
Source Code Retrieval using

Conceptual Graphs

Gilad Mishne

Master of Logic Thesis

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Plantage Muidergracht 24, 1018 TV Amsterdam
The Netherlands.

E-mail: gilad@science.uva.nl

Supervisors:
Dr. Maarten de Rijke
Dr. Maarten Marx

December 2003

Contents

Acknowledgments 5

Abstract 6

Preface 7

1 Introduction 8
1.1 Why Code Retrieval? . 8
1.2 Structured Document Information Retrieval 9
1.3 Conceptual Graphs . 11
1.4 Using Conceptual Graphs for Code Retrieval 13
1.5 Related Work . 14

1.5.1 Code Retrieval . 14
1.5.2 Retrieval using Conceptual Graphs 15

2 Representing Source Code as Conceptual Graphs 17
2.1 Source Code Representations . 17
2.2 Converting Code to Conceptual Graphs 18

2.2.1 A Taxonomy for Source Code 18
2.2.2 Graph Construction Process 21
2.2.3 Examples . 22

3 Code Retrieval using Conceptual Graph Representations 26
3.1 The Retrieval Model . 26

3.1.1 The Retrieval Process . 27
3.2 A Similarity Measure for Source Code Conceptual Graphs 28

3.2.1 Retrieval Similarity Measures 28
3.2.2 Comparing Conceptual Graphs 28
3.2.3 Complexity . 36
3.2.4 Additions and Modifications 38
3.2.5 Summary . 38

4 Contents

4 Evaluation 39
4.1 Experimental Setting . 39

4.1.1 Document Collection . 39
4.1.2 Experiments . 42
4.1.3 Measures . 44
4.1.4 Assessment . 45
4.1.5 Retrieval Parameters . 45
4.1.6 Baseline Models . 46
4.1.7 Implementation . 49
4.1.8 Additional Computational Aspects and Filtering 50

4.2 Results and Discussion . 52
4.2.1 Testing for Optimized Parameters 52
4.2.2 Comparison with Baselines 54
4.2.3 Significance Tests . 56
4.2.4 Combining Methods . 57

5 Conclusions 59
5.1 Open Issues and Future Work . 60

Bibliography 66

Acknowledgments

The past year, along with the years to come, would be very different without the
influence I had from many people in the last months. I would like to thank some
of them here.

First and foremost, my supervisors: Dr. Maarten Marx opened the door for
me into the LIT group, and followed me closely ever since with helpful comments
and discussions (and an equally important electric guitar, courtesy of Dr. Gonzo).
Dr. Maarten de Rijke supported me in numerous ways, academic and other, well
above any expectation I had from an academic supervisor; provided me with the
opportunity to participate as an equal in the research done by the group, supplied
countless comments and suggestions regarding the thesis and other work, and
solved complex problems that seemed to have no solutions.

My parents, Nava and David, who accepted my choices, some of them they did
not necessarily like.

Lotta, for never-ending support, and for the willingness to make a big sacrifice,
should that be needed.

All (past and present) members of the Language and Inference Technology
group in the university of Amsterdam – Juan Heguiabehere, Valentin Jijkoun,
Jaap Kamps, Gabriel Infante-Lopez, Christof Monz, Karin Müller, Detlef Prescher,
Börkur Sigurbjörnsson, Khalil Sima’an, Willem van Hage and Stefan Schlobach:
for many comments, discussions and suggestions, for support during rougher times,
and for the chance to work with the people that make LIT one of the leading groups
in its field. I have learned a lot from all of you.

Anny Crajé from the university personnel department, who (together with
Maarten de Rijke) worked hard to make the impossible possible.

My friends – in Israel, in Holland, and in other places.
Bansi and Simba for leaving us the piano.
Finally, NWO – the Netherlands Organization for Scientific Research – which

supported my work.

Abstract

The sharp increase in the amount of easily accessible information in the last decade
resulted in a growing amount of research regarding information extraction and
retrieval. Inside the general information retrieval framework, specialized methods
emerged for specific domains, trying to exploit features of the information in these
domains to improve its accessibility.

Source code – documents written in a computer programming language – is one
of these domains. Source code is a form of structured data, data in which infor-
mation is stored both in the structure and in the content; it is, however, different
from other structured document domains both in the nature of the structure and
the nature of the content. Retrieval of information from source code is crucial for
large-scale software development and maintenance, and is recognized as a problem
both by software developers and information retrieval researchers; it is a vast re-
search area with multiple interests and various sub-tasks. This thesis focuses on
one aspect of these: the usage of the structure of the code to improve the retrieval.

Our approach for improving the retrieval from source code uses conceptual
modeling of the code. We employ conceptual graphs – a knowledge representation
formalism – to design a retrieval model for code that uses both its structure and
its content. The model contains a formal definition of the problem, a method
for representing the code as conceptual graphs, and procedures for ranking their
similarity to a query.

We evaluate our model and show that for the code retrieval task it performs
better than standard information retrieval approaches. The associated complexity
implications are analyzed and discussed, searching for a balance of computational
costs and retrieval performance. Our main conclusion is that using the structure
for retrieval of code improves retrieval results substantially, and further work in
this direction can improve the results even more.

Preface

The complex task of retrieving, classifying and extracting information from source
code files — Code Retrieval — is essential in the development cycle of large soft-
ware systems [85]. A number of reasons make source code retrieval difficult: most
notably, the interleaved nature of the structure and the content inside the docu-
ments, and the differences between programming language syntax and semantics
and natural language syntax and semantics.

If we consider source code to be a specific type of structured text — a document
which contains a layer of structure in addition to the standard information layer
— it is known that using the structure helps to improve retrieval performance [17,
46, 40]. But, while using structure for retrieval may be beneficial, it comes with
a cost: extraction and manipulation of structure is complicated, and results in a
higher complexity for the retrieval process [15].

In this work, we explore this idea: we present a retrieval model for code that
uses its structure, evaluate it, and discuss its strengths, weaknesses, and complexity
implications. We search for a balanced amount of usage of structural knowledge,
looking for a compromise between complexity and accuracy. We pose the following
questions: How can we use code structure to improve retrieval? What are the
associated costs of such improvements? Is this usage feasible?

To represent the structural information in source code, we use conceptual
graphs, a knowledge representation language combining ideas both from first or-
der logic and from graph theory [80]. We develop a mechanism for converting
source code documents into conceptual graphs, and procedures for comparing these
graphs in a way that combines structure and information.

The remainder of the thesis is organized as follows. In chapter 1 we provide
background regarding source code retrieval and conceptual graphs, and discuss
previous work done in these areas. In chapter 2 we present our method for repre-
senting code as conceptual graphs and give examples for it. Chapter 3 deals with
the retrieval model that we construct using the graphs, and presents a similarity
measure for the source code graphs constructed. In chapter 4 we describe evalu-
ation experiments and discuss their results; we conclude in chapter 5, which also
contains a discussion of open issues and possible future work.

Chapter 1

Introduction

1.1 Why Code Retrieval?

A method for locating “relevant” information in a large collection of code given a
specific information need is beneficial in the following scenarios:

Software Systems Analysis. A common scenario for software developers is
the need to modify, adapt or use large-scale software components which they did
not design or implement. Many times it is the case that these so-called legacy
systems are badly documented, loosely structured and hard to understand. In
some instances, code may even seem cryptic to its own author, if it is poorly
written or if a long time has passed since its implementation. Studies show that
application maintenance consumes the majority of the software budget for large-
scale systems [7]. Under these circumstances, code retrieval methods may help
the developers have a quicker, and deeper, understanding of the software system;
programmers involved in maintenance often claim that they are missing required
tools for this task [54, 18].
Related tasks to system analysis include software reverse-engineering, recovery of
design and documentation from source code and software restruction [53].

Software Components Library Lookup. For many developers, the fastest
way to learn how to accomplish a programming task is to look at an example of a
similar implementation, or at a library of existing, tested, related components [48].
Lookup of such examples is often done with “grep-like” searches in a local code
corpus, or using standard retrieval engines. Developers may benefit from a tool
that allows deeper queries of a code corpus, local or external, to locate examples
of implementations. A specific problem of example-lookup arises in the special
case of working with a number of releases of a specific software suite; many times,

Introduction 9

in the shift between versions (i.e. 2.1 → 3.0), some components are re-written or
changed thoroughly. In these cases, the developer may want to look up the way
in which a task was performed in one of the previous versions.

Code Duplication. According to previous studies [5], duplicated code accounts
for up to 20% of the total amount of code in large software systems (millions of
lines-of-code). Code duplication originates in two common software developer ten-
dencies: using the “copy-and-paste” method for insertion of code which is known
to function in one place in the program into other places, and incomplete knowl-
edge about the system’s design and components that results in “reinventing the
wheel” and re-implementation of already existing pieces of code. Code duplication
is a known software engineering problem for the following reasons:

• While it seems a fast, efficient solution at first, in effect it causes more work
because changes to a piece of code must be made in multiple places, each
requiring variations to match other modifications made to the original code
that was duplicated. Moreover, it may lead to erroneous code: a bug which
is fixed in one place must be found and fixed in all the duplicated versions –
a task often neglected at the bug-fixing stage.

• Duplication violates standard coding reuse methodologies – resulting in code
that is less clear and less easy to analyze.

• Finally, duplication causes unnecessary resource consumption (increase in
source code length, program size and compilation times).

Plagiarism Detection. Plagiarized work is a piece of writing that has been
copied from someone else and is presented as being original work. As any digital
document, source code files are easy to copy and modify. An unfortunate result
of this fact, combined with the stressed nature of a student’s life, leads to an
alarmingly high number of programming assignments plagiarisms, mainly in low-
level programming courses [77]. Code plagiarism occurs also in commercial, larger-
scale scenarios, with the most well-known example being the recent legal struggle
between SCO and IBM regarding Unix source code [74, 75].

While the first two tasks focus on high-level abstraction of the code, the last
two seem to benefit from less abstract, more detailed knowledge about it; we focus
our work on retrieval aimed at these goals.

1.2 Structured Document Information Retrieval

Source code is a special case of the more general notion of a structured or semi-
structured document, a document which contains additional information embedded

10 Introduction

#include <dcopclient.h>

void KonqViewManager::saveViewProfile(KConfig & cfg, bool saveWindowSize)

{

//kdDebug(1202) << "KonqViewManager::saveViewProfile" << endl;

if(m_pMainWindow->childFrame() != 0L) {

QString prefix = QString::fromLatin1(

m_pMainWindow->childFrame()->frameType())

+ QString::number(0);

cfg.writeEntry("RootItem", prefix);

prefix.append(’_’);

m_pMainWindow->saveConfig(&cfg, prefix, saveURLs, m_pDocContainer, 0, 1);

}

// Save menu/toolbar settings in profile. Relys on konq_mainwindow calling

// setAutoSaveSetting("KongMainWindow", false). The false is important,

// we do not want this call save size settings in the profile, because we

// do it ourselves. Save in a separate group than the rest of the profile.

QString savedGroup = cfg.group();

m_pMainWindow->saveMainWindowSettings(&cfg, "Main Window Settings");

cfg.setGroup(savedGroup);

cfg.sync();

}

Figure 1.1: Typical source code (simplified)

in its structure. More specifically, code is structured text ; other types of structured
text which are common in the retrieval setting are HTML and XML, and extensive
research has been done regarding effective retrieval of them. One of the clearest
conclusions of this research is that using structural knowledge may improve results
significantly [90, 51].

In [4], text structure is defined as “information present in a text apart from its
content, which relates its different portions in a semantically meaningful way”. The
main difference between retrieval of source code and retrieval of other structured
data is the embedded nature of the structure in the code. Contrary to markup
languages such as XML which follow the above notion of keeping the structure
apart from the content, structure and content are mixed in source code. Another
difference is the increased importance of the structure: while most structured
documents have a large amount of content and some structural information that
classifies the different types of content, in a source code file there is potentially
little information other than the structure itself. Finally, an examination of typical
source code text (see figure 1.1) reveals that usually a single document combines
two different languages: natural language text (in comments, print statements
etc.), and “programming language text”. The latter includes both the tokens of
the programming language itself, but also variable names, function names and
so on; these tend to have different lexical and morphological rules from natural
language.

Introduction 11

1.3 Conceptual Graphs

The Conceptual Graph (CG) formalism is a knowledge representation language
proposed by John Sowa in 1984 [80], based on the work of Charles Sanders Peirce.
In Sowa’s words, the purpose of conceptual graphs is “to express meaning in a
form that is logically precise, humanly readable, and computationally tractable”.

A conceptual graph is a bipartite, directed, finite graph; each node in the
graph is either a concept node or relation node. Concept nodes represent entities,
attributes, states, and events, and relation nodes show how the concepts are in-
terconnected. A node (concept or relation) has two associated values: a type and
a referent or marker ; a referent can be either the single generic referent, or an
individual referent. A conceptual graph is always related to a support or canon,
a semantic-web-like knowledge base providing background on the domain within
which the graph is presented. This support contains:

• A set of concept types, structured in a single connected hierarchical lattice;
the relation between two neighbor concepts types A and B in the lattice is
“B is-a-kind-of A”, and multiple inheritance is allowed.

• A set of relation types.

• An indication, for each relation type, what kind of concept types it is per-
mitted to connect. One way to provide such an indication is a set of “star
graphs” for every relation type, graphs that connect this relation type to a
totally ordered set of all permitted concept types.

• A set of referent sets for each concept type; each referent set must include
at least the generic referent, also marked as “*”.

More formally, the support is a 4-tuple S = 〈Tc, Tr, B, R〉 where:

1. Tc, the set of concept types, is a finite lattice with 6 as order, 1 as supremum
(the universal type), 0 as infinum (the absurd type), ∧ and ∨ denoting the
lower and upper bounds.

2. Tr, the set of relation types, is a finite set; Tc and Tr are disjoint.

3. B is a set of “star graphs”, Bri , ri ∈ Tr, in bijection with Tr; every Bri is
built as follows: exactly one vertex of Bri is labeled by the element ri of
Tr, this vertex has a non empty and totally ordered set of neighbors, these
neighbors being pairwise non adjacent, and each of them is labeled by an
element of Tc.

4. R is a set of countable sets of individual referents, each set Rt associated
with a concept type t ∈ Tc. In addition, there exist a referent called generic

12 Introduction

(“*”) and an absurd marker 0; each set Rt ∪ ∗, 0 is provided with a lattice
structure by the order, denoted by <t, such that any two elements of Rt are
incomparable, and ∀rt ∈ Rt : 0 < rt < ∗.

A conceptual graph related to this support is a 5-tuple g = 〈NC , NR, E, ord, label〉
bipartite finite graph such that:

1. NC and NR are the concept and relation nodes, respectively; NC ∩NR = ∅,
and NC 6= ∅.

2. E is the set of the graph edges; edges adjacent to a relation node r are totally
ordered by ord.

3. label is a mapping from every concept node of the graph to a label; a label
for concept node c is a pair such that label(c) = (t, r), t ∈ Tc, r ∈ R.

Given a canon, an infinite set of well formed graphs can be constructed.
Example of a simple canon is given in figure 1.2; concept types are presented

as text and the inheritance hierarchy by lines. Simple conceptual graphs based on
it are shown in figure 1.3, using the standard graphical notation for CGs which
uses rectangles for concept nodes and ovals for relation nodes.

Entity

Living

NonLiving

Animal Plant

Car Color

Mammal Bird Tree

Person Pine

Absurdity

Figure 1.2: Partial canon

After introducing these basic notions, Sowa describes a wide range of oper-
ations, techniques and extensions, such as various projections and morphisms,

Introduction 13

Bird In Tree

Pine:* Attr Color:Green

Person:Peter Owns Car Attr Color:Blue

Figure 1.3: Examples of conceptual graphs

specialization and generalization, partitioning, and so on. These notions will not
be used later and therefore will not be discussed here, other than a summary
of conceptual graph similarities presented in section 3.2.2. A good summary of
conceptual graphs and their operations can be found in [10].

Sowa showed that the conceptual graph formalism is a subset of first order
logic; however, much of the research work on conceptual graphs is focused on
graph theory [81][27][19]. This demonstrates the attractiveness of CGs: they allow
exploration of new directions in first order logic research by applying knowledge
and tools from a completely different domain (graph theory). This comes with a
cost, both computational and relating to expressive power, and in this sense CGs
are similar to modal logics.

1.4 Using Conceptual Graphs for Code Retrieval

We discussed the need for retrieval from source code, the structured nature of code
and the usefulness of retrieval using structural knowledge. We have also presented
conceptual graphs as a modeling language that can capture both the structure and
the content of code. Now we can propose a retrieval method based on conceptual
modeling of the source code: our aim is to explore the usefulness of this kind of
abstraction for code retrieval, and in general to investigate ways of exploiting the
structural properties of source code for retrieval.

Applying the conceptual graph formalism for retrieval can be divided into
two main subtasks. First, we need to describe a mechanism for representation
of the code as CGs. This will be done in chapter 2. Then, we must define a
retrieval model for the graphs, and most importantly, a similarity measure between
them; this will be done in chapter 3. We can then test the model to test our
hypothesis regarding conceptual modeling of code as a retrieval helper and draw
conclusions; such experiments and our conclusions are presented in chapters 4
and 5 respectively.

14 Introduction

1.5 Related Work

1.5.1 Code Retrieval

As discussed earlier, the problem of duplicated and similar source code is recog-
nized as an important one both in the software development cycle and from the
plagiarism detection aspect. A number of approaches exist to address this issue,
and can be roughly divided into two categories: methods for retrieval from source
code, and similarity analysis methods for code.

Source Code Retrieval

Early forms of retrieval from code were based on a classification scheme for cat-
aloging code components with a set of keywords, such as the method specified
in [64]. Such methods yield good results, but the manual effort required for them
is very high, mostly for the classification (which is often done manually) but also
for the retrieval (which requires knowledge about the legal, relevant keywords).

Many tools for software development provide context-tagging, a process where
information about the location of functions, variables etc. is kept in an indexed
structure, allowing fast access. While context-tagging is an important tool for
developers, it is appropriate for browsing the code – when the user knows what
she is looking for – rather than searching it.

Tools such as GURU [41] and ROSA [30] make use of natural language pro-
cessing and information retrieval techniques to index and retrieve software and
software-related documents (design, specifications). These approaches focus on the
natural language text that exists in the code (comments, documentation, mean-
ingful variable names etc.), and is therefore suited for well-documented projects.
Since almost no structural knowledge is taken into account, they are of limited use
for the common case of sparse documentation in large code bases.

Formal approaches such as [60, 36] require the information need to be specified
in a specialized query language (in which requests such as “find all functions that
contain a variable arr” can be stated formally). While these are very powerful
methods for maintainers of large software projects, they lack the common retrieval
“fuzziness” where documents are relevant for a query, but not necessarily match
it. Additionally, these methods require some training prior to usage, because their
query language is not standard. A similar method, making use of standard (XML)
markup of the code, was proposed in [12]; it is more standardized but shares the
same advantages and disadvantages of other formal methods.

Conceptual modeling and retrieval of code has been researched and tested
(for example, in system such as LaSSIE [20]); however, the modeling tends to
focus on higher-level concepts rather than the micro-concepts expressed through
the code, resulting in a tool fit for architectural queries such as “what functions
enable feature X”, and not queries like “find functions that are related to function

Introduction 15

Y”. Additionally, the knowledge base for every software project is hand-crafted,
making the solution not general.

Code Similarity Analyzers

Currently implemented similarity analyzers can be grouped as follows:

Pattern-based Analyzers This approach checks for shallow similarity between
lines of codes, using pattern matching techniques and tiling algorithms; ex-
amples of tools using it are PMD [61] and Simian [78]. This approach is very
effective (and fast) mostly at detecting simply duplicated (“copy-pasted”)
chunks of code scattered around large-scale enterprise projects, or very sim-
ilar pieces of code. However, very simple structural code changes render it
almost completely useless.

Code Signature Analyzers This group of analyzers calculates certain metrics
of the code (ranging from the number of blank lines or unique tokens to
properties of the resulting program’s function-call tree); such approaches
are presented in [37] and [29]. Each program is associated with a “code
signature” – a value or set of values summarizing its features; programs with
similar signatures are considered to be similar. Since this approach relies
on statistical properties of the code, it is effective for plagiarism detection
on source code files which are relatively large, such as student assignments
in programming courses, rather then detection of short repeating sections
of code. One analyzer of this type which stands out of the rest in terms of
performance is MoSS [73], which uses local fingerprinting mechanisms and
is actively used for student assignments plagiarism detection; however, little
written documentation is available regarding the internals of this approach.

Structural Analyzers These analyzers are considered the most advanced ones.
Analyzers of this type – such as YAP [91] and JPlag [63] – compare structural
properties of the programs. The comparison is performed by representing the
code structures as strings, and then measuring the string distance between
them. It has been shown that this approach is highly effective [84]. However,
these methods usually ignore information such as comments, dependency files
etc — information that may help to locate code that is not highly similar in
structure, but similar in “spirit”, i.e. addresses the same issue (such as two
different sorting methods).

1.5.2 Retrieval using Conceptual Graphs

Conceptual graphs were identified as an abstraction layer for information that
can be useful for classifying and retrieving it. Work has been done on usage of

16 Introduction

CGs for unstructured information retrieval [92, 57, 65], using parsing of the nat-
ural language to build the structure of the document, with reported good results.
Conceptual graphs were also used with varying success for retrieval of legal argu-
ments [21], medical information [11], and multimedia documents [58, 93]. Clearly,
the common feature of these document types is, just like source code, the inherent
nature of the structure inside the contents. There is also work regarding usage of
CGs for structured document classification and retrieval [43, 89]; this work relies
on manual annotation and a WordNet-like extensive ontology.

An area which is closely related to conceptual graphs is Description Logics
(DL) [2], a class of logic-based knowledge representation languages. Description
Logics are especially useful in modeling database-like settings and provide a set of
powerful reasoning and subsumption methods. DL has been used for information
retrieval [45, 8]; in a nutshell, the idea is to use formal reasoning methods to show
relevance of documents to queries. However, these methods tend to be too rigid
and require either an enormous amount of world-knowledge or a very strict relation
(such as subsumption) between the document and the query. There is no published
work on state-of-the-art retrieval systems based on Description Logics (or other
logics) that are comparable with leading retrieval models today, i.e., vector-space
and probabilistic [4]: furthermore, there is evidence that computationally, these
methods are impractical [15].

Chapter 2

Representing Source Code as
Conceptual Graphs

As mentioned earlier, one of the challenges of retrieval from source code is the inter-
connected nature of the structure and content, rather than the common structured
text form of markup languages. In this chapter we discuss the process of sepa-
rating the structure from the content and representing it in a conceptual graph
form.

2.1 Source Code Representations

Structural source code representations are roughly divided into two categories:
Syntactic representations and Semantic representations. An additional Hybrid
approach merges ideas from both of the categories.

• Syntactic methods focus on annotation of the code, transforming it into
more common structured document formats. Usually, the markup is done in
XML or other SGML variations, such as srcML [42] and JavaML [3]. This
markup provides very good low-level, detailed representation of the code,
and is especially useful for tasks where maximal knowledge regarding the
code is required, such as syntax coloring, code indexing (context-tagging)
etc; however, the amount of abstraction achieved is limited.

• Semantic methods start where the syntactic methods stop: using various
tools, the code is abstracted and presented in higher-level representations.
The academic and industry de-facto standard for software modeling is the
Unified Modeling Language [44][83]. UML provides a rich set of abstract
views of software, including structural modeling, behavioral modeling, inter-
action paradigms, and constraints; tools that follow these techniques and
employ them for software engineering and re-engineering (and to a limited

18 Representing Source Code as Conceptual Graphs

extent – reverse-engineering) are widespread, most notably the Rational fam-
ily [66]. However, these methodologies are usually aimed at macro-modeling
rather than micro-modeling, i.e. analysis of complete software suites and not
a short piece of code.

• Hybrid methods are a combination of syntactic and semantic analysis: while
retaining the low-level analysis required for handling short code fragments,
they also provide some abstraction level. This is of course achieved at a
cost: the representation is not as detailed as annotated code is, and does
not supply as much conceptual knowledge as the semantic methods. A good
reference point for such methods is provided in [47].

For the case of retrieval it seems that a hybrid method is appropriate, one
where relatively abstract concepts are described, but details from the underlying
textual data are also given. In the next section, we describe such a hybrid method
for graph abstraction of the code.

2.2 Converting Code to Conceptual Graphs

2.2.1 A Taxonomy for Source Code

Before designing a mechanism to build conceptual graphs from code, we need to
decide which concepts and relations we permit in our graphs and their semantics –
the support of the graph (see section 1.3). This includes the concept and relation
types, as well as an indication of which relations can be made between given
concepts, and the possible referents for each concept type.

Based on [24], [76], [13], and on examination of various source code file we
constructed a simplified model of code representation at the micro-level; the con-
cepts of this model are presented in table 2.1, and are arranged in a hierarchy in
figure 2.1.

Source−Code Element

Block Enum If Variable String Action

Assign

Absurdity

Function Loop Struct CompareOp Func−callSwitch LogicalOp MathOp

Figure 2.1: Hierarchy of the Source Code Canon

Representing Source Code as Conceptual Graphs 19

Name Description
Assign Assignment of value, or operation including assignment such as “+=”
Block A set of other concepts, logically grouped together
CompareOp A binary comparison, such as “6”, “ 6=” etc.
Enum An enumerated set of values
Func-call An execution of a function
Function A declaration or definition of a function
If A conditional branching statement
LogicalOp A binary logical operation, such as “∨”, “∧” etc.
Loop An iterative statement, dependent on a condition
MathOp A binary mathematical operation, such as “+”, “÷” etc.
String Textual string; literals such as numbers are interpreted as strings too
Variable An entity which holds values during the program execution
Struct A named Block, containing variables only
Switch A multiple-branch conditional statement

Table 2.1: Concept Types

Formally, we must define a partial order on these concepts, but since we do
not use features of conceptual graphs that require such order, we may use any
arbitrary order (say, lexicographic).

The possible referents of the concepts are as follows:

• String concepts always have an individual referent, which is text of any
length.

• {Variable, Func-call, Function, Struct} concepts always have an in-
dividual referent, which is a legal identifier of the programming language (in
C, for example, this includes strings containing alphanumeric characters and
the “underscore” symbol, that do not start with a number).

• Block concepts may either have the generic referent (“*”) or an individual
referent that is a legal identifier as above.

• All other concepts may only have the generic referent.

The relation types of the model, along with the concepts they can connect,
are specified in table 2.2. For space reasons, Action is short for the con-
cepts {Assign, CompareOp, Func-call, LogicalOp, MathOp}, and *
is short for “any concept”.

20 Representing Source Code as Conceptual Graphs

Name From. . . To Description

Condition If Action Specifies that this branching statement
String depends on the concept.
Variable

Loop Action Specifies the condition which is
String checked to determine continuation of
Variable the loop iteration

Contains Action Action The action is performed on
String or using this concept.
Variable

Block * The block contains the concept.

Enum String The string is defined in the enumeration.

Function * The function contains the concept.

If Action The branching statement executes the concept,
Block depending on its condition.

Loop Action The concept is executed or
Block initialized in the loop.
Variable

Struct Variable The structure defines the concept.

Comment * String The concept is commented with the string.

Defines Block String The block contains a definition of the concept.

Depends Block String The block requires a file as a dependency.

Jumps Block String The blocks jumps to the label marked in the string.

Parameter Function String The function definition contains the concept as a parameter.

Func-call String The function is called with this value.
Variable The function is called with this parameter.

Returns Block Action The concept is the return value of
Variable the block.
String

Typedef Block String The block defines the string as a type.

Table 2.2: Relation Types and their possible placement

Representing Source Code as Conceptual Graphs 21

2.2.2 Graph Construction Process

As discussed earlier, we require a tool that analyzes short code fragments at the
micro-level, rather than doing a global code base analysis. We experimented with
a number of approaches for this task. An examination of shallow pattern-matching
techniques and various lexical analysis tools quickly revealed that they are too weak
for the task, as the syntactic knowledge acquired is limited. We therefore decided
to focus on syntactic parsing of the source code, an approach which is close to the
conceptual graph ones. Programming language parsers, that usually are part of a
language compiler, generate a specific parse tree – an Abstract Syntax Tree (AST)
– from the code. The AST, similarly to the conceptual graph representation, is a
formal description of the meaningful attributes and behavior of expressions in the
code; unlike our source code conceptual graph, the AST is very detailed, providing
no abstraction layer.

Our graph constructor is an extension of a parser for a programming language
grammar (part of a compiler for the language), in which relevant concepts and
relations are instantiated during the parse process according to the code and the
described taxonomy. Where a new concept is required according to the grammar it
is instantiated and connected to the existing concepts; a symbol-table mechanism
similar to the one used in compilers is used to locate concepts in the correct
context. Pseudo-code examples of fragments of the grammar are presented in
figures 2.2, 2.3, and 2.4; we enriched all relevant parts of the grammar with such
construction procedures for a complete process of graph creation from code. We
refer to a graph constructed using this process as a Source-code Conceptual Graph,
or SCG.

statement → if “(” expr e “)” statement s1

concept1 := create concept(If)
connect concepts(concept1, e, Condition)
connect concepts(concept1, s1, Contains)

(else statement s2)?
connect concepts(concept1, s2, Contains)

| . . .

Figure 2.2: Fragment of the Graph Construction Grammar - if statement

However, one problem of using language parsing for construction of conceptual
graphs representing the code is the exclusion of certain parts of a source code file,
such as comments and dependency statements, from the parsing process. These
parts are invisible to the parser since they are not actually part of the grammar of
the language; usually they are removed prior to the parsing by a preprocessor. In
the code retrieval case this was undesirable, since these specific parts contribute
important information to the resulting graph. Additionally, using a standard pre-

22 Representing Source Code as Conceptual Graphs

statement → for “(“ expr e1 “;” expr e2 “;” expr e3 “)” statement s
concept1 := create concept(Loop)
connect concepts(concept1, e1, Contains)
connect concepts(concept1, e2, Condition)
connect concepts(concept1, e3, Contains)
connect concepts(concept1, s, Contains)

| . . .

Figure 2.3: Fragment of the Graph Construction Grammar - for statement

statement → expr e1 “>” expr e2

concept1 := create concept(CompareOp)
connect concepts(concept1, e1, Contains)
connect concepts(concept1, e2, Contains)

| . . .

Figure 2.4: Fragment of the Graph Construction Grammar - “>” expression

processor would replace all dependency statements (#includes) with an actual
document, instead of preserving the statement of dependency on that document.

Inserting these tokens into the grammar of the language is not a good solution
for reasons we will not discuss here (basically, they make the grammar ambiguous
and require a very strong lookahead mechanism to handle); our solution included
implementation of a bypass channel through which this “extra-grammatical” in-
formation was transferred through the parser and included in the graph.

In addition to the construction process described, some technical measures were
taken, for issues such as whitespace unification, redundant character removal, etc.

2.2.3 Examples

We now show two examples of code and the conceptual graph resulting from the
construction. Since “real-life” examples produce large graphs that take up a lot of
display space, we choose two toy examples. A birds-eye view of a representation of
a real function (dealing with testing of matrix operations) can be seen in figure 2.9,
and demonstrates how complicated the graphs quickly become.

The first example contains a very short function with a simple loop and a
comment (figure 2.5):

Representing Source Code as Conceptual Graphs 23

void aFunction(int n, int* pInt)
{

// just decrease pInt according to n
while (n > 0) {

*pInt--;
}

}

Figure 2.5: example1.c

Contains

Function:aFunction

Contains

String:0

Contains

MathOp:*

Contains

Variable:pInt

Parameter

Variable:n

Parameter

Comment

String:just decrease pInt according to n

Contains

Loop:*

Condition

Compare:*

Contains

Block:*

Contains

Block:example2

Figure 2.6: Conceptual graph for example1.c

The second example is a bit longer, with a dependency file, a value definition,
and a short main that performs a mathematical operation and prints it (figure 2.7):

The average size of the graph, relative to the code from which it was con-
structed, varies largely and depends on settings such as the programming lan-
guage, the coding style, the amount of comments and others. An estimation of
the average graph size for a specific task is given in section 4.1.

24 Representing Source Code as Conceptual Graphs

#include "stdio.h"

#define RET_CODE -1

int main() {
int i = 10;
int j = 20;
int mul = i * j;

printf ("i * j = %d\n", mul);

return RET_CODE;
}

Figure 2.7: example2.c

Depends

String:stdio

Contains

Variable:mul

Contains

Assign:*

Contains

Func−call:printf

Returns

String:RET_CODE

Contains

Variable:i

Contains

Assign:*

Contains

Variable:j

Contains

Assign:*

Contains

Contains

String:10

Defines

String:RET_CODE −1

Contains

String:20 Contains

Contains

Function:main

Contains Contains

MathOp:*

Contains Contains

ParameterParameter

String:i j d n

Block:example1

Figure 2.8: Conceptual graph for example2.c

Representing Source Code as Conceptual Graphs 25

We have presented a a concept hierarchy and associated relations for concep-
tual graphs representing source code – SCGs. Using this hierarchy, we described
procedures for constructing such SCGs; the resulting graphs are a compromise
between low level, detailed representations of source code and abstract code rep-
resentations. Although the representation is not complete and can be enhanced
to support more features of source code, it allows us to continue to the next step,
which is construction of a retrieval process for the graphs.

C
on

ta
in

s

V
ar

ia
bl

e:
i

C
on

ta
in

s

A
ss

ig
n:

*

C
on

ta
in

s

B
lo

ck
:*

C
on

ta
in

s
C

on
ta

in
s

V
ar

ia
bl

e:
j

C
on

ta
in

s

St
ri

ng
:B

O
U

N
D

C
on

ta
in

s

Fu
nc

−
ca

ll:
pu

ts

R
et

ur
ns

St
ri

ng
:0

Pa
ra

m
et

er

St
ri

ng
:E

R
R

O
R

C
on

ta
in

sC
on

ta
in

s

St
ri

ng
:5

R
et

ur
ns

St
ri

ng
:0

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:0

C
on

di
tio

n

C
om

pa
re

:*

C
on

ta
in

s

M
at

hO
p:

*

C
on

ta
in

s

B
lo

ck
:*

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:B

O
U

N
D

C
on

ta
in

s

C
on

ta
in

s

C
on

ta
in

s

A
ss

ig
n:

*

C
on

ta
in

s

L
oo

p:
*

C
on

ta
in

s
C

on
ta

in
s

St
ri

ng
:0

C
on

di
tio

n

C
om

pa
re

:*

C
on

ta
in

s

M
at

hO
p:

*

C
on

ta
in

s

B
lo

ck
:*

C
on

ta
in

s
C

on
ta

in
s

St
ri

ng
:B

O
U

N
D

C
on

ta
in

s

C
on

ta
in

s V
ar

ia
bl

e:
k

C
on

ta
in

s A
ss

ig
n:

*

C
on

ta
in

s

A
ss

ig
n:

*

C
on

ta
in

s
C

on
ta

in
s

C
on

ta
in

s

S1
:*

C
on

ta
in

s
C

on
ta

in
s

C
on

ta
in

s

S1
:*

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:0

C
on

ta
in

s

A
ss

ig
n:

*

C
on

di
tio

n C
om

pa
re

:*

C
on

ta
in

s

M
at

hO
p:

*

C
on

ta
in

s

B
lo

ck
:*

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:B

O
U

N
D

C
on

ta
in

s
C

on
ta

in
s

A
ss

ig
n:

*

C
on

ta
in

s

L
oo

p:
*

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:0

C
on

ta
in

s

L
oo

p:
*

C
on

di
tio

n

C
om

pa
re

:*

C
on

ta
in

s

M
at

hO
p:

*

C
on

ta
in

s B
lo

ck
:*

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:B

O
U

N
D

C
on

ta
in

s

C
on

ta
in

s

A
ss

ig
n:

*

C
on

ta
in

s A
ss

ig
n:

*

C
on

ta
in

s

L
oo

p:
*

C
on

ta
in

s

C
on

ta
in

s

A
ss

ig
n:

*

C
on

ta
in

s
C

on
ta

in
s

St
ri

ng
:0

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:0

C
on

di
tio

n

C
om

pa
re

:*

C
on

ta
in

s

M
at

hO
p:

*

C
on

ta
in

s

B
lo

ck
:*

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:B

O
U

N
D

C
on

ta
in

s

C
on

ta
in

s

L
oo

p:
*

C
on

ta
in

s

A
ss

ig
n:

*

C
on

ta
in

s

C
on

ta
in

s

C
on

ta
in

s

M
at

hO
p:

*

C
on

ta
in

s

C
on

ta
in

s
C

on
ta

in
s

M
at

hO
p:

*

C
on

ta
in

s
C

on
ta

in
s

C
on

ta
in

s

C
on

ta
in

s

A
ss

ig
n:

*

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:0

C
on

di
tio

n

C
om

pa
re

:*

C
on

ta
in

s

M
at

hO
p:

*

C
on

ta
in

s

B
lo

ck
:*

C
on

ta
in

sC
on

ta
in

s

St
ri

ng
:B

O
U

N
D

C
on

ta
in

s

C
on

ta
in

s

A
ss

ig
n:

*

C
on

ta
in

s

L
oo

p:
*

C
on

ta
in

s

L
oo

p:
*

C
on

ta
in

s

C
on

ta
in

s

St
ri

ng
:0

C
on

di
tio

n

C
om

pa
re

:*

C
on

ta
in

s

M
at

hO
p:

*

C
on

ta
in

s

B
lo

ck
:*

C
on

ta
in

s
C

on
ta

in
s

St
ri

ng
:B

O
U

N
D

C
on

ta
in

s
C

on
ta

in
s

If
:*

C
on

di
tio

n

C
om

pa
re

:*

Fu
nc

tio
n:

m
ai

n

Figure 2.9: Conceptual graph representation of a “real-life” function

Chapter 3

Code Retrieval using
Conceptual Graph

Representations

We now turn to a description of the actual task at hand: using the conceptual
graph representation for retrieving source code.

3.1 The Retrieval Model

Before we design our retrieval procedure, we must abstract one level and define
the ingredients of our retrieval model. All retrieval models contain a definition
of (at least) the following basic elements [4]: documents, queries or information
needs, and relevance. We will now define them in the context of graph-based code
retrieval.

• The documents are the units of information to be retrieved. In this case,
they are source code files which are all written in the same well-defined
programming language. We assume all files are written according to the
grammatical rules of the programming language, and ignore those who do
not comply with this. This is not a very strict constraint since the retrieval
process is aimed at existing, working code, and since tools that verify the
grammaticality of source code (compilers, interpreters) are used by everyone
who is creating such documents.

• The queries in our model are also grammatical source code texts.

• The definition of relevance is more complex. We define a document d to be
relevant to query q if the code in d and the code in q perform an identical
or related task, or more generally – if a programmer writing q and needing
examples of similar code would find d helpful. This is of course a subjective

Code Retrieval using Conceptual Graph Representations 27

measure, but this can be said about all relevance judgments in the context of
information retrieval: were they not subjective, the ideal retrieval procedure
could be explicitly stated and implemented.

After defining our top-level concepts, it is now possible to discuss the actual
procedures for retrieval using the graph representations.

3.1.1 The Retrieval Process

All information retrieval systems — whether they are aimed at unstructured text,
semi-structured text, or other types of documents — operate in the same spirit.
The ingredients of a retrieval system include:

• A document collection D = 〈d1, d2, . . . , dn 〉.

• A query q.

• A function f which maps a query and a document to a value which is or-
dered (usually, a real number). Usually, this function is a similarity measure
between two documents of the same format, and the query is considered to
be a document or transformed to one.

The retrieval process is then a straightforward one: for each document di in D,
compute f(q, di). Then, rank the documents according to the order between the
computed values, to get their relative relevance to the query.

In many cases, a preprocessing step is performed prior to the retrieval itself,
mainly for efficiency reasons. In this step the document collection is converted
to an intermediate format, to make the computation of f easier. The conversion
may include a number of separate stages; for example, in the application of the
vector-space retrieval model to natural language text retrieval, the preprocessing
step includes optional stemming, optional stopping, conversion of the documents
to vectors of terms, and creating reverse-indexes of them according to the terms.

In essence, retrieval of source code is no different than the described algorithm:
first, the source codes text files are preprocessed and converted to an intermediate
format; when a query is presented, it is also converted to this format. Then, using
a similarity measure between two instances of this intermediate representation, the
code files are ranked. In the case of retrieval using CGs, the intermediate format
is an SCG, and the conversion process was described in the previous section. The
process does not include indexing (see discussion in section 5.1).

We are now left with defining a similarity measure between two SCGs that
will approximate the relevance notion discussed earlier; this will be done in the
following section.

28 Code Retrieval using Conceptual Graph Representations

3.2 A Similarity Measure for Source Code Conceptual
Graphs

3.2.1 Retrieval Similarity Measures

Measurement of the similarity between two information entities can be thought
as an attempt to find the amount of shared information between the entities and
comparing it to the amount of distinct (non-shared) information of both. This is a
fundamental concept in information retrieval, where an information need is usually
compared to multiple sources of information, and the latter are ranked according
to their “relevance” to it - many times estimated using the similarity to them.

Standard textbooks [70, 4] introduce many similarity measures; 67 different
measures were identified and compared in [55]. The similarity measures used to
retrieve information range from ones comparing numerical feature vector repre-
sentation of the information, such as cosine similarity and Dice coefficient, to
distance-based measures that assume the domain is represented in a hierarchical
network. However, most measures are based on the same idea, where the mutual
and disjoint information of the entities is formalized and compared.

3.2.2 Comparing Conceptual Graphs

Calculation of the distance between conceptual graphs is an important notion not
only in the retrieval settings, but also for case based reasoning and for machine
learning methods. A number of techniques exist for conceptual graph comparison:
most importantly, a family of projections and morphisms was defined already with
the presentation of CGs in [80] and extended later (for example, in [31]). Sowa also
discussed the idea of semantic distance, a metric related to the distance between
two concepts in the knowledge canon (but not extended to an entire graph - see
also [25]).

The main disadvantage of morphisms is their strictness: in essence, they are
aimed at locating identical graphs or subgraphs. Such similarity measures are
unfit for “fuzzy” matching criteria, the ones needed for IR, although theoretic
work about using them in the IR context has been done [33].

To address this issue, more relaxed measures were developed. In [92], a sim-
ilarity measure is presented which is composed of a conceptual similarity and re-
lational similarity ; the first one measures the amount of shared concepts between
the graphs, and the second – the structural similarity, measured as a ratio between
the size of the overlap graph between the graphs and their combined size. Another
approach, based on defining a set of legal transformations between graphs (each
associated with a cost), is presented in [9]. A method for comparing graphs with
different canons is presented in [22], but most of the work focuses on uniting the
canons and the comparison itself is again based on morphisms. A similar approach,

Code Retrieval using Conceptual Graph Representations 29

which requires definition of an interest function for the graph, is discussed in [62].
The problem with most of these techniques is that they tend to require a high

level of structural similarity, basing the similarity on morphisms and generaliza-
tions. In this way, the importance of the information in the concept nodes itself
is assigned a much lower importance. Structural fuzziness is permitted, but at
the cost of complex prerequisites (sets of transformations between graphs, interest
functions). Additionally, the information contained in the concepts is not com-
pared flexibly, but only used as a “classification” of the nodes, to decide if they are
matching or not. The actual distance between two nodes, semantic or other, is not
taken into account, as the “atomic operation” of the comparison — the operation
of comparing two concepts — is a simple match with a binary result.

For example, the reported similarity measures will not render the graphs in
figure 3.1 highly similar, although they may be related:

Loop:* Comment String:Sleep until user responds

Block:* Comment String:wait for user responseLoop:* Contains

Figure 3.1: Related graphs

Requirements

A good similarity measure for conceptual graphs, like any similarity measure used
for information retrieval, should follow a number of “rules of thumb”. Given a
graph query Gq, a similarity measure sim between graphs and a collection of graphs
{G1, G2, . . . , Gn}, it would be desirable for sim to have the following properties:

1. ∀Gi ∀Gj , sim(Gi, Gj) = sim(Gj , Gi) : a symmetry requirement.

2. ∀Gi ∀Gj , sim(Gi, Gi) > sim(Gi, Gj) : a graph should be maximally similar
to itself.

3. “Correctness”: if graphs Gi, Gj represent fragments of code which are de-
cided to be “similar” (according to the definition set earlier) then sim(Gi, Gj)
should have a higher value than sim(Gi, Gk), where Gk is another graph that
represents a less similar code fragment (as decided by the same means).

4. The complexity of computing sim should be “reasonably” bounded.

30 Code Retrieval using Conceptual Graph Representations

Overview and Intuition

As mentioned earlier, the similarity measure captures the relative shared infor-
mation between to entities, relative to their distinct information. In a conceptual
graph, there are a number of layers of information: first, the knowledge taxonomy
behind the graph. Since all the SCGs share the same canon, this aspect will be
ignored. Second, there is the information represented by the concept nodes: this
includes both the node type (loop, string) and, if applicable, the referent data in
the node (string:iostream.h). Third, the structure of the graph is informative
in itself, both since the relation nodes may hold attributes and since the structure
provides knowledge about how concepts relate to each other. In [92], the latter
two sources of information are compared separately and referred to as “conceptual
similarity” and “relational similarity”.

To measure the similarity between graphs, we would like to use both the no-
tion of “conceptual similarity” and “relational similarity”, but in a way that is
interleaved; the strong connection between the structure and the content in the
case of source code should also be expressed in the similarity measure used for it.
An idea which seems promising is to compare the graphs node-by-node, traversing
them and acquiring through the traversal both information about the content of
the nodes and the structure of the graph. For a good traversal, both in terms of
comparison accuracy and complexity, we should locate good candidate nodes from
which the traversal has a high chance of giving meaningful results: we would like
to start the traversal of both graphs from nodes which share a lot of content. For
example, if we are comparing two SCGs which represent loops (but maybe one
of them is a for loop and the other a while and the variable names the loops
are using are also different), it will seem reasonable to start the traversal either
concurrently from the nodes representing the loop concept, or from the nodes
representing the variable, but not traverse one graph from the loop node and the
other from the variable node. We refer to such a concept, which is a good can-
didate for comparison to another, as its “most similar concept”. But, even if we
can discover the concept nodes from which we should start, we are still faced with
a complex situation. We can easily measure the similarity between the nodes by
comparing their type and their referents, but comparing their context in the graph
— the concepts to which they are related — is a harder task. We must identify,
at every stage of the traversal, “similar edges” out of the two compared nodes
(to follow them and continue the comparison). These edges are not guaranteed to
exist at all, and even if they exist, their identification can be very complex [26].

Instead of performing a simultaneous traversal when comparing two nodes, we
opt to use a simpler technique: collapse the information “around” the node into
it. In this context, the information “around” the node is the one contained in the
relations and concepts around it. This information should be of lower significance
than the information kept in the node itself; a natural parameter to use for deciding

Code Retrieval using Conceptual Graph Representations 31

how much lower the significance should be is the relation type between the two
nodes. If we assign a weight to every relation type, we can easily include the
“weighted down” information around the nodes being compared, as depicted in
figure 3.2.

WeightInformation

Function:main

Returns

Variable:res

Contains Comment

String:simple multiplicationVariable:mul

weight(Comment)

1Function:main
Variable:mul
String:Simple multiplication
Variable:res

weight(Contains)

weight(Returns)

Figure 3.2: Concept Extension

Once the information expansion step has been defined, we can apply and con-
tinue to apply it recursively, and include in the comparison also information that
is referenced from the information we are including, etc. For the same reason, the
information should be added to the node being compared with a weight which is a
combination of all the weights of the relations on the path from the original node
to the information.

At this stage, the “expanded nodes” that we are comparing contain multiple
bits of information (each with its own weight). These information bits can be
of different types - one can be a string (coming from a comment) and another
a number, some value assigned to a variable. A naive approach to coping with
this diverse information is to treat all information as strings and compare it as
such. A more involved approach would be to store the information bits in separate
partitions, according to their type, and comparing each partition to its matching
partition, summing up the intermediate results.

Repeating this process for all nodes in the graph yields a similarity score be-
tween the two graphs, as follows:

32 Code Retrieval using Conceptual Graph Representations

sim := 0
foreach concept c1 ∈ G1

msc := most similar concept to c1 in G2

sim := sim + similarity(c1, msc)
end foreach
foreach concept c2 ∈ G2

msc := most similar concept to c2 in G1

sim := sim + similarity(c2, msc)
end foreach

We are still left with defining a method for locating the “most similar concepts”:
our approach is to regard a concept c2 ∈ G2 as the most similar one to c1 ∈ G1

if there are no concepts in G2 with a higher similarity to c1, using the similarity
measure discussed.

Limitations

There are two main drawbacks of this similarity measure: the first one is loss of a
lot of the structural information in the graph. As stated earlier, graph comparison
methods tend to focus on structure, while here the only usage of structure is for
distance calculation and weight assignment. In our view, for the specific conceptual
graphs we are dealing with, this is not necessarily a drawback but can also be
viewed as an advantage: in such a graph, the “real” information is in the concepts,
and the relations indeed specify “how important” the connection is between two
concepts. The second drawback is complexity; the suggested method requires quite
a lot of computations and for large graphs seems problematic. We will return to
this issue later, in sections 3.2.3 and 5.1, where we also discuss possible variations
of the process.

Going back to the (desired) requirements we have set in section 3.2.2, it is easy
to see that the proposed measure conforms to requirement 1. As for requirements
2 and 3, they will be evaluated in chapter 4. A bound on the complexity of the
process, as needed by requirement 4, is given in section 3.2.3.

Details

We will now formally define the components of the discussed similarity measure.

First, we define a number of weights associated with components of the con-
ceptual graph:

Concept Type Weight : Marked wt
c(c), the concept type weight is a value mea-

suring the “importance” of a concept type, and is fixed for all concepts of
the same type. For example, a concept of type string should probably have
a higher weight then the type if-statement.

Concept Referent Weight : Marked wr
c(c), the concept referent weight is a

value proportional to the amount of information kept in a concept. The

Code Retrieval using Conceptual Graph Representations 33

amount of information is simply measured by the length of it (in bits or
bytes for example).

Concept Weight : The concept weight, wc(c), is simply the product of the two
components of the weight of the concept: wc(c) = wt

c(c) · wr
c(c).

Relation Weight : The relation weight, wr(r), is similarly a value associated
with a relation, and is composed solely of a fixed value according to the
relation type (a “relation type weight”). It can also be referred to as Relation
Type Weight, or wt

r(r).

Next, we define the basic similarity notions between the concepts in the graph:

Concept Type Similarity : This value, marked simt
c(ci, cj), measures the sim-

ilarity between the types of two concepts. For example, it gives a notion of
how much a loop concept type is similar to a block type, and can be simply
predefined in a matrix of all concept types. An even more naive approach
would be assigning 1 to this value if the concept type is identical or if one
concept type is inherited from the other, and some very low value otherwise.

Concept Referent Similarity : Marked simr
c(ci, cj), this value measures the

similarity between the content of the concepts. If the referent is empty in
both concepts, it is defined as 1. Otherwise, we use the Levenstein string-
distance value (sometimes referred to as “edit-distance”, [14]) to quantify it;
this standard method measures the number of “edits” required to turn from
string A into string B and defines their relative distance as dependent on the
number of edit steps and their length.

Concept Similarity : This value, marked simc(ci, cj), measures the similarity
between two concepts (without the contextual information, i.e. the relations
and concepts around the compared concepts). It is simply the product of the
concept type similarity and concept referent similarity between the concepts,
normalized by their weight: simc(ci, cj) = simt

c(ci, cj) · simr
c(ci, cj) · wc(ci) ·

wc(cj). We chose a product of the weights rather than a sum of them to give
a high significance to very low weights: if one of the weights is very low, its
effect on the entire similarity should be substantial.

We now formalize the “information extension” process described earlier:

Extended Concept : This is an extension of the conceptual graph standard con-
cept. A standard concept has only one type and one referent; an extended
concept has a set of 〈concept type, concept referent〉 pairs. This extension
can easily transformed back to standard conceptual graph concepts by ex-
tending the concept lattice with new concept types which are in fact a repre-
sentation of the combined “concept sets”, and change the possible referents

34 Code Retrieval using Conceptual Graph Representations

accordingly. This notion is required for the concept extension step: we need
a formal way of representing multiple bits of information in a single concept.

Weighted Extended Concept : This is an extended concept with a weight
associated with every referent (every information bit).

Concept Extension : This is a process of extending the knowledge in a concept
to include information from another concept with some weight; it can also be
viewed as a function f : C ×C ×< → C, i.e., a function that takes a pair of
(possibly extended) concepts and a number, and produces a new (weighted
extended) one. Let c1 be the concept to be extended with c2 and with weight
x; then the result of the extension ext(c1, c2, x) is defined as follows:

• If c1 = c2, then ext(c1, c2, x) = c∗1, where c∗1 is identical to c1 but with
all referent weights multiplied by x.

• Otherwise, for all concept types, we add the referent information in c2

to the corresponding referent in c1, with weight x.

Extended Concept of order n : The extension of a concept c of order n, marked
extn(c), augments the information in concept c with the information kept in
the concepts related and recursively in the concepts related to them, up to
depth n. It is defined as follows:

• ext0(c) = ext(c, c, 1): The extended concept of order 0 is the concept
itself.

• ext1(c) is defined according to the number of concepts related to c:
if there is one related concept c1, which is related to c with relation
r1 then extc(1) = ext(c, c1, wr(r1)). Similarly, for n related concepts,
extc(1) = ext(. . . (ext(ext(c, c1, wr(r1)), c2, wr(r2)), . . . , cn, wr(rn)). In
simpler words, it is just the extension of c with all the concepts “around”
it, where the extension weight for any concept is determined by the
weight of its relation to c.

• extn(c) is the extension of c with all related concepts, where they them-
selves are extended to order n− 1.

As a special case, ext∞(c) is the maximal extension of c – extending over all
reachable nodes. We can of course set n to be |E|, the number of edges in
the graph - and get the same.

Equipped with these definitions, it is now possible to discuss the similarity
between extended concepts, and its derivatives:

Code Retrieval using Conceptual Graph Representations 35

Extended Concept Similarity : Corresponding to the notion of concept sim-
ilarity, this measures the similarity between extended concepts. Since both
concepts may have more than 1 concept type and referent, we simply sum
over all possible pairs of concept similarities between the concepts. So, as-
sume the two extended concepts c1, c2 have the referents c1,1 . . . c1,n and
c2,1 . . . c2,m, where the concept types are T (c1,1) . . . T (c1,n) and T (c2,1) . . . T (c2,m),
the referents R(c1,1) . . . R(c1,n) and R(c1,1) . . . R(c1,n), and the weights w1,1 . . . w1,n

and w2,1 . . . w2,m respectively. The extended concept similarity is then

extsim(c1, c2) =
n∑

i=1

n∑
j=1

w1i · w2j · simc(c1,i, c2,j)

where ci, cj are concepts created by leaving only type/referent i and j respec-
tively out of the concepts c1 and c2. For example, given the two extended
concepts in figure 3.3, and using weighting schemes where the type similarity
is 1 if the types are identical and 0 otherwise, and where the referent weight
is proportional to its length, we calculate the similarity as follows:

Information Weight Information Weight

1Loop:*
0.9String:Sleep until user responds

1Loop:*
Block:*
String:wait for user response 0.45

0.5

Figure 3.3: Sample extended concepts

extsim = 1 · 1 · sim([Loop:*],[Loop:*])
+ 1 · 0.9 · sim([Loop:*],[String:Sleep . . .])
+ 0.5 · 1 · sim([Block:*], [Loop:*])
+ 0.5 · 0.9 · sim([Block:*], [String:Sleep . . .])
+ 0.45 · 1 · sim([String:wait . . .], [Loop:*])
+ 0.45 · 0.9 · sim([String:wait . . .], [String:Sleep . . .])
= 1 + 0 + 0 + 0 + 0 + 49 · 0.41 · 23+26−12

23+26 = 15.98

Extended Concept Similarity of order n : Marked extsimn(ci, cj), this value
measures the similarity between two concepts with contextual information
up to depth n: extsimn(ci, cj) = extsim(extn(c1), extn(c2)).
It is simply the similarity between the extended concepts ci, cj (of order n).

Maximally Similar Concept : Given a concept c∗1 ∈ G1 and another graph G2,
this is a concept c∗2 ∈ G2 that has the highest concept similarity to c∗1 (without
contextual information): ∀ci ∈ C1,∀cj ∈ C2, simc(c∗1, cj) 6 simc(c∗1, c

∗
2). We

will use the notation MSC(c1, G2) for this concept; note that there can exist

36 Code Retrieval using Conceptual Graph Representations

more than one Maximally Similar Concept; in that case, one can be selected
randomly.
It is possible to include contextual information when searching for the MSC
(by defining a “Maximally Similar Concept of order n”, that uses extsimn

instead of simc), at an additional computational cost.

Finally, we can define the similarity measure between two SCGs G1, G2 using
the above definitions and notations, as follows:

simn(G1, G2) =
∑

ci∈G1
extsimn(ci,MSC(ci, G2))

+
∑

cj∈G2
extsimn(cj ,MSC(cj , G1))

Actually, this gives us a family of similarity measures, since we can select the
order of the Extended Concept Similarity, both for computing the MSC and for
the matching itself.

3.2.3 Complexity

One of the requirements for the similarity measure was bounding the complexity of
it (see section 3.2.2). We mentioned earlier that graph-based similarity measures
come at a high cost: we now analyze the complexity of calculating the various
building blocks discussed in the previous section, and the complexity of the process
as a whole.

First, we give the complexity of the defined weights; since the length of the
information kept in the nodes is of limited size, it will be treated as constant.

• Concept Type Weight: O(1) - simple lookup.

• Concept Referent Weight: O(1) - determined by information length.

• Concept Weight: O(1) - product of previous two measures.

• Relation Weight: O(1) - again, lookup.

Next, we discuss the complexity of the basic similarities between concepts:

• Concept Type Similarity: O(1) - comparison of two values.

• Concept Referent Similarity: O(1) - comparison of constant amount of in-
formation.

• Concept Similarity: O(1) - product of two O(1) measures.

Code Retrieval using Conceptual Graph Representations 37

We now bound the complexity of the concept extension process, and the derived
similarities:

• Concept Extension (of order n): An extension of the concept requires cal-
culation of the extension with all neighbor nodes; at most, we will have to
extend to the entire graph, or make |G| extension steps (each of them at cost
O(1)). So, the final complexity is O(|G|).

• Extended Concept Similarity: We must compare every possible referent type;
in the worst case there are |G1| referents for the first concept and |G2| for
the second, and the complexity is O(|G1| · |G2|).

• Extended Concept Similarity of order n: First, we need to calculate the
extended concepts - this will be O(|G1|)+O(|G2|). Then, we need to compare
them, which is O(|G1| · |G2|) as shown earlier, so the final complexity is also
O(|G1| · |G2|).

• Maximally Similar Concept: We must compare a concept c1 ∈ G1 to all
concepts in G2, so we get a complexity of O(|G2|). If we choose to look for
an MSC of order n, we similarly get O(|G2| · (|G1| · |G2|)).

Finally, we can calculate and bound the total complexity of the graph similarity
measure and the retrieval process:

• Conceptual Graph Similarity: First, we must find all Maximally Similar
Concept pairs for the concepts of G1 and G2. This costs, as shown above,
O((|G2|+ |G2|) · (|G1| · |G2|)). Then, we require a calculation of |G1|+ |G2|
Extended Concept Similarities of order n, or (|G1| + |G2|) · O(|G1| · |G2|).
The total complexity is then O((|G1| + |G2|) · O(|G1| · |G2|)), for MSCs of
order 0.
Let |G| = max(|G1|, |G2|), then we arrive at a total complexity of O(|G|3).

• Retrieval using CG Similarity: Given a document collection with N docu-
ments, we must perform N comparisons, for a total complexity of O(|G|3 ·N).

We end up with a polynomial complexity for the similarity measure; while
this is a typical result for graph algorithms, it is much higher than the linear
complexity (depending on the query size) of classic textual similarity measures [71].
Moreover, the “atomic operation” we have is string distance measuring, and not
simple term comparisons, resulting in our O(1) measure of it being in practice
substantially higher than the equivalent O(1) operation in the classic similarity
measures. Finally, the fact that no preprocessing takes place requires us to compare
the query to the entire collection, unlike classic models which use indexing to
acquire fast access to the documents that should be compared.

38 Code Retrieval using Conceptual Graph Representations

We discuss practical implications of the high complexity and some methods for
handling it in section 4.1.8, and suggest further ways to reduce it in section 5.1.

3.2.4 Additions and Modifications

Many changes and enhancements can be introduced into this basic framework; we
experimented with some, and list others in section 5.1. Among the modifications
that we implemented, based on improving results of initial experiments and on
practical constraints, were filtering procedures for reducing the number of graphs
being compared; more details on this can be found in section 4.1.8.

An additional modification we used was document length normalization of
the similarity measure. Document length normalization is a known performance
booster in retrieval systems [70], and we expected similar findings here. Basically,
this normalization gives a “fair chance” to documents of all lengths by weighting
down long documents (which are more likely to contain matches) and weight-
ing up short documents similarly. For the document length, we used a standard
string representation of the graph, including all structural and content informa-
tion. Given graphs G1, G2 and their similarity sim as defined above, we computed
the normalized similarity in a simple way:

simnorm(G1, G2) =
sim(G1, G2)
|G1|+ |G2|

Experiments proved that using the normalized similarities yielded equivalent pre-
cision scores to unnormalized ones (and in a few cases, slightly better), so the
normalization was added to the similarity definition.

Again, we discuss further possible modifications in section 5.1.

3.2.5 Summary

We presented a similarity measure for the graphs that we construct from source
code, that uses both the information from the code and the knowledge about
how this information is interconnected. At this stage, we face two issues. First,
we want to validate the fitness of the measure to the task at hand, and see if
the assumptions we made have concrete support. Second, the complexity of the
measure seems rather high, and we need to test whether the method is applicable;
if not, perhaps various constraints help to reduce this complexity.

We therefore proceed by conducting experiments using our retrieval method
and evaluating their results.

Chapter 4

Evaluation

In this chapter we describe the experiments carried out to evaluate the SCG re-
trieval method and discuss their results. We proceed as follows: first, we describe
the environment in which the experiments were made, the types of experiments
and the way in which they were compared to baselines. We then present the
results of the experiments, starting with experiments for tuning of various param-
eters and moving on to the actual retrieval experiments; a discussion follows each
result presented.

4.1 Experimental Setting

An evaluation platform for retrieval experiment includes a number of ingredi-
ents [4]. First, a document collection fit for the task needs to be defined. Next, a
set of experiments should be described, each stating a goal and including a mea-
sure for evaluating its results and procedures for relevance assessment. Finally, in
a setting where new models are introduced, a baseline model should be described
and used to compare the results to.

We define these ingredients in the following sections.

4.1.1 Document Collection

The main problem in evaluation of source code retrieval is the lack of assessed
corpora. While open-source projects exist in many programming languages – some
of them spanning millions of lines of code, such as OpenOffice [56] or KDE [39] —
there is no publicly available corpus of code which is grouped in clusters of “similar
code”, or a corpus of code annotated with relevancy assessments regarding queries.
Since assessing an entire corpus in this way is a very laborious task, it was decided
to obtain a corpus that contains, with high likelihood, many clusters of similar
documents.

40 Evaluation

The selected document collection was a subset of the source code of gcc - the
popular GNU compiler suite [28]. The subset includes the compiler’s test-suite for
the C language, and consists of 2932 files written in GNU-C (standard C, with a
number of extensions). The total number of lines of code is 88363 and the number
of tokens is 326238. The tested gcc version was 3.3.2 (released October 2003, latest
at the time of the experiments). The reasons for choosing this corpus include:

Language. C, or GNU-C in this case, is a relatively unambiguous language, with
a grammar which is not too complicated on the one hand but allows complex
structure on the other. Additionally, the language is very popular for large-
scale software projects (the Linux kernel, gcc/gdb and Perl are all written
in GNU-C, to name just a few); this renders the results of the experiments
applicable to the required domain, i.e., enterprise software development. Fi-
nally, the frequent usage of C as a programming language ensures existence
of many helper tools to simplify tasks such as tokenization and parsing.

Document Size. For the retrieval evaluation, relatively simple Perl programs
were used, as the purpose was a proof-of-concept rather than efficient re-
trieval. It was therefore desirable to have a relatively small average docu-
ment size for the collection; in the gcc test-suite, the average document size
is 111.3 tokens and 30.1 lines. However, the approach itself is not dependent
on the document size, and in any case chunking and “windowing” techniques
can be used to generate smaller documents.

For this collection, the average ratio between nodes in a graph and lines-of-
code was 2.49.

Structure. Being a test-suite, the collection includes many different aspects of the
language, making use of literally all options GNU-C offers. Additionally, the
test-suite is written by many different contributers, ensuring an inconsistent
programming style and (with high likelihood) repetition of code. To make
things even “better” (in terms of fitness of the corpus to the problem), the
documents in the test-suite are in many cases cryptic, with meaningless
variable names and with little documentation. This, of course, makes them
an interesting test case for comparison and retrieval.

The following is an example of a typical piece of code out of one of the docu-
ments in the corpus (docid 3111):

Evaluation 41

#define MAX_COPY 15

char A = ’A’;

int main () {

int len;

char *p;

/* off == 0 */

for (len = 0; len < MAX_COPY; len++) {

reset ();

p = memset (u.buf, ’\\0’, len);

if (p != u.buf) abort ();

check (0, len, ’\\0’);

p = memset (u.buf, A, len);

if (p != u.buf) abort ();

check (0, len, ’A’);

p = memset (u.buf, ’B’, len);

if (p != u.buf) abort ();

check (0, len, ’B’);

}

}

. . . and here is another piece of code, from a different document (docid 3103),
which is similar to the previous one and probably shares a copy-paste relation with
it:

#include <string.h>

#define MAX_OFFSET (sizeof (long long))

#define MAX_COPY (10 * sizeof (long long))

#define MAX_EXTRA (sizeof (long long))

char A = ’A’;

main () {

int off, len, i;

char *p, *q;

for (off = 0; off < MAX_OFFSET; off++)

for (len = 1; len < MAX_COPY; len++) {

for (i = 0; i < MAX_LENGTH; i++)

u.buf[i] = ’a’;

p = memset (u.buf + off, ’\0’, len);

if (p != u.buf + off) abort ();

q = u.buf;

for (i = 0; i < off; i++, q++)

if (*q != ’a’) abort ();

}

}

As visible in the example, the code demonstrates many of the “sicknesses” of
code in large project: lack of documentation, meaningless variable names, incon-
sistent coding convention and so on.

42 Evaluation

4.1.2 Experiments

The following experiments were carried out:

Parameter Optimization: First, a limited amount of experiments was performed
to test various parameters within the graph retrieval process (match depths,
relations weights). The purpose of these experiments was to function as a
basic tuning mechanism for the parameters, which are later fixed for the
actual retrieval experiments. An interesting side-effect of these experiments
was insight into the significance of various settings for the retrieval, and hints
regarding which additional optimization could be beneficial.

Identical Document Retrieval: For this experiment, we composed a list of
queries which were documents chosen randomly out of the collection. For
each query, the top ranking 10 documents were retrieved using the graph
comparison mechanism. The purpose of this experiment was twofold: first,
to serve as a sanity check for the entire retrieval process. When using a
document from the collection as a query, we expect a good similarity mea-
sure to rank the document itself at a very high rank – ideally at rank 1,
as stated in section 3.2.2. The second purpose of the experiment, perhaps
a more important one, was a more “classic” retrieval experiment aim: to
analyze the rest of the top ranking documents, and check whether they are
relevant to the query. The number of queries issued was 25; this number is
based on [86] and is considered the minimal amount needed to provide some
statistical significance to the results.

Modified Document Retrieval: For this experiment we introduced a new set
of documents derived from the documents used for the previous experiment.
Each document was modified in a number of ways, based on code changes
that have been reported as frequent in [88]:

1. Changing names of tokens (such as variables and functions). Where
the old token names had “meaning”, the new names were also cho-
sen to have some meaning, i.e., loop counter → numLoop. It should
be noted, however, that in the vast majority of the cases the tokens
were meaningless strings and were thus converted to other meaningless
strings: bmu1 → cl 1.

2. Comment modification - comments were changed in a way that pre-
served the natural-language meaning, but modified the phrasing, loca-
tion, amount of details and so on. For example, the comment will
never be executed was changed to never reached. Other comments
were simply removed, and new comments were sometimes added.

3. Changing order of statements (where it does not effect the program).

Evaluation 43

4. Adding bogus statements.

5. Code style changes (for loops to while loops, reverse conditional state-
ments, change order of parameters in function calls etc).

In this way, we created documents (to be used as queries) for which we were
guaranteed the existence of at least one highly “relevant” document in the
collection (according to our relevance definition): the document which was
modified to create the query. The goal of this experiment was similar to
our second goal in the Identical Document task: to evaluate the “retrieval
effectiveness” of the method, this time using a more real-life scenario where
retrieval is done with a query that is not identical to any document in the
collection. The number of queries issued in this task was also 25.

Statistical Significance Tests: A statistical significance test determines the prob-
ability that a given result of an experiment occurred by chance. The sign-
test is a specific significance test suited for comparing results of two retrieval
methods [34] since it does not make any assumption regarding the results
(whereas other tests assume certain properties about the distribution of the
results).

The sign test is calculated as follows. First, we align the results of the
two methods so that for the queries i = 1 . . . n the results are Xi and Yi

respectively. Now, we define Di to be the “difference” in the results, i.e.
Di = Yi−Xi. With this notation, the test yields the following upper bound on
the probability that the “null hypothesis” is correct, i.e. that the difference
between the results is coincidental:

T =
2 ·

∑
I[Di > 0]− n√

n

where

• n is the number of queries.

• I[Di > 0] is 1 if Di > 0 and 0 otherwise.

In addition to the sign test, there are “multi-method” significance tests,
aimed at comparing results of more than two retrieval methods (ANOVA [34]).
Although we have multiple baseline methods, we do not use such significance
tests; we compare our method only to one of the baselines, for reasons ex-
plained in section 4.2.3.

For our null hypothesis, we assume that our method is equivalent to the
baseline method we are comparing it to (the baselines are specified in the
section 4.1.6).

44 Evaluation

Method Combinations: In our final set of tests we combined the results of
two different methods, the most successful baseline and the graph retrieval
method. For the combination we used the same method as described in [38],
i.e. a linear combination of the normalized scores of the two methods, with
various λ values.

4.1.3 Measures

The standard measures for retrieval performance [4] are precision and recall :

Precision ≡ |Relevant ∩Retrieved|
|Retrieved|

Recall ≡ |Relevant ∩Retrieved|
|Relevant|

where

• Relevant is the set of relevant documents in the collection

• Retrieved is the set of documents retrieved by the method

Other often-used metrics are the F-measure, which is a combination of precision
and recall, R-Precision which is the precision at rank |Relevant|, precision@n
which is the precision at rank n, and various average values of the precision.

An additional measure which is common in the case of known item search —
retrieval where a single item is known to exist and answer the query — is the
Reciprocal Rank, or RR [87]. The RR is a value which is inversely proportional to
the rank given by the retrieval method to the single relevant item. Given a query
q with a single relevant item d, the RR score for a system will be 1

rank(d) , i.e. 1
if the d was the top retrieved document, 1

2 if it was the second, 1
3 if it was the

third and so on. The Mean Reciprocal Reciprocal, or MRR, is the average RR of
all queries.

While measuring the recall requires assessing the entire collection, precision
requires assessment of a fixed amount of documents only; since our document
collection is not pre-assessed, we decided to focus on precision measures rather
than recall. In such scenarios, and also in cases where the retrieval is aimed at a
human user that will probably not look at more than a few results, it is common to
use the precision@n measure and to fix n to low values. We have chosen to measure
the average precision@5 - the average percent of relevant documents in the top
5 documents retrieved, and the Mean Reciprocal Rank. For measuring MRR, a
single correct document should be defined; for the Identical Document Retrieval
we used the document identical to the query, and for the Modified Document
Retrieval the document from which the query was originally derived. In both
cases we ignored additional retrieved relevant documents.

Evaluation 45

The MRR measure serves two purposes. For the Modified Document Retrieval
task, it serves as a primary measure for the method’s accuracy: a good method
should find the original document, given the modified one, and assign a high rank
to it. For the Identical Document task, it is a secondary measure, functioning as
sanity-check of the retrieval methods, assuming a good method should retrieve a
document taken out of the collection at a very high rank.

The aims of the precision@5 measure are inverse to the MRR one: it is a
primary measure for the Identical Document task, measuring the actual “relevant”
documents found. For the Modified task, it is a secondary measure since relevant
documents (other than the one that should be detected by the MRR score) are
not even guaranteed to exist in the collection.

Other measured values included the percentage of queries for which the “exact
document” (as defined for MRR) was found and the average number of relevant,
non-exact matches in the top retrieved 5 documents.

4.1.4 Assessment

The results were assessed by a C-literate programmer; a document was defined as
“relevant” to a query if the assessor decided that the query and the document per-
form an identical, similar or related task, or that the code in the document serves
as an example/reference for someone writing the code in the query. As mentioned
in section 3.1, this is a subjective measure – like most relevance judgments.

4.1.5 Retrieval Parameters

A weak point of the SCG retrieval process is the large number of free parameters
which require tuning; we come back to this point in section 5.1. For the evaluation
of the methods, we experimented with some of the parameters, but not with all
of them (due to time limitations). The two main sets of parameters that were
predefined were the concept type weights and the relation weights; for both, we
manually assigned weights according to intuition (i.e., Comment is more impor-
tant than Contains, etc), and according to the concept hierarchy presented in
figure 2.1: a concept did not have a lower weight than its parent concept. Limited
experimenting resulted in other weights performing worse; this is reported in the
next section.

For the concept type similarity between two types, we assumed 1 if the types
are the same, and a small value otherwise.

46 Evaluation

4.1.6 Baseline Models

Probabilistic Retrieval

One of the simplest approaches to code retrieval is handling source code files
as standard text files; since this method is straightforward, both conceptually
and implementation-wise, it seems to serve as a good baseline for other code re-
trieval methods. The two mainstream approaches today to textual retrieval are
the vector-space approach and the probabilistic model approach [4, 70] (with lan-
guage modeling, the new kid on the block, advancing quickly [32, 16]); both are
equally successful, with advantages and disadvantages to both. Initial experiments
were conducted with both models, evaluating Okapi [67] (a probabilistic model)
and the Lnu.ltc weighting scheme [71] with no feedback (a vector-space approach).
The probabilistic model yielded slightly better results, and thus was chosen as a
baseline.

In the standard probabilistic approach to retrieval, the document collection is
first preprocessed and indexed; when presented with a query, all documents are
ranked according to the probability that they are similar to a query; since the
real probability is not known, estimates are used to calculate these probabilities.
The different types of estimates used are the main differences between the various
flavors of probabilistic retrieval.

The following is a description of the stages of the retrieval in this model:

• Preprocessing. First, each document was chunked to a number of separate
documents. A chunk includes a single piece of code (such as a function or a
struct) from the document, along with any global parts of it. The chunking
algorithm is as follows:

i := 0
global := ∅
foreach line of code in file f

if line contains open block
mark all lines until matching close block as chunk i
i := i + 1

endif
end foreach
foreach line of code in file f not marked as chunk

add line to global
end foreach
foreach resulting chunk

add global to chunk
end foreach

Where open block and close block are set according to the language;
in C they are the curly brackets symbols, i.e. “{” and “}” respectively. A
“matching” close block is defined as a close block which is on the same
nesting level as its open block, in the usual programming-language way.

Evaluation 47

Next, the files were tokenized to different words; token limits were the stan-
dard punctuation and white spaces, but also language-specific symbols (such
as ->, marking reference to a pointed variable in C). An additional delim-
iter used at this stage was the underscore character, as is it commonly used
in C to create compound words, such as matrix size. We further address
compound splitting issues in 5.1.

Finally, stopwords from the chunks were removed using a stop list developed
for C documents, and with a simplified version of the Snowball [79] English
stopword list.

The files were indexed using FlexIR [49], a vector-space model information
indexing and retrieval system developed at the University of Amsterdam.

After preprocessing, the collection consisted of 5324 chunks and 145720 to-
kens (i.e. the average document size is 27.4 tokens). The decrease in the
amount of tokens and average document size before preprocessing (326238
and 30.1 tokens respectively) comes both from the chunking process (which
resulted in 1.8 chunks per file, on average) and from the stopping process
which removed all language-specific keywords. It is interesting to note that
the stopping process removed more than 55% of the text, while stopping
natural language text results in a reduction of up to 40% [4] in the text size.

• Retrieval. The actual ranking of relevant documents was done in the Okapi
BM25 variant of the probabilistic retrieval model. In the Okapi model [67],
metrics from the vector-space approach such as term frequency (both in the
document and in the query) and document length are used for estimating the
probability that a document is relevant to a query. The similarity measure
we use is Jacques Savoy’s version of Okapi [72], i.e. Okapi weighting with
“default” English parameters (k1 = 2, b = 0.8) used for the documents, and
npn weighting used for the queries. This approach was shown to have good
precision@n for low n values, which is a desired feature in case the recall is
difficult to assess.

The Okapi weighting scheme for term j in document i is as follows:

okapiij =
(k1 + 1) · tfij

K + tfij

where:

– tfij is the term frequency of term j in document i

– K = k1 · ((1− b) + b · |di|
avgdoclen

– avgdoclen is the average document length

48 Evaluation

The npn weighting scheme for the term j in the query is as follows:

npnj = ntfqj · log
n − dfj

dfj

where:

– ntfqj = 0 .5 + 0 .5 · tfqj
max tfq

– tfqj is the term frequency of term j in the query

– max tf q is the maximal term frequency of any term in the query

– n is the collection size

– dfj is the document frequency of term j in the collection

The similarity between a document and a query for a term j is then the
product of the Okapi weights and the npn weights, and the total similarity
of document i to the query q is the sum of the term similarities:

sim(q , di) =
∑
j∈q

okapiij · npnij

String-distance Measures

While the Okapi weighting scheme has performed very well for early high-precision [23],
it can be argued that the probabilistic model is too weak to serve as a baseline
for our experiments. Many typical differences between similar code files include
tokens which have a small string distance between them — for this reason, string
distance measures were incorporated into the SCG comparison. But any difference
between two strings — small as it may be by a distance measure — renders them
completely different to standard probabilistic models. Methods for indexing a doc-
ument collection in a way that supports approximate queries exist [52]; however,
these methods are not fully incorporated into probabilistic (or vector-space) mod-
els yet; they allow fast search of a large text collection for an approximated pattern
rather than retrieval of a query, i.e. a set of tokens. In essence, these approximate
indexing methods simply provide a faster way for approximate search of a pattern
in a corpus, and do not provide the richness of a full retrieval model. It is not clear,
for example, how to calculate term frequency measures, both for the query and for
the document collection. Therefore, it seems that evaluating a standard retrieval
model, be it vector-space or probabilistic, is indeed beneficial. Nevertheless, using
string-distance measures also appears useful when evaluating the graph based code
retrieval approach, to check how substantial the usage of string-distance measures
is without the structural context. We have therefore implemented two separate
string-distance retrieval models:

Evaluation 49

Simple string-distance retrieval In this model, all files were first preprocessed
in an identical way to the Okapi baseline, i.e. chunked, tokenized and
stopped. The same preprocessing was performed on the queries. The docu-
ments were then ranked according to their string-distance from the query; to
measure the distance, we use the same Levenstein metric as the one used in
the graph retrieval process, and end up with the following similarity between
a preprocessed document di and a preprocessed query q:

sim(d, q) =
|di|+ |q| − distance(di, q)

|di|+ |q|

Typed string-distance retrieval In this model, we associate an “information
type” with each token of the code; the types we used were comment, de-
pendency statement, and other, and were obtained by shallow parsing
of the code. These categories were selected for a number of reasons: first,
these are distinct texts that are usually important in program understanding
and classification. Additionally, they do not require parsing, only pattern-
matching, which is a compromise between full structural knowledge and no
such knowledge. The last reason for choosing these categories was prac-
tical: since no parsing is involved, their extraction is “cheap”. After the
text classification, three separate strings were composed for every document,
each one containing all tokens from the document (in the original order) of
one of these types. The same process was carried out on the queries, so
for each document and query we had three separate string representations.
The comment string was stopped using an English stopword list, and the
other strings were stopped using both English and C lists. The documents
were then ranked according to the sum of three distance measures – the dis-
tances of the corresponding string representations. For a document di, we
mark c(di) as the described “comments string”, and similarly d(di) as the
“dependency statements string” and o(di) as the “others string”, and get:

sim(q, di) = |c(di)|+|c(q)|−distance(c(di),c(q))
|c(di)|+|c(q)| +

+ |d(di)|+|d(q)|−distance(d(di),d(q))
|d(di)|+|d(q)| +

+ |o(di)|+|o(q)|−distance(o(di),o(q))
|o(di)|+|o(q)|

4.1.7 Implementation

The algorithms were implemented in mixture of Java and Perl; for the graph
construction phase, we used the ANTLR [1] package, a compiler-compiler which
reads grammar files and produces parsers for these grammars, similar to the well-
known tool combinations lex/yacc or flex/bison. In our case, the grammar file

50 Evaluation

was a modified version of the GNU-C grammar from the ANTLR distribution, and
the generated code was a Java program which was then used to build the graphs
out of the C source code documents.

Perl was used for implementing the graph similarity measure, the baselines,
and various text-processing tasks such as tokenization, string-distance etc. One of
the more involved tasks, for example, was building the C preprocessor described
in section 2.2.

4.1.8 Additional Computational Aspects and Filtering

As noted in section 3.2, the complexity of the similarity measure is high and the re-
trieval process is therefore quite resource consuming. While vector-space retrieval
on a relatively small corpus such as the one used for the evaluation produces results
almost instantly, in the graph retrieval approach the average query time was much
higher. On a 1.5GHz Pentium processor, an average query took 5-6 minutes (the
memory requirements were low and are therefore not discussed here). Although
this was much faster than string-distance retrieval (30 minutes per query on the
same machine), it renders the process inapplicable for “online” methods, where a
user presents a query and gets an immediate response, more or less. It is possible
to use it in an “offline” manner, i.e. for overnight sanity checks of a project code
base, but even so the process is rather slow. There are two causes to this high
computational cost. The first is the combinatorial explosion of the graph sizes,
which causes the O(n3) complexity of the graph similarity measure to be high in
practice. The second is the O(n2) complexity of the string-distance calculation,
the “atomic operation” of the similarity measure. It is therefore desirable to have
additional mechanisms to reduce the complexity of the entire retrieval process.
One of the simplest mechanisms to do so is to limit the amount of documents
which actually go through the rigorous comparison. There are various ways to
implement such “filtering” mechanisms (see section 5.1), and we incorporated two
of the simpler ones.

The first implemented mechanism was a simple size sanity check: it was decided
not to compare two documents (or, more precisely, to consider them as having
minimal similarity) if their size difference was larger than a threshold, which was
set to 50%. For the document size, we used a standard string representation of the
graph, which includes all structural and content information in it. This filtering
mechanism decreased the average amount of graph comparisons by 14%, and was
also used for the baseline models, to provide all models with the same settings.

The second limiting mechanism was an “essential concept types” filter: we
defined the concepts types {Function, Func-Call, Loop, If, Compare} as
essential components of an SCG. We then added a pre-comparison stage for the
similarity measure between G1, G2 in which graphs which had a mismatch in their
essential concept types were considered minimally similar. In other words, if graph

Evaluation 51

G1 contains an essential concept of type t, then graph G2 must also include a
concept of type t to be considered a candidate for comparison. The idea was
that code that contains a loop somewhere is more likely to be highly similar to
code that contains a loop too. This mechanism filtered out an additional 62% of
the comparisons, bringing down the actual amount of comparisons performed on
average to 24% of the original ones (see figure 4.1). The essential types filter was
of course not used for the baselines, since it requires code-analysis schemes that
are found only in the SCG retrieval method.

62% 14%

24%

Filtered using essential concepts
Filtered using relative size
Actual compared graphs

Figure 4.1: Effect of filtering mechanisms on amount of compared graphs

While it seems that such mechanisms are a practical step only, and that using
them may decrease the accuracy of the retrieval, initial experimenting revealed
that not only did they not harm the results (compared to the retrieval process
without them), but even slightly improved them, on average; this suggests that
these “prefetch” steps are beneficial on the theoretic side too, and not on the
practical side only. For these reasons, the experiments reported were carried out
using the described filtering mechanisms. It should be noted that while the filtering
does not seem to degrade the precision, it probably reduces the recall (which was
not measured); the “essential concepts” requirement should be relaxed and re-
evaluated.

Even after these filtering steps, the retrieval takes longer than desired; the
25 queries included in the experiments, which include a mixture of small and
large graphs, take more than 2 hours to complete. It should be noted, however,
that the implementation of the algorithms was not optimized, and although it
includes some performance boosting methods such as caching and adjustments of
external packages to the specific task, much more can be done both on the theoretic
and the practical levels to increase performance times: we discuss this further in
section 5.1.

52 Evaluation

4.2 Results and Discussion

4.2.1 Testing for Optimized Parameters

In the first phase, we tested two of the parameters of the graph retrieval process:
the comparison match depth and the Most Similar Concept (MSC) depth. As
defined in section 3.2, the comparison match depth is the level of neighboring
nodes from which the information is added to every node before comparison; depth
0 means no information is added. Similarly, the MSC depth is the comparison
match depth for the initial phase, where a concept c2 ∈ G2 is selected to be
compared to the concept c1 ∈ G1. We chose these parameters because of the large
influence that we assumed they will have over the entire process: these are the
main factors determining the amount of structure used for the comparison in our
method. We predicted that using higher values – resulting in more structure – will
improve results.

We tested both the Identical Document setting and the Modified Document
one, with both match depth and MSC depth ranging between 0 and 2, for a total
of 18 settings; the experiments were evaluated using MRR. Our aim was twofold:
first, to explore the effect of incorporating additional structural (in particular,
non-local) knowledge in the retrieval process; and second, to identify optimized
values for later experiments, for which the assessments are more laborious than
MRR (initial experiments proved that the MRR scores are consistent with the
more involved precision scores). Our results are presented in tables 4.1 and 4.2.

SCG Retrieval
PPPPPPPPPMSC

Match
0 1 2

0 0.727 0.872 0.863
1 0.731 0.905 0.747
2 0.725 0.839 0.827

Table 4.1: MRR scores for different depth values, Identical Document Retrieval

A clear observation from these figures is that a value of 1 both for the MSC
depth and the match depth yields the best results. Though this may seem counter-
intuitive — after all, higher depth values mean including more meaningful infor-
mation in the comparison — it seems that a balance between extending concepts
with too much information and extending them with too little needs to be set for
the retrieval to function optimally. Since we are comparing connected graphs, and
since no relation weight is zero, allowing too much information to be added to a
concept means that information that is only remotely related to it may be added
to it, causing a topic drift. Such phenomena are also encountered in the stan-

Evaluation 53

SCG Retrieval
PPPPPPPPPMSC

Match
0 1 2

0 0.640 0.787 0.481
1 0.350 0.813 0.727
2 0.348 0.579 0.773

Table 4.2: MRR scores for different depth values, Modified Document Retrieval

dard, unstructured document retrieval models, when various techniques for query
expansion are used (see, for example, the possible effects of blind feedback [68]
and compound splitting [50]). Topic drift is known to be particularly substantial
when the number of relevant documents is relatively small, which is the case in
our corpus.

Furthermore, a careful examination of the results shows that with a few excep-
tions, setting the value of one of the depth measures to n achieves the best results
if the other value is set to n as well. This reveals the underlying implementation
of the MSC selection algorithm: since we select the MSC based on comparison to
depth n, it seems reasonable that comparison of that depth level will also be used
for the similarity. It is possible, however, that if we choose a different selection
method for the MSC (say, based on the concept type, referent, and the in degree
or out degree of the concept) we may have different results.

A surprising result is the relatively high MRRs for depth values (0,0). Setting
the comparison depth to 0 yields a similarity measure that is similar to the typed
string distance used as one of the baseline models: essentially, it boils down to
doing a string comparison of all the text in the code according to a small number
of categories. One could try to verify this experimentally, but we later show that
(at least the MRR scores) are substantially better for graph comparison of depth
0 than for typed string distance, due to the more fine-grained categories achieved
through the deeper parsing.

Based on these results, we fixed both the MSC depth and the match depth for
the next experiments to 1.

As noted earlier, adding “too much” information to the comparison harmed
the retrieval performance; a possible partial solution to this issue is optimizing
the relation weights, the weights that determine how important the information
in concept c2 is to c1, if the relation between them is r. However, this is a com-
plex multi-parameter optimization problem, and since the document collection is
not fully assessed for relevance with regards to each query, there is no “reward
function” that we can assign to successful values without performing manual as-
sessment. As mentioned in section 4.1.5, we assigned manual, “intuitive” weights
to the relations and concepts; to measure the effect of using different weights, we

54 Evaluation

experimented with weights different from the manually assigned ones. We assigned
a fixed value of 0.9 for all relations. In practice, this yields a simple scenario for
the comparison: nodes which are further away are less important, regardless of the
relations on the path from the compared node to them. As seen in table 4.3, the
results were only slightly different (for worse) than the manual weights. Due to
time constraints, we did not experiment further with optimization of the relation
or concept weights.

SCG Identical Document Modified Document
Weighting scheme MRR P@5 MRR P@5

Manual 0.905 0.472 0.813 0.296
Fixed (=0.9) 0.898 0.464 0.811 0.291

Table 4.3: Different relation weighting schemes

4.2.2 Comparison with Baselines

For the rest of the experiments reported, we used match depth 1, MSC depth 1,
and manual relation weights. We compared the graph retrieval method to the
baseline models; the results are summarized in tables 4.4 and 4.5.

Identical Document Modified Document

Simple distance 0.973 0.093
Typed distance 1.000 0.293

Okapi 0.870 0.400
SCG Retrieval 0.905 0.813

Table 4.4: MRR comparison of retrieval methods

Identical Document Modified Document

Simple distance 0.400 0.056
Typed distance 0.424 0.128

Okapi 0.464 0.248
SCG Retrieval 0.472 0.296

Table 4.5: Average P@5 comparison of retrieval methods

The tables show a consistent increase of performance, with the exception of the
MRR scores of the string distance methods in the Identical Document task; other-

Evaluation 55

wise, simple string-distance measures perform worst, and graph retrieval performs
best.

These MRR exceptions for the string distance baselines are not surprising, as
the Levenstein distance measure defines a string as having a distance of 0 to itself.
The performance of the string distance measures on the modified retrieval drops
sharply, since the modifications are exactly of the types that enlarge the string dis-
tance, i.e., changes in names of variables, bogus statements etc. The typed string
distance, which brings in a bit of structural (or at least semantic) knowledge into
the comparison, performs better than the simple distance throughout all measure-
ments. Probabilistic retrieval does even better than the string distance measures
(except the identical document MRRs); a reason for this improvement may be
the usage of term frequency measures that reduce the importance of matches of
meaningless strings such as repeated variable names (i, j, count) and common
tokens in comments (testcase, bug). Finally, the graph retrieval that uses a
combination of structural information and string distance yields the best results.
The improvement of graph retrieval over the baseline is substantially better for
the Identical Document task than the corresponding improvement in the Identical
Document task.

Table 4.6 summarizes two additional measures we used for evaluation of the
retrieval methods: the percentage of documents for which the exact match was
found, and the average number of relevant documents (ignoring the exact match
and counting only additional relevant documents). For both of these measures,
only the top-5 retrieved documents were considered.

Identical Document Modified Document
% same Average # % same Average #

document of relevant document of relevant
found documents found documents

Simple distance 100% 1.00 12% 0.16
Typed distance 100% 1.12 32% 0.32

Okapi 92% 1.40 52% 0.72
SCG Retrieval 92% 1.44 80% 0.68

Table 4.6: Additional measures comparison of retrieval methods

An examination of these values reveals that both Okapi and SCG retrieval
yield an equivalent number of additional relevant documents; the higher precision
values of the graph retrieval can therefore be attributed to the improved “same
document” retrieval, rather than to finding more relevant documents. However,
given that the probabilistic retrieval model is a mature one with many evaluations
and improvements behind it, and that the graph comparison process is highly

56 Evaluation

unoptimized, it still seems that it improves over Okapi (and certainly over string-
distance measures).

4.2.3 Significance Tests

As the scores of the string-distance measures were far below that of Okapi or the
graph comparison, it seemed irrelevant to use statistical significance tests that
involve them. We therefore concentrated on comparing Okapi and the graph re-
trieval; the null hypothesis is that the methods are equivalent, and we assume
that if the test yields a probability smaller than 0.05, the results are statistically
significant. The results of the sign-test are presented in table 4.7.

Significance measured Identical Document Modified Document

MRR n+ = 4, n− = 3 n+ = 15, n− = 2
p 6 1.0 p 6 0.0024

P@5 n+ = 10, n− = 7 n+ = 12, n− = 8
p 6 0.629 p 6 0.503

Table 4.7: Sign Test, Okapi vs. SCG retrieval

As can clearly be seen, statistical significance was not established except for
the MRR score in the Modified Document case. Although this does not necessarily
mean that the null hypothesis must be accepted (i.e. that there is no significant
difference between the methods), this seems discouraging. However, since the size
of the query set was rather small, using statistical tests is hazardous. We therefore
decided to perform an additional experiment, this time with a higher number
of queries for the statistical evaluation. For the reasons mentioned earlier (high
assessment costs), we decided to focus on the easy-to-calculate MRR score for
identical document tests. To justify this decision, we recall that the MRR scores
were consistent with the precision scores, i.e., higher MRR scores were always
accompanied with higher precision score. Additionally, an examination of table 4.7
reveals that this was our worse statistical significance result, so improvement on
its significance means with good likelihood that the other measures were improved
too. However, this experiment is of limited importance, since it is only partially
evaluated (using MRR) and therefore not comparable to the previous ones.

For this additional experiment we randomly selected 250 documents from the
collection and used them as queries for an identical document retrieval, measuring
the MRR score. We then repeated the sign test; the results appear in table 4.8.

For the larger set statistical significance was established. An examination of the
actual MRR scores reveals that both methods performed worse than on the original
25-query identical document experiment (although Okapi’s degradation was more
notable). This could hint that our original query set, although randomly chosen,

Evaluation 57

Value Identical Document, 250-queries

Okapi MRR 0.684
SCG MRR 0.813
Sign Test n+ = 63, n− = 28

p 6 0.000313

Table 4.8: Results for 250-query Identical Document Retrieval

had properties which make it easier to retrieve - for example, longer average doc-
ument length. In general, it stresses the importance of additional experimenting
and cross validation of all results presented. Once again, the results of the 250-
query experiment should be given lower importance since the measurements for it
(MRR only) do not match those of other experiments.

4.2.4 Combining Methods

As stated in the previous section, for our last set of experiments we combined
scores from our two most successful methods - the Okapi baseline and the SCG
retrieval. Our combination method is identical to [38]: first, all relevance scores
are normalized to values between 0.5 and 1. The scores from the two methods are
then combined linearly:

Scomb = λ · S1 + (1− λ) · S2

where

• Si is the normalized score of method i

• λ is the linear combination factor

Identical Document Modified Document
Method MRR P@5 MRR P@5

Okapi 0.870 0.400 0.464 0.248
SCG 0.905 0.464 0.813 0.296

Combined (λ = 0.2) 1.000 0.504 0.630 0.272
Combined (λ = 0.5) 0.960 0.488 0.840 0.352
Combined (λ = 0.8) 0.960 0.448 0.833 0.336

Table 4.9: Combining Okapi and Graph-retrieval

The results of the combined methods are presented in table 4.9; the first two
lines in the table are repetition of previous results and are displayed for con-
venience, acting as a reference to the two methods that are combined. In our

58 Evaluation

experiments, S1 are scores of the graph retrieval and S2 of Okapi, so lower values
of λ mean a lower importance of the SCG method in the combination.

As can be seen, any combination improves the Okapi scores, and with the
exception of the Modified Document task for λ = 0.2, all combinations improve
also over the SCG performance. For the Identical Document task, it seems that
lower importance attributed to the graph retrieval yields a better combination:
the results for the Modified Document task are mixed and require additional tests
to draw conclusions, but indicate that the combined scores are better when the
graph retrieval has a substantial weight.

Chapter 5

Conclusions

The initial results of our experiments are encouraging: although little was done
in terms of optimization and tuning, the proposed retrieval method outperformed
well-established retrieval models for the specific task we tested. Our goal was to
prove that exploiting structure yields significant improvements in the case of code
retrieval, and that conceptual graphs are a good tool for this task; our results con-
sistently support this. It should be noted, however, that the amount of evaluation
done is far from the amount required to support firm conclusions, and we treat
our experiments as a proof-of-concept rather than a complete assessment of the
method. More work needs to be done both in terms of developing the method and
evaluating it; see the next section for more details.

Other than this main conclusion, there are other observations that can be made
from our experiment:

• Using a retrieval model which is aimed at standard unstructured text (Okapi,
in our case) for a structured text task such as code retrieval yielded relatively
good results. An analysis of queries where the Okapi model had good per-
formance, and especially queries where it outperformed the graph retrieval,
shows the expected explanation: these were usually documents which con-
tained a relative large amount of free (unstructured) text such as comments
and strings which are printed by the program. It was also common to find
a token with a very low frequency (some rare function name, for example)
in these documents; these are classical cases where probabilistic methods
provide good results. However, overall the Okapi performance seemed sur-
prisingly good.

• As noted in section 4.2.1, the depth of the comparison had a very substan-
tial effect on the results. While this in itself is expected, the peak of the
performance at a relatively low depth (1) indicates that too much contex-
tual knowledge reduces the effectiveness of the specific similarity measure;

60 Conclusions

the best performance is achieved via a “shallow parsing” approach, where
some contextual knowledge is ignored. Another observation, based on the
fact that using depth 0 was also fairly successful, is that the clustering of to-
kens according to their semantic type (Func-call, Comment, etc) is more
important than the actual additional contextual information.

• An additional result presented in section 4.2.1 was that using a different
weighting scheme for the concepts and relations only has a minor effect. A
possible conclusion from this is that the important knowledge in the graphs is
the actual existence of relations rather than their type. It seems that “what
is related to what” — which concepts have some kind of relation between
them — is more crucial than “how it is related”. This conclusion should
be taken with a grain of salt, as it is drawn from a single comparison to a
different weighting scheme and not from real optimization.

• One of the practical implications of the experiments is the demonstration of
the high computational costs of this type of structural retrieval. We conclude
that in the present form the method can not be used for online retrievals and
is simply incomparable to vector-space or probabilistic methods in terms of
complexity. A more detailed analysis of this point, along with solutions, is
provided in the next section.

5.1 Open Issues and Future Work

We now give an overview of the areas on which further research should focus, and
discuss possible directions to explore and solutions to problems we encountered.

Complexity. We mentioned earlier (section 4.1.8) the relatively high costs of the
retrieval method, compared to other methods. Generally, there are two approaches
to handle this issue:

• Reducing the number of comparisons. Naive ways of filtering graphs before
they are compared were discussed previously; these methods use shallow
information about the graphs such as their size and the types of concepts
they contain. In our experiments, using these shallow measures to avoid a
large part of the comparisons proved beneficial. However, their evaluation
was limited and needs to be examined more carefully, both for accuracy and
for optimal parameters (such as the best set of “essential concept types”). In
addition to the mechanisms mentioned, it is also possible to integrate other
filtering methods into the retrieval process.

The first course of action that comes to mind for this task is indexing, a pre-
processing stage which stores the information in the collection in a way that

Conclusions 61

makes access to it faster. Such indexing can be done according to concept
types, content in the graph concepts or relations, and even purely structural
information such as out degrees. An indexing method for conceptual graphs
was proposed in [58], although it is not fully automatic; another indexing
method, this time automatic, is presented in [59]. Although this method is
designed for a different similarity measure than the one we use, ideas from
it can be adopted and used.

In section 4.2.4 we explored a combination of the graph retrieval method
with another one. This combination, although resulting in improved scores,
does not change the complexity of the retrieval, since it required running
both methods on the entire document collection. However, it is possible to
use a combination method that also reduces the complexity: for example, we
can use another model (a significantly faster one, such as vector-space) as a
“prefetch” stage, and promote only the better-ranking documents (say, the
upper 50%) to the more complex graph matching.

• Reducing the complexity of a single comparison. A good candidate for boost-
ing the comparison time of two graphs is pre-calculation of the extended
concepts. Since the extension process of a graph is independent of the graph
it is compared to, it is useful to calculate in advance the extended concepts
and reuse them, rather than create them for every query presented. In our
experiments, we used caching techniques that eliminated some of the re-
dundant calculations; however, offline calculation of the extended concepts
would have saved even more resources and was not applied simply because
it occurred to us in a late stage of the evaluation.

Since the cost of the comparison is polynomial in the graph size, a different
way of looking at reducing the complexity of it is limiting the size of the
graphs that are compared. In the spirit of passage information retrieval, a
simple chunking technique was used in our experiments and described ear-
lier; this technique structured a document into passages according to shal-
low parsing of it which identified language-related segments. More involved
methods can be used for creating these passages; for example, the program
slice [82] notion seems appropriate for this task. It is possible that shallow
overlapping window methods are also fit for this task, but less likely.

Optimization. The proposed methods for graph construction and graph com-
parison include many internal parameters; limited experimenting with different
values of some of these was performed in section 4.2.1. However, usage of arbi-
trary values based on limited testing and intuition is clearly a weak point that
should be addressed. A survey of successful IR techniques reveals that usage of
different parameters (k1 and b for Okapi, different slope values for Lnu.ltc vector-
space retrieval and so on) yields highly different results; these values are sometimes

62 Conclusions

counter-intuitive, or at least do not seem to have any consistent line of reasoning
behind them, and are based purely on evaluation. In the SCG retrieval setting,
among the parameters requiring tuning are:

• Concept and relation weights.
• Thresholds for ignoring the comparison (see section 4.1.7).
• The element in the set of “Essential concept types” (see also section 4.1.7).
• Concept extension depth.
• Concept extension parameters; the depth of the extension need not be neces-

sarily the same for incoming relations and outgoing ones (in the experiments
reported they were equal). It is also possible to use different weights for
incoming and outgoing relations.

• Normalization factors, such as the measure of the graph size which is used
to normalize the similarity. Additionally, normalization factors can be used
in the concept extension phase; for example, we may use the out degree of a
concept to normalize the weights of concepts being added to it, and reduce
their relative effect.

It should be noted that finding optimized values depends largely on the specific
document collection and query sets; tuning a value or method should always be
closely linked to the collection at hand, since it is assumed that different collections
will result in different optimized values. Regardless of this comment, the large
amount of free parameters is clearly a disadvantage of the SCG retrieval method
– although it leaves a lot of room for modifications and possible improvements.

Algorithmic Enhancements. Of course, it is always possible to make modifi-
cations on the algorithm itself; this set of changes is perhaps the most complex, and
certainly the most interesting. A short list of potentially promising modifications
include:

• Adopt ideas and methods from other retrieval models. For example, the
term frequency notion that is a central in vector-space methods (and plays
a role in other models such as Okapi as well) can be used to assign variable
weights to the concept referents, thus increasing the importance of those
that contain rare terms. Other measures that can be useful are the average
document length and the inverse document frequency.

• Incorporation of more structural knowledge. Currently, much of the struc-
tural information about the program is still lost, by converting actual struc-
ture to simple weighting schemes. Additional measures that take into account
explicit structural data such as the ones proposed in [59] and [92] may prove
beneficial; however, usage of more structural knowledge should be done care-
fully and in a way that permits “fuzziness” of the structure, in a similar way
to the proposed similarity measure.

Conclusions 63

• Change basic similarity measure. The currently used “atomic” information
measure is a string-distance one. But the parsing process of the code pro-
vides us with tools that can be used to use different measures for different
types of text. For example, literals which are explicit numbers can be simply
compared for their numerical difference; comments which are usually natural
language texts (although sometimes they are “commented-out” code) can be
compared using vector-space methods, i.e. dot product of their representa-
tions as term vectors, and so on.

• Stemming. Stemming provides retrieval systems with a mechanism of gen-
eralization over morphological variations; evidence regarding the effect of
stemming on IR methods is mixed [35]. Integrating stemming into code re-
trieval is not trivial, since the text is composed of two separate languages
– the tokens of the programming language, and the natural language text
embedded in it (in the comments, sometimes in function names, in “print”
statements, and so on). A first step could be evaluating the effect of stem-
ming the natural language only; in a later stage, a stemmer can be defined
for the programming language too. For example, it seems that removing suf-
fix numbers in token names may be beneficial (count1 → count). However,
it should also be noted that the string-distance measure used as the atomic
operation of the retrieval is more immune to morphological changes than
term-based methods, so the contribution of stemming may be insignificant
(unless the atomic operation is modified).

• Representation. To a large extent, the representation method for the graphs
was simplified; in theory, it encapsulates all forms of knowledge present in
the source code, but for various practical reasons the implemented taxonomy
was limited; the concept and relation types within them can actually differ
substantially. For example, If statements typically have a Condition re-
lation to an expression and one or more Contains relations to statements;
knowledge about which statement is carried out when the condition is true
and which one is executed when it is false is lost. Additionally, some code
components are not converted to a concept at all, i.e. preprocessor directives
which are not #defines or #includes. A more fine-grained taxonomy can
be defined and used for the graph construction process, although as noted
earlier “too much structure” can also prove as a disadvantage.

• MSC location method. Our method for locating the Most Similar Concept
c2 ∈ G2 so it can be compared to concept c1 ∈ G1 is based on the same simi-
larity measure used later for the comparison. This method can be substituted
with a different one without changing the rest of the process; it is possible
to use shallow measures such as degree of edges, or more involved structural
information such as graph edit distance [94] or partial isomorphisms [69].

64 Conclusions

• Compound splitting. This technique, which disassembles tokens to the es-
timated subtokens from which they were compounded, proved effective for
retrieval from languages which are morphologically rich [49]. Programming
languages seem natural candidates for compound splitting; a glance at al-
most any source code reveals many compounded terms such as CCPUUsage,
resolve unique section, or byteDataPacket. A simple method for split-
ting was incorporated both into the baselines and into the graph retrieval,
as indicated in section 4.1; it is possible to use more involved compound
splitting techniques, either rule-based (using capitalization of letters in the
term) or based on other mechanisms. It should be noted again that similarly
to the stemming case, the string-distance measures are relatively immune to
compound words, and therefore the improvements are not expected to be
high.

• Combination Methods. We explored a basic combination method for the
SCG retrieval and Okapi in section 4.2.4; more mixture-of-experts methods
for retrieval methods, such as the ones described in [6], can be applied to
further improve results. Furthermore, our combination experiments show
that the optimized combination of two methods is dependent on the retrieval
task: for the Identical Document task much less “structure information”
was required, compared to the Modified Document task. This suggests that
an analysis of the retrieval settings – such as the query and the document
collection – may be helpful in determining which combination to use, before
the retrieval is actually performed.

Evaluation. Finally, it should be noted that our experiments were done using a
relatively small corpus; the reasons for selecting such a corpus were largely practi-
cal, since no evaluated corpora for the task is publicly available and the resources
for manual evaluation were limited. It is of course essential to extend the evalua-
tion to a larger corpus, and to test other corpora types, viz., large scale source code
projects. Extensive document collections and longer query lists will also render
the results of the experiments more statistically well-founded (or refute them). For
example, in section 4.2.3, our statistical significance tests yielded different results
for different amounts of queries; additional test should be performed to determine
the actual values.

Assuming the development of such collections, it will also be useful to measure
recall levels for the retrieval and compare precision-recall curves to other methods;
from this we can learn more thoroughly were the graph comparison is favorable
and how it can be used.

Conclusions 65

Summary

We state again the goals we have set for ourself in the beginning of this thesis.
In the vast area of information retrieval from source code, we intended to explore
one corner: the usage of the knowledge embedded in the structure of the code
to improve the retrieval. Our aim was to propose a method for extracting and
using this “structural knowledge”, to evaluate it and to analyze the associated
complexity implications.

Our proposed method uses conceptual graphs to model the code and build a
retrieval model around these graphs, including a specialized similarity measure for
them. Although the method is not complete, experiments show that it performs
substantially better than state-of-the-art retrieval methods for the specified task.
Following the evaluation, we analyze the weak points of the method, including
the higher complexity bounds (compared to other retrieval models), and propose
procedures for enhancing it in various ways to address these weaknesses. Since
our approach is a relatively unexplored one, there is much more to be done before
it can be considered a proper rival for other approached to source code retrieval;
our initial results appear promising and suggest that further work can improve the
method significantly.

Bibliography

[1] ANTLR: ANother Tool for Language Recognition, URL: http://www.antlr.org.

[2] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider,
editors. The Description Logic Handlbook, chapter 1,10. Cambridge University Press,
2002.

[3] Greg J. Badros. JavaML: a markup language for Java source code. Computer Net-
works (Amsterdam, Netherlands: 1999), 33(1–6):159–177, 2000.

[4] R.A. Baeza-Yates and B.A. Ribeiro-Neto. Modern Information Retrieval. ACM Press
/ Addison-Wesley, 1999.

[5] B.S. Baker. On Finding Duplication and Near-Duplication in Large Software Systems.
In L. Wills, P. Newcomb, and E. Chikofsky, editors, Second Working Conference on
Reverse Engineering, pages 86–95, Los Alamitos, California, 1995. IEEE Computer
Society Press.

[6] Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. Automatic Com-
bination of Multiple Ranked Retrieval Systems. In Research and Development in
Information Retrieval, pages 173–181, 1994.

[7] B.W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[8] M. Buchheit, M.A. Jeusfeld, W. Nutt, and M. Staudt. Subsumption between queries
to object-oriented databases. In Proceedings of the 4th international conference
on extending database technology on Advances in database technology, pages 15–22.
Springer-Verlag New York, Inc., 1994.

[9] H. Bunke and B.T. Messmer. Similarity measures for structured representations. In
Procs. of the First European Workshop on Case-Based Reasoning. Springer, 1993.

[10] M. Chein and M.-L. Mugnier. Conceptual graphs: Fundamental notions. Revue
d’intelligence artificielle, 6(4):365–406, 1992.

[11] S. Chu and B. Cesnik. Knowledge representation and retrieval using conceptual
graphs and free text document self-organisation techniques. International Journal of
Medical Informatics, 62:121–133, July 2001.

[12] C. Clarke, A. Cox, and S. Sim. Searching program source code with a structured
text retrieval system. In Proceedings of the 22nd annual international ACM SIGIR
conference on Research and development in information retrieval, pages 307–308.
ACM Press, 1999.

http://www.antlr.org

Bibliography 67

[13] Richard Clayton, Spencer Rugaber, and Linda M. Wills. On the knowledge required
to understand a program. In Working Conference on Reverse Engineering, pages
69–78, 1998.

[14] Thomas H. Cormen, E. Leiserson, Charles, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 1990. COR t 01:1 1.Ex.

[15] F. Crestani, I. Ruthven, Mark Sanderson, and Cornelis J. van Rijsbergen. The trou-
bles with using a logical model of IR on a large collection of documents. In Proceedings
of TREC-4, Fourth Text Retrieval Conference, Washington, US, 1995.

[16] B. Croft and J. Lafferty, editors. Language Modeling for Information Retrieval.
Kluwer Academic Publishers, 2003.

[17] Y. S. M. Cutler and W. Meng. Using the structure of html documents to improve
retrieval. In USENIX Symposium on Internet Technologies and Systems, 1997.

[18] Brown A.W. Dart S., Christie A.M. A case study in software maintenance. Technical
report, Software Engineering Institute, Carnegie Mellon University, 1993.

[19] H.S. Delugach and G. Stumme, editors. Conceptual Structures: Broadening the Base,
9th International Conference on Conceptual Structures, ICCS 2001, Stanford, CA,
USA, July 30-August 3, 2001, Proceedings, volume 2120 of Lecture Notes in Computer
Science. Springer, 2001.

[20] P.T. Devanbu, R.J. Brachman, P.G. Selfridge, and B.W. Ballard. Lassie: a knowledge-
based software information system. In International Conference on Software Engi-
neering, pages 249–261, 1990.

[21] J.P. Dick. Representation of legal text for conceptual retrieval. In Proceedings of the
third international conference on Artificial intelligence and law, pages 244–253, 1991.

[22] R. Dieng. Comparison of conceptual graphs for modelling knowledge of multiple
experts. In International Syposium on Methodologies for Intelligent Systems, pages
78–87, 1996.

[23] V. Jijkoun et al. The university of amsterdam at trec 2003. In TREC 2003 Working
Notes. National Institute for Standards and Technology, 2003.

[24] A.E. Fischer and F.S. Grodzinsky. The Anatomy of Programming Languages. Pre-
tience Hall, 1993.

[25] N. Foo, B. Garner, A. Rao, and E. Tsui. Semantic distance in conceptual graphs,
1992.

[26] S. Fortin. The graph isomorphism problem. Technical report, Uni. of Alberta,
Canada, 1996.

[27] Bernhard Ganter and Guy W. Mineau, editors. Conceptual Structures: Logical, Lin-
guistic, and Computational Issues, 8th International Conference on Conceptual Struc-
tures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000, Proceedings, volume
1867 of Lecture Notes in Computer Science. Springer, 2000.

[28] The GNU Compiler Collection, URL: http://gcc.gnu.org.

http://gcc.gnu.org

68 Bibliography

[29] M. Ghosh, B. Verma, and A. Nguyen. An automatic assessment marking and plagia-
rism detection. In International Conference on Information Technology and Applica-
tions, 2002.

[30] M.R. Girardi and B. Ibrahim. Using English to retrieve software. The Journal of
Systems and Software, 30(3):249–270, September 1995.

[31] Olivier Guinaldo. Conceptual graphs isomorphism: Algorithm and use. In Interna-
tional Conference on Conceptual Structures, pages 160–174, 1996.

[32] Djoerd Hiemstra and Arjen de Vries. Relating the new language models of information
retrieval to the traditional retrieval models. Technical Report TR-CTIT-00-09, Centre
for Telematics and Information Technology, 2000.

[33] T.W.C. Huibers, I. Ounis, and J-P. Chevallet. Conceptual graph aboutness. In
P.W. Eklund, G. Ellis, and G. Mann, editors, Conceptual Structures: Knowledge
Representation as Interlingua, Proceedings of the Fourth International Conference
on Conceptual Structures, ICCS’96, volume 1115, pages 130–144, Sydney, Australia,
1996. Springer-Verlag.

[34] D. Hull. Using Statistical Testing in the Evaluation of Retrieval Experiments. In
Proceedings of the 16th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 329–338. ACM Press, 1993.

[35] D. Hull and G. Grefenstette. A detailed analysis of english stemming algorithms.
Technical report, Rank XEROX, 1996.

[36] J.J. Jeng and B.H.C. Cheng. Using formal methods to construct a software component
library. In Ian Sommerville and Manfred Paul, editors, Proceedings of the Fourth Eu-
ropean Software Engineering Conference, pages 397–417. Springer-Verlag, 1993.

[37] E.L. Jones. Metrics based plagarism monitoring. In Proceedings of the sixth annual
CCSC northeastern conference on The journal of computing in small colleges, pages
253–261. The Consortium for Computing in Small Colleges, 2001.

[38] J. Kamps, C. Monz, and M. de Rijke. Combining evidence for cross-lingual infor-
mation retrieval. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck, editors,
Proceedings CLEF 2002. Springer, 2002.

[39] The KDE Desktop Environment, URL: http://www.kde.org.

[40] M. Lalmas and I. Ruthven. A model for structured document retrieval: Empirical
investigations. In HIM, pages 53–66, 1997.

[41] Y.S. Maarek and D.M. Berry et al. Guru: Information retrieval for reuse. Landmark
Contributions in Software Reuse and Reverse Engineering.

[42] J. Maletic, M. Collard, and A. Marcus. Source code files as structured documents,
2002.

[43] P. Martin and L. Alpay. Conceptual structures and structured documents. In Inter-
national Conference on Conceptual Structures, pages 145–159, 1996.

[44] N. Medvidovic, D. S. Rosenblum, J. E. Robbins, and D. F. Redmiles. Modeling
software architectures in the Unified Modeling Language. ACM Transactions on
Software Engineering Methodologies, 11(1):2–57, 2002.

http://www.kde.org

Bibliography 69

[45] C. Meghini, F. Sebastiani, U. Straccia, and C. Thanos. A model of information re-
trieval based on a terminological logic. In Proceedings of the 16th annual international
ACM SIGIR conference on Research and development in information retrieval, pages
298–307. ACM Press, 1993.

[46] H. Meuss and C. Strohmaier. Improving index structures for structured document
retrieval, 1999.

[47] P. Klint M.G.J. van den Brand and C. Verhoef. Reverse Engineering and System
Renovation: an Annotated Bibliography. ACM Software Engineering Notes, 22(1):42–
57, January 1997.

[48] K. Mills. Requirements engineering for software reuse, 1992.

[49] C. Monz and M. de Rijke. Shallow morphological analysis in monolingual information
retrieval for Dutch, German and Italian. In C. Peters, M. Braschler, J. Gonzalo,
and M. Kluck, editors, Evaluation of Cross-Language Information Retrieval Systems,
CLEF 2001, volume 2406 of Lecture Notes in Computer Science, pages 262–277.
Springer, 2002.

[50] C. Monz and M. de Rijke. The University of Amsterdam at CLEF 2001. In Working
Notes CLEF 2001, 2001.

[51] S.H. Myaeng, D.H. Jang, M.S. Kim, and Z.C. Zhoo. A flexible model for retrieval
of sgml documents. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 138–145.
ACM Press, 1998.

[52] G. Navarro, R. A. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

[53] M. L. Nelson. A Survey of Reverse Engineering and Program Comprehension.

[54] F. Niessink and H. van Vliet. Two Case Studies in Measuring Software Maintenance
Effort. In International Conference on Software Maintenance, pages 76–85, Bethesda,
Maryland, USA, November 16-20, 1998. IEEE Computer Society.

[55] T. Noreault, M. McGill, and M.B. Koll. A performance evaluation of similarity mea-
sures, document term weighting schemes and representations in a boolean environ-
ment. In Proceedings of the 3rd annual ACM conference on Research and development
in information retrieval, 1980.

[56] The OpenOffice.org Project, URL: http://www.openoffice.org.

[57] I. Ounis and J. Chevallet. Using Conceptual Graphs in a Multifaceted Logical Model
for Information Retrieval. In Database and Expert Systems Applications, pages 812–
823, 1996.

[58] I. Ounis and M. Pasca. Modeling, Indexing and Retrieving Images using Conceptual
Graphs. In Proceedings of 9th International Conference on Database and Expert
Systems Applications (DEXA’98). Springer, 1998.

[59] I. Ounis and M. Pasca. Organizing Conceptual Graphs for Fast Knowledge Retrieval.
In Proceedings of 10th International Conference on Tools with Artificial Intelligence
(ICTAI’98). IEEE Computer Society Press, 1998.

http://www.openoffice.org

70 Bibliography

[60] S. Paul and A. Prakash. Querying source code using an algebraic query language. In
Hausi A. Müller and Mari Georges, editors, Proceedings of the International Confer-
ence on Software Maintenance (ICSM ’94), pages 127–136, 1994.

[61] PMD: Project Mess Detector, URL: http://pmd.sourceforge.net.

[62] J. Poole and J.A. Campbell. A novel algorithm for matching conceptual and related
graphs. In International Conference on Conceptual Structures, pages 293–307, 1995.

[63] L. Prechelt, G. Malpohl, and M. Philippsen. JPlag: Finding plagiarisms among a
set of programs. Technical Report No. 1/00, University of Karlsruhe, Department of
Informatics, March 2000.

[64] R. Prieto-Daz. Implementing faceted classification for software reuse. Commun.
ACM, 34(5):88–97, 1991.

[65] Y. Quintana, M. Kamel, and A. Lo. Graph-based retrieval of information in hyper-
text systems. In Proceedings of the 10th annual international conference on Systems
documentation, pages 157–168. ACM Press, 1992.

[66] URL: Rational Software, http://www.rational.com.

[67] S.E. Robertson, S. Walker, and M. Beaulieu, editors. Okapi at TREC-7: Automatic
ad hoc, filtering, VLC and interactive track. National Institute for Standards and
Technology, 1997.

[68] I. Ruthven and M. Lalmas. A survey on the use of relevance feedback for information
access systems. Knowledge Engineering Review, To appear.

[69] S., J. Malik, and J. Puzicha. Matching Shapes. In Proceedings of The Eighth IEEE
International Conference on Computer Vision, pages 454–463, 2001.

[70] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., 1986.

[71] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Inf. Process. Manage., 24(5):513–523, 1988.

[72] J. Savoy. Report on CLEF-2002 Experiements: Combining multiple sources of ev-
idence. In C. Peters, Braschler, M., Gonzalo, J., Kluck, M., editor, Results of the
CLEF-2002, cross-language evaluation forum, 2002.

[73] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local Algorithms for
Document Fingerprinting. In SIGMOD2003, pages 76–85, 2003.

[74] SCO vs. IBM, URL: http://www.sco.com/ibmlawsuit/amendedcomplaintjune16.
html.

[75] The open-source movement’s position on SCO vs. IBM, URL: http://www.
opensource.org/sco-vs-ibm.html.

[76] R. Sethi. Programming Languages: Concepts and Constructs (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc., 1996.

http://pmd.sourceforge.net
http://www.rational.com
http://www.sco.com/ibmlawsuit/amendedcomplaintjune16.html
http://www.sco.com/ibmlawsuit/amendedcomplaintjune16.html
http://www.opensource.org/sco-vs-ibm.html
http://www.opensource.org/sco-vs-ibm.html

Bibliography 71

[77] Judy Sheard, Martin Dick, Selby Markham, Ian Macdonald, and Meaghan Walsh.
Cheating and plagiarism: perceptions and practices of first year it students. In Pro-
ceedings of the 7th annual conference on Innovation and technology in computer sci-
ence education, pages 183–187. ACM Press, 2002.

[78] Simian: Similarity Analyser, URL: http://simian.dev.java.net/.

[79] Snowball: A language for stemming, URL: http://snowball.tartarus.org.

[80] J.F. Sowa. Conceptual structures: information processing in mind and machine.
Addison-Wesley Longman Publishing Co., Inc., 1984.

[81] William M. Tepfenhart and Walling R. Cyre, editors. Conceptual Structures: Stan-
dards and Practices, 7th International Conference on Conceptual Structures, ICCS
’99, Blacksburg, Virginia, USA, July 12-15, 1999, Proceedings, volume 1640 of Lecture
Notes in Computer Science. Springer, 1999.

[82] F. Tip. A Survey of Program Slicing Techniques. Journal of programming languages,
3:121–189, 1995.

[83] URL: The Unified Modeling Language, http://www.uml.org.

[84] K.L. Verco and M.J. Wise. Software for detecting suspected plagiarism: Comparing
structure and attribute-counting systems. In J. Rosenberg, editor, Proceedings of the
First Australian Conference on Computer Science Education. ACM, 1996.

[85] A. von Mayrhauser and A.M. Vans. Comprehension processes during large scale
maintenance. In Proceedings of the 16th International Conference on Software En-
gineering (Sorrento, Italy; May 16-21, 1994), pages 39–48. IEEE Computer Society
Press, 1994.

[86] E.M. Voorhees and C. Buckley. The effect of topic set size on retrieval experiment
error. In Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 316–323. ACM Press, 2002.

[87] E.M. Voorhees and D.K. Harman, editors. The Eleventh Text REtrieval Conference
(TREC 2002), chapter Appendix: Common Evaluation Measures. National Institute
for Standards and Technology, 2003.

[88] N.R. Wagner. Plagiarism by Student Programmers. http://www.cs.utsa.edu/ wag-
ner/pubs/plagiarism0.html.

[89] The WebKB set of tools: a common scheme for shared WWW Annotations, shared
knowledge bases and information retrieval, URL: http://www.webkb.org.

[90] R. Wilkinson. Effective retrieval of structured documents. In Proceedings of the
17th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 311–317. Springer-Verlag New York, Inc., 1994.

[91] M.J. Wise. Yap3: improved detection of similarities in computer program and other
texts. In Proceedings of the twenty-seventh SIGCSE technical symposium on Com-
puter science education, pages 130–134. ACM Press, 1996.

[92] M. Montes y Gomez, A. Lopez, and A. F. Gelbukh. Information Retrieval with
Conceptual Graph Matching. In Database and Expert Systems Applications, pages
312–321, 2000.

http://simian.dev.java.net/
http://snowball.tartarus.org
http://www.uml.org
http://www.webkb.org

72 Bibliography

[93] G.C. Yang and J. Oh. Knowledge acquisition and retrieval based on conceptual
graphs. In Proceedings of the 1993 ACM/SIGAPP symposium on Applied computing,
pages 476–481. ACM Press, 1993.

[94] K. Zhang, J.T.L. Wang, and D. Shasha. On the editing distance between undirected
acyclic graphs and related problems. In Z. Galil and E. Ukkonen, editors, Proceedings
of the 6th Annual Symposium on Combinatorial Pattern Matching, pages 395–407,
Espoo, Finland, 1995. Springer-Verlag.

	Acknowledgments
	Abstract
	Preface
	1 Introduction
	1.1 Why Code Retrieval?
	1.2 Structured Document Information Retrieval
	1.3 Conceptual Graphs
	1.4 Using Conceptual Graphs for Code Retrieval
	1.5 Related Work
	1.5.1 Code Retrieval
	1.5.2 Retrieval using Conceptual Graphs

	2 Representing Source Code as Conceptual Graphs
	2.1 Source Code Representations
	2.2 Converting Code to Conceptual Graphs
	2.2.1 A Taxonomy for Source Code
	2.2.2 Graph Construction Process
	2.2.3 Examples

	3 Code Retrieval using Conceptual Graph Representations
	3.1 The Retrieval Model
	3.1.1 The Retrieval Process

	3.2 A Similarity Measure for Source Code Conceptual Graphs
	3.2.1 Retrieval Similarity Measures
	3.2.2 Comparing Conceptual Graphs
	3.2.3 Complexity
	3.2.4 Additions and Modifications
	3.2.5 Summary

	4 Evaluation
	4.1 Experimental Setting
	4.1.1 Document Collection
	4.1.2 Experiments
	4.1.3 Measures
	4.1.4 Assessment
	4.1.5 Retrieval Parameters
	4.1.6 Baseline Models
	4.1.7 Implementation
	4.1.8 Additional Computational Aspects and Filtering

	4.2 Results and Discussion
	4.2.1 Testing for Optimized Parameters
	4.2.2 Comparison with Baselines
	4.2.3 Significance Tests
	4.2.4 Combining Methods

	5 Conclusions
	5.1 Open Issues and Future Work

	Bibliography

