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Abstract

Given a sequence of samples from an unknown probability distribution, a
statistical estimator aims at providing an approximate guess of the distribution
by utilizing statistics from the samples. One desired property of an estimator is
that its guess approaches the unknown distribution as the sample sequence grows
large. Mathematically speaking, this property is called consistency.

This thesis presents the first (non-trivial) consistent estimator for the Data-
Oriented Parsing (DOP) model. A consistency proof is given that addresses a
gap in the current probabilistic grammar literature and can serve as the basis
for consistency proofs for other estimators in statistical parsing. The thesis also
expounds the computational and empirical superiority of the new estimator over
the common DOP estimator DOP1 : While achieving an exponential reduction
in the number of fragments extracted from the treebank (and thus parsing time),
the parsing accuracy improves over DOP1.

Another formal property of estimators is being biased. This thesis studies that
property for the case of DOP and presents the somewhat surprising finding that
every unbiased DOP estimator overfits the training data.
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Chapter 1

Introduction

The purpose of Natural Language Processing (NLP) is to use computers to au-
tomatically analyze human languages. This field of research has applications
ranging from speech transcription over text summarization to machine transla-
tion. Unlike programming languages, human languages are inherently informal
and ambiguous, which makes NLP a challenge that has by far not been mastered
to complete satisfaction yet.

This thesis focuses on the task of sentence parsing, i.e., calculating the most
plausible phrase structure tree (parse) for a given sentence (cf. Figure 1.1).
Parsing is often the first step of an NLP application: Once the program knows
the correct parse tree of a sentence, it can more easily extract characteristic
information from it, which may be utilized for semantic analysis or other NLP
tasks such as machine translation.

This thesis mentions logic.
???

−−−−−−→

S

NP

DET

This

N

thesis

VP

V

mentions

NP

N

logic

Figure 1.1: Sentence parsing

One reason why natural language processing is so difficult is ambiguity: Be-
sides semantic ambiguity—one sentence having different possible meanings—,
NLP applications also need to cope with grammatical ambiguity : A sentence in
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the English language, for instance, has usually many different syntactically cor-
rect parses due to different possible ways of attaching prepositional phrases and
relative clauses (an example is given in Figure 1.2). Humans resolve ambiguity
without great difficulty; often they even fail to notice that different grammatically
correct readings of the sentence exist.

S

NP

PRP

I

VP

V

like

NP

N

offices

PP

P

with

NP

N

couches

S

NP

PRP

I

VP

V

like

NP

N

offices

PP

P

with

NP

N

couches

Figure 1.2: Two parses for the sentence “I like offices with couches.” The left
one is semantically more plausible.

Statistical NLP aims at resolving ambiguities by applying statistical methods
to sample data. The idea is to avoid specifying linguistic details (such as the fact
that ‘table’ is a noun) directly in the program code of the NLP application, by
having this application learn such details in context from a training corpus—for
instance a treebank consisting of thousands of sample parse trees in the case of a
parsing application. By analyzing groups of characters, words, subtrees, or other
phenomena in the training data, the NLP application extracts pieces of evidence
(events) and assigns probabilities to them, which allows ambiguity resolution.

In statistical parsing, the problem of grammatical ambiguity is tackled by
assigning degrees of likelihood to parses. The preferred parse for a given sentence
is then chosen as the one amongst all grammatically possible parses, that is
most likely under the given assignment. Usually, a statistical parser utilizes an
underlying probability distribution over the set of possible parse trees, according
to which it chooses the most probable parse tree(s) for a given input sentence
as the preferred one(s). This probability distribution is often determined by a
stochastic grammar, consisting of:

1. a formal grammar or rewrite system defining the set of phrase-structure
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trees that can be derived from a start symbol ‘S’ by a successive application
of grammar/rewrite rules, and

2. a weight assignment function associating each rule with a real number.

The probability of a parse tree is then given by the weights assigned to the rules of
its possible derivations from the stochastic grammar. An example of a stochastic
grammar is a Probabilistic Context-Free Grammar (PCFG) [Booth, 1969]: Its
symbolic backbone is a Context-Free Grammar with rules such as ‘S→NP,VP’,
‘NP→DET N’, or ‘N→Mary’, yielding a language of phrase-structure trees. The
weights associated with the rules are real numbers in the interval [0, 1]. The
probability of a parse tree in the language is now defined as the product of the
weights of the rules that were applied to obtain its (left-most) derivation.

In the early stages of statistical parsing, grammars were manually de-
signed by grammarians depending on the specific task and domain of the
project. The weights of the grammar rules were then obtained automati-
cally from a training corpus, consisting either of natural-language utterances
[Baker, 1979, Fujisaki et al., 1989, Lari & Young, 1990, Jelinek et al., 1990] or
phrase-structure trees [Pereira & Schabes, 1992]. Corpora of the latter type are
also referred to as treebanks.

In more recent approaches, even the grammar rules themselves are obtained
from the treebank [Scha, 1990, Charniak, 1993]. These so-called treebank gram-
mars avoid the costly process of manually designing a grammar and tend to be
more robust since they reflect the actual performance of a language user rather
than her principal linguistic competence.

This thesis is about Data-Oriented Parsing (DOP)1, a treebank-grammar ap-
proach introduced by Remko Scha [Scha, 1990] and formalized by Rens Bod
[Bod, 1991]. Its underlying assumption is that human perception of language
is based on previous language experiences rather than abstract grammar rules.
In the most prominent DOP variants, certain subtrees (called fragments) are ex-
tracted from the parse trees of the treebank during the training process. These
fragments are assigned weights between 0 and 1. Fragments can be recombined
to parse trees. This way, new parse trees—trees that did not necessarily occur in
the training corpus—can be obtained. The probability assigned to a parse tree
under DOP is determined by the weights of the fragments with which that parse
tree can be built up.2

1Pronounced: ‘dopp’.
2DOP fits into the framework of stochastic grammars mentioned above. The corresponding

class of grammars is called Stochastic Tree-Substitution Grammars (STSG) [Bod & Scha, 1996].
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Problem statement

Although already achieving state-of-the-art performance, the commonly used
model DOP1 lacks a formal justification such as, e.g., the maximum-likelihood
principle common in statistical NLP. Furthermore, it has the disturbing property
of inconsistency [Johnson, 2002]: The probabilities that DOP assigns to parse
trees do not converge to the relative frequencies of these trees in the training cor-
pus when that corpus grows large. As we will demonstrate, the failure to fulfill
this property causes DOP to incorrectly rank different possible parses for a given
sentence based on the evidence in the training corpus. A related problem is the
model’s bias towards fragments of large parse trees.

Aside from estimation issues, the fact that a parse tree contains an exponential
number of DOP fragments in terms of the size (i.e., number of nodes) of the
tree has consequences for DOP’s computational properties.Whereas PCFG-based
models have algorithms for computing the most probable parse in polynomial
time w.r.t. sentence length, DOP’s case is NP-complete [Sima’an, 1999] and is
dominated by the huge size of the grammar.

Contributions

We devise a new DOP model that satisfies the property of consistency. The
difficulty lies in the problem that the maximum-likelihood method, according to
which the joint probability of the parse trees in the training corpus should be
maximized, an estimation method often leading to consistency, is not suitable for
DOP: Standard maximum-likelihood estimation results in an overfitted (though
consistent) estimator that only learns the parses directly occurring in the training
data [Bonnema et al., 1999].

In this thesis, we follow a generalized maximum-likelihood approach leading
to the first nontrivial consistent estimator for DOP. Our estimator DOP∗ ap-
plies held-out training: Grammar productions are extracted from one part of
the training corpus, and their probabilistic weights are assigned based on their
participation in derivations of trees from a distinct, held-out, part of the corpus.
While the formula for those weight assignments is derived from the optimization
problem of maximizing the likelihood of the held-out corpus, a simplifying as-
sumption is introduced during the solution process. This assumption leads to
a computationally inexpensive closed-form solution and at the same time causes
DOP∗ to prefer learning simpler derivations of parses during the training process.

As a side product of the estimation mechanism, the estimator learns only a
number of fragments that is linear in the total number of nodes of the trees in
the training corpus, thereby circumventing the inefficiency problems of original
DOP without giving up on the idea of using arbitrary-size fragments.3

3DOP∗ is not the first efficient estimator for DOP. In [Goodman, 1998], an efficient conver-
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Another property of estimators often considered to be desirable is being un-
biased. We show that DOP estimators cannot—and should not be—completely
unbiased. However, we will demonstrate that in contrast to DOP1, DOP∗ is not
biased towards fragments of large parse trees.

Last but not least, we empirically validate our theoretical findings. Using the
OVIS corpus to compare the performance of the DOP∗ parser to DOP1, we find
that DOP∗ achieves better results in parsing accuracy.

1.1 Outline

The following chapter paves the ground for this thesis by acquainting the reader
with basic concepts used in statistical parsing. We introduce the Data-Oriented
Parsing framework, point out shortcomings of the standard model, and review
previous attempts of addressing these shortcomings. Further, the paradigms of
maximum-likelihood estimation and held-out estimation are introduced.

In Chapter 3, we introduce the notions of an estimator, bias, and consistency,
and then examine how bias and consistency apply to DOP. We will show that
every reasonable DOP estimator must be biased, give a proof that the DOP
maximum-likelihood estimator is consistent in preparation for the consistency
proof for DOP∗, and informally ascertain necessary conditions a consistent DOP
estimator must fulfill.

Chapter 4 presents the new estimation procedure DOP∗. The chapter also
includes a consistency proof for DOP∗. Further, we show that DOP∗ can achieve
an exponential reduction in the number of fragments extracted from the training
corpus w.r.t. DOP1 and argue that in contrast to DOP1, DOP∗ is not biased
towards fragments of large full parse trees.

Chapter 5 substantiates the theoretical findings of this thesis with empirical
evidence. Concluding remarks and directions for possible future work are given
in Chapter 6.

sion of DOP1 to a PCFG is presented. The resulting number of PCFG rules is linear in the
number of nodes of the training corpus. Although the algorithm is unable to calculate the most
probable DOP1 parse, its returned Labelled Recall Parse leads to similar parsing accuracy as
DOP1. The conversion is only possible for particular DOP estimators, however. Even if an
inefficient consistent DOP estimator could be converted into a PCFG estimator in such a way,
it is not clear whether Labelled Recall Parsing for that estimator would result in sufficient
parsing accuracy since consistency concerns the actual parse tree probabilities.
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Chapter 2

Background

As indicated in the introduction, statistical-NLP algorithms extract pieces of
evidence (often called: events) from a training corpus and assign weights to them
based on their frequency in the corpus. A probabilistic model 1 then provides a
method of combining events to obtain samples (e.g., sentences or parse trees)
and assigns a probability to each sample based on the weights of the events from
which the sample was assembled.

Perhaps the simplest example for a probabilistic model is the unigram model
over word sequences. Here, the samples are natural language sentences and the
events extracted from the training corpus are words and the end-of-sentence mark
dot. The model assigns to each event e its relative frequency rf (e) of occurrence
in the training corpus. The probability of a sentence (regarded as a sequence
〈w1, . . . , wn,dot〉, where n ∈ IN and w1, . . . , wn are word-events2) is now simply
defined as the product of the weights of its events:

Punig(〈w1, . . . , wn,dot〉) = rf (w1) · · · rf (wn) rf (dot) .

It is easy to show that Punig is a probability distribution over the set of possible
sentences.

A probabilistic model for statistical parsing uses parse trees (cf. Figure 1.1)
as samples. In the case of Data-Oriented Parsing, events are subtrees that can
be combined using a substitution operation.

This chapter starts out with some basic concepts used in statistical parsing
and establishes the notation used throughout this thesis (Section 2.1). Subse-
quently, we introduce the Data-Oriented Parsing framework, advert to shortcom-
ings of the standard model, and review previous attempts of addressing these
shortcomings (Section 2.2). In the remaining sections, two methods of assigning

1Not to be confused with probability models as introduced in Section 2.3.
2Note that the tuple 〈dot〉 also counts as a sentence.
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weights to events commonly used in statistical NLP, maximum-likelihood esti-
mation and held-out estimation, are introduced to prepare the ground for the
subsequent chapters.

2.1 Terminology

In this section, we introduce notation that will be employed throughout this
thesis.

Sentences and trees

In statistical NLP, the basic units considered are usually the words of a fixed
natural language. A sentence is formally treated as a sequence of words.

When writing about trees in this thesis, we mean phrase structure trees, that
is, trees whose non-leaf nodes are phrase-structure categories (e.g., ‘S’, ‘NP’, ‘N’)
and whose leaves are either categories or words. Sometimes, the words of a phrase
structure tree are also referred to as terminals and the categories as nonterminals,
alluding to the terminology of Formal Language Theory. A tree with root node
‘S’ (the start nonterminal) all of whose leaves are words and in which ‘S’ does
not occur in any non-root node is called a full parse tree (also: parse tree, or
simply parse). A parse tree for a given sentence s is a full parse tree whose yield
(i.e., its sequence of leaves traversed from left to right) is the sentence s. Confer
Figures 1.1 and 1.2 for examples of full parse trees.

Sequences

When talking about sequences, we mean finite sequences. The symbol ◦ de-
notes the composition operation for sequences, |s| the length of a sequence s.
When using set operators such as ∈,∩,∪, etc., on a sequence, they refer to
the induced set of all the elements occurring in the sequence. For a sequence
s, we write Count s (e) for the number of occurrences of the element e in s,

and rf s (e) = Counts(e)
|s|

for e’s relative frequency in s. We extend those defini-

tions to sets E of elements by defining Count s (E) :=
∑

e∈E Count s (e) and
rf s (E) :=

∑
e∈E rf s (e).

Finally, given a set S, the star of S is defined as

S∗ :=
⋃

i∈IN

Si .
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Probability distributions over parse trees

Wherever we come across probability distributions in this thesis, their underlying
sample space will be the set Parses of all full parse trees. Since this set is count-
able, we can characterize a probability distribution over Parses by its probability
function, a function from Parses to [0, 1] assigning to each elementary event {t}
(where t ∈ Parses) its probability, and will from now on sloppily talk about
probability distributions P : Parses → [0, 1].

Corpora and experimental methodology

A treebank is a sequence of full parse trees, which are assumed to be independent
samples from Parses according to a certain probability distribution. Note that
this view—fundamental to DOP1 as well as DOP∗—completely neglects inter-
sentence dependencies such as discourse phenomena.

For experiments, the treebank is split into a training and a testing corpus. The
former is used during the training process, while the latter is a reserved portion
of the treebank—not seen during training—, whose sentences (extracted from the
leaves of the parse trees) are fed into the parser in order to compare its proposed
parse with the parse tree the test sentence was attached to. This practice leads to
objective performance figures, which make different parsers comparable to each
other.

Estimation

The training procedure in statistical parsing results in a probability distribution
over Parses, according to which the parser can determine the preferred parse
for an input sentence. We will call this procedure an estimator. Intuitively,
an estimator tries to approximate the ‘true’ probability distribution assumed to
underly the training corpus. In the case of DOP, the estimator is the procedure
that assigns weights to fragments and thereby probabilities to full parse trees
dependent on the training corpus. An estimator is consistent if its estimated
probability distribution converges to the ‘true’ distribution when the training
corpus grows large. We will give a formal definition of an estimator and its
properties in Chapter 3.

2.2 Data-Oriented Parsing

In this section, we introduce the general framework used by current DOP es-
timators and introduce the DOP1 model. The DOP framework originally set
out is actually even more general. A detailed discussion can be found in

12



[Scha, 1990, Bod & Scha, 1996, Bod, 1998]. In Subsections 2.2.3 and 2.2.4, we
advert to shortcomings of the standard model. Subsection 2.2.5 gives an overview
and assessment of previous attempts of addressing these shortcomings.

2.2.1 The General Framework

As already mentioned in the introduction, during the training process of DOP,
fragments (also simply called subtrees) are extracted from the full parse trees of
the training corpus. For each full parse tree t, the multiset of fragments of t is
the multiset of all occurrences of subgraphs f of t, such that

1. f consists of more than one node,

2. f is connected,

3. each non-leaf node in f has the same daughter nodes as the corresponding
node in t.

For instance, the fragment multiset of the tree

S

A

b

A

b

is





S

A

b

A

b

,
S

A A
,

S

A

b

A ,

S

A A

b

,
A

b

,
A

b





.

For a given training corpus tc = 〈t1, . . . , tN〉, its fragment corpus Fragtc is the
composition of the sequences s1, . . . , sN , where si is the sequence resulting of
arranging the elements of the fragment multiset of ti according to some fixed
order. We denote the set induced by Fragtc as FragSettc. Using the convention
introduced in Section 2.1, we will avoid referring to that set explicitly wherever
possible. A fragment f ∈ Fragtc is called a proper fragment w.r.t. tc if it does
not occur as a full parse tree in tc.

In the next step of the DOP estimation procedure, each fragment f ∈ Fragtc

is assigned a weight π(f) ∈ [0, 1] such that the weight assignment to fragments
with a common root R forms a probability distribution for each R occurring as
a root in Fragtc. In other words, for each such R, π must fulfill the condition

∑

f : root(f)=R

π(f) = 1.
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As mentioned earlier, DOP allows for the recombination of fragments to new
full parse trees. This is done by tree composition. The composition of tree t1

and tree t2, resulting in the tree t1 ◦ t2, is defined iff the leftmost leaf of t1 that
is a nonterminal is identical to the root of t2. If defined, t1 ◦ t2 yields a copy of
t1 whose leftmost nonterminal leaf has been replaced by the whole tree t2. Note
that this composition operation is technically not associative.3 When writing
t1 ◦ t2 ◦ t3, we mean (t1 ◦ t2) ◦ t3.

A sequence 〈f1, . . . , fn〉 ∈ (Fragtc)
n such that t = f1◦· · ·◦fn is a full parse tree

is called a derivation of t. The DOP probability of a derivation d = 〈f1, . . . , fn〉
is the product of the weights of the involved fragments:

Pdop(d) :=
n∏

i=1

π(fi)

The property that weights of fragments with the same root sum up to one ensures
that Pdop is a probability distribution over the set of all derivations.4 The DOP
probability of a full parse tree is now simply defined as the sum of the DOP
probabilities of all its derivations. The DOP probability of a sentence in turn is the
sum of the DOP probabilities of its full parse trees. Finally, the preferred parse(s)
according to DOP is/are the full parse tree(s) with maximal DOP probability.

2.2.2 The DOP1 Estimator

The DOP1 estimator is obtained by choosing the weight assignment π to frag-
ments such that each fragment f ∈ Fragtc is assigned its relative frequency
amongst all occurrences of fragments with the same root in Fragtc:

π(f) :=
CountFragtc

(f)

CountFragtc
({f ′ ∈ Fragtc | root(f ′) = root(f)})

A toy example of a training corpus, its resulting fragment corpus, the weights
assigned by DOP1, and the calculation of the DOP1 probabilities of some result-
ing full parse trees is given in the following subsection.

2.2.3 DOP1 Is Inconsistent

DOP1 suffers from some severe problems. One of them is the inconsistency of
the estimation method. Consider a training corpus in which only the two parse

3However, we have (t1 ◦ t2) ◦ t3 = t1 ◦ (t2 ◦ t3) if both sides of the equation are defined.
4As it is the case for Probabilistic Context Free Grammars (PCFGs), certain recursive DOP

grammars ‘leak’ probability mass such that the derivation probabilities sum up to less than
one. We will ignore this issue here.
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trees drawn in Figure 2.1 occur, both with equal frequencies. The trees t1 and t2
have the same structure and differ merely in the categories assigned to the words
“a” and “b”. Intuitively, neither of them should be preferred as a parse for the
sentence “a b.”

: :2
1

S S

t
 Z

  a

 ZYX

  a
t

  b   b

Figure 2.1: Two analyses for the sentence “a b”

 Z

S

 Z Z

  b

S

 Z Z

  a

S

 Z Z

  b  a

S  Z

  b

 Z

  a Z

YX

S

YX

  b

S

YX

  a

S

YX

  a   b

S

  b

 X  Y

  a

1/8 1/8 1/8 1/8

1/81/81/81/8

 1  1

1/2 1/2

Figure 2.2: The fragments extracted from the “a b” training corpus and their
DOP1-weights

Figure 2.2 shows the fragments of the resulting fragment corpus and their
weights assigned by DOP1. In order to calculate the DOP1 probabilities of t1

and t2 (as can easily be seen, they are the only parses for “a b”), we need to
determine all of their derivations and their respective DOP1 probabilities. This
has been done in Figure 2.3. Here and in the following, we use the convention to
denote a derivation of a full parse tree by the tree itself, in which the nodes at
which the compositions of fragments occurred are marked.

Now we can determine the DOP1 probabilities of t1 and t2 by summing up
the probabilities of their derivations:

PDOP1(t1) = 1
8

+ 1
8

+ 1
8

+ 1
8

= .5
PDOP1(t2) = 1

8
+ 1

16
+ 1

16
+ 1

32
= .28125

(2.1)

DOP1 thus has an unjustifiably strong preference for one of the two parses of “a
b”.
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:1t

P=1/8*1*1=1/8P=1/8 P=1/8*1=1/8 P=1/8*1=1/8

Figure 2.3: The derivations of t1 and t2 and their probabilities

Let us now assume that the trees in the training corpus were sampled accord-
ing to an underlying probability distribution P with P (t1) = P (t2) = 0.5.5 Even
when the size of the training corpus sampled according to P grows very large
(and thus, the relative frequencies of t1 and t2 will be roughly 0.5), DOP1 will
keep assigning them probabilities close to the ones in Equation 2.1. Intuitively,
the DOP estimator should choose the weights it assigns to the fragments in such
a way that the resulting probabilities assigned to the derivable full parse trees ap-
proach the relative frequencies of their occurrences in the training data when its
size grows large. This requirement is made precise by the notion of consistency,
which will be formally introduced in Chapter 3. The inconsistency of DOP1 was
first shown in [Johnson, 2002].

2.2.4 DOP1 Is Biased Towards Fragments of Large Parse

Trees

The problem of DOP1’s inconsistency is related to another one: Its bias towards
fragments of large full parse trees, illustrated in [Bonnema et al., 1999]. For a
tree

t =
R

t1 · · · tk
,

where t1, . . . , tk are the subtrees under the root R, the size sif(t) of the multiset of
its initial fragments (that is, the fragments with the same root R), is recursively
given by

sif(t) =
k∏

i=1

(sif(ti) + 1) .

5Note that this distribution results from a DOP estimator assigning weights 0.5 to both
fragments t1 and t2.
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In the case of balanced binary parse trees for instance, that means that for a tree
t(h) of height h and a tree t(h+1) of height h + 1, we have

sif(t
(h+1)) =

(
sif(t

(h)) + 1
)2

.

That makes clear why in DOP1, where fragments are assigned weights propor-
tionally to their numbers of occurrence in the fragment corpus, the full parse
trees with the greatest height, containing a great deal more fragments than parse
trees of lesser height, are unjustifiably favored.

A similar calculation shows that the fragment multiset of a given full parse
tree contains considerably more fragments of a certain height than fragments
of any smaller height. This bias towards large fragments was addressed in two
attempts of redefining the weight assignment function. The following subsection
gives a brief overview.

2.2.5 Other Existing DOP Estimators

Bonnema’s Estimator

Bonnema et al. [Bonnema et al., 1999, Bonnema, 2003] propose a DOP estima-
tion method that tackles the problem of DOP1’s bias towards large fragments.
We will omit its theoretical motivation here and just state the formula for the
estimator directly. Let N(f) denote the number of non-root nonterminal nodes
of a fragment f . Bonnema’s DOP estimator assigns to each fragment f from the
training corpus tc the weight

π(f) = 2−N(f) CountFragtc
(f)

CountFragtc
({f ′ ∈ Fragtc | root(f ′) = root(f)})

.

This way, weight mass is discounted from large fragments and distributed over
smaller ones.

Is Bonnema’s estimator consistent? In [Bonnema, 2003], a proof is given
from which easily follows that the estimator is consistent for PCFG distribu-
tions: Given a probability distribution PG over Parses resulting from a PCFG
G, the sequence of DOP probability distributions estimated from growing train-
ing corpora sampled according to PG converges to PG. This is nice, but not nice
enough: the simple example treebank from Section 2.2.3, for which DOP1 was
shown to be inconsistent, also causes Bonnema’s estimator to fail, as can easily
be calculated.

Furthermore, [Sima’an & Buratto, 2003] report very disappointing results
when testing the estimator on the OVIS corpus.
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The DOP Maximum-Likelihood Estimator

The DOP maximum-likelihood estimator DOPML is the estimator defined by the
following weight assignment to fragments f extracted from the training corpus
tc:

π(f) =

{
rf tc (f) if f is a full-parse tree in tc
0 otherwise

The resulting DOP probability distribution is simply the relative frequency dis-
tribution of the full parse trees in the training corpus.

We will come back to this estimator in Section 2.3. As we will see in Section
3.3, DOPML is consistent.

Back-off DOP

In the method of back-off parameter estimation for the DOP model
[Sima’an & Buratto, 2003], derivations are hierarchically structured within a so-
called back-off graph. The aim is to account for the probabilistic dependencies
of overlapping fragments in a principled manner (in contrast to DOP1, where
simply independence is assumed in the generative model of a derivation process).

In order to define the back-off graph, the notion of a DOP derivation is slightly
generalized to also allow the derivation of partial parses—i.e., fragments—by a
successive application of substitution steps. Further, the attention is restricted
to length-two derivations, i.e., pairs of fragments. A derivation d = 〈f1, f2〉 is
called a back-off of a fragment f if f = f1 ◦ f2.

In [Sima’an & Buratto, 2003], length-two derivations form the nodes of the
back-off graph. For the sake of presentation, we define the notion of a back-off
graph slightly differently: A back-off graph is a directed graph whose nodes are
the fragments from the training corpus and whose arrows point from fragment f
to fragment g iff g participates in a back-off of f , i.e., iff f = g ◦h or f = h◦g for
some fragment h. Note that this graph is acyclic since a fragment g participating
in a back-off of a fragment f is always smaller in the number of nodes than f .

The back-off graph induces a hierarchy between copies of fragments—the back-
off hierarchy—as follows: The first layer consists of the sources of the back-off
graph, i.e., the fragments that do not participate in any back-offs of fragments.
These turn out to be the full parse trees of the training corpus. The n-th layer
contains all fragments f for which there is a path of length n−1 from a source in
the back-off graph to f . In other words, the n-th layer consists of the fragments
that participate in back-offs of fragments from layer n − 1. Note that the same
fragment can occur in different layers! Since the back-off graph is acyclic and
finite, the induced back-off hierarchy has always a finite number of layers.

The estimation procedure for Back-off DOP now operates iteratively in n
steps, where n is the number of layers of the back-off hierarchy. In essence, this
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procedure stepwisely transfers weight mass from one layer to the next. Intuitively,
this amounts to the transfer of probability mass from preferred derivations to
back-off derivations of trees in the training corpus.

The particular redistribution formula is an adaption of the Katz back-off
method known from n-gram smoothing. However, as opposed to Katz back-off,
where different estimators are interpolated during the testing process, Back-off
DOP interpolates different weight assignments to fragments during the training
process.

The original Katz smoothing formula assigns new probabilities to n-gram
events based on up to n given probability distributions (usually the relative fre-
quency distributions) over the set of all n-grams, the set of all (n−1)-grams, and
so forth. In Back-off DOP, these n given distributions should correspond to n
given distributions over fragments—one for each of the n layers in the back-off hi-
erarchy. This confronts Back-off DOP with an inherently difficult problem: What
given distributions over fragments should be used? What meaning does a prob-
ability distribution over fragments have for DOP in the first place? DOP assigns
only probabilities to full parse trees, and this only indirectly: They result from
weight assignments to fragments. Since the weight assignments to fragments of
the same root form a probability distribution, [Sima’an & Buratto, 2003] choose
to apply the back-off formula separately for each nonterminal N to fragments of
root N . As given distributions, they use the weight assignments given by DOP1
and Bonnema-DOP, leading to two different variants of Back-off DOP.

We believe that

1. the back-off formula specified in [Sima’an & Buratto, 2003] does meet the
intuition of assigning higher DOP probabilities to derivations from ‘pre-
ferred’ fragments in top (i.e., low-numbered) layers of the back-off hierarchy
and lower ones to back-off derivations from fragments in higher-numbered
layers6 and

2. applying back-off smoothing to weight assignments rather than DOP prob-
abilities does not take into account an event’s probability, as required in
the Katz back-off formula, appropriately.

The first point is unproblematic. A slight adaption of the formula should suffice.
As to the second point, how can the notion of a DOP probability, so far only
defined for full parse trees, be generalized to fragments in a sensible way? In
[Nguyen, 2004], the notions of a DOP derivation and its probability are general-
ized to fragments. For fragments that are full parse trees, her notion of a DOP
probability coincides with the original notion.

6Note, however, that this was intended in that version of Back-off DOP: The aim was to
countervail DOP1’s bias towards large fragments by redistributing weight mass towards smaller
fragments.
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Unfortunately, proceeding in this way (using DOP probabilities instead of
weights in the back-off formula) would lead to a system of nonlinear equations,
one for each fragment occurrence in the back-off hierarchy. Sensible simplifying
assumptions would be necessary.

An alternative solution could be to train n different estimators for each of
the n layers in the back-off hierarchy and interpolate these estimators during the
testing process, as done in the original Katz back-off estimation process. However,
as Sima’an remarks (personal communication), such an estimation method would
lose out considerably on DOP’s original spirit of involving all kinds of fragments in
the derivation process since fragments of different layers are now strictly separated
into different estimation modules and could not recombine with each other.

According to Sima’an (personal communication), it should not be too difficult
to devise the back-off formula in such a way that the resulting estimator becomes
consistent. In essence, the fragments of the first layer in the back-off hierarchy
would have to become increasingly dominant (in terms of assigned weight mass) as
the corpus gets larger and more homogenous. Even the version of Back-off DOP
presented in [Sima’an & Buratto, 2003] achieves already very promising empirical
results. However, the inefficiency problem of DOP1 is inherited by Back-off DOP:
Since all fragments are extracted from the training corpus, parsing time does not
improve over DOP1.

2.3 Probability Models and The Principle of

Maximum-Likelihood Estimation

If we look at the training process of a parsing system from the viewpoint of estima-
tion theory, we can regard that process as the choice of a probability distribution
over Parses out of a certain set M (called: probability model) of acceptable
probability distributions. Often, for the choice of the appropriate probability
distribution, the Maximum-Likelihood Criterion is used, according to which the
probability distribution that maximizes the joint probability of the full parse
trees in the training corpus, the so-called Maximum-Likelihood Estimate (MLE),
is chosen. If M is unrestricted, that is, if it contains all possible probability dis-
tributions over Parses, then the MLE always exists, is furthermore unique, and
is identical to the relative frequency estimate (RFE)7

Prf : Parses → [0, 1], where Prf(t) := rf TC (t) .

Remember here that rf TC (t) = CountTC(t)
|TC|

denotes t’s relative frequency in the
training corpus TC.

7A proof of this can for example be found in [Ney et al., 1997], Subsection 2.4, or
[Prescher, 2003], Section 2.
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Given a training corpus tc, the DOP probability model induced by tc, de-
noted Mdop(tc), is the set of all DOP-probability distributions (over Parses)
resulting from weight assignments to the set of fragments in the fragment corpus
Fragtc. This model plays a role not only for the problem of finding the most
suitable weight assignment to the fragments from tc, but also for considering
formal properties of DOP, such as bias and consistency, which will be the aim of
Chapter 3.

For now, let us come back to the problem of maximum-likelihood estimation:
The DOP maximum-likelihood estimator DOPML is usually referred to as the
DOP procedure that assigns weights to the fragments extracted from the training
corpus in such a way that the resulting joint DOP-probability of the training
corpus is maximized [Bonnema et al., 1999, Sima’an & Buratto, 2003]. DOPML

thus yields the maximum-likelihood estimate w.r.t. Mdop(tc). Although the
probability model is now restricted, the RFE belongs to it, and hence the MLE is
still identical to the RFE. Why the RFE is a member of the probability model can
easily be seen by considering the weight assignment allocating to each full parse
tree its relative frequency in the training corpus and zero to all proper fragments,
i.e., fragments that are not full parse trees. All derivations remaining possible
under this weight assignment are the unique length-1 derivations of the corpus
trees themselves, having as their DOP probability the weight of the respective
full parse, which is equal to its relative frequency.

What we also learn from this is that relative frequency estimation for DOP
(and thus the DOP maximum-likelihood estimator) is of no practical use since
it only assigns nonzero weights to the fragments that occur as full parse trees in
the training data. This is not what we want. Natural language data is sparse,
that is, many full parse trees will occur only a few times or not at all in the
training data. Therefore, the RFE is unsatisfactory for statistical parsing. Not
only does it assign probability 0 to all parses that do not occur in the training
data. It can also only give rough estimates for rarely occurring full parse trees.
There are different ways out of this common problem of overfitting in statistical
NLP: One can either restrain the probability model M of acceptable probability
distributions from which the MLE is chosen, or modify the model (e.g. by prun-
ing it [Sima’an, 1999]), or adjust the relative frequency estimate by discounting
probability mass from frequently occurring events (in our case: full parse trees)
and distributing that mass over the unknown and rarely occurring events.8 The
technique of held-out estimation, which we will encounter in the following section,
belongs to the class of discounting methods. Restraining the model (in the case
of DOP) can for instance be achieved by only allowing fragments up to a certain
depth to have nonzero weights [Bod, 2000, Bod, 2001] or by imposing conditions

8Actually, some discounting methods are just instances of MLE for a restrained probability
model. In [Ney et al., 1997] for instance, Ney derives the well-known formula for Good-Turing
discounting as a solution of a maximum-likelihood problem.
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on the weight assignment functions, as done in Back-off DOP (cf. Subsection
2.2.5).

Where will our estimation method DOP∗ fit in? Basically, DOP∗ restrains
the model by only extracting fragments from a part of the training corpus. At
the same time, however, some probability mass will be reserved and distributed
over fragments from the rest of the corpus.

2.4 Held-Out Estimation

Held-out estimation is a method used in n-gram based language modelling. For
comprehension of the rest of this thesis, the hurried reader only needs to know
its core idea of reserving a part of the training corpus (the held-out part) for
some preliminary testing on how representative the training data is and can now
lightheartedly jump to the next chapter.

A simple example application for n-gram modelling (or equivalently: (n − 1)th

order Markov modelling) is the task of predicting the next word w in a text in
a natural language by considering the n− 1 words w1, . . . , wn−1 that preceded w
in the text. For this purpose, a probability distribution over n-tuples of words
(called: n-grams) is estimated. This can be done by maximum-likelihood es-
timation, i.e., by assigning each n-gram its relative frequency of occurrence in
the training corpus tc. We have already encountered a related version of this
estimation method for the case n = 1 (unigrams) at the beginning of this chapter.

The probability for a word w to occur after a word sequence w1 . . . wn−1 can
now be calculated as

P (w|w1 . . . wn−1) =
P (w1 . . . wn−1w)

P (w1 . . . wn−1)
=

rf tc (w1 . . . wn−1w)∑
w′ rf tc (w1 . . . wn−1w′)

As we have seen in the previous section, relative frequency estimation is inca-
pable of dealing with unknown events (here, n-grams). Therefore, in held-out
estimation, some probability mass is discounted in a certain way from all known
n-grams (i.e., n-grams that occurred during training) and evenly distributed over
the unknown ones. Here, unknown n-grams are meant to be n-grams from the
set NGrams which are not known, where NGrams is defined dependent on the
training data as the set of n-tuples of the set of words from the training cor-
pus. The set NGrams is therefore always finite, whence it is possible to evenly
distribute the discounted probability mass over the unknown n-grams.

How should we determine the total amount of probability mass by which the
RFE n-gram probabilities are discounted? In held-out estimation, the training
corpus tc is split into actual training corpus atc and held-out corpus hc. The
actual training corpus is used to obtain the RFE probability distribution for the
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n-grams as explained above. Then the held-out corpus is considered in order
to estimate how often n-grams that occurred r times actually happen to occur
during testing. This yields an estimate of the expected relative frequency of an
n-gram during testing and thus of its actual probability.

Let r = Countatc (t) be the number of occurrences of a certain n-gram t in
atc. Then we define

Tr :=
∑

t′:Countatc(t′)=r

Counthc (t′)

to be the total number of times that n-grams occurring r times in the actual
training data occur in the held-out data. Dividing Tr by the number Nr of
distinct n-grams appearing exactly r times in the actual training data yields the
average frequency that such n-grams have in the held-out data. This value is
called the held-out discount r̃ho of r:

r̃ho :=
Tr

Nr

, where Nr := |{t′ ∈ NGrams | Countatc (t′) = r}|

Note that for unknown n-grams t (i.e., r = 0), N0 is the number of distinct n-
grams not occurring in atc, i.e., the number of distinct unknown n-grams. Note
also that although dubbed ‘discount’, r̃ho can actually be greater than r even for
r ≥ 1.

The held-out discount still depends on the size of the held-out data. Dividing
by that size yields a held-out estimate of the relative frequency with which an n-
gram occurs in actual testing data, and thus an improved estimate of an n-gram’s
probability as compared to relative frequency estimation:

Pho(t) :=
r̃ho

|hc|
, where r = Countatc (t) (2.2)

It is easy to check that Pho is a probability distribution over NGrams.

Unfortunately, held-out estimation is not straight-forwardly applicable to
DOP, the reason being that it is ultimately based on relative frequency esti-
mation. Relative frequency estimation for DOP is of no use since it only assigns
probability mass to full parse trees directly occurring in the training data. Held-
out estimation applied to DOP would just distribute the reserved probability
mass evenly over all ‘unknown’ parse trees (where the definition of ‘unknown’
would here have to be adjusted in order to make the set of all unknown parses
finite), treating them all completely equally. The actual strength of DOP, lying
in the way it combines evidence for full parse trees found in the training data in
order to predict the existence of similar full parse trees which have not occurred
during training, would be completely ignored by held-out estimation.

Nevertheless, the idea of dividing the training corpus into two parts, using
the first one for training, and then adjusting certain parameters (in our case, the
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fragment weights) by testing on the second one, seems appealing and will actually
be utilized by DOP∗.
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Chapter 3

Considerations about Bias and

Consistency

In this chapter, we will introduce the notion of an estimator and the properties of
bias and consistency. Subsequently, we examine how bias and consistency apply
to DOP. We will show that every reasonable DOP estimator must be biased (Sec-
tion 3.2), give a proof that the DOP maximum-likelihood estimator is consistent
in preparation for the consistency proof for DOP∗ (Section 3.3), and informally
ascertain necessary conditions a consistent DOP estimator must fulfill (Section
3.4).

3.1 Basic Notions

In the following, we will establish the notion of an estimator and some of its
properties. An introductory treatment of estimation theory is for instance given
in [DeGroot & Schervish, 2002], Chapter 6; [Krenn & Samuelsson, 1997], Section
1.7; or [Siegrist, 2004]. However, in statistical parsing, we are interested in the
estimation of whole probability distributions, not merely real-valued parameters
or parameter vectors in R

n, as in standard estimation theory. Therefore, the
standard definitions have to be slightly adapted.

3.1.1 Estimation

Informally speaking, the training procedure in statistical parsing results in a prob-
ability distribution, according to which the parser can determine the preferred
parse for an input sentence. We will call this procedure an estimator and the
training data its observations. Intuitively, an estimator thus tries to approximate
the probability distribution P that underlies the observations made. In the case
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of DOP, the estimator is the procedure that assigns weights to fragments and
thereby probabilities to full parse trees dependent on the training corpus.

Usually, assumptions are made on the kind of probability distributions that
can underly the training data. This translates to fixing a model in the jargon of
estimation theory: The training corpus is assumed to have been sampled from a
probability distribution in a fixed model M (cf. Section 2.3).

Assume thus we are given a model M of probability distributions over the
sample space Parses and a probability distribution P ∈ M, according to which
independent samples, observations, are drawn. An estimator tries to predict
P from the observation sequence—a sequence of random samples from Parses

according to the probability distribution P , in the case of DOP the training
corpus. The actual definition of an estimator is independent of M:

Let M0 denote the unrestricted probability model over Parses (cf. Section
2.3). An estimator ϕ : Parses∗ → M0 is a function that assigns a probability
distribution (the estimate) to a finite sequence of samples from Parses.1

The model M will become important when we consider properties of ϕ, such
as bias and consistency. The model-independent definition of an estimator also
enables us to consider properties of one estimator w.r.t. different underlying
models, which we will actually do later.

In the following, we will sometimes denote the estimate ϕ(s) for an observation
sequence s = 〈t1, . . . , tn〉 ∈ Parsesn as ϕs to stress the fact that it is a probability
distribution.

3.1.2 Bias, Loss Function, and Consistency

In the following definitions, we adhere to [Johnson, 2002], where the inconsistency
of DOP1 was first proved, using slightly simplified notation.

Let X = 〈X1, . . . , Xn〉 be a sequence of n independent random variables
distributed according to a probability distribution P in the model M. Then
the estimate ϕ(X) is a random variable as well, ranging over the probability
distributions in M0. It is easy to see that the expected value of the probability
distribution assigned by ϕ,

EP [ϕ(X)] =
∑

〈t1,...,tn〉∈Parsesn

P (t1) · · ·P (tn)ϕ(t1, . . . , tn) ,

is also a probability distribution over Parses.

1Recall that for a set S, S∗ :=
⋃

i∈IN
Si.
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Bias

Based on the expected value of ϕ(X), we define the estimator ϕ to be biased
for some probability distribution P over Parses if there is an n ∈ IN such that
for the sequence X = 〈X1, . . . , Xn〉 of independent random variables distributed
according to P ,

EP [ϕ(X)] 6= P

holds. We call ϕ biased w.r.t. M if it is biased for some P ∈ M.

Loss

A loss function L is a mapping from M2
0 to the nonnegative reals. The value

L(P, ϕ(t1, . . . , tn)) expresses the loss incurred by the error made in the estimate
ϕtc of P from the sample sequence tc = 〈t1, . . . , tn〉.

The expected loss for an estimation of P from a sequence of observations of
length n,

EP [L(P, ϕ(X1, . . . , Xn))]

is called the risk of ϕ at P for sample size n.

Consistency

The estimator ϕ is called consistent w.r.t. M if for each probability distribution
P ∈ M, the risk of ϕ at P approaches zero when the sample size goes to infinity,
i.e., if we have

lim
n→∞

EP [L(P, ϕ(X1, . . . , Xn))] = 0

for all P ∈ M.

The question remaining is: What loss function should we choose in order to
obtain a sensible definition of consistency? We follow [Johnson, 2002] by defining

L(P, ϕ(t1, . . . , tn)) :=
∑

t∈Parses

P (t) [P (t) − ϕ(t1, . . . , tn)(t)]2 .

Note that the function value is always in [0, 1] since

0 ≤ [P (t) − ϕ(t1, . . . , tn)(t)]2 ≤ 1 .

Writing out the formula for the expected loss, ϕ is thus consistent w.r.t. M iff

lim
n→∞

∑

tc∈Parsesn

P (tc)
∑

t∈Parses

P (t) [P (t) − ϕtc(t)]
2 = 0 for all P ∈ M,

where P (tc) = P (t1) · · ·P (tn) is the probability of the sequence tc = 〈t1, . . . , tn〉
of independent samples from Parses drawn according to P .
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Strong consistency

In the literature, consistency is often defined more directly in terms of an ad-
missible error ε. An estimator is then considered consistent if for each ε > 0,
its estimate deviates from the true parameter by more than ε with a probability
approaching zero when the sample size approaches infinity. A possible adaption
of this view of consistency to our framework of statistical parsing is given by the
following definition:

Let M and ϕ be given as specified above. Then ϕ is called strongly consistent
w.r.t. M if for each P ∈ M and each real number ε > 0, we have

lim
n→∞

sup
t∈Parses

∑

tc∈Parsesn:

|ϕtc (t)−P (t)|≥ε

P (tc) = 0 .

3.1.3 Strong Consistency Implies Consistency

As our denotation suggests, strong consistency implies consistency:

Theorem 3.1.1 Let M be a probability model over Parses and
ϕ : Parses∗ → M0 an estimator.

If ϕ is strongly consistent w.r.t. M then ϕ is also consistent w.r.t. M.

Proof: Assume that ϕ is strongly consistent w.r.t. M. Further, let P be a
probability distribution in M. We have to show:

lim
n→∞

∑

tc∈Parsesn

P (tc)
∑

t∈Parses

P (t) [P (t) − ϕtc(t)]
2 = 0

Assume thus, we are given ε′ > 0. Now define ε :=
√

ε′/2 and q := ε′/2. Since ϕ
is strongly consistent w.r.t. M, there is an N ∈ IN such that for all n ∈ IN with
n ≥ N , we have

sup
t∈Parses

∑

tc∈Parsesn:

|ϕtc (t)−P (t)|≥ε

P (tc) ≤ q

and hence ∑

tc∈Parsesn:

|ϕtc (t)−P (t)|≥ε

P (tc) ≤ q (for all t ∈ Parses) (3.1)
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and hence
∑

tc∈Parsesn

P (tc)
∑

t∈Parses

P (t) [P (t) − ϕtc(t)]
2

=
∑

t∈Parses

P (t)
∑

tc∈Parsesn

P (tc) [P (t) − ϕtc(t)]
2

≤ sup
t∈Parses

∑

tc∈Parsesn

P (tc) [P (t) − ϕtc(t)]
2

≤ sup
t∈Parses

[
∑

tc∈Parsesn:

|P (t)−ϕtc (t)|<ε

P (tc) [P (t) − ϕtc(t)]
2

︸ ︷︷ ︸
<ε2

︸ ︷︷ ︸
<ε2

+
∑

tc∈Parsesn:

|P (t)−ϕtc (t)|≥ε

P (tc) [P (t) − ϕtc(t)]
2

︸ ︷︷ ︸
≤1

︸ ︷︷ ︸
≤q by (3.1)

]

≤ ε2 + q = ε′ .

qed

We conjecture that the other direction also holds, i.e., that the properties of
consistency and strong consistency are actually equivalent. Be that as it may, in
the consistency proofs given in this thesis, we will show strong consistency, and
thereby also consistency, of the respective estimators.

3.2 A Short Word on Bias

In estimation theory, being unbiased is often considered a quality criterion for
an estimator (see, e.g., [Krenn & Samuelsson, 1997], Subsection 1.7.2). However,
as illustrated for instance in [DeGroot & Schervish, 2002], Section 7.7, there are
estimation problems in which the aim of unbiased estimation is of limited, if not
counterproductive, utility. How do matters stand with DOP? In [Johnson, 2002],
where DOP1 is shown to be biased and inconsistent, it is conjectured that “un-
doubtedly there are other estimation procedures for DOP models which are un-
biased and consistent.” Certainly, the standard DOP maximum-likelihood esti-
mator is, but as we have seen in Sections 2.3 and 2.4, that estimator in its pure
form is of no use to DOP because it assigns probability zero to all full parse
trees that do not occur directly in the training data. Could any reasonable DOP
estimator (that is, an estimator that doesn’t completely overfit the training data)
be unbiased? As we will see in this section, bias of the DOP estimator is a nec-
essary (and desired) by-product of DOP’s basic conception of assigning nonzero
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probabilities to full parse trees not occurring in the training data. We start with
a theorem that gives a necessary condition for a (general) estimator to be biased
for a particular probability distribution.

Theorem 3.2.1 Let ϕ : Parses∗ → M0 an estimator for which there is a train-
ing corpus tc = 〈t1, . . . , tn〉 ∈ Parsesn and a full parse tree t0 outside the corpus
( i.e., t0 6= ti (i = 1, . . . , n)) such that

ϕtc(t0) > 0 .

Then ϕ is biased for each probability distribution P over Parses that as-
signs a positive probability to tc but a zero-probability to t0, i.e., for which
P (t1) · · ·P (tn) > 0 and P (t0) = 0.

Proof: Let ϕ and tc = 〈t1, . . . , tn〉 be given as specified above and assume
ϕ is unbiased for some probability distribution P with P (t1) · · ·P (tn) > 0 and
P (t0) = 0. This means that

EP (ϕ(X1, . . . , Xn)) =
∑

〈ω1,...,ωn〉
∈Parsesn

P (ω1) · · ·P (ωn)ϕ(ω1, . . . , ωn) = P. (3.2)

Thus, we have
∑

ω∈Parses:
P (ω)6=0

∑

〈ω1,...,ωn〉
∈Parsesn

P (ω1) · · ·P (ωn)ϕ(ω1, . . . , ωn)(ω) =
∑

ω∈Parses:
P (ω)6=0

P (ω). (3.3)

Since
∑

ω∈Parses: P (ω)6=0 P (ω) = 1, we obtain from (3.3):
∑

ω∈Parses:
P (ω)6=0

∑

〈ω1,...,ωn〉
∈Parsesn

P (ω1) · · ·P (ωn)[ϕ(ω1, . . . , ωn)](ω) = 1, (3.4)

i.e., ∑

〈ω1,...,ωn〉
∈Parsesn

P (ω1) · · ·P (ωn)
∑

ω∈Parses:
P (ω)6=0

[ϕ(ω1, . . . , ωn)](ω) = 1. (3.5)

Since ∑

〈ω1,...,ωn〉
∈Parsesn

P (ω1) · · ·P (ωn) = 1

and ∑

ω∈Parses:
P (ω)6=0

[ϕ(ω1, . . . , ωn)](ω) ≤ 1,

Equation (3.5) can only be valid if
∑

{ω∈Parses: P (ω)6=0}[ϕ(ω1, . . . , ωn)](ω) = 1

for all ω1, . . . , ωn ∈ Parses such that P (ω1) · · ·P (ωn) > 0. But this means
[ϕ(ω1, . . . , ωn)](ω) = 0 for all ω, ω1, . . . , ωn ∈ Parses with P (ω) = 0 and
P (ω1) · · ·P (ωn) > 0. Thus, [ϕ(t1, . . . , tn)](t0) = 0, which is a contradiction.
qed
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Now we apply the theorem to DOP. The following corollary states that, given
a training corpus tc and a DOP estimator that is unbiased w.r.t. tc’s induced
DOP probability model2 Mdop(tc), the estimator is bound to completely overfit
the training corpus by assigning zero-probabilities to all full parse trees outside
the corpus.

Corollary 3.2.2 Let there be a training corpus tc ∈ Parsesn and a DOP esti-
mator ϕ : Parses∗ → M0 that is unbiased w.r.t. Mdop(tc). Then ϕtc(t) = 0
for all t ∈ Parses with t /∈ tc.

Proof: Assume indirectly that ϕtc(t0) > 0 for some full parse tree t0 that is not
in tc. As shown in Section 2.3, the relative frequency estimate

Prf tc
: Parses → [0, 1], where (3.6)

Prf tc
(t) := rf tc (t) (3.7)

is an instance of Mdop(tc). Since rf tc (t) > 0 for all t ∈ tc and rf tc (t0) = 0,
it follows from Theorem 3.2.1 that ϕ is biased for Prf tc

. Thus ϕ is biased w.r.t.
Mdop(tc). qed

It might be of interest to apply Theorem 3.2.1 to other estimators in statistical
NLP. As pointed out in [Prescher et al., 2004], the theorem is not of relevance to
probabilistic context free grammars (PCFGs) since the PCFG model Mpcfg(tc)
induced by a training corpus tc does not contain a probability distribution that
assigns positive probabilities to the trees in tc and zero to an outside tree.

3.3 The DOP Maximum-Likelihood Estimator

Is Consistent

Although it is generally accepted that the DOP maximum-likelihood estimator
DOPML, introduced in Subsection 2.3, is consistent, no such proof exists in the
literature so far. Remember that DOPML assigns each full parse tree its relative
frequency in the training corpus and is thus identical to the relative frequency
estimator. Relative frequency estimation for DOP differs from standard textbook
RFE in that a DOP estimator does not estimate one single real-valued param-
eter or a parameter vector in R

n of a probability distribution, but rather the
probability distribution itself. Therefore, the results for standard RFE cannot be
utilized.

In the following, we will give a proof that DOPML is consistent. We will
actually show that the estimator is strongly consistent—not only w.r.t. the prob-
ability model Mdop(tc) induced by a given training corpus tc (cf. Section 2.3)

2Confer Section 2.3 for a Definition of Mdop(tc).
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but even w.r.t. the unrestricted model M0 of all probability distributions over
Parses. The core part of the proof can be employed in the consistency proof of
DOP∗ given in the next chapter and is therefore stated separately as a lemma.

Lemma 3.3.1 Let P be a probability distribution over Parses. Then for each
full parse tree t ∈ Parses, natural number n ∈ IN and real value ε > 0, it holds
that ∑

tc∈Parsesn:
|rftc(t)−P (t)|≥ε

P (tc) ≤
1

4nε2
.

Proof: Let P , t, n and ε be defined as above. Chebyshev’s inequality states that
for any real-valued random variable X on Parsesn with expected value µ and
variance σ2 and any ε′ > 0, we have

P (|X − µ| ≥ ε′) ≤
σ2

ε′2
,

i.e.,
∑

tc∈Parsesn:
|X(tc)−µ|≥ε′

P (tc) ≤
σ2

ε′2
.

The relative frequency rf tc (t) of t in tc is a random variable on Parsesn with
the expected value µ = p and the variance σ2 = p(1 − p)/n, where p = P (t).
Thus, applying Chebyshev’s inequality yields

∑

tc∈Parsesn:
|rf tc(t)−P (t)|≥ε

P (tc) ≤

≤1/4︷ ︸︸ ︷
P (t)[1 − P (t)]

nε2
≤

1

4nε2
.

qed

Now we are ready for the consistency theorem:

Theorem 3.3.2 DOPML is strongly consistent w.r.t. the model M0 of all prob-
ability distributions over Parses.

Proof: First note that the estimate DOPML(tc) is a probability distribution
assigning each full parse tree t ∈ Parses its relative frequency rf tc (t). Now
let P be a probability distribution over Parses and ε and q two positive real
numbers. We will give an N ∈ IN such that for each n ∈ IN with n ≥ N , we have

sup
t∈Parses

∑

tc∈Parsesn:
|rf tc(t)−P (t)|≥ε

P (tc) ≤ q . (3.8)
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From that follows the claim.

Define N to be the smallest natural number such that N ≥ 1
4ε2q

. Then Lemma
3.3.1 yields for all n ≥ N and t ∈ Parses

∑

tc∈Parsesn:
|rf tc(t)−P (t)|≥ε

P (tc) ≤ 1/(4nε2)︸ ︷︷ ︸
≥4ε2N

≤ q .

Equation (3.8) follows immediately. qed

3.4 Contemplation

Let us pause for a moment and ponder which kind of DOP estimators can ac-
tually achieve consistency. In the case of DOP, consistency means that when
the size of the training corpus approaches infinity, the estimator’s assignments
of probabilities to full parse trees must converge to their relative frequencies in
the training corpus. That is because the loss function approaches zero only if
the DOP probability distribution assigned by the estimator approaches the ‘true’
distribution underlying the training corpus. But that distribution on its part is
approached by the relative frequency distribution of the full parse trees in the
training corpus when its size goes to infinity.

When the probability distribution assigned by the DOP estimator approaches
the relative frequency distribution of the parse trees in the training corpus, this
means that the probability assignments for all parse trees not found in the training
corpus have to approach zero. This, however, should not happen too early (i.e.,
when the sample size is not large enough), otherwise the estimator would overfit
the data.

33



Chapter 4

The New Estimator DOP
∗

In the last section of the previous chapter, we have seen that the DOP probability
distribution assigned by a consistent DOP estimator must approach the relative
frequency distribution of the parse trees in the training corpus when the corpus
size goes to infinity, and that the probability assignments for all parse trees
not found in the training corpus therefore have to approach zero. We will now
devise a DOP estimator DOP∗ which will have the property that as the training
sample size approaches infinity, the probabilities assigned to derivations of length
greater than one approach zero, while the weights (and thereby the probabilities)
assigned to the full parse trees from the training corpus converge to their relative
frequencies.

In Section 4.1, the DOP∗ estimation procedure is explained. A consistency
proof for DOP∗ is given in Section 4.2. Further, we show that DOP∗ can achieve
an exponential reduction in the number of fragments extracted from the training
corpus w.r.t. DOP1 (Section 4.3) and argue that in contrast to DOP1, DOP∗ is
not biased towards fragments of large full parse trees (Section 4.4).

4.1 The DOP
∗ Estimation Procedure

As we have seen in Section 2.3, the standard method of maximum-likelihood
estimation, according to which the joint probability of the full parse trees in the
training corpus should be maximized, is not suitable for DOP. Given a training
corpus tc, the MLE over Mdop(tc) assigns nonzero probability only to the full
parse trees occurring directly in the training corpus, leading to an overfitted
parser that can only reproduce the parses that occurred during training.

DOP∗ avoids overfitting by randomly splitting the training corpus into two
parts: the extraction corpus ec and the held-out corpus hc. The exact method
of division is not important in the following discussion, as long as both corpora’s
sizes approach infinity as |tc| approaches infinity. (In practice, however, the
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method of division is certainly of relevance, and we will come back to it in Chap-
ter 5.) While fragments are extracted from the trees in ec, their weights are
assigned such that the likelihood of the held-out corpus hc is maximized. It can
happen that a full parse tree in hc is not derivable from the fragments of ec (we
will say that it is not ec-derivable). Therefore, we will actually maximize the
joint probability of the ec-derivable trees in hc.

Crucially, to avoid Expectation-Maximization algorithms such as Inside-
Outside [Baker, 1979] for approaching the MLE over hc1, we will make the fol-
lowing simplifying assumption: maximizing the joint probability of the full parse
trees in hc is equivalent to maximizing the joint probability of their shortest
derivations. This assumption turns out handy for several reasons:

• It leads to a closed-form solution for the MLE, which is further computa-
tionally very inexpensive.

• The resulting estimator will only assign nonzero weights to a number of
fragments that is linear in the number of depth-1 fragments (i.e., PCFG
rules) contained in hc, thereby resulting in an exponential reduction of
the number of fragments in the parser. Therefore, the resulting parser is
considerably faster than a DOP1 parser.

• The estimator, although not truly maximum likelihood, is consistent.

The assumption also serves a principle of simplicity: A shorter derivation seems
a more concise description of a full parse tree than a longer one; thus the short-
est derivation can be regarded as the preferred way of building up a full parse
tree from fragments, and the longer derivations as provisional solutions (back-
offs) that would have to be used if no shorter ones were available. Further-
more, there are empirical reasons to make the shortest derivation assumption: In
[De Pauw, 1999, Bod, 2000, De Pauw, 2000] it is shown that DOP models that
select the preferred parse of a test sentence using the shortest derivation criterion
perform very well.

To ensure maximum coverage (i.e., to have the estimator assign nonzero prob-
abilities to as many parse trees as possible), the estimation procedure outlined
above reserves a certain proportion of the weight mass for smoothing: In a second
estimation step, also fragments that did not participate in any shortest derivation

1Inside-Outside is a hill-climbing algorithm for statistical parsing, which has been applied
to DOP in [Bod, 2000]. Inside-Outside starts with an initial weight assignment to grammar
productions (in the case of DOP, fragments) and iteratively modifies those weights such that
the likelihood of the training corpus increases. Unfortunately, the use of Inside-Outside cannot
ensure consistency as it is not guaranteed to (and, in practice, doesn’t [Charniak, 1993]) arrive
at a global maximum of the likelihood function.
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of hc-trees will be given some weight. For that purpose, an imaginary fragment

R

♥

,

consisting only of the root R and its child terminal ‘♥’, and denoted by ♥R, is
introduced for each root R. The weight assigned to ♥R stands for the weight
mass to reserve and is chosen dependent on the relative frequency punkn of parse
tree occurrences in hc that are not ec-derivable. The lower the value of punkn,
the less weight mass is reserved. The smoothing algorithm then distributes for
each nonterminal R the weight of the imaginary fragment ♥R over all root-R
fragments.

The DOP∗ estimation procedure thus consists of the following parts:

1. The core DOP∗ estimator, assigning weights β(f) to fragments f from the
extraction corpus. Thereby, for each nonterminal R, a certain amount
β (♥R) of weight mass is reserved for the smoothing step.

2. The smoothing component, distributing the reserved weight mass β (♥R)
over all fragments from the training corpus and assigning each fragment f
the smoothing weight βsmooth(f).

3. The final weight assignment π to fragments f , given by

π(f) := β(f) + βsmooth(f) .

In the following subsection, we will derive the formula for the preliminary
weight assignment β as a solution to the maximum-likelihood problem indicated
above. How the reserved weight masses β (♥R) are determined and distributed
is explained in Subsection 4.1.2. Figure 4.1 gives a summary of the estimation
algorithm.

4.1.1 Estimation of the β-weights

In order to assign the β-weights to the fragments in Fragec, derivations of full
parse trees in hc using the fragments in Fragec are considered. As in held-out
estimation (cf. Section 2.4), the sum of the relative frequencies of the trees in hc
that are not ec-derivable is taken as the estimate punkn of the probability that
a tree will be unknown during testing. Depending on punkn in a certain way de-
scribed in the next section, weight mass β (♥R) for each nonterminal R occurring
as root in Fragec is assigned to the imaginary fragment ♥R and thus reserved for
the smoothing step of the estimation procedure. Note that the DOP probability
distribution resulting from a weight assignment β assigns some probability mass
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1. Split tc into ec and hc.

2. Extract the fragments from ec.

3. Determine punkn =
Counthc ({t ∈ Parses | t is ec-derivable})

|hc|
.

4. For each ec-derivable parse t ∈ hc, determine its shortest derivation(s)
d1(t), . . . , d#shder(t)(t) .

5. For all fragments f1, . . . , fN involved in shortest derivations of parses in
hc, determine the parameters

rk :=
∑

t∈hc

Counthc (t)

#shder(t)

#shder(t)∑

i=1

Countdi(t) (fk) (k = 1, . . . , N) .

6. For each nonterminal R in the whole training corpus tc, determine β (♥R),
e.g. by setting

β (♥R) :=

{
punkn if R ∈ {R1, . . . , RM}
1 otherwise

,

where {R1, . . . , RM} is the set of roots of the fragments f1, . . . , fN .

7. For the fragments f1, . . . , fN , set

β(fj) :=
(
1 − β

(
♥root(fj)

)) rj∑

k∈{1,...,N}:
root(fk)=root(fj)

rk

.

For all other fragments f ∈ Fragtc, set β(f) := 0.

8. For each fragment f ∈ Fragtc, determine the final weight

π(f) := β(f) + βsmooth(f) ,

where e.g.

βsmooth(f) :=
β

(
♥root(f)

)
CountFragtc

(f)

CountFragtc
({f ′ | root(f ′) = root(f)})

.

Figure 4.1: The DOP∗ estimation algorithm
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to imaginary trees, that is, full parse trees that contain the terminal ‘♥’ in their
yields.

How do we assign the β-weights to the fragments in Fragec based on the
sample sequence hc? In the following, we will set up a maximization problem for
the weight assignment function β, in which we regard the reserved weight masses
β (♥R) as constant (although not yet known). We derive β as the solution to
the problem of maximizing the probability of hc′ w.r.t. the model Mdop(ec),
where hc′ is the corpus obtained from hc by removing the trees that are not
ec-derivable:

arg max
β∈W

∏

t∈hc:
t is ec-derivable

[Pdopβ
(t)]Counthc(t) , (4.1)

where Pdopβ
denotes the DOP probability distribution over Parses resulting from

the weight assignment β, and W is the set of all β : FragSetec → [0, 1] that fulfill
the side conditions that for each nonterminal R in ec:

∑

f∈Fragec: root(f)=R

β(f) + β (♥R) = 1 . (4.2)

Note that since the DOP-probability of a full parse tree is the sum of the DOP-
probabilities of its derivations, the term to be maximized in problem (4.1) is a
product of sums of products of weights. We now make the simplifying assump-
tion indicated above that problem (4.1) remains equivalent when each DOP-
probability Pdopβ

(t) is replaced by the probability of the shortest derivation of t.
(Note that it will turn out that the consistency of DOP∗ does not rely on this
assumption!) If there are more than one shortest derivation for a parse (say n),
we will assume that each of them derived 1/n of the occurrences of that parse,
a fraction which needs not necessarily be a whole number. This leads us to the
maximization problem

arg max
β∈W

∏

t∈hc: t is ec-derivable

#shder(t)∏

i=1

[P i
shβ

(t)]
Counthc(t)
#shder(t) , (4.3)

where #shder(t) is the number of shortest derivations for tree t and

P i
shβ

(t) = β(f1(d
i(t))) · · · β(flgth(di(t))(d

i(t)))

is the probability of the i-th shortest derivation di(t) for t, consisting of the
fragments f1(d

i(t)), . . . , flgth(di(t))(d
i(t)) ∈ Fragec. The side conditions remain the

same. Now the term to be maximized is only a product of weights. Rearranging
the formula and multiplying together powers of weights of the same fragments
([β(f)]e1 · · · [β(f)]em = [β(f)]e1+···+em), we arrive at the term

arg max
β∈W

[β(f1)]
r1 · · · [β(fN)]rN , (4.4)
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where f1, . . . , fN are the fragments involved in the shortest derivations of the
parses in hc, and for k = 1, . . . , N :

rk :=
∑

t∈hc

Counthc (t)

#shder(t)

#shder(t)∑

i=1

Countdi(t) (fk) (k = 1, . . . , N) .

Let {R1, . . . , RM} be the set of root labels of the fragments f1, . . . , fN .
Looking back at the side conditions (4.2), we see that each fragment
f ∈ Fragec \ {f1, . . . , fN} with root(f) ∈ {R1, . . . , RM} must be assigned the
weight π(f) = 0 in order to maximize the corresponding product in (4.4).
Further, we realize that the weights assigned to fragments f ∈ Fragec with
root(f) /∈ {R1, . . . , RM} have no influence on the outcome of the maximization
problem. We will reserve this weight mass for Part 2 of the estimation procedure
by choosing for each R /∈ {R1, . . . , RM} β (♥R) = 1 and thus β(f) = 0 for all
fragments f with root(f) = R. Since the side conditions for weights of fragments
with different roots are independent of each other, we obtain an equivalent max-
imization problem by splitting the product in (4.4) into a separate optimization
problem for every root label R ∈ {R1, . . . , RM} as follows:

arg max
〈β(fj)〉root(fj)=R

∏

j∈{1,...,N}:
root(fj)=R

[β(fj)]
rj

, (4.5)

where ∑

j∈{1,...,N}: root(fj)=R

β(fj) = 1 − β (♥R) (4.6)

Thus we have now M optimization problems of the well-known form

arg max
x1,...,xn∈R

xc1
1 · · · xcn

n , where x1 + · · · + xn = c ,

occurring for instance in maximum-likelihood estimation for an unrestricted prob-
ability model (cf. Section 2.3) as the special case where c = 1. It has the unique
solution 2

xi = c
ci∑n

k=1 ck

(i = 1, . . . , n) .

Applied to our problem, we thus obtain the solutions

∀ j ∈ {1, . . . , N}. β(fj) =
(
1 − β

(
♥root(fj)

)) rj∑

k∈{1,...,N}:
root(fk)=root(fj)

rk

. (4.7)

2A proof of this can for example be found in [Ney et al., 1997], Subsection 2.4. The proof
is given for the case c = 1, but goes through in the same way for arbitrary values of c.
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4.1.2 The Smoothing Component

Let us come back to the relative frequency mass punkn of trees in hc that cannot
be derived from the fragments in ec. Our aim is to determine from it values for
the parameters β (♥R) and then to distribute this weight mass over the fragments
from tc in an appropriate way.

One can regard punkn as a measure of how well-chosen the currently used set
of fragments is. If punkn is zero, all full parse trees from the held-out corpus were
derivable, which means our set of fragments is just perfect. A value greater than
zero for punkn is an indication that we need to enlarge our fragment set. This
can be done by involving new fragments from hc and by allocating weight mass
to fragments from ec that did not participate in a shortest derivation of an hc-
tree and thus are assigned weight zero under the above β-estimation procedure.
However, it should be taken care that none of those fragments is assigned more
weight than a preferred one, even if punkn is very high.

As explicated in the previous subsection, β (♥R) should always be one for
roots R /∈ {R1, . . . , RM} (see Equation (4.5) for a definition of {R1, . . . , RM}).
The same applies to new nonterminals from hc that did not occur in ec at
all. The only further requirement to be made such that the consistency proof of
DOP∗ (given in Section 4.2) goes through is that β (♥S) ≤ punkn. In this thesis,
we choose the simple method of assigning for each nonterminal R occurring as a
root in the fragment set of the whole training corpus tc the weight

β (♥R) :=





punkn
if R ∈ {R1, . . . , RM} (see Eq. (4.5) for a
definition of {R1, . . . , RM})

1 otherwise

. (4.8)

The method of distribution of this weight mass does not affect the consistency
of DOP∗ either. For now, we distribute β (♥R) in DOP1 fashion over all frag-
ments with root R proportionally to their relative frequencies among the root-R
fragments in tc:

∀ f ∗ ∈ Fragtc. βsmooth(f
∗) :=

β
(
♥root(f∗)

)
CountFragtc

(f ∗)

CountFragtc
({f | root(f) = root(f ∗)})

(4.9)

Now we can assign the final weights to all fragments f extracted from the training
corpus:

∀ f ∈ Fragtc. π(f) := β(f) + βsmooth(f), (4.10)

where for fragments f not occurring in Fragtc, we define β(f) := 0. This choice
satisfies the condition

∑
f :root(f)=R π(f) = 1 for all root non-terminals R, since∑

f :root(f)=R β(f) + β (♥R) = 1.
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4.1.3 Contemplation

One can regard the DOP∗ estimator (in which the reserved weight mass is dis-
tributed as specified above) as a melange of two components:

1. the core DOP∗ component—held-out-oriented estimator that bases its
weight assignment to fragments on their participation in shortest deriva-
tions of held-out parses and

2. a smoothing component—an arbitrary DOP estimator (e.g., DOP1) that
serves as a back-up to ensure maximum coverage of the model.

Hereby, the balance between both components is determined by the estimate
punkn of the probability that a full parse tree occurring during testing will be
unknown in the sense of not being derivable by the held-out component. If the
proportion punkn of unknown parses in hc is very high, DOP∗ behaves like the
back-up estimator. If punkn is close to 0, DOP∗ determines the fragment weights
according to maximum-likelihood estimation on the held-out corpus hc w.r.t. the
model of all DOP probability distributions over Parses that result from weight
assignments to fragments from ec. (This is in contrast to the standard DOP
maximum-likelihood estimator (cf. Section 2.3), which maximizes the likelihood
of the whole training corpus, and whose probability model is the set of all DOP
probability distributions over Parses resulting from weight assignments to frag-
ments from again the whole training corpus.)

4.2 DOP
∗ is Consistent

In this section, we will show that DOP∗ is strongly consistent. Remember that
an estimator ϕ : Parses∗ → M0 is called strongly consistent w.r.t. a probability
model M if for each P ∈ M and each real number ε > 0, we have

lim
n→∞

sup
t∈Parses

∑

tc∈Parsesn:

|ϕtc (t)−P (t)|≥ε

P (tc) = 0 .

As in the case of DOPML, it turns out that DOP∗ is not only strongly consistent
w.r.t. the probability model Mdop(tc) induced by a given training corpus tc
(cf. Section 2.3) but even w.r.t. the unrestricted model M0 of all probability
distributions over Parses.

The proof is rather involved. We will first demonstrate the intuition behind
it using a simple example distribution.
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4.2.1 An Example

Let us look back at the toy example given in Figures 2.1, 2.2, and 2.3, for which
DOP1 failed. In that example, the training corpus was sampled according to
the probability distribution P with P (t1) = P (t2) = 1/2 and P (t) = 0 for all
t ∈ Parses \ {t1, t2}.

The fact that P assigns only a finite number of parses nonzero probabili-
ties makes it fairly easy to show strong consistency of DOP∗ w.r.t. {P}: First
note that when the size of the training corpus tc goes to infinity, we have with
probability arbitrarily close to one that t1 and t2 will be contained both in the
corresponding extraction portion ec(tc) and the held-out portion hc(tc). Thus,
with probability arbitrarily close to one, the proportion rf hc(tc) ({t ∈ ec(tc)})
of full parse trees in hc(tc) that are contained in ec(tc) will be one. Formally
speaking, for each q > 0, there is an N ∈ IN such that for each n ∈ IN with
n ≥ N , we have ∑

tc∈Parsesn:
rfhc(tc)({t∈ec(tc)})=1

P (tc) ≥ 1 − q .

If rfhc(tc) ({t ∈ ec(tc)}) = 1, then the shortest derivation of a full parse tree t
occurring in hc(tc) (in our case either t1 or t2) is the length-one derivation 〈t〉
itself. Thus, t1 and t2 are the only fragments participating in shortest derivations
of trees in hc(tc) and are assigned the r-parameters (cf. Figure 4.1, Step 5)

r1 := Counthc(tc) (t1)

r2 := Counthc(tc) (t2)

and the β-weights (cf. Figure 4.1, Step 7)

β(t1) := (1 − β (♥S))
r1

r1 + r2

= (1 − β (♥S))rfhc(tc) (t1) ,

β(t2) := (1 − β (♥S))
r2

r1 + r2

= (1 − β (♥S))rfhc(tc) (t2) .

All other β-weights are set to zero.

Further, rfhc(tc) ({t ∈ ec(tc)}) = 1 implies that the proportion punkn of full
parse trees in hc(tc) that are not derivable from Fragec(tc) is zero. By the con-
dition made on the choice of β (♥S), stating that β (♥S) ≤ punkn (cf. Subsection
4.1.2), we obtain β (♥S) = 0 and hence for all t ∈ Parses,

β(t) = rfhc(tc) (t) .

Therefore, we have for t ∈ {t1, t2}, (cf. Figure 4.1, Step 8),

π(t) = β(t) + βsmooth(t)︸ ︷︷ ︸
=0 since
β(♥S)=0

= rfhc(tc) (t)
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and for all other fragments f with root ‘S’,

π(f) = β(f)︸︷︷︸
=0

+ βsmooth(f)︸ ︷︷ ︸
=0 since
β(♥S)=0

= 0

Thus, the resulting DOP probability distribution is

dop∗
tc(t1) = rfhc(tc) (t1) ,

dop∗
tc(t2) = rfhc(tc) (t2) , and

dop∗
tc(t) = 0 = rfhc(tc) (t) for each t ∈ Parses \ {t1, t2} .

We have now established that when the size of the training corpus tc goes to infin-
ity, we have with probability arbitrarily close to one that dop∗

tc(t) = rfhc(tc) (t)
for all t ∈ Parses, i.e., for each q > 0 , there is an N ∈ IN such that for each
n ∈ IN with n ≥ N , we have

∑

tc∈Parsesn:
[∀ t∈Parses .

rfhc(tc)(t)=dop∗tc (t)]

P (tc) ≥ 1 − q .

From that it seems plausible that we can infer that for each ε > 0 and q > 0,
there is an N ∈ IN such that for each n ∈ IN with n ≥ N , we have

∀ t ∈ Parses.
∑

tc∈Parsesn:

|dop∗tc (t)−P (t)|≥ε

P (tc) ≤ q

since for each t, its relative frequency in hc(tc) approaches P (t) with probability
arbitrarily close to one as the size of tc and thus the size of hc(tc) approaches
infinity (we will see in the proof below how to make this argument formal). Strong
consistency then follows immediately.

4.2.2 The Proof

In the case of a probability distribution P that assigns nonzero probabilities to an
infinite number of full parse trees, the reasoning becomes a lot subtler. As a mat-
ter of fact, rfhc(tc) ({t ∈ ec(tc)}) will not necessarily become one and punkn will
not necessarily become zero with probability arbitrarily close to one! We will have
to argue that with probability arbitrarily close to one, 1−rf hc(tc) ({t ∈ ec(tc)})
and punkn become so small that the resulting effect on the expected loss is arbi-
trarily small.

Theorem 4.2.1 DOP∗ is strongly consistent w.r.t. the model M0 of all proba-
bility distributions over Parses.
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Proof: Let P be a probability distribution over Parses. Further, let ε > 0 and
q > 0 be two real numbers. In order to show strong consistency, we will specify
an N ∈ IN such that for each n ∈ IN with n ≥ N , we have

∀ t ∈ Parses.
∑

tc∈Parsesn:

|dop∗tc (t)−P (t)|≥ε

P (tc) ≤ q (4.11)

and thus

sup
t∈Parses

∑

tc∈Parsesn:

|dop∗tc (t)−P (t)|≥ε

P (tc) ≤ q .

To establish (4.11), we choose a finite set T ∈ Parses such that
∑

t′∈T P (t′) ≥
1 − ε/2 and P (t′) > 0 for all t′ ∈ T . The choice of such a set is possible since∑

t′∈Parses P (t′) = 1. Now define ε′ := ε
2|T |

.

In the following, ec(tc) and hc(tc) will denote the actual-training part and
the held-out part of the training corpus tc, respectively, according to the fixed
method of splitting. Further, nec and nhc will denote the sizes of the actual-
training and the held-out part, respectively, when splitting a training corpus of
size n.

We will first prove three independent claims:

Claim 1 There is an N1 ∈ IN such that for all n ∈ IN with n ≥ N1, we have

∑

tc∈Parsesn:
∑

{t′∈T}|rfhc(tc)(t′)−P (t′)|≥ε′

P (tc) ≤ q/2 .
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Proof of Claim: It is

∑

tc∈Parsesn:∑
{t′∈T}|rfhc(tc)(t

′)−P (t′)|︸ ︷︷ ︸
≤|T |max{t′∈T}|rfhc(tc)(t′)−P (t′)|

≥ε′

P (tc) ≤
∑

tc∈Parsesn:

max{t′∈T}|rfhc(tc)(t′)−P (t′)|≥ ε′

|T |

P (tc)

=
∑

tc∈Parsesn:

∃ t′∈T s.t. |rfhc(tc)(t′)−P (t′)|≥ ε′

|T |

P (tc)

≤
∑

t′∈T

∑

tc∈Parsesn:

|rfhc(tc)(t′)−P (t′)|≥ ε′

|T |

P (tc)

=
∑

t′∈T

∑

hc∈(Parses)n
hc

:

|rf hc(t′)−P (t′)|≥ ε′

|T |

P (hc)

︸ ︷︷ ︸
≤ 1

4nhc(ε′/|T |)2
by Lemma 3.3.1

≤
|T |3

4nhc(ε′)2
.

Choosing N1 large enough ensures

|T |3

4nhc(ε′)2
≤

q

2

for all n ≥ N1, since limn→∞ nhc = ∞ by the condition made on the corpus
division operation. J

Claim 2 There is an N2 ∈ IN such that for all n ∈ IN with n ≥ N2, we have

∑

tc∈Parsesn:
∃ t∈T s.t. t occurs in

hc(tc) but not in ec(tc)

P (tc) ≤
q

2
.
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Proof of Claim: We have
∑

tc∈Parsesn:
∃ t∈T s.t. t∈hc(tc)

and t/∈ec(tc)

P (tc) ≤
∑

tc∈Parsesn:
∃ t∈T s.t. t/∈ec(tc)

P (tc)

≤
∑

t′∈T

∑

tc∈Parsesn:t′ /∈ec(tc)

P (tc)

︸ ︷︷ ︸
=P (“t′ was drawn in none of the nec

samples of the extraction corpus”)

=[1−P (t′)]n
ec

=
∑

t′∈T

[1 − P (t′)]
nec

≤ |T |[1 − min
t′∈T

P (t′)︸ ︷︷ ︸
>0︸ ︷︷ ︸

<1

]n
ec

≤ q/2 for all n ≥ N2 if N2 chosen appropriately.

J

Claim 3 Let tc be a training corpus and t a full parse tree. Assume that we
have

∑
{t′∈T}

∣∣rfhc(tc) (t′) − P (t′)
∣∣ < ε′ and |dop∗

tc(t) − P (t)| ≥ ε. Then there is

a t′′ ∈ T s.t. t′′ occurs in hc(tc) but not in ec(tc).

Proof of Claim: Assume indirectly that we have

∑

{t′∈T}

∣∣rfhc(tc) (t′) − P (t′)
∣∣ < ε′ (4.12)

and
|dop∗

tc(t) − P (t)| ≥ ε (4.13)

but that all trees in T that occur in hc(tc) also occur in ec(tc). Then these
trees, in the following denoted by t1, . . . , tm, occur also as fragments in Fragec(tc).
Thus, for each such tree, its shortest derivation from Fragec(tc) is the unique
length-1-derivation consisting only of the tree itself.

Since each derivation of a full parse tree in hc(tc) contains exactly one frag-
ment with root ‘S’, namely the first fragment of the derivation (remember that ‘S’
is only allowed to occur as root node in a full parse tree and thus can only occur
as root node in a fragment), it is easy to see that the r-parameters (cf. Figure 4.1,
Step 5) that DOP∗ assigns to the root-‘S’ fragments involved in shortest deriva-
tions sum up to the number of full parse trees in the held-out corpus that are
derivable from the fragments in Fragec(tc), which is equal to (1−punkn) |hc(tc)|.
Thus each tj (j = 1, . . . ,m) is assigned the β-weight (cf. Figure 4.1, Step 7)

β(tj) = (1 − β (♥S))
Counthc(tc) (tj)

(1 − punkn) |hc(tc)|
.

46



By the condition made on the choice of β (♥S), stating that β (♥S) ≤ punkn (cf.
Subsection 4.1.2), we obtain

β(tj) ≥
Counthc(tc) (tj)

|hc(tc)|
= rfhc(tc) (tj) (j = 1, . . . ,m)

and thus (cf. Figure 4.1, Step 8)

dop∗
tc(tj) ≥ π(tj) ≥ β(t) ≥ rfhc(tc) (tj) (j = 1, . . . ,m).

Since full parse trees t′ ∈ T not occurring in hc(tc) (i.e., for which rfhc(tc) (t′) =
0 holds) trivially satisfy dop∗

tc(t
′) ≥ rfhc(tc) (t′), we have

∀ t′ ∈ T. dop∗
tc(t

′) ≥ rfhc(tc) (t′) .

Since (4.12) implies
∣∣rfhc(tc) (t′) − P (t′)

∣∣ < ε′ and thus rfhc(tc) (t′) > P (t′) − ε′

for all t′ ∈ T , it follows

∀ t′ ∈ T. dop∗
tc(t

′) > P (t′) − ε′ . (4.14)

From this, we can infer for each t′′ ∈ T (by summing up over all t′ ∈ T \ {t′′})

∑

t′∈T\{t′′}

dop∗
tc(t

′) >
∑

t′∈T\{t′′}

(P (t′) − ε′)

=
∑

t′∈T

P (t′)

︸ ︷︷ ︸
≥1−ε/2

by Def. of T

−P (t′′) − (|T | − 1)ε′︸ ︷︷ ︸
≤ε/2

by Def. of ε′

≥ 1 − ε − P (t′′) .

This means that for all trees t′′ ∈ T ,

dop∗
tc(t

′′) = 1 −
∑

t′∈Parses\{t′′}

dop∗
tc(t

′)

≤ 1 −
∑

t′∈T\{t′′}

dop∗
tc(t

′)

< 1 − (1 − ε − P (t′′)) = P (t′′) + ε .

Together with (4.14) this yields

∀ t′′ ∈ T. |dop∗
tc(t

′′) − P (t′′)| < ε . (4.15)

If we can show the same result for full parse trees t′′ /∈ T , we are done, since
that means that (4.13) cannot be fulfilled for any full parse tree t, which is a

47



contradiction. For that purpose, we derive from (4.14), this time by summing up
over all t′ ∈ T ,

∑

t′∈T

dop∗
tc(t

′) >
∑

t′∈T

(P (t′) − ε′)

=
∑

t′∈T

P (t′)

︸ ︷︷ ︸
≥1−ε/2

by Def. of T

− |T |ε′︸︷︷︸
=ε/2

by Def. of ε′

≥ 1 − ε .

Thus we have

∀ t′′ ∈ (Parses \ T ). dop∗
tc(t

′′) ≤ 1 −
∑

t′∈T dop∗
tc(t

′)

< 1 − (1 − ε) = ε ≤ P (t′′) + ε .
(4.16)

Further, it holds that

∀ t′′ ∈ (Parses \ T ). P (t′′) − ε ≤ 1 −
∑

t′∈T

P (t′)

︸ ︷︷ ︸
≥1−ε/2

by Def. of T

−ε

≤ −ε/2

< dop∗
tc(t

′′) ,

which together with (4.16) yields

∀ t′′ ∈ (Parses \ T ). |dop∗
tc(t

′′) − P (t′′)| < ε ,

and thus with (4.15),

∀ t′′ ∈ Parses. |dop∗
tc(t

′′) − P (t′′)| < ε .

As indicated above, this leads to the desired contradiction, since (4.13) cannot
be fulfilled for any full parse tree t. J

Now we are finally able to specify the required N ∈ IN such that for all natural
numbers n ≥ N , (4.11) holds. For that purpose, define N := max{N1, N2}, where
N1 and N2 are the numbers provided by Claims 1 and 2, respectively. Then we
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have for each t ∈ Parses and n ∈ IN with n > N ,

∑

tc∈Parsesn:

|dop∗tc (t)−P (t)|≥ε

P (tc) =
∑

tc∈Parsesn:
∑

{t′∈T}|rfhc(tc)(t′)−P (t′)|≥ε′

and |dop∗tc (t)−P (t)|≥ε

P (tc)

︸ ︷︷ ︸
≤q/2 by Claim 1

+
∑

tc∈Parsesn:
∑

{t′∈T}|rfhc(tc)(t′)−P (t′)|<ε′

and |dop∗tc (t)−P (t)|≥ε

P (tc)

︸ ︷︷ ︸
≤

∑

tc∈Parsesn:
∃ t′′∈T s.t. t′′ occurs in
hc(tc) but not in ec(tc)

P (tc) by Claim 3

≤ q/2 +
∑

tc∈Parsesn:
∃ t′′∈T s.t. t′′ occurs in
hc(tc) but not in ec(tc)

P (tc)

︸ ︷︷ ︸
≤q/2 by Claim 2

≤ q .

qed

4.3 The Number of Extracted Fragments

Note that the version of DOP∗ explained so far assigns nonzero weights to all
fragments from the training corpus, since the second part of the estimation pro-
cedure distributes the reserved weight mass equally over all fragments.

In the following, we will show that the core estimator that assigns the β-
weights actually extracts a number of fragments that is linear in the number of
occurrences of depth-one fragments of Fraghc, and thus, the number of nodes in
hc. This is in strong contrast to DOP1, which extracts all possible fragments,
i.e., exponentially many in the number of nodes in hc. The proof relies on the
assumption that the average number of shortest derivations of a held-out parse
is limited by a constant N . This assumption turns out to be unproblematic in
practice; the average number of shortest derivations of held-out parses was less
than 3.5 in all our experiments.

For each held-out parse, the β-estimator extracts fragments from the shortest
derivation of that parse. A derivation of a parse tree t has its maximum length
when it is built up of the depth-one fragments contained in t. Therefore, the
number of fragments extracted from Fragec for each shortest derivation of a
parse t ∈ hc is bounded by the number of depth-one fragment occurrences (and
hence, the number of nodes) in t. Thus overall the procedure extracts at most N
times the number of depth-one fragment occurrences (and hence, the number of
nodes) in the held-out corpus.

In practice, we will make use of this finding by not distributing the reserved
weight mass over all fragments, as explained in Subsection 4.1.2, but rather only
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over the depth-one fragments, in order to obtain an estimator that is much more
efficient than DOP1. Another possibility, which we also tested, is to not reserve
any weight mass at all (i.e., setting β (♥R) := 0 for all nonterminals R) and to
back off to a different parser whenever no parse can be found for a test sentence.

4.4 DOP
∗ Is Not Biased Towards Fragments of

Large Parse Trees

As we have seen in Subsection 2.2.4, the original estimator DOP1 is biased to-
wards fragments of large parse trees. Since DOP∗ is consistent and thus unbiased
in the limit, DOP∗ does not have this problem when the size of the training data
approaches infinity (in contrast to DOP1, which keeps that bias with growing
training data). But how does DOP∗ behave when the training data is small?

Let us assume that punkn turns out to be small, so that the core (held-out esti-
mation) component of DOP∗ clearly dominates. (Our experiments—cf. Chapter
5—will justify this assumption.) Then only the fragments in Fragec are assigned
significant weight mass. Now let t1 be a large and t2 a small full parse tree occur-
rence in ec, such that we have considerably more root-‘S’ fragments from t1 than
from t2 in Fragec. To keep matters simple, assume that t1 and t2 have no frag-
ments in common and that other full parse tree occurrences in ec do not contain
any fragments from t1 or t2 either. Then DOP1 would assign all fragments from
t1 and t2 with the same root equal weights and thus clearly favor full parse trees
derived from t1-fragments.

DOP∗, on the other hand, bases its weight assignment to fragments on their
participation in the derivations of trees in hc. Assume that parse trees whose
shortest derivations contain a t1-fragment occur about equally often in hc as
parse trees whose shortest derivations contain a t2-fragment do. Since only those
fragments actually participating in shortest derivations are assigned nonzero β-
weights (and since the weights assigned to them are proportional to their number
of occurrence in shortest derivations3), the sum of the β-weights assigned to the
t1-fragments with a certain root will roughly equal the sum of the β-weights
assigned to the t2-fragments with the same root . Since punkn is small, the same
will hold for the final π-weights. If the assumption made at the beginning of this
paragraph does not apply, that will be an indication that either one of the trees
t1 and t2 proved to be of more importance during testing on the held-out data,
and thus the fragments of that tree are rightly favored.

3Here we are actually also assuming that the roots of those fragments are unique in the
respective derivations, which is always the case for fragments with root ‘S’ and often for other
fragments.
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4.5 Summary

In this chapter, we devised a DOP estimator that fulfills the property of consis-
tency. Furthermore, the estimator extracts only a number of fragments that is
linear in the total number of nodes of the trees in the training corpus, thereby
circumventing the inefficiency problems of original DOP without giving up on the
idea of using arbitrary-size fragments. We also demonstrated that in contrast to
DOP1, our estimator does not suffer from the fragment bias problem.
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Chapter 5

Empirical Results

In this chapter, we substantiate the theoretical findings of this thesis with em-
pirical evidence.

The experiments were carried out on the Dutch language OVIS corpus
[Scha et al., 1996], containing 10,049 syntactically and semantically annotated
utterances (phrase structure trees). OVIS is a spoken dialogue system for train
timetable information. The grammar of the OVIS corpus captures sentences as
e.g. “Ik wil niet vandaag maar morgen naar Utrecht” (“I don’t want to go today
but tomorrow to Utrecht”).

Previous experiments on the OVIS corpus have for instance been reported
in [Sima’an, 1999, Sima’an & Buratto, 2003]. Parsing OVIS is relatively easy
(compared to, e.g., parsing the ATIS or the Wall Street Journal Corpus). About
thirty percent of the corpus are one-word utterances; those are usually removed
from the testing data in order to decrease variance in results between different
training/testing splits. One-word sentences excluded, the average length of an
OVIS sentence is 4.6.

5.1 Practical Issues

Since the OVIS corpus is rather small, the issue of how to divide the training cor-
pus into extraction and held-out portion becomes crucial. On the one hand, only
fragments from the extraction corpus ec are considered for shortest derivations
in the held-out corpus hc. One would wish one could use all fragments from
tc as ec-fragments. On the other hand, each parse tree in hc yields (in form
of its shortest derivations from ec) valuable information on which fragments of
ec are relevant for natural language. One would wish one could use all frag-
ments from tc as hc-fragments. We do exactly this. Following a suggestion by
Sima’an (personal communication), we apply a method similar to deleted estima-
tion [Jelinek, 1985]. For this purpose, we split the training corpus into ten equal
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portions and run the DOP∗ estimation algorithm ten times, using successively
one of the portions as held-out corpus and the other nine as extraction corpus.
Subsequently, we interpolate the ten resulting DOP∗ weight assignments.

This way, each parse of the training corpus will be used as a held-out parse
some time during training with its shortest derivation(s) derived from the other
90 percent of the training corpus. Thus more fragments have the chance to be
involved in shortest derivations, which enhances the coverage of the model.

Note that the resulting estimator is still consistent: From Section 4.2 we know
for each of the ten provisional estimators that the weight assigned to a full parse
tree t ∈ tc (regarded as a fragment) approaches t’s relative frequency in tc
when the size of tc goes to infinity. Thus the same must happen for the convex
combination of those weights, the weight that the final estimator assigns to t.

Also, it is easy to see that the number of fragments extracted is still linear
in the number of nodes in the training corpus: Since each parse in the training
corpus will be used exactly once as a held-out parse, the total number of fragments
extracted is now bounded by N times the number of nodes in the whole training
corpus, where N is again the upper bound on the average number of shortest
derivations of a held-out parse.

5.2 Testing

Unless noted otherwise, experiments were performed on five fixed random train-
ing/test splittings with the ratio 9:1. The figures refer to the average results from
these five runs. All one-word utterances were ignored in evaluation.

For both DOP1 and DOP∗ experiments, we used Khalil Sima’an’s DOPDIS
parser, which is publicly available at staff.science.uva.nl/~simaan/dopdis.

5.2.1 The DOP∗ Variants Used

In the experiments, we used two different variants of DOP∗. The first imple-
mentation is a pure held-out estimator without smoothing component, which is
obtained by setting β (♥R) := 0 for all nonterminals R (cf. Section 4.1). In-
stead of smoothing, our parser just backs off to DOP1 whenever no parse can be
found for a test sentence.1 During testing, around 9% of the sentences turned
out to be unknown to the core DOP∗ estimator. However, we do not actually
need to back off in all those cases. Instead, before backing off to DOP1, we use
a PCFG parser trained on the same data to see whether the test sentence is

1Note that, in principle, also a non-DOP parser could be used as back-off, which could
improve performance by profiting from complementary parsing approaches.
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at all parsable.2 If no parse for the sentence can be generated from the PCFG
grammar, there is no avail in consulting DOP1 as the tree languages generated
by PCFG and DOP1 grammars acquired from the same treebank are identical.
Using this method, back-off to DOP1 had to be performed about 3.6% of the
cases. Out of those back-offs, about two thirds were successful in the sense that
DOP1’s most probable parse was the correct one. In the following, we will call
this DOP∗ implementation DOP∗

b/o.

The second DOP∗ version implemented, in the following called DOP∗
pcfg,

smoothes the core held-out estimator with the PCFG (depth-one) fragments from
tc and with the fragments up to depth three of unknown held-out parses (i.e.,
parse trees in the held-out corpus hc that were not derivable from ec-fragments).

5.2.2 Effects of Inconsistent Estimation

We compare DOP∗ to DOP1 for different maximum-depth constraints on ex-
tracted fragments. Figure 5.1 shows the exact match (EM) rate (number of
correctly parsed sentences divided by total number of sentences) for DOP1,
DOP∗

b/o, and DOP∗
pcfg w.r.t. maximum fragment depth (where DOP∗

b/o backs
off to the DOP1 estimator of the corresponding maximum-depth).3 The DOP∗

b/o

and DOP∗
pcfg results are strikingly similar.

Comparing the estimators w.r.t. different levels of fragment depth reveals the
influence of consistency on parsing performance: While DOP1 is equivalent to the
PCFG estimator for fragment depth one and thus still consistent, this property is
increasingly violated as fragments of higher depths are extracted because DOP1
neglects interdependencies of overlapping fragments. The graph in Figure 5.1
is in line with our theoretical explorations earlier in this paper: while DOP∗’s
performance steadily improves as the fragment depth increases, DOP1 reaches its
peak already at depth three and performs even worse when depth-four fragments
and depth-five fragments are included. DOP∗’s EM rate begins to outperform
DOP1’s EM rate at depth three. At no depth level, however, the difference in
performance was statistically significant.

5.2.3 Learning Curves

In order to compare the learning behavior of DOP1 and DOP∗ and to determine
whether the size of the training corpus was sufficient for an optimal parsing per-

2For that purpose, we merely need to use the Viterbi Parsing Algorithm, whose runtime for
PCFGs is negligible compared to the Montecarlo Algorithm used to compute the most probable
parse of a DOP sentence.

3Due to the enormous compilation and testing times for DOP1 at depth five, we were not
able to obtain results for DOP1 (and therefore, DOP∗

b/o) for this depth level. Thanks to Nguyen
Thuy Linh for providing us with her results on the standard splittings.
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Figure 5.1: Performance for different maximum-depths of extracted fragments.

formance, we randomly removed utterances from the training corpus of our first
standard splitting—1000 at a time in eight consecutive steps—and trained DOP1
and DOP∗

pcfg on the resulting corpora. Parsing performance on the corresponding
testing corpus is displayed in Figure 5.2. Both estimator’s performance mono-
tonically increases with growing corpus size. Remarkably, DOP1 outperforms
DOP∗

pcfg up to corpus size 8000. Only when provided with the whole training
corpus, DOP∗

pcfg manages to beat DOP1. DOP∗ is thus more contingent on the
size of the training data, which can be explained by its principle of dividing the
training data into extraction and held-out parts: Although the application of
deleted estimation ensures that all training samples participate in held-out test-
ing, the size of the extraction corpus is only 9/10 of the whole training corpus at
each point of time.

As can also be seen in Figure 5.2, the OVIS corpus is not sufficiently large to
ensure optimal parsing performance for DOP: Both estimators’ performance still
increases when the corpus size is enlarged from 8000 to 9000 utterances. Hereby,
DOP∗

pcfg’s increase is stronger, suggesting that DOP∗
pcfg might have outperformed

DOP1 even clearer if more training data had been available.
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Figure 5.2: Learning behavior on an incrementally increasing training corpus
(depth-level four).

5.2.4 Efficiency

Our tests confirmed the anticipated exponential speed-up in testing time, as Ta-
ble 5.1 shows. These data are in line with Figures 5.4 and 5.3, displaying the
number of extracted fragment types or grammar productions (i.e., counting iden-
tical fragments only once) w.r.t. different maximum-depth levels. This number
clearly grows exponentially for DOP1, whereas being linearly bounded for DOP∗.

Depth 1 2 3 4 5
DOP1 5 6 12 121 1450

DOP∗
b/o 5 6 6 18 N/A

DOP∗
pcfg 5 6 6 14 17

Table 5.1: Parsing time for whole testing corpus in minutes.

5.2.5 Other Results

The proportion punkn of held-out parses (parses of one-word sentences included)
that were not derivable from ec-fragments during training (cf. Section 4.1) was
always around 8% in our experiments. Figure 5.5 displays the average number
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of shortest derivations per held-out parse for different maximum-depths. Since
about 8% of the held-out parses were not derivable from the extraction corpus
and each depth-one parse has a unique derivation, that number averages at 0.92
for depth one. Depth-two experiments resulted in the highest number in the
series (3.06).
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Figure 5.5: Average number of shortest derivations per held-out parse for different
depth-levels.

5.3 Summary

In this chapter, we tested two different DOP∗ implementations against DOP1 on
the OVIS corpus. Both implementations outperformed DOP1 in parsing accuracy
when fragments of at least depth three were included. Also, their parsing accuracy
monotonically increased with increasing maximum fragment depth. In contrast,
due to DOP1’s negligence of interdependencies between overlapping fragments,
DOP1’s parsing accuracy actually decreased when fragments of depth greater
than three were included.

We also saw that the size of the treebank is crucial for DOP∗. Our estimator
requires redundancy in the training data to improve over common estimators.

We were able to verify the anticipated exponential speed-up in parsing time
empirically. At depth five, the difference between the estimators became drastic:
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While DOP∗ needed only 17 minutes for the whole testing corpus, DOP1 took
more than 24 hours.
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Chapter 6

Conclusions and Directions for

Further Research

In this thesis, we presented a consistent and efficient estimator for the Data-
Oriented Parsing model. The estimator has a clear theoretical motivation in a
generalization of the maximum-likelihood principle to held-out estimation. More-
over, it achieves an exponential reduction in the number of fragments extracted
from the training corpus w.r.t. the common DOP estimator. It might be of in-
terest to investigate whether the principles behind our estimator DOP∗ could be
adapted to DOP-related paradigms such as LFG-DOP or Data-Oriented Trans-
lation. Further, we believe that DOP∗ could be “married” with Back-off DOP
as follows: In a first training step, DOP∗ could be employed to find out which
fragments from the training corpus are at all relevant. Since DOP∗ extracts only
a fraction of all possible fragments, such a set would be a practically feasible
starting point for Back-off DOP. Now back-off re-estimation could proceed, using
DOP∗’s weight assignments to the fragments as the given distributions. However,
the current shortcomings of Back-off DOP need first to be addressed.

We empirically validated the theoretical properties of DOP∗ on the OVIS
treebank. Future work should compare DOP∗ with other existing (non-DOP)
parsers. For this purpose, other treebanks (e.g., the Penn Wallstreet Journal
Treebank) should be employed.

Tying up to previous work in [Johnson, 2002], we adapted the framework of
estimation theory—including two different possible notions of consistency—to
statistical parsing and gave a consistency proof for DOP∗ that can serve as the
basis for consistency proofs for other estimators in statistical parsing. Future
work might refine the notion of consistency by accounting for the speed of the
convergence. For each positive real value ε, a consistent estimator would then go
along with a minimum sample size N(ε) needed to ensure an expected loss less
than ε w.r.t. all probability distributions in the model. A similar notion exists
in computational learning theory.
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We also saw that the estimation-theoretic property of bias is not interesting
for DOP and, in fact, most statistical parsing models. New formal properties of
estimators should be defined and studied. For example, the property of overfit-
ting, known from machine learning, should be incorporated.

61



Bibliography

[Baker, 1979] Baker, J. K. 1979. Trainable Grammars for Speech Recognition.
Proc. of Spring Conference of the Acoustical Society of America.

[Bod, 1991] Bod, Rens. 1991. Data Oriented Parsing. Proceedings COLING-91,
Amsterdam, The Netherlands.

[Bod & Scha, 1996] Bod, Rens, and Remko Scha. 1996. Data-Oriented
Language Processing: An Overview. Research report nr. LP-96-
13, ILLC Research reports, University of Amsterdam. Available at
www.essex.ac.uk/linguistics/clmt/papers/dop/bodscha.ps

[Bod, 1998] Bod, Rens. 1998. Beyond Grammar: An Experience-Based Theory
of Language. Stanford, CA: CSLI Publications.

[Bod, 2000] Bod, Rens. 2000. Combining Semantic and Syntactic Structure for
Language Modeling. Proceedings ICSLP-2000, Beijing, China. Available at
staff.science.uva.nl/~rens.

[Bod, 2000] Bod, Rens. 2000. Parsing with the Shortest Derivation.
Proceedings COLING-2000. Saarbruecken, Germany. Available at
staff.science.uva.nl/~rens.

[Bod, 2001] Bod, Rens. 2001. What is the Minimal Set of Fragments that
Achieves Maximal Parse Accuracy? Proceedings of the 39th Annual Meet-
ing of the Association for Computational Linguistics (ACL’2001). Toulouse,
France. Available at staff.science.uva.nl/~rens.

[Booth, 1969] Booth, T. 1969. Probabilistic representation of for- mal languages.
In Tenth Annual IEEE Symposium on Switching and Automata Theory, Oc-
tober.

[Bonnema, 2003] Bonnema, Remko. 2003. Probability Models for DOP. In: Bod,
R., Scha, R., and Sima’an, K. Data Oriented Parsing. CSLI Publications,
Stanford University. Stanford, California, USA.

62



[Bonnema et al., 1999] Bonnema, Remko, Paul Buying, and Remko Scha.
1999. A New Probability Model for Data-Oriented Parsing. Proceed-
ings of the Amsterdam Colloquium 1999. Amsterdam. Available at
citeseer.nj.nec.com/bonnema99new.html.

[Charniak, 1993] Charniak, Eugene. 1993. Statistical Language Learning. Cam-
bridge, MA: MIT Press.

[DeGroot & Schervish, 2002] DeGroot, Morris H., and Mark J. Schervish. 2002.
Probability and Statistics. 3rd edition. Addison-Wesley.

[De Pauw, 1999] De Pauw, Guy. 1999. Pattern-matching aspects of Data-
Oriented Parsing. Presented at Computational Linguistics in the Netherlands
(CLIN). Utrecht, Netherlands.

[De Pauw, 2000] De Pauw, Guy. 2000. Aspects of Pattern-Matching in DOP.
Proceedings of the 18th International Conference of Computational Linguistics
(COLING 2000). Saarbrücken, Germany.

[Fujisaki et al., 1989] Fujisaki, T., F. Jelinek, J. Cocke, E. Black, and T. Nishino.
1989. A probabilistic parsing method for sentence disambiguation. In Pro-
ceedings of the International Workshop on Parsing Technologies, Pittsburgh,
August.

[Goodman, 1998] Goodman, Joshua. 1998. Parsing Inside-Out.
Ph.D. thesis, Harvard University, Massachusetts. Available at
http://citeseer.nj.nec.com/article/goodman98parsing.html

[Jelinek, 1985] Jelinek, Fred, and Mercer, Robert. 1985. Probability distribution
estimation from sparse data. IBM Technical Disclosure Bulletin 28:2591-2594.

[Jelinek et al., 1990] Jelinek, F., J. D. Lafferty, and R. L. Mercer. 1990. Basic
methods of probabilistic context free grammars. Technical Report RC 16374
(72684), IBM, Yorktown Heights, New York 10598.

[Johnson, 2002] Johnson, Mark. 2002. The DOP Estimation Method Is Biased
and Inconsistent. Computational Linguistics 28(1), pages 71-76. Available at
cog.brown.edu/~mj/Publications.htm.

[Krenn & Samuelsson, 1997] Krenn, Brigitte, and Christer Samuels-
son. 1997. The Linguist’s Guide to Statistics—Don’t Panic.
citeseer.nj.nec.com/krenn97linguists.html.

[Lari & Young, 1990] Lari, K., and S. J. Young. 1990. The estimation of stochas-
tic context-free grammars using the Inside-Outside algorithm. Computer
Speech and Language, 4:35-56.

63



[Manning & Schütze, 1999] Manning, Christopher, and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Processing. MIT Press, Cam-
bridge, Massachusetts.

[Ney et al., 1997] Ney, Hermann, Sven Martin, and Frank Wessel. 1997. Statisti-
cal Language Modeling Using Leaving-One-Out. In: Steve Young and Gerrit
Bloothooft (eds.), Corpus-based Methods in Language and Speech Processing,
pp. 174-207. Kluwer Academic, Dordrecht.

[Nguyen, 2004] Nguyen, Thuy Linh. 2004. A Fragment-Based Estimator for
Data-Oriented Parsing. Master’s Thesis. Institute for Logic, Language and
Computation, University of Amsterdam.

[Pereira & Schabes, 1992] Pereira, Fernando, and Yves Schabes. 1992. Inside-
out reestimation from partially bracketed corpora. In Proceedings of the 30th
Annual Meeting of the Association for Computational Linguistics. Berkeley,
CA.

[Prescher et al., 2004] Prescher, Detlef, Remko Scha, Khalil Sima’an,
and Andreas Zollmann. 2004. On the Statistical Consistency
of DOP Estimators. To be published elsewhere. Available at
http://staff.science.uva.nl/~azollman/publications.html.

[Prescher, 2003] Prescher, Detlef. 2003. A Tutorial on the Expectation-
Maximization Algorithm Including Maximum-Likelihood Esti-
mation and EM Training of Probabilistic Context-Free Gram-
mars. Presented at ESSLLI-03, Vienna, Austria. Available at
http://staff.science.uva.nl/~prescher/papers/.

[Scha, 1990] Scha, Remko. 1990. Taaltheorie en Taaltechnologie; Competence
en Performance. In: de Kort, Q. A. M., and Leerdam, G. L. J.,
(eds.), Computertoepassingen in de Neerlandistiek, Almere: Landelijke
Vereniging van Neerlandici (LVVN-jaarboek). English translation as: Lan-
guage Theory and Language Technology; Competence and Performance;
http://iaaa.nl/rs/LeerdamE.html

[Scha et al., 1996] Scha, Remko, Remko Bonnema, Rens Bod, and Khalil
Sima’an. Disambiguation and Interpretation of Wordgraphs using Data Ori-
ented Parsing. Technical Report #31, NWO, Priority Programme Language
and Speech Technology”, http://grid.let.rug.nl:4321/.

[Siegrist, 2004] Siegrist, Kyle. 2004. Virtual Laboratories in Probability and
Statistics. www.math.uah.edu/stat.

64



[Sima’an, 1999] Sima’an, Khalil. Learning Efficient Disambiguation. PhD disser-
tation (University of Utrecht). ILLC dissertation series 1999-02, University of
Amsterdam. Amsterdam.

[Sima’an & Buratto, 2003] Sima’an, Khalil, and Luciano Buratto. Backoff Pa-
rameter Estimation for the DOP Model. Proceedings of the European Con-
ference on Machine Learning (ECML’03). Dubrovnik, Croatia. Available at
staff.science.uva.nl/~simaan

65



Index

actual training corpus, 22

back-off, 18
Back-off DOP∗, 54
back-off graph, 18
back-off hierarchy, 18
back-off parameter estimation, 18
being unbiased, 9
biased, 27

consistency, 27

Data-Oriented Parsing (DOP), 7
deleted estimation, 52
derivable, 35
derivation of t, 14
discounting, 21
DOP maximum-likelihood estimator,

18, 21
DOP probability of a derivation, 14
DOP probability of a full parse tree,

14
DOP probability of a sentence, 14

estimate, 26
estimator, 25, 26
events, 10
extraction corpus ec, 34

fixing a model, 26
fragment corpus, 13
fragments, 7, 13
full parse tree, 11

grammarians, 7
grammatical ambiguity, 5

held-out, 8

held-out corpus, 22
held-out corpus hc, 34
held-out discount, 23
held-out estimation, 21, 22

imaginary fragment, 36
imaginary trees, 38
inconsistency, 8, 14

loss function, 27

Maximum-Likelihood Criterion, 20
Maximum-Likelihood Estimate

(MLE), 20

Natural Language Processing (NLP),
5

nonterminals, 11

observation sequence, 26
observations, 25, 26
overfitted, 8, 34
overfitting, 21

parse, 11
parse tree, 11
parse tree for a given sentence s, 11
PCFG, 7
phrase structure trees, 11
preferred parse(s), 14
Probabilistic Context-Free Grammar

(PCFG), 7
probabilistic model, 10
probability model, 20
probability model, induced, 21
proper fragment w.r.t. tc, 13

66



relative frequency estimate (RFE),
20

risk, 27

samples, 10
semantic ambiguity, 5
sentence, 11
sentence parsing, 5
sequence, 11
sparse, 21
star, 11
start nonterminal, 11
Statistical NLP, 6
statistical parsing, 10
stochastic grammar, 6
Stochastic Tree-Substitution Gram-

mars (STSG), 7
strong consistency, 28
substitution operation, 10
subtrees, 13

terminals, 11
testing corpus, 12
training, 12
training corpus, 6
tree composition, 14
treebank, 12
treebank grammars, 7
treebanks, 7
trees, 11

unigram model, 10
unknown, 41
unrestricted, 20

weight, 13
weights, 7
words, 11

67


