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General Introduction

Roughly speaking, in this thesis we will propose a logical system merging update
logic as conceived by A.Baltag, L.Moss, S.Solecki (BMS)[BMS03] on the one hand;
and belief revision theory as conceived by C.Alchourron, P.Gardenfors and D.Mackinson
(AGM)([GardRott95])(viewed from the point of view of W.Spohn ([Spohn90],[Spohn88])) on
the other hand. Before tackling the topic, we need to set out some general assumptions about
the type of phenomenon that we intend to study thanks to these theories. It will also indi-
rectly provide us a framework for our future work, and give an idea of the topic of this thesis
(and these theories).
We assume that any situation s involving several agents can be rendered from the point

of view of the agents’ knowledge and beliefs of the situation by a mathematical modelM . We
assume that this association is correct, in the sense that every intuitive judgement concerning
s corresponds to a formal assertion concerning M . Now in the situation s, an action a may
occur. We also assume that this action a can be correctly (see above) rendered from the point
of view of the agents’ knowledge and beliefs by a mathematical model Σ. Now in reality
the agents update their knowledge and beliefs according to these two pieces of information:
action a and situation s, giving rise to a new actual situation s×a. We assume again that we
can render this update mechanism by a mathematical update ⊗ such that, as above, M ⊗ Σ
corresponds correctly (see above) to s× a. Moreover we assume that the update mechanism
concerning the agents’ beliefs be the closest possible to a belief revision (conceived by AGM).
Note that in reality, once the agents receive the new information carried by the action a,
update their knowledge and beliefs. This double process may be done simultaneously in reality
by the agents. Yet we carefully separate it in our approach by introducing Σ because these
are two conceptually different things: apprehension of the new information (corresponding to
Σ); and update (corresponding to the update ⊗), on the basis of this apprehension.
By the very nature of the BMS and AGM theories (see chapter 1), merging them seems

one of the best ways to give concrete form to these assumptions. Yet the resulting system
should be a genuine logical system and we must keep that in mind. So, first we will set out
these theories. Second, we will propose a merge system of these theories. Third we will
propose a proof system for this system (with the introduction of a special canonical model
in the completeness proof). Finally, we will compare our system with other similar systems,
and also the AGM theory.
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Chapter 1

The Ingredients: Update Logic and
Belief Revision Theory

Introduction: As stated in the general introduction, our main goal is to merge update logic
with belief revision theory. Our first task will be to present an account of these theories. In
the section 1.1, we will present update logic as conceived by BMS. In the section 1.2, we will
present belief revision theory as conceived by AGM and highlight W.Spohn’s approach.

1.1 Update Logic

Introduction: In this chapter we will set out what is generally called update logic. First
we will present a rough overview of a simple subcase called the logic of public information,
whose aim will be to give the main underlying ideas of the topic (see[vB03]). Second we will
present a broader set up which enables us to deal with more complex information (not only
public) conceived by A.Baltag, L.Moss and S.Solecki in [BMS03].

1.1.1 The Simple Case: Dynamic Epistemic Logic

Update logic is a formalism trying to model epistemic situations involving several agents,
and changes that can occur to these situations after incoming information or more generally
incoming action. Update logic is composed of two main features. First, we model thanks to
an epistemic modal model the knowledge a group of agents possesses: this is the static part.
Second, we have to update this model after for example a public announcement of a formula
to all the agents: this public announcement and correlative update constitute the dynamic
part. Note that these epistemic actions can be much more complex than simple public
announcement, including hiding information for some of the agents or cheating,etc...This
complexity is dealt with in the next section by introducing the notion of a simple action
structure. In this first account, we will concentrate only on public announcement to get an
intuition of the main underlying ideas that occur in update logic. We will start by giving a
concrete example where update logic can be used, to better understand what is going on.
Then we will present a sketchy formalization of the phenomenon called the logic of public
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information update (We will base our exposition on [vB03] and [BMS03])

Example: Muddy children

We have two children, A and B, both dirty. A can see B but not himself, and B can see A
but not herself. Let p be the proposition stating that A is dirty, and q be the proposition
stating that B is not dirty. We represent this situation by the following epistemic modal
model where relations are equivalence relations (for a precise definition of a modal model,
see [BdRV01]; and for its epistemic interpretation, see [FHMV95]):

s : p, q A

B

t : ¬p, q

B

u : p,¬q
A

v : ¬p,¬q

States s, t, u, v intuitively represent possible worlds, a proposition (for example p)
satisfiable at one of these states intuitively means that in the possible world corresponding
to this state, the intuitive interpretation of p (p is dirty) is true. From now on, we will name
equivalently possible worlds and states. The links between states labelled by agents (A or B)
intuitively express a notion of indistinguishability for the agent at stake between two possible
worlds. For example, the link between s and t labelled by A intuitively means that A can
not distinguish the possible world s from t and vice versa. Indeed, A can not see himself,
so he can not distinguish between a world where he is dirty and one where he is not dirty.
However, he can distinguish between worlds where B is dirty or not because he can see B.
With this intuitive interpretation we are brought to assume that our relations between states
are equivalence relations.

Now, suppose that their father comes and announces that at least one is dirty. Then we
update the model by (explanations follow):

s : p, q A

B

t : ¬p, q

u : p,¬q

What we actually do is suppressing the worlds where the content of the announcement
is not fulfilled. In our case this is the world where ¬p and ¬q are true. This suppression is
what we call the update. We then get the model depicted. As a result of the announcement,
both A and B do know that at least one of them is dirty. We can read this from the model.

Now suppose there is a second (and final) announcement that says that neither knows
they are dirty (an announcement can express facts about the situation as well as epistemic
facts about the knowledge held by the agents). We then update similarly the model by
suppressing the worlds which do not satisfy the content of the announcement, or equivalently
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by keeping the worlds which do satisfy the announcement. This update process thus yields
the following model:

s : p, q

By interpreting this model, we get that A and B both know that they are dirty, which
seems to contradict the content of the announcement. Actually, we see here at work one of
the main features of the update process: a proposition is not necessarily true after being
announced. That is what we technically call ”self-persistence” (see [vB03]) and this problem
arises for epistemic formulas (unlike propositional formulas). One must not confuse the
announcement and the update induced by this announcement, which might cancel some of
the information encoded in the announcement (like in our example).

Logic of Public Announcement

Now we roughly present the main ingredients of a logic called the logic of public information,
which formalizes these ideas and combines epistemic and dynamic logic (see [vB03]).

We have seen that a public announcement of a proposition ϕ changes the current
epistemic model M with actual world w as follows:

Eliminate all worlds which currently do not satisfy ϕ.

So the universe we consider is composed of states which are epistemic models and we have
got several relations from one state (corresponding to an epistemic action model) to another
labelled with any epistemic formula A. We strike them when the final state is the epistemic
model of the original state updated with the epistemic formula A. These relations (for each
formula) are partial functions since there is always at most a single updated model possible
after an announcement.

Our language is then composed of assertions of the form [A!]ϕ which intuitively means
that after a truthful announcement of A, ϕ holds. The logic of this system merges epis-
temic with dynamic logic. There is a complete and decidable axiomatization with key axioms:

< A! > p↔ A&p for atomic facts p

< A! > ¬ϕ↔ A&¬ < A! > ϕ

< A! > ϕ ∨ ψ ↔< A! > ϕ∨ < A! > ψ

< A! > Kiϕ↔ A&Ki(A→< A! > ϕ)

(or equivalently: [A!]Kjϕ↔ A→ Kj(A→ [A!]ϕ) )

We can also incorporate common knowledge.

What is important in this survey is that we view epistemic updates (after a public an-
nouncement) as relations between epistemic models. In the language, we then refer to updates
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through modalities ([A!]). These two features will also be present in the more general approach
of the next chapter that we now set out.

1.1.2 The General Case: BMS theory

We are going to present a framework which deals with more general actions than the simple
case of public announcement of the last chapter.

A Simple Intuitive Example

First we are going to consider a simple example that we will name from now on the ”coin
example”. This is the following:

”A and B enter a large room containing a remote-control mechanical coin flipper. one
presses a button, and the coin spins through the air, landing in a small box on a table. The
box closes. The two people are much two far to see the coin. The coin is actually heads up.”

We classically represent this scenario by the following epistemic modal model:

w : H
A,B //

A,B

§§
v : Too

A,B

§§

where w is the actual world.

Note that here epistemic relations are not equivalence relations but simply binary relations.
A link w →A v intuitively means that dwelling in the possible world w, A considers the possible
world v possible (or has access to it).

Now suppose that A cheats and secretly opens the box. The resulting situation is
depicted as follow:

u : H
A,B //

A,B

§§
v : T

A,B

§§
oo

w : H

B

OO
B

::
uuuuuuuuu

A,B

XX

In the actual world w, A knows that the coin is Heads up but B believes that A doesn’t
know whether the coin is Heads or Tails. Note that in the BMS approach, knowledge and
beliefs are somehow intertwined as we can clearly see in this example. The distinction will
be clearly made in our approach (see chapter 2).
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What we want to model in order to have a complete and faithful rendering of the process
is the way the agents epistemically perceive the action, and how we update our model (the
first diagram in our example) thanks to this piece of information, giving rise to a new model
(the second diagram in our example). To come back to our general introduction, we would
like to determine Σ and ⊗. Σ is called the simple action structure and ⊗ the update product.

The Core of BMS

We are going to give straightaway the definition of a simple action structure with its
intended interpretation, followed by the definition of the update product, with its intended
interpretation.

simple action structure

Definition 1.1.1 A simple action structure is a tuple Σ = (Σ,→j , P re) where:

• Σ is a set of simple actions.

• →j is a family of relations on Σ indexed by the set of agents.

• Pre : Σ −→ Φ is a function from Σ to the collection of all epistemic propositions.

¢

Σ intuitively represents the possible actions, just as states intuitively represent possible
worlds for modal models. The accessibility relations →j express the uncertainty the agents
have about the action taking place. All this is completely similar to modal logic. The
introduction of Pre is necessary to ensure that an action σ can be performed in a certain
world w: the world at stake w must fulfill this precondition Pre(σ) (see below the update
product).
To come back to our example of cheating, the corresponding simple action structure is:

σ : H

A

§§
B // τ : True

A,B

§§

σ represents the action of cheating with precondition that the coin must be Heads up
(which is as expected because the coin is actually heads up). τ represents the action where
nothing happens, with precondition True because it can be performed everywhere. The
accessibility says that B believes nothing happens whereas A knows that he has cheated. We
still see here the blend between the notions of knowledge and belief.

Now we can precisely study the update product of a simple action structure with a simple
action structure.
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Update product

Definition 1.1.2 Let M = (W,→j , V ) be an epistemic modal model and Σ = (Σ,→j , V ) a
simple action structure. We define their update product to be the epistemic model

M ⊗ Σ = (W ⊗ Σ,→′
j , V

′), where

• W ⊗ Σ = {(w, σ) ∈W × Σ;w ∈ V (Pre(σ))}.

• (w, σ)→′
j (v, τ) iff w →j v and σ →j τ .

• V ′(p) = {(w, σ) ∈W ⊗ Σ;w ∈ V (p)}

¢

The worlds that we consider after the update are all the possible worlds resulting from
the performance of one of the actions in one of the worlds, under the assumption that the
action can ”possibly” take place in the corresponding world (expressed by Pre).

The product arrows →′
j on the output frame represent agent j’s epistemic uncertainty

about the output state. The intuition is that for the particularly simple kinds of actions that
we take as ”simple actions”, the uncertainty regarding the action is assumed to be independent
of the uncertainty regarding the current state. This independence allows us to modify these
two uncertainties in order to compute the uncertainty regarding the output state: if whenever
the input state is w, agent j thinks the input might be some other state w′, and if whenever
the current action happening is σ, agent j thinks the current action might be some other
action σ′, then whenever the output state (w, σ) is reached, agent j thinks the alternative
output state (w, σ′) might have been reached. Moreover, these are the only output states
that j considers possible.

The definition of the valuation intuitively means that our actions, if successful, do not
change the facts. Thus we are concerned with purely epistemic actions (that is why we call
it epistemic action structure: it renders the epistemic structure of an action perceived by
several agents).

To come back to our earlier example, we can then easily check that we get from the
update product of the epistemic model and the epistemic action model of cheating the
expected epistemic model.

The additional material necessary to build a genuine logical system

What we just set out forms the essence of the BMS approach. Now we need some more
technical apparatus in order to build a genuine logical system. We will just give roughly the
necessary definitions to achieve it, with a few comments.

Definition 1.1.3 An epistemic action model is a pair (Σ,Γ) consisting of a simple action
structure Σ and a set Γ of designated simple actions. ¢
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Each of the simple actions γ ∈ Γ can be thought as being a possible ”deterministic
resolution” of the non-deterministic action a.

Definition 1.1.4 An epistemic relation between epistemic models M = (W,→j , V ) and
M ′ = (W ′,→′

j , V
′) is a relation between the sets W and W ′. We write r :M −→M ′ for this.

An update r is a pair of operations on the set of epistemic models,

r = (M 7→M(r),M −→ rM )

where for each epistemic model M ,rM : M −→ M(r) is an epistemic relation. We call
M −→M(r) the update map, and M 7→ rM the update relation. ¢

This definition exemplifies what we said in section 1.1.1 about the way we represent an
update, namely by a relation between models.

Now, from an epistemic action model, we can get an update.

Definition 1.1.5 Let (Σ,Γ) be an epistemic action model. We define an update that we also
denote (Σ,Γ) as follows:

1. M(Σ,Γ) =M ⊗ Σ.

2. w(Σ,Γ)M (w
′, σ) iff w = w′ and σ ∈ Γ

We call this the update induced by (Σ,Γ) ¢

Finally the language is composed of two sorts of objects: the programs (denoted π)
and the sentences (such as [π]ϕ,Kjϕ). The interpretation of programs are updates. So the
interpretation of [π]ϕ is:

M,w |= [π]ϕ iff for all v such that w[[π]]Mv,M([[π]]), v |= ϕ.

Again, this exemplifies what we have said in section 1.1.1 about the fact that we refer to
updates through modalities.

Final remark of section 1.1: The BMS system will be the logical system on which we
will base our further investigations. Our combined system will be very close to it, so we need
to stress its importance.

1.2 The Belief Revision Theory

Introduction: Now, we will present the second ingredient of our merge system: the belief
revision theory. We will particularly focus on the AGM theory (see [GardRott95]) and stress
the AGM postulates. We will also set out the very important (for our account) W.Spohn’s
theory of ordinal conditional function as a ”constructive” way (just as A.Grove models) to
look at belief revision theory (see [Spohn90],[Spohn88]).
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1.2.1 The AGM Theory

Belief revision deals with changes that must undergo a database representing a belief state (of
an agent for example) after adding to (or subtracting from) the database information. This
phenomenon is involved under different forms in many fields.

Generally speaking, some fundamental questions about this phenomenon appear almost
immediately. First, what database format will be used? This will be the motivation of the
first paragraph: ”representing belief states”. Second, how are the choices made concerning
what to retract (if necessary) from the database, and what conditions must fulfill the outcome
after a change? This will be the concern of the remaining paragraphs and the following section
about W.Spohn’s theory. In answering these questions, a small number of basic rationality
postulates, or as we might equally call them, integrity constraints, can be considered as
operative and will often be used in the following:

1. The belief in a database should be kept consistent whenever possible.

2. If the beliefs in a database logically entail a sentence A, then A should be included in
the database.

3. The amount of the information lost in a belief change should be kept to a minimal.

4. In so far as some beliefs are considered more important or entrenched than others, one
should retract the least important ones.

There are actually different modes of performing belief changes. We will adopt the fol-
lowing, called logic constrained, which takes the integrity constraints as constraints for the
very process of belief change (as already announced) and operate directly on the current
logically closed database without taking into account the old inputs that enabled to form
the current belief state. This method of theory change is most eminently instantiated by
C.Alchourron-P.Gardenfors-D.Markinson (AGM), which will form the focus of this account.

In the AGM approach, one can distinguish three main types of belief changes:

Expansion A new sentence is added to a belief system K(the database) regardless of the
consequences of the larger set so formed. The belief system that results from expanding
K by a sentence A together with the logical consequences will be denoted K + A and
consists of {B : K ∪ {A} ` B}.

Revision A new sentence that is (typically) inconsistent with a belief system K is added,
but in order that the resulting belief system be consistent - satisfies integrity constraint
1 - some of the old sentences in K are deleted. The result of revising K by a sentence
A will be denoted K ∗A.

Contraction A sentence in K is retracted without adding any new facts. In order that the
resulting system satisfies integrity constraint 2, some other sentences from K must be
given up. The result of contracting K with respect to the sentence A will be denoted
K $ A.
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We will focus in this paper only on the revision and expansion operations.

Note that in these three cases, the format of representation remains the same after a
change.

The only belief change that poses problems are revision and contraction: there are several
outcomes possible and we have to choose one of them (i.e. there is indeterminacy). Indeed,
an approach based solely on logic is not enough to determine it.

Hence, we will have to propose constructions of the revision process (that is a revision
function *): this will be the A.Grove semantics and W.Spohn’s theory. However, we have also
to propose first postulates (regulations) for such constructions (that is rationality criteria for
revisions and contractions of the databases) that the database K and its revision (K ∗ A)
must verify: that will be the AGM postulates.

Representing Belief States

The most common representation of belief states in computational context and the one
adopted in this account are sentential or propositional in the sense that the elements consti-
tuting the database are coded as formulas representing sentences. The underlying logic chosen
includes classical propositional logic, that is monotonic and compact and that validates the
cut rule and the deduction theorem. If H is a set of sentences we use the notation Cn(H) for
all consequences of H.

Another question that must be answered when representing a state of belief is whether
the justifications for the beliefs should be part of the representation or not. The affirmative
answer leads to the foundation theory and the negative one to the coherence one. We shall
consider in this account the second theory. According to the coherence theory, the main
objectives are to maintain consistency in the revised epistemic state that guarantee sufficient
overall coherence (which is in accord with our integrity constraints).

Besides the syntactic representation mentioned above, we will see that we can also use a
semantic one. We will then consider two main representations: belief set(for the syntactic
part) and possible world models (for the semantic part).

Belief set. A belief set is a set K of sentences that is closed under logical consequences
(i.e. satisfies integrity constraint 2 ). The interpretation of such a set is that it contains all
the sentences that are accepted in the represented belief state.

Possible worlds models. An obvious objection to using sets of sentences as representations
of belief state is that the objects of belief are normally not sentences but rather the
contents of sentences, that is propositions. Thereby, the basic (and classical) semantic
ideas connecting sentences with propositions is then that a sentence expresses a given
proposition iff it is true in exactly those possible worlds that constitute the set of worlds
representing the proposition. Then we can represent a belief set by a set W of possible
worlds. The epistemic interpretation of W is that it is the narrowest set of possible worlds
in which the individual in the represented belief state believes that the actual world is located.

Moreover, there is a very close correspondence between belief sets and possible world
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models. For any set W of possible worlds, we can define a corresponding belief set KW as
the set of those sentences that are true in all worlds in W . Conversely, for any belief set K,
we can define a corresponding possible worlds model WK by identifying the possible worlds
in WK with the maximal consistent extensions of K. Then we say that a sentence A is true
in such an extension W iff A ∈ w.

The AGM Postulates

We will offer a basic presentation of the postulates without entering into details. They can
easily be rediscovered by examining them carefully. However, we wish to mention that they
have been determined in order to respect as much as possible the four integrity constraints
of the beginning and be in accord with the intuition.

(K ∗ 1) (closure) for any sentence A and any belief set K, K ∗ A is a belief set. (recall
introduction)

(K ∗ 2) (success) A ∈ K ∗A.

(K ∗ 3) (expansion 1) K ∗A ⊆ K +A.

(K ∗ 4) (expansion 2) if ¬A /∈ K then K +A ⊆ K ∗A.

(K ∗ 6) (extensionality) K ∗A = K⊥ only if ` ¬A (K⊥ is the inconsistent logic)

(K ∗ 6) (extensionality) if ` A↔ B then K ∗A=K ∗B.

The postulates (K ∗ 1)-(K ∗ 6) are elementary requirements that connect K,A and K ∗A.
The final two conditions concern composite belief revisions of the form K ∗A ∧B:

(K ∗ 7) (conjunction 1) K ∗A ∧B ⊆ (K ∗A) +B.

(K ∗ 8) (conjunction 2, rational monotony) if ¬B /∈ K∗A then (K∗A)+B ⊆ K∗A∧B.

We next turn to consequences of these 8 postulates.

(K ∗ 8r) (disjunction) K ∗A ∨B ⊆ Cn(K ∗A ∪K ∗B).

(K ∗ 7c) (cut) if B ∈ K ∗A then K ∗A ∧B ⊆ K ∗A.

(K ∗ 8c) (cautious monotony) if B ∈ K ∗A then K ∗A ⊆ K ∗A ∧B.

As already mentioned in the introduction, the postulates (K ∗ 1)-(K ∗ 8) do not uniquely
characterize the revision K ∗ A in terms of only K and A, and logical properties are not
sufficient here.

Grove Models
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As mentioned in the introduction, logic alone cannot tell us how to revise a given database
(e.g. a belief set). We need some additional information, a selection mechanism (i.e. a revision
function), in order to be able to decide rationally which sentences to give up and which to
keep. In this chapter we will only investigate the A.Grove method. In the next chapter, we
will present W.Spohn’s theory.

We consider a language L of propositional logic. We naturally (classically) define an
interpretation I of L, a model of a sentence, and let Mod(A) (and Mod(H)) denote the set
of all models of A (and H respectively) and I the set of all interpretations.
We will define an ordering (depending on a belief set K) on the set of all interpretations

and then use this ordering to decide which interpretations should constitute models of K ∗A,
(and thus indirectly determine K ∗ A in this way). Such an ordering should reflect the fact
that some models of A are closer models to K than others.

A.Grove defines

Definition 1.2.1 M(K) = ∪{K ⊥ B;B ∈ K and 0 B} where K ⊥ B is the set of all
maximal subsets of K that do not entail B. ¢

We then get the following proposition:

Proposition 1.2.2 There is a one to one correspondence between the elements of M(K) and
I −Mod(K).

Using the fact that there is an ordering of the elements ofM(K), we can define an ordering
of the elements of I −Mod(K) that we extend to the whole set I. We then notice that in
order to respect (K ∗ 3) and (K ∗ 4), the models of K must be the smallest elements in I.
Technically we define:

Definition 1.2.3 A relation ≤K over I depending on K is said persistent if:

1. If I ∈Mod(K) then I ≤K J for all interpretations J .

2. If I ∈Mod(K) and J /∈Mod(K), then I ≤K J .

¢

As a consequence we obtain the following theorem:

Theorem 1.2.4 A revision function * satisfies (K ∗ 1) to (K ∗ 8) iff there exists a persistent
total pre-ordering ≤K such that Mod(K ∗A) =Min(Mod(A),≤K).

Another model-theoretic approach has been proposed by Grove which uses a system of
”spheres” centered on the set of possible worlds where K is satisfiable (i.e. Mod(K)).

Definition 1.2.5 A system of spheres is a collection of subsets of interpretations which
satisfies the following conditions:

(S1) S is totally ordered by ⊆; that is, if S and S ′ are in S, then either S ⊆ S ′ or S′ ⊆ S.
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(S2) Mod(K) is the ⊆-minimum element of S.

(S3) The set of all interpretations is in S.

(S4) If A is a sentence and there is a sphere S in S intersecting Mod(A), then there is a
smallest sphere in S intersecting Mod(A).

¢

Note that we can actually draw a correspondence between ≤K and a system of spheres.
Next, let SA denote the smallest sphere in S intersecting Mod(A) (which exists according

to (S4)). Grove then proves the following representation result:

Theorem 1.2.6 A revision function * satisfies (K ∗ 1) to (K ∗ 8) iff there exists a system S
of spheres such that Mod(K ∗A) =Mod(A) ∩ SA.

Note that the condition 3 of integrity constraint is respected here because SA is the set of
the closest worlds to Mod(K) in which A holds. We understand here the purpose of (S4).
We can see that these two theorems somehow link the syntax (belief set) and semantic

(possible worlds models) approaches.

1.2.2 W.Spohn’s Approach to Belief Revision Theory

Grove models can be seen as a step towards expressing a degree of plausibility of possible
worlds, in the sense that the system of spheres implicitly assign a ranking among possible
worlds. A clear attempt to achieve this has been proposed by W.Spohn in his theory of
ordinal conditional functions, apart the many other approaches.
We must however note that W.Spohn’s approach considers only a single agent , unlike our

future multi-agent approach (see chapter 2) based on W.Spohn’s single one.
We now dive into the matter. (Note that our account is a simplified version of the real

theory.)

Definition 1.2.7 An ordinal conditional function is a function κ from a given set W of
possible worlds into the class of ordinals such that some possible worlds are assigned the
smallest ordinal 0.

¢

Intuitively, κ represents a plausibility grading of the possible worlds. The worlds that are
assigned the smallest ordinals are the most plausible, according to the beliefs of the individual.
The plausibility ranking of possible worlds can be extended to a ranking of propositions

viewed as a set of worlds (the worlds where it is satisfiable):

Definition 1.2.8 Let A be a proposition, which in our setting corresponds to a set of worlds.
The plausibility of the proposition A is defined by

κ(A) = min{κ(w);w ∈ A} ¢

This definition entails that the plausibility ranking of propositions has the following prop-
erties:
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Proposition 1.2.9 For all propositions A, either κ(A) = 0 or κ(¬A) = 0 or both.
For all non empty propositions A and B, κ(A ∪B) = min{κ(A), κ(B)}

We then say that a formula A is believed when κ−1(0) ⊆ A. Besides this crude notion of
belief, we can talk of greater or lesser plausibility or firmness of belief. We then say that A
is believed more firmly than B iff κ(¬A) > κ(¬B) > 0, that is if the most plausible worlds
outside A are less plausible than the most plausible worlds outside B (note that this condition
implies that A and B are believed by the last proposition).

We can even extrapolate this definition to any kind of propositions even if they are not
believed:

Definition 1.2.10 Let A and B be propositions. A is more plausible than B iff κ(A) < κ(B)
or κ(¬B) < κ(¬A). ¢

Now we turn our attention to how W.Spohn deals with epistemic changes such as revision.
A key point is that the epistemic inputs are not only propositions but propositions together
with a degree of plausibility. We shall note this input as a pair (A,α) where A is the proposi-
tion and α the degree of plausibility with which the formula should be believed by the agent
after his revision of beliefs. We call this ”degree of plausibility” also ”degree of firmness”, to
be coherent with what has just been said about plausibility of propositions.

To do so, W.Spohn introduces the auxiliary concept of A-part of κ:

Definition 1.2.11 Let κ be an ordinal conditional function. The A-part of κ is the function
κ(. | A) defined on A for which for all w ∈ A, κ(w | A) = −κ(A) + κ(w) ¢

(For technical reasons, W.Spohn here makes use of the notion of left sided subtraction of
ordinals, which is defined as follows: if a and b are two ordinals with a ≤ b, then −a + b is
the uniquely determined ordinal c such that a+ c = b).

One might say that the A-part of κ is the restriction of κ to A shifted to 0, that is, in
such a way that κ(A | A) = 0.
With the aid of this concept, we can now define the ordinal conditional function κ∗ (A,α)

(called the (A,α)-conditionalisation of κ) representing the new state of belief:

Definition 1.2.12 Let A be a proposition such that A 6= ∅

κ ∗ (A,α)(w) =

{

κ(w | A) if w ∈ A.
α+ κ(w | Ac) if w ∈ Ac

¢

Thus the (A,α)-conditionalisation of κ is the union of the A-part of κ and the ¬A-part of
κ shifted up by α degrees of plausibility. It follows from the definition that κ ∗ (A,α)(A) = 0
and κ ∗ (A,α)(¬A) = α. Hence A is believed in κ ∗ (A,α) with firmness α.
It conforms to the intuitive requirement that getting informed about A does not change

the epistemic state restricted to A or ¬A, i.e. the plausibility grading within A or Ac. In
other words, the (A,α)-conditionalisation of κ leaves the A-part as well as the Ac-part of κ
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unchanged; they are only shifted in relation to one another. Thereby, we give meaning to the
relative distances of possible worlds.
Now, if ¬A is accepted in κ, that is, if κ(¬A) = 0 < κ(A), then the process of forming

the (A,α)-conditionalisation (where α > 0) is a generalization of a revision of belief sets. To
make this more precise we need the following natural definitions.

Definition 1.2.13 The belief set K associated with the ordinal conditional function κ is the
set of all propositions believed in κ ¢

Definition 1.2.14 K ∗A is the belief set associated with κ ∗ (A,α) where α > 0 ¢

Then finally, we use these newly defined sets in the following proposition.

Proposition 1.2.15 The revision function * defined on belief sets by the last two definitions
satisfies the AGM postulates (K ∗ 1)− (K ∗ 8)

Hence we indeed can see (A,α)-conditionalisation as a generalisation of belief revision.
Moreover, when κ(A) = 0, the (A,α)-conditionalisation of κ corresponds to an expansion.

Final remark of section 1.2: W.Spohn’s theory is very interesting for our purpose.
It will turn out that it will play a central role for our purpose sketched in the general
introduction.

Conclusion of chapter 1: We clearly see that the BMS approach is very similar to the
approach sketched through the assumptions of the general introduction. The only difference
is that it deals only with knowledge, and that the notions of knowledge and beliefs are
somehow intertwined and identified. Moreover AGM deals explicitly with update of beliefs,
namely with the notion of revision. These two approaches seem somehow complementary for
our concerns. So, it makes sense to look for a way in which these two systems can be merged.
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Chapter 2

A Combined System

Introduction: Now we will merge the two systems. One of the obvious point that needs
to be done is to introduce the double notion of belief and knowledge; this will provide more
overtones and precision. This will be the concern of the section 2.1. Afterwards, we will need
to redefine our notions of update and action structure in order to incorporate the belief feature
(see section 2.2 and 2.3). Concerning the belief update, it should be close to an AGM belief
revision as said in the general introduction. W.Spohn’s theory will turn out to be inspiring
for that purpose.

2.1 The Static Part

In this chapter we will set out how we mathematically model a social situation involving
knowledge and beliefs (see general introduction) via the notion of belief epistemic model. We
will see that the proposed modelisation is actually a kind of extension of the basic case of
knowledge.

2.1.1 The Notion of Belief Epistemic Model

We start with a simple and intuitive example from [vDL03].

Consider a situation where an operator j monitors a control system that consists of a light
and a fan. Both can be on and off. Neither is known. The light is normally on. Both light
and fan are in fact off.

There are thus four possible worlds corresponding to the actual world: light and fan on,
light on and fan off,etc... Each of them is indistinguishable from the others for the operator.
We model it this way using an epistemic model:

s : p, q
j

j

t : p,¬q

j

u : ¬p, q
j

v : ¬p,¬q
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s,t,u,v are the possible worlds of the model. p and q are propositional variables whose
intuitive meaning is respectively ”light is on” and ”fan is on”. Now we can add a belief
structure to our model (thanks to the information provided about the actual situation). To
do so we introduce a plausibility grading: each world has a certain plausibility, is more or
less likely to correspond to the actual world according to the operator. We grade it with a
natural number ranging from 0 to M (where M is an arbitrary fixed natural number): the
lower the grading is, the more the world is considered plausible.
So in our example we set κj(s) = κj(t) = 0 < κj(u) = κj(v). κj(x) represents the

plausibility grading of the world x for j.
Indeed the light is normally on, so naturally the operator considers more plausible s and

t than u and v because in these worlds s and t , the light is on.
We can now give the general definition:

Definition 2.1.1 A belief epistemic model M = (W, {∼j ; j ∈ G}, {κj ; j ∈ G}, V, w0) is a
tuple where:

1. W is a set of possible worlds called the states of the model.

2. G is a set of agents.

3. ∼j is an equivalence relation defined on W for each agent j.

4. κj is an operator, ranging from 0 to M , defined on all states.

5. V is a valuation.

6. w0 is the possible world corresponding to the actual world.

¢

• The interpretation of points 1,2,5,6 is clear.

• For point 3, we strike a link ∼j between two possible worlds whenever the agent j has
no information which enables him to distinguish between these two worlds.

• The assignment of κj is carried out by considering individually each ∼j equivalence class.
Indeed , a ∼j-equivalence class corresponds to indistinguishable worlds for the agent j.
Among them, the agent has a plausibility preference, and that is what we model by κj .
So, for each ∼j-equivalence class, we assign a plausibility grading. However, because the
∼j equivalence classes form a partition of W , it amounts to assigning a plausibility to
every world. Nevertheless, we must stress the fact that this assignment is made relative
to each equivalence class. A plausibility value for a world and an agent j makes sense
only when it is considered relatively to the corresponding ∼j-equivalence class, even if
at first sight, by looking at the definition, we are tempted to think that the assignment
is made individually and absolutely for each world.

The grading goes from 0 toM whereM is an arbitrary fixed natural number. The more
a world is plausible for the agent j, the closer its plausibility value is to 0, and the less
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plausible a world is the closer it is to M. The intuitive import of introducing a natural
number M is that beyond a certain degree of plausibility the agent cannot distinguish
two different worlds of different plausibility. This is coherent and that is what often
happens in reality. It is also introduced for compactness reason as we will see in section
3.3.2.

Important remarks:

• One would be tempted to think that this plausibility assignment for any equivalence
should be made relative to a particular world of this equivalence class. That is, according
to which world the agent dwells in, his plausibility assignment is different, because the
information available in this world is different from the information available in another
world of the epistemic class. Yet, this is a spurious reasoning. Indeed, the information
available in a world for an agent j is what he knows and what he considers possible and
not the formulas satisfiable in this world. Yet, in any world of the same ∼j-equivalence
class, what j knows and considers possible is the same. Hence, dwelling in any world
of the same equivalence class the agent j will base his plausibility grading on the same
information. So, the plausibility grading will be identical in every world of the ∼j-
equivalence class. That is what we wanted to show.

To put it differently, intuitively if I cannot distinguish between two worlds, then I should
believe the same things in these two worlds.

• This use of an equivalence relation ∼j and a plausibility grading κj replaces the former
relation used in [BMS03]. Indeed formally, the classical arrow of [BMS03] v →j w
is replaced in our setting by an equivalence relation v ∼j w and by the plausibility
grading κj where κj(v) > κj(w). So, the two notions of knowledge and belief which
were somehow intertwined in [BMS03] are clearly separated by use of the plausibility
grading. Indeed, for [BMS03], the notion of belief was a particular type of knowledge
and was formally identified with the notion of knowledge in their system. Here, the
plausibility grading provides us with more richness and overtones concerning these two
notions of knowledge and belief, as we will explicitly see in the forthcoming study of
the language (see section 3.1 and 2.1.3).

• Obviously, this plausibility grading corresponds to the plausibility grading of W.Spohn’s
theory (see section 1.2.2). And for a particular situation, each ∼j-equivalence class in
our approach corresponds to the set of possible worlds for the agent j in W.Spohn’s
approach. However, we don’t assume that for each ∼j-equivalence class there is a
world of plausibility 0 like in W.Spohn’s theory, because as we will see in section 2.3
(update mechanism) it is quite possible that after an update, no world of the resulting
equivalence class has the plausibility 0 (whereas it was the case before the update).
Nevertheless, without this assumption, the treatment and underlying ideas are exactly
the same.
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2.1.2 Examples

We reconsider the examples of the previous chapter:

• Muddy children.

The corresponding belief epistemic model for the initial situation is

s : p, q A

B

t : p,¬q

B

u : ¬p, q
A

v : ¬p,¬q

with κA(s) = κA(t) = κA(u) = κA(v) = 0, and the same for B.

• coin example (see section 1.1.2).

The corresponding belief epistemic model for the initial situation is :

s : H
A,B

t : T
with κA(s) = κA(t) = κB(s) = κB(t) = 0

The model resulting from a private announcement to A (suspected by B) that the coin
is lying heads up is the following:

(s) : H
A,B

A

(t) : T

A
ttttttttt

(s) : H

with κB(u) = 0 for all u, and κA(s) = 1, κA(s) = κA(t) = 0

2.1.3 The Language for the Static Part

We can easily define a language LSt for belief epistemic models (St for static):

LSt ϕ := p | ¬ϕ | ϕ ∧ ψ | Kjϕ | B
k
j ϕ where k ∈ Z

Its semantics is the following:

Let M be a belief epistemic model and w a world in M . We only give the semantics for
κj and B

k
j , the rest is classical.

M,w |= Kjϕ iff for all v st w ∼j v, M, v |= ϕ.
M,w |= Bk

j ϕ iff for all v st w ∼j v and κj(v) ≤ k, M, v |= ϕ.
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The intuitive meaning of M,w |= Bk
j ϕ is that in a certain world w, j believes with

plausibility (a degree of) at most k that ϕ is true.

Kj is the usual knowledge operator.

2.2 The Dynamic Part

2.2.1 The Notion of Belief Epistemic Action Model

In this section we will define the notion of epistemic action model. This notion is intended
to model how the agents perceive a particular action taking place from the point of view of
their knowledge and beliefs (see general introduction). The way the action is perceived by
the agents is, for example, which representation of the actual action ( that we call possible
action) they consider to be the most plausible, what they know about what the other agents
believe (about the actual action taking place), etc... This is of course relevant for our study
because it will determine the resulting epistemic and belief situation after the performance
of the actual action, which we will model by an updated belief epistemic action model (see
next section). Thus our epistemic action has to be designed in order to catch the essential
elements that pertain to the way the agents epistemically perceive the action.

First an intuitive example. Consider again the coin example. The action that we will
consider is a completely private truthful announcement to A that the coin is lying Heads up.
The corresponding belief epistemic action model is:

σ : H
B

τ : True

with Σ = {σ, τ}, σ ∼j τ , Pre(σ) = H, Pre(τ) = True, κ∗B(τ) = 0, κ
∗
B(σ) = α.

In this actual action, there are two possible representations: nothing happens (for B),
or there is a truthful announcement of H (for A) (the actual action). So we model it by
respectively introducing the ”simple” actions τ and σ. The actual action is σ and is denoted
by a double bordered line. Both have ”preconditions” which express the fact that they can
not be performed in any possible world. Indeed, for σ to be performed in any possible world,
the coin must be H because it is a truthful announcement of H. On the contrary τ can be
performed in every world because nothing happens, so the precondition is a propositional
tautology (which is satisfied in any world). Now B has no objective information which would
enable her to distinguish σ from τ because σ is by definition a private action and thus an
action that she cannot perceive. So, there is a ∼B link between σ and τ . On the contrary,
A has at his disposal actual evidence that enables him to distinguish σ from τ : he is aware
of the private announcement to him. So there is no ∼A link between σ and τ . Now B has
clearly a preference between σ and τ : she believes the actual action is τ . We model it by
introducing a plausibility assignment κ∗B.

Now B can suspect more or less that there has been a private announcement to A and we
can perfectly express in our setting this degree of suspicion thanks to α. Indeed the higher α
is, the less B suspects A of having cheated; or to put it differently, the lower α is, the more B
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suspects A of having cheated. This is a natural consequence of our definition of the degree of
plausibility: the higher value is assigned to a world or an action, the less this world or action
is considered plausible.
Note that this action model can also correspond to other types of actions than just a

private announcement, like for example cheating (A lifted the cup and checked the outcome
H).
Now the general definition:

Definition 2.2.1 A belief epistemic action model Σ is a tuple (Σ,∼j , κ
∗
j , P re, σ0) such that:

1. Σ is a set of simple actions.

2. ∼j is an equivalence relation indexed by the set of agents on Σ.

3. κ∗j is a function from the set of simple actions to the set of natural numbers {0, ...,M}
indexed by the set of agents, such that for each ∼j-equivalence class, (at least) one of
the actions is assigned the plausibility 0.

4. Pre is a function from the set of simple actions to the formulas of LSt.

5. w0 is the possible world corresponding to the actual world.

¢

2.2.2 Intended Interpretation and Examples

1. As already sketched in the last example Σ is the set of the possible determinations
of the actual actions. We call them ”simple” actions because we assume that we can
not decompose the actual structure of a simple action σ into (sub) actions temporally
smaller, whose succession would form the original action σ and that would still be
relevant for our study.

2. We set σ ∼j τ (with σ and τ simple actions) when j has no information which would
enable him to distinguish σ from τ .

3. κ∗j expresses the plausibility preference that the agent has among actions that he can
not objectively distinguish.

4. Pre assigns to each simple action a precondition that a world w must fulfill in order for
this σ to be performed in this world w.

5. σ0 denotes the actual action.

In the following, for convenience we will denote a belief epistemic action model simply an
action model.

We see in this definition that the belief epistemic action model is very similar to the
corresponding BMS one. It is normal because as already stressed in the static part (see
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section 1.1.2) the main difference of our system with BMS is that we replace the crude notion
of knowledge (represented in BMS by arrows →j) by the double notion of knowledge and
belief (represented in our system by ∼j and κ

∗
j ).

Some other examples are offered in order to better understand this notion of belief
epistemic action model.

Simple Examples

• Public announcement of ϕ to all the agents:

σ : ϕ

The intuition behind this model is clear.

• Announcement of ϕ with degree of firmness αj to all the agents j:

σ : ϕ
j

τ : ¬ϕ

with κ∗j (σ) = 0 and κ
∗
j (τ) = αj

Here j accepts the information ϕ with ”degree of firmness” κ∗j (τ) = αj . This degree
of firmness corresponds to the degree of firmness introduced by W.Spohn (see section
1.2.2). Note that we must not confound the notion of degree of plausibility and of
degree of firmness. The first is assigned directly to a world (or action) and bears on
this world (or action). the second is an additional and optional piece of information
which bears on the degree of plausibility. It is indirectly assigned via a different (and
linked) world or set of worlds (see section 1.1.2). Precisely and intuitively, it expresses
at which degree of plausibility , the degree of plausibility of a world (or an action) is
assigned. It can thus be viewed as a ”meta”-degree of plausibility which reveals an
extra introspection of the agent. However, we can not talk of degree of firmness in any
case (see section 1.2.2). It just provides more overtones and precision to the first notion
of plausibility. Classically, we talk of degree of firmness when the degree of plausibility
of the world at stake is 0 (Anyway, that is why we talked of firmness of beliefs only in
section 1.2.2).

We will see (see section 4.3) that the update (see section 2.3) of a belief epistemic action
model with this action model corresponds to a belief revision for agent j of his belief
with the proposition ϕ (with a degree of plausibility αj) exactly as in W.Spohn’s work.

• In the muddy children example, A lies to B by telling him that she is not dirty:
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σ : q ∧KAq
B

τ : ¬q ∧KA¬q

with κ∗B(τ) = 0 and κ
∗
B(σ) = α

σ represents the simple action of A lying by telling ¬q (this is the actual action). This
presupposes that q is true and A knows it (KAq)because otherwise it would not be a lie.
τ represents the announcement that ¬q is the case. Concerning τ , for the announcement
to be made presupposes of course that ¬q is the case but also that A knows that ¬q is
true because in this simple action τ , A is supposed to be faithful. B has no information
which enables her to distinguish whether A is lying or not, that is the actual action
is σ or τ . So the ∼B link between σ and τ . Now B believes the actual action is τ ,
so κ∗B(τ) = 0 < κ∗B(σ). B can more or less believe what A told her and it is possible
to express it in our model thanks to the number α. Indeed the higher α is, the more
B believes what B told her; or to put it differently, the closer α is to 0 = κB(σ), the
less B believes what A told her. Indeed if the two degrees of plausibility are close, B
will somehow consider the two simple actions (lie and truthful announcement) equally
plausible; whereas if there is a gap between them, one of the action will be much
more plausible than the other. These considerations are similar to those we had in the
cheating example and are very close to the notion of degree of firmness spelled out in
the last example.

A more complex example

This example involves several ∼j-equivalence classes for each agent j. It is the following.
Consider again the ”coin” situation.

The action:”Given H or T under the cup, with A and B ignorant about it, each suspects
the other of having ”cheated” (i.e. lifted the cup and checked the outcome). Actually nobody
cheated and H is under the cup. A now asks B: ’Do you know whether it is H or T’”

The action model leading up to that question is the following:

σ1

B

σ5

Aσ4

B

A

A

σ8

B

Bσ2 A σ6

σ3 A,B

A

σ7

B

It has 8 possible actions:

1. σ1: A and B learn that H. Pre(σ1) = H.

2. σ2: A learns that H and B not. Pre(σ2) = H.

3. σ3(the actual action): neither A nor B learn that H. Pre(σ3) = H.
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4. σ4: B learns that H and A not. Pre(σ4) = H.

5. σ5: A and B both learn that T. Pre(σ5) = T .

6. σ6: A learns that T and B not. Pre(σ6) = T .

7. σ7: Neither A nor B learn that T. Pre(σ7) = T .

8. σ8: B learns that T and A not. Pre(σ8) = T .

There are clearly for A and B three equivalence classes.

• For A: EA
1 = {σ1, σ2}, E

A
2 = {σ5, σ6}, E

A
3 = {σ3, σ4σ7, σ8}

• For B: EB
1 = {σ1, σ4}, E

B
2 = {σ5, σ8}, E

B
3 = {σ2, σ3, σ6, σ7}

Now, IF A learns that H or learns that T, he considers it more likely that B does not
(i.e. prefers the actions where B remains ignorant).That is

In EA
1 : κ

∗
A(σ1) > κ∗A(σ2) = 0.

In EA
2 : κ

∗
A(σ5) > κ∗A(σ6) = 0.

Similarly for B:

In EB
1 : κ

∗
B(σ1) > κ∗B(σ4) = 0.

In EB
2 : κ

∗
B(σ5) > κ∗B(σ8) = 0.

Dually, IF A doesn’t learn H or T, he considers it more likely that B does (i.e. prefers
the actions where B learns H or T). That is,

In EA
3 : κ

∗
A(σ3) > κ∗A(σ4) = 0, κ

∗
A(σ7) > κ∗A(σ8) = 0

Similarly for B:

In EB
3 : κ

∗
B(σ3) > κB(σ2) = 0, κ

∗
B(σ7) > κ∗B(σ6) = 0.

2.2.3 Technical Apparatus

These definitions will be necessary for the next chapter and the chapter about completeness.
They are just necessary technical devices and don’t bring any new conceptual insights.

Definition 2.2.2 An action signature is a structure Σsg = (Σ,∼j , κ
∗
j , (σ1, ..., σn)) where:

1. Σ is a set composed of the simple actions {σ1, ..., σn} (which is a list without repetition)

2. For each agent j, ∼j is an equivalence relation on Σ.

3. For each agent j, κ∗j is a function from the simple actions {σ1, ..., σn} to the class of
epistemic formulas.

28



¢

We can get from an action signature a full belief epistemic action model thanks to this
definition:

Definition 2.2.3 Let Σsg be an action signature, σ a simple action of Σ, and ψ = ψ1, ..., ψn a
list of epistemic propositions. A signature-based action model, based on the signature Σsg, σ
and ψ, that we note (Σsg, σ)(ψ1, ..., ψn), is the belief epistemic action model (Σ, σ,∼j , κ

∗
j , P re)

defined by:

1. Σ,∼j , κ
∗
j are the ones given by Σsg.

2. the actual action is σ.

3. for each j ∈ {1, ..., n}, P re(σj) = ψj .

¢

2.3 The Update Mechanism

We have now set the two main components. First, the belief epistemic model M as a formal
counterpart (see general introduction) of the way an actual situation s is perceived by the
agents from the point of view of their beliefs and knowledge. Second, the belief epistemic
action model Σ as a formal counterpart (see intro) of the way an actual situation a is perceived
by the agents from the point of view of their beliefs and knowledge. Now in reality the agents
update their knowledge and beliefs according to these two pieces of information: action a and
situation s, giving rise to a new actual situation s × a. We would like to render this update
formally with a mathematical model ⊗ such that M ⊗ Σ would be a new belief epistemic
model which would be a formal counterpart of s× a (see general introduction).
So, first we will define the update product of a belief epistemic model with a belief epis-

temic action model (corresponding to the ⊗ above). Second, we will give its intended in-
terpretation. Third, we will present some examples of update. Fourth, we will define some
mathematical objects necessary to get a full logical system out of this semantically driven
approach. As part of it and as the last chapter, we will define a full language incorporating
dynamic features, and more precisely this update product. This full language will be an
extension of the static language defined in section 2.1.3.

2.3.1 The Notion of Update Product

Given a belief epistemic model M = (M,∼j , V, κj , w0) and a belief epistemic action model
Σ= (Σ,∼j , P re, κ

∗
j , σ0) we define their update product to be the epistemic action model

M⊗Σ=(W ⊗ Σ, w′
o,∼

′
j , V

′, κ′j)

given by the following: the new states are pairs of old states w and simple action σ
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W ⊗ Σ = {(w, σ) ∈W × Σ;w ∈ V (Pre(σ))}.

The new accessibility relation is taken to be the products of the corresponding accessibility
relations in the two frames: i.e., for (w, σ), (w′, σ′)∈W × Σ, we put

(w, σ) ∼′
j (w

′, σ′) iff w ∼j w
′ and σ ∼j σ

′

The new valuation map is essentially given by the old valuation:

V ′(p) = {(w, σ) ∈W × Σ;w ∈ V (p)} and

w′
0 = (w0, σ0).

Note that this state necessarily exists because it corresponds to what actually happened
in the real world. The fact that w0 ∈ V (Pre(σ0)) is a meta(and necessary)-assumption of
our system. Eventually, we define κ′j as follows:

κ′j((w, τ)) = CutM (κj(w) + κ
∗
j (σ)− κ

w
j (ϕ))

where ϕ = Pre(σ), κwj (ϕ) = min{κj(v); v ∈ V (ϕ) and v ∼j w} and

CutM (x) =

{

x if 0 6 x 6M.
M if x > M

2.3.2 Intended Interpretation

W ⊗ Σ: A new possible world (w, σ) in the resulting model corresponds to the resulting
situation of performing the action corresponding to σ in the world corresponding to w.
However, the action σ can be performed in w only if the precondition Pre(σ) of the
action σ is satisfied in this world: actions cannot be performed in an arbitrary world,
they presuppose some ”material” preconditions in the world. For example, if the action
is a truthful announcement of Head (cf coin example), then this action can be carried
out only in worlds where H holds because it is a truthful announcement. (Note that it
is completely similar to the BMS system.)

∼′
j: Two new worlds are indistinguishable for j if the worlds they come from were already

indistinguishable before the action and if the actions which have been performed in
these worlds are indistinguishable for j.

Thus uncertainty among states can only come from existing uncertainty via indistin-
guishable actions. This is natural and that is one would expect. (Note that this is again
completely similar to the BMS system.)

V ′: We essentially take the same valuation as the one of the input model. If a world w
”survives” an action, then the same fact p holds at the output world (w, σ) as at the
input world w. This means that our actions, when performed, do not change the facts.
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This condition can of course be relaxed in various ways, to allow for fact changing
actions. However, in this paper we are primarily concerned with purely belief epistemic
action, such as the examples in the last chapter. (Note that it is still completely similar
to the BMS system.)

w′
0: This state necessarily exists because it corresponds to what actually happened in the

real world. The fact that w0 ∈ V (Pre(σ0)) is a meta(and necessary)-assumption of our
system.

κ′j: Here we update the plausibility assignment thanks to the new information provided by
the action model Σ.

κj(t) + κ
∗
j (σ)− κ

w
j (ϕ) (*) is the core of the update. CutM is a technical device in order

that the new plausibility assignment fits in the range of the plausibility scale of the
new belief epistemic model (i.e. fits in the set {0, ..,M}). The role of this function
is also intuitively correct because as already said in section 2.1.1 (about the maximum
valueM), after a certain stage of plausibility value (denoted hereM), the agents cannot
distinguish between two different plausibility values. So it is as if the plausibility values
beyond this stage M for the agent were the same as the value M of this stage. This
thereby gives an intuitive motivation to this function CutM , besides its technical role.

Now we will motivate and interpret why (*), the ”formal” new plausibility of (w, σ)
(CutM corresponding to the ”actual” plausibility) has this shape.

(*)= [1]+[2]+[3] ,where

[1 ]=plausibility for j that t is the actual world.

[2 ]=plausibility for j that σ is the actual action taking place in w.

[3 ]=relativization of the plausibility [1] to the relevant worlds: the worlds where the action
σ will take place and that may correspond for j to the actual situation w.

We assume that the plausibilities of the actions are independent from the particular
world in which they are performed (see remarks below)

1 =κj(w) clearly.

2 =κ∗j (σ). The plausibility of the actions are independent between each other, there is no
relative plausibility between two actions, these plausibilities are absolute and assigned
once by the agent j. Moreover, these plausibilities are also independent from the world
they can take place, as just said. So they are doubly independent: from the current
world and from the other actions. This entails that in any world s where the action σ
is taking place, j will consider that τ can be performed with plausibility κ∗j (τ).
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3 =−κwj (ϕ) = min{κj(u);u ∼j w and u ∈ V (Pre(σ))}. We relativize the ordinal as-
signment to the relevant worlds, that is the worlds where σ will take place and that
may correspond for j to the actual situation w. Indeed the former ordinal assignment
κj made sense only if we considered all the worlds that may correspond for j to the
actual situation w. However, formally, now the action σ is taking place, so j only has
to consider and restrict his attention to the set of worlds where the action σ will take
place (and that correspond to the ones that possibly represent the actual situation w
he dwells in) because the other ones do not play a role anymore. So j must relativize
his plausibility ordering to this set by rescaling the ordinal assignment, in order to start
again and deal with the action σ with a self defined plausibility ordering and abstract
from the former one.

Important remarks:

• We could motivate our definition of plausibility update somewhat differently. Indeed,
it is intuitively clear that,

”If I believe an action has taken place, then after the update I should believe what is
then (after the update) true in the worlds where the action has taken place.”

Or more generally and precisely,

”In a current world w, if I believe with plausibility κ∗j (σ) that an action σ has taken
place, then after the update I should believe with plausibility κ∗j (σ) what is then true
in the worlds where the action has taken place and that I cannot distinguish from my
current world w.”

So we would be tempted to assign roughly to the worlds accessible from w where the
action σ has taken place the plausibility κ∗j (τ). Yet doing so, we would lose part of
the information and overtones present in the former model among the worlds where
the action σ has taken place (and that are accessible from w). So we add to κ∗j (σ)
the expression κj(w) − κwj (ϕ) in order to incorporate this former information. This
represents, as already explained, the plausibility for j that his current world is w
(κj(w)) relativized to the world where the action σ will take place (−κ

w
j (ϕ)). Doing

that, we will still be sure that there is a (v, σ) such that κj(v, σ) = κ∗j (σ) and κ
∗
j (σ) is

the minimum plausibility among the worlds where the action σ has taken place. That
is what we wanted (cf (*)). Moreover, we also keep track of the former plausibility
structure by this addition of κj(w)− κ

w
j (ϕ).

these thoughts are very well exemplified by the last example of the section 2.3.3

• These two interpretations (this one just set and the one above) are somehow equivalent.
Indeed, they both stress the priority of the plausibility assignment of the action model
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upon the plausibility assignment of the model. For the first interpretation, this priority
is expressed in the interpretation of the subtraction of κwj (ϕ) (namely via the notion of
relativization, which indirectly gives priority to the action at stake). Moreover, these
action plausibilities of the action structure are a guideline for the plausibility update
process. That is according to their relative distribution and repartition that the agents
globally revise (update) their beliefs. This last thought will be exemplified by our last
example.

• Of course there are several ways to update plausibilities depending on the background
motivations. In this work (as already mentioned in the introduction), we are interested
in one performing a genuine belief revision. Thus we want to be close to an ideal belief
revision. That’s what explains our intuitive choices in the first remark and in the main
comments

We will also see in section 4.1 that what makes our plausibility update one of belief
revision is the subtraction of κwj (ϕ).

• We see in the first remark that the plausibility update can be done separately from the
rest of the update.

• This plausibility update process is essentially local: it considers a particular world and
a particular action only, abstracting the other possible actions. All this thanks to the
subtraction of κwj (ϕ).

• The formula (*) has to be put in parallel with the (ϕ, α)-conditionalisation of
W.Spohn’s theory (see section 1.2.2). They are very similar. We will see that this
similarity allows for belief revision as conceived by W.Spohn in section 1.2.2. Indeed it
is quite possible to perform a revision of beliefs as viewed by W.Spohn for each agent,
satisfying moreover the 8 AGM postulates by updating, in the way we just described,
a model with a particular action model

• Last but not least, we have assumed that the plausibility of the actions are indepen-
dent from the worlds in which they are performed. However, this is wrong. Indeed,
for example consider a hazy announcement of a formula ϕ that the agent j cannot
distinguish from ϕ′. In a ∼j-equivalence class where the agent j knows more formulas
that logically imply ϕ than ϕ′, j will find the announcement ϕ more plausible than
ϕ′ because he will have more actual evidence at his disposal to think so. However, in
another ∼j-equivalence class of the same model where the agent j knows more formulas
that logically imply ϕ′ than ϕ, j will find the announcement of ϕ less plausible than
ϕ′ because he will have less actual evidence that would prompt him to think so. This
extra assumption is a limitation of our system but an attempt to avoid it would render
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our system much more complicated. It just restricts the set of actions we consider to
actions whose epistemic and belief feature doesn’t change according to which world they
are performed.

2.3.3 Examples

• Update with a public announcement.

1. Let us come back to the muddy children example. According to section 2.1.2, the
initial model has this shape:

s : p, q A

B

t : p,¬q

B

u : ¬p, q
A

v : ¬p,¬q

with κA(s) = κA(t) = κA(u) = κA(v) = 0, and the same for B.

2. A public announcement by the father telling that at least one of them is dirty
corresponds to this action model:

σ : p ∨ q

with κ∗A(σ) = κ∗B(σ) = 0.

3. Now our update product yields:

(s, σ) : p, q
A

B

(t, σ) : ¬p, q

(u, σ) : ¬p, q

This is the expected model (see section 1.1.1).

• Update with a private announcement.

1. Consider the ”coin” example (see section 1.1.2)

w : H
A,B

v : T
with κA(w) = κA(v) = κB(w) = κB(v) = 0
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2. A private announcement to A that the coin is lying Heads up corresponds to the
following action model:

σ : H
B

τ : True

with κ∗B(τ) = 0, κ
∗
B(σ) = α.

3. The update product yields:

(w, τ) : H
A,B

B

(v, τ) : T

B
qqqqqqqqqqq

(w, σ) : H

with κA(u) = 0 for all u, and κB(w, σ) = α, κB(w, τ) = κB(v, τ) = 0

In the actual world, A knows that the coin is H, B believes that A does not know
whether the coin is H or T and B does not know whether it is H or T. This is the
expected intuitive outcome.

• Update with a lie

1. Consider again the muddy children example:

s : p, q A

B

t : p,¬q

B

u : ¬p, q
A

v : ¬p,¬q

with κA(s) = κA(t) = κA(u) = κA(v) = 0, and the same for B.

2. A lie by A to B by telling her that she is not dirty corresponds to the following
action model:

σ : q ∧KAq
B

τ : ¬q ∧KA¬q

with κ∗B(τ) = 0 and κ
∗
B(σ) = α

3. The update product yields:

(s, σ) : p, q
A

B

(t, σ) : p,¬q

B

(u, τ) : ¬p, q
A
(v, τ) : ¬p,¬q
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with κB(u, τ) = κA(v, τ) = 0, and κB(s, σ) = κB(t, σ) = α the same for B.

There is no change for A in his beliefs and knowledge. In the actual world, B
believes she is not dirty. That is what we expected.

• Announcement of a formula with a degree of firmness

1. Consider the following belief epistemic model with a single agent a.:

M = (W =W1 tW2, w0,∼a, κa, V ) such that:

– W1 ∩W2 = ∅.

– ∼a=W ×W .

– κa(p) = 0, κa(¬p) = 2 for some propositional variable p

– V (p) =W1, V (¬p) =W2.

p is more believed than ¬p by the agent in the actual world.

2. An announcement of ¬p with a degree of firmness α to all (actually only one) the
agents:

σ : p a τ : ¬p

with κ∗a(τ) = 0 and κ
∗
a(σ) = α

3. The update product yields the model M ′ = (W,w0,∼0, κ0, V ) where κ0(p) = 1
and κ0(¬p) = 0.

Hence p is now less believed than ¬p by the agent in the actual world. This
exemplifies what we have just said in the remarks, namely that the plausibility
assignment of the action model has priority over the former plausibility assign-
ment of the model (thanks to the relativization term). Indeed, a believes the
announcement is τ , and after the update, a believes what is true in the worlds
where τ has taken place.

We will see in section 4.3 that this action model corresponds to a revision of
beliefs (satisfying the 8 AGM postulates).

2.3.4 Technical Apparatus

These definitions are almost equal to the ones of the BMS theory (see section 1.1.2).

First some general definitions.
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Definition 2.3.1 A belief epistemic relation between belief epistemic models M and M ′ is
a relation between the sets W and W ′. We write r :M −→M ′ for this.
An update r is a pair of operations on the set of belief epistemic model,
r = (M −→M(r),M 7→ rM ),
where for each belief epistemic model M , rM :M −→M(r) is a belief epistemic relation.

We call M −→M(r) the update map, and M 7→ rM the update relation.
¢

The collection of updates is closed in various ways:

Definition 2.3.2 Let r and s be belief epistemic updates.

• Their composition is again a belief epistemic update, where M(r.s) = M(r)(s) and
(r.s)M = rM .sM(r) (we are writing relational composition from left to right).

• Their sum r+s is again a belief epistemic update, where M(r+s) =M(r) +M(s), and
(r+s)M = rM +sM . (we are writing + for the disjoint union operation on set, extended
in the obvious way to relations).

¢

Now a link with what has been done: we can get updates induced naturally by belief
epistemic action models.

Definition 2.3.3 Let Σ be a belief epistemic action model. We define an update which we
also denote Σ (corresponding to the r of the definition of update) as follows:

1. M(Σ) =M ⊗ Σ.

2. For all w ∈M, (v, σ) ∈M(Σ), wΣM (v, σ) iff w=v and σ is the actual action of Σ

We call this the update induced by Σ. ¢

2.3.5 The Full Language

Now that we have at our disposal the material concerning the dynamic part and the update
part of our system, we can extend the static language LSt defined in section 2.1.3 in order
to cover and express this dynamic feature in our very language. We must, however, mention
the fact that we do not consider in our study the notion of common knowledge and common
belief.
First we have to say that our logical system will deal with only a fixed and unique type

of action. So our reasoning will be based on a single type of action. This type of action will
be determined by our choice of an action signature Σsg. Let n be the number of actions in
Σsg. First we define the syntax of the full language L(Σsg).

Definition 2.3.4 The syntax of the language L(Σsg) is defined by,
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• Sentences ϕ := True | p | ¬ϕ | ϕ ∧ ψ | Kjϕ | B
k
j ϕ | [π]ϕ

where k ∈ Z

• Programs π := σiψ1, ..., ψn | π + ρ | π.ρ.

¢

We note that we have two sorts of syntactic objects: sentences and programs. We call
programs of the form σ, ψ1, ..., ψn simple programs. Par abus de notation, we will also denote
this simple program σ, ψ without any ambiguity.

Now the semantics of L(Σsg). The semantics of programs are updates:

• [[σi, ψ1, ..., ψn]] = (Σsg, σi)(ψ1, ..., ψn) (recall that the left term of the equality rather
denotes an update than a belief epistemic action model, see definition 2.3.3).

• [[π, ρ]] = [[π]].[[ρ]].

• [[π + ρ]] = [[π]] + [[ρ]].

The operations + and . were defined in definition 2.3.2.

Remark:

• We see here the usefulness of introducing this notion of action signature: it enables
us, once fixed a type of action, to consider different displays of this type of action (by
changing the precondition). that is why we will call our logic like in BMS theory, for
example, logic of public announcement, logic of private announcement...

Now we can give the semantics of the sentences.

Let M = (W,w0,∼j , κ
∗
j , V ) be a belief epistemic model.

• M,w |= p iff w ∈ V (p)

• M,w |= ¬ϕ iff M,w 2 ϕ.

• M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ.

• M,w |= Kjϕ iff for all v such that w ∼j v M, v |= ϕ.

• M,w |= Bk
j ϕ iff for all v such that w ∼j v and κj(v) ≤ k, M, v |= ϕ.

• M,w |= [π]ϕ iff for all v such that w[[π]]Mv, M([[π]]), v |= ϕ.

Remarks:
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• The semantics of [π]ϕ motivates the way we defined an update in definition 2.3.1.
Indeed we need two data. The first concerning the updated model M([[π]]). The second
concerning the relation between the original model and the updated model: this is the
role of the update map [[π]]M . these two data form the core of our definition of an update.

• Intuitively, M,w |= [π]ϕ says that in the world w, after the action corresponding to the
program π has been performed, ϕ will hold.

• Finally, in the syntax of Bk
j , k is in Z. However, the values of κj are always included

between 0 and M > 0, so it seems useless to assign such a big range for the degree of
plausibility k. Actually, this extension is necessary because as we will see in the next
chapter, in the axiom 9, it is quite possible formally that k goes beyond the range of κj
(more precisely because k = m+ l − κ∗j (σk))

Conclusion of chapter 2: We have got now a combined system which seems to fulfill
our expectations. However, we don’t know yet if the belief update is close to a belief revision.
This will be the concern of the last chapter which will deal with several comparisons, notably
the AGM postulates. Beforehand, we need to complete our system by determining a proof
system, because our approach has been semantically driven so far. This is the concern of the
following chapter.
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Chapter 3

Logic of Combined Update and
Revision

Introduction: In this chapter, we will present a proof system AX for our semantically driven
system exposed so far, together with a soundness and completeness proof. Concerning the
completeness proof, we will first define a sub-proof system AX’ for which we prove complete-
ness with respect to the semantics of LSt. We will then prove that every formula of the proof
system AX is provably equivalent in AX to a formula of AX’. This will enable us to get the
completeness proof for the full proof system AX with respect to the semantics of L(Σsg).

3.1 The Full Proof System

We set out in this chapter the proof system AX for L(Σsg). The sub-proof system AX’
corresponding to LSt (see section 2.1.3) is labelled with * :

1. * All propositional tautologies.

2. ` [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ) [π]-distribution.

3. * ` Bm
j (ϕ→ ψ)→ (Bm

j ϕ→ Bm
j ψ) B

m
j -distribution.

4. * ` Kj(ϕ→ ψ)→ (Kjϕ→ Kjψ)

5. ` [σi, ψ]p↔ (ψi → p)

6. ` [σi, ψ]¬χ↔ (ψi → ¬[σi, ψ]χ)

7. ` [σi, ψ]ϕ ∧ χ↔ ([σi, ψ]ϕ ∧ [σi, ψ]χ)

8. ` [σi, ψ]Kjϕ↔ {ψi →
∧

{Kj [σk, ψ]ϕ;σk ∼j σi}}
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9. ` [σi, ψ]B
m
j ϕ↔ {ψi →

∧

{Bl−1
j ¬ψk ∧¬B

l
j¬ψk → B

m+l−κ∗j (σk)

j [σk, ψ]ϕ;σk ∼j σi and l ∈
{0..M}}} where m < M

10. ` [π][ρ]ϕ↔ [π.ρ]ϕ

11. ` [π + ρ]ϕ↔ [π]ϕ ∧ [ρ]ϕ

12. * ` Kjϕ→ ϕ

13. * ` Bk
j ϕ→ KjB

m
j ϕ for all m ∈ Z

14. * ` ¬Bm
j ϕ→ Kj¬B

m
j ϕ for all m ∈ Z

15. * ` Bm
j ϕ→ Bm′

j ϕ for all m > m′

16. * ` Kjϕ↔ Bm
j ϕ for all m >M

17. * From ` ϕ and ` ϕ→ ψ infer ` ψ

18. * From ` ϕ infer ` Bm
j ϕ [Bj ]-generalization

19. * From ` ϕ infer ` Kjϕ [Kj ]-generalization

20. From ` ϕ infer ` [π]ϕ [π]-generalization

Remark: The axioms of our proof system AX concerning the interaction between the
notions of belief and knowledge are intuitively appealing. Indeed, axiom 13 says informally
that ”If you believe something, you know that you believe it”. Axiom 14 says that ”if you do
not believe something, you know that you do not believe it”. Axiom 15 says that ”if you know
something, you also believe it”. In a sense, this is a sign whereby our choice of function κj
as independent from the current world (see section 2.1.1) was intuitively correct. Moreover,
axiom 8 is exactly the same as in the BMS system, which is not surprising, given that our
approach is based on the one of BMS. Axiom 16 is only here for technical reasons (see section
3.2).

3.2 Completeness Proof for the Static Part

In this chapter, we are going to prove strong completeness of AX’ with respect to the semantics
of the language LSt. We will need the following three lemmas:

Lemma 3.2.1 Every AX’-consistent set Γ ⊆ LSt can be extended to a maximal AX’-
consistent set w.r.t. LSt. In addition, if Γ is a maximal AX’-consistent set, then it satisfies
the following properties:

1. For every formula ϕ ∈ LSt, exactly one of ϕ and ¬ϕ is in Γ.
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2. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ.

3. if ϕ and ϕ→ ψ are both in Γ, then ψ is in Γ.

4. if ψ ∈ AX ′ then ψ ∈ Γ.

Proof : It is a classical proof that we don’t give. ¤

Lemma 3.2.2 For all maximal consistent sets V,W , for all k ∈ Z,
V/Kj

⊆W → (V/Bk
j
⊆W ↔W/Bk

j
⊆W )

Proof : V/Kj
⊆W ⇔ for all formula ϕ,Kjϕ ∈ V → ϕ ∈W (*)

We are going to show that under the assumption (*),
Bk
j ϕ ∈ V ⇔ Bk

j ϕ ∈W for all k, all formulas ϕ

• Assume Bk
j ϕ ∈ V .

We know that Bk
j ϕ→ KjB

k
j ϕ ∈ V because it is an axiom (see lemma 3.2.1).

So KjB
k
j ϕ ∈ V .

Then by (*), Bk
j ϕ ∈W

• Assume Bk
j ϕ ∈W .

Assume Bk
j ϕ /∈ V . Then ¬Bk

j ϕ ∈ V by lemma. But ¬B
k
j ϕ→ Kj¬B

k
j ϕ ∈ V .

So Kj¬B
k
j ϕ ∈ V.

Then ¬Bk
j ϕ ∈W by (*)

i.e. Bk
j ϕ /∈W (by lemma 3.2.1). This is impossible.

So Bk
j ϕ ∈ V .

We have proved Bk
j ϕ ∈ V ⇔ Bk

j ϕ ∈W for all k, all formulas ϕ.

Now, if V/Kj
⊆W

then Bk
j ϕ ∈ V ⇔ Bk

j ϕ ∈W for all ϕ

then (Bk
j ϕ ∈ V → ϕ ∈W )⇔ (Bk

j ϕ ∈W → ϕ ∈W ) for all formulas ϕ
then V/Bk

j
⊆W ↔W/Bk

j
⊆W

So, V/Kj
⊆W → (V/Bk

j
⊆W ↔W/Bk

j
⊆W ) ¤

Lemma 3.2.3 V/Bk
j
⊆ V/

Bk′

j
for all k ≥ k′.
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Proof :
Let ϕ ∈ V/Bk

j
.

Then Bk
j ϕ ∈ V

but Bk
j ϕ→ Bk′

j ϕ ∈ AX
′

so Bk
j ϕ→ Bk′

j ϕ ∈ V by lemma 3.2.1

then Bk′

j ϕ ∈ V by lemma 3.2.1 again
i.e. ϕ ∈ V/

Bk′

j
¤

Theorem 3.2.4 AX’ is a sound and strongly complete axiomatization w.r.t. the semantics
of LSt.

Proof: Soundness can easily be checked. We only prove completeness.
To prove completeness, we must show that

Every AX’-consistent set Γ of formulas is satisfiable on some belief epistemic modelM c (*).

We prove it using a general technique that works for a wide variety of modal logics.
We construct a special structure M c which is a belief epistemic model called the canonical
structure for AX ′. M c has a state wV corresponding to every maximal AX’-consistent set
V . Then we show:

M c, wV |= ϕ iff ϕ ∈ V (**)

That is, we show that a formula is true at a state wV exactly if it is one of the formulas
in V . Note that (**) suffices to prove (*), for by lemma 3.2.1, if Γ is AX’-consistent, then Γ
is contained in some maximal AX’-consistent set V . From (**) it follows that M c, wV |= Γ,
and so Γ is satisfiable inM c. Therefore, Γ is satisfiable w.r.t. the semantics of LSt, as desired.

We thus define M c like that :

M c = (W c,∼j , κj , V )

• W c = {wV ;V maximal AX’-consistent set }

• ∼j= {(wV , wW );V/Kj
⊆W} used before where V/Kj

= {ϕ;Kjϕ ∈ V }

• κj(wW ) = min{k;W/Bk
j
⊆W}

• wW ∈ V (p) iff p ∈W

1. First, we are going to show:

M c, wW |= ϕ iff ϕ ∈ V
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We prove it by induction on ϕ.

The propositional case is straightforward. The knowledge case is classical. We only
prove the belief case.

• Assume ϕ = Bk
j ψ ∈ V .

i.e. ψ ∈ V/Bk
j

For all maximal consistent sets (m.c.s.) W such that V/Kj
⊆ W , V/Bk

j
⊆ W →

ψ ∈W because ψ ∈ VBk
j
.

i.e. For all W such that V/Kj
⊆W , and V/Bk

j
⊆W , ψ ∈W .

i.e. For all W such that V/Kj
⊆W , and W/Bk

j
⊆W , ψ ∈W by lemma 3.2.1.

i.e. For all W such that wV ∼j wW and κj(wW ) ≤ k, ψ ∈W by definition.

i.e. For all wV ∼j wW and κj(wW ) ≤ k, M c, wW |= ψ by induction hypothesis.

i.e. M c, wV |= Bk
j ψ.

i.e. M c, wV |= ϕ.

• Assume M c, wW |= ϕ = Bk
j ψ

VBk
j
∪ {¬ψ} is not AX’-consistent.

For suppose otherwise.

There is then a m.c.s W such that V/Bk
j
∪ {¬ψ} ⊆W

If k ≥M , then V/Bk
j
= V/Kj

because Bk
j ϕ↔ Kjϕ ∈ V (1).

If k < M , then V/BM
j
⊆ V/Bk

j
by lemma 3.2.3

i.e. V/Kj
⊆ V/Bk

j
because of (1)

In both cases, V/Kj
⊆ V/Bk

j

Moreover, V/Bk
j
⊆W

So, V/Kj
⊆W and V/Bk

j
⊆W

then V/Kj
⊆W and W/Bk

j
⊆W by lemma 3.2.2

i.e. wV ∼j wW and κj(wW ) ≤ k

By the induction hypothesis, we have M c, wW |= ¬ψ because ¬ψ ∈W

So, M c, wV |= ¬B
k
j ψ, which is impossible.
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Since V/Bk
j
∪ {¬ψ} is not AX’-consistent, there must be some finite subset, say

{ϕ1, .., ϕn, ψ} which is not AX consistent. Thus by propositional reasoning, we
have:

` ϕ1 → (ϕ2 → (...→ (ϕn → ψ)))

By the axiom of Bk
j -generalisation we have

` Bk
j (ϕ1 → (ϕ2 → (...→ (ϕn → ϕ))))

By the axiom of Bk
j -distributivity and modus ponens,

` Bk
j ϕ1 → (Bk

j ϕ2 → ...→ (Bk
j ϕn → Bk

j ψ)).

So by lemma 3.2.1,

Bk
j ϕ1 → (Bk

j ϕ2 → ...→ (Bk
j ϕn → Bk

j ψ)) ∈ V .

Then again by the lemma 3.2.1 because Bk
j ϕi ∈ V for all i, we get

Bk
j ψ ∈ V , i.e. ϕ ∈ V

2. Now we have to prove that M c is well-defined and that M c is a belief epistemic model.

• To prove definedness, we have to show that κj is well defined. It is the case because

– κj(wW ) exists for all wW .

Indeed V/Kj
⊆ V by axiom 12

and V/Kj
= V/BM

j
by axiom 16

So {k;V/Bk
j
⊆ V } 6= ∅

Then the minimum exists.

– κj(wW ) ≤ k ⇒ for all k′ ≥ k κj(wW ) ≤ k′

i.e. V/Bk
j
⊆ V ⇒ for all k′ ≥ k V

Bk′

j
⊆ V

This is true by lemma 3.2.3

– 0 ≤ κj(wW ) ≤M for all wW by the first point.

• The proof that M c is a belief epistemic model amounts to prove that ∼j is an
equivalence relation. This is a classical proof that we don’t give, it uses the axioms
12-13-14(and 16).

This ends the proof. ¤
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3.3 Completeness and Soundness Proofs for the Dynamic Part

3.3.1 Completeness

We are going to prove that every formula of the proof system AX is provably equivalent in
AX to a formula of AX’. We will proceed step by step with successive lemmas.

Lemma 3.3.1 If ` ϕ ↔ ψ and ` ϕ′ ↔ ψ′ then ¬ϕ,ϕ ∧ ψ,Bm
j ϕ, [π]ϕ,Kjϕ are respectively

equivalent to ¬ϕ′, ϕ′ ∧ ψ′, Bm
j ϕ

′, [π]ϕ′,Kjϕ
′

Proof : The cases ¬ϕ,ϕ∧ψ are obvious (it only uses propositional tautologies). Bm
j ϕ, [π]ϕ

and Kjϕ are very similar. We will only treat [π]ϕ.

1. ` ϕ↔ ψ hypothesis.

2. ` ϕ→ ψ propositional tautology and 1.

3. ` [π](ϕ→ ψ) [π]-generalization.

4. [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ) [π]-distribution.

5. [π]ϕ→ [π]ψ modus ponens 3,4.

We reason similarly to prove ` [π]ψ → [π]ϕ.
Now, with ` p→ (q → p ∧ q), we get ` [π]ϕ↔ [π]ψ. ¤

Now thanks to this lemma, we get

Proposition 3.3.2 If ` ψ ↔ ψ′ and ψ is a subformula of ϕ, then ` ϕ↔ ϕ′ where ϕ′ is the
formula obtained from ϕ by substituting ψ by ψ′

Proof : By induction on ϕ.

• ϕ = p, then the only possibility for ψ is ψ = ϕ. So, obviously, ` ϕ↔ ϕ′.

• induction step: it uses lemma 3.3.1.

Lemma 3.3.3 For all ϕ ∈ LSt and all simple program σi, ψ1, .., ψn, there is ϕSt ∈ LSt such
that
` [σi, ψ1, .., ψn]ϕ↔ ϕSt.

Proof : By induction on ϕ

• ϕ = p. We then get the result by the axiom 5, by taking ϕ′ = ψi → p.

• ϕ = ¬χ.

Then [σi, ψ1, .., ψn]¬χ↔ (ψi → ¬[σi, ψ]χ) by axiom 6.

Yet, by the induction hypothesis, there is χ′ ∈ LSt such that ` [σi, ψ]χ↔ χ′.

So ` [σi, ψ1, .., ψn]ϕ↔ (ψi → ¬χ′) by proposition 3.3.2, and ϕ′ := (ψi → ¬χ′) ∈ LSt.
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• The other cases are dealt with similarly, using the fact that the axioms all reduce
[σi, ψ1, .., ψn]ϕ to something with basic action modalities only over shorter static
formulas. ¤

Lemma 3.3.4 For all ϕ ∈ LSt and all action programs π, there is ϕSt ∈ LSt such that
` [π]ϕ↔ ϕSt

Proof : By induction on the action program length.

• If π is a simple program, then we get the result by lemma 3.3.3.

• If π = τ + ρ, ` [π]ϕ↔ [τ ]ϕ ∧ [ρ]ϕ by axiom 11.

Yet by induction hypothesis, ` [τ ]ϕ↔ ϕ1 where ϕ1 ∈ LSt

and ` [ρ]ϕ↔ ϕ2 where ϕ2 ∈ LSt.

So, ` [π]ϕ↔ ϕ1 ∧ ϕ2, thanks to proposition 3.3.2, and ϕ1 ∧ ϕ2 ∈ LSt.

Thereby, we get the expected result.

• If π = τ.ρ,

then ` [π]ϕ↔ [τ ][ρ]ϕ by axiom 10.

Yet, by the induction hypothesis, ` [ρ]ϕ↔ ϕ1 with ϕ1 ∈ LSt.

Then ` [π]ϕ↔ [τ ]ϕ1 thanks to proposition 3.3.2.

However, again by the induction hypothesis, ` ϕ1 ↔ ϕ2 where ϕ2 ∈ LSt.

So ` [π]ϕ↔ ϕ2. That is what we wanted. ¤

Proposition 3.3.5 For all ϕ ∈ L(Σsg), there is ϕSt ∈ LSt such that ` ϕ↔ ϕSt

Proof : By the induction on the number of occurrence of action programs

• If there is no occurrence of action programs, then the result is clear.

• Let ϕ ∈ L(Σsg) composed of n > 0 occurrences of action programs.

Let ψ be a subformula of ϕ of the form ψ = [π]ψ′ where ψ′ ∈ LSt. Because n > 0, it is
quite possible to find one (just pick an innermost occurrence of action formula of this
shape). Now, by lemma 3.3.4, ` ψ ↔ ψSt where ψSt ∈ LSt. So by proposition 3.3.2,
` ϕ ↔ ϕ′ where ϕ′ is obtained from ϕ by substituting ψ by ψSt. Then clearly, in ϕ

′

there are less than n occurrences of action programs because the occurrence of [π] has
been suppressed.

We can then apply the induction hypothesis, and there is ϕ′′ ∈ LSt such that ` ϕ
′ ↔ ϕ′′.
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Thus, ` ϕ↔ ϕ′′ and ϕ′′ ∈ LSt. That is what we wanted. ¤

Finally, we get the expected outcome:

Theorem 3.3.6 AX is strongly complete with respect to the semantics of L(Σsg)

Proof : Assume T |= ϕ where T ⊆ L(Σ) and ϕ ∈ L(Σ).

For all ψ ∈ T , ` ψ ↔ ψSt where ψSt ∈ LSt by proposition 3.3.5.

So, |= T iff |= TSt where TSt = {ψSt;ψ ∈ T}.

Moreover, |= ϕ iff |= ϕSt.

So, T |= ϕ iff TSt |= ϕSt.

Now, by strong completeness of AX’ with respect to the semantics of LSt (see theorem
3.2.4),

TSt `AX′ ϕSt.

However, because AX is an extension of AX’,

TSt ` ϕSt

So, T ` ϕSt.

Then T ` ϕ because ` ϕSt ↔ ϕ. That is what we wanted. ¤

3.3.2 Soundness

Theorem 3.3.7 AX is sound w.r.t. the semantics of L(Σsg).

Proof :We only prove axioms 8 and 9, the others can be done without great difficulty.

We first prove the soundness of the axiom 9.

First note that in a belief epistemic model M ,

κwj (ϕ) = l⇔M,w |= Bl−1
j ¬ϕ ∧ ¬Bl

j¬ϕ

It is indeed coherent because for all l 6= l′,

` ¬{(Bl−1
j ¬ϕ ∧ ¬Bl

j¬ϕ) ∧ (B
l′−1
j ¬ϕ ∧ ¬Bl′

j ¬ϕ)}

Now, let k < M

M,w |= [σi, ψ]B
k
j ϕ
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iff, if M,w |= ψi then M(Σ), (w, σi) |= Bk
j ϕ, where M(Σ) is the updated model.

iff, if M,w |= ψi then,

for all (v, σj) ∼j (w, σi) and κj(v, σj) ≤ k, M(Σ), (v, σj) |= ϕ.

iff, if M,w |= ψi then,

for all σj such that σi ∼j σj ,

for all v such that w ∼j v and CutM (κj(v)−κ
w
j (ψj)+κ

∗
j (σj)) ≤ k and M, v |= ψj ,

M(Σ), (v, σj) |= ϕ

iff, if M,w |= ψi then,

for all σj such that σi ∼j σj ,

for all v such that w ∼j v and κj(v)− κ
w
j (ψj) + κ

∗
j (σj) ≤ k then,

if M, v |= ψj then M(Σ), (v, σj) |= ϕ

because if k < M , then CutM (x) ≤ k ⇔ x ≤ k.

iff, if M,w |= ψi then,

for all σj such that σi ∼j σj ,

for all v such that w ∼j v and κj(v)− κ
w
j (ψj) + κ

∗
j (σj) ≤ k then,

M, v |= [σj , ψ]ϕ

iff, if M,w |= ψi then,

for all σj such that σi ∼j σj , for all l ∈ {0, ..,M},
for all v such that w ∼j v and κ

w
j (ψj) = l and κj(v) ≤ l − κ∗j (σj) + k then,

M, v |= [σj , ψ]ϕ

iff, if M,w |= ψi then,

for all σj such that σi ∼j σj , for all l ∈ {0, ..,M},
if κwj (ψj) = l then

for all v such that w ∼j v and κj(v) ≤ l − κ∗j (σj) + k then,
M, v |= [σj , ψ]ϕ

iff, if M,w |= ψi then,

for all σj such that σi ∼j σj , for all l ∈ {0, ..,M},
if M,w |= Bl−1

j ¬ψj ∧ ¬B
l
j¬ψj then

for all v such that w ∼j v and κj(v) ≤ l − κ∗j (σj) + k then,
M, v |= [σj , ψ]ϕ

iff, if M,w |= ψi then,

for all σj such that σi ∼j σj , for all l ∈ {0, ..,M},

if M,w |= Bl−1
j ¬ψj ∧ ¬B

l
j¬ψj then M,w |= B

k+l−κ∗j (σj)

j [σj , ψ]ϕ

49



iffM,w |= ψi → ∧{Bl−1
j ¬ψj ∧¬B

l
j¬ψj → B

k+l−κ∗j (σj)

j [σi, ψ]ϕ;σj ∼j σi and l ∈ {0, ..,M}}

Now we prove the soundness of the axiom 8.

Let M be a belief epistemic model.

M,w |= [σi, ψ]Kjϕ then M(Σ), (wσi) |= Kjϕ

iff, if M,w |= ψi then for all (v, σk) such that (w, σi) ∼j (v, σk),
M(Σ), (v, σk) |= ϕ

iff, if M,w |= ψi then for all v such that w ∼j v and all σk such that σi ∼j σk and
M, v |= ψk,

M(Σ), (v, σk) |= ϕ

iff, if M,w |= ψi then for all σk such that σi ∼j σk, for all v such that w ∼j v,
if M, v |= ψk then M(Σ), (v, σk) |= ϕ

iff, if M,w |= ψi then for all σk such that σi ∼j σk, for all v such that w ∼j v,
if M, v |= [σk, ψ]ϕ

iff, if M,w |= ψi then for all σk such that σi ∼j σk,
if M, v |= Kj [σk, ψ]ϕ

iff, if M,w |= ψi → ∧{Kj [σk, ψ]ϕ; for all σk ∼j σi}

That is what we wanted. ¤

We notice in the proof of soundness of axiom 9 without the introduction of this maximum
of plausibility value M , we would get an infinite conjunction. Then we would be obliged
somehow to introduce an infinite conjunction in our language. Doing so, our logic would
not been compact. Compactness is a nice property that we do not want to lose. That
is one of the motivations for introducing a maximum of plausibility valueM (see section 2.1.1).

Conclusion: Now we have got a full logical system. We can then compare it with other
systems. This is what we do in the following chapter.
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Chapter 4

Comparisons with other Similar
Systems

4.1 Comparison with the BMS System

Introduction: In this section, we will compare the BMS system ([BMS03]) with our system
S. In order that the comparison be the fairest possible, we will modify the current BMS
system to incorporate explicitly a belief component. This will be the first part of this section
and the resulting system will be very much in line with the current BMS approach; then
we will compare these two systems. The major point of this comparison will be that BMS
does not do real belief revision. Finally, we will present a modification of our system that
embeds the BMS one. This will thus enable us to isolate in our system the formal core of
belief revision.

4.1.1 The BMS System with both Belief and Knowledge

We roughly define a BMS model, a BMS action model and a BMS product update. The rest
of the technical apparatus is almost the same (update relation, action signature,...).

Definition 4.1.1 A BMS model M is a tuple M = (W,∼j ,→j , V, w0) where:

• ∼j is an equivalence relation on W for each agent j.

• →j is a binary relation on W for each agent j such that →j⊆∼j and,

(Cm) : if w → v and w ∼j w
′ then w′ → v.

¢

Note that, in the definition, the condition (Cm) is intuitively correct and is needed later
for technical reasons (see appendix C1).

Definition 4.1.2 A BMS action model Σ is a tuple Σ = (Σ,∼a
j ,→

a
j , P re, σ0) where

• ∼a
j is an equivalence relation on Σ.

51



• →a
j is a binary relation such that →

a
j⊆∼

a
j and,

(Ca): if σ →
a
j τ then for all σ

′ st σ′ ∼a
j σ, σ

′ →a
j τ .

¢

Note that in the definition, the condition (Ca) is intuitively correct and is again needed
later for technical reasons (see appendix C1).

Definition 4.1.3 Given a BMS model M = (W,∼j ,→j , V, w0) and a BMS action model
Σ = (Σ,∼a

j ,→
a
j , P re, σ0), we define their update product to be the BMS model M ⊗ Σ =

(W ⊗ Σ,∼′
j ,→

′
j , V

′, w′
0) where:

• (w, σ)→′
j (v, τ) iff w →j v and σ →

a
j τ .

• (w, σ) ∼′
j (v, τ) iff w ∼j v and σ ∼

a
j τ .

The definition for the other components being as in the classical version. ¢

These definitions are clearly in line with the former BMS approach.

From now on, we fix a BMS action signature ΣBMS . We also need to define the language
L(ΣBMS):

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kjϕ | Bjϕ | [σ, ψ1, .., ψn]ϕ

We now define its semantics:

M,w |= Kjϕ iff for all v such that w ∼j v, M, v |= ϕ.

M,w |= Bjϕ iff for all v such that w →j v, M, v |= ϕ.

4.1.2 A Different Update of Beliefs

Intuitively, the BMS system expands the agents’ beliefs but keeps the former beliefs true.
Indeed, in the update product, an →′

j arrow will be possible only if there was already an →j

arrow; so the set of →′
j accessible worlds after an update seems to shrink, enhancing at the

same time the set of beliefs. The belief update seems then close to an expansion operation.
On the contrary, still intuitively, in our system, it is quite possible to modify the structural
shape of the beliefs, and especially get rid of former beliefs. Indeed, thanks to −κwj (ϕ), we
can very well get after an update a world with plausibility 0 which was not of plausibility 0
beforehand (unlike BMS as just said). This can dramatically change the shape of beliefs and
cancel some former beliefs. The update seems then close to a revision.

We are going to make this more precise in this section. We first start by giving some
technical results whose proofs can be found in the appendix C2. Then we will give their
interpretation and use them for our analysis.
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Technical Results

Corollary 4.1.4 For all σ1, ..., σk that are ∼j accessible from σ and all propositional formula
ϕ, |=BMS Kjϕ→ [σ, ϕ1, .., ϕn]Kjϕ.

Corollary 4.1.5 For all σ1, ..., σk that are ∼j accessible from σ and all propositional formula
ϕ, |=S Kjϕ→ [σ, ϕ1, ..., ϕn]Kjϕ

Corollary 4.1.6 Let σ1, ..., σk be the actions →j accessible from σ and ψ = Pre(σ) and ϕ a
propositional formula. Then,

Bjϕ→ [σ, ϕ1, ..., ϕn]Bjϕ

Proposition 4.1.7 for all consistent sets of propositional formulae {ϕ1, ..., ϕn, ϕ} and all
simple action σ,

2S Bjϕ→ [σ, ϕ1, ..., ϕn]Bjϕ.

Corollary 4.1.8 Let σ1, ..., σk be the actions that are →j accessible from σ,
|=BMS Bj¬ϕ→ [σ, ϕ, .., ϕ, ϕk+1, .., ϕn]Bj ⊥.

Corollary 4.1.9 Let σ1, .., σk be the actions ∼j accessible from σ and of plausibility 0.
|=S ¬Kj¬ϕ ∧Bj¬ϕ→ [σ, ϕ, .., ϕ, ϕk+1, .., ϕn]¬j ⊥.

Corollary 4.1.10 Let σ1, .., σk be the actions that are ∼j accessible from σ and of plausibility
0,
|=S Kj¬ϕ→ [σ, ϕ, .., ϕ, ϕk+1, .., ϕn]Bj ⊥.

Proposition 4.1.11 For all belief epistemic formula ϕ (then without action term) and all
belief epistemic model M,

F (M), w |=BMS ϕ iff M,w |=S ϕ

Proposition 4.1.12 For all ϕ1, .., ϕn, ϕ epistemic formulae,
If M,w |=S [σ, ϕ1, .., ϕn]Bjϕ then F (M), w |=BMS [σ, ϕ1, .., ϕn]Bjϕ

Proposition 4.1.13 For all model M of S and all epistemic formula ϕ,
M,w |=S [σ, ϕ1, .., ϕn]Kjϕ iff F (M), w |= [σ, ϕ1, .., ϕn]Kjϕ

Interpretation of the Technical Results

Corollary 4.1.4 and 4.1.5 tell us that in BMS and S the agents keep their propositional
knowledge after the update. This means that the agents can only increase their propositional
knowledge as the situation is evolving. Corollary 4.1.6 tells us that what we just said about
propositional knowledge can also be said for propositional belief in BMS; but this is not the
case in S as proposition 4.1.7 tells us.
So BMS and S behave identically concerning the update of propositional knowledge, but

differ on the update of propositional belief. BMS ”expands” its propositional belief and
knowledge during an update, whereas S only ”expands” its propositional knowledge. Now,
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we can interpret Bj¬ϕ as ”j believes that only an action with precondition ¬ϕ can occur”. In
that case if j believes some action(s) have occurred but whose precondition(s)is (are) ϕ, then
this incoming new information contradicts his beliefs. So, either j revises his beliefs or j does
not. The first case can be expressed formally by ¬Bj ⊥ (i.e. his new beliefs are consistent),
and the second case by Bj ⊥(i.e. his new beliefs are inconsistent). Indeed, after a revision
of beliefs, the resulting set of beliefs is always consistent in our approach by assumption, and
this is the hallmark of belief revision as conceived by AGM. Corollary 4.1.8 then tells us that
in BMS, in case j encounters new information which contradicts his beliefs, he does not revise
his beliefs. On the contrary, corollary 4.1.9 tells us that in S, if new information contradicts
j’s beliefs but still j considers the information possible, he will revise his beliefs. We see here
a difference between the nature of the belief update in S and BMS. In S, the belief update
seems to be similar to a belief revision (see section 4.3); whereas in BMS, we are sure that it
is not the case by the above.

On the other hand, both behave similarly when it comes to updating knowledge (corollary
4.1.10 and proposition 4.1.13) but this is normal: the epistemic structure is the same after
any of these two updates.

Finally, proposition 4.1.12 and proposition 4.1.13 tell us that j will believe more
epistemic formulas after a BMS update than after a S update, that is the belief set after
an update is always bigger in BMS than in S. This displays the fact that new unexpected
worlds of plausibility 0 can be created after an update due to the subtraction of κwj (ϕ).
This phenomenon does not occur in BMS, which is why more epistemic formulas are believed.

To sum up, both BMS and S update knowledge similarly but differ with regard to the up-
dating of beliefs. S seems to follow a belief revision (see section 4.3) whereas BMS clearly does
not. BMS update seems rather to be similar to an ”expansion” as shown in the propositional
case.

4.1.3 The Formal Reason of this Difference Concerning the Update of Be-
liefs

We modify our system by only changing the plausibility update.

We set: κj(w, σ) = CutM (κj(w) + κ
∗
j (σ))

instead of: κj(w, σ) = CutM (κj(w) + κ
∗
j (σ)− κ

w
j (ϕ))

This yields a new system S ′.

We then have the

Theorem 4.1.14 Let M be a belief epistemic action model, w ∈ M and ϕ ∈ L(ΣBMS).
then there exists some translation function T from L(ΣBMS) to S

′-formulas, and a surjective
application F from the set of belief epistemic model to BMS model such that:
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M,w |=S′ T (ϕ) iff F (M), w |=BMS ϕ

Proof : see appendix C1.

Note: S′-formulas are formulas in L(ΣS′) for some suitable belief epistemic action
signature ΣS′ (see appendix C1).

This theorem tells us that any BMS-formula satisfiable in a BMS model is also satisfiable
in a S’-model, modulo a translation. That is what we intuitively wanted.

The difference between S ′ and our system only consists in the suppression of the term
−κwj (ϕ) in the plausibility update. Now S ′ embeds BMS as just shown. This implies that
the differences observed between our system and BMS are due to this term. Thereby, the
term −κwj (ϕ) is the hallmark of belief revision as intuitively sensed in the introduction of
this section.

Conclusion: Though our approach is based on the BMS one, we clearly saw an important
difference concerning the update of beliefs, namely that our update is closer to a genuine belief
revision, thanks to the subtraction of −κwj (ϕ) as shown in section 4.1.3. So our system and
the BMS one are just two different ways to look at how we update beliefs.
Anyway, as we said in the remarks of section 2.3.2, our choice of plausibility update could

have been different: it just depends on our background motivations and intentions.

4.2 Comparison with H.v.Ditmarsch and W.Labuschagne’s
System

Introduction: In this short section we will present a comparison between our system and
H.v.Ditmarsch and W.Labuschagne system which can be found in [vDL03]. We do not sum
up their work but directly give the comparison. We will indicate with a label (*) the notions
introduced in [vDL03].

Concerning the static part, belief epistemic models are completely equivalent to doxastic
epistemic models(*). Indeed, we can prove that every formula satisfiable in a belief epistemic
model is also satisfiable in a doxastic epistemic model modulo a translation, and vice versa.
One of the differences is that in [vDL03], the language allows common knowledge, unlike our
language (but we can easily incorporate it). Another difference is that we use a maximal
plausibility value M, at the difference of [vDL03].
Concerning the dynamic part, there are many more difference. Our system allows a single

type of actions fixed by the action signature, whereas in the other approach we deal at the
same time with several actions: revision, test, learning. It has, of course, advantages and
shortcomings in both cases. Now, let us have a look at the different types of actions present
in [vDL03].

1. The test operation (?ϕ)(*) has no counterpart in our system.
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2. The revision operator (∗Gϕ) has a corresponding action signature in our system, namely
the second example in section 2.2.2. However the plausibility update is slightly different.

3. The union operator (LGα) intuitively means that the group G learns the occurrence of
an action α. So, all the agents learning a formula ϕ (LN?ϕ) has a natural counterpart
in our system, namely a public announcement of ϕ, and this can be proved formally.
However for the case of a group of agents G different from the whole group of agent N ,
things are more complicated and we can not reduce one type of action to another.

Conclusion: So, we can not reduce one system to the other. Indeed our system allows
more flexibility concerning the action we can consider than the one exposed in [vDL03]. But
we can only deal with one action at the same time in our logical system, unlike H.v.Ditmarsch
and W.Labuschagne’s system.

4.3 Comparison with the AGM Postulates

In this section we want to check whether the AGM postulates are fulfilled after an update. So,
as a preliminary step, we need to define belief sets, and decide what type of action signature we
consider for the update. For the first point we have to choose the language we consider for the
formation of belief sets. This will divide our analysis in three parts: 1)propositional language,
2)epistemic language, 3)epistemic-dynamic language. For the second point, the most natural
and ”purest” action we would be prompted to consider would be a public announcement. We
will however see that this creates problems for the verification of the AGM postulates in the
case of the epistemic language. These problems can be solved if we consider a more refined
type of action signature than a simple public announcement.

In the following we consider a belief epistemic model M = (W,∼j , κj , V, w0), w ∈W and
an agent j.

4.3.1 Propositional Language for Formation of Belief Bets

Let L1 denotes the propositional language.

The action signature Σsg1 that we consider for our logic L(Σsg1) is the one of public
announcement with single simple action A! (that we have so far usually denoted σ)

Let A ∈ L1

Definition 4.3.1 We define:

Kw = {ϕ ∈ L1;M,w |= B0
jϕ}

Kw ∗A = {ϕ ∈ L1;M,w |= [A!, A]B0
jϕ}

Kw +A = {ϕ ∈ L1;M,w |= B0
j [A!, A](A→ ϕ)} ¢

Kw is the (propositional) belief set of the agent j dwelling in world w.

Kw ∗A is the revised belief set for the agent j dwelling in world w after the announcement
of A.
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Kw +A is the expansion of the belief set Kw by A after the announcement of A.

We then have the crucial:

Theorem 4.3.2 In the L(Σsg1) framework, the revision function * defined by Kw∗A satisfies
the 8 AGM postulates.

Proof : see appendix E2.

So the propositional case works out. Let us now turn our attention to the more
problematic epistemic case.

4.3.2 Epistemic Language for the Formation of Belief Sets

First, we consider the paradigmatic case of public announcement for performing belief revision,
as we did in the propositional case. The definition of belief sets are exactly the same as above,
except that we replace L1 by the epistemic language L2 (epistemic language without belief
formulas: see concluding remarks). So for example, Kw = {ϕ ∈ L2;M,w |= Bjϕ}.
Unfortunately,

Theorem 4.3.3 In the L(Σsg1) framework, the revision function * defined by Kw∗A satisfies
only the postulates (K ∗ 1), (K ∗ 5) and (K ∗ 6).

Proof : see appendix E1.

As is spelled out in the appendix, the postulates are not all satisfied because the formulas
satisfiable at any world may change after an update. Indeed, by updating a public announce-
ment, we get rid of worlds; so some ∼j links disappear, changing the epistemic structure of
the model. This is a classical phenomenon called ”relativization” and ”self persistence” (see
[vB03] and appendix).

However, we can cope with this problem by slightly modifying the action structure in
order to keep the whole epistemic structure of the model after the update. We then consider
for our logical system the following action signature Σsg2:

A!
j

τ

with κ∗j (A!) = 0 and κ
∗
j (τ) = αj for all agents j.

Note that this corresponds to the second example of section 2.2.2.

We keep the same definition as before for the belief sets (with A ∈ L2):

Definition 4.3.4 We define:

Kw = {ϕ ∈ L2;M,w |= B0
jϕ}
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Kw ∗A = {ϕ ∈ L2;M,w |= [A!, A,¬A]B0
jϕ}

Kw +A = {ϕ ∈ L2;M,w |= B0
j [A!, A,¬A](A→ ϕ)} ¢

We then get the very appealing

Theorem 4.3.5 In the L(Σsg2) framework, the revision function * defined by Kw∗A satisfies
the 8 AGM postulates. Moreover, after an update, A is believed by all the agents j with
firmness αj at world w (see section 1.2.2)

Proof : see appendix E3.

Now we can turn our attention to the last case.

4.3.3 Epistemic Dynamic Language for the Formation of Belief sets

We shall not go through an extensive study of this case because we can know beforehand that
the AGM postulates will not be satisfied, thanks to the so-called ”Gardenfors paradox”.
This paradox, discovered by AGM itself, says that adding counterfactuals to belief states,

encoding revisions that one would make if given the antecedent, leads to inconsistency.
So in our case, as transposition of counterfactuals, revision with formulas of the form

ψ → [A!, A]ϕ (which are epistemic dynamic formulas) will invalidate the AGM postulates.

Final remarks: Note that for the formation of belief sets we ruled out belief formulas.
It seems counter-intuitive because the agents could in reality have beliefs about what the
other agents believe. For example, it is possible that j believes that i believes ϕ. However,
following this example, we will face a problem if we get ¬ϕ as incoming public information.
Indeed i will have to revise his beliefs, but how does j know how he will do that? j’s beliefs
concerning i’s beliefs will be hardly determinable, at least with logical considerations, except
in that j will believe that i believes ¬ϕ. This difficulty prompted us to avoid dealing with
other agents’ beliefs, but a natural improvement of our work would of course consist in
incorporating such considerations.

Conclusion: So we have seen that in almost all the cases (except the last one), we
can always find a particular action signature which performs belief revision as conceived by
AGM. In a sense, this shows that our update of beliefs is close to a belief revision. Indeed,
the action signatures considered in this section are basic ones. So, they are the most liable to
check whether or not our system performs belief revision because they are close to a ”pure”
incoming information.
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Chapter 5

General Conclusion

So we have achieved our goal sketched in the introduction. Indeed, we have built a logical
system involving both notions of beliefs and knowledge, whose update of agent’s beliefs is
close to a (belief) revision (at least in basic cases, see section 4.3). However, it presents some
limitations.
First, as mentioned in the remarks of section 2.3.2, the plausibility of an action does not

depend on the world in which they are performed. This is of course counter-intuitive, as
explained in section 2.3.2. However, trying to remedy this by making small variations to
our current system seems difficult. Indeed, the plausibilities of the possible actions in the
action signature are fixed once and for all (see section 2.3.5), whatever their preconditions
are. However, these preconditions can vary because they are assigned in the language (unlike
the plausibilities of the actions as remarked above).
Secondly, another limitation is that, as mentioned in section 4.2, we can only deal in our

logical system with a single type of action (unlike in the approach of [vDL03]) which is fixed
in the logic by the action signature Σsg.
Finally, as already mentioned in section 4.3, the access for an agent to the other agents’

beliefs is unclear, especially after an update. Indeed, in reality, what does an agent know
about how the other agents update (and especially revise) their beliefs? These considerations
are not present in the AGM theory of belief revision because they consider only a single agent,
unlike our multi-agent perspective. So, a formal and logical treatment of this type of issue
remains to be done.
In this appendix we will present some material which has been removed from the rest of

the thesis for better readability, or whose relevance was not important enough. We will first
introduce the notion of bisimulation.Second, we will make a comparison of our system with
the probabilistic one as exposed in [vBJoLLI03]. Third, we will give the proofs missing in the
comparison with the BMS system (see section 4.1). finally, we will do the same regarding the
AGM theory (see section 4.3).
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Appendix A

Bisimulation

Bisimulation is a useful notion in modal logic. It generally holds that if two structures are
bisimilar, then they are behaviorally indistinguishable. In the case of belief epistemic model,
behaviorally indistinguishable means satisfying the same formulas. A well known result in
modal logic is that if two pointed models are bisimilar, then they satisfy the same formulas
(for details, see [BdRV01]). in this section we show that such a result holds for our logic as well.

Definition A.0.6 Let M = (W,∼j , κj , V, w0) and M
′ = (W ′,∼′

j , κj , V
′, w′

0) be two belief
epistemic models. A non empty binary relation Z ⊆W ×W ′ is called a bisimulation between
M and M ′ (notation Z :M ÀM ′) if the following conditions are satisfied:

1. If wZw′ then w and w′ satisfy the same proposition letters.

2. if[wZw′ and (w ∼j v and κj(v) 6 m)] then [there is v′ such that vZv′, w′ ∼j v
′ and

κj(v
′) 6 m] (the forth condition).

3. If[wZw′ and (w′ ∼j v
′ and κj(v

′) 6 m)] then [there is v such that vZv′, w ∼j v and
κj(v) 6 m] (the back condition)

When Z is a bisimulation linking two states w in M and w′ in M ′ we say that w and w′

are bisimilar and we write M,w ¿M ′, w′.

¢

Theorem A.0.7 LetM,M ′ be belief epistemic models. IfM,w ¿M ′, w′ then for all formula
ϕ, M,w |= ϕ iff M ′, w′ |= ϕ.

Proof: by induction on ϕ.

• The case where ϕ is a propositional letter follows from clause 1, and the one where ϕ is
⊥ is immediate.

• The boolean cases are immediate from the induction hypothesis.
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• As for formulas of the form Bm
j ϕ, assume M,w |= Bm

j ϕ.
Then for all v st w ∼j v and κj(v) 6 m, m, v |= ϕ.

Let v′ st w′ ∼j v
′ and κj(v

′) 6 m. Then by back condition, there is v st vZv′ and
w ∼j v and κj(v) 6 m.

So by assumption, M, v |= ϕ.

But vZv′, so by induction hypothesis M ′, v′ |= ϕ. And this for all v′ st w′ ∼j v
′ and

κj(v
′) 6 m.

Thus M ′, w′ |= Bm
j ϕ.

The reciprocity is very similar.

• For formulas of the form [π]ϕ, we know that they are provably equivalent to formulas
without action terms and this case has just been studied. This ends this proof.

¤
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Appendix B

Comparison with the Probabilistic
Approach

In the following, S refers to our system and P refers to the probabilistic system.

First we will present an overview of the probabilistic approach. Then we will compare
systematically the two approaches as regard to their dynamic part, static part and update
product.

B.1 Overview of the Probabilistic Approach (P)

The overall structure of P is completely similar to our system S: P is composed of a static
part (the probabilistic epistemic model) and a dynamic part (action model). Moreover the
epistemic structure and update is exactly the same. So we focus on the probabilistic part of
the system.

First, for the static part, the epistemic action model falls into equivalence classes

Dj,w = {v;w ∼j v}

Over these, probability functions are given, satisfying the usual conditions:

Pj,w is defined on the probabilistic space Dj,w.

And we assume that Pj,w assigns probabilities Pj,w(v) to single worlds v. So the probability
of a formula ϕ at state w is then defined by Pj,w(ϕ) =

∑

{Pj,w(v); v ∈ Dj,w and M, v |= ϕ}.

Secondly, for the dynamic part, we assign probabilities to actions depending on which
world this action is performed:

Probabilities Pj,w(a) for individual actions at state w in the current world.
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Finally, the probabilistic update is defined at the world (v, b) in Dj,(w,a) = {(v, b); (v, b) ∼j

(w, a)} by:

Pj,(w,a)(v, b) =
Pj,w(v).Pj,v(b)

∑

{Pj,w(u).Pj,u(c);(u,c)∈Dj,(w,a)}

B.2 Dynamic Part

Both action structures in P and S have the same shape. They are both composed of
states representing simple actions and are both composed of epistemic links between
simple actions which are equivalence relations. So the epistemic structure is similar.
What differs is the belief part and the probabilistic part. Nevertheless, both assign to ac-
tions among the same ∼j-equivalence class, a degree of plausibility in S and a probability in P.

But in P, the same simple action may have different probabilities at different states of a
process. That is to say, the probability of performance of an action in a given world for a
given agent depends on this current world. It is unlike S where the plausibility of an action
b, κ∗j (b) doesn’t depend on the current world the agent dwells in. The actions considered
in S thus form a subset of the ones of P because they must satisfy the extra condition that
their possible occurrence is independent from the current world.

This last feature makes impossible to translate a belief action model to a probabilistic
action model , and hence more generally we can not embed the probabilistic approach in the
belief approach and vice versa.

Finally, the assignment is made differently in S and P: in S it is achieved locally and in
P it is achieved globally. Indeed, in S, among an ∼j-equivalence class, the agent j considers
each action individually (it is hence a local process) and assigns on the basis of the nature
of this single action and its scale, a plausibility value. So the belief value is assigned locally
(individually) to each simple action. On the contrary, in P, the assignment is made globally.
Indeed, in a ∼j-equivalence class in a certain world w, the agent j assigns at the same time
a probability to each action. And this assignment for a simple action depends on the other
simple actions of the same ∼j-equivalence class. That is why we say that it is a global
assignment, because the assignment is made relatively to the other actions. This is exemplified
by the extra condition that

∑

b∈Dj,a
Pj,v(b) = 1 (where Dj,a is the set of the actions of the

equivalence class containing a), because we see here that these probabilities are somehow
linked by an extra assumption.

We must however moderate our analysis because in S, there is though as well a global
condition, namely that one of the simple action in an equivalence class should be assigned
the plausibility 0. However this doesn’t really spoil the two different spirits of plausibility
and probability assignment in S and P. We will indeed further see that this duality is present
throughout the analysis.
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B.3 Static Part

B.3.1 General Remarks

Like for the actions models, both type of models in S and P have the same shape. They are
composed of states representing possible worlds and are both composed of epistemic links
between worlds which are equivalence relations. So the epistemic structure is similar. What
differs is the probability part and the belief part. Nevertheless both assign to possible worlds
among the same ∼j-equivalence class a degree of plausibility in S and a probability in P.

B.3.2 The Assignment of Probability and Plausibility: Locality versus
Globality

Once again the assignment is made differently in S and P: in S it is made locally and in P it is
made globally. Indeed, in S the plausibility ordering is assigned individually to each accessible
world without taking into account the other worlds, whereas in P the individual assignment
formally depends on the other worlds. In S, to assign a plausibility to a world t, we just have
to consider on the one hand this world, and on the other hand our ordinal scale; we abstract
the other worlds linked to s (this is very similar to the update of the plausibility ordering, see
below). In P, the assignment is done simultaneously (not individually like in S) and instantly
to all the worlds accessible from the given world; this process then compares each accessible
world to the others unlike S. The assignment in P is a global process in contrast to the
local assignment in S. In P this phenomenon is exemplified by the fact that the probability
assignments at a given world s must fulfill

∑

w∈Dj,v
Pi,w(v) = 1: we see that they are somehow

globally linked via this relation.
however a similarity is that in both S and P, the plausibility of a world doesn’t depend

on the current world the agent j dwells in and is the same over a ∼j equivalence class.

B.3.3 An Attempt to Strike Relationships between both Type of Models:
Aristocracy versus Democracy

It is easy from a belief epistemic model to get a probabilistic epistemic model (but not the
converse). Indeed, a natural translation would be:

Definition B.3.1 Let T : S −→ P be the operator defined from the set of belief epistemic
model B to the set of probabilistic epistemic model by:
For all belief epistemic model M = (W,∼j , κj , V ), T (M) = (W,∼j , Pj,w, V ) where

Pj,w(v) =
(M − κj(v)) + 1

∑

{(M − κj(v)) + 1; v ∼j w}
(∗)

¢

The adjunction of 1 in (*) prevents against the case where M −κj(v) = 0 for all t ∼j s(in
that case the denominator would be equal to 0). Clearly,

∑

v∈Dj,w
Pj,w(v) = 1, and Pi,w is a

probability function defined on Dj,w = {v;w ∼j v}. So T is well-defined . We then have the
following lemma which makes our translation sound:
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Lemma B.3.2 Pi,w(v) < Pj,w(v
′)⇔ κj(v) > κj(v

′)

Indeed, if an agent considers a world more plausible than another, he will also consider it
more probable, and reciprocally.

We then pose:

Definition B.3.3 LetMP be a probabilistic epistemic model andM a belief epistemic model,

MP |= Pj(ϕ) > Pj(ψ) iff
∑

{Pj,w(v);w ∼j v and MP , w |= ϕ} >
∑

{Pj,w(v);w ∼j v and
MP , v |= ψ}

M,w |= κj(ϕ) > κj(ψ) iff κ
w
j (ϕ) = min{κj(v);w ∼j v and M, v |= ϕ} > κwj (ψ).

¢

MP , w |= Pj(ϕ) > Pj(ϕ) intuitively means that in world w, j considers formula ϕ more
probable than ψ. M,w |= Kj(ϕ) > Kj(ψ) intuitively means that in world w, j considers
formula psi more plausible than ϕ. The last case corresponds exactly to W.Spohn’s interpre-
tation (see section 1.2.2).
So we would expect that the ranking of formulas in P after the translation T corresponds

to the ranking of formulas in S .Unfortunately,

Proposition B.3.4 There is a belief epistemic model M and a world w ∈ M and formulas
ϕ and ψ such that

T (M), w |= Pj(ϕ) > Pjψ)< M,w |= κj(ϕ) < κj(ψ)

Proof :Consider the belief epistemic model M = ({w0, w1, w2} =W,∼j , κj , V ) where

• the maximum of plausibility is Max = 3.

• ∼j=W ×W ,

• κj(w0) = 0 and κj(w1) = κj(w2) = 2

• V (p) = {w0}

Then M,w0 |= κj(p) < κj(¬p)
but in T (M), Pj,w0 = 1/2, and V (p) = {w0}
So, T (M), w0 2 Pj(p) > Pj(¬p) ¤

This result is not due to the translation T (see lemma B3.2) but rather to the way we
define the plausibility of a formula. Indeed, we state that the formula ϕ is the minimum of
the degree of plausibility of states where ϕ holds and that are accessible via w. Doing so we
introduce a compound of layers whose each of them is composed of states accessible from w
and that have the same degree of beliefs. Moreover by stating that we take the minimum of
them, we give a priority ordering over the different layers: a layer corresponding to a certain
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plausibility ”cancels” the effects of a layer of lower degree. Our definition forgets the global
plausibility structure of worlds accessible from w and focus locally on the worlds accessible
from w of higher plausibility.

This feature goes somehow in line with what we just said about the difference between
local and global aspects of assignment in P and S inasmuch we see that the local aspect of the
plausibility assignment plays a more central role when it comes to determining the plausibility
of a formula.

To sum up, a plausibility assignment implicitly gives priority of worlds upon others in
our setting, whereas a plausibility assignment doesn’t do so. A metaphor will surely express
better what we want to say.

The latter (P) is more ”democratic”, the former is rather ”aristocratic”. Indeed, in S if
we identify worlds with peoples, the plausibility grading gives some people a kind of power
(the grading) which has priority upon other’s power, just like some people have a priority
power when it comes to decide something in society:that’s why we call it aristocratic. On the
contrary, P is democratic because if we again identify worlds with peoples, peoples hold a part
of power which is assigned by the probability assignment but don’t have priority upon other
when it comes to decide something: the more power a people has, the higher the probability
the current world is. Thus power is assigned democratically to some people in P , contrary to
the aristocratic assignment in S.

B.4 The Update Product

The update product is completely identical for the epistemic structure of the models. The
only difference concerns the belief and probabilistic part.

These are the beliefs and probabilistic updates for S and P:

S: κj(w, a) = κj(w)− κ
w
j (Pre(a)) + κ

∗
j (a)

P:

Pj,(w,a)(v, b) =
Pj,w(v).Pj,v(b)

∑

{Pj,w(u).Pj,u(c); (u, c) ∈ Dj,(w,a)}

Pj,w(v).Pj,v(b) clearly corresponds to κ
∗
j (b) + κj(v). Note that this replacement of the

sum, multiplication and division of probabilities by respectively the minimum, addition and
subtraction of plausibility is not an accident and has been studied in depth by W.Spohn in
[Spohn90].

So, −κwj (Pre(a)) would correspond to the division by
∑

{Pj,w(u).Pj,u(c); (u, c) ∈ Dj,(w,a)}.
Though they are formally identical, they are conceptually different. The former bears on a
single action b whereas the latter bears on all the actions ∼j-accessible from a. In P we just
need a rescaling so that Pj,(w,a) is indeed a probability function. So we have to divide by
∑

{Pj,w(u).Pj,u(c); (u, c) ∈ Dj,(w,a)}. But in S, we don’t need such a global rescaling. The
global rescaling is already implicitly present in the assignment of the κ∗j (a) for any action
a (see section 2.3 ,update product). −κwj (Pre(a)) is rather the hallmark of revision (see
comparison with BMS, section 4.1), even if it is originally a local rescaling (see section 2.3.2).
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This local rescaling goes again in line with the fact already stressed that the plausibility
assignment is something local in S, and hence that its update must also be dealt locally.
That’s what actually happens in the update where we not only focus on the particular world
at stake, but also on the particular action taking place in this world and abstract the other
accessible ones (just like we abstract the other accessible worlds when we assign a plausibility
to a particular world). Doing so we really stress the local feature. We don’t really care about
the global shape of the final outcome which is determined mainly by the epistemic action
model (see the example). It is of course different from the probabilistic case where the global
feature is highlighted by rescaling to all the actions accessible from the one taking place in a
particular world.
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Appendix C

Proofs missing in the ”Comparison
with the BMS System”

C.1 Proof of theorem 4.1.14

Definition C.1.1 We define by induction the translation from a L(ΣBMS)-formula without
action term to a S ′-formula:

T1: T (p) = p.

T2: T (ϕ ∧ ψ) = T (ϕ) ∧ T (ψ).

T3: T (¬ϕ) = ¬T (ϕ).

T4: T (Kjϕ) = KjT (ϕ).

T5: T (Bjϕ) = B0
jT (ϕ).

¢

The translation from a L(ΣBMS)-formula containing action terms to a S
′-formula needs

to define a function from the BMS action model ΣBMS to the S
′ action model ΣS′ .

Definition C.1.2 Let ΣBMS = (Σ, σ0,∼j ,→
a
j , P re) be a BMS action model. We define the

belief epistemic action model ΣS′ = (Σ, σ0,∼j , κ
∗
j , P re

′) by:

•

κ∗j (σ) =

{

0 if there is τ such that τ →a
j σ

M otherwise

• Pre′(σ) = T (Pre(σ))

¢

We can now set the inductive clause for action-formula:
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Definition C.1.3 T6: T ([σ, ψ1, ...ψn]ϕ) = [σ, T (ψ1), ..., T (ψn)]T (ϕ).
¢

So we have got a full translation from a L(ΣBMS)-formula to a L(ΣS′)-formula.
Thanks to (Ca), we get the fact:

Fact:τ →a
j σ iff κ

∗
j (σ) = 0 and τ ∼j σ

Finally, we define F

Definition C.1.4 Let M = (W,w0,∼j , κj , V ) be a S
′-model. We define the BMS-model

F (M) = (W,w0,∼j ,→j , V ) by
w →j v iff κj(v) = 0 and w ∼j v. ¢

Note that F is surjective thanks to (Cm).

We finally get the:

Theorem C.1.5 Let ϕ ∈ L(ΣBMS) and M a S′ model. Then,
M,w |= T (ϕ) iff F (M), w |= ϕ.

Proof : By induction on ϕ.

T1 to T4 are obvious. We now prove T5:

M,w |= T (Bjϕ) ⇔ M,w |= B0
jT (ϕ)

⇔ for all v such that w ∼j v and κj(v) = 0,M, t |= T (ϕ).

⇔ for all v such that w ∼j v and κj(v) = 0F (M), v |= ϕ by induction hypothesis.

⇔ for all v such that w →j v, F (M), v |= ϕ by definition??

⇔ F (M), s |= Bjϕ

To prove T6, we need the:

Lemma C.1.6 F (M ⊗ ΣS′) = F (M)⊗ ΣBMS

Proof : The only point to check is the belief relation. Indeed, the fact that both members
of the equality have the same epistemic structure comes from T1-T5 and the definition of F.
For all (w, σ), (v, τ) ∈ F (M)⊗ ΣBMS ,

(w, σ)→j (v, τ) ⇔ w →j v and σ →
a
j τ

⇔ (κj(w) = 0 and w ∼j v) and (κ
∗
j (τ) = 0 and σ ∼j τ) by definition?? and Fact

⇔ (w, σ) ∼j (t, τ) and κj(v, τ) = 0 by definition of the plausibility update.
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That is what was expected. ¤

We can then easily prove T6. ¤

C.2 Proof of the other Technical Results

the propositional case.

Proposition C.2.1 For all σ1, ..., σk that are ∼j accessible from σ and all propositional
formula ϕ,
|=BMS [σ, ϕ1, ..., ϕn]Kjϕ↔ ψ →

∧

{Kj(ϕi → ϕ); i ∈ {1..k}}

Proof : First assume M,w |= [σ, ϕ1, .., ϕn]Kjϕ.

Assume M,w |= ψ
then M(Σ), (w, σ) |= Kjϕ (M(Σ) is the updated model)
For all i ∈ {1, .., k}
let v st w ∼j v
if M, v |= ϕi, then (w, σ) ∼j (v, σi) because w ∼j v and σ ∼j σi
then M(Σ), (v, σi) |= ϕ because M(Σ), (w, σ) |= Kjϕ.
then M, v |= ϕ because ϕ is a propositional formula.

so M, v |= ϕi → ϕ and so for all v st v ∼j w.
then M,w |= Kj(ϕi → ϕ) and so for all i ∈ {1, .., k}

So M,w |= ∧{Kj(ϕi → ϕ); i ∈ {1, .., k}}
Then M,w |= ψ → ∧{Kj(ϕ→ ϕ); i ∈ {1, .., k}}

Assume M,w |= ψ → ∧{Kj(ϕi → ϕ); i ∈ {1, .., k}}

Assume M,w |= ψ.
For all (v, τ) st (w, σ) ∼j (v, τ),
τ ∈ {σ1, .., σk}, so M, v |= ϕi for some i ∈ {1, .., k}
then M, v |= ϕ because w ∼j v and M,w |= Kj(ϕi → ϕ),
then M(Σ), (v, σ) |= ϕ because ϕ is a propositional formula
so M(Σ), (w, σ) |= Kjϕ
then M,w |= [σ, ϕ1, .., ϕn]Kjϕ ¤

Proposition C.2.2 For all σ1, ..., σk that are ∼j accessible from σ and all propositional
formula ϕ,
|= [σ, ϕ1, .., ϕn]Kjϕ↔ {ψ →

∧

{Kj(ϕi → ϕ); i ∈ {1..k}}}

Proof : Assume M,w |= [σ, ϕ1, .., ϕn]Kjϕ.

If M,w |= ψ
then M(Σ), (w, σ) |= Kjϕ.

70



For all i ∈ {1, .., k}
let v st v ∼j w

if M, v |= ϕi, then (w, σ) ∼j (vσi)

then M(Σ), (v, σi) |= ϕ

then M, v |= ϕ because ϕ is a propositional formula.

so M, v |= ϕi → ϕ

so M,w |= Kj(ϕ→ ϕ) and so for all i

so M,w |= ∧{Kj(ϕ→ ϕ); i ∈ {1, .., k}}
so M,w |= ψ → ∧{Kj(ϕi → ϕ); i ∈ {1, .., k}}

Assume M,w |= ψ → ∧{Kj(ϕi → ϕ); i ∈ {1, .., k}}

assume M,w |= ψ

for all (v, τ) st (w, σ) ∼j (v, τ),

τ ∈ {σ1, .., σk}, so M, v |= ϕi for some i ∈ {1, .., k}
then M, v |= ϕ because w ∼j v and M,w |= Kj(ϕi → ϕ)

M(Σ), (v, τ) |= ϕ because ϕ is a propositional formula

so M(Σ), (w, σ) |= Kjϕ

then M,w |= [σ, ϕ1, .., ϕn]Kjϕ ¤

Corollary C.2.3 For all σ1, ..., σk that are ∼j accessible from σ and all propositional formula
ϕ, |=S Kjϕ→ [σ, ϕ1, ..., ϕn]Kjϕ

Proposition C.2.4 Let σ1, ..., σk be the actions →j accessible from σ and ψ = Pre(σ) and
ϕ a propositional formula. Then,

|=BMS {ψ →
∧

{Bj(ϕi → ϕ); i ∈ {1..k}}} ↔ [σ, ϕ1, .., ϕk, .., ϕn]Bjϕ.

i.e.|=BMS {ψ → Bj(ϕ1 ∨ .. ∨ ϕk → ϕ)} ↔ [σ, ϕ1, .., ϕk, .., ϕn]Bjϕ

Proof : Assume M,w |= ϕ→ Bj(ϕ1 ∨ .. ∨ ϕk → ϕ)

Assume M,w |= ψ

Then M,w |= Bj(ϕ1 ∨ .. ∨ ϕk → ϕ)

for all (v, τ) st (w, σ)→j (v, τ),

w →j v and M, v |= ϕ1 ∨ .. ∨ ϕk because M, v |= Pre(σ)

then M, v |= ϕ because M,w |= Bj(ϕ1 ∨ ..∨ → ϕ)

then M(Σ), (v, τ) |= ϕ because ϕ is a propositional formula

and then M,w |= [σ, ϕ1, .., ϕn]Bjϕ

Assume M,w |= [σ, ϕ1, .., ϕn]Bjϕ

assume M,w |= ψ

then M(Σ), (w, σ) |= Bjϕ

then for all (v, τ) st (w, σ)→j (v, τ), M(Σ), (v, τ) |= ϕ

then for all (v, τ) st (w, σ)→j (v, τ), M, v |= ϕ because ϕ is a propositional formula
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then for all v st w →j v and M, v |= ϕ1 ∨ .. ∨ ϕk M, v |= ϕ
i.e. M, v |= Bj(ϕ1 ∨ .. ∨ ϕk → ϕ)

So M,w |= ψ → Bj(ϕ1 ∨ .. ∨ ϕk → ϕ) ¤

Corollary C.2.5 Let σ1, ..., σk be the actions →j accessible from σ and ψ = Pre(σ) and ϕ
a propositional formula. Then,

Bjϕ→ [σ, ϕ1, ..., ϕn]Bjϕ

Proposition C.2.6 for all consistent set of propositional formulae {ϕ1, ..., ϕn, ϕ} and all
simple action σ,

2S Bjϕ→ [σ, ϕ1, ..., ϕn]Bjϕ.

Proof : Let σ1, .., σk be the actions ∼j accessible from σ and of plausibility 0, {ϕ1, .., ϕn, ϕ}
consistent set of propositional formulas and σ action such that Pre(σ) = ψ

Let M be a model st there is w st
M,w |= ψ,M,w |= Bjϕ
and such that there is v st w ∼j v M, v |= ¬ϕ ∧ ϕi for some i, and κj(v) = κwj (ϕi) 6= 0
then M(Σ), (v, σi) |= ¬ϕ and κj(v, σi) = 0
so M(Σ), (w, σ) |= ¬Bjϕ
so M,w |=S [σ, ϕ1, .., ϕn]¬Bjϕ

Now assume |=S Bjϕ→ [σ, ϕ1, .., ϕn]Bjϕ
then M,w |= Bjϕ→ [σ, ϕ1, .., ϕn]Bjϕ
but M,w |= Bjϕ,
so M,w |= [σ, ϕ1, .., ϕn]Bjϕ
thereby M,w |= [σ, ϕ1, .., ϕn]Bjϕ ∧ ¬Bjϕ
i.e. M,w |= [σ, ϕ1, .., ϕn] ⊥
so M,w |= ¬ϕ. which is impossible. ¤

Is the belief update a genuine revision?

Proposition C.2.7 Let σ1, ..., σk be the actions that are →j accessible from σ, |=BMS

Bj¬ϕ1 ∧ ... ∧Bj¬ϕk → [σ, ϕ1, ..., ϕk, ϕk+1, ..., ϕn]Bj ⊥

Proof : Assume M,w |= Bj¬ϕ1 ∧ .. ∧Bj¬ϕk (*), then

assumeM,w |= Pre(σ)
assume there is (v, σi) ∈M(Σ) st (w, σ)→j (v, σi)
then w →j v and σ →j σi and M, v |= σi
then M, v |= ¬ϕ1 ∧ .. ∧ ¬ϕk because (*)
and σi ∈ {σ1, .., σk}, so M, v |= ϕi for some i ∈ {1, .., k}
this is impossible
so M(Σ), (w, σ) |= Bj ⊥.

Thus M,w |= [σ, ϕ1, .., ϕn]Bj ⊥ ¤
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Corollary C.2.8 Let σ1, ..., σk be the actions that are →j accessible from σ,
|=BMS Bj¬ϕ→ [σ, ϕ, .., ϕ, ϕk+1, .., ϕn]Bj ⊥.

Proposition C.2.9 Let σ1, ..., σk be the actions that are ∼j accessible from σ and of plausi-
bility at most m,
|=S (¬Kj¬ϕ1 ∧B

m
j ϕ1 ∨ .. ∨ (¬Kj¬ϕk ∧B

m
j ¬ϕk)→ [σ, ϕ1, .., ϕk, ϕk+1, .., ϕn]¬B

m
j ⊥ .

Proof : Let i ∈ {1, .., k}.

Assume M,w |= Pre(σ)
because there is vi st vi ∼j w and M, vi |= ϕi
let vi st κj(vi) = min{κj(vi);w ∼j vi and M, vi |= ϕi}
then M(Σ), (w, σ) |= ¬Bm

j ⊥
then M,w |= [σ, ϕ1, .., ϕk, ϕk+1, .., ϕn]¬B

m
j ⊥ ¤

Corollary C.2.10 Let σ1, .., σk be the actions ∼j accessible from σ and of plausibility 0.
|=S ¬Kj¬ϕ ∧Bj¬ϕ→ [σ, ϕ, .., ϕ, ϕk+1, .., ϕn]¬j ⊥.

Corollary C.2.11 Let σ1, .., σk be the actions that are ∼j accessible from σ and of plausibility
0,
|=S Kj¬ϕ→ [σ, ϕ, .., ϕ, ϕk+1, .., ϕn]Bj ⊥.

Proposition C.2.12 For all formula belief epistemic formula ϕ (then without action term)
and all belief epistemic model M ,

F (M), w |=BMS ϕ iff M,w |=S ϕ

Proposition C.2.13 For all ϕ1, .., ϕn, ϕ epistemic formulae,
If M,w |=S [σ, ϕ1, .., ϕn]Bjϕ then F (M), w |=BMS [σ, ϕ1, .., ϕn]Bjϕ

Proof : assume [σ, ϕ1, .., ϕn]Bjϕ

assume F (M), w |= ψ where ψ = Pre(σ)
then M,w |= ψ because ψ is an epistemic formula
then M(Σ), (w, σ) |= Bjϕ
then for all (v, τ) st (w, σ) ∼j (v, τ) and κj(v, τ) = 0, M(Σ), (v, τ) |= ϕ
But the epistemic structure of M(Σ) is the same as the one of F (M)(Σ′), and ϕ is an

epistemic formula, so
for all (v, τ) st (w, σ) ∼j (v, τ) and κj(v, τ) = 0, F (M)(Σ

′), (v, τ) |= ϕ
then for all (v, τ) st (w, σ) →j (v, τ), F (M)(Σ

′), (v, τ) |= ϕ because if (w, σ) →j (v, τ)
then (w, σ) ∼j (v, τ) and κj(v, τ) = 0
then F (M)(Σ′), (w, σ) |= Bjϕ
so F (M), w |= [σ, ϕ1, .., ϕn]Bjϕ ¤

Proposition C.2.14 For all model M of S and all epistemic formula ϕ,
M,w |=S [σ, ϕ1, .., ϕn]Kjϕ iff F (M), w |= [σ, ϕ1, .., ϕn]Kjϕ
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Proof : Because the epistemic structure of M(Σ) is the same as F (M)(Σ′).

74



Appendix D

Proofs missing in the section
”Comparison with the AGM
postulates”

D.1 Proof of theorem 4.3.3

In this proof we will indicate as extra assumption during the calculus of the postulate
unsatisfied the reasons why they are not fulfilled.

Now we are going to check if the 8 postulates are verified:

(K ∗ 1): yes.

(K ∗ 2): no.

A ∈ Kw ∗A ⇔ M,w |= [A!, A]BjA

⇔ if M,w |= A then M(A!), (w,A!) |= BjA, whereM(A!) is the model M updated with A!

⇔ M(A!), (w,A!) |= BjA

This last equivalence holds if for all v ∈ M , M, v |= A⇔ M(A!), (v,A!) |= A (see issue 0
in the next section).

(K ∗ 3)− (K ∗ 4): no.

¬A /∈ Kw ⇔ M,w |= ¬Bj¬A

⇔ κwj (A) = 0.(∗)

ϕ ∈ Kw ∗A ⇔ M,w |= [A!, A]Bjϕ

⇔ if M,w |= A then M(A!), (w,A!) |= Bjϕ.

⇔ M(A!), (w,A!) |= Bjϕ.
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ϕ ∈ Kw +′ A ⇔ M,w |= Bj [A!, A](A→ ϕ)

⇔ for all v st κwj (v) = 0,M, v |= [A!, A]A→ ϕ

⇔ for all v st κwj (v) = 0, if M, v |= A then M(A!), (v,A!) |= A→ ϕ

⇔ for all v st κwj (v) = 0 and M, v |= A,M(A!), (v,A!) |= A→ ϕ

⇔ for all v st κwj (v) = 0 and M, v |= A,M(A!), (v,A!) |= ϕ.

if M, v |= A⇔ (A!), (v,A!) |= A.

⇔ for all (v,A!) st κ
(w,A!)
j (v,A!) = 0,M(A!), (v,A!) |= ϕ, because of (*).

if M, v |= A⇔M(A!), (v,A!) |= A.

⇔ M(A!), (w,A!) |= Bjϕ

if M, v |= A⇔M(A!), (v,A!) |= A.

⇔ ϕ ∈ Kw ∗A if M, v |= A⇔M(A!), (v,A!) |= A (see issue 0).

(K ∗ 5): Clearly, if ` ¬A then Kw ∗A = K⊥ the inconsistent logic because of soundness.

Now, M,w |= A by assumption, so there is v st (w,A!) ∼j (v,A!) and κ
(w,A!)
j (v,A!) = 0

because {κ
(w,A!)
j (v,A!); v ∼j w} 6= ∅. But M,w |= [A!, A]Bjϕ ⇔ M(A!), (w,A!) |= Bjϕ. So,

M(A!), (w,A!) |= ¬Bjϕ. Then ⊥/∈ Kw ∗ A. And then Kw ∗ A 6= K⊥. So, if ¬ ` ¬A then
Kw ∗A 6= K⊥; i.e. if K

w ∗A = K⊥ then ` ¬A.

Finally, ` ¬A⇔ K ∗A = K⊥.

(K ∗ 6): yes, clearly.

(K ∗ 7)− (K ∗ 8): No.

¬B /∈ Kw ∗A ⇔ M,w |= ¬[A!, A]Bj¬B

⇔ M(A!), (w,A!) |= ¬Bj¬B

⇔ κ
(w,A!)
j (B) = 0(∗)

ϕ ∈ Kw ∗A ∧B ⇔ M,w |= [A ∧B!, A ∧B]Bjϕ

⇔ if M,w |= A ∧B then M(A ∧B), (w,A ∧B!) |= Bjϕ

⇔ M(A ∧B), (w,A ∧B!) |= Bjϕ

⇔ for all (v,A ∧B!) st κ
(w,A∧B!)
j (v,A ∧B!) = 0,M(A ∧B!) |= ϕ.
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ϕ ∈ Kw ∗A+′ B

⇔ M,w |= [A!, A]Bj [B!, B](B → ϕ)

⇔ M(A!), (w,A!) |= Bj [B!, B](B → ϕ)

⇔ for all (v,A!), st κ
(w,A!)
j (v,A!) = 0,M(A!), (v,A!) |= [B!, B](B → ϕ)

⇔ for all (v,A!), st κ
(w,A!)
j (v,A!) = 0,

if M(A!), (v,A!) |= B then M(A!), (B!), ((v,A!), B!) |= B → ϕ

⇔ for all (v,A!), st M(A!), (v,A!) |= B and κ
(w,A!)
j (v,A!) = 0,

M(A!), (B!), ((v,A!), B!) |= B → ϕ because of (*).

⇔ for all v st M, v |= A ∧B and κ
(w,A!),B!)
j ((v,A!), B!) = 0,

M(A!)(B!)((v,A!), B!) |= B → ϕ

if M, v |= B ⇔M(A!), (v,A!) |= B (see issue 1 in the next section)

⇔ for all v st M, v |= A ∧B and κ
(w,A∧B!)
j ((v,A ∧B!) = 0,

M(A!)(B!)((v,A!), B!) |= B → ϕ

if M, v |= B ⇔M(A!), (v,A!) |= B (see issue 1)

⇔ for all v st M, v |= A ∧B and κ
(w,A∧B!)
j ((v,A ∧B!) = 0,

M, v |= B → ϕ

1)if M, v |= B ⇔M(A!), (v,A!) |= B (see issue 1)

2)and M(A!), (v,A!) |= B → ϕ⇔M(A!)(B!), ((v,A!), B!) |= B → ϕ (see issue 1)

3)and M, v |= B → ϕ⇔M(A!), (v,A!) |= B → ϕ (see issue 1).

⇔ for all v st M, v |= A ∧B and κ
(w,A∧B!)
j ((v,A ∧B!) = 0,M, v |= ϕ

under the same assumptions 1)2)3).

⇔ for all (v,A ∧B!)st κ
(w,A∧B!)
j (v,A ∧B!) = 0,M(A ∧B!), (v,A ∧B!) |= ϕ

under the assumptions 1)2)3) and

4)M, v |= ϕ⇔M, (A ∧B!), (v,A ∧B!) |= ϕ (see issue 1)

⇔ ϕ ∈ Kw ∗ (A ∧B) under the assumption 1)2)3)4).

D.2 Explanation of the Failure of some Postulates in the The-
orem 4.3.3

In these proofs we remark that they fail for almost always the same kind of problems. Indeed,
by updating a public announcement,we get rid of worlds, so epistemic link disappear. Hence
formulas true at a given world are different before and after an announcement.
More precisely, we have to cope with these 2 issues:

issue 0 : Which epistemic formulas imply their self relativization?
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issue 1 : Which forms of epistemic assertion remain true at a world whenever other worlds
are eliminated from the model ?(persistence)

Note that (see [vB03]) Issue 0 can be solved by the

Fact: in each model, every public announcement has a persistent equivalent.

Moreover issue 1 can be solved by the

theorem: The epistemic formulas without common knowledge that are preserved under
submodels are precisely those definable using literals p,¬p, conjunction, disjunction, and
Ki-operators.

D.3 Proof of theorem 4.3.2

The proof is completely similar to theorem 4.3.3, but here we do not encounter the issues 0
and 1 because we deal with propositional formulas (see section 4.2). So all the postulates are
verified.

D.4 Proof of theorem 4.3.5

The proof is completely similar to theorem 4.3.3 but as in theorem 4.3.2, issues 0 and 1 are
not problematic anymore because the epistemic structure is preserved after the update. The
rest of the proof (concerning firmness) is obvious.
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