

(ins guido member),(ins cesare member),

(rel guido cesare shaved),

(ins lorenzo member)->(rel lorenzo guido shaved).

(ins petruchio member),(rel petruchio petruchio shaved),

(ins guido member)->(rel guido petruchio shaved).

(ins petruchio member),(rel petruchio petruchio shaved),

(ins lorenzo member)->(rel lorenzo petruchio shaved).

(ins petruchio member),(rel petruchio petruchio shaved),

(ins cesare member)->(rel cesare petruchio shaved).

(ins petruchio member),(ins guido member),

(rel petruchio guido shaved),

(ins lorenzo member)->(rel lorenzo petruchio shaved).

(ins petruchio member),(ins guido member),

(rel petruchio guido shaved),

(ins cesare member)->(rel cesare petruchio shaved).

(ins petruchio member),(ins lorenzo member),

(rel petruchio lorenzo shaved),

(ins guido member)->(rel guido petruchio shaved).

(ins petruchio member),(ins lorenzo member),

(rel petruchio lorenzo shaved),

(ins cesare member)->(rel cesare petruchio shaved).

(ins petruchio member),(ins cesare member),
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(rel petruchio cesare shaved),

(ins guido member)->(rel guido petruchio shaved).

(ins petruchio member),(ins cesare member),

(rel petruchio cesare shaved),

(ins lorenzo member)->(rel lorenzo petruchio shaved).

(ins lorenzo member),(rel lorenzo lorenzo shaved),

(ins petruchio member)->(rel petruchio lorenzo shaved).

(ins lorenzo member),(rel lorenzo lorenzo shaved),

(ins guido member)->(rel guido lorenzo shaved).

(ins lorenzo member),(rel lorenzo lorenzo shaved),

(ins cesare member)->(rel cesare lorenzo shaved).

(ins lorenzo member),(ins petruchio member),

(rel lorenzo petruchio shaved),

(ins guido member)->(rel guido lorenzo shaved).

(ins lorenzo member),(ins petruchio member),

(rel lorenzo petruchio shaved),

(ins cesare member)->(rel cesare lorenzo shaved).

(ins lorenzo member),(ins guido member),

(rel lorenzo guido shaved),

(ins petruchio member)->(rel petruchio lorenzo shaved).

(ins lorenzo member),(ins guido member),

(rel lorenzo guido shaved),

(ins cesare member)->(rel cesare lorenzo shaved).

(ins lorenzo member),(ins cesare member),

(rel lorenzo cesare shaved),

(ins petruchio member)->(rel petruchio lorenzo shaved).

(ins lorenzo member),(ins cesare member),

(rel lorenzo cesare shaved),

(ins guido member)->(rel guido lorenzo shaved).

(ins cesare member),(rel cesare cesare shaved),

(ins petruchio member)->(rel petruchio cesare shaved).

(ins cesare member),(rel cesare cesare shaved),

(ins lorenzo member)->(rel lorenzo cesare shaved).

(ins cesare member),(rel cesare cesare shaved),

(ins guido member)->(rel guido cesare shaved).

(ins cesare member),(ins petruchio member),

(rel cesare petruchio shaved),

(ins lorenzo member)->(rel lorenzo cesare shaved).

(ins cesare member),(ins petruchio member),

(rel cesare petruchio shaved),

(ins guido member)->(rel guido cesare shaved).
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(ins cesare member),(ins lorenzo member),

(rel cesare lorenzo shaved),

(ins petruchio member)->(rel petruchio cesare shaved).

(ins cesare member),(ins lorenzo member),

(rel cesare lorenzo shaved),

(ins guido member)->(rel guido cesare shaved).

(ins cesare member),(ins guido member),

(rel cesare guido shaved),

(ins petruchio member)->(rel petruchio cesare shaved).

(ins cesare member),(ins guido member),

(rel cesare guido shaved),

(ins lorenzo member)->(rel lorenzo cesare shaved).

%Four of the members are named

-> (ins cesare member).

-> (ins lorenzo member).

-> (ins petruchio member).

-> (ins cesare member).

%cesare has shaved Cesare

-> (rel cesare cesare shaved).

Conjecture:

%Prove Petruchio has shaved Lorenzo (conjecture)

(rel petruchio lorenzo shaved)->.

3 PUZ012-1.p

%------------------------------------------------------------------

% File : PUZ012-1 : TPTP v2.5.0. Bugfixed v1.2.1.

% Domain : Puzzles

% Problem : The Mislabeled Boxes

% Version : Especial.

%English :

% There are three boxes a, b, and c on a table. Each box contains

% apples or bananas or oranges. No two boxes contain the same

% thing. Each box has a label that says it contains apples or says

% it contains bananas or says it contains oranges. No box contains

% what it says on its label. The label on box a says "apples".

% The label on box b says "oranges". The label on box c says

% "bananas". You pick up box b and it contains apples. What do

% the other two boxes contain?

%Each box contains something

->(rel boxa apples contains),(rel boxa oranges contains),

(rel boxa bananas contains).

->(rel boxb apples contains),(rel boxb oranges contains),
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(rel boxb bananas contains).

->(rel boxc apples contains),(rel boxc oranges contains),

(rel boxc bananas contains).

%No two boxes contain the same thing

(rel boxa apples contains),(rel boxa oranges contains)->.

(rel boxa apples contains),(rel boxa bananas contains)->.

(rel boxa bananas contains),(rel boxa oranges contains)->.

(rel boxb apples contains),(rel boxb oranges contains)->.

(rel boxb apples contains),(rel boxb bananas contains)->.

(rel boxb bananas contains),(rel boxb oranges contains)->.

(rel boxc apples contains),(rel boxc oranges contains)->.

(rel boxc apples contains),(rel boxc bananas contains)->.

(rel boxc bananas contains),(rel boxc oranges contains)->.

(rel boxa apples contains),(rel boxb apples contains)->.

(rel boxa apples contains),(rel boxc apples contains)->.

(rel boxb apples contains),(rel boxc apples contains)->.

(rel boxa oranges contains),(rel boxb oranges contains)->.

(rel boxa oranges contains),(rel boxc oranges contains)->.

(rel boxb oranges contains),(rel boxc oranges contains)->.

(rel boxa bananas contains),(rel boxb bananas contains)->.

(rel boxa bananas contains),(rel boxc bananas contains)->.

(rel boxb bananas contains),(rel boxc bananas contains)->.

%Each box has a label

->(rel boxa apples label),(rel boxa oranges label),

(rel boxa bananas label).

->(rel boxb apples label),(rel boxb oranges label),

(rel boxb bananas label).

->(rel boxc apples label),(rel boxc oranges label),

(rel boxc bananas label).

%Label is wrong

(rel boxa apples label),(rel boxa apples contains)->.

(rel boxb apples label),(rel boxb apples contains)->.

(rel boxc apples label),(rel boxc apples contains)->.

(rel boxa oranges label),(rel boxa oranges contains)->.

(rel boxb oranges label),(rel boxb oranges contains)->.

(rel boxc oranges label),(rel boxc oranges contains)->.

(rel boxa bananas label),(rel boxa bananas contains)->.

(rel boxb bananas label),(rel boxb bananas contains)->.

(rel boxc bananas label),(rel boxc bananas contains)->.
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%Box A labelled apples

->(rel boxa apples label).

%Box B labelled oranges

->(rel boxb oranges label).

%Box C lablelled bananas

->(rel boxc bananas label).

%Box B contains apples).

->(rel boxb apples contains).

Conjecture

%boxa contains bananas and boxc oranges

(rel boxa bananas contains),(rel boxc oranges contains)->.
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[HM01a] V. Haarslev and R. Möller. Description of the RACER system and its
applications. In Proc. International Workshop on Description Logics
(DL-2001), pages 1–3, Standford, USA, August 2001.
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