
Dynamic Variations: Update and Revision for

Diverse Agents1

Fenrong Liu2

The Institute for Logic, Language and Computation
University of Amsterdam

August 20, 2004

1Supervisor: Prof. Dr. Johan van Benthem
2Email: liu@science.uva.nl or fenrong@hss.ustb.edu.cn



ii



Contents

Acknowledgements v

1 Introduction 1

1.1 Motivating Example and Research Problem . . . . . . . . . . 1

1.2 Background and Goals of Work . . . . . . . . . . . . . . . . . 4

1.3 A Guide to the Thesis . . . . . . . . . . . . . . . . . . . . . . 8

2 Plausibility Logic 15

2.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Simplified Completeness Proof . . . . . . . . . . . . . . . . . 20

2.2.1 Formal Derivation in PLS . . . . . . . . . . . . . . . . 20

2.2.2 Completeness Theorem . . . . . . . . . . . . . . . . . 22

2.3 Incorporating Common Knowledge . . . . . . . . . . . . . . . 24

2.3.1 Adding Common Knowledge . . . . . . . . . . . . . . 25

2.3.2 Completeness of PLC
S
. . . . . . . . . . . . . . . . . . . 26

2.4 Incorporating Common Belief . . . . . . . . . . . . . . . . . . 29

2.4.1 Common Belief in Pure Belief Version . . . . . . . . . 29

2.4.2 Common Belief defined with Common knowledge . . . 30

2.5 Plausibility Updating . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Motivating Observations . . . . . . . . . . . . . . . . . 32

2.5.2 Variations: Diversity of Agents . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



iv CONTENTS

3 Diversity of Logical Agents in Games 45

3.1 Varieties of Imperfection . . . . . . . . . . . . . . . . . . . . . 45

3.2 Imperfect Information Games and Dynamic-epistemic Logic . 45

3.3 Update for Perfect Agents . . . . . . . . . . . . . . . . . . . . 50

3.4 Update Logic for Bounded Agents . . . . . . . . . . . . . . . 56

3.5 Spectra of Agents: Modulating Product Update . . . . . . . . 63

3.6 Mixing Different Types of Agents . . . . . . . . . . . . . . . . 66

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Future Work 73

A Atomic Plausibility Logic 77

A.1 Language and Semantics . . . . . . . . . . . . . . . . . . . . . 77

A.2 Completeness Theorem . . . . . . . . . . . . . . . . . . . . . . 78

B Update for Forgetful Agents 81

B.1 Preliminaries and Motivating Example . . . . . . . . . . . . . 81

B.2 Inclusive Proposal . . . . . . . . . . . . . . . . . . . . . . . . 83

B.3 Copy Action Proposal . . . . . . . . . . . . . . . . . . . . . . 85

B.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C What to Forget for Bounded Agents? Even Diverse... 91

C.1 Always the Earliest? . . . . . . . . . . . . . . . . . . . . . . . 91

C.2 Bounded Agents in Computer Science . . . . . . . . . . . . . 93

C.3 Various Update Behaviors . . . . . . . . . . . . . . . . . . . . 94

C.4 New Source of Diversity . . . . . . . . . . . . . . . . . . . . . 98



Acknowledgements

There are many people I would like to thank for a huge variety of reasons.

I would like to thank my supervisor, Prof. Johan van Benthem, for his
consistent support and assistance. He is the best supervisor and teacher
I could have wished for. Without his perceptiveness, I would never have
finished this thesis. His insightful conversations and countless helpful
comments always made me realize that everything could be better and
better... In particular, I much appreciate that he gave me the opportunity
to execute a joint text (it will be published in Philosophia Scientiae in a
shortened form.) with him and agreed to put it here as my Chapter 3.
From the collaboration, I learned how to formulate our intuitions precisely
and how to deepen our exploration step by step. I enjoyed the whole
process very much! I am indebted to him for his always making time for
me, even during his Stanford Spring quarter, his effort of teaching me how
to do research, and especially his attempt of helping me realize my dream
in logic. Thank you for pushing me!

Also I want to thank my study advisor, Prof. Dick de Jongh, for his generous
help and encouragement. Without his extremely helpful advice on my course
arrangement before and after I came to Netherlands, I would never have
finished the Master program within one year. He is one of the nicest person
that I have ever met. His help is always there when it is most required.
I really appreciate his understanding and patience through all the times I
have been frustrated. In particular, I am more than grateful for his English
correction to any pieces that I got, even ordinary emails. I learned a lot
from these corrections. On the personal side, he did not hesitate to invite
his students to become an extended part of his family. Christmas 2003 was
the most wonderful time that I have spent here. I appreciated such activities
immensely, it was really a joy!

v



vi ACKNOWLEDGEMENTS

Besides my supervisor, I would like to thank the rest of my thesis committee,
Prof. Dick de Jongh and Prof. Jan van Eijck, thank you both for your
managing to read the whole thing thoroughly during the summer holiday.

I thank Guillaume Aucher for his extensive comments on my draft of
Chapter 2, as well as for the discussions via email. I also thank Josh Synder
for his penetrating comments on the draft of Chapter 3, his insightful
emails. I benefited from such discussions, which has made me further think
of many issues of interest.

In addition to my thesis work, I would like to express my gratitude to
my teachers at Amsterdam for their excellent lectures and correction of
my homework: Joost Joosten, Johan van Benthem, Balder ten Cate,
Dick de Jongh, Barteld Kooi, Paul Dekker, Frank Veltman, Michiel van
Lambalgen, Yde Venema, Nick Bezhanishvili. Time after time, their easy
grasp of logic at its most fundamental level helped me in the struggle
for my own understanding. I came to realize that it is their successful
work that has made and continues to make the ‘Dutch school’ so prosperous.

I would also like to thank all the rest of the academic and support staff
of the ILLC, with special thanks to Peter van Emde Boas for his talks on
Sun Tzu, Stratego and complexity; Tanja Kassenaar, Marjan Veldhuisen
are also especially thanked for their care and attention.

Living in Amsterdam was a very exciting and rewarding experience. Thanks
to my classmates and other friends at Amsterdam, they have been a part
of my wonderful life. I also thank my teachers, colleagues, friends and
family in China, their emails and e-cards always made me feel absolutely
supported. I just cannot put the whole list here, it would be too long. My
special thanks to Chunlai Zhou for what he had done for me before I came
to Amsterdam.

Perhaps most importantly, I am grateful for the financial support from the
Huygens Scholarship, the Beth Foundation and the China Scholarship Coun-
cil, which made my Amsterdam trip and life possible.



Chapter 1

Introduction

1.1 Motivating Example and Research Problem

Logical structures in conversation Logical analysis of information
flow and interaction starts with very simple phenomena. Our knowledge
and belief are in a continuous flux. Consider this Mosaic dialogue in the
NWO elevator on 18 March 2004, where four people, two younger, A,B,
and two older, A1, B1, met going up in the morning:

A: Are you a Mosaic candidate?
B: Yes.
A: Is he (B1) your promotor?
B: No.

Some hours later, 05:00 PM, A and B met again:

A: Are you a Mosaic candidate?
B: Yes, we talked this morning.
A: Sorry. Do you have a concrete idea for your proposal due on April 5?
B: No, I have no idea.

Behind the scenes of this simple daily question-answer scenario, flow infor-
mation occurs. In the first question-answer pair. A’s asking indicates to B
that A does not know the answer. B’s answer makes A learn that B is a

1



2 CHAPTER 1. INTRODUCTION

candidate (P , for short). This can be expressed with the epistemic-logical
operator K for ‘knows that’. Before the conversation we have

¬KAP ∧ ¬KA¬P, KBP, KA(KBP ∨ ¬KBP ).

But more is true after the answer. B knows that A knows, A knows that B
knows that A knows, and so on to any depth of iteration: we get so-called
common knowledge. In formulas we have:

KAP, KBKAP, etc. and C{A,B}P.

We can also express the initial knowledge of A in a mathematical model.
The black dot stands for the actual ‘world’ (with P ), the white one for
another world (with not-P ) that A considers possible. The dotted line with
A indicates that A does not know whether P ,

A               not P P

Now we see the process character of information in conversation. B’s answer
triggers an update of this information model, it eliminates A’s option not-P ,
to yield the one-point diagram:

 P

At this stage, P has become common knowledge between A and B, and not
only that, A1 and B1 are also in the know, if they have paid attention to
the conversation.

Let us now look at the second question-answer pair:

A: Is he your promotor?
B: No.

A has reason to believe that if B is a candidate, B1 is his promotor, because
of the NWO rules (the promotor may attend the workshop on March 18),
but A’s belief is mistaken. B’s negative answer causes A to revise her



1.1. MOTIVATING EXAMPLE AND RESEARCH PROBLEM 3

belief. Belief revision is a more complex process than information update,
but it is an indispensable ingredient of communication!

But even this is not yet the full story. Let us continue with the afternoon
episode:

A: Are you a Mosaic candidate?
B: Yes, we talked this morning.

Obviously A forgot what had happened that morning. She is once again
uncertain whether P or not P . Such limitations to our rationality happen
frequently in real life, some people have a good memory, others do not,
witness the bounded rationality that game theorists often emphasize.
Memory limitations are one key aspect of this: players in a game need not
even remember all previous moves.

The final question-answer pair brings the story to a climax, revealing one
more game-theoretic aspect to communication:

A: Sorry. Do you have a concrete idea for your proposal due on April 5?
B: No, I have no idea.

This is a genuine question, as A does not know and expects the answer
from B. But there is much more to its meaning. Behind every ordinary
question, there is a game-theoretic ‘meta-question’. Why does A ask this?
Both A and B are in the same competitive “application game”, and A
hopes to obtain more knowledge about her opponent, so that A’s actions
afterwards may depend on B’s answer, but B might not be truthful in his
answer either, this might be his best strategy. Similar things often occur
in games, where players try to achieve certain goals through interaction.
Stable and successful social behavior arises when the various strategies are
in equilibrium.

Research problem How can we design a logic of communication that
includes all aspects described here, and allows us to analyze a broad range
of forms of human behavior? It needs to combine the dynamic processes
of information update, and belief revision when encountering new evidence.



4 CHAPTER 1. INTRODUCTION

But it also needs to take various sources of bounded rationality seriously,
e.g. memory limitations - much more than the usual idealized logical theories
with omniscient agents. And it needs to explore various subtle features of
the strategic interaction between social agents. In my thesis, I would like
to explore these questions, in particular, introduce bounded rationality into
logical theory.

1.2 Background and Goals of Work

As it happens, there are already several building blocks for the joint
approach that I need, in the form of logical systems that are currently
investigated in the research community at the interface of logic, computer
science, and game theory.

Update logic To describe the concept of information update, exhibited in
the Mosaic dialogue, dynamic update logic (cf. van Benthem 1996; Veltman
1996; Gerbrandy 1999; Baltag et al., 1998) is the best current system, which
describes how to update a static information model to a new one when some
informative event takes place. The following definition is the heart of update
logic:

(s, a) ∼i (t, b) iff both s ∼i t and a ∼i b.

This means the uncertainty of original states and original action yields the
new uncertainty. In a logical reasoning system this update rule validates the
following key reduction axiom relating knowledge to action:

〈A, a〉〈j〉ϕ↔ (PREa ∧
∨

{〈j〉〈A, b〉ϕ : a ∼j b for some b in A})

It means that after an action a (in action model A) agent j knows ϕ if and
only if agent j knows that after action b which she cannot distinguish from
a, ϕ will hold. Such principle is of importance in that it allows us to relate
our knowledge after an action takes place to our knowledge beforehand,
which makes a crucial role in planning of AI.

There are two basic components in update logic:

(a) an epistemic model M of all relevant possible worlds with agents’
uncertainty relations indicated,



1.2. BACKGROUND AND GOALS OF WORK 5

(b) an action model A of all relevant actions, again with agents’ uncer-
tainty relations between them.

Action has restrictions – one can only consider the action which possibly
happens. These are encoded by

(c) preconditions PREa for actions a.

The knowledge of preconditions are supposed to be common knowledge
among agents. The updated epistemic model is computed as follows:

M × A = {(s, a) | s ∈ M, a ∈A &(M, s) |= PREa}
1

To relate the abstract mathematical model in update logic to what happens
in real life, we have the following basic assumptions:

(a) A social situation s involving the intuitive concepts of knowledge and
common knowledge corresponds to a mathematical model S(multi-
agent Kripke model).

(b) An operation taking situation s to situation o(s) corresponds to a
mathematical model O(S)(an update) in the following way: if s corre-
sponds to S in (a), then o(s) corresponds to O(S).

(c) The update does not change the truth of the fact.

Belief revision Belief revision occurs when new information contradicts
previous beliefs, and no simple update is possible: the whole structure of
one’s beliefs has to be rearranged. Belief revision theory (C.Alchourron-
P.Gärdenfors-D.Makinson 1985, P.Gardenfors 1988) describes belief update
for agents in AI, law, and in general philosophical settings. Concerning
mathematical representation, we have the following basic assumptions:

(a) An agent’s epistemic state can be represented by a belief set, that it,
a set of formulas from classical propositional logic.

(b) A revision operator ◦ brings a belief set A and a formula ϕ to a new
belief set A ◦ ϕ.2

1The actual world of the new model is the pair consisting of the actual world in M

and the actual action in A.
2Lindström and Rabinowicz treated it as a relation between theories (belief sets) rather

than a function on theories, see Lindström and Rabinowicz 1997.



6 CHAPTER 1. INTRODUCTION

The fundamental contribution of AGM is the following well-known set of
rationality postulates:

(R1) A ◦ ϕ is a belief set

(R2) ϕ ∈ A ◦ ϕ

(R3) A ◦ ϕ ⊆ Cl(A ∪ {ϕ})3

(R4) If ¬ϕ /∈ A, then Cl(A ∪ {ϕ} ⊆ A ◦ ϕ

(R5) A ◦ ϕ = Cl(false) iff ` ¬ϕ

(R6) If ` ϕ⇔ ψ then A ◦ ϕ = A ◦ ψ

(R7) A ◦ (ϕ ∧ ψ) ⊆ Cl(A ◦ ϕ ∪ {ψ})

(R8) If ¬ψ /∈ A ◦ ϕ then Cl(A ◦ ϕ ∪ {ψ}) ⊆ A ◦ (ϕ ∧ ψ).

Intuitively, R1 and R2 mean that a belief set should include ϕ after
revision by ϕ. R3 and R4 express that if the new belief is consistent
with the belief set, then the revision should not discard any of the old
beliefs and should not add any new belief except those implied by the
combination of the old beliefs with the new belief. R5 says that agents
can incorporate any consistent belief, and R6 states that the syntac-
tic form of the new belief does not affect the revision process. The last
two postulates say that if ψ is consistent with A◦ϕ then A◦(ϕ∧ψ) is A◦ϕ◦ψ.

AGM postulates that belief can change in the following three ways:

• Expansion: Expanding a belief set K by a sentence A together with
the logical consequences, obtaining K +A.

• Contraction: A sentence in K is retracted without adding any new
facts. Meanwhile, some other sentences from K must be given up,
obtaining K −A.

3Here Cl denotes the deductive closure.



1.2. BACKGROUND AND GOALS OF WORK 7

• Revision: A new sentence that is inconsistent with a belief set K is
added, but in order to make the resulting belief set consistent, some
old sentences in K are deleted, obtaining K ∗A4.

Bounded rationality Most logical literature assumes that players’
knowledge and abilities are perfect. But limited powers of observation and
processing are the reality. Modern game theory incorporates this in various
ways: cf. the imperfect information games, sequential equilibrium, and
finite-automaton strategies in Osborne & Rubinstein, 1994. Van Benthem
2001 shows how imperfect information games with memory-bounded
players can be analyzed in an ordinary dynamic-epistemic logic with added
uncertainty links.

So far, all these systems have their limitations. E.g., AGM belief revision
theory deals with belief revision, but it leaves out two crucial aspects
present in epistemic update logics: knowledge and ignorance, and multi-
agent interaction. On the other hand, update logic doesn’t deal with the
true dynamics of belief change. A merge seems to be called for.

Recent work: Plausibility logic combing update with revision At-
tempts to merge the above blocks have been carried out by Aucher 2003,
van Ditmarsch & Labuschagne 2003 and van Ditmarsch 2004. In particular,
Aucher presents a logical system combining update logic with belief revision,
therefore we can characterize the update with not only knowledge but also
belief involved. Technically, a new belief operator Bk

j is introduced into the
update logic and expresses belief up to degree k. With plausibility assigned
to states and actions, when belief is updated, one can record changes in
plausibility. Here is the key formula:

κ′j(w, a) = CutMax(κj(w) + κ∗j (a)− κ
w
j (ϕ)) (κ)

Using this formula, one can calculate the plausibility of a new state (w, a)
from that of the previous state and action. For precise definitions of this
formula and related notions, we refer to Section 2.1 and 2.2.

4K. Sergerberg treated these three ways as three actions in dynamic doxastic logic,
introducing three operators accordingly: [+ϕ]χ, [−ϕ]χ and [∗ϕ]χ, the intuitive interpre-
tations are ‘after expanding the set of beliefs by ϕ, it is the case χ’, ‘after contracting the
set of beliefs by ϕ, it is the case χ, and ‘after revising the set of beliefs by ϕ, it is the case
χ’ respectively. For details, see K. Sergerberg 1995.



8 CHAPTER 1. INTRODUCTION

Goals of current work There are several goals this thesis attempts to
obtain:

- to understand plausibility logic, its notions of importance, its logical
properties, etc.

- to propose variations for updating belief plausibility that allow for
diversity of agents,

- to understand the dramatic difference between agents with ‘the best
memory’ and agents with ‘the worst memory’ in games in terms of
their update behavior,

- to explore the intermediate cases, how k-memory agents update their
information, where k can go up arbitrarily, as well as societies of dif-
ferent agents and their interaction.

Summarizing, our aim is to develop plausibility logic, incorporating bounded
rationality into it, to better understand the variety of human behavior as
illustrated in the Mosaic dialogue and in many other circumstances, for
instance, in games.

1.3 A Guide to the Thesis

Besides the introduction, the thesis consists of three chapters and three
Appendixes. A brief overview of each of these parts follows.

Chapter 2 This chapter begins with a review of the basics of plausibility
logic, its language and semantics, the full logical system PL, including its
static part and its dynamic part. Then we focus in particular on the static
part PLS, presenting an improved completeness proof and extending it in
several ways. Special attention will be given to a new variation of plausibility
updating rule, which allows for diversity of agents.

• Static aspects

- Theorem proof Several theorems will be derived in the static plau-
sibility logical system PLS. The following theorem:

` Bk
j (B

k
j ϕ→ ϕ) for all k ∈ N,



1.3. A GUIDE TO THE THESIS 9

will contribute considerably to simplifying the completeness proof,
which we will also present in detail. Cf. Section 2.2.

- Extending PLS with common knowledge We first extend PLS

with the common knowledge operator CG in the classical way, ob-
taining a new system PLC

S
which becomes more expressive. It is then

possible to deal with settings like the Mosaic dialogue. For example,
a logical formula like [P !]C{A,B}P expresses that after B’s answer, P
is common knowledge between A and B. Meanwhile, we will present
the completeness proof for the system PLC

S
in the line of propositional

dynamic logic. Cf. Section 2.3.

- Adding common belief Another significant notion - common be-
lief up to a degree (denoted by Dk

G) is also added in two different ways.
One way is to define common belief up to a degree in pure belief ver-
sion: Dk

Gϕ is true, if everyone in G believes up to degree k that ϕ,
everyone in G believes up to a degree k that everyone in G believes
up to degree k that ϕ, etc. We get the system PLCD

S
. Another way is

to define it with common knowledge and belief operator together: ϕ
is a common belief up to degree k among the group G if everyone in
G believes ϕ up to degree k, which is common knowledge in G: We
obtain the system PLCD′

S
. The completeness proof for these two new

systems are also presented. Cf. Section 2.4.

• Dynamic aspects

- New plausibility updating rule Besides these technical varia-
tions on static plausibility logic, a more important move is that we
propose a new parameterized formula for plausibility update, which
allows for a much greater variety of forms of behavior:

κ
′

j(w, a) =
1

λ+ µ
(λκj(w) + µκ

∗
j (a)).

Where λ and µ are the weight that an agent j gives to the state w and
to the action a respectively. Thanks to the parameters, we get different
variations of this rule, hereby modelling the following five different
types of agents: highly radical agents who just take the plausibility
of the previous action as their new plausibility, radical agents whose
new plausibility is close to that of the previous action, middle of the
road agents who take the average of the plausibilities of the previous
state and action, highly conservative agents who take the plausibility



10 CHAPTER 1. INTRODUCTION

of the previous state as the new plausibility, conservative agents whose
new plausibility is close to that of the previous state. In this way, we
can precisely illustrate how different types of agents revise their belief
plausibility when they encounter new information. Cf. Section 2.5.

Chapter 3 This chapter written with van Benthem is devoted to an ex-
ploration of two extreme types of game-theoretic agents: those with Perfect
Recall of everything that happened in a game, and Memory-free agents who
observe only the last-played action. We occupy ourselves with their behav-
iors in terms of update logic.

• Axioms for Perfect Recall and Memory-free agents We
begin with dynamic epistemic language, presenting two axioms for
these two types of agents: Perfect Recall agents satisfy:

Ki[a]p → [a]Kip.

Intuitively, this means Perfect Recall agents know their own moves and
also remember their past uncertainties as they were at each stage. As
the opposite of Perfect Recall, we propose a new axiom for Memory-
free agents:

〈a〉p → U [a]〈i〉p.

This says that the agent can only know things after an action which
are true wherever the action has been performed. Cf. Section 3.2.

• Characterizing Perfect Recall agents Standard update logic
presupposes prefect agents, in a precise sense, this is just what the
reduction axiom characterizes:

〈A,a〉〈i〉ϕ↔(PREa∧
∨

{〈i〉〈A,b〉ϕ:a∼ib for some b in A}).

Another approach to describe the Perfect Recall agents is via struc-
tural conditions on the relations of tree E of event sequences, such
as PR, UNL, and BIS-INV, where different types of agents i corre-
spond to different types of uncertainty relation ∼i. We will prove a
characterization theorem for the update of Perfect Recall agents:

The abstract tree E satisfies PR, UNL, and BIS-INV iff E
is isomorphic to a particular tree model Tree(M, A),



1.3. A GUIDE TO THE THESIS 11

where Tree(M , A) starts from an initial state modelM and an action
model A, repeating product updates forever. Cf. Section 3.3.

• Characterizing Memory-free agents It turns out to be possible
to similarly characterize the update of Memory-free agents in above
two senses. We present the following new reduction axiom for Memory-
free agents:

〈a〉〈i〉ϕ ↔ (PREa & E
∨

b∼ia
〈b〉ϕ).

It is also possible to characterize such agents structurally just as Per-
fect Recall agents, but with different structure conditions PR− and
UNL+. We will also prove the following result:

An equivalence relation ∼i on E is Memory-free iff the two
conditions PR− and UNL+ are satisfied.

The behavior of Memory-free agents is closely related to finite au-
tomata; another excursion to the automata theory bring us an exciting
fact:

Memory-free agents are exactly those whose uncertainty re-
lation is generated by a rigid finite-state automaton.

Finally, we concentrate on the different level of knowledge that these
two different agents may obtain and propose a possible way of mak-
ing such differences more explicit, i.e. enriching the language with a
converse action operator. Cf. Section 3.4.

• Discussions We also discuss other possible modifications of the
product update that create different types of agents, exploring the idea
that players with different abilities necessarily live together in social
settings and how they interact with each other. This resulting epis-
temic and process diversity raises many new types of problems, such
as taking advantage of knowing each other’s limitations, and learning
other people’s ‘types’.

Chapter 4 The thesis ends with a discussion of six possible directions in
which this work can be extended.

Appendix A Something simpler occurs here! As we know, there are
not only the knowledge operator but also the new belief operator Bk

j in



12 CHAPTER 1. INTRODUCTION

plausibility logic. The belief operator Bk
j is certainly useful in expressing

the firmness or degree of the belief. But incidentally, we will show that the
meaning of Bk

j ϕ can be expressed by a propositional constant pkj together
with the knowledge operator:

Bk
j ϕ := Kj(p

k
j → ϕ),

where pkj means intuitively ‘agent j assigns the world where she stands the

degree of belief at most k’. This yields a new atomic system PL−
S
. The

completeness of this new system will also be presented in detail.

Appendix B We begin with a motivating example to show that if we
change our perspective on the product update, i.e. we do update as:
M×A1×A2 . . . where actions models can be different, instead of the per-
spective in Chapter 3: M×A×A. . . where action models are uniform. Then
the update definition for Memory-free agents in Chapter 3 fails since some
worlds will be gone forever according to the precondition restriction, but
they are needed in the later update stages to get uncertainty for bounded
memory agents. We first present Synder’s inclusive proposal; the basic def-
inition for the update of 0-memory agents is:

Definition B.2

(2a) M×A={(s, a) : s ∈M and a ∈ A}

(2b) (s, a) ∼i (t, b) iff (M, s |= PREa iff M, t |= PREb) and a ∼i b

We then present another proposal: the copy action proposal. The key defi-
nition for the update of 0-memory agents is:

Definition B.3

(3a) M×A={(s, a) : s ∈M and a ∈ A and s |= PREa}

(3b) For a, b 6= C!, (s, a) ∼i (t, b) iff a ∼i b

Both of these two proposals work well, they manage to keep the worlds that
would have gone, but in a different manner. The similarity and difference
of these intuitions are further explored as well. New questions are raised.
Extension of such results to the k-memory agents case is briefly discussed.



1.3. A GUIDE TO THE THESIS 13

Appendix C For bounded memory agents, what to forget is as impor-
tant as what to remember. We start with a simple observation, i.e. it is
presupposed that bounded memory agents forget the earliest information
when new information comes in, but this is not always the case. Intuitively,
there are many other possibilities: the agent may choose to forget the infor-
mation that she has not used so frequently , or she may choose to forget the
information that she thinks will not be used in the near future, etc. More
diversity exists! Incidently, this has been investigated extensively in com-
puter science. We then focus on a concrete example from computer science
and reinterpret it in terms of update logic. We find that even the behavior
of agents with the same memory capacity can be very different. The follow-
ing ‘replacement policy’ embodies exactly the various behaviors of bounded
agents in computer science:

- First In First Out (FIFO): Replace the ‘oldest’ data in the memory,
i.e. the data which was loaded before all the others.

- Least Recently Used (LRU): Replace the data which has not been
referenced to since all the others have been referenced to.

- Optimal (OPT): Replace the data that will not be used for the longest
period of time.

We discuss in detail their difference from various points of view, and conclude
that several desirable properties such as agents’ preference, consideration of
cost, should be taken into account when we are constructing an update logic
for bounded memory agents.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Plausibility Logic

In this chapter, we will briefly first review the basics of plausibility logic, its
language, semantics and the full logical system PL1. Secondly, we will come
to its logical variations, present an improved completeness proof, extend
PLS with the notion of common knowledge and common belief. Finally, we
will propose a new plausibility update rule to show the diverse strategies of
different kinds of agents.

2.1 Review

Ordinal ranking approach The most significant idea in plausibility
logic is that a κ-ranking is introduced into the update logic system, which
makes it possible to express belief up to a degree. The κ-ranking is widely
called an ordinal ranking, which was presented by Spohn 1988. It is a func-
tion κ from a given set W of possible worlds into the class of ordinals such
that the worlds with the smallest ordinals are the most plausible. Some
possible worlds are assigned the smallest ordinal 0. In other words, κ repre-
sents a plausibility grading of the possible worlds. The plausibility ranking
of possible worlds can be extended to a ranking of propositions, we define

κ(A) = min{κj(w) : w ∈ A}.

Intuitively, the κ-ranking assigns a degree of surprise to each world in W ,
where 0 means unsurprising and a higher number denotes greater surprise,

1We will take PLS to denote the static part of the system PL. L and LS express its full
language and static language, respectively.

15



16 CHAPTER 2. PLAUSIBILITY LOGIC

less firmness of belief.

Definition 2.1 A belief epistemic model M = (W, {∼j : j ∈ G}, {κj :
j ∈ G}, V ),2 is a tuple where:

1. W is a non-empty set of possible worlds called the states of model.3

2. G is a finite set of agents.4

3. ∼j is an equivalence relation defined on W for each agent j.

4. κj is an operator, ranging from 0 to Max, defined on all states.5

5. V is a valuation.

Definition 2.2 A belief epistemic action model Σ is a tuple (Σ,∼j ,
κ∗j , PRE) such that:

1. Σ is a non-empty set of simple actions.

2. ∼j is an equivalence relation defined on Σ for each agent j.

3. κ∗j is an operator, ranging from 0 to Max, defined on all actions.6

4. PRE is a function from the set of actions to the formulas of Ls .

Definition 2.3 Given a belief epistemic model M and a belief epistemic
model Σ, we define their product update to be the the epistemic action
model

M ⊗ Σ = (W ⊗ Σ,∼′j , κ
′
j , V

′)

given by the following :

2This is slightly different from Aucher’s definition since the actual world is not in the
model explicitly. We see the actual world as one of the possible worlds (this is also widely
accepted). Furthermore, we have not found the advantage of incorporating it in the model
yet. In the same way, we do not include the actual action in the action model neither.

3We will not distinguish states from worlds in this context.
4We will take i or j to denote arbitrary agent in G. j ∈ G is often omitted if it is clear

in the context.
5This is intended to describe an agent’s plausibility preference among her indistinguish-

able worlds. Max is an arbitrary fixed natural number different from 0.
6This is intended to describe an agent’s plausibility preference among her indistinguish-

able actions.



2.1. REVIEW 17

1. W ⊗ Σ = {(w, a) ∈W × Σ :M,w |= PREa}.

2. We define ∼′j such that (w, a) ∼′j (v, b) iff w ∼j v and a ∼j b.

3. κ′j(w, a) = CutMax(κj(w) + κ∗j (a)− κ
w
j (ϕ)),

where ϕ = PREa, κ
w
j (ϕ) = min{κj(v) : v ∈ V (ϕ) and v ∼j w}

CutMax(x) =

{

x if 0 ≤ x ≤Max
Max if x > Max.

CutMax is a technical device to ensure that the new κ-value fits in the
range of the κ scale of the new belief epistemic model, i.e. fits in the
set {0, . . . ,Max}.

4. V ′ equals to original valuation on the worlds.

Definition 2.4 Let a finite set of proposition variables Φ and a finite set
of agents G be given. The full language L is given by the rule

• Sentences ϕ := > | p | ¬ϕ | ϕ ∧ ψ | Kjϕ | B
k
j ϕ | [π]ϕ.

• Programs π := σiψ1 . . . ψn | π + ρ | π.ρ.

where p ∈ Φ and j ∈ G, k ∈ N.

There are two kinds of syntactic objects: sentences and programs. Programs
of the form σiψ1 . . . ψn are simple programs or actions.7 Note that they may
not be “atomic” because the sentences ψj may themselves contain actions.
+ and . are the disjoint union operation and composition operation on
programs respectively. Kjϕ is read “agent j knows ϕ”, Bk

j ϕ is read “agent
j believes ϕ up to degree k”, [π]ϕ is read “after program or action π is
performed, ϕ holds”.

For a better understanding of the definition of the semantics for a simple
action σiψ1 . . . ψn, we will give a general definition of a signature-based
belief epistemic action model, starting with the definition of action signature:

Definition 2.5 An action signature is a structure

7We will not distinguish actions from programs in this context. σiψ1 . . . ψn is also often
written as σi, ψ.



18 CHAPTER 2. PLAUSIBILITY LOGIC

Σ = (Σ,∼j , κ
∗
j , (σ1, σ2, . . . , σn))

where σ1, σ2, . . . , σn is an enumeration of Σ in a list without repetitions, we
call the elements of Σ simple actions.

Definition 2.6 Let Σ be an action signature, let Γ ⊆ Σ and [[ψ1]], . . . , [[ψn]]
be a list of epistemic propositions. We obtain a signature-based belief

epistemic action model (Σ,Γ)([[ψ1]], . . . , [[ψn]]) in the following way:

• The set of actions is Σ, and the accessibility relations are those given
by the action signature.

• For j = 1, . . . , n, PREσj
= [[ψj ]].

• The set of distinguished actions is Γ.

In the special case that Σ is the singleton set {σi}, we write the resulting
signature-based program model as (Σ, σi)([[ψ1]], . . . , [[ψn]]).

Thanks to the κ-ranking, we are able to assign a number to states and
actions, thereby distinguishing their different plausibilities. For instance,
κj(v) > κj(w) means that agent j believes that world w is more plausible
than world v.8 This also yields a precise definition of belief up to a degree,
which we will see in the following definition.

Definition 2.7 Let M = (W,∼j , κj , V ) be a belief epistemic model, the
semantics of sentences are defined as follows (we omit the classical ones):

• M,w |= Kjϕ iff for all v s.t. w ∼j v, M, v |= ϕ.

• M,w |= Bk
j ϕ iff for all v s.t. w ∼j v and κj(v) ≤ k,M, v |= ϕ.

• M,w |= [π]ϕ iff for all v s.t. w[[π]]Mv,M([[π]]), v |= ϕ.9

The semantics of programs are given by :

• [[σiψ1 . . . ψn]] = (Σ, σi)([[ψ1]], . . . , [[ψn]]).

8The smaller the κ-value is, the more plausible the world is.
9M([[π]]) denotes the updated model, [[π]]M expresses the relation between the original

model and the updated model.



2.1. REVIEW 19

• [[π.ρ]] = [[π]].[[ρ]].

• [[π + ρ]] = [[π]] + [[ρ]].

Axiomatic system PL We first present the static part PLS of the ax-
iomatic system PL:

1. All propositional tautologies.

2. Bm
j (ϕ→ ψ)→ (Bm

j ϕ→ Bm
j ψ) Bm

j -distribution

3. Kj(ϕ→ ψ)→ (Kjϕ→ Kjψ) Kj-distribution

4. Kjϕ→ ϕ

5. Bm
j ϕ→ KjB

m
j ϕ for all m ∈ N

6. ¬Bm
j ϕ→ Kj¬B

m
j ϕ for all m ∈ N

7. Bm
j ϕ→ Bm′

j ϕ for all m ≥ m′

8. Kjϕ↔ Bm
j ϕ for all m ≥Max

9. From ` ϕ and ` ϕ→ ψ infer ` ψ

10. From ` ϕ infer ` Bm
j ϕ Bm

j -generalization

11. From ` ϕ infer ` Kjϕ Kj-generalization

In the static system PLS, besides all propositional tautologies, the important
axioms are Axioms 4–8, which are about the properties of knowledge and
belief. Axiom 5 is on positive introspection, “if one believes something, then
one knows that one believes it”. Axiom 6 is about negative introspection,
“if one does not believe something, then one knows that one does not
believe it”. Axiom 7 states that a stronger belief implies a weaker one.

Adding the following dynamic axioms and rules to the above static system
PLS, we get the full system PL:

12. [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ) [π]-distribution

13. [σi, ψ]p↔ (ψi → p)



20 CHAPTER 2. PLAUSIBILITY LOGIC

14. [σi, ψ]¬χ↔ (ψi → ¬[σi, ψ]χ)

15. [σi, ψ]ϕ ∧ χ↔ ([σi, ψ]ϕ ∧ [σi, ψ]χ)

16. [σi, ψ]Kjϕ↔ (ψi →
∧

{Kj [σk, ψ]ϕ : σk ∼j σi})

17. [σi, ψ]B
m
j ϕ↔ (ψi →

∧

{Bl−1
j ¬ψk ∧ ¬B

l
j¬ψk → B

m+l−κ∗j (σk)

j

[σk, ψ]ϕ : σk ∼j σi, and l ∈ {0, . . . ,Max}}) where m < Max

18. [π][ρ]ϕ↔ [π.ρ]ϕ

19. [π + ρ]ϕ↔ [π]ϕ ∧ [ρ]ϕ

20. Form ` ϕ infer ` [π]ϕ [π]-generalization

In the dynamic part, besides the axioms and rules from dynamic logic,
Axioms 13–17 are so-called reduction axioms, of which Axiom 16 and
Axiom 17 are crucial, because they express the interaction between
knowledge and action, belief and action, respectively. As we emphasized
before, such axioms make it possible to relate agents’ knowledge or belief
after the execution of some action with their knowledge or belief beforehand.

For the axiomatic system above, Aucher has given a completeness proof.
In the next section we will present an improved completeness proof, which
turns out to be much simpler. We will make use of one theorem of PLS. The
detailed proof of this theorem will also be provided. Given the reduction
axioms, it is easy to see that PLS is equivalent to the full system PL. So we
only need to consider the completeness for PLS.

2.2 Simplified Completeness Proof

2.2.1 Formal Derivation in PLS

In order to get more familiar with derivations in PLS, we will prove several
theorems in PLS, the last one will contribute in the new completeness proof.
We omit the definition of derivation, which is classical.

Theorem 2.2.1 Kjϕ→ Bk
j ϕ for all k ∈ N



2.2. SIMPLIFIED COMPLETENESS PROOF 21

1. BMax
j ϕ→ Bk

j ϕ for k ≤Max (Axiom 7)

2. Kjϕ→ BMax
j ϕ (Axiom 8, k =Max)

3. Kjϕ→ Bk
j ϕ for k ≤Max (1, 2, PC10)

4. Kjϕ→ Bk
j ϕ for k > Max (Axiom 8, PC)

5. Kjϕ→ Bk
j ϕ for all k (3, 4, PC)

The above theorem is easy to understand, because if an agent knows
something then she believes it up to any degree. Now we look at the
following theorem, which means if an agent believes something up to degree
k if and only if she believes up to degree k that she believes up to degree k
that something holds.

Theorem 2.2.2 ` Bk
jB

k
j ϕ↔ Bk

j ϕ for all k ∈ N

1. ¬Kj¬B
k
j ϕ→ Bk

j ϕ (Axiom 6, PC)

2. 〈Kj〉B
k
j ϕ→ Bk

j ϕ (1, ML)

3. Bk
j ϕ ∧ 〈B

k
j 〉> → 〈B

k
j 〉(ϕ ∧ >) (ML)

4. Bk
j ϕ ∧ 〈B

k
j 〉> → 〈B

k
j 〉ϕ (3, PC)

5. Bk
j ϕ→ 〈B

k
j 〉ϕ (4, PC)

6. 〈Bk
j 〉ϕ→ 〈Kj〉ϕ (Theorem 2.2.1, ML)

7. Bk
j ϕ→ 〈Kj〉ϕ (5, 6, PC)

8. Bk
jB

k
j ϕ→ 〈Kj〉B

k
j ϕ (7, PC)

9. Bk
jB

k
j ϕ→ Bk

j ϕ (2, 8, PC)

10. KjB
k
j ϕ→ Bk

jB
k
j ϕ (Theorem 2.2.1, PC)

11. Bk
j ϕ→ Bk

jB
k
j ϕ (Axiom 5, 10, PC)

12. Bk
jB

k
j ϕ↔ Bk

j ϕ (9, 11, PC) ¥

10Here, PC denotes ‘Propositional Logic’, and ML denotes ‘Modal Logic’



22 CHAPTER 2. PLAUSIBILITY LOGIC

As we already know that in the system PLS, B
k
j ϕ→ ϕ is not its axiom since

our belief up to a degree may be not true. But we will prove the following
Theorem 2.2.3 in PLS, it means that the agent believes up to degree k that
what she believes up to degree k is true.

Theorem 2.2.3 ` Bk
j (B

k
j ϕ→ ϕ) for all k ∈ N

1. ¬Bk
j ϕ ∨B

k
j ϕ (PC)

2. Kj¬B
k
j ϕ ∨KjB

k
j ϕ (1, axiom 5, PC)

3. Bk
j ¬B

k
j ϕ ∨B

k
jB

k
j ϕ (2, Theorem 2.2.1, PC)

4. Bk
j ¬B

k
j ϕ ∨B

k
j ϕ (3, Theorem 2.2.2, PC)

5. ¬Bk
j ϕ→ ¬B

k
j ϕ ∨ ϕ (PC)

6. Bk
j ¬B

k
j ϕ→ Bk

j (¬B
k
j ϕ ∨ ϕ) (5, Bk

j -generalization)

7. ϕ→ ¬Bk
j ϕ ∨ ϕ (PC)

8. Bk
j ϕ→ Bk

j (¬B
k
j ϕ ∨ ϕ) (7, Bk

j -generalization)

9. (Bk
j ¬B

k
j ϕ ∨B

k
j ϕ)→ Bk

j (¬B
k
j ϕ ∨ ϕ) (6, 8, PC)

10. Bk
j (¬B

k
j ϕ ∨ ϕ) (4, 9, PC)

11. Bk
j (B

k
j ϕ→ ϕ) (10, PC) ¥

This theorem can be thought of as a weaker formulation of Bk
j ϕ→ ϕ. From

the point view of correspondence theory, this means the worlds that agents
can see are reflexive. We will see how this theorem contributes considerably
to the new completeness proof in the next subsection.

2.2.2 Completeness Theorem

Lemma 2.2.1 Let Γ be a maximal PLS-consistent set of formulas . Then
it holds for all ϕ, ψ that:

• exactly one of ϕ and ¬ϕ is in Γ.



2.2. SIMPLIFIED COMPLETENESS PROOF 23

• ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ.

• if ϕ ∈ Γ and ϕ→ ψ ∈ Γ, then ψ ∈ Γ.

• if `PLS
ϕ, then ϕ ∈ Γ.

Proof It is a classical proof that we do not give. ¥

Lemma 2.2.2 Every PLS-consistent set of formula Γ can be extended to
a maximal PLS-consistent set.

Proof This is also a classical proof. ¥

Completeness Theorem The system PLS is strongly complete with
respect to its canonical model.

Proof To prove the completeness of PLS, it suffices to show that

Every PLS-consistent set Γ of formulas is satisfiable on some
belief epistemic model. (*)

To get this, we define the canonical model as follows:

M c = (W c,∼j , κj , V )

• W c = {wV : V maximal PLS-consistent set}

• ∼j = {( wV , wW ) : V/Kj ⊆W } where V/Kj = {ϕ : Kjϕ ∈ V }

• κj(wW )= min{k :W/Bk
j ⊆W}

• wW ∈ V (p) iff p ∈W

Now we need to show that

ϕ ∈ V ⇔M c, wV ² ϕ.

By induction on the structure of formula ϕ. We only consider the belief case

(⇒) Assume Bk
j ϕ ∈ V (**), to show M c, wV ² Bk

j ϕ, i.e. to show that



24 CHAPTER 2. PLAUSIBILITY LOGIC

For every wW , if wV ∼j wW , κj(wW ) ≤ k then M c, wW ² ϕ.

Assume furthermore that for every wW , wV ∼j wW and κj(wW ) ≤ k. Since
Bk
j ϕ → KjB

k
j ϕ is axiom, Bk

j ϕ → KjB
k
j ϕ ∈ V , together with (**) we get

KjB
k
j ϕ ∈ V, (V is anMCS). Since wV ∼j wW , by definition of ∼j , we have

Bk
j ϕ ∈ W . Since κj(wW ) ≤ k, by the definition of κj(wW ), from Bk

j ϕ ∈ W
we can get ϕ ∈W . According to the inductive hypothesis, M c, wW ² ϕ.

(⇐) Assume Bk
j ϕ /∈ V . To show M c, wV 2 Bk

j ϕ. Let set Σ be

{¬ϕ}∪{Bk
j ϕ→ ϕ : ϕ ∈ V }∪{ϕ : Kjϕ ∈ V }. We claim that Σ is consistent.

For suppose not, then there are ¬ϕ, Bk
j β1 → β1, . . . B

k
j βs → βs, α1, . . . , αr

in Σ, s.t.

` (Bk
j β1 → β1) ∧ . . . ∧ (Bk

j βs → βs) ∧ (α1 ∧ . . . ∧ αr)→ ϕ

` Bk
j ((B

k
j β1 → β1) ∧ . . . ∧ (Bk

j βs → βs) ∧ (α1 ∧ . . . ∧ αr))→ Bk
j ϕ

` Bk
j (B

k
j β1 → β1) ∧ . . . ∧B

k
j (B

k
j βs → βs) ∧ (Bk

j α1 ∧ . . . ∧B
k
j αr)→ Bk

j ϕ

By Theorem 2.2.3, we can drop the first part of the formula above and obtain

` Bk
j α1∧ . . . ∧B

k
j αr → Bk

j ϕ

Since for any αi, 1 ≤ i ≤ k we have Kjαi ∈ V , since Kjαi → Bk
j αi ∈ V

(axiom), we get Bk
j αi ∈ V , Bk

j α1 ∧ . . . ∧ B
k
j αr ∈ V , so Bk

j ϕ ∈ V . But this

is impossible because ¬Bk
j ϕ ∈ V . We conclude that Σ is consistent. By

Lemma 2.2.2, there is an MCS W extending Σ and ¬ϕ ∈ W , so ϕ /∈ W .
According to the inductive hypothesis, M c, wW 2 ϕ. ¥

In this section, we have given derivations of three theorems in the system
PLS and a simpler completeness proof for the system PLS. In the next two
sections we will extend the system PLS with notions of common knowledge
and common belief step by step. We first add the common knowledge op-
erator to system PLS, which will make the system more expressive.

2.3 Incorporating Common Knowledge

We will give an extended axiomatic system with common knowledge and
present the completeness proof in the line of propositional dynamic logic.



2.3. INCORPORATING COMMON KNOWLEDGE 25

2.3.1 Adding Common Knowledge

We augment the language LS with a new operator CG. The resulting
language is denoted by LCS . CGϕ is read “it is common knowledge among
the group G that ϕ”. We often use EGϕ to express “everyone in the
group G knows that ϕ”, i.e.

∧

j∈GKjϕ . Putting it formally, we have the
definition below:

Definition 2.3.1 Let M be a belief epistemic model, we have

M,w |= EGϕ iff M,w |= Kjϕ for all j ∈ G.

Intuitively, CGϕ is true, if everyone in G knows ϕ, everyone in G knows
that everyone in G knows ϕ, etc. We first look at a simple example as below:

Example G = {1, 2, 3}, ϕ is common knowledge among the group G.
Then we have:

K1ϕ, K2ϕ, K3ϕ, K1K2ϕ, K1K3ϕ, K1K2K3ϕ, etc.

Now some useful notations: Let E0
Gϕ be an abbreviation for ϕ, and En+1

G ϕ
for EGE

n
Gϕ and in particular, E1

Gϕ for EGϕ. We have the definition below:

Definition 2.3.2 Let M be a belief epistemic model, then

M,w |= CGϕ iff M,w |= En
Gϕ for n = 1, 2, . . .

We go ahead and give the following definition, which turns out to be very
useful in the completeness proof, discussions and many applications.

Definition 2.3.3 v is G-reachable from w in m steps (m ≥ 1) if there
exists a sequence of states, w0, w1, . . . , wm s.t. w0 = w and wm = v and for
all 0 ≤ i ≤ m − 1, (wi, wi+1) ∈ Kj for some j ∈ G. If for some m ≥ 1,
v is G-reachable from w in m steps, then we say v is G-reachable from w .

Lemma 2.3.4 Let M be a belief epistemic model,

(1) M,w |= En
Gϕ iff M, v |= ϕ for all v that are G-reachable from w in n

steps.



26 CHAPTER 2. PLAUSIBILITY LOGIC

(2) M,w |= CGϕ iff M, v |= ϕ for all v that are G-reachable from w.

Proof Induction on n, it is straightforward to get (1), (2) follows from (1).

Concerning the axiomatics, we add new axioms and a rule to the system
PLS, obtaining a new system PLC

S
:

C1. EGϕ↔
∧

j∈GKjϕ

C2. CGϕ↔ EG(ϕ ∧ CGϕ) (Fixed-point Axiom)

RC1. From ` ϕ→ EG(ψ ∧ ϕ) infer ` ϕ→ CGψ (Induction Rule)

2.3.2 Completeness of PL
C

S

In order to prove the completeness of the system PLC
S
, we follow Fagin,

Halpern, Moses & Vardi 1995. The method is in line of propositional
dynamic logic . The completeness proof is non-trivial, since the language
with transitive closure of the accessibility relation ‘→j ’ is not compact,
infinite maximal consistent sets of formulas may be not satisfiable. So we
only take maximal consistent set of formulas of some parts of the language.
Now we first define such parts as ‘closure’:

Definition 2.3.5 The closure of ϕ is the minimal set Φ ⊆ LCS s.t.

• ϕ ∈ Φ.

• if ψ ∈ Φ and χ is a subformula of ψ, then χ ∈ Φ.

• if ψ ∈ Φ and ψ itself is not a negation, then ¬ψ ∈ Φ.

• if CGψ ∈ Φ, then Kj(ψ ∧ CGψ) ∈ Φ for all j ∈ G.

Note that the closure of any formula ϕ yields a finite set of formulas Φ.

Definition 2.3.6 Let Φ be a closure. A finite set of formulas Γ ⊆ Φ is
maximal consistent in Φ iff:

• Γ is consistent.

• There is no ∆ ⊆ Φ such that Γ ⊂ ∆ and ∆ is consistent.



2.3. INCORPORATING COMMON KNOWLEDGE 27

Lemma 2.3.7 Let Φ be a closure of a formula ϕ. If Γ ⊆ Φ is consistent,
then there is a set Γ′ ⊆ Φ such that Γ ⊆ Γ′ and Γ′ is maximal consistent in Φ.

Proof The proof is classical.

Definition 2.3.8 Given a formula ϕ, the model Mϕ = (Wϕ,∼ϕj , V
ϕ) is

given by

• Wϕ = {wV : V is a maximal consistent set in Φ}

• ∼ϕj = {(wV , wW ) : V/Kj ⊆W } where V/Kj = {ϕ : Kjϕ ∈ V }

• wW ∈ V
ϕ(p) iff p ∈W

Truth Lemma If V ∈ Wϕ, then for all ψ ∈ Φ, it holds that ψ ∈ V iff
Mϕ, wV |= ψ.

Proof By induction on the structure of formula ψ, we only consider the
common knowledge case, i.e. we will prove

CGψ ∈ V iff Mϕ, wV |= CGψ.

(⇒) Assume CGψ ∈ V , we will prove a stronger claim: if wW is G-reachable
from wV in k steps, then ψ ∈W and CGψ ∈W .
By induction on k.
Base case: k = 1. Since V ∈ Wϕ, i.e. V is a MCS. By Axiom C2, it
follows EG(ψ ∧ CGψ). Then if wW is G-reachable from wV in one step,
we have (ψ ∧ CGψ) ∈ W . Since W is a MCS, it follows that ψ ∈ W and
CGψ ∈W .
Inductive step: Assume that the conclusion holds for k, we prove the case
for k + 1.
If wW is G-reachable from wV in k + 1 step, then there exists W ′ such
that wW ′ is G-reachable from wV in k steps and wW is G-reachable
from wW ′ in one step. By the induction hypothesis, then ψ ∈ W and
CGψ ∈ W . Hence ψ and CGψ are in W . So we know that ψ ∈ W for
all wW that are G-reachable from wV . By the main induction hypothesis,
Mϕ, wV |= ψ for all wW that are G-reachable from wV . So,M

ϕ, wV |= CGψ.

(⇐) AssumeMϕ, wV |= CGψ. We can describe each world wW ofMϕ by the
conjunction of the formulas in W . ϕW is taken to denote such conjunction,



28 CHAPTER 2. PLAUSIBILITY LOGIC

which is a formula in LCS , since W is a finite set. Let W ={W is a maximal
consistent set in Φ : Mϕ, wW |= CGψ}. Define ϕW to be

∨

w∈W ϕW . That
is, this disjunction describes all of the states where CGψ holds. Since the
setW is finite, it follows that ϕW is a formula in LCS . Now we have to prove
that

` ϕW → EG(ψ ∧ ϕW). (1)

First it is easy to prove that

` ϕW → Kjψ. (2)

We define W̄ = {W is a maximal consistent set in Φ : Mϕ, wW 2 CGψ}. If
W ∈ W, and W ′ ∈ W̄, then ` ϕW → Kj¬ϕW ′ (3). From (2) and (3) we get

` ϕW → Kj(ψ ∧ (
∧

W ′∈W̄ ¬ϕW ′)).

It can be shown that ` ϕW ↔ (
∧

W ′∈W̄ ¬ϕW ′), so we get (1). By the
Induction Rule, we get

` ϕW → CGψ.

Since V ∈ W, we have ` ϕV → ϕW , so

` ϕV → CGψ.

It follows that CGψ ∈ V . Otherwise, ¬CGψ ∈ V , then V is not LCS -
consistent, contradiction. ¥

Completeness If |= ϕ, then ` ϕ.

Proof Suppose it is not the case that ` ϕ. Then {¬ϕ} is consistent and
there is an MCS V in the closure ϕ of ¬ϕ s.t. ¬ϕ ∈ V . By the Truth
Lemma, we get M c, wV |= ¬ϕ, so it is not the case that Mϕ, wV |= ϕ. ¥

We have seen how to incorporate the notion of common knowledge into the
system PLS in this section, another equally important notion is common
belief, we will consider how to add common belief operator to the system in
the next section.



2.4. INCORPORATING COMMON BELIEF 29

2.4 Incorporating Common Belief

In this section, we will introduce common belief operator in two different
ways, which yields two different axiomatic systems, the completeness of these
systems will be given.

2.4.1 Common Belief in Pure Belief Version

A new operator Dk
G is added to the language LCS , we obtain the resulting

language LCDS . Dk
Gϕ denotes “it is common belief up to degree k among the

group G that ϕ”. Similarly, F k
Gϕ expresses “everyone in group G believes up

to degree k that ϕ”. i.e.
∧

j∈GB
k
j ϕ. We have the following formal definition:

Definition 2.4.1 Let M be a belief epistemic model, we have

M,w |= F k
Gϕ iff M,w |= Bk

j ϕ for all j ∈ G.

According to an intuition similar to that in common knowledge, Dk
Gϕ is

true, if everyone in G believes up to degree k that ϕ, everyone in G believes
up to degree k that that everyone in G believes up to degree k that ϕ, etc.
Similar abbreviations as in the preceding section are applicable. Let F 0,k

G ϕ

be an abbreviation for ϕ, and F n+1,k
G ϕ for F k

GF
n,k
G ϕ, and in particular,

F 1,k
G ϕ for F k

Gϕ. And we have the following definition:

Definition 2.4.2 Let M be a belief epistemic model, then

M,w |= Dk
Gϕ iff M,w |= F n,k

G ϕ for n = 1, 2, . . .

We also give the following useful definition:

Definition 2.4.3 v is G-B-reachable from w in m steps11(m ≥ 1) if
there exists a sequence of states, w0, w1, . . . , wm s.t. w0 = w and wm = v
and for all 0 ≤ i ≤ m − 1, (wi, wi+1) ∈ Bk

j for some j ∈ G . If for
some k ≥ 1, v is G-B-reachable from w in m steps, then we say v is
G-B-reachable from w.

Lemma 2.4.4 Let M be a belief epistemic model,

11B in G-B-reachable for ‘belief’.



30 CHAPTER 2. PLAUSIBILITY LOGIC

(1) M,w |= F n,k
G ϕ iff M, v |= ϕ for all v that are G-reachable from w in n

steps.

(2) M,w |= Dk
Gϕ iff M, v |= ϕ for all v that are G-B-reachable from w.

Proof Induction on n, it is straightforward to get (1), (2) follows from (1).

We now turn to a variation of the example in the previous section:

Example G = {1, 2, 3}, ϕ is common belief up to degree k among the
group G. Then we have:

Bk
1ϕ, B

k
2ϕ, B

k
3ϕ, B

k
1B

k
2ϕ, B

k
1B

k
3ϕ, B

k
1B

k
2B

k
3ϕ, etc.

Note that the plausibility of common belief is the same as that of the in-
dividual belief. Now we discuss the axiomatic system with common belief.
The following new axioms and rule are proposed to be added to the system
PLC

S
, we obtain the system PLCD

S
:

D1. F k
Gϕ↔

∧

j∈GB
k
j ϕ

D2. Dk
Gϕ↔ F k

G(ϕ ∧D
k
Gϕ) (Fixed-point Axiom)

RD1. From ` ϕ→ F k
G(ψ ∧ ϕ) infer ` ϕ→ Dk

Gψ (Induction Rule)

2.4.2 Common Belief defined with Common knowledge

Recall how we have just defined the notion of common belief up to degree
k. We state it again below to compare it with our new proposed definition:

Dk
Gϕ is true, if everyone in G believes up to degree k that ϕ,

everyone in G believes up to degree k that that everyone in G
believes up to degree k that ϕ, etc.

Note that we define common belief up to a degree k in a very similar way
that we define common knowledge, another point is that we only refer to
the belief operator. In this sense, we may say that the above definition is
in a pure belief version. We now propose alternative definition for common
belief, i.e. we define it with a knowledge operator and a belief operator:



2.4. INCORPORATING COMMON BELIEF 31

Dk
Gϕ is true, if everyone in G believes up to degree k that ϕ,

everyone in G knows that everyone in G believes up to degree k
that ϕ, etc.

In fact, we are talking about common belief up to degree k in term of belief
up to a degree and common knowledge. To make this clear, we look at the
above example again:

Example G = {1, 2, 3}, ϕ is common belief up to degree k among the
group G. This time we have the different formulas:

F k
Gϕ

12, K1F
k
Gϕ, K2F

k
Gϕ, K3F

k
Gϕ, K1K2F

k
Gϕ, etc.

This means ϕ is a common belief up to degree k among the group G if
everyone in G believes ϕ up to degree k, which is common knowledge in G.
So we have

Dk
Gϕ =: CGF

k
Gϕ.

Defining the common belief operator with a common knowledge and belief
operator is different from what we first proposed, where the common belief
operator Dk

G is a completely new operator, since the common belief operator
is in this variant only an abbreviation for CGF

k
G. Concerning the axiomatic

system, we will add the following axioms to the system PLC
S
, obtaining PLCD′

S
:

D1′. F k
Gϕ↔

∧

j∈GB
k
j ϕ

D2′. Dk
Gϕ↔ EG(ϕ ∧D

k
Gϕ) (Fixed-point Axiom)

RD1′. From ` ϕ→ F k
G(ψ ∧ ϕ) infer ` ϕ→ Dk

Gψ (Induction Rule)

Completeness The completeness proofs of these new systems with
common belief turn out to be easy to get. For the system PLCD

S
, the

completeness proof is very similar to the case of common knowledge. If
we look at the completeness proof for common knowledge, we only refer
to the transitive closure of the accessible relation, which exactly is what
we have according to the fixed point axiom for common belief. We are
not going to repeat it here. Another way to get its completeness proof
is induced by Aucher’s work on the relation between BMS-model and

12It abbreviates (Bk
1ϕ ∧Bk

2ϕ ∧Bk
3ϕ).



32 CHAPTER 2. PLAUSIBILITY LOGIC

belief epistemic model. The main idea is: first redefine the BMS-model
into a belief epistemic model, i.e. BMS belief epistemic model. Then it is
equivalent to our defined belief epistemic model, since we already have the
completeness of BMS update logic system, then it follows the completeness
of system PLCD

S
. For details, we refer to Aucher 2003.13 For the system

PLCD′

S
, its completeness proof is even straightforward, since Dk

G is only an
abbreviation for CGF

k
G, the completeness of PLCD′

S
follows directly from

that of the system PLC
S
.

In the just above sections, we have done some technical work to the system
PLS, presenting an improved completeness proof, extending it with the no-
tion of common knowledge and common belief. Most of such work is related
to the static aspect of the system. We have not considered the dynamic
aspect, the core of the plausibility logic: How does an agent change her
plausibility of belief in the update process? Aucher presented a rule for this
kind of calculation, the new plausibility comes from those of the previous
state and action. In the next section, we will propose a new updating rule
which allows for different types of agents.

2.5 Plausibility Updating

Plausibility Updating Rule Let w be the original state, a the action
happening in the state, their plausibilities are κj(w) and κ

∗
j (a) respectively.

To compute the plausibility of a new state κ′j(w, a) in an updated model M
× A, Aucher gave the following rule:

κ′j(w, a) = CutMax(κj(w) + κ∗j (a)− κ
w
j (ϕ)) (κ)

where ϕ = PREa, κ
w
j (ϕ) = min{κj(v) : v ∈ V (ϕ) and v ∼j w} and as we

know, CutMax is a technical device ensuring that the new κ-value fits in
the range of the κ scale of the new belief epistemic model (see definition in
section 2.1.). With the (κ) rule, one can calculate the plausibility of a new
state (w, a) from those of the previous state and action.

2.5.1 Motivating Observations

We now look at several scenarios and calculate the κ-value according to the
above (κ) rule.

13He did not introduce the notion of common belief there, but it is not hard to do.



2.5. PLAUSIBILITY UPDATING 33

Scenario 1 There are two worlds w and v that agent j cannot distinguish,
two actions a, b, with w and a the actual world and action respectively.
Let κj(w)=5, κj(v) = 0, κ∗j (a) = 0 and κ∗j (b) = 1. PREa = {w} and

PREb = {v}.
14

With the above rule, it is easy to get: κ
′

j(w, a) = 0, κ
′

j(v, b) = 1.

(w, a): 0                     (v, b): 1 

v: 0jw: 5  

b: 1a: 0

Since κwj (PREa) is the smallest κ-value inM among all worlds, in this case,
the precondition of the action only has one world, and we have:

κwj (PREa) = κj(w) and κ
v
j (PREb) = κj(v)

So, the (κ) rule collapses, we are actually calculating with the following rule

κ′j(w, a) = κ∗j (a).

In other words, in this case the agent just took the plausibility of the
previous action as that of the new state: in this way, she revised her belief.

Scenario 2 With the same conditions as that in scenario 1, except that
we set PREa = PREb = {w, v}. We have the following results described in
the picture:

(w, a): 5    (w, b): 6    (v, a): 0      (v, b): 1

  a: 0            b: 1      a: 0              b: 1

w: 5                    j                  v: 0

14For simplicity, we take the worlds where the action may happen as its precondition
instead of some formula in L.



34 CHAPTER 2. PLAUSIBILITY LOGIC

In Scenario 2, we take PREa = PREb = {w, v}. The intuition is: When an
agent dwells in indistinguishable worlds and considers possible actions, she
may think those actions probably happen in all her indistinguishable worlds
because her knowledge is the same everywhere in the indistinguishable
worlds. The following Scenarios are also based on this intuition. We take
both w and v as possible worlds in which actions a and b may take place,
and only change the κ value assigned to the states. The next scenario is
a special case, i.e. the agent gives the indistinguishable worlds the same
plausibility. Then we have the following scenario.

Scenario 3 The same as scenario 2, but with κ(v)=5. Then the results
are pictured as follows:

  a: 0            b: 1      a: 0              b: 1

w: 5                    j                  v: 5

(w, a): 0    (w, b): 1    (v, a): 0      (v, b): 1

This scenario is an extreme case, but the results are intuitively correct.
If the agent assigns the same plausibility to her indistinguishable worlds,
then the plausibility changes in the same way. This is shown exactly in the
above picture.

Scenario 4 The same as scenario 3, but with κ(v)=1. Then the results
are shown as follows:

  a: 0            b: 1      a: 0              b: 1

w: 5                    j                  v: 1

(w, a): 4    (w, b): 5    (v, a): 0      (v, b): 1

To compare how the different value of state v affects the results, we change
Scenario 4 into:

Scenario 5 The same as Scenario 4, but with κ(v)=3. Then the results
are shown as follows:



2.5. PLAUSIBILITY UPDATING 35

  a: 0            b: 1      a: 0              b: 1

w: 5                    j                  v: 3

(w, a): 2    (w, b): 3    (v, a): 0      (v, b): 1

Analyzing Scenario 2, 4 and 5, we have the following interesting phenomena:

• Given different plausibilities to indistinguishable states, for the more
plausible state, i.e. the state v the above scenarios, the agent in each
case has the same revision strategy: She just takes the plausibility of
the previous action as that of the new state. This is similar to what
happens in Scenario 1.

• For the less plausible state, i.e. the state w in the above scenarios, the
plausibility of the new state is produced in different ways:

- If there is a most plausible state among the indistinguishable
states, i.e.its κ value is 0, as shown in Scenario 2, then for the
less plausible state, w, the plausibility of the new state is just the
sum of that of the previous state and action because κvj (PREa) =
κvj (PREb) = 0. For instance, in Scenario 2, given the plausibility
of the state (κj(w)=5), after the action with plausibility 0(1), the
agent assigns the new state the plausibility 5(6).

- If there is no most plausible state, as in the Scenarios 4 and 5, for
the less plausible state, w, its new plausibility value is affected
by the value of the more plausible state, that is, when the agent
assigns a plausibility to the new state, the precondition of the
action plays a role in her estimation.

Furthermore, we have observed that there are several assumptions for the
(κ) rule that we will discuss now:

Firstly, as we observed, in the above revision process, the agent always
accepts the incoming information from an action, never rejects it. This is
what happens in AGM belief revision, the new information has priority. In
order to get the new information, agents even discard the old information
when some inconsistency occurs. So we can say that in fact the (κ) rule
is processing the revision in the sense of AGM. As we have seen, in some
cases the agent even takes the plausibility of the previous action as that



36 CHAPTER 2. PLAUSIBILITY LOGIC

of the new state. However, there is one possibility: If the agent does not
want to accept the incoming information or if she likes to accept it to some
extent (not completely), how will she react then? How does she change her
belief plausibilities? We often encounter such possibilities in real life.

Secondly, the (κ) rule assumes that different agents give the same weight to
the previous state and action. This is also the case in AGM belief revision,
or in classical belief revision theory: It was assumed that all the agents
react similarly when they are in the same situation. However, it is quite
possible that agents may behave differently, in particular, they may assign
different weights to the previous state and action: Some agents take the
previous state seriously, some attach importance to the previous action,
this kind of variety makes human behaviors diverse and more interesting.
How to describe such differences then?

Thirdly, the (κ) rule assumes that given the plausibility of the states and
actions, when the agent considers the plausibility of the action, she will
consider the preconditions of the actions. Does this fit with our intuition?
For instance, in the above Scenario 5, when the agent is in the world w (its
plausibility value is 5), when she thinks of two actions which she cannot
distinguish (giving them two plausibility values, 0 and 1.), what she will
think is just that if action with plausibility 0 happens at w, what is the new
plausibility after such a update then? The same question for the action
with plausibility 1. It is not clear to me how to incorporate the role of the
precondition into this consideration.

So we may say that Aucher’s (κ) rule is processing the revision in the sense
of AGM belief revision, that is, the agents give priority to all incoming
information, they behave in a similar manner, and they give equal weight
to the previous state and action. In the next section, we will present a new
plausibility updating rule based on our discussion above, trying to grasp all
these desirable intuitions, i.e. the various attitudes of the agents when they
encounter incoming information, and the different weight they give to the
previous state and action.

2.5.2 Variations: Diversity of Agents

In this section we will first propose a new plausibility updating rule . Then
we analyze the different cases induced by this rule because of the parameter



2.5. PLAUSIBILITY UPDATING 37

variations, to illustrate the diversity of agents and how they revise their
belief plausibility. Finally, we will explore the possibility of introducing
such diversity in plausibility logic.

New plausibility updating rule Let the weight that an agent j gives to
the state w be λ and the weight to the action a be µ. If κj(w) ≥ κ

∗
j (a), then

the plausibility of the new state (w, a) is calculated by the following rule :

κ
′

j(w, a) = κj(w)−
µ

λ+ µ
((κj(w)− κ

∗
j (a)) (\1).

Or expressed differently :

κ
′

j(w, a) = κ∗j (a) +
λ

λ+ µ
((κj(w)− κ

∗
j (a)) (\2).

We will see that these two variations yield the same results, only the
difference in λ and µ is essential.

By duality, if κ∗j (a) ≥ κj(w), then we can get the following rules:

κ
′

j(w, a) = κ∗j (a)−
λ

λ+ µ
((κ∗j (a)− κj(w)) (\3).

Or expressed differently :

κ
′

j(w, a) = κj(w) +
µ

λ+ µ
((κ∗j (a)− κj(w)) (\4).

In contrast to the (κ) rule, we drop the κ-value for the precondition; we
also discard the Cut function for reasons which we will explain later in
this section, and we add two parameters: λ and µ, to indicate the different
weights that agents give to the states and actions. By the different values
of these weights, we can distinguish different types of agents, some agents
are eager to change their original belief once some action happens, others
stick to their original belief and do not care about what has happened. The
above rule looks like the barycenter calculation formula,15 but not exactly,

15The barycenter is the center of mass of two or more bodies which are orbiting each
other, and is the point around which both of them orbit. The distance from the center of
a body to the barycenter in a simple two-body case can be calculated as follows:

rb = r2
m2

m1+m2

where rb is the distance from body 1 to the barycenter, r2 is the distance between the two
bodies, m1 is the mass of body 1, and m2 is the mass of body 2.
Actually our formula is not exactly the barycenter, but the inspiration comes from the
barycenter formula whose aim is to get the distance value from one object to the barycen-
ter. But we want to get the final κ value from the value of the state and action.



38 CHAPTER 2. PLAUSIBILITY LOGIC

since our aim here is to get the plausibility for the (w, a) from that of w and a.

Note that these fours rules above can be simplified as

κ
′

j(w, a) =
1

λ+ µ
(λκj(w) + µκ

∗
j (a)) (\).

But we prefer the slightly heavy ones in the following discussion in order
to show how the new plausibility is calculated from that of the previous
states and actions, in particular, what exact role the weight makes in such
calculations. However, our discussions in other context may refer to the
simplified version.

Thanks to the parameters, we will witness the distinctive behavior of
different types of agents. Let us look at the following cases:

Case 1: µ=0
Highly conservative agents Recall that µ is the weight the agent gives
to the action, µ=0 means the agent does not consider the effect of the action.
Putting it formally, the (\2) rule turns into

κ
′

j(w, a) = κj(w).

This means that the agent just takes the plausibility that she gives to
the previous state as that of the new state. She does not consider the
plausibility of the action at all. We may think that the agent throws away
the incoming information, insists on what she had already. In this sense,
we say the agent is highly conservative. And this also means that belief
revision is not successful for the highly conservative agent since she ignores
the new information after all.

Case 2: λ > µ
Conservative agents: λ > µ means agents gives greater weight to the
state than that to the action. To get a clear idea, we only look at the
following concrete example: Let λ=8, µ=2, κj(w)=5 and κ∗j (a)=1.

By (\1), we have the following calculation:

κ
′

j(w, a) = 5−
2

8 + 2
(5− 1) = 5− 0.8 = 4.2



2.5. PLAUSIBILITY UPDATING 39

By (\2), we get the same value as follows:

κ
′

j(w, a) = 1 +
8

8 + 2
(5− 1) = 1 + 3.2 = 4.2

From the assumption, we know that the agent gives a much greater weight to
the state (λ = 8) than that to the action (µ = 2), the result (κ

′

j(w, a) = 4.2)
is much closer to the plausibility of the state (κj(w) = 5) than that to the
plausibility of action (κ∗j (a) = 1): the distance of the former is 0.8, but the
latter is 3.2. This means the plausibility of the action has some, but only a
limited effect on the agent’s plausibility of the new state. In this sense, we
say these agents are conservative. To make this more perspicuous, we give
the picture below:

  0             a:1                         (w,a)  4.2       w:5

Plausibility Space

weight:2                                        weight:8

Where the arc line at the left (right) side denotes the plausibility of the
action a (the state w), the dotted arc line denotes the plausibility of new
state (w, a).

From the above pictures, we can easily see why the result we get by
(\1) is same as that by (\2). To reach the dotted arc line, we can start
from the arc line at the right side, which is what (\1) describes. Similarly,
we can also reach it from the arc line at the left side, which is what (\2) says.

Case 3: λ=0
Highly radical agents As we know, λ is the weight that an agent gives
to the previous state, λ=0 means that the agent does not consider the effect
from the state. Formally, the (\1) rule becomes

κ
′

j(w, a) = κ∗j (a).

This implies that the agent just takes the plausibility that she gives to the
action as the plausibility of new state. The plausibility of the previous state



40 CHAPTER 2. PLAUSIBILITY LOGIC

does not make any difference at all, in this sense, we say agent is highly
radical. Our calculation with (κ) rule in the scenario 1, the new plausibility
generated from the more plausible state, are of this kind: in such cases,
agents are highly radical. It is easy to see, belief revision is successful in
this case, the agent accepts the incoming information completely.

Case 4: λ < µ
Radical agents: Again, we consider a variation of the above example:
Let λ = 2, µ = 8, κj(w) = 5, κ∗j (a) = 1.

By (\1),

κ
′

j(w, a) = 5−
8

8 + 2
(5− 1) = 5− 3.2 = 1.8

By (\2),

κ
′

j(w, a) = 1 +
2

8 + 2
(5− 1) = 1 + 0.8 = 1.8

This time, the agent gives a much greater weight to the action (µ = 8) than
that to the state (λ = 2), the result (κ

′

j(w, a) = 1.8) is much closer to the
plausibility of the action (κ∗j (a) = 2) than that to the plausibility of state
(κj(w) = 5): the distance of the former is 0.8, but the latter is 3.2. Again,
this means the plausibility of the previous state has some, but a very limited
effect on the agent’s plausibility of the new state. In this sense, we say the
agents are more radical. Here is the picture again:

  

Plausibility Space

0       a:1        (w,a):1.8                     w:5

weight:8                                                         weight:2

Case 5: λ = µ
Middle of the road agents Besides conservative and radical agents,
there are some agents, who give the previous state and action the same
weight, they believe plausibility of states and action should play an equally
important role in determining the plausibility of the new state. In other



2.5. PLAUSIBILITY UPDATING 41

words, in this case we take λ = µ, obtaining the following rule:

κ
′

j(w, a) =
1

2
((κj(w) + κ∗j (a)).

Note: Considering the κ-ranking function, the only problem is that
we have to extend its range into non-ordinals, since quotients such as
µ

λ+µ produce non-ordinals. Considering our qualitative approach, this
minor change may not be so fundamental in this context. Now we
look back at Scenario 1 again with our new updating rule. We only
compare the following three cases: i.e. highly radical agents, Middle of
the road agents, highly conservative agents as shown in the following picture:

a: 0 b: 1

  w: 5 v: 0

(w, a): 0                     (v, b): 1 

j

b: 1

w: 5

(w, a): 2.5                (v, b): 0.5 

v: 0       w: 5            j                  v: 0

                b:1a: 0                a:0              

(w,a): 5                   (v,b): 0

j

Highly  conservative   Highly radical                          Middle of the road                                                         

As we have seen, the case of highly radical agents is exactly the same as
what we got by (κ) rule in the Scenario 1. From this comparison, it is very
clear how different agents update their belief plausibility. In the following
text, we will give some further facts that we observed and discuss their
intuitive consequences.

Fact 1 Let κj(w), κ
∗
j (a) and κ

′

j(w, a) express the plausibility value of
the previous state, the action after and the new state, as usual. Then the
following results hold :

If κj(w) ≤ κ
∗
j (a), then κj(w) ≤ κ

′

j(w, a) ≤ κ
∗
j (a).

If κ∗j (a) ≤ κj(w), then κ∗j (a) ≤ κ
′

j(w, a) ≤ κj(w).

We only look at the first result. For the part κj(w) ≤ κ
′

j(w, a), according
to the rule (\3), if κj(w) ≤ κ∗j (a), κ

∗
j (a) − κj(w) is a non-negative number.

Balanced with λ
λ+µ, it is still non-negative; subtracting it from κ∗j (a) makes

the final value, κ
′

j(w, a), less than κ∗j (a). Similarly, the rule (\4) will give

us the reason that the final value, κ
′

j(w, a), is greater than κj(w), i.e.



42 CHAPTER 2. PLAUSIBILITY LOGIC

κ
′

j(w, a) ≤ κ
∗
j (a). Actually it is much easier to understand the above results

with our given pictures.

Now we are going to give another explanation to the above Fact from a
new perspective: We assume that the plausibility of the action is somehow
related to the plausibility of previous state. There are two kinds of cases as
described below:

An action is negative with respect to the previous state if it provides
information undermining the belief in the previous state. An action is
positive to the previous state if it provides information verifying belief in it.

Put it in another way, if an action is negative, we take κj(w) ≤ κ∗j (a), and
if an action is positive, we take κ∗j (a) ≤ κj(w). Intuitively speaking, in the
former case, the plausibility of the new state should be greater than that
of the previous state. In the latter case, the plausibility of the new state
should be less than that of the previous state. This is exactly what we get
in the above Fact.

From the above Fact, another Fact follows.

Fact 2 Let κj(w), κ
∗
j (a) and κ

′

j(w, a) express the plausibility value of the
previous state, the action after and the new state, as usual. Then the fol-
lowing result holds:

κ
′

j(w, a) ≤ κ
∗
j (a) or κ

′

j(w, a) ≤ κj(w).

In other words, the plausibility of the new state is bounded by the plausi-
bility of either the previous state or the previous action. We need not do
the rescaling work, this helps explain why we do not use the Cut function
as in the (κ) rule.

Introducing diverse agents in plausibility logic We have seen five
types of agents and how they update their belief plausibility. We know
that when agents encounter new information, their behavior may be quite
different. Plausibility logic has not addressed such differences yet. How to
incorporate these into plausibility logic? The first thing we can do is to
replace the subscript j of the belief operator with different types of agents,



2.6. CONCLUSION 43

we can take the abbreviations hcj , hrj , rj , cj , mj to express the highly
conservative agent j, the highly radical agent j, the radical agent j, the
conservative agent j, the middle of the road agent j. Then Bk

hcj
ϕ expresses

“the highly conservative agent j believes ϕ up to degree k”. Bk
cj
ϕ expresses

“the conservative agent j believes ϕ up to degree k”. In this way, we are
able to express the properties of some specific agents. In fact, we divide the
group G of agents into different subgroups, each representing one kind of
agent. We can construct a logical system for each type of agent. This makes
it possible to study the properties of specific kinds of agent, to compare their
differences. Further research may even cover the interaction between such
different types of agents. Meanwhile, it may be easier to obtain reduction
axioms for each type of agent. For instance, for the highly conservative
agents, the reduction axiom seems to be:

[σi, ψ]B
m
hcj
ϕ↔

∧

{Bm
hcj

[σk, ψ]ϕ : σk ∼hcj σi}

We will leave these topics for future investigation.

2.6 Conclusion

In this chapter, our work is closely related to the logical system PL. We first
reviewed the basics of plausibility logic, the language and the semantics,
its full system, including its static part and its dynamic part. Then we
focused on the static plausibility logic PLS, and derived three theorems
in it, one of which results in an improved completeness proof. After
that, we extended the static plausibility logic with the notion of common
knowledge, and with the notion of common belief up to a degree in two
different ways. The completeness proofs for these extended system are also
given. Concerning dynamic changes of plausibility, based on our analysis
of Aucher’s plausibility update rule, we proposed a new parameterized
plausibility update rule. Thanks to the parameters, we can obtain different
rules for the following five types of agents: Highly radical agents, Radical
agents, Middle of the road agents, Highly conservative agents, Conservative
agents. We can see clearly how these different agents update their belief
plausibility in different ways.

However, this is just one perspective of seeing diversity in agents. As we
have seen in the Mosaic dialogue in the introduction, agents often forget



44 CHAPTER 2. PLAUSIBILITY LOGIC

things, they may have different memory capacities. This is really another
perspective that we will explore in the next chapter: Some agents have
perfect memory, so-called Perfect Recall agents, they remember everything
that happened, others have bounded memory and they just remember what
happened in the last k -steps. In particular, there are agents who only observe
the last-played action, so-called Memory-free agents. We will concentrate on
these two extreme cases: Perfect Recall agents and Memory-free agents, and
investigate how they update their information given their divergent memory
capacities, what is the precise difference between them. We will also explore
the idea that players with different memory abilities necessarily live together
in social settings.



Chapter 3

Diversity of Logical Agents

in Games

3.1 Varieties of Imperfection

Logical agents are usually taken to be epistemically perfect. But in real-
ity, imperfections are inevitable. Even the most logical reasoners may have
limited powers of observation of relevant events, generating uncertainty as
time proceeds. In addition, agents can have processing bounds on their
knowledge states, say, because of finite memory capacities. This note is a
brief exploration of how different types of agents can be described in logical
terms, and even co-exist inside the same logical system. Our motivating in-
terest in undertaking this study concerns games with imperfect information,
but our only technical results so far concern the introduction of imperfect
agents into current logics for information update and belief revision. For a
more complete discussion of the issues, refer to van Benthem 2001 and other
chapters of this thesis.

3.2 Imperfect Information Games and Dynamic-

epistemic Logic

Dynamic-epistemic language Games in extensive form are trees (S,
{Ra}a∈A), consisting of nodes for successive states of play, with players’
moves represented as binary transition relations between nodes. Imperfect
information is encoded by equivalence relations ∼i between nodes that

45



46 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

model uncertainties for player i. Nodes in these structures are naturally
described in a combined modal-epistemic language. An action modality
[a]ϕ is true at a node x when ϕ holds after every successful execution of
move a at x, and a knowledge modality Kiϕ is true at x when ϕ holds at
every node y ∼i x. As usual, we write 〈a〉, 〈i〉 for the existential duals of
these modalities. Such a language can describe many common scenarios.

Example Not knowing one’s winning move
In the following two-step game tree, player E does not know the initial move
that was played by A:

E E

c                 d                        c               d
WinA      WinE                   WinE      WinA

A
                          ba

                                                   E

The modal formula [a]〈d〉WinE ∧ [b]〈c〉WinE expresses the fact that E has
a winning strategy in this game, and at the root, she knows both conjuncts.
After A plays move b from the root, however, in the black intermediate
node, E knows merely ‘de dicto’ that playing either c or d is a winning
move, as is expressed by the joint modal-epistemic formula KE(〈c〉WinE
∨ 〈d〉WinE). But she does not know ‘de re’ of any specific move that it
guarantees a win: ¬KE〈c〉WinE ∧ ¬KE〈d〉WinE also holds. In contrast,
given the absence of dotted lines for A, whatever is true at any stage of
this game is known to A. In particular, at the black intermediate node, A
does know that c is a winning move for E. ¥

Remark Temporal Language
For some purposes, it is also useful to have converse relations a∪ for moves
a, looking back up into the tree. In particular, these help describe play so
far by mentioning the moves that have been played, while they also allow us
to look back and say what could have happened if play had gone differently.
Both are very natural things to say about the course of a game. This is a
simple temporal logic variant of the basic modal-epistemic language.

Strategies, plans, and programs Amodal-epistemic language describes
players’ moves and what they know about their step-by-step effects. Explicit
information about agents’ global behaviour can be formulated in a dynamic-



3.2. IMPERFECT INFORMATION GAMES AND DYNAMIC-EPISTEMIC LOGIC47

epistemic language, which adds complex program expressions. A strategy for
player i is a function from i ’s turns x in the game to possible moves at x,
while we might think of a plan as any relation constraining these choices,
though not always to a unique one. Such binary relations and functions can
be described using (i) single moves a, (ii) tests (ϕ)? on the truth of some
formula ϕ, combined using operations of (iii) union ∪, relational composition
;, and iteration *. In particular, these operations define the usual program
constructs IF THEN ELSE and WHILE DO. As for test conditions, in
this setting, it only makes sense to use ϕ which an agent knows to be true
or false. Without loss of generality, we can assume that such conditions
have the epistemic form Kiϕ. The resulting programs are called ‘knowledge
programs’ in Fagin, Halpern, Moses & Vardi 1995. Van Benthem 2001 proves
that in finite imperfect information games, the following two notions from
logic and game theory coincide:

(a) strategies that are defined by knowledge programs,

(b) uniform strategies, where players choose the same move at every two
nodes which they cannot distinguish.

Valid laws of reasoning about agents and plans Universally valid
principles of our language include the minimal modal or dynamic logic, plus
the epistemic logic matching the uncertainty relations – in our case, multi-
S5. Logics like this were used in Moore 1985 to study planning agents in
AI. Of course, here we are most interested in players’ changing knowledge
as a game proceeds. The language allows us to make these issues precise.
For instance, if a player is certain now that after some move ϕ is the case,
then after that move, is she certain that ϕ is the case? In other words, does
the following formula hold under all circumstances?

Ki[a]p → [a]Kip

The answer is negative for most of us. I know that I am boring after
drinking – but it does not follow (unfortunately) that after drinking, I
know that I am boring. The interchange axiom is only plausible for actions
without ‘epistemic side-effects’. And the converse implication can be
refuted similarly. In general, dynamic-epistemic logic has no significant
interaction axioms at all for knowledge and action. If such axioms hold,
this must be due to special features of the situation.



48 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

Example Games versus general dynamic-epistemic models
Imperfect information games themselves do satisfy a special axiom. The
tree structure is common knowledge, and players cannot be uncertain about
it. This is expressed by the following axiom – where M is the union of all
available moves m in the game, and m∪ is the converse relation of m:

〈i〉p → 〈(M ∪ M∪)*〉p #

The effect of # can be stated as a modal frame correspondence. Epistemi-
cally accessible worlds are reachable from the root via sequences of moves:

Fact # is true on a frame iff, for all s, t, if s ∼i t, then s(M ∪ M∪)* t.

Using this condition, every general model for a modal-epistemic language
can be unraveled to a tree of finite action sequences in the usual modal
fashion, with uncertainties ∼i between X, Y just in case last(X) ∼i last(Y).
The map from sequences X to worlds last(X) is then a bisimulation for the
whole combined language. ¥

Without this constraint, we get ‘misty games’ (cf. Hötte 2003), where
players need not know what their moves are or what sort of opponent
they are dealing with. This broader setting is quite realistic for planning
problems. We return to it at the end of this paper.

Axioms for perfect agents In the same correspondence style, the
above knowledge-action interchange law really describes a special type of
agent. To see this, we first observe that

Fact Ki[a]p → [a]Kip corresponds to the relational frame condition
that for all s, t, u, if sRat & t ∼i u, then there is a v with s ∼i v & vRau.

This condition says that new uncertainties for an agent are always grounded
in earlier ones. The equivalence can be proved, e.g., by appealing to the
Sahlqvist form of this axiom. Incidentally, this and further observations
about the import of axioms may be easier to understand using the equiva-
lent existential versions, here: 〈a〉〈i〉p → 〈i〉〈a〉p.



3.2. IMPERFECT INFORMATION GAMES AND DYNAMIC-EPISTEMIC LOGIC49

Precisely this relational condition was identified in van Benthem 2001 as a
natural version of players having Perfect Recall in the game-theoretic sense:
They know their own moves and also remember their past uncertainties
as they were at each stage. The actual analysis is slightly more complex
in the case of games. First, consider nodes where it is the player’s turn:
then Ki[a]p implies [a]Kip for the same action a. Perfect Recall does not
exclude, however, that moves by one player may be indistinguishable for
others, and hence at another player’s turn, Ki[a]p implies merely that
[b]Kip for some indistinguishable action b. But there are more versions of
perfect recall in game theory. Some allow players uncertainty about the
number of moves played by their opponents. Bonanno 2004 has an account
of such variants in essentially our correspondence style, now including a
temporal operator into the language.

Remark A similar analysis works for the converse dynamic-epistemic
axiom [a]Kip → Ki[a]p, whose frame truth demands a converse frame
condition of ‘No Learning’, stating essentially that current uncertainty links
remain under identical actions (cf. Fagin, Halpern, Moses & Vardi 1995).
We will encounter this principle in a modified form in Section 3.2.

Agents with Perfect Recall also show special behavior with respect to their
knowledge about complex plans, including their own strategies.

Fact Agents with Perfect Recall validate all dynamic-epistemic formulas
of the form Ki[σ]p → [σ]Kip, where σ is a knowledge program.

The proof is a straightforward induction on programs. For knowledge tests
(Kiϕ)?, we have Ki[(Kiϕ)?]p ↔ Ki(Kiϕ → p) in dynamic logic, and then
Ki(Kiϕ → p) ↔ (Kiϕ → Kip) in epistemic S5, and (Kiϕ → Kip) ↔
[(Kiϕ)?]Kip in dynamic logic. For the program operations of choice and
composition, the inductive steps are obvious, and program iteration may
be dealt with as repeated composition. ¥

This simple observation implies that an agent with Perfect Recall who
knows what a plan will achieve will also know about these effects halfway
through, when some part of his strategy has been played and only some
remains. Again, this is not true for all types of agent. This is only one of
many delicate issues that can be raised about players’ knowledge of their



50 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

strategies. Indeed, a knowledge statement about objects, like ‘knowing one’s
strategy’, has aspects that cannot be expressed in our formalism at all. We
leave this for further elaboration elsewhere.

Axioms for imperfect agents But there are other types of agents! At
the opposite of Perfect Recall, there are agents with bounded memory, who
can only remember a fixed number of previous events. Such players with
‘bounded rationality’ are modelled in game theory by restricting them to
strategies that can be implemented by some finite automaton (cf. Osborne
& Rubinstein 1994). Van Benthem 2001 considers the most drastic form
of memory restriction, to just the last event observed. These Memory-
free agents will be our guiding example of epistemic limitations in this paper.

In modal-epistemic terms, Memory-free agents satisfy a Memory Axiom:

〈a〉p →U[a]〈i〉p MF

This involves extending our language with a universal modality Uϕ stating
that ϕ holds in all worlds. The technical meaning of MF is as follows.

Claim The axiom MF corresponds to the structural frame condition
that, if sRat & uRav, then v ∼i t.

Thus, nodes where the same action has been performed are indistinguishable.
Reformulated in terms of knowledge, the axiom becomes 〈a〉Kip →U[a]p.
This says that the agent can only know things after an action which are true
wherever the action has been performed. Therefore, Memory-free agents
know very little indeed! We will study their behavior further in Section 3.4.
For now, we return to perfection.

3.3 Update for Perfect Agents

Imperfect information trees merely provide a static record of what uncer-
tainties players are supposed to have at various stages of a game. And then
we have to think of some plausible scenario which might have produced
these uncertainties. One general mechanism of this kind is provided by
update logics for actions with epistemic import. We briefly recall the basics



3.3. UPDATE FOR PERFECT AGENTS 51

(cf. Baltag, Moss & Solecki 1998).

Product update A general update step has two components:

(a) an epistemic model M of all relevant possible worlds with agents’
uncertainty relations indicated,

(b) an action model A of all relevant actions, again with agents’ uncer-
tainty relations between them.

Action models can have any pattern of uncertainty relations, just as in
epistemic models. This reflects agents’ limited powers of observation. E.g.,
in a card game, M might be the initial situation after the cards have been
dealt, while A contains all legal moves that players have. Some actions
are public and transparent to everyone, like throwing a card on the table.
Others, like drawing a new card from the stock, are only transparent to
the player who draws, while others cannot distinguish actions of drawing
different cards. But there is still one more element. Not every action needs
to be possible at each world. E.g., I can only draw the Ace of Hearts if it is
still in the stock on the table. Such restrictions are encoded by

(c) preconditions PREa for actions a,

which are supposed to be common knowledge among agents. In the simplest
case, these are formulated in the pure epistemic language describing facts
and agents’ (mutual) information about them. Now, the next epistemic
model M×A is computed as follows:

The domain is {(s, a) | s a world inM, a an action in A, (M, s) |= PREa}.
The new uncertainties satisfy (s, a) ∼i (t, b) iff both s ∼i t and a ∼i b.
A world (s, a) satisfies a propositional atom p iff s already did in M .

In particular, the actual world of the new model is the pair consisting
of the actual world in M and the actual action in A. The product rule
says that uncertainty among new states can only come from existing
uncertainty via indistinguishable actions. This simple mechanism covers
surprisingly many forms of epistemic update. Baltag, Moss & Solecki 1998,
van Benthem 2003, and many other recent publications provide introduc-
tions to update logics and the many open questions one can ask about them.



52 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

The same perspective may now be applied to imperfect information games,
where successive levels correspond to successive repetitions of the sequence

M , M×A, (M×A)×A, ...

The result is an obvious tree-like model Tree(M , A), which may be infinite.

Example Propagating uncertainty along a game
The following illustration is from van Benthem 2001. Suppose we are given a
game tree with admissible moves (preconditions will be clear immediately).
Let the moves come with epistemic uncertainties encoded in an action model:

2

                    1                                                                 

                                        2                        2

             1           1           1            1                        1      

  

Game Tree

a
b

c

d            e            e            f                         f
a b c

d e f

Action Model

2

1

Then the imperfect information game can be computed with levels as follows:

2

1                    2

stage 1

stage 2

stage 3 ¥

Now enrich the modal-epistemic language with a dynamic operator

M, s|= 〈A, a〉ϕ iff (M, s) × (A, a) |= ϕ

Then valid principles express how knowledge is related before and after an
action. In particular, we have this key reduction axiom:

〈A, a〉〈i〉ϕ↔ (PREa ∧
∨

{〈i〉〈A, b〉ϕ: a ∼i b for some b in A})



3.3. UPDATE FOR PERFECT AGENTS 53

Such laws simplify reasoning about action and planning: We can reduce
epistemic properties of later stages to epistemic information about the
current stage. From left to right, this axiom is the earlier Perfect Recall,
but now with a twist compared with earlier formulations. If an agent
cannot distinguish certain actions from the actual one, then those may
show up in his epistemic alternatives. The opposite direction from right to
left is the No Learning principle. But it does not say that agents can never
learn, only that no learning is possible for them among indistinguishable
situations by using actions that they cannot distinguish.

The preceding logical observations show that product update is geared to-
ward special agents, viz. those with Perfect Recall. The fact that the re-
duction axiom is valid shows that perfect memory must have been built into
the very definition. And it is easy to see how. The two clauses in defining
the new relation (s, a) ∼i (t, b) give equal weight to

(a) s ∼i t : past states representing the ‘memory component’,

(b) a ∼i b: options for the newly observed event.

Changes in this mechanism will produce other ‘product agents’ by assigning
different weights to these two factors (see Section 3.5). But first, we
determine the essence of product update from the general perspective of
Section 3.2. The following result improves a theorem in van Benthem 2001.

Abstract characterization of product update Consider a tree-like
structure E with possible events (or actions) and uncertainty relations
among its nodes, which can also verify atomic propositions p, q, ... The
only contrast with a real tree is that we allow a bottom level with multiple
roots. Nodes X, Y, ... are at the same time finite sequences of events,
and the symbol ∩ expresses concatenation of events. Intuitively, we think
of such a tree structure E as the possible evolutions of some process –
for instance, a game. A particular case is the above model Tree(M , A)
starting from an initial epistemic model M and an action model A, and
repeating product updates forever. Now, the preceding discussion shows
that the following two principles are valid in Tree(M, A), which can be
stated as general properties of a tree E . They represent Perfect Recall and
‘Uniform No Learning’, respectively:



54 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

PR If X∩(a) ∼iY, then ∃b ∃Z: Y = Z∩(b) & X ∼i Z.

UNL If X∩(a) ∼i Y
∩(b), then ∀U, V: if U ∼iV, then U

∩(a) ∼i V
∩(b),

provided that U∩(a), V ∩(b) both occur in the tree E .

Moreover, the special nature of the preconditions in product update, as
definable conditions inside the current epistemic model, validates one more
abstract constraint on the tree E :

BIS-INV The set {X | X∩(a) ∈ E} of nodes where action a can be per-
formed is closed under purely epistemic bisimulations of nodes.

Now we have all we need to prove a converse representation result.

Theorem For any tree E , the following are equivalent:

(a) E ∼= Tree(M , A) for some M, A

(b) E satisfies PR, UNL, BIS-INV

Proof From (a) to (b) is the above observation. Now, from (b) to (a).
Define an epistemic model M as the set of initial points in E and copy
the relations ∼i from E . The action model A contains all possible actions
occurring in the tree, where we set

a ∼i b iff ∃X ∃Y: X∩(a) ∼i Y
∩(b)

We also need to know that the preconditions PREa for actions a are as
required. For this, we use the well-known fact that in any epistemic model,
any set of worlds that is closed under epistemic bisimulations must have
a definition in the epistemic language – though admittedly, one allowing
infinite conjunctions and disjunctions. The abstract setting of our result
allows no further finitization of this definability.

Now, the obvious identity map F sends nodes X of E to corresponding states
in the model Tree (M ,A). First, we observe the following fact about E itself:

Lemma If X∼iY, then length(X) = length(Y).



3.3. UPDATE FOR PERFECT AGENTS 55

Proof If X, Y are initial points in E , both their lengths are 0. Otherwise,
let X have length n+1. By PR, X ’s initial segment of length n stands in
the relation ∼i to a proper initial segment of Y whose length is that of
Y minus 1. Repeating this observation peels off both sequences to initial
points after the same number of steps.

Claim X ∼i Y holds in E iff F(X) ∼i F(Y) holds in Tree(M , A).

The proof is by induction on the common length of the two sequences X,
Y. The case of initial points is clear by the definition of M. As for the
inductive steps, consider first the direction ⇒. If U∩(a) ∼iV, then by PR,
∃b ∃Z: V = Z∩(b) & U ∼i Z. By the inductive hypothesis, we have F(U)
∼i F(Z). We also have a ∼i b by the definition of A. Moreover, given that
the sequences U∩(a), Z∩(b) both belong to E , their preconditions as listed
in A are satisfied. Therefore, in Tree(M , A), by the definition of product
update, (F(U), a) ∼i (F(Z), b), i.e. F(U

∩(a)) ∼i F(Z
∩(b)).

As for the direction ⇐, suppose that in Tree(M , A) we have (F(U), a) ∼i
(F(Z), b). Then by the definition of product update, F(U) ∼i F(Z) and a
∼i b. By the inductive hypothesis, from F(U) ∼i F(Z) we get U ∼i Z in
E(*). Also, by the given definition of a ∼i b in the action model A, we have
∃X ∃Y: X∩(a) ∼i Y

∩(b)(**). Taking (*) and (**) together, by UNL we
get U∩(a) ∼i Z

∩(b), provided that U∩(a), V ∩(b) ∈ E . But this is so since
the preconditions PREa, PREb of the actions a, b were satisfied at F(U),
F(Z). This means these epistemic formulas must also have been true at U,
V – so, given what PREa, PREb defined, U

∩(a), V ∩(b) exist in the tree E .¥

This result is only one of a kind, and its assumptions may be overly re-
strictive. In many game scenarios, preconditions for actions are not purely
epistemic, but rather depend on what happens over time. E.g., a game may
have initial factual announcements – like the Father’s saying that at least
one child is dirty in the puzzle of the Muddy Children. These are not re-
peated, even though their preconditions still hold at later stages. Describing
this requires preconditions PREa for actions a that refer to the temporal
structure of the tree E , and then the above invariance for purely epistemic
bisimulations would fail. Another strong assumption is our use of a sin-
gle action model A that gets repeated all the time in levels M, (M×A),
(M×A)×A, ... to produce the structure Tree(M, A). A more local per-
spective would allow different action models A1,A2, ... in stepping from



56 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

one tree level to another. And an even more finely-grained view arises if
single moves in a game themselves can be complex action models. In the
rest of this paper, for convenience, we stick to the single-model view.

3.4 Update Logic for Bounded Agents

Limitations on information processing The information-processing
capacity of agents may be bounded in various ways. One of these is
‘external’: Agents may have restricted powers of observation. This kind of
restriction is built into the definition of action models, with uncertainties
for agents – and the product update mechanism of Section 3.2 reflects this.
Another type of restriction is ‘internal’: Agents may have bounded memory.
Agents with Perfect Recall had limited powers of observation but perfect
memory. At the opposite extreme we find Memory-free agents which can
only observe the last event, without maintaining any record of what went
on before. In this section, we explore this extreme case.

Characterizing types of agent In the preceding, agents with Perfect
Recall have been described in various ways. Our general setting was the
tree E of event sequences, where different types of agents i correspond to
different types of uncertainty relation ∼i. One approach was via struc-
tural conditions on such relations, such as PR, UNL, and BIS-INV in the
above characterization theorem. Essentially, these three constraints say that

X ∼i Y iff length(X) = length(Y) and X(s) ∼i Y(s) for all positions s

Next, these conditions also validated corresponding axioms in the dynamic-
epistemic language that govern typical reasoning about the relevant type
of agent. But thirdly, we also think of agents as a sort of processing
mechanism. Intuitively, an agent with Perfect Recall is a push-down store
automaton maintaining a stack of all past events and continually adding
new observations. Such a processing mechanism was provided by our
representation theorem, viz. epistemic product update.

Bounded memory Another broad class of agents arises by assuming
bounded memory up to some fixed finite number k of positions. In general
trees E , this makes two event sequences X, Y ∼i-equivalent for such agents



3.4. UPDATE LOGIC FOR BOUNDED AGENTS 57

i iff their last k positions are ∼i-equivalent. In this section we only consider
the most extreme case of this, viz. Memory-free agents i :

X ∼i Y iff last(X) ∼i last(Y) or X = Y = the empty sequence $

Agents of this sort only respond to the last-observed event. In particular,
their uncertainty relations can now cross between different levels of a game
tree: They need not know how many moves have been played. Perhaps
contrary to appearances, such limited agents can be quite useful. Examples
are Tit-for-Tat players in the iterated Prisoner’s Dilemma which merely
repeat their opponents’ last move (Axelrod 1984), or Copy-Cat players
in game semantics for linear logic which can win ‘parallel disjunctions’
of games G ∨ Gd (Abramsky 1996). Incidentally, these are players with
a hard-wired strategy : a point that we will discuss below. It is easy to
characterize such agents in terms similar to what we did with Perfect Recall.

Fact An equivalence relation ∼i on E is Memory-free in the sense of $
if and only if the following two conditions are satisfied:

PR− If X∩(a) ∼i Y, then ∃b ∼i a ∃Z: Y = Z∩(b).

UNL+ If X∩(a) ∼i Y
∩(b), then ∀U, V: U∩(a) ∼i V

∩(b), provided
that U∩(a), V ∩(b) both occur in the tree E .

Proof If an agent i is Memory-free, its relation ∼i evidently satisfies PR−

and UNL+. Conversely, suppose that these conditions hold. If X ∼i Y,
then either X, Y are both the empty sequence, and we are done, or, say,
X = Z(a). Then by PR−, Y = U(b) for some b ∼i a, and so last(X) ∼i
last(Y). Conversely, the reflexivity of ∼i plus UNL+ imply that, if the
right-hand side of the equivalence $ holds, then X ∼i Y. ¥

It is also easy to give a characteristic modal-epistemic axiom for this case.
First, set

a ∼i b iff ∃X ∃Y : X∩(a) ∼i Y
∩(b)

Fact The following equivalence is valid for Memory-free agents:

〈a〉〈i〉ϕ ↔ (PREa & E
∨

b∼ia
〈b〉ϕ)



58 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

Here Eϕ is an additional existential modality saying that ϕ holds in at
least one node. This axiom looks at first glance like the Perfect Recall
axiom of Section 3.3, but note that there is no epistemic modality 〈i〉 on
the right-hand side of the equivalence. Also, this new axiom implies axiom
MF from Section 3.2, assuming that basic actions are partial functions.

Remark Reduction axioms for an existential modality
Once the static description language gets extended, to restore the harmony
of an update logic, one should also extend the dynamic update reduction
axioms with a clause for the new operator. E.g., returning to Section 3.3,
the following reduction axiom is valid for standard product update:

〈A, a〉Eϕ ↔ (PREa ∧ E
∨

〈A, b〉ϕ for some b in A)

The process mechanism: finite automata The processor of Memory-
free agents is a very simple finite automaton creating their correct ∼i links:

States of the automaton: all equivalence classes X∼i

Transitions for actions a: X∼i goes to (X∩(a))∼i

There are only finitely many states since we had only finitely many actions
in the tree E . The transitions are well-defined, since by the No Learning
assumption UNL+, if X ∼i Y, then X

∩(a) ∼i Y
∩(a). The automaton starts

in the equivalence class of the empty event sequence. Repeating transitions,
it is then easy to see that

When the automaton is given the successive members of an event
sequence X as input, it ends in state X∼i

In particular, X ∼i Y iff the automaton ends in the same state on both of
these event sequences. Moreover, the combination of the conditions UNL+

and PR− on Memory-free agents tells us something about the special type
of automaton that suffices:

All transitions a end in the same state (as X∩(a) ∼i Y
∩(a) for

all X, Y ), and by PR−, no transition ends in the initial state.

Let us call such automata rigid. They only have states for the last-observed
event, and such states will even coincide when the events are not epistemi-
cally distinguishable for the agent.



3.4. UPDATE LOGIC FOR BOUNDED AGENTS 59

Fact Memory-free agents are exactly those whose uncertainty relation
is generated by a rigid finite-state automaton.

Of course, more complex finite automata can have more differentiated
responses to observed events a, up to some fixed finite number of cases.

Remark Automata theory
Connections with automata theory, in particular the Nerode representation
of finite automata recognizing regular sets of event sequences, are found in
van Benthem & ten Cate 2003. Also, the above framework can be extended
with more general preconditions for game actions referring to time, by
generalizing to the action/test automata used for propositional dynamic
logic in Harel, Kozen & Tiuryn 2000.

Strategies and automata The preceding automata for bounded agents
are reaction devices to incoming observations. But it is also tempting to
think of automata as generators of behaviour – in particular, as specific
strategies. The latter view is more in line with the usual treatment of our
motivating examples, like Tit-for-Tat or Copy-Cat. A strategy for player
i in a game is a function assigning moves to turns for i, these moves are
responses to other players’ actions. This is easily visualized in game trees
E . E.g., player E ’s winning strategy in the game of Section 3.2 looks as
follows:

EE E
c

 

a                 b

A

           d           c                d

WinA      WinE      WinE      WinA

                       

But the reflection in finite automata will be a little different then, as
players do not respond to a last action if played by themselves (these are
‘non-events’ for the purpose of a strategy). Thus, the usual automaton for
Tit-for-Tat encodes actions by the agent itself as states, while actions by
the opponent are the true observed events:



60 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

  defect

defect

cooperate

cooperate

   cooperate defect

We do not undertake an integration of the two sorts of finite automata here.
Either way, the simplicity of such automata for agents and their strategies
may also be seen by considering the special syntactic form of Memory-free
strategies as simple knowledge programs in the dynamic-epistemic language.

This concludes our discussion of Memory-free agents per se. To highlight
them even more, we add a few contrasts with agents with Perfect Recall.

Differences in what agents know Memory-free agents i know less
than agents with Perfect Recall. The reason is that their equivalence classes
for ∼i tend to be larger. E.g., Tit-for-Tat only knows she is in two of
the four possible matrix squares (cooperate, cooperate) or (defect, defect).
But amongst many other failures, she does not know the accumulated
score at the current stage. It is also tempting to say that Memory-free
agents can only run very simplistic strategies. But this is not quite right,
since any knowledge program makes sense for all agents. The point is just
that certain knowledge conditions will evaluate differently for both. E.g.,
a Perfect Recall agent may be able to act on conditions like “action a
has occurred twice so far”, which a Memory-free agent can never execute,
since she can never know that the condition holds. Thus the difference is
rather in the number of non-equivalent available uniform strategies and the
successful behaviour guaranteed by these.

Example How Memory-free agents may suffer
Consider the following game tree for an agent A with perfect information,
and a Memory-free agent E who only observes the last move.

A                        E                        A                        E          

b                         d                         b                        d

a                           c                       a                         c

E

 #                                                   *



3.4. UPDATE LOGIC FOR BOUNDED AGENTS 61

Suppose that outcome # is a bad thing, and ∗ a good thing for E. Then the
desirable strategy “play d only after you have seen two a’s” is unavailable
to E – while it is available to a player with Perfect Recall. ¥

Another difference between Perfect Recall agents and Memory-free agents
has to do with what they know about their strategies. We saw that an agent
with Perfect Recall for atomic actions also satisfies the key implication

Ki[σ]p → [σ]Kip, when σ is any complex knowledge program.

By contrast, the MF Memory Axiom

〈a〉p →U[a]〈i〉p

does not ‘lift’ to arbitrary knowledge programs instead of the single action
a. To see this, it suffices to look at the case of a choice program a∪b. Our
eventual reduction version

〈a〉〈i〉ϕ ↔ (PREa & E
∨

b∼ia
〈b〉ϕ)

is a bit harder to generalize at all, because we would first have to analyze
what it means to be indistinguishable from a complex action.

Memory and time A good way of making differences between agents
more explicit is the introduction of a richer language. So far, we have
mostly looked at a purely epistemic language for preconditions and an
epistemic language with forward action modalities for describing updates
or general moves through a game tree. With such a language, some of the
intuitive distinctions that we want to make between different agents cannot
be expressed. E.g., suppose that there is just one initial world s and one
action, the identity Id, which always succeeds:

s (s, Id) ((s, Id), Id) ...

Thus, each horizontal level contains just one world. In this model, the uncer-
tainty lines for Perfect Recall agents and Memory-free agents are different.
The latter see all worlds ending in Id as indistinguishable, whereas product
update for the former makes all worlds different. Nevertheless, agents know
exactly the same purely epistemic statements in each world. The technical
reason is that all states are epistemically bisimilar, and composing the



62 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

uncertainty lines for a player with bisimulation links makes no difference
to what she knows. But intuitively, the Perfect Recall player should know
how many actions have occurred, since her uncertainties did not cross
levels. Now, if we want to let agents know explicit statements about where
they are in the game, we can add the backward-looking converse action
modalities mentioned in Section 3.2. Then an agent knows, e.g., that two
moves have been played if it knows that two consecutive converse actions
are possible, but not three. Thus, a temporal dynamic-epistemic language
is more true to what we would want to say intuitively about players and
their differences. Moreover, this language can also express more complex
preconditions for actions, resulting in the definability of a much broader
range of strategies (cf. Rodenhauser 2001).

Remark Backward-looking update
A backward-looking temporal language also enriches update logic. Our re-
duction axioms so far were forward-looking analysis of preconditions, reduc-
ing what agents know after an action has taken place to what they knew
before. What about converse reduction axioms of the form, say:

〈a∪〉〈i〉ϕ ↔ (PREa∪ & E
∨

b∪∼ia∪
〈b∪〉ϕ)?

These are related to postconditions for actions a: The strongest that we
can say when a was performed in a world satisfying ϕ is that 〈a∪〉ϕ must
hold. Such postconditions are known to be impossible to define, even
for simple public announcements, in the open-ended total universe of all
epistemic models. But things are more controlled in our trees E which fix
the previous history for any current world. In that case, we can convert at
least earlier full commutativity axioms like the interchange of 〈a〉〈i〉 and
〈i〉〈a〉 to backward-looking versions.

A final caveat This discussion has been somewhat impressionistic. In
particular, it is easy to over-interpret our formal models in terms of ‘knowl-
edge talk’. At any given state, the bare fact is that an agent i has the set of
all its ∼i alternatives. Depending on how we describe that set, we attribute
various forms of knowledge to the agent. But most of these are just correla-
tions – like when we say that Tit-for-Tat knows that it is in a ‘cooperative’
state. Such a description need not correspond to any representational atti-
tude inside the agent. This mismatch is a limitation of epistemic logic in
general, and over-interpretation occurs just as well for agents with Perfect



3.5. SPECTRA OF AGENTS: MODULATING PRODUCT UPDATE 63

Recall. These are triggered by possibly complex ‘horizontal’ knowledge con-
ditions Kϕ referring to the current tree level in structures like E or Tree(M,
A). But we, as outside observers, may identify these as equivalent to simple
assertions about the past of the process, such as “action a has occurred
twice”. And even when we use the above richer temporal language, this still
need not imply matching richer representations inside the agent.

3.5 Spectra of Agents: Modulating Product Up-

date

Toward a spectrum of options Perfect Recall agents and Memory-free
agents are two extremes with room in the middle. Using the automata
of Section 3.4, one might define update for progressively better informed
k -bit agents having k memory cells, creating much great diversity. By
contrast, agents with Perfect Recall seemed the natural children of product
update. But even here there is room for alternative stipulations! The follow-
ing type of agent is closely related to the Memory-free ones discussed before.

Forgetful updaters As we saw in Section 3.3, product update for new
uncertainties mixed a memory factor (viz. uncertainty between old states)
and an observation factor (viz. uncertainty between actions). Agents might
weigh these differently. A Memory-free agent, by necessity, gives weight 0
to the past. If updating agents only remember their last action, how do
they update their information? Here is a simple new definition. We drop
the memory factor when defining product models M×A, and set:

(x, a) ∼i (y, b) iff a ∼i b !

Thus, new uncertainty comes only from uncertainty about observed actions.
Just as before, this leads to a valid reduction axiom:

Fact The following equivalence is valid with forgetful update:

〈A, a〉〈i〉ϕ ↔ (PREa ∧ E
∨

〈A, b〉ϕ: a ∼ib for some b in A)

As before, to restore the harmony of the complete system, we also need a
reduction axiom for the new modality E, which turns out to be



64 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

〈A, a〉Eϕ ↔ (PREa ∧ E
∨

〈A, b〉ϕ for some b in A)

And it is also possible to give an abstract characterization of forgetful
updaters by modifying the main theorem of Section 3.3.

In the original version of this paper, it was suggested that forgetful updaters
are precisely the Memory-free agents of Section 3.4. But as was pointed out
by Josh Snyder (personal communication), this seems wrong. Consider the
following scenario. A forgetful updater is uncertain between world s with p
and world t with ¬p. There are two possible actions:

a with precondition: p ∧ ¬Kp
b with precondition: Kp ∨ (¬p ∧ ¬K¬p)

Let the actual actions be a, b in that order. Then the successive product
updates for forgetful updaters are

(i) from {s, t} to {(s, a), (t, b)}, without an uncertainty link, so the agent
knows that p in the actual world (s, a), whereas he knows that ¬p in
the unrelated world (t, b)

(ii) from {(s, a), (t, b)} to {((s, a), b)}, since neither a nor b can be
performed in (t, b).

But in that final model, the agent still knows that p, even though a
Memory-free agent would not know p because she would be uncertain
between ((s, a), b) and (t, b). Snyder 2004 has a solution for this by
modifying product update so as to keep all worlds around, whether or
not preconditions of actions are satisfied, while redefining uncertainty
relations in some appropriate fashion. Another option might be the addi-
tion of suitable ‘copy actions’ that keep earlier sequences alive at later levels.

The upshot of this discussion is that forgetful updaters are not the same as
our earlier Memory-free agents, although they are close. In the remainder
of this section, we mention some other modulations on product update that
create different types of agents.

Probabilistic modulations Letting agents give different weights to
memory and observation in computing a new information state is an idea



3.5. SPECTRA OF AGENTS: MODULATING PRODUCT UPDATE 65

from a well-known tradition preceding modern update logics, viz. inductive
logic and Bayesian statistics. Different agents or ‘inductive methods’ differ
in the weight they put on experience versus observation. To implement
this perspective in update logics, we need a probabilistic version of product
update, as defined in van Benthem 2003.

Belief revision and plausibility update But staying closer to our qual-
itative setting, we can also give another natural example of diversity with a
numerical flavour. In the theory of belief revision, it has long been recognized
that agents may obey different rules, more conservative or more radical,
when incorporating new information. Such rules are different options for
computing new states on the basis of incoming evidence. Such diversity
will even arise for agents with epistemic Perfect Recall, as we will now show.

In general, information update is a different mechanism from belief revision,
but the two viewpoints can be merged. Aucher 2003 adds a function κ to
epistemic models M and action models A which assigns plausibility values
to states and actions. Here κi(v) > κi(w) means that agent i believes that
world w is more plausible than world v. This allows us to define degrees of
belief in a proposition as truth in all worlds up to a certain plausibility:

M, s |= Bk
i ϕ iff M, t |= ϕ for all worlds t ∼i s with κ(t)≤ k.

Incidentally, we can also define Bk
i ϕ as Ki(p

k
i → ϕ), provided we add

suitable propositional constants pki to the language (cf. Appendix A).

Next, plausibilities of actions indicate what an agent believes about what
most likely took place. Computing the plausibility of a new state (w, a) in a
product model M×A requires some intuitive rule. Aucher himself proposes
an ‘addition formula’ for κ-values, subtracting a ‘correction factor’:

κ′j(w, a) = CutM (κj(w) + κ∗j (a)− κ
w
j (PREa))

Here Cut is a technical ‘rescaling’ device, and the correction κwj (PREa) is
the smallest κ-value in M among all worlds v ∼i w satisfying PREa.

A continuum of revision rules In our current perspective, we see this
stipulation not as the unique update rule for plausibility but as a choice



66 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

for a particular type of agent. Aucher’s formula makes an agent ‘eager’ in
the following sense: The factor for the last-observed action weighs just as
heavily as that for the previous state, even though the latter might encode
a long history of earlier beliefs. But we can easily create further diversity
by changing the above formula into one with parameters λ and µ:

κ
′

j(w, a) =
1

λ+ µ
(λκj(w) + µκ

∗
j (a))

By changing values of λ and µ, we can distinguish many different types of
agents. For details, cf. Section 2.5.

Remark Belief revision by bounded agents
It is also possible to use ideas from Section 3.3, and consider belief revising
agents with bounded memory. For a more extensive study of belief revi-
sion by agents with bounded resources, cf. the dissertation Wasserman 2000.

Coming to terms with belief revision, in addition to information update, is
natural – also from our motivating viewpoint of games. After all, players of
a game surely do not just update on the basis of observed past moves. They
also revise their expectations about future actions of opponents. Further
examples of this will arise in our final sections.

3.6 Mixing Different Types of Agents

So far, we have looked at agent types separately. But agents live in
groups, whose members may have different types. Turing machines
might communicate with finite automata, and humans occasionally meet
Turing machines, like their computers, or finite automata, like very stupid
people. What makes groups of agents most interesting is that they interact.
In this setting, a host of new questions arises – of which we discuss just a few.

Uncertainty and exploitation Do different types of agents know each
other’s type? There is an issue of definition first. What does it mean to
know the type of another agent? One could think of this, e.g., as knowing
that the agent satisfies all axioms for its type, as formulated in Sections 3.2,
3.3 and 3.4. But then, in imperfect information games, or the more general
trees E studied above, the types of all agents are common knowledge,
because these axioms hold everywhere in the tree. Introducing ignorance of



3.6. MIXING DIFFERENT TYPES OF AGENTS 67

types requires more complex structures in the sense of Hötte 2003. Suppose
that agent A does not know if his opponent is a Memory-free agent or not.
Then we need disjoint unions of game trees with uncertainty links between
them. Indeed, this extension already arises when we assume that some agent
i does not know the precise uncertainties of its opponent between i ’s actions.

Example Ignorance of the opponent type
The following situation is a simple variant of the example in Section 3.2.

E                        EE

WinA      WinE    WinE      WinA

 A                                                    A

a                b                                      a              b

                  E                                 E

 c 

WinA      WinE      WinE      WinA

A

                d           c               d        c                 d         c                d

At the start of the game, agent A does not know whether E has limited
powers of observation or not. In particular, note that the earlier axiom
〈A〉p → 〈(M ∪ M∪)*〉p for imperfect information games fails here. The
’second root’ toward the right is an epistemic alternative for A, but it is
not reachable by any sequence of moves. ¥

Can an agent take advantage of knowing another agent’s type? Of course.
It would be tedious to give overly formal examples of this, since we all know
this phenomenon in practice. Suppose that I know that after returning
a serve of mine, you always step toward the middle of the court. Then
passing you all the time along the outer line is a simple winning strategy. A
more dramatic scenario of this sort occurs in the recent movie “Memento”
about a man who has lost his long-term memory and has fallen into the
hands of unscrupulous cops and women. But must a Memory-free agent do
badly against a more sophisticated epistemic agent? That depends on the
setting. E.g., Memory-free Tit-for-Tat managed to win against much more
sophisticated computer programs (Axelrod 1984). But even this does not
do justice to the complexity of interaction!

Learning and revision over time In practice, we need not know the
types of other agents and may have to learn them. Such learning mecha-
nisms are themselves a further source of interesting epistemic diversity, as is



68 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

pointed out in Hendricks 2003. In general, there is no guarantee at all that
a learning method will reveal the type of an opponent. Evidently, observing
a finite number of moves can never tell us for certain whether we are playing
against an agent with Perfect Recall or against a finite-state automaton
with a large finite memory beyond the current number of rounds played so
far. But there is a weaker sense of learning that may be more relevant here.
We may enter a game with certain hypotheses about the agents that we are
playing against. And such hypotheses can be updated by observations that
we make as time goes by. E.g., I can refute the hypothesis that you are a
Memory-free agent by observing different responses to the same move of
mine at different stages of the game. Or, I can have the justified hypothesis
that you are Memory-free, and one observed response to a move of mine
then reveals a part of your fixed strategy.

Two kinds of update? Intuitively, the game situations just described go
beyond the information and plausibility update of Sections 3, 4, 5. But to
arrive at a more definite verdict, one has to separate concerns. The above
questions involve many general issues about update that arise even without
diversity of agents. For instance, learning about one’s opponent’s type
is akin to the well-known question of learning one’s opponent’s strategy.
Types may be viewed as sets of strategies, so learning the type amounts to
some useful intermediate reduction in the strategic form of the game. We
illustrate a few issues here in a concrete scenario.

Example Finding out about types and strategies
Consider the following game of perfect information. Suppose that A knows
that E is Memory-free: What does it take him then to find out which
particular strategy E is running?

A                        E                        A                        E          

a                         d                         a                        d

b                         c                         b                        c

This scenario illustrates the danger in discussing these matters. For, if A
knows that E is Memory-free, the latter fact is true, and hence, at her
second turn, E can never play d, since she has already played c in response
to b in order to get there at all. So, we can only sensibly talk about beliefs
here. In the simplest case, these can be modelled as



3.6. MIXING DIFFERENT TYPES OF AGENTS 69

subsets of all runs of the game from now on

viz. those future runs which the agent takes to be most likely. Thus, A’s
belief would rule out the ‘non-homogeneous run’ for E in this game, even
though further observation might refute the belief, forcing A to revise.
Now, belief revision means that, as the game is played and moves are
observed, this set of most plausible runs gets modified. E.g., suppose that
E in fact plays d at her first turn. Then the hypothesis that she was
Memory-free seems vindicated, and we also know part of her strategy. But
this is again too hasty. We have not tested any global assertion about
her strategy, precisely because the game is over, and we have no means of
observing what E would have done at her second turn. ¥

Thus, we must be sensitive to distinctions like ‘predicting what will happen’
versus ‘predicting what would happen’ in some stronger counterfactual
sense. Hypotheses about one’s opponents’ type are of the latter sort, and
they may be harder to test. The representation of alternative scenarios
and suitable update mechanisms over these need not be the same in both
cases. In particular, we might need two kinds of update. One is the local
computation of players’ uncertainties at nodes of the game concerning
facts and other players’ information, as described by the earlier product
update and plausibility update. The other is the changing of longer-term
expectations about strategies over time by observing the course of the game.

Remark Local versus global update?
Despite the appealing distinction made just now, uncertainty about the
future can sometimes be ‘folded back’ into local update. Consider any
game of perfect information. Uncertainties about the strategy played by
one’s opponent may be represented in a new imperfect information game,
whose initial state consists of all possible strategy profiles with appropriate
uncertainty lines for players between these. Update on such a structure
occurs as consecutive moves are played in the game, which can be seen as a
form of public announcement ruling out certain profiles from the diagram.
Likewise, belief revision becomes plausibility update on strategy profiles.
For details, see van Benthem 2004a, 2004b. ¥

Update can get even more subtle than this with learning global types.



70 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES

Consider the earlier example where A did not know if E had perfect
information or not. How can A find out? If only moves are observed, we
would have to say that having just a single uncertainty line for A between
the real root and the ‘pseudo-root’ makes no sense. For, after move a is
played, A has learnt nothing that would now enlighten him, so there should
be an uncertainty line at the mid-level as well. But in another sense, A has
learnt something! He now knows that E is uncertain, so he is in the game
on the left. To make sense of this second scenario, we have to assume that
introspection into A’s epistemic state also counts as an update signal.

We leave matters here. What we hope to have shown is that diversity of
agents raises some interesting issues, while sharpening our intuitions about
the required mix of update and revision in games. In particular, instead of
theorizing about abstract revision mechanisms, a hierarchy of agent types
suggests very concrete switching scenarios as our beliefs about a type get
contradicted by events in the course of the game.

Merging update logic and temporal logic To make sense of the issues
in this section, we need to introduce a richer framework than our dynamic-
epistemic logic so far. We now need to maintain global hypotheses about
behaviour of agents in future courses of the game, which can be updated as
time proceeds. This temporal intuition reflects computational practice, as
well as philosophical studies of agency and planning (cf. Belnap et al. 2001).
It is also much like questions in standard game theory about predicting the
future behaviour of one’s opponents: ‘rational’, or less so. Technically, we
think the best extension for this broader sort of update would be branching
temporal models with a suitable language referring to behaviour over time
(cf. Fagin, Halpern, Moses & Vardi 1995, Parikh & Ramanujam 2003).
The above tree structures E can easily support such a richer language. Van
Benthem 2004a has a few speculations on update in such a temporal setting,
but we leave the matter for future investigation.

3.7 Conclusion

The point of this paper is quite modest. We think that diversity of agents
is a fact of life, and moreover, that it is interesting from a logical point
of view. Indeed, one could even apply it to other logical core tasks, like
inference by more clever and more stupid agents. Technically, we have



3.7. CONCLUSION 71

shown that it is easy to describe different kinds of epistemic agents in
update logics. Several interesting questions arise now. One is the further
mathematical study of special patterns in arbitrary imperfect information
games, viewed as trees of actions with epistemic uncertainties. In particular,
our representation results may have more sophisticated versions for other
kinds of behaviour. One could see this as the fine-structure of general
models for dynamic-epistemic logic. Also, we would like a richer temporal
perspective, where belief changes as expectations about the future are
revised. This calls for a merge of temporal logic, update logic, and belief
revision. Finally, we think that interaction of diverse agents is a topic with
many logical repercussions, of which we have merely scratched the surface.

Acknowledgement We thank Josh Snyder for his penetrating comments,
and for raising some exciting follow-up issues about our framework that we
must leave for other occasions.



72 CHAPTER 3. DIVERSITY OF LOGICAL AGENTS IN GAMES



Chapter 4

Future Work

We already summarized the main contributions of this thesis in the intro-
duction. Here we conclude with a discussion of several possible directions
in which this work can be extended. Some of them have been addressed to
some extent in the preceding:

• Plausibility logic with diverse agents We witnessed five differ-
ent types of agents in Chapter 2, their different policies to update the
belief plausibility when encountering incoming information. How to
incorporate such diversity into current plausibility logic? Plausibility
logic has not distinguished different agents within its system, there
are no axioms for special sorts of agents. Given the diversity intro-
duced, what will the logical system look like? As we know, the most
important axioms in dynamic part are reduction axioms. For instance,
because of the different update policies of the belief plausibility, the
reduction axiom on the belief operator for one sort of agents must be
different from that for another. A reduction axiom for the high con-
servative agents has been proposed at the end of Chapter 2. What are
the reduction axioms for others?

• Extending the dynamic part of plausibility logic In Chapter
2 we mainly extended static plausibility logic. The common knowl-
edge operator, common belief up to a degree have been added. How-
ever, is it also possible to extend dynamic plausibility logic? Precisely
speaking, we need new reduction axioms for the operator of common
knowledge and common belief respectively. This does not seem so

73



74 CHAPTER 4. FUTURE WORK

straightforward. If we also take the diversity of agents into account,
the situation will become even more complicated.

• Interaction between different agents So far, the update mecha-
nism for Perfect Recall agents and k-memory agents have become clear
to us. However, these agents do not exist in isolation, they may co-
exist in the same system and interact with each other. How to describe
the interaction between them? If they know each other’s type, how do
they make use of such knowledge? If they do not know each other’s
type, how can they get this knowledge through interaction? They can
certainly make hypotheses about each other, then revise their belief as
time goes by. How to characterize such a process by plausibility logic?
Is plausibility logic sufficiently sophisticated to treat such phenomena?

• Adding time to plausibility logic As just illustrated, agents may
revise their hypotheses as time passes. In other words, agents maintain
global hypotheses about the behavior of other agents in the future,
which can be updated as time proceeds. To make sense of the issues
playing a role here, we need to introduce a richer framework than our
dynamic-epistemic logic so far provides. Adding time to plausibility
logic seems promising. Van Benthem 2004a has a few speculations on
update in such a temporal setting.

• Other sources of diversity? In this thesis, our concerns about
bounded rationality have focused on the diversity of agents in ‘be-
lief revision policies’, ‘memory bounds’ and ‘selection mechanisms’ of
bounded agents in computer science, but are there other sources of
diversity of agents which also are relevant to our logic?

• Application to game analysis We now have a plausibility logic
which contains many important epistemic notions: knowledge, belief
up to a degree, common knowledge, common belief up to a degree.
Moreover, we also know how knowledge is updated, how belief is
revised and about the interaction between knowledge or belief and
action. On the other hand, we have various kinds of agents, they
have different memory capacity, different strategies to revise their
belief plausibility. Games provide us a free playground to test our
ideas. Applying our results to analyzing games seems very interest-
ing. For instance, van Benthem 2001 shows how imperfect information
games with memory-bounded players can be analyzed in an ordinary
dynamic-epistemic logic with added uncertainty links. Such work will



75

help us to better understand real intelligent human behavior, and may
also help us to improve the logical system itself.



76 CHAPTER 4. FUTURE WORK



Appendix A

Atomic Plausibility Logic

As we know, in contrast to update logic which only has the knowledge
operator, the system PLS had a new belief operator Bk

j , by which it is
possible to express the firmness or degrees of the belief. Incidentally, we
will show in this chapter that the meaning of Bk

j ϕ can be expressed by a
propositional constant together with the knowledge operator. This yields a
new atomic system, the completeness of this new system will also be given.

A.1 Language and Semantics

Definition A.1.1 Let a finite set of proposition variables Φ and a finite
set of agents G be given. The language L−S is given by the rule

ϕ := > | p | pkj | ¬ϕ | ϕ ∧ ψ | Kjϕ,

where p ∈ Φ, j ∈ G, and k ∈ N.

We introduce a new atomic proposition constant pkj , which means ‘agent j
assigns the world where she stands the degree of belief at most k’. Putting
it formally, we have the definition as below:

Definition A.1.2 M,w ² pkj iff κj(w) ≤ k.

Now, we can define the belief operator with this constant and the knowledge
operator as:

77



78 APPENDIX A. ATOMIC PLAUSIBILITY LOGIC

Definition A.1.3 Bk
j ϕ := Kj(p

k
j → ϕ).

Then we obtain a new system PL−
S

which consists of the following axioms
and derivation rules:

1. All propositional tautologies.

3. Kj(ϕ→ ψ)→ (Kjϕ→ Kjψ) Kj-distribution

4. Kjϕ→ ϕ

7. pmj → pm
′

j for all m ≤ m′

8. pmj m ≥Max

9. From ` ϕ and ` ϕ→ ψ infer ` ψ

11. From ` ϕ infer ` Kjϕ Kj-generalization

As we can see, there are no axioms or rules for the belief operator Bk
j in the

system PL−
S
. In this sense, we may say that we deconstruct the system PLS.

In the next section, we will give the completeness proof for the new atomic
system PL−

S
.

A.2 Completeness Theorem

Theorem A.2.1 The system PL−
S
is complete with respect to its canonical

model.

Proof To prove the completeness of PL−
S
, it suffices to show that

Every PL−
S
-consistent set Γ of formulas is satisfiable in some

epistemic model.(*)

To get this, we define the canonical model as follows:

M c = (W c,∼j , κj , V )

• W c = {wW : W maximal PL−
S
-consistent set}



A.2. COMPLETENESS THEOREM 79

• ∼j = {(wW , wV ): W/Kj ⊆ V } where W/Kj = {ϕ: Kjϕ ∈W}

• κj(wW )= min{k: pkj ∈W}

• wW ∈ V (p) iff p ∈W

Now we need to show that

ϕ ∈ V ⇔M c, wV |= ϕ.

By induction on the structure of formula ϕ. We only consider the case of
the constant pkj :

(⇒) Assume pkj ∈ V . We have κj(wV ) ≤ k. Then by Definition A.1.2, we

get M c, wV |= pkj .

(⇐) Assume M c, wV |= pkj . We know p
κ(wV )
j ∈ V and κj(wV )≤ k. By axiom

7, p
κ(wV )
j → pkj . So, we get pkj ∈ V . ¥

Next, we will prove that each theorem of the system PLS is a theorem of
the system PL−

S
. To get this result, we first define an embedding function t

from LS to L−S as below:

t(p) = p
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∨ ψ) = t(ϕ) ∨ t(ψ)
t(Kjϕ) = Kjt(ϕ)
t(Bk

j ϕ) = Kj(p
k
j → t(ϕ)).

Lemma A.2.2 Let M∗ be the model of the system PL−
S
. Then we have:

M∗, w |= t(ϕ) iff M,w |= ϕ.

Proof Induction on the structure of formula ϕ. We only consider the
case Bk

j ϕ.

M∗, w |= t(Bk
j ϕ)

iff M∗, w |= Kj(p
k
j → t(ϕ))

iff ∀v(w ∼j v ⇒ (M∗, v |= pkj ⇒M∗, v |= t(ϕ)))
iff ∀v(w ∼j v ⇒ (κj(v) ≤ k ⇒M, v |= ϕ)) (By inductive hypothesis)



80 APPENDIX A. ATOMIC PLAUSIBILITY LOGIC

iff M,w |= Bk
j ϕ. ¥

Theorem A.2.3 `PLS
ϕ iff `

PL
−
S

t(ϕ).

Proof (⇒) is easy to prove by induction on the length of the proof.
(⇐) By contraposition. Suppose it is not the case that `PLS

ϕ. Then, by
completeness, for some model M , world w, M,w |= ¬ϕ. By Lemma A.2.2,
M∗, w |= ¬t(ϕ). So, it is not the case that `

PL
−
S

t(ϕ). ¥

Remark Given the atomic plausibility logic PL−
S
, we can extend that

also with the common knowledge operator. The way we add the common
knowledge operator will be completely similar to what we did with static
plausibility logic PLS in Chapter 2. Furthermore, the completeness proof is
also the same. For common belief, thanks to the propositional constant pkj ,

we now define common belief with a knowledge operator together with pkj
instead of a belief operator, the completeness proof turns out more trivial
than before.



Appendix B

Update for Forgetful Agents

In this chapter we begin with a motivating example, then present two dif-
ferent proposals of update for forgetful agents: the inclusive proposal and
the copy action proposal, and end with a comparison between them.

B.1 Preliminaries and Motivating Example

We start with several preliminaries as follows:

• Agents with n-memory In this chapter, forgetful agents are also
viewed as 0-memory agents. By ‘an n-memory agent’, we mean that
agent remembers only the n actions before the most recent action. A
0-memory agent, then, knows only what she learned from the most
recent action; an agent with memory of length 1 knows only what she
learned from the most recent action and the one before it.

• Shift perspective of product update As addressed at the end
of Section 3.3, there are various possible perspectives of product up-
date! We now turn to one of them, i.e. we do product update as:
M×A1×A2 . . . where actions models can be different. Recall that in
order to prove the characterization theorem, we had to give a more
complex perspective of product update in Section 3.3 to make it fit
the form: M×A×A. . . where the action models are uniform.

• Update for Memory-free agents For comparison and further dis-
cussion, we give the definition of update for Memory-free agents again:

81



82 APPENDIX B. UPDATE FOR FORGETFUL AGENTS

Definition B.1

(1a) M×A= {(s, a) : s ∈M and a ∈ A and M, s |= PREa}.

(1b) (x, a) ∼i (y, b) iff a ∼i b.

(1c) M×A, (s, a) |= p iff M, s |= p.

The item (1b) means that new uncertainty comes only from uncertainty
about observed actions.

Motivating example In the following, we will take Snyder’s example as
our basic example. The example consists of an agent i uncertain about P at
first; then P is announced, an action Id takes place afterwards. We will look
at how the agent i updates her knowledge encountering these actions. The
original state model M1 and the first action model A1 are pictured below:

M1

s:    i             t: not P  P

 A1

P!:  P

there are two possible worlds in the state model M1, where the agent i is
uncertain about P . The dotted line expresses i’s uncertainty, the valuations
of the propositions are represented in the state model: P holds at s, not-P
holds at t. There is only one action in the action model A1: P is an-
nounced, we also put the precondition, P after the colon in the action model.

To take the product update according to Definition B.1, we have the follow-
ing new state model M 2, abbreviating (s, P !) as u:

M2

u: P 

Since P does not hold at the world t, the action P ! only possibly happens at
the world s, so we get only one world u in the new model. Intuitively, after
the announcement of P , agent i should now know that P , and obviously
the agent i does know P in M 2.

Now the Id action happens; its action model is shown below:

A2

Id: T



B.2. INCLUSIVE PROPOSAL 83

There is only one action in A2: Id, which takes place everywhere. By
Definition B.1, we get the new state model M 3, abbreviating (u,Id) as v:

M3

v: P 

Intuitively, the action Id being performed, the forgetful agent i should no
longer know whether P , because she has 0 memory, she already forgot what
had happened one step ago, and she should be uncertain again whether P .
But by the above illustration, the agent i knows P . This is counter-intuitive!

New definition called for As we have seen, if we take Definition B.1 as
that of the update for forgetful agents, we get a counterintuitive conclusion.1

In the above example, to get uncertainty after the Id action, we need another
world which comes from t, so that not-P can hold at that world. However,
as shown above, the world t was gone forever after the first update since
it does not satisfy the precondition of the first action P !. So, the action
model M 2 can be only executed at the state u and it is impossible for the
world t to come back – this is what we do not want when modelling agents
with bounded memory. Because of the limited memory capacity, bounded
memory agents may be uncertain about something afterwards even if they
are certain about it beforehand. This is reality! To get this correct, we will
present two different proposals in the following two sections.

B.2 Inclusive Proposal

Snyder presents the following new definition of update for 0-memory agents:

Definition B.2

(2a) M×A={(s, a) : s ∈M and a ∈ A}.

(2b) (s, a) ∼i (t, b) iff (M, s |= PREa iff M, t |= PREb) and a ∼i b.

In contrast to (1a) of Definition B.1, (2a) leaves the precondition restriction
out, this simply makes it possible to keep all the worlds around. (2b) now

1Recall that we now take a new perspective on product update, i.e. the action models
can be different. If we stick to the perspective in Section 3.3, i.e. the action models are
uniform, Definition B.1 works.



84 APPENDIX B. UPDATE FOR FORGETFUL AGENTS

has a clause (M, s |= PREa iff M, t |= PREb) giving restrictions to the
states. This clause now plays a very crucial role to define the uncertainty
relation in the new models. The item about the fact update is omitted. It
would be the same as (1c). We will also ignore it in the later discussions.
In order to understand this new definition, we now look at the example again:

The original state model and action model stay as before:

M1

s:    i             t: not P  P

 A1

P!:  P

According to Definition B.2, we obtain a different new state model M 2 this
time, abbreviating (s, P !) as u0 and (t, P !) as u1:

M2

 u1:not Pu0: P

There are two worlds in M 2, one is the possible world, u0, in the sense that
the precondition of the action holds in it, another is the impossible world, u1,
in the sense that the precondition of the action does not hold in it. This is
different from what we obtained from Definition B.1. Furthermore, by (2b),
there is no uncertainty relation between these two worlds. So the agent i
knows that P in M 2. Now the same action Id happens. Again we picture
the action model below:

A2

Id: T

By definition B.2, we get a new state model M 3, abbreviating (u0, Id) as
v0 and (u1, Id) as v1:

M3

   i            v1: notP v0: P

By (2b) of the definition, we get the uncertainty relation as shown above
between the two states. That means, the agent i is uncertain whether P .
This conclusion is what we expect for a 0-memory agent.



B.3. COPY ACTION PROPOSAL 85

Snyder 2004 has an extensive discussion on how to extend the result for
0-memory agents to k-memory agents. This is not hard to do it in technical
regards, but it indeed give rise to several complex situations that we should
take into account. We are not going to review this here.

B.3 Copy Action Proposal

To make the update fit the behavior of 0-memory agents, an alternative
proposal is to simply introduce a copy action to bring those states that
would have vanished back into the update process. We propose the following
definition:

Definition B.3

(3a) M×A={(s, a) : s ∈M and a ∈ A and s |= PREa}.

(3b) For a, b 6= C!, (s, a) ∼i (t, b) iff a ∼i b.

In contrast to Definition B.1, we let the item (1a) unchanged. In order to
keep states presence, a copy action, C!, is introduced and moreover we set
PREC! = >, i.e. it can take place in any state. To see how the copy action
works, let us look at the above example, but now with additional copy action
in the action model:

M1

s:    i             t: not P  P P!:  P T C!:   

  A1

By Definition B.3, with the abbreviations: u0 ←↩ (s, P !); v0 ←↩ (s, C!);
w0 ←↩ (t, C!), we obtain the new state model M 2 below:

M2

 u0: P

v0: P w0:not P

The agent i then knows P . We take the rectangular box to express the
states arising from the copy action. We add the copy action in the same
way to the Id action, obtaining the new action model A2 as shown below:



86 APPENDIX B. UPDATE FOR FORGETFUL AGENTS

 

  A2

Id: T  T C!:   

According to Definition B.3 again, with the abbreviations: u1 ←↩ (u0, Id);
v1 ←↩ (v0, Id); w1 ←↩ (w0, Id); u2 ←↩ (u,C!); v2 ←↩ (v0, C!); w2 ←↩ (w0, C!),
we get the new model M 3, pictured below:

 i
i i

u1: P

 v1: P

u2: P v2:  P w2:notP

M3

w1:notP

We also get the uncertainty relation by item (2b). That means the agent
i is uncertain whether P . Again this is what we expect for 0-memory agents.

Copy action restricted As we have seen, copy action plays a consid-
erable role in bring back those worlds that would have vanished. However,
note that not only the worlds that do not satisfy the preconditions of actions
return, but those that do satisfy the preconditions also return, because we
set the copy action to take place in any state. In fact, it is not necessary
to bring the latter worlds back since they are already there because of the
actions that really happened. That means, the copy action has done much
more than needed, and so there are many more states in the state models.
Fortunately, it turns out to be possible to restrict the copy action to reduce
the number of the redundant states in the state models, i.e. we restrict
copy action Cr! by setting its precondition to PRECr! = >r, namely, the
restricted copy action only happens in those states that do not satisfy the
preconditions of the non-copy actions. We give the following definition:

Definition B.4

(4a) For a 6= Cr!, M×A={(s, a) : s ∈M and a ∈A and s |= PREa}
∪ {(t, Cr!) : t ∈M and t 2 PREa}.

(4b) For a, b 6= Cr!, (s, a) ∼i (t, b) iff a ∼i b.

This definition seems a little complex, but the intuition behind it is easy
to understand: Item (4a) just says that we let the copy action only copy
those states that do not satisfy the preconditions of the non-copy actions



B.3. COPY ACTION PROPOSAL 87

instead of copying all the states as defined in B.3. We will see the number
of copies reduced considerably in this way. Let us now revisit the above
example. The state model M 1 and the action model A1 are the same as
before except with restricted copy action:

M1

s:    i             t: not P  P P!:  P

  A1

 Cr!:     Tr

According to Definition B.4, with the abbreviations: u0 ←↩ (s, P !); w0 ←↩
(t, Cr!), we obtain M 2:

M2

 u0: P

w0:not P

Here the restricted copy action only happens in the state t, since the precon-
dition of the action P !, P , does not hold at t. As before, the agent i knows P .

The action model A2 is given as follows:

 

  A2

Id: T   Cr!:     Tr

By Definition B.4, with the abbreviations: u1 ←↩ (u0, Id); w1 ←↩ (w0, Id),
we get the new model M 3 pictured below:

M3

 u1: P    i            w1:notP

Note that the restricted copy action here does nothing because the action
Id happens in all the states. Obviously, we obtain the same results we got
when applying Definition B.3: The agent i is uncertain whether P . But
now the number of the worlds in the state model has been reduced. Never-
theless, our further discussion will still refer to Definition B.3 instead of B.4.



88 APPENDIX B. UPDATE FOR FORGETFUL AGENTS

Extension to k-memory agents We now give the main idea how to ex-
tend the copy action proposal for 0-memory agents to the case of k-memory
agents. We start with the case that the agent has 1-memory, the update
definition is given by:

Definition B.5

(5a) M×A−1×A
={(s, a−1, a): (s, a−1)∈M×A−1 and a∈A and (s, a−1) |= PREa}

(5b) For a−1, a, b−1, b 6= C!,
(s, a−1, a) ∼i (t, b−1, b) iff a−1 ∼i b−1 and a ∼i b

It is not difficult in the same way to generalize this result to the k-memory
case. Here we only give the definition for the uncertainty relation:

For any non-copy action a−k, . . . , a−1, a, b−k, . . . , b−1, b,
(s, a−k, . . . , a−1, a) ∼i (t, b−k, . . . , b−1, b)
iff (a−k ∼i b−k)
. . .
and (a−1 ∼i b−1)
and (a ∼i b).

This ends our discussion of the two proposals. In the next section we com-
pare them.

B.4 Comparison

Two paths to the same goal As illustrated in section B.1, Definition
B.1 fails to characterize the update for forgetful agents because some worlds
that do not satisfy the preconditions of actions disappear forever, this is
not what we want. Our goal is to keep those worlds around, this is achieved
by both of the above two different proposals, either leaving the precondi-
tion restriction out, as we did in the inclusive proposal, or introducing a
copy action to bring these worlds back, as we did in the copy action proposal.

From the technical point of view, whether to keep the precondition restric-
tion or not is the major difference between these two paths. This simple
choice comes from even deeper different intuitions:



B.4. COMPARISON 89

- The inclusive proposal eliminates the precondition restriction, witness
(1b) of Definition B.2. This simply produces all of the worlds for the
updated model: not only the possible ones but also the impossible
worlds. The intuition is that one should not remove the worlds be-
cause of the precondition restriction. For bounded memory agents,
all the possible worlds make sense, including impossible worlds. Such
impossible worlds may be useful to the agents at later stages. So, it is
wise to keep them around from the very beginning.

- The copy action proposal keeps the precondition restriction but brings
the worlds back by the copy action. The reason for keeping the pre-
condition restriction is that it helps one see exactly how the update
proceeds, i.e. which states we can get after some action happens. This
is what an agent expects, even if she is memory bounded. This is
similar to the case for Perfect Recall agents. But it pays the price that
some worlds will disappear because of the precondition restriction. In
order to bring them back, the copy action is added. So the copy action
here can be viewed as an ancillary tool, which remedies that fact that
worlds disappear because of the precondition restriction.

Two questions As we have seen, the above two proposals work very well.
However, it seems that some further explanation needs to be made:

- For the inclusive proposal, as we have seen, it produces not only possi-
ble worlds but impossible worlds in the updated model. For instance,
applying Definition B.2 to the example, we get possible world u0 and
impossible world u1. They are put together in the new model. One is
inclined to think that they are of the same kind. How can we see the
difference between them? How to interpret such impossible worlds?
On the other hand, though the agents are memory bounded, they still
hope to distinguish the possible worlds from the impossible ones at
a specific stage, so it is intuitively desirable that the agent can no-
tice such differences between two kinds of worlds: some satisfy the
precondition, others not.

- In contrast to the inclusive proposal, for the copy action proposal we
can easily distinguish the impossible world from the possible one in the
updated model, since the impossible worlds arising by copy actions.
But there is another question we must clarify. As we know, the original
action model does not include the copy action. We simply add a copy
action to the action model and moreover require that it can happen



90 APPENDIX B. UPDATE FOR FORGETFUL AGENTS

in any state. Furthermore, the copy action is also added to every
action model later on. It is totally different from other actions really
occurring in the action model. This seems rather artificial, perhaps
some further explanation is needed to be made from other perspectives.

We will leave these and perhaps other questions for future research.

In this chapter, we have concentrated on the two proposals for the update
of 0-memory agents, investigated their different techniques and intuitions,
and raised different questions for them. Bounded memory agents are new
to us, even their update mechanism is new to us, probably there are many
properties we have not thought of or covered yet. In the next chapter, we will
turn to reality to explore how bounded memory agents work in computer
science, which may give us some inspiration to improve our proposals of
update for bounded memory agents.



Appendix C

What to Forget for Bounded

Agents? Even Diverse...

In this chapter, we will begin with a simple observation, i.e. the update
for bounded memory agents we obtained presupposes that the agents forget
the earliest information when new information comes in, but this is not al-
ways the case. We then describe some possible ways out that the bounded
memory agents may take, for instance, they may forget information that
has not been used so frequently. Incidently, this is also extensively studied
in computer science. We then review the research in computer science and
analyze a real example to understand the various behaviors of the bounded
memory agents. Finally we conclude that the previous proposals of update
for bounded memory agents are not adequate to characterize those proper-
ties that bounded memory agents have, a new source of diversity needs to
be considered.

C.1 Always the Earliest?

In our preceding discussion about how the bounded agents update their
information, there is an implicit assumption: the agent always forgets the
earliest information when new information comes in. In other words, given
limited memory, the agent does not choose which information should be
remembered, which one can be forgotten. This means the agent does not
use her own preference regarding the information in her memory. Suppose
there is a time dimension, then the earliest information is replaced by the
newest one, pictured as follows:

91



92APPENDIX C. WHAT TO FORGET FOR BOUNDED AGENTS? EVEN DIVERSE...

T0                                       T1

     3−Memory Agents

M0   M1   M2    M3    M4    M5   M6    M7   M8   M9     ...

Action Model            A0    A1      A2     A3    A4    A5    A6    A7    A8     A9   ...    

 Time Dimension

State Model

The agent has 3-memory. At time point T0, the information in her memory
is described by the line with two empty arrowheads at each end, which
traces the state models from M1 to M3. Similarly, at time point T1, her
information concerns the state models from M6 to M8.

But do bounded agents always forget the earliest information? In the above
picture, it can easily be imagined that the 3-memory agent may choose
to forget M8 rather than M5 at time point T1, that is she chooses to
remember the information about model M5, M6 and M7 instead of M6,
M7 and M8. It seems reasonable that the agent has preferences about
the information in her memory: She may think some information to be
more important, and some to be trivial. When she must forget something,
she may choose something trivial to forget and remember something of
the most importance. This is a quite natural idea. A new question arises:
What kind of preference may bounded agents have about the information in
their memory? Putting in another way, which information is to be forgotten?

Intuitively again, the simplest case is that the agents choose to forget the
information they have used for the longest period to forget. This is exactly
what we did observe above. Nevertheless, there are many other possibilities:
the agent may choose to forget the information that she has not used so
frequently, or she may choose to forget the information that she thinks will
not be used in the near future, etc. Incidently, this has been investigated
extensively in computer science. We will encounter more precise discussions
in the following, where we think of the device of limited memory in computer
science as bounded memory agents. A brief review will appear in the next
section.



C.2. BOUNDED AGENTS IN COMPUTER SCIENCE 93

C.2 Bounded Agents in Computer Science

Memory has been a very important notion in computer science. It often
refers to some device consisting of a large array of bytes. To execute a
process, normally, the whole program and data of this process must be
in the physical memory. No matter how large the size of the physical
memory has become by the technical progress, it usually has a limited
size. If the space that one process needs is much larger than the memory
can provide, how to execute the process? Can we only load some parts
of a process into physical memory to execute it? This is the goal of
ongoing so-called ‘virtual memory’ research. Virtual memory allows
the execution of processes that can not be completely in the physi-
cal memory. So it is possible that an extremely large virtual memory is
available for programmers when only a smaller physical memory is available.

What would happen if the process refers to a data (or a page) that was
not brought into the memory? For instance, the memory of a 3-memory
agent is full of data, and new data not in her memory is coming in for a
new process execution, how does she update her data incorporating new
information? Intuitively, because of the limited memory, the agent should
first make sure that there is enough room to store the incoming data. She
would choose which information should be discarded first, then absorb the
new information. This process is called the dynamic swapping process where
the operating system controls the swapping of data in and out of physical
memory as they are required by the active processes. It decides which data
is to be replaced by the request one. This is often referred to as ‘replacement
policy’. These policies embody exactly the various behaviors of the bounded
agents. In the literature on this issue, many different replacement policies
occur. Here we only list the main three approaches we are going to explore:1

• First In First Out (FIFO): Replace the ‘oldest’ data in the memory,
i.e. the data loaded before all the others.

• Least Recently Used (LRU): Replace the data which has not been
referenced since all the others have been referenced.

1There are many others we are not going to explain now, e.g.

- Last In First Out (LIFO): Replace the data most recently loaded into the memory.

- Least Frequently Used (LFU): Replace the data used least often of the data cur-
rently in the memory.



94APPENDIX C. WHAT TO FORGET FOR BOUNDED AGENTS? EVEN DIVERSE...

• Optimal (OPT): Replace the data that will not be used for the longest
period of time. Obviously, this algorithm requires future knowledge
of the replacement actions, which is not usually available. Thus, this
policy is usually used for comparison studies.

The above three approaches correspond exactly to the possible directions
that we have thought the agent may take intuitively. To better understand
how these policies work, we turn to a specific example in the next section.

C.3 Various Update Behaviors

In this section, we will first focus on a concrete example from A. Silber-
schatz, P.B. Galvin & G.Gagne 2003, understanding the various behaviors
of bounded memory agents, then further compare them from different points
of view. To interpret the example in a new way, we first set the following
‘term transference’:

- The page frame is viewed as the memory space of the bounded agent,
e.g. 3 page frames is 3-memory agent. The reference string is thought
of as a series of actions, we will call them replacement actions.

- Replacement action has a special property : it brings in the new in-
formation and meanwhile replaces the old data in the memory. The
number in the following example is also taken to express the data or
information it brings in.

- In particular, the precondition of replacement action holds only at one
preferred state which actually is the state to be replaced.

We will see the different replacement policies provide different rules to
determine which state is the preferred one for the replacement action.

We now start with applying the policy FIFO to the example:

7       0        1         2     0    3       0        4        2        3         0    3     2     1        2     0    1    7        0        1

7        7        7        2           2        2        4        4        4        0                  0        0                  7        7        7

0        0        0           3        3        3        2        2        2                  1        1                  1        0        0

 1        1           1        0        0         0        3        3                 3        2                  2        2        1 

                    Replacement Actions ( Reference String)FIFO

                        3−memory agents   (3 page frames) 



C.3. VARIOUS UPDATE BEHAVIORS 95

This is an information updating process of a 3-memory agent i when en-
countering incoming replacement actions. The first three actions are easy
to understand, because the agent has three empty memory spaces and she
can easily accept the first three incoming data, i.e. (7, 0, 1). After that, we
obtain

Ki7, Ki0, and Ki1.

Then action 2 comes in, according to the rule given by FIFO, 7 was brought
in first, so the agent selects 7 as the victim to replace. That is, we have

PRE(2) = 7.

That means action 2 only happens to the state 7. After this replacement
action, we get

Ki2, and moreover ¬Ki7.

because the agent only has 3-memory, the incoming data 2 drives 7 out
of her memory. Similarly, since 0 is already in memory, i.e. Ki0, so the
agent need not update her information when 0 comes in, it will not add
new information at all. The process continues as shown in the above picture.

Let us look at the behavior of the policy LRU in the above same example:

7       0        1         2     0    3       0        4        2        3         0    3     2     1        2     0      1     7      0        1

 0        0        0           0                  0         0        3        3                  3              0               0

7        7        7       2           2                   4        4        4        0                  1               1               1

 1         1           3                  3         2        2        2                  2              2               7

LRU                          Replacement Actions ( Reference String)

                         3−memory agents   (3 page frames) 

We only look at what happens when it comes to the action 4, where we
already have

Ki2, Ki0, and Ki3.

In particular, among the three data in memory, 2 was used least recently
according to the rule of LRU, i.e.



96APPENDIX C. WHAT TO FORGET FOR BOUNDED AGENTS? EVEN DIVERSE...

PRE(4) = 2.

so the agent chooses 2 as the victim to replace, which is different from what
we saw in FIFO. According to LRU, the data to be replaced is the one
which has not been referenced for the longest time.

Finally we turn to the behavior of the OPT policy to the above example.
The same replacement actions are shown below:

7       0        1         2     0    3       0        4        2        3         0    3     2     1        2     0      1     7      0        1

 1

 0        0        0           0                  4                             0                  0                               0

7        7        7       2           2                   2                            2                  2                               7

         1           3                  3                             3                  1                               1

OPT                                    Replacement actions ( Reference String)

                                   3−memory agents  (3 page frames) 

We look at what happens when it comes to the action 2, we have

Ki7, Ki0, and Ki1.

According to the rule of OPT, because 7 will not be used until the 18th
replacement action, whereas 0 will be used at the 5th action and 1 at the
14th. That is,

PRE(2) = 7.

The action 7 chooses 2 to replace. Similarly, the action 3 replaces 1, as 1
will be the last of the three pages in memory to be referenced again.

Comparing the behaviors In the following, by ‘page fault’ we refer
to an interrupt that occurs when a program requests data not currently
in the physical memory. Given the above analysis, we now conclude the
comparison in several aspects:

• Page fault As shown above, in all three policies the first three ac-
tions cause faults that fill the three empty memory space. For the
whole process, different policies have different number of page faults:



C.3. VARIOUS UPDATE BEHAVIORS 97

OPT has only 9 page faults, while FIFO has 15 page faults and LRU
has 12 page faults. This is easy to see from the above pictures since
we only pictured the cases where page fault occurs. For a bounded
memory agent, it is easy to understand that reducing the number of
page faults means saving costs. Obviously, OPT has a better behavior
than FIFO and LRU in this aspect.

• Belady’s Anomaly How to reduce the number of page faults then?
Intuitively, the easiest way is to add more memory space. We expect
this strategy would make the number of page faults being reduced.
However, this does not hold for every policy, especially not for FIFO
though it is simple and also easy to understand. This unexpected
result is the well-known Belady’s Anomaly, it was first demonstrated
by Belady in 1970.2 But policies like LRU and OPT do not suffer
from such anomalies, i.e. adding more memory space would reduce
the number of page faults.

• Implementation Concerning the implementation issues, we have a
problem with OPT: It is difficult to implement. As we have seen, the
major reason is that it requires future knowledge of the replacement
actions, this usually cannot be obtained. However, FIFO and LUR
are easier to implement, the operating system can keep track of when
each data comes in by recording the time of incoming information or
by maintaining a stack of information.

• Selection mechanism The biggest difference between these three
policies is that they have a different selection mechanism of the vic-
tim to replace, i.e. the precondition of the replacement actions varies
from one option to another. FIFO selects the victim according to the
preference in time: the replacement action happens to the earliest one.
The frequency of the page being used is the basis on which LRU selects
its victim: the replacement action happens to the one least recently
used. OPT selects the one that will not be used for the longest time.

2 To illustrate the problem, we take the following reference string:

3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4, 2, 3, 2, 1, 0, 4.

The replacement procedure is omitted here, since it is easy to obtain by FIFO rule. It
turns out that the number of faults for the 4-memory case is 15, which is greater than
that the number of faults for 3-memory case, 14. That means adding a fourth memory
space results in an increase in the page-fault rate.



98APPENDIX C. WHAT TO FORGET FOR BOUNDED AGENTS? EVEN DIVERSE...

Note that the precondition here is a little bit different from what we have
in update logic, because the same action may have different precondition
at different stages. E.g. in the above example for FIFO, we know that
PRE(2) = 7 for the first action 2, but PRE(2) = 3 for the second action 2.
It seems that the precondition here is a sort of principle rather than some
specific formula or fact.

C.4 New Source of Diversity

In this section, we will conclude with several desirable properties of update
for bounded memory agents, which calls for considerations:

First, diversity exists even in bounded agents with the same memory
capacity! We are now familiar with the diversity of agents with different
memory ability in Chapter 3: Some agents have Perfect Recall, others are
Memory-free. We have witnessed how they update their information in a
different manner. In the example just above, we have seen how 3-memory
agents update their knowledge by three different policies. The main
question we have considered is: which data is the victim to be forgotten or
replaced? FIFO selects the earliest one, LRU selects the one least recently
used, OPT selects the one that will not be used for the longest time. This
means even for bounded agents with same memory, diversity still exists.
We have seen the different strategies that 3-memory agents have taken
in the above example. They may have different preference. Such kind of
preference is significant and should be incorporated into the very definition
of update for the bounded memory agents. Classical update logic has not
done this, our new proposals in the previous chapter have not done so
either. Further investigation and new technical improvement are needed!

Secondly, when comparing the different behaviors of the bounded agents in
the preceding, the number of page-faults has been our focus. In the above
example, FIFO has 9 page faults, while FIFO has 15 page faults and LRU
has 12 page faults. Such a perspective is new to us. For the Perfect Recall
agents who always remember everything that happens all the time, it is not
necessary to think of the cost problem at all given their infinite memory
ability. But circumstances change for bounded memory agents. We now do
have to consider how to reduce the number of page-faults to save costs. To
get a proper update mechanism for a bounded memory agent, such realities



C.4. NEW SOURCE OF DIVERSITY 99

and related issues should definitely be taken into account.

The last point is that in the above example, when the replacement
action happens, the old data in the memory is replaced by the incoming
information. Actually it does not disappear at all, it goes into the so-called
backing store. So once some information is called for again, we can fetch it
from the backing store. Namely, we put the information replaced into the
backing store for the future reference. The backing store seems like a stack
that the physical memory bring with it. For bounded memory agents, it is
necessary to have such a store. Recall that the same goal of the inclusive
proposal and the copy action proposal in the previous section is to keep the
worlds that would have disappeared around for future reference, it seems
that at this point those two proposals have the same spirit as what occurs
in computer science.

Summarizing, we have seen more diversity of the bounded memory agents
here in computer science. To get a proper update logic for bounded agents,
their preference, the cost, perhaps other things, should be incorporated into
the very definition. We will leave this topic for future investigation.



100APPENDIX C. WHAT TO FORGET FOR BOUNDED AGENTS? EVEN DIVERSE...



Bibliography

[1] S. Abramsky: Semantics of Interaction: an Introduction to Game Se-
mantics, in P. Dybjer & A. Pitts, eds., Proceedings 1996 CLiCS Summer
School, Cambridge University Press, Cambridge, 1-31.

[2] C. Alchourrn, P. Gardenfors & David Makinson : On the logic of theory
change: Partial meet contraction and revision functions, Journal of
Symbolic Logic 50: pp. 510-530, 1985.

[3] G. Aucher: A Combined System of Update Logic and Belief Revision,
Master of Logic Thesis, ILLC University of Amsterdam, 2003.

[4] R. Axelrod: The Evolution of Cooperation, Basic Books, New York,
1984.

[5] A. Baltag, L. Moss & S. Solecki: The Logic of Public Announcements,
Common Knowledge and Private Suspicions, Proceedings TARK 1998,
43-56, Morgan Kaufmann, Los Altos, 1998.

[6] N. Belnap, M. Perloff & M. Xu: Facing the Future, Oxford University
Press, Oxford, 2001.

[7] J. van Benthem: Exploring Logical Dynamics, CSLI Publications, Stan-
ford,1996.

[8] J. van Benthem: Games in Dynamic-Epistemic Logic, Bulletin of Eco-
nomic Research 53:4, 219-248 (Proceedings LOFT-4, Torino), 2001a.

[9] J. van Benthem: Extensive Games as Process Models, Journal of Logic,
Language and Information 11: 289-313, 2001b.

[10] J. van Benthem: Logic in Games, Lecture Notes, ILLC Amsterdam &
Philosophy Stanford, 1999-2003.

101



102 BIBLIOGRAPHY

[11] J. van Benthem: One is a Lonely Number: on the Logic of Communi-
cation, Tech Report PP-2002-27, ILLC Amsterdam.

[12] J. van Benthem: Conditional Probability Meets Update Logic, Journal
of Logic, Language and Information 12: 409-421, 2003.

[13] J. van Benthem & B. ten Cate: Automata and Update Agents in Event
Trees, working paper, Department of Philosophy, Stanford University,
2003.

[14] J. van Benthem: A Mini-Guide to Logic in Action, Philosophical Re-
searches, Supp: 21-30, Beijing, 2004a.

[15] J. van Benthem: Local versus Global Update in Games, working paper,
Department of Philosophy, Stanford University, 2004b.

[16] P. Blackburn, M. de Rijke & Y. Venema: Modal Logic, Cambridge
University Press, Cambridge 2001.

[17] G. Bonanno: Memory and Perfect Recall in Extensive Games, Games
and Economic Behavior 47: 237-256, 2004.

[18] H. van Ditmarsch and Labuschagne, 2003, Dynamic Doxastic Logic for
Defeasible Belief Revision, work in progress.

[19] H. van Ditmarrsch, 2004, Dynamic Belief Revision, Lecture Slides at
University of Liverpool.

[20] R. Fagin, J. Halpern, Y. Moses & M. Vardi: Reasoning about Knowl-
edge, The MIT Press, Cambridge (Mass.) 1995.

[21] P. Gardenfors: Knowledge in Flux: Modeling the Dynamics of Epis-
temic States, Bradford Books, MIT Press, Cambridge, Mass, 1988.

[22] J. Gerbrandy: Bisimulation on Planet Kripke, Ph.D dissertation, ILLC
Amsterdam, 1999.

[23] D. Harel, D. Kozen & J. Tiuryn: Dynamic Logic, The MIT Press, 2000.

[24] V. Hendricks: Active Agents, Journal of Logic, Language and Informa-
tion 12: 469-495, 2003.

[25] T. Hötte: A Model for Epistemic Games, Master of Logic Thesis, ILLC
University of Amsterdam, 2003.



BIBLIOGRAPHY 103

[26] S. Lindström & W. Rabinowicz: Extending Dynamic Doxastic Logic:
Accomodating iterated beliefs and Ramsey Conditionals within DDL,
L. Lindahl, P.Needham, and R.Sliwinski (Eds) Foor Good Measure, Up-
psala Philosophy Studies 46, Uppsala University, Department of Philos-
sophy, Uppsala, Sweden 1997.

[27] J.-J.Ch. Meyer & W. van der Hoek: Epistemic Logic for AI and Com-
puter Science, Cambridge Tracts in Theoretical Computer Science 41,
1995.

[28] R. Moore: A Formal Theory of Knowledge and Action, J. R. Hobbs
& R. C. Moore (Eds.), Formal Theories of the Common Sense World,
Ablex Publishing, Norwood, NJ, pp. 319-358, 1985.

[29] M. Osborne & A. Rubinstein: A Course in Game Theory, The MIT
Press, Cambridge (Mass.) 1994.

[30] R. Parikh & R. Ramanujam: A Knowledge-Based Semantics of Mes-
sages, Journal of Logic, Language and Information 12: 453-467, 2003.

[31] R. Parikh & R. Väänänen: Finte Information Logic,
http://www.sci.brooklyn.cuny.edu/cis/parikh/parikh-pubs.html, 2003.

[32] B. Rodenhauser: Updating Epistemic Uncertainty: an essay in the logic
of information change, Master of Logic Thesis, ILLC University of Am-
sterdam, 2001.

[33] K. Sergerberg: Belief Revision From the Point of View of Doxastic
Logic, Bull,. of the IGPL, Vol.3 No.4,pp. 535-553 1995.

[34] A. Silberschatz, P.B. Galvin & G.Gagne: Operating System Concepts,
John Wiley & Sons, Inc. New York, NY, USA 2003.

[35] J. Snyder: Product Update for Agents with Bounded Memory,
manuscript, Department of Philosophy, Stanford University, 2004.

[36] W. Spohn. Ordinal conditional functiuns: A dynamic theory of epis-
temic states. In W. L. Harper and B. Skyrms (Eds), Causation in
Decision, Belief Change, and Statistics, reidel, Dordrecht, vol.2, pp.
105-134, 1988.

[37] F. Veltman: Defaults in Update Semantics, Journal of Philosophical
Logic 25: 221 - 261,1996.



104 BIBLIOGRAPHY

[38] R. Wassermann: Resource Bounded Belief Revision, Ph.D dissertation,
ILLC University of Amsterdam, 2000.



Index

(\3) rule, 37

(\4) rule, 37

(\) rule, 38

(\1) rule, 37

(\2) rule, 37

BIS-INV , 10, 54

Bk
j , 17

CG, 25

Dk
G, 29

E0
G, 25

En+1
G , 25

EG, 25

F 0,k
G , 29

F 1,k
G , 29

Fn+1,k
G , 29

F k
G, 29

G-B-reachable from w, 29

G-B-reachable from w in m steps,
29

G-reachable from w, 25

G-reachable from w in m steps, 25

Kj , 17

PR, 10, 54

PR−, 11, 57

UNL, 10, 54

UNL+, 11, 57
∧

j∈GB
k
j ϕ, 29

∧

j∈GKjϕ, 25

κ-ranking, 15

κ′j(w, a), 16, 32, 37

κ∗j (a), 16, 32, 37

κj(w), 16, 32, 37
κwj (ϕ), 16, 32, 37
L, 15, 17
LS , 15
PL−

S
, 12, 76

PLCD′

S
, 9, 31

PLCD
S

, 9, 30
PLC

S
, 9, 26

PLS, 8, 19
PL, 8, 19
pkj , 12, 75
(κ) rule, 7, 32

L−S , 75
LCDS , 29
LCS , 25

action model, 5, 51
action signature, 17

backing store, 97
barycenter calculation formula, 37
Belady’s Anomaly, 95
belief epistemic action model, 16
belief epistemic model, 16
belief revision, 5
bounded memory, 56
bounded rationality, 7, 50

canonical model, 23, 76
closure of ϕ, 26
common belief up to degree k, 29,

30

105



106 INDEX

common knowledge, 2, 24
completeness of PL−

S
, 76

completeness of PLCD′

S
, 32

completeness of PLCD
S

, 32
completeness of PLC

S
, 26

completeness of PLS, 23
conservative agents, 10, 38
contraction, 6
converse action modalities, 62
copy action proposal, 12
Copy-Cat, 57
cut function, 17, 32, 37, 42

dynamic swapping process, 91
dynamic-epistemic language, 46

embedding from LS to L−S , 77
epistemic model, 4, 51
expansion, 6

FIFO, 13, 91
finite automaton, 58
First In First Out, 13, 91
forgetful updaters, 63

highly conservative agent, 38
highly conservative agents, 10
highly radical agents, 9, 39

inclusive proposal, 12
interchange axiom, 47

knowledge program, 47

Last In First Out, 91
Least Frequently Used, 91
Least Recently Used, 13, 91
LFU, 91
LIFO, 91
LRU, 13, 91

maximal consistent set, 22, 26

Memory Axiom, 50
Memory-free agents, 10, 44, 50, 57
middle of the road agents, 9, 40
misty games, 48
modal-epistemic language, 46
multi-S5, 47

negative introspection, 19
No Learning, 49

OPT, 13, 92
Optimal, 13, 92

Perfect Recall agents, 10, 44
plans, 47
plausibility logic, 7
plausibility updating rule, 9, 32,

36
positive introspection, 19
precondition, 5
processing mechanism, 56
product update, 16, 51
propositional dynamic logic, 24,

26
pure belief version, 30

radical agents, 9, 40
reduction axiom, 10, 11, 20, 52, 63
replacement actions, 92
replacement policy, 13, 91
revision, 7
rigid, 58

semantics of programs, 18
semantics of sentences, 18
signature-based belief epistemic

action model, 17
strategy, 47

Tit-for-Tat, 57, 60
transitive closure, 26


