
Exploring the Update Universe

Ji Ruan
jruan@science.uva.nl

neoruan@yahoo.com.cn

Contents

1 Introduction 5
1.1 General issues . 5
1.2 The work this thesis is based on 6

1.2.1 Motivation . 6
1.2.2 Basic concepts . 6
1.2.3 Some related results in BMS 9
1.2.4 Limitations of BMS 10

1.3 Overview of this thesis . 10

2 Logics of Message Passing 12
2.1 Modeling Message Passing by BMS 12
2.2 Examples . 12
2.3 Case study: secure private message to a subgroup 16

2.3.1 Motivation . 16
2.3.2 Logic of Relativized Common Knowledge 17
2.3.3 Logic of CC(LCC) . 18

2.4 Case study: Blind Carbon Copy (BCC) 24

3 Action Emulation 26
3.1 Introduction . 26
3.2 Same Update Effect . 27
3.3 Action Emulation . 29
3.4 Update Effects of Propositional Actions 32
3.5 Update Effects of Modal Actions 35
3.6 Model contraction preserving update effects 38

4 Evolution of Update Universe 45
4.1 Setting of the problems . 45
4.2 Special cases . 46

1

4.3 Propositional precondition . 50

5 Conclusions and Further work 52

An electronic version of this thesis will be available at ILLC website:
http://www.illc.uva.nl/Publications/reportlist.php?Series=MoL&Year=2004

2

Acknowledgements
I feel very fortunate for being able to get a scholarship from the Beth

foundation and to study here at the ILLC. My pleasant stay at Amsterdam
and the completion of this thesis are mainly due to the people I met here. I
give my greatest thankfulness to all of them.

I thank Johan van Benthem, first as my mentor in the programme, and
then as my thesis advisor. I gained a lot from his enthusiastic and humorous
lectures in Core Logic, and from his thought provoking conversations. I am
always very impressed by his prompt and long emails on my work.

I thank Jan van Eijck for his encouragement and support for the past
months. I began to do a project on dynamic epistemic logics with him when
Johan left for Stanford. My work with him became the start of this thesis
when Johan came back in June. In particular, chapter 3 of this thesis is our
joint work and the inspiration is due to him. From him, I gained a better
appreciation of the discoveries in the field, as well as the frustration endured
and satisfaction enjoyed by scientists.

I thank Barteld Kooi for his involvement in my thesis in the final stage, as
well as his lectures in Logic and Games half year ago. His patience replying
to my numerous emails is the reason I reply a big thanks here.

I thank Dick de Jongh for the year long support since I came here. He
always helped me feel at home, and was ready to offer nice suggestions for
my studies.

I thank Peter van Emde Boas for his Information Theory and Game
Theory courses. He was always ready to answer my questions on those
courses, and what are the typical Dutch Sights that my camera shouldn’t
miss. He is particularly kind to chinese students.

I thank Yde Venema for his wonderful lectures on Advanced Modal Logic
course. His inspiring and extremely clear lectures spiked my interests in
modal logic and deepened my understanding of modal logic itself.

I thank Paul Dekker’s patience in explaining the intuition behind his
Structure for Semantics course.

I thank Henrik for his discussions of those hard courses we had together
in the past year. Those discussions greatly improved my (maybe our) under-
standing of the courses, and my English as well. Besides logic, we also en-
joyed traveling around Holland with his girlfriend Hoa: Keukenhof, Marken,
etc. I would also like to thank Alex for his generous help in the Semantics
course, and his friendship. I thank Spencer for picking up the lonely guy
from China at Amsterdam Central Station, and guiding him around Ams-
terdam in his first days. I thank three Chinese students of MoL for their
friendship: Chunlai Zhou(02-03), Fenrong Liu(03-04), Yanjing Wang(04-05).

3

I thank all my teachers and friends in China. Thank them for the care
and friendship all the years.

Finally, as it is always the case, I thank my family and my girlfriend
for their warm support from home. I am looking forward to seeing them at
home.

Ji Ruan @ Amsterdam October 2004

4

Chapter 1

Introduction

1.1 General issues

Information and Information change are very important issues for us, as we
are now in an Information Age: information is produced easily and can be
shared by the people around the world with very convenient ways. Different
groups of people are working on information technology in various ways:
Computer scientists try to build tools (e.g. hardware, software) to facilitate
the processing of information; Mathematicians and Engineers try to figure
out what is the limit of information a channel can transfer and then try to
get that limit. It is hard for me to enumerate all the concerns from different
people about information, so in the following I will only talk about the issues
on which logicians are working, and the issues with which this thesis is going
to deal.

The study of knowledge (or more generally information) from logic per-
spective began with Hintikka’s Knowledge and Belief [11]. In epistemic
logic, one can represent knowledge or belief using Kripke structures(models).
In the simplest case, a Kripke structure encodes the information that a single
agent has. By using multi-labeled Kripke structure, higher-order informa-
tion, knowledge about other agents’ knowledge, is modeled, which is crucial
to multi-agent systems. Epistemic logic does not address the problem of
information change (or update). There is another branch of logic, namely
dynamic logic, which was invented to model the change of the execution
of computer programs. The combination of above two, dynamic epistemic
logic, addresses both the representation of information and the change of
information.

This thesis is going to present some new results on Epistemic Dynamic

5

Logic. First we present the work this thesis is based on.

1.2 The work this thesis is based on

Our starting point is dynamic epistemic logic in the style of BMS[4], which
has been developed by Baltag, Moss and Solecki since 1998.

1.2.1 Motivation

Epistemic logic usually deals with agents’ uncertainty given their current
information. It not only deals with agents’ knowledge (or information) about
the facts of the world, but also deals with higher-order information which
is the information about the information that agents have.

One branch of Epistemic logic, namely Dynamic Epistemic logic, adds
something new: modeling the information change. In [4], Baltag, Moss
and Solecki introduced action structures to model various epistemic actions
(or programs). In semantics, the uncertainty of each agent concerning the
current state of the system is represented using the usual epistemic model
and the uncertainty of each agent concerning the current action of the system
is represented using an action model: a Kripke model with preconditions for
all actions. The information change in such a system is modeled by update
product: combining a state model and an action model to produce a new
state model. So the new uncertainty of the agents is a combination of their
uncertainty of the world and their uncertainty of the action. Since this brach
of logics deals with information update, we also call them update logics.

1.2.2 Basic concepts

Here, we present the basic concepts which are important for understanding
this thesis.

Definition 1.1 (Epistemic state model for a given language L).
Given a finite set of agents Ag, and a set of atomic propositions P in language
L, an epistemic state model is a tuple M = (W, { i→| i ∈ Ag},Val) where:

• W is a set of worlds;

• i→⊆W ×W is the accessibility relation for agent i ∈ Ag;

• Val : W → P(P) is a function from W to the collection of atomic
propositions in L.

6

To model particular situations, we use pointed model (M, S), where M is a
state model and S ⊆WM which means the current world is among S.

For convenience, we use (W, i→,Val) to denote a state model; if S is a
singleton {w}, then (M, {w}) is denoted as (M, w).

Definition 1.2 (Epistemic action model for a given language L).
Given a finite set of agents Ag, an action model is a tuple A = (W, { i→| i ∈
Ag},Pre) where:

• W is a set of actions;

• i→⊆W ×W is the accessibility relation for agent i ∈ Ag;

• Pre : W → ϕ(L) is a function from W to the collection of all formulas
in language L.

To model particular actions, we use pointed model (A, S), where A is an
action model and S ⊆WA, which means the current action is among S.

For convenience, we also use (W, i→,Pre) to denote an action model. If
S is a singleton {a}, then the pointed model is denoted as (A, a).

The epistemic language LANG is defined as follows:

Definition 1.3 (The epistemic language LANG). Assume p ranges
over the set of atomic propositions P , i ranges over the set of agents Ag and
B ranges over the subsets of Ag. The formulas of LANG are given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | �iϕ | CBϕ | [(A, S)]ϕ

where (A, S) is a multi-pointed finite LANG (action) model.
We employ the usual abbreviations. In particular, ⊥ is shorthand for

¬>, ϕ1 ∨ ϕ2 for ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 for ¬(ϕ1 ∧ ¬ϕ2), ♦iϕ for ¬�i¬ϕ,
〈(A, S)〉ϕ for ¬[(A, S)]¬ϕ.

Definition 1.4 (Update, Truth). Let M = (W, i→,Val) be a state model
and A = (W, i→,Pre) an action model, then the update product of M and

A, denoted as M⊗A, is (W ′,
i→
′
,Val′) where:

• W ′ = {(w, a)|w ∈WM, a ∈WA, (M, w) |= Pre(a)};

• (w, a) i→
′
(w′, a′) iff w

i→M w′ and a i→A a′ for i ∈ Ag;

• Val(w, a) = Val′(w);

7

For multiple pointed state model (M, S), and multiple pointed action model
(A, T), (M, S)⊗ (A, T) = (M′, S′) where M′ = M⊗A and S′ = {(w, a) ∈
S × T | (M, w) |= Pre(a)}.

and where the truth definition is given by:

(M, w) |= > always
(M, w) |= p :≡ p ∈ ValM(w)

(M, w) |= ¬ϕ :≡ not (M, w) |= ϕ

(M, w) |= ϕ1 ∧ ϕ2 :≡ (M, w) |= ϕ1 and (M, w) |= ϕ2

(M, w) |= �iϕ :≡ for all w′ with w i→ w′ , (M, w′) |= ϕ

(M, w) |= EBϕ :≡ for all w′ with w B→ w′ , (M, w′) |= ϕ

(M, w) |= CBϕ :≡ for all w′ with w B∗
→ w′ , (M, w′) |= ϕ

(M, w) |= [(A, S)]ϕ :≡ for all s ∈ S,
if (M, w) |= Pre(s) then (M⊗A, (w, s)) |= ϕ.

In this definition B→ is the relation
⋃
i∈B

i→, and B∗
→ its reflexive transitive

closure.

Definition 1.5 (Composition of action models). Let A = (W, i→,Pre)
and B = (W, i→,Pre) be two action models. The composition of A,B,

denoted as A�B, is (W ′,
i→
′
,Pre′) where:

• W ′ = WA ×WB

• (a, b) i→
′
(a′, b′) iff a

i→ a′ and b i→ b′

• Pre′(a, b) = 〈(A, a)〉PreB(b)

For multiple pointed action models (A, S) and (B, T), the composition
(A, S)� (B, T) = (C, U), where C = A�B and U = S × T .

Definition 1.6 (Bisimulation on state models given language L). Let
M,N be L state models. Let P be the collection of atomic propositions.
Then the relation Z ⊆WM×WN is an L bisimulation if whenever wZv the
following hold:

ValEQ p ∈ Val(w) iff p ∈ Val(v) for any p ∈ P ;

Zig for any i ∈ Ag, any state w′ with w i→ w′ there is a state v′ with v i→ v′

and w′Zv′.

8

Zag same requirement vice versa.

If there is a bisimulation between M and N, then we denote it as M ↔ N.
For pointed models (M, S) and (N, T), (M, S) ↔ (N, T) means there

is a bisimulation between M and N, say Z, such that for any s ∈ S, there
is t ∈ T with (s, t) ∈ Z, and vice versa. S ↔ T is the abbreviation of
(M, S) ↔ (N, T) when M and N are clear. A total bisimulation between
M and N means (M,WM) ↔ (N,WN).

Definition 1.7 (Bisimulation on action models given language L).
Let A,B be L action models. Let ≡L be the appropriate equivalence notion
for L. Then relation Z ⊆WA×WB is a L bisimulation if whenever aZb the
following hold:

PreEQ PreA(a) ≡L PreB(b),

Zig for any i ∈ Ag, any state a′ with a i→ a′, there is a state b′ with b i→ b′

and a′Zb′.

Zag same requirement vice versa.

If there is a total bisimulation between A and B, we denote it as A ↔ B.
Please note that we use the same symbol for the bisimulation of state models,
and we think it is easy for the readers to figure out which bisimulation we
are talking when they meet ↔ in this thesis.

For pointed action models (A, S) and (B, T), (A, S) ↔ (B, T) means
there is a bisimulation between A and B, say Z, such that for any a ∈ S,
there is b ∈ T with (a, b) ∈ Z, and vice versa. S ↔ T is the abbreviation of
(A, S) ↔ (B, T) when A and B are clear. A total bisimulation can also be
denoted as (A,WA) ↔ (B,WB).

1.2.3 Some related results in BMS

Here we mention some basic results in [2],[4], which are related to this thesis.
For chapter 3:

Theorem 1 (Preservation of epistemic bisimulation; Baltag, Moss
and Solecki). Given a state model M and an action model A, the following
holds:

if M ↔ N then M⊗A ↔ N⊗A

For chapter 4:

Theorem 2. The update induced by a composition of action models is iso-
morphic to the composition of the induced updates.

9

1.2.4 Limitations of BMS

As any framework, the BMS framework also has certain limitations. Here
we try to give the most apparent ones. However, this does not suggest that
the BMS framework is very limited; in fact it is quite general, since you can
have arbitrary Kripke structures with arbitrary preconditions, and you can
even modify it so the fact-changing actions can be incorporated.

Logical omniscience : Notice that the agents modeled in BMS have logi-
cal omniscience property, i.e. the agent knowing all logical tautologies
and all the consequences of its knowledge. This property is inherited
in a lot of logic systems. However, logical omniscience is problematic
when attempting to build realistic models of agent behaviour, since
closure under logical consequence implies that inference or reasoning
takes no time. If processes within the agent such as belief revision,
planning and problem solving are modelled as derivations in a logi-
cal language, such derivations require no investment of computational
resources by the agent.

Agency The framework is about the events of information updating, and
it does not address the issues of agency. The agents’ knowledge(or
information) is modeled in a single model, and there is no place for
agents’ capacity, preference of the actions.

1.3 Overview of this thesis

Besides the introduction, there are four chapters in this thesis. Here, we
give a brief overview.

In Chapter 2, we will study different ways message passing which can
be modeled in BMS framework. First, we give some examples to show that
BMS framework can model very subtle information update. Second, we fo-
cus on the case of secure private message passing, which is to pass a message
to a subgroup of agents without the rest knowing it. We give an axiomati-
zation for this case, and proof the completeness using relativized common
knowledge, which is proposed in [12]. Third, we give a brief discussion of
message passing by Blind Carbon Copy (BCC).

In Chapter 3, the work is jointly done with professor Jan van Eijck. We
will study the relation of action models which have same update effects.
A key notion of equivalence for modal and epistemic logic is bisimulation.
However, to capture the update effects of action models in dynamic epis-
temic logic, this notion turns out to be too strong. We propose a notion

10

of equivalence, called action emulation, which is more more appropriate for
action models than bisimulation. It is proved that every bisimulation is
an action emulation, but not vice versa, and that in the context of action
models with propositional preconditions, action emulation provides a full
characterization of update effects. Moreover, we find the necessary and suf-
ficient conditions for having the same update effects, in the cases of action
models with propositional preconditions and action models with modal pre-
conditions.

In Chapter 4, we will study the problem of update evolution. Here
update evolution means the change of the state model by iterated updating.
We first study some special cases and then show some sufficient condition
for stabilization.

In Chapter 5, we conclude this thesis by giving possible directions for
further research.

11

Chapter 2

Logics of Message Passing

2.1 Modeling Message Passing by BMS

In multi-agent systems, messages play the role of changing agents’ informa-
tion such as knowledge, belief, etc. We abstract an agent as an information
processing entity which may only has partial information of its own situa-
tion. Passing messages to the agents can reveal them the truth of reality or
make them more confused of the true situation; passing messages amongst
agents allows them to share their partial information and to get some jobs
done. In this Chapter, we try to investigate the cases of message passing:
first, we give some examples of message passing which can be modeled by
BMS approach; second, we present a logic system to model particular ways
of message passing; last, we do a brief analysis of an interesting case and
leave it for further work.

Here we will use single pointed action models, since the message actions
we study are all deterministic actions.

2.2 Examples

We start from a very simple case: Public Announcement.

• Scenario: All agents receive the same message ϕ and are aware of the
fact that they all received this message. The corresponding pointed

12

action model 1 is an S5 model (Assume the set of all agents is Ag):

�� ���� ��ϕ
Ag

��

Updating by publicly announcing ϕ is just eliminating the possible worlds
which do not satisfy ϕ. We can iterate the update process, and get a se-
quence of state models: M, M⊗A,(M⊗A)⊗A, ... In particular, the public
announcement update can be represented by a sequence of non-increasing
state models.

The format of ϕ may determine how many repetitions of an update needs
to have before t he update sequence gets stabilized. If ϕ is a propositional
formula, one update suffices and this meets the intuition that there is no
point to publicly announcing a fact more than once. There are actions that
are not so transparent: sending a private message to a subgroup (so the rest
do not get this message); sending a message to a subgroup in such a way
that rest of the agents notice what is the message about but do not know
the exact content, etc. So the question is: can update logics model these
actions?

The answer is confirmative. We will first briefly introduce several scenar-
ios of passing messages and the corresponding action models in BMS style.
Some of them will be discussed in detail in different sections of this thesis.

1. Message to the whole group, namely a Public Announcement: we have
dealt with this above.

2. Message to a subgroup: here we distinguish 4 interesting cases:

• secure private message to a subgroup: A subgroup of agents,
say B, receives a message ϕ, and the rest receive nothing. The
action model is a KD45 model:

�� ���� ��ϕ
B

�� Ag−B //�� ���� ��>
Ag

��

Intuitively, the agents in group B receives ϕ (the left action), and
the rest Ag−B believes nothing happened (the right action).

1From now on, the pointed world in the action model is indicated by the double border.

13

• insecure private message to a subgroup:A subgroup of agents,
say B, receives a message ϕ, and it’s possible that the message is
leaked to the rest. The action model is a KD45 model:

�� ���� ���� ���� ��ϕ
B

��

Ag−B

����
��

��
�� Ag−B

��<
<<

<<
<<

<

�� ���� ��>Ag 88
Ag−B //�� ���� ��ϕ Agffoo

The difference between this scenario and the above one is agents
in Ag−B now consider two actions possible, instead of believing
only one action (the action does nothing) happened.

• half-public message to a subgroup: A subgroup of agents,
say B, asked a question about whether ϕ is the case, and received
a message that ϕ was indeed the case. The rest of the agents
heard this question also notice the delivery of the answer but
don’t know the exact content. The action model is an S5 model:

�� ���� ��ϕ
Ag

�� Ag−B //�� ���� ��¬ϕ

Ag

��
oo

• misleading:A subgroup of agents, say B, receives a message ϕ,
and misleads the rest agents that they receive ¬ϕ. The action
model is a KD45 model:

�� ���� ��ϕ
B

�� Ag−B //�� ���� ��¬ϕ

Ag

��

3. Message to more groups:

• BCC(Blind Carbon Copy): If you already send some emails, you
may notice that there is a column called BCC, which is supposed
to hide some receivers from others. For instance, your institution
may send an email to all of the members without disclose the
addresses of them. In general, we have three groups: To, CC and
BCC. Since there is no epistemic difference between To and CC
group, we denote them with CC. For the members in CC, they
commonly know that the current message is received by them,

14

but they are not sure whether the people outside CC also get a
blind carbon copy. For the members in BCC, they know that the
members in CC get the current message, but they don’t know
who else gets this message. For the people outside the CC and
BCC group, they may simply believe that nothing happens. So
this case introduced more subtleties than the cases above. Please
refer to the section 2.4 for further analysis.

Remark. The first thing that needs to be noticed is that here we model the
message by formulas, and the different agents’ uncertainty of the message
that other agents get is modeled by the accessible relations of the action
model. Moreover, the BMS action models above assume that messages are
sent by some entity outside the agent system, not by the agents themselves.
The BMS models the events of information updating and it does not address
the problem of agency. It will be interesting to investigate the situation in
which the sender of the messages can be modeled. BCC will be a nice case
to study, since only the sender knows the whole situation about the message
he sends and the receivers (both in CC and BCC list) are aware of this.

15

2.3 Case study: secure private message to a sub-
group

2.3.1 Motivation

Secure private message passing introduces more twists than public announce-
ments, because the agents who do not get the message may believe that
nothing happened. It is interesting to study the logics which incorporates
this kind of actions. Since common knowledge is an essential concept in
the multi-agent systems that deal with knowledge (or information) and its
change, we would also like to add common knowledge into the above logics.

A completeness proof for the logic of public announcement without com-
mon knowledge is easy, due to the axioms (called reduction axioms) such
as [ϕ]�iψ ↔ (ϕ→ �i[ϕ]ψ). But the completeness proofs for dynamic epis-
temic logics with common knowledge are in general hard. The reduction
axioms are missing since the logic with epistemic actions is more expressive
than the logic without them, according to [3, 4].

In [12], Kooi and van Benthem proposed a method called relativization to
make reduction axioms work both in the logic of public announcement with
common knowledge, and in the logic of general epistemic actions. For public
announcement logic, reduction axioms for formulas of the form [ϕ]CBψ is
impossible, according to [3]. So a relativized common knowledge operator
CB(ϕ,ψ) is introduced to make the reduction work. The key clause in the
semantic of the logic of relativized common knowledge(RCL) is :

(M, w) |= CB(ϕ,ψ) iff (M, v) |= ψ for all v such that (w, v) ∈ (B→ ∩JϕK2)∗

where JϕK = {w | (M, w) |= ϕ}, B→=
⋃

i∈B
i→, and (B→ ∩JϕK2)∗ is the

reflexive transitive closure of B→ ∩JϕK2. The normal common knowledge
CBϕ can be expressed as CB(>, ϕ).

The completeness proof of RCL incorporating public announcement works
by the reduction axioms like [ϕ]CB(ψ, χ) ↔ CB(ϕ ∧ [ϕ]ψ, [ϕ]χ).

As for the logic of general epistemic actions, automata are introduced to
represent the common knowledge operator in a rather complicated way.

In the next sections, we present a logic system that models the case of
secure private messages to a subgroup2 and uses the relativization method
to get the completeness proof.

2For simplicity we call it logic of CC. CC comes from the email button CC, which is
the address list of the explicit receivers of the email. Button TO is the same as CC in the
epistemic sense.

16

2.3.2 Logic of Relativized Common Knowledge

Now we introduce the Logic of Relativized Common Knowledge(RCL) pro-
posed in [12].

Definition 2.1 (The language of RCL: LRCL).

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | �iϕ | CB(ϕ,ψ)

We have given the key clause for the semantics of RCL above, and the
rest of the semantics is standard. Now we give the proof system:

Definition 2.2 (Proof system for RCL). The proof system for RCL
contains the following axioms and rules:

Taut all instantiations of propositional tautologies
Dist �i(ϕ→ ψ) → (�iϕ→ �iψ) (distribution)
Dist CB(ϕ,ψ → χ) → (CB(ϕ,ψ) → CB(ϕ, χ)) (distribution)
Mix CB(ϕ,ψ) ↔ (ϕ→ (ψ ∧ EB(ϕ→ CB(ϕ,ψ)))) (mix)
Ind ((ϕ→ ψ) ∧ CB(ϕ,ψ → EB(ϕ→ ψ))) → CB(ϕ,ψ) (induction)

MP
ϕ,ϕ→ ψ

ψ
(modus ponens)

Nec
ϕ

�iϕ
(necessitation)

Nec
ϕ

CB(ψ,ϕ)
(necessitation)

A proof consists of a sequence of formulas such that each formula is either
an instance of an axiom, or it can be obtained from formulas that appear
earlier in the sequence by applying a rule. If there is a proof of ϕ, we write
` ϕ.

The soundness of this proof system is easy to show by induction on the
length of proofs. The completeness proof is similar to the method used for
Propositional Dynamic Logic(PDL).

Theorem 3 (Completeness for RCL; Kooi and van Benthem).

If |= ϕ, then ` ϕ.

Here we do not provide the details for this proof. Please refer to [12].

17

2.3.3 Logic of CC(LCC)

Language and Semantics

Definition 2.3 (The language of LCC: LCC). Here we use the rela-
tivized common knowledge operator instead of the normal one:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | �iϕ | CB(ϕ1, ϕ2) | [CCBϕ1]ϕ2.

We employ the usual abbreviations. In particular, ϕ1 ∨ ϕ2 is shorthand
for ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 for ¬(ϕ1 ∧ ¬ϕ2), ♦iϕ for ¬�i¬ϕ, 〈CCBϕ1〉ϕ2

for ¬[CCBϕ1]¬ϕ2, ĈB(ϕ1, ϕ2) for ¬CB(ϕ1,¬ϕ2).

Definition 2.4. (Semantics of LCC): Ag is the set of all agents in
consideration.(M, w) where M = (W, i→,Val) is a state model. Let i ∈ Ag,
∅ 6= B ⊆ Ag, and ϕ,ψ ∈ LCC . For the atomic propositions and boolean
cases, we just define them as usual.

(M, w) |= �iϕ iff (M, v) |= ϕ for all v such that (w, v) ∈ i→
(M, w) |= CB(ϕ,ψ) iff (M, v) |= ψ for all v such that (w, v) ∈ (B→ ∩JϕK2)∗

(M, w) |= [CCBϕ]ψ iff (M, w) |= ϕ implies (M, w)⊗ (Aϕ
B, a1) |= ψ

where
JϕK := {w | (M, w) |= ϕ} and ⊗ is the product update operator. Aϕ

B is
the action model corresponding to sending a secure private message ϕ to a
non-empty subgroup B, as we showed below:

�� ���� ��a1 : ϕ

B

�� Ag−B //�� ���� ��a2 : >

Ag

��

One may notice that this logic can express everything the logic of public
announcements can express, since we can take B to be the whole set of
agents. Then the action model is3:

�� ���� ��ϕ
Ag

�� �� ���� ��>
Ag

��

Moreover, the normal common knowledge CBϕ is equivalent to CB(>, ϕ).
3The right action has no update effect in the sense that it is not connected the desig-

nated action(s).

18

Now we explain how to find the reduction axioms for LCC. If we use the
usual common knowledge operator, the semantics is as follows:

(M, w) |= CBϕ iff (M, v) |= ϕ for all v such that (w, v) ∈ B→
∗

where B→=
⋃

i∈B
i→, and B→

∗
is its reflexive transitive closure.

Let’s consider the following scenario: after subgroup B received a private
message ϕ, subgroup D achieves common knowledge ψ. This is expressed by
[CCBϕ]CDψ if we use the normal common knowledge operator. Our object
is to find α with:

(M, w) |= α iff (M, w) |= [CCBϕ]CDψ

and since

(M, w) |= [CCBϕ]CDψ iff (M, w) |= ϕ implies (M, w)⊗ (Aϕ
B, a1) |= CDψ

therefore

(M, w) |= α iff (M, w) |= ϕ implies (M, w)⊗ (Aϕ
B, a1) |= CDψ

Now we try to find α by the above condition. According to the relation
between B and D, we distinguish three cases:

(a) D ∩B = ∅
[CCBϕ]CDψ is equivalent to (ϕ→ CD(>, ψ))
The intuition here is that the common knowledge4 among the subgroup
D, which is disjoint with B, does not change after the update, since
the private message only updates the information state of the agents
who get the message.

(b) D ∩ −B = ∅ (i.e. D ⊆ B)
[CCBϕ]CDψ is equivalent to CD(ϕ, [CCBϕ]ψ)
Given D ⊆ B, the intuition here is that if ψ is common knowledge
among a subgroup of B, say D, after a private message ϕ was sent to
B, then it is common knowledge among the group D, in the worlds ϕ
holds, that: after the private message ϕ was sent to B, ψ holds.

(c) D ∩B 6= ∅ & D ∩ −B 6= ∅
[CCBϕ]CDψ is equivalent to CB∩D(ϕ, [CCBϕ]ψ) ∧ (ϕ→ CD(>, ψ))

4One may notice that common belief might be more suitable than common knowledge,
but we will not discuss here.

19

This combines two considerations above. The intuition comes from the
following observation: suppose we have a state model M, then after
the update we have a state model M⊗Aϕ

B which looks like:

MB
a1

Ag−B // Ma2

Where MB
a1

, generated from action a1, is a sub-model of M with only
ϕ-worlds and the B-relations; the Ma2 the same as M; only Ag − B
relations are kept from MB

a1
to Ma2 .

So CDψ should hold in the designated world in this new model: either
the paths stay within Ma1 or they go to Ma2 . For the paths staying
within Ma1 , they are actually D ∩ B-path, so we use [CCBϕ]CB∩Dψ
to capture this, then we apply case (b) to [CCBϕ]CB∩Dψ, and get
CB∩D(ϕ, [CCBϕ]ψ), because D∩B is a subset of B. For the paths go-
ing to M>, the intuition is captured by ϕ→ CDψ, and the equivalent
expression with relativized common knowledge, ϕ→ CD(>, ψ).

So far, we gave the intuition of how to reduce a dynamic operator with
normal common knowledge to one with relativized common knowledge.
Now, we have the idea on the reduction axioms with relativized common
knowledge only:

C-Red-1 D ∩B = ∅
[CCBϕ]CD(ψ, χ) ↔ (ϕ→ CD(ψ, χ))

C-Red-2 D ∩ −B = ∅ (i.e. D ⊆ B)
[CCBϕ]CD(ψ, χ) ↔ CD(ϕ ∧ [CCBϕ]ψ, [CCBϕ]χ)

C-Red-3 D ∩B 6= ∅&D ∩ −B 6= ∅
[CCBϕ]CD(ψ, χ) ↔ CB∩D(ϕ ∧ ψ, [CCBϕ]χ) ∧ (ϕ→ CD(ψ, χ))

Now we can translate the formulas from LCC to LRCL.

Definition 2.5 (Translation). The translation function maps a formula
from the language of LCC to a formula in the language of RCL:

20

t(p) = p
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(�iϕ) = �it(ϕ)
t(CB(ϕ,ψ)) = CB(t(ϕ), t(ψ))
t([CCBϕ]p) = t(ϕ) → p
t([CCBϕ]¬ψ) = t(ϕ) → ¬t([CCBϕ]ψ)
t([CCBϕ]ψ1 ∧ ψ2) = t(ϕ) → t([CCBϕ]ψ1) ∧ t([CCBϕ]ψ2)
t([CCBϕ]�iψ) = t(ϕ) → �it(ψ) for i /∈ B
t([CCBϕ]�iψ) = t(ϕ) → �it([CCBϕ]ψ) for i ∈ B
t([CCBϕ]CD(ψ, χ)) = t(ϕ→ CD(ψ, χ)) for D ∩B = ∅
t([CCBϕ]CD(ψ, χ)) = t(CD(ϕ ∧ [CCBϕ]ψ, [CCBϕ]χ)) for D ∩ −B = ∅
t([CCBϕ]CD(ψ, χ)) = t(CB∩D(ϕ ∧ ψ, [CCBϕ]χ) ∧ (ϕ→ CD(ψ, χ))) for D ∩B 6= ∅

&D ∩ −B 6= ∅

Lemma 4 (Translation Correctness). For all dynamic-epistemic formu-
las α ∈ LCC and all pointed state models (M, w),

(M, w) |= α iff (M, w) |= t(α)

Proof. Given an arbitrary formula α ∈ LCC and state model (M, w), we
prove the result by the induction on α. Here we only show the last case
with common knowledge operator; the rest are easier to verify:

Let α = [CCBϕ]CD(ψ, χ), and assume D ∩ B 6= ∅&D ∩ −B 6= ∅. We
distinguish two cases:

• (M, w) 2 ϕ: it follows that (M, w) |= [CCBϕ]CD(ψ, χ) and (M, w) |=
([CCBϕ]CB∩D(ψ, χ))∧ (ϕ→ CD(ψ, χ)) since for two conjuncts either
the update fails or the antecedent is not true.

• (M, w) |= ϕ: we show (M, w) |= α iff (M, w) |= CB∩D(ϕ∧ψ, [CCBϕ]χ)∧
(ϕ → CD(ψ, χ)). The following figure is the sketch of the new model
[(M, w) updated by (Aϕ

B, a1)]:

�� ���� ��Mϕ

B

�� Ag−B //�� ���� ��M>

Ag

��

It helps to understand the following proof:

From left to right, we assume that (M, w) |= [CCBϕ]CD(ψ, χ). It
follows that (M, w)⊗(Aϕ

B, a1) |= CD(ψ, χ). In the new model, we have
two kinds of D-path: one is D ∩ B-path and one is D − B-path. For

21

the B ∩D path, it ends within Mϕ, and hence (M, w) |= CB∩D(ϕ ∧
ψ, [CCBϕ]χ). For the D −B-path, it ends in M>, so (M, w) |= (ϕ→
CD(ψ, χ)).

From right to left, it equals to show (M, w) |= ¬([CCBϕ]CD(ψ, χ)) implies
(M, w) |= ¬(CB∩D(ϕ ∧ ψ, [CCBϕ]χ) ∧ (ϕ → CD(ψ, χ))). We write it
into diamond version: (M, w) |= 〈CCBϕ〉ĈD(ψ, χ) implies (M, w) |=
ĈB∩D(ϕ ∧ ψ, 〈CCBϕ〉χ) ∨ (ϕ ∧ ĈD(ψ, χ)).

Suppose (M, w) |= 〈CCBϕ〉ĈD(ψ, χ), it follows that (M, w)⊗(Aϕ
B, a1) |=

ĈD(ψ, χ), which means there is a D-path (in ψ-world) from (w, a1)
such that at the end of path χ holds. So either it stays in the Mϕ of the
new model, or it goes to the M>. For the first case (M, w) |= ĈB∩D(ϕ∧
ψ, 〈CCBϕ〉χ), and for the second case (M, w) |= (ϕ ∧ ĈD(ψ, χ)).

Proof System

Definition 2.6 (Proof system for LCC). The proof system contains the
following axioms and rules plus the ones for RCL:

At [CCBϕ]p↔ (ϕ→ p)
PF [CCBϕ]¬ψ ↔ (ϕ→ ¬[CCBϕ]ψ)
Dist [CCBϕ](ψ1 ∧ ψ2) ↔ ([CCBϕ]ψ1 ∧ [CCBϕ]ψ2)
KA− 1 [CCBϕ]�iψ ↔ (ϕ→ �iψ) for i /∈ B
KA− 2 [CCBϕ]�iψ ↔ (ϕ→ �i[CCBϕ]ψ) for i ∈ B
C-Red-1 [CCBϕ]CD(ψ, χ) ↔ (ϕ→ CD(ψ, χ)) for D ∩B = ∅
C-Red-2 [CCBϕ]CD(ψ, χ) ↔ CD(ϕ ∧ [CCBϕ]ψ, [CCBϕ]χ) for D ∩ −B = ∅
C-Red-3 [CCBϕ]CD(ψ, χ) ↔ CB∩D(ϕ ∧ ψ, [CCBϕ]χ) ∧ (ϕ→ CD(ψ, χ)) for D ∩B 6= ∅

&D ∩ −B 6= ∅

Theorem 5. (Completeness of LCC) If |= ϕ then ` ϕ.

Proof. This is immediate since RCL is complete and every formula in LLCC

is provably equivalent to one in LRCL.

In [8], van Eijck proposed a way to reduce DEL to PDL by program
transformation. It is interesting that for the logic of CC case, the transfor-
mation looks as follows:

[CCB
ϕ][D∗]ψ

to

22

[(?ϕ; (B ∩D))∗][CCB
ϕ , s0]ψ ∧ [(?ϕ; (B ∩D))∗; (D −B);D∗][CCB

ϕ , s1]ψ

Here D∗ corresponds to common knowledge operator. CCB
ϕ is the same

as CCϕ
B, and s0 is the world with precondition ϕ and s1 is the world with

precondition >.
This translation is quite related to my translation above; the key one is

[CCBϕ]CD(ψ, χ) ↔ CB∩D(ϕ ∧ ψ, [CCBϕ]χ) ∧ (ϕ→ CD(ψ, χ)) for D ∩B 6=
∅&D ∩ −B 6= ∅. This part [(?ϕ; (B ∩ D))∗][CCB

ϕ , s0]ψ corresponds to
CB∩D(ϕ ∧ ψ, [CCBϕ]χ) and [(?ϕ; (B ∩ D))∗; (D − B);D∗][CCB

ϕ , s1]ψ cor-
responds to ϕ→ CD(ψ, χ)).

23

2.4 Case study: Blind Carbon Copy (BCC)

In this section, we discuss situations in which a message can be sent by blind
carbon copy. The idea is inspired by the following feature of email.5 When
sending an email, we can specify the following things:

Item Usage
From: Sender
To: Receiver(s)
CC: Carbon Copy Receiver(s)
BCC: Blind Carbon Copy Receiver(s)

Usually ”From:” is filled automatically by the email program to indicate
the sender. But actually you can change it in some situations; that’s why
some spam emails come from the addresses that not exist6. That is to say
the credibility of the email sender can be doubted. The difference between
To: and CC: is not so much: usually the receiver(s) in To: might be more
relevant than that in CC:, and in the epistemic scene they are the same since
they commonly know that such a message is received by each other. The
meaning of ”BCC:” is easy to understand if we look at what every receiver
sees in email header:

Item Usage
From: Sender
Date: The time when email is sent
To: Receiver(s)
CC: Carbon Copy Receiver(s)

Those in BCC list will not be indicated in the email header. This in-
creases the uncertainties among the agents who received this email because
those in To and CC list will not know who also received a BCC. Even those
who received a BCC is also uncertain of who else received a BCC. In fact
only the sender knows the true situation, and every receiver aware of this
fact but it’s not common knowledge among the receivers.

To simplify the analysis, we make some assumptions: (1) emails(or mes-
sages) are never lost; (2) sender is not an agent in the model (we can add
individual sender later); (3) the To list and CC list are emerged into one;
(4) those in the BCC list do not know whether anyone else is in the list; (5)

5It is an example in one of Johan’s lectures.
6Sometimes you may get an email which inform you as the winner of a BIG lottery.

But after you reply that email, you may get an error message which says ”no such user
exists.” :-)

24

nobody is both in the CC and the BCC list (because if an agent is in both
lists, the email looks exactly the same as if he were only in the CC).

Here is a general case: suppose we have a group of agents, say Ag. Ini-
tially, all the agents are ignorant of some fact and their ignorance is common
knowledge among them. A message is sent to a subgroup of agents, say CCs,
to reveal that fact, and at the same time a blind carbon copy is sent to an-
other subgroup, say BCCs, and there may be some other agents, say RSTs,
who receive nothing.7 Now It is common knowledge among those agents in
CCs that everyone in CCs receive this message and some in Ag\CCs may
have received a blind carbon copy. For anyone in BCCs, he receives a blind
carbon copy and knows what is known by those in CCs about this message,
but is not certain whether anyone else also got such a blind carbon copy.
For those in RSTs, they just believe nothing happened.

There are different uncertainties among the agents: those in CCs are
uncertain of whether a blind carbon copy was sent and which agents got a
copy; those in BCCs are uncertain about who else also got the blind carbon
copy, etc; those in RSTs have no uncertainty about what happens, but their
existence increases the uncertainties among those in CCs and BCCs.

The action model expends exponentially since the number of subgroups
of n agents is 2n. For the extreme case that everyone gets a blind carbon
copy, each agent must consider 2n−1 possible situations, and the action
model should have 2n possible actions. This makes the high complexity of
action models. We will leave this for further research.

7Ag=CCs∪BCCs∪RSTs, and CCs,BCCs,RSTs are pairwise disjoint.

25

Chapter 3

Action Emulation

3.1 Introduction

Actions with epistemic effects, such as informing someone that something
is the case, are quite similar to situations with epistemic aspects, such as
models of the states of knowledge of groups of agents. Knowledge of agents
is encoded in epistemic models, with transition relations i→ modelling the
epistemic state of each agent i, and valuations over a set of proposition
letters modelling factual states of affairs.

[4] proposes to model epistemic actions as epistemic models, with valu-
ations replaced by preconditions. (See also: [1, 2, 3, 5, 6, 7, 9, 10, 13].)

This chapter addresses the question of the appropriate notion of equiv-
alence for action models. It may seem that generalizing bisimulations to
action models in the obvious way to ‘precondition preserving bisimulation’,
as is proposed in [2], is the way to go.

In BMS, it has been proved that the action update operation ⊗ preserves
ordinary bisimulation on epistemic models, as showed in theorem 1.

Of course, we can also look at the action models modulo LANG bisim-
ulation:

Theorem 6 (Preservation of action bisimulation). The action update
operation preserves action bisimulation:

if A ↔ B then M⊗A ↔ M⊗B.

Proof. We have to show that for every (w, si) ∈ M ⊗ A there is a (v, tj)
among the actual worlds of M ⊗ B with (w, si) ↔ (v, tj), and vice versa.
This follows immediately from the existence of the bisimulation ↔ between

26

A and B, for the relation on M⊗A×M⊗B defined by means of

(w, s)C(v, t) iff w = v and s↔ t

is a bisimulation.

3.2 Same Update Effect

Thinking of the finite action models (A, S) as ‘action programs’, the basic
semantic notion of equivalence between such programs is that of having the
same update effect:

Definition 3.1 (Same update effect). Action models A and B have the
same update effect, if given any state models M:

M⊗A ↔ M⊗B.

We denote this as A ≡ACT B. Please note that the bisimulation ↔ above
is a total bisimulation.

For multiple pointed action models (A, S) and (B, T), (A, S) ≡ACT

(B, T) means for any multiple pointed state model (M, X),

(M, X)⊗ (A, S) ↔ (M, X)⊗ (B, T)

In the following proofs, we will mostly deal with the multiple pointed
cases. The reason to employ multiple pointed models for updating is that
it allows us to handle choice. Suppose we want to model the action of
testing whether ϕ followed by a public announcement of the result. This
involves choice: if the outcome of the test is affirmative, then do this, else do
that. Choice is modelled in a straightforward way in multiple pointed action
models. Once we allow multiple pointed action models, it is reasonable to
also take our epistemic models to be multiple pointed, with the multiple
points constraining the whereabouts of the actual world.

From the update bisimulation preservation theorem it follows that:

Theorem 7. Given pointed action models (A, S) and (B, T),

(A, S) ↔ (B, T) implies (A, S) ≡ACT (B, T)

Can we turn this around? No, we cannot. Here is a simple counterex-
ample. Let

(A, S) = (({a0}, ∅, {a0 7→ ⊥}), {a0}),

27

and let
(0, T) = ((∅, ∅, ∅), ∅).

Then (A, S) ≡ACT (0, T), but (A, S) and (0, T) are not bisimilar. Removing
the inconsistent states (the states with a precondition equivalent to ⊥) from
an action model does not affect its update potential, so we might as well
assume that action models contain only consistent states. This would reduce
A to 0. However, Figure 3.1 provides another counterexample: non-bisimilar
action models with consistent states and with the same update potentials.

(A1, S) :
�� ���� ���� ���� ��a0 : >

Ag

��
(A2, T) : �� ���� ���� ���� ��a1 : p

Ag

�� Ag //�� ���� ���� ���� ��a2 : ¬p

Ag

��
oo

Figure 3.1: Non-bisimilar actions with the same update effects

Clearly, action a0 in Figure 3.1 is not bisimilar to a1, since these actions
have different preconditions. Also a0 is not bisimilar to a2, for the same
reason. Still the two action models have the same update effects:

Theorem 8. Given pointed action models (A1, S), (A2, T) as in Figure 3.1,
for any pointed state model (M, X),

(M, X)⊗ (A1, S) ↔ (M, X)⊗ (A2, T)

Proof. Define a binary relation between M⊗A1 and M⊗A2:
Z := {〈(w, a0), (w, a1)〉 | (M, w) |= Pre(a1)} ∪ {〈(w, a0), (w, a2)〉 | (M, w) |=
Pre(a2)}. Easy to check Z is the desired bisimulation.

For another example, consider Figure 3.2.
Each of the pointed action models in Figure 3.2 has the effect of selecting

the accessibility paths with p ∨ q holding at every node along the paths.
Examples like these suggest that the notion of LANG bisimilarity is too

strong to capture the ‘essence’ of our update actions.
In the following sections, we will first define a structural relation on

action models, called action emulation, and show that this notion exactly
captures the update effects of action models.

28

0:p v q 1:p v q

2:p

3:q

4:p

5:q

6:p

8:p

9:q

7:q

Figure 3.2: More non-bisimilar actions with the same update effects

3.3 Action Emulation

We now proceed to give a structural condition for equivalence of action
models. The relation of action emulation between action models, to be
defined below, can be viewed as a suitably weakened bisimulation, adapted
to the case where valuations are replaced by preconditions.

Instead of insisting that the preconditions are logical equivalent, we just
require that the preconditions are compatible.

Instead of insisting on a precise match in the zig and zag clauses, we
merely require that an appropriate choice from a list of possible matches
can be made. The idea behind this is that to match a pair (w, s) in M⊗A,
we need a pair (w, t) in M ⊗ B. For (w, t) to exist, the precondition of t
should be satisfied by w. Requiring that s and t have the same precondition
would be too strong. Instead we require that there is a choice between
finitely many ti the preconditions of which are jointly implied by that of s.

These considerations are reflected in the following definition.

Definition 3.2 (Action Emulation). Given action models A and B, a
relation E ⊆WA×WB is an action emulation if whenever sEt the following
hold:

Preconditions Pre(s) ∧ Pre(t) is consistent.

Zig If s i→ s′ then there are t1, . . . , tn with

t
i→ t1, . . . , t

i→ tn, s
′Et1, . . . , s

′Etn and Pre(s′) |= Pre(t1)∨· · ·∨Pre(tn).

29

Zag If t i→ t′ then there are s1, . . . , sn with

s
i→ s1, . . . , s

i→ sn, s1Et
′, . . . , snEt

′ and Pre(t′) |= Pre(s1)∨· · ·∨Pre(sn)

We denote this as A � B.
For multiple pointed action models (A, S) and (B, T), (A, S) � (B, T)

means there is an action emulation E ⊆ WA ×WB satisfying the following
extra requirement: for every s ∈ S(⊆ WA) there are t1, . . . , tn ∈ T (⊆ WB)
such that sEt1, . . . , sEtn and Pre(s) |= Pre(t1)∨ · · · ∨Pre(tn), and for every
t ∈ T there are s1, . . . , sn ∈ S with s1Et, . . . , snEt and Pre(t) |= Pre(s1) ∨
· · · ∨ Pre(sn).

A total action emulation means the emulation connects (A,WA) and
(B,WA). For convenience, we write A � B if (A,WA) � (B,WA).

Observe that the examples of actions with the same update effects all
satisfy this structural requirement. Also it is easy to see that action emula-
tion is a weakening of bisimulation, in the following sense:

Theorem 9. Given pointed action model (A, S) and (B, T), if (A, S) ↔
(B, T) then (A, S) � (B, T).

Proof. The bisimulation Z witnessing (A, S) ↔ (B, T), is also an action
emulation witnessing (A, S) � (B, T), since the three conditions of action
emulation follows from three conditions of action bisimulation respectively.

We show that there is always a maximal action emulation. First we
prove a lemma:

Lemma 10. Suppose R,U both emulate action models (A, S) and (B, T),
then R ∪ U is an action emulation connecting (A, S) and (B, T) too.

Proof. For any (s, t) ∈ R ∪ U , it must be the case that either (s, t) ∈ R
or (s, t) ∈ U . Without loss of generality, suppose (s, t) ∈ U , then the
three conditions (Invariance, Zig, Zag) and the extra requirement follows
trivially.

Then a maximal action emulation is immediate:

Theorem 11. There is always a maximal action emulation.

30

Proof. Given action model (A, S) and (B, T), and the collection of all action
emulations between them, say EM.

⋃
EM is a maximal action emulation

between A and B, due to the fact that the union of two action emulations
is still an action emulation, as showed in lemma 10.

The proof that the existence of an action emulation between (A, S) and
(B, T) guarantees that they have same update effect is also straightforward:

Theorem 12. Given pointed action models (A, S) and (B, T),

If (A, S) � (B, T) then (A, S) ≡ACT (B, T).

Proof. Let (M, X) be an arbitrary pointed epistemic model. Assume (A, S) �
(B, T) and let E be an action emulation witnessing this.

Define R ⊆ M⊗A×M⊗B by means of: (w, s)R(v, t) :≡ w = v ∧ sEt.
We show that R is a bisimulation: suppose (w, s)R(v, t),

ValEQ From (w, s)R(v, t) we get that w = v and hence Val(w, s) = Val(v, t).

Zig Let (w, s) i→ (w′, s′). Then w
i→ w′, s i→ s′, and (M, w′) |= Pre(s′).

From (w, s)R(v, t) we have that sEt. By sEt, there are t1, . . . , tn

with t
i→ t1, . . . , t

i→ tn, s′Et1, . . . , s′Etn, and Pre(s′) |= Pre(t1) ∨
· · · ∨ Pre(tn). Since (M, w′) |= Pre(s′), it follows from Pre(s′) |=
Pre(t1) ∨ · · · ∨ Pre(tn) that there is some ti with (M, w′) |= Pre(ti).
Thus (w′, s′)R(w′, ti).

Zag Same reasoning vice versa.

Now show R connects (M, X)⊗ (A, S) and (M, X)⊗ (B, T). Given (w, s) ∈
M⊗A with w ∈ X and s ∈ S, we have (M, w) |= Pre(s). Since E connects
(A, S) and (B, T), there must be t1, . . . , tn, such that sEt1, . . . , sEtn and
Pre(s) |= Pre(t1)∨ . . .∨Pre(tn); hence (M, w) |= Pre(t1)∨ . . .∨Pre(tn). So
there must be ti such that (M, w) |= Pre(ti), therefore (w, s)R(w, ti). And
the other direction is similar.

The theorem shows that action emulation is a sufficient condition for
having the same update effect. To see whether it is also necessary, we will
make a case separation as follows.

Call an action model propositional if all preconditions that occur in it
are purely propositional formulas. Call an action model modal if all precon-
ditions that occur in it are multi-modal formulas. In the next two sections
we will look at the update effects of propositional and modal action models,
and show that in propositional case having the same update effect implies

31

the existence of an action emulation, and in modal case, having the same
update effect is characterized by the bisimulation of expansion defined in
this thesis.

3.4 Update Effects of Propositional Actions

In this section we will show that in the case of actions with propositional
preconditions, having the same update effect can be characterized in terms
of the update effects in some special cases.

Let Q be a finite set of proposition letters, then a valuation over Q is a
subset of Q. For v ⊆ Q, let Φ(v) :≡

∧
p∈v p ∧

∧
p/∈v ¬p. Then a valuation v

models a propositional formula ψ (written as v |= ψ) if Φ(v) |= ψ.
Since the preconditions of actions are propositional, we can have a set

of valuations such that precondition can be modeled by this set. Given an
action model A and let Q be the set of proposition letters occurring in the
preconditions of A, for a ∈ A, XP(A, a) :≡ {(a,v) | v ∈ P(Q),v |= Pre(a)},
which is called the eXpansion of a Proposional action a.

Now we define the expansion of an action model with propositional pre-
conditions by replacing all the actions with new actions in their expansions,
in such a way that the expansion preserves the update effect.

Definition 3.3 (Expansion of propositional action models). Let A =
(W, i→,Pre) be a finite action model with propositional precondition, Q is
the set of all proposition letters occurring in A, the expansion of A, denoted

as A◦, is (W ′,
i→
′
,Pre′), where:

W ′ :≡
⋃

a∈WA

XP(A, a)

Pre′(a,v) :≡
∧
p∈v

p ∧
∧
p/∈v

¬p

(a,v) i→
′
(a′,v′) iff a

i→ a′,v |= Pre(a),v′ |= Pre(a′)

For the case of a multiple pointed action model (A, S), the expansion is
(A◦, S◦) where A◦ is defined above, and S◦ :≡

⋃
a∈S XP(A, a)

The following theorem shows that (A, S) and (A◦, S◦) have same update
effect:

32

Theorem 13. Given a finite action model (A, S), it has same update effect
as its expansion, i.e. (A, S) ≡ACT (A◦, S◦).

Proof. Given any state model (M, X), we show that (M, X) ⊗ (A, S) ↔
(M, X) ⊗ (A◦, S◦). Define R := {〈(w, s), (w, (s,Val(w)))〉 | w ∈ WM, s ∈
WA, (M, w) |= Pre(s)}.

Suppose (w, s)R(w, (s,Val(w))):

ValEQ Easy to see Val(w, s) = Val(w) = Val(w, (s,Val(w))).

Zig Let (w, s) i→ (w′, s′). Then w
i→ w′, s i→ s′, and (M, w′) |= Pre(s′).

Therefore, by the definition of expansion, (s′,Val(w′) ∈ A◦, and hence
we have (w′, (s′,Val(w′))) ∈ M⊗A◦ complete this condition.

Zag Same reasoning vice versa.

For any (w, s) ∈ M ⊗A with w ∈ X, s ∈ S, using the same reasoning
in Zig, we find a corresponding world (w, (s,Val(w))) ∈ M ⊗A◦ with w ∈
X, (s,Val(w)) ∈ S◦, and vice versa.

Thinking it from another way, we can get the expansion of (A, S) by up-
dating it with a specific state model as follows: The epistemic state model
VALQ is the model (W,R,Val) where W = P(Q), R is the universal relation
on W for every agent i ∈ Ag, and Val is the identity function. Thus, worlds
are valuations, and the valuation at each world is that world itself. For con-
venience, we use VAL∗Q to denote a special pointed model (VALQ,WVALQ

).

Theorem 14. Given an action model A, let Q be the set of all proposition
letters occurring in A, then there is a structure preserving bijection between
VALQ ⊗A and A◦.

Proof. Define a relation Z ⊆ VALQ ⊗A×A◦:
Z :≡ {〈(w, a), (a,Val(w))〉 | a ∈WA, (VALQ, w) |= Pre(a)}
We have:

Bijection For any (w, a) ∈ VALQ ⊗ A, we have (VALQ, w) |= Pre(a),
therefore (a,Val(w)) ∈ A◦, and vice versa. So Z is a bijection.

Relation preserving For any (w, a) i→ (w′, a′), we have a
i→ a′, then

correspondingly we have (a,Val(w)) i→ (a′,Val(w′)). And vice versa.

33

The above theorem shows that state model VALQ ⊗ A and action A◦

are almost the same. The only difference is that the former one has valua-
tion for each world and the latter one has precondition for each world, but
here valuation and precondition are virtually the same, by Φ(Val(w, a)) ≡
Pre(a,Val(w)).

Clearly we have:

Theorem 15. Given propositional action models (A, S) and (B, T),

(A, S) ≡ACT (B, T) implies (A◦, S◦) ↔ (B◦, T ◦)

Proof. What holds for an arbitrary epistemic model (M, X) certainly holds
for VAL∗Q, so VAL∗Q ⊗ (A, S) ↔ VAL∗Q ⊗ (B, T). By theorem 14, there
is a structure preserving bijection f from VALQ ⊗ A to A◦, and g from
VALQ ⊗ B to B◦. The bisimulation between A◦ and B◦ is established by
Z :≡ {(s, t) | s ∈ WA◦ , t ∈ WB◦ , f−1(a) ↔ g−1(b)}, since the precondition
equivalence and zig-zag conditions correspond to the invariance and zig-zag
conditions in VALQ⊗A ↔ VALQ⊗B. Also there is one-one correspondence
between the pointed worlds in VAL∗Q ⊗ (A, S) and (A◦, S◦). Therefore
(A◦, S◦) ↔ (B◦, T ◦).

Next, we prove the implication from bisimulation of expanded models to
having the same update effect:

Theorem 16. Given propositional action models (A, S), (B, T),

(A◦, S◦) ↔ (B◦, T ◦) implies (A, S) ≡ACT (B, T)

Proof. Suppose (A◦, S◦) ↔ (B◦, T ◦), according to theorem 14 and using
similar argument in theorem 15, VAL∗Q ⊗ (A, S) ↔ VAL∗Q ⊗ (B, T), with Q
be the set of all proposition letters occurring in A,B.

Let (M, X) be an arbitrary pointed epistemic model. We have to show
that (M, X)⊗ (A, S) ↔ (M, X)⊗ (B, T).

Define a relation C ⊆WM⊗A ×WM⊗B by means of

(w, s)C(v, t) iff w = v & (Val(w), s) ↔′ (Val(v), t),

where ↔′ is a bisimulation linking VAL∗Q ⊗ (A, S) to VAL∗Q ⊗ (B, T).
We show that C is a bisimulation. Assume (w, s)C(v, t). Then w = v

and (Val(w), s) ↔′ (Val(w), t). We check the three bisimulation conditions:

Invariance Immediate from the fact that the valuation of (w, s) equals the
valuation of w, and then equals the valuation of (w, t).

34

Zig Let (w, s) i→ (w′, s′). Then w i→ w′ and s i→ s′. It holds in VALQ ⊗A

that (Val(w), s) i→ (Val(w′), s′). By the zig condition for (Val(w), s) ↔′

(Val(w), t), it follows that there is a t′ with (Val(w), t) i→ (Val(w′), t′)
and (Val(w′), s′) ↔′ (Val(w′), t′). So (w′, s′)C(w′, t′), as desired.

Zag Similar vice versa.

For any (w, s) ∈ M⊗A with w ∈ X, s ∈ S, there is must be (Val(w), s) ∈
VALQ ⊗A due to the fact that (M, w) |= Pre(s). According to the bisimu-
lation between VAL∗Q ⊗ (A, S) and VAL∗Q ⊗ (B, T), there exists t ∈ T such
that (Val(w), s) ↔′ (Val(w), t), hence there is (w, t) ∈ M ⊗ B such that
(w, s)C(w, t). The other direction is similar.

Combining these, we get:

Theorem 17. Given propositional action models (A, S) and (B, T),

(A◦, S◦) ↔ (B◦, T ◦) iff (A, S) ≡ACT (B, T)

Proof. Immediate from theorems 15 and 16.

3.5 Update Effects of Modal Actions

We now turn to the case where the preconditions are multi-modal formulas,
i.e., where they belong to the language defined by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | �iϕ

We extend the definition of action model expansions, as follows. Let Π
be the set of preconditions occurring in action models A,B. Let Q be the
set of all proposition letters occurring in Π. Let MCONSΠ be the set of all
maximal consistent1 subsets taken from ¬SubΠ, where Sub denotes taking
subformulas and ¬ denotes closure under single negations. Let EXPΠ be the
triple (W, i→,Val) where W = MCONSΠ, Val is the function that assigns to
every maximal consistent subset Γ ∈ MCONSΠ with the Q-valuation Γ∩Q,
and relation i→ is given by:

Γ i→ Γ′ iff ∀ϕ ∈ Γ′,�i¬ϕ /∈ Γ.

Thus, the accessibility relations now take the modal constraints imposed by
the preconditions into account. For convenience, we use EXP∗Π to denote
(EXPΠ,WEXPΠ

).
The following lemma will play a role in our proof:

1We use a normal multi-modal axiom system here.

35

Lemma 18 (Truth Lemma). Given action model A and EXPΠ induced
from A, and a ∈WA, and for any ϕ ∈ ¬SubΠ,

(EXPΠ,Γ) |= ϕ iff ϕ ∈ Γ

Proof. The proof follows from a standard induction on the structure of for-
mulas, so we do not provide it here.

Similar to the propositional case, we first give the expansion of a modal
action, then define the expansion of an action model. Given a modal action
model A and let Π be the set of preconditions in A. Let Q be the set of
proposition letters occurring in Π, for a ∈ A, XM(A, a) := {(a,Γ) | Pre(a) ∈
Γ & Γ ∈ MCONSΠ}, which is called the eXpansion of a Modal action a.

Now we define the expansion of a modal action model by replacing all the
actions with new actions in their expansions. Then we show the expansion
preserves same update effect.

Definition 3.4 (Expansion of modal action models). Let A = (W, i→
,Pre) be a finite action model with modal preconditions, and Π be the set
of preconditions in A, which can be modal formulas. Let Q be the set of
proposition letters occurring in Π, the expansion of A (denoted as A�) is

(W ′,
i→
′
,Pre′), where:

W ′ :=
⋃

a∈WA

XM(A, a)

Pre′(a,Γ) :=
∧

p∈Γ∩Q

p ∧
∧

p/∈Γ∩Q

¬p

(a,Γ) i→
′
(a′,Γ′) iff a

i→ a′ and Γ i→ Γ′

For the case of a multiple pointed action model (A, S), the expansion is
(A�, S�) where A� is the same as above, and S� :=

⋃
a∈S XM(A, a)

Similar to theorem 14, we show that the expansion of A is very similar
to EXPΠ updating with A:

Theorem 19. Given a modal action model A, let Π be the set of the precon-
ditions in A, then there is a structure preserving bijection between EXPΠ⊗A
and A�.

36

Proof. Define a relation Z ⊆ EXPΠ ⊗A×A�:
Z := {〈(Γ, a), (a,Γ′)〉 | a ∈WA,Γ = Γ′ ∈ MCONSΠ}
We have:

Bijection By truth lemma, we have (Γ, a) ∈ EXPΠ ⊗A iff (EXPΠ,Γ) |=
Pre(a) iff Pre(a) ∈ Γ iff (a,Γ) ∈ A�. For any (Γ, a) ∈ EXPΠ ⊗A, we
have one unique correspondence (a,Γ) ∈ A�. So Z is a bijection.

Relation preserving For any (Γ, a) i→ (Γ′, a′), we have Γ i→ Γ′ and a
i→

a′, which exactly make (a,Γ) i→ (a′,Γ′); and vice versa.

Clearly we have:

Theorem 20. Given modal action models (A, S) and (B, T),

(A, S) ≡ACT (B, T) implies (A�, S�) ↔ (B�, T�)

Proof. What holds for an arbitrary epistemic model (M, X) certainly holds
for EXP∗Π, so EXP∗Π ⊗ (A, S) ↔ EXP∗Π ⊗ (B, T). By the theorem 19 and a
similar argument as in theorem 15, it follows that (A�, S�) ↔ (B�, T�).

Next, we prove that for modal action models, bisimilarity of expanded
models implies having the same update effect.

Theorem 21. Given modal action models (A, S) and (B, T),

(A�, S�) ↔ (B�, T�) implies (A, S) ≡ACT (B, T)

Proof. Assume (A�, S�) ↔ (B�, T�). By theorem 19, we have EXP∗Π ⊗
(A, S) ↔ EXP∗Π⊗(B, T), with Π the set of preconditions occurring in A,B.

Let (M, X) be an arbitrary epistemic model. We have to show that
(M, X)⊗ (A, S) ↔ (M, X)⊗ (B, T).

Let ΠM
w be the set {ϕ ∈ ¬SubΠ | (M, w) |= ϕ}. Note that ΠM

w ∈
MCONSΠ.

Define a relation C ⊆WM⊗A ×WM⊗B by means of

(w, s)C(v, t) iff w = v and (ΠM
w , s) ↔′ (ΠM

w , t).

where ↔′ is the bisimulation linking (A�, S�) to (B�, T�).
We show that C is a bisimulation. Assume (w, s)C(v, t). Then w = v

and (ΠM
w , s) ↔′ (ΠM

w , t). We check the three bisimulation conditions:

37

Invariance Immediate from the fact that the valuation of (w, s) equals the
valuation of w equals the valuation of (w, t).

Zig Let (w, s) i→ (w′, s′). Then w
i→ w′, s i→ s′, and (M, w′) |= Pre(s′). It

follows from (M, w′) |= Pre(s′) that Pre(s′) ∈ ΠM
w′ .

Let ϕ ∈ ΠM
w′ . Assume, for a contradiction, that �i¬ϕ ∈ ΠM

w . Then,
because ΠM

w is maximally consistent, ♦iϕ /∈ ΠM
w , and contradiction

with the fact that (M, w) |= ♦iϕ. It follows that �i¬ϕ /∈ ΠM
w . Thus,

ΠM
w

i→ ΠM
w′ .

From Pre(s′) ∈ ΠM
w′ we get that (ΠM

w′ , s′) is among the states of A�,

and from s
i→ s′ and ΠM

w
i→ ΠM

w′ it follows that (ΠM
w , s) i→ (ΠM

w′ , s′).

Since (ΠM
w , s) ↔′ (ΠM

w , t), it follows from (ΠM
w , s) i→ (ΠM

w′ , s′) that

there is a t′ with (ΠM
w , t) i→ (ΠM

w′ , t′) and (ΠM
w′ , s′) ↔′ (ΠM

w′ , t′). There-
fore (w′, s′)C(w′, t′), as desired.

Zag Similar.

Easy to check that each pointed world in (M, X) ⊗ (A, S) connects one in
(M, X)⊗ (B, T) and vice versa.

Combining the above, we have:

Theorem 22. Suppose (A, S) and (B, T) have modal preconditions, then

(A�, S�) ↔ (B�, T�) iff (A, S) ≡ACT (B, T)

Proof. Immediate from theorems 20 and 21.

One may note that the modal precondition case implies the propositional
case. The model VALQ is obtained from EXPΠ when no modal operators
occurred in the preconditions. The main reason we do this case separation
is due to the different results for modal contraction in the following section.

3.6 Model contraction preserving update effects

Now we look at the converse of expansion, i.e. contraction. We contract the
action models in such a way that same update effects are preserved. Here is
a simple example in Figure 3.3.

We have shown that (A1, a0) and (A2, {a1, a2}) have same update effect.
And it is easy to see that they are not bisimilar. However, we can view A1

38

A1 :
�� ���� ���� ���� ��a0 : >

Ag

��
A2 : �� ���� ���� ���� ��a1 : p

Ag

�� Ag //�� ���� ���� ���� ��a2 : ¬p

Ag

��
oo

Figure 3.3: Contraction of action model

as a contracted action model from A2: namely the actions a1 and a2 in A2

can be glued together. The key observation here is that they have the same
predecessors and successors. We make this more formal:

Definition 3.5 (Contraction of action models). Let A = (W, i→,Pre)
be a finite action model, the contracted model of A with respect to a ∈W ,
denoted as CTR(A, a), is generated by the following procedure:
Let

T(a) :≡ {b ∈W | ∀c ∈W, i ∈ Ag(c i→ a iff c
i→ b)&(a i→ c iff b

i→ c)}

then
We get CTR(A, a) from A by deleting the actions in T(a)\{a} and

related links, then set Pre(a) :≡
∨
{Pre(b) | b ∈ T(a)}.

If an action model can not be contracted to a smaller model, then we
call it a fully contracted model.

Now we show that A and CTR(A, a) have same update effect. For the
simplicity of presentation, we only treat models without pointed worlds, and
therefore use total bisimulation in the following proofs. It is easy to adapt
the results to pointed bisimulation.

Theorem 23. Given action model A, and a ∈WA:

A ≡ACT CTR(A, a)2

Proof. Given any state model M, define a binary relation between M ⊗A
and M⊗ CTR(A, a) as follows:

Z := {〈(w, a′), (w, a)〉 | a′ ∈ T(a)} ∪ {〈(w, b), (w, b)〉 | b ∈WA\T(a)}

Then we show Z is a total bisimulation. Suppose 〈(w, a1), (w, a2)〉 ∈ Z:

ValEQ : Immediately follows from the fact that the valuations of (w, a1)
equals to the valuation of w, which equals to the valuation of (w, a2);

2For the reason give above, we use total bisimulaton here.

39

Zig : suppose (w, a1) →i (w′, a′1). We distinguish 4 cases:

• a1, a
′
1 ∈ T (a): So a1, a

′
1 and a have the same predecessors and

successors; combined with the fact that a1
i→ a′1, we know that

there are reflexive and transitive i-links among a1, a
′
1 and a.

By the definition of Z, a2 = a. Therefore a1 and a2 have the
same predecessors and successors. Then (w′, a) will complete this
condition, since 〈(w′, a′1), (w′, a)〉 ∈ Z.

• a1 ∈ T (a), a′1 /∈ T (a): So a1 and a have the same predecessors
and successors. By the definition of Z, a2 = a. Therefore a1 and
a2 have the same predecessors and successors. Then (w′, a′1) will
complete this condition, since 〈(w′, a′1), (w′, a′1)〉 ∈ Z.

• a1 /∈ T (a), a′1 ∈ T (a): By Z, a1 = a2. Then we take (w′, a) to
complete this condition, since a′1 and a have the same predeces-
sors, and 〈(w′, a′1), (w′, a)〉 ∈ Z.

• a1 /∈ T (a), a′1 /∈ T (a): By Z, a1 = a2. Then we take (w′, a′1) to
complete this condition, which is easy to see.

Zag : similar argument.

Easy to check that Z is a total relation. For each (w, s) ∈ M ⊗ A, s
belongs to either T(a) or WA\T(a), then there is (w, a) or (w, s) in M ⊗
CTR(A, a) correspondingly. The other direction is similar.

There could be different ways to contract an action model to a minimal
one, due to the different order of worlds selected to do contraction. However,
we can show that any fully contracted action model of A has the same update
effect as A:

Theorem 24. Let A be a finite action model, and A′ is a fully contracted
action model started from A, then

A ≡ACT A′

Proof. Given any state model M.
Since A is finite, the contraction procedure of A can only repeat finitely

many times before it is contracted to A′. Suppose the sequence of contract-
ing A is as follows: A0(= A),A1, ...,An(= A′). From theorem 23, it follows
that M⊗Ai−1 ↔ M⊗Ai for 1 ≤ i ≤ n. So by transitivity of bisimulation,
we have M⊗A ↔ M⊗A′. Therefore A ≡ACT A′ as desired.

We also can define a fully contracted action model directly:

40

Definition 3.6 (Full contraction). Let A = (W, i→,Pre) be a finite action

model, A◦ = (W ′,
i→
′
,Pre′) is a fully contracted model of A, where:

• W ′ = {T(a) | a ∈W}

• Pre′(T(a)) =
∨

b∈T(a) Pre(b)

• T(a) i→
′
T(b) iff a

i→ b

Now we show different ways of contraction virtually leads to same result:

Theorem 25. Given action model A, suppose A′ is a fully contracted model
of A, and A◦ is the particular one defined above, then A′ is isomorphic to
A◦.

Proof. Suppose A′ is obtained from a series one-step contraction A0,A1, · · · ,An,
such that A0 = A and An = A′. The universe of A can be divided into
equivalent classes, in which worlds have same predecessors and successors.
One step contraction just takes a representative world from each equivalent
class and then replace that class with it, and the links to that equivalent
class is preserved by this representative one. Then the isomorphism follows
immediately.

It is easy to see that the particular fully contracted model defined above
has the same update effect as the other ones:

Theorem 26. Given an action model A, let A′ be an arbitrary fully con-
tracted model of A, then A◦ ≡ACT A′.

Proof. This easily follows from theorem 24.

We have shown that if two action models have the same update effect,
then the expansions of two action models are bisimilar, as in theorem 15
for propositional case and in theorem 20 for modal case. Our contraction
applies to both cases, then a question is: does a similar theorem hold for the
contractions of action models? The answer is no, due to the counterexample
in Figure 3.4.

In Figure 3.4, we have two action models (A, S), (B, T) with S = {0}
and T = {1, 2}. It is not hard to see that they are not bisimilar, and we can
show that they have same update effects by theorem 12 and an easy-to-check
fact (A, S) � (B, T). Please notice that their fully contracted models are
identical with themselves, since no contraction is possible for them. So this

41

(A, S) :
�� ���� ���� ���� ��0 : p ∨ q

Ag

��
(B, T) :

�� ���� ���� ���� ��1 : p

Ag

��

Ag

��

�� ���� ���� ���� ��2 : q

Ag

��

Ag

���� ���� ��3 : q

Ag

GG

OO

�� ���� ��4 : p ∨ q

Ag

GG

Figure 3.4: Action models with the same update effects, but their contrac-
tions are non-bisimilar.

example shows that for two action models with same update effects, their
contraction are not necessary bisimilar.

But the converse does hold:

Theorem 27. Let A and B be finite action models, if A◦ ↔ B◦ then
A ≡ACT B.

Proof. Suppose A◦ ↔ B◦. It follows that A◦ ≡ACT B◦. And by theorem
24, we have A◦ ≡ACT A and B◦ ≡ACT B. So A ≡ACT B as desired.

Now we try to connect our action emulation with the expansion and
contraction above. We have shown that the action emulation implies same
update effect, and now we show the converse also holds for propositional
case.

First we prove several lemmas as follows:
Notice that emulation is not transitive, since p ∧ > and ¬p ∧ > are

consistent, but ¬p ∧ p is not. But for pointed bisimulation, it is transitive.

Lemma 28 (Emulation transitivity). Given action models, A, B and
C, suppose there are total emulation that A � B, B � C, then A � C.

Proof. Suppose E1 is the total emulation between A and B, and E2 is the
total emulation between B and C. Define a binary relation R ⊆WA ×WB

as follows,

aRc := aE1 ◦ E2c & Pre(a) ∧ Pre(c) is consistent

It is easy to verify that R is an action emulation. We show R is total: given
a ∈ WA, since A � B, we have b1, ..., bn, such that aE1bi and Pre(a) |=
Pre(b1) ∨ ... ∨ Pre(bn). Similarly, for each bi, there is c1, ..., cj , such that

42

biE2ck and Pre(bi) |= Pre(c1) ∨ ... ∨ Pre(cj). From the transitivity of |=,
it follows that there is c1, ..., cm, such that such that aE1ci and Pre(a) |=
Pre(c1)∨ ...∨Pre(cm). For the other direction, the argument is similar.

Lemma 29. Given an action model A, and a ∈WA,

A � CTR(A, a)

Proof. Define a relation E between A and CTR(A, a) as follows:

E := {(x, x) | x /∈ T(a)} ∪ {(x, a) | x ∈ T(a)}

It is easy to check that E is an emulation.

For the propositional case, it follows from lemma 29 that if two action
models’ expansions emulate each other, they should emulate each other too:

Theorem 30. Given propositional action models A, B, A◦ � B◦ implies
A � B.

Proof. As we showed in lemma 29, one step contraction preserves emulation.
Since A is propositional, the expansion guarantees that from A◦, there is a
way to contract back to A, we have A◦ � A. Similarly we have B◦ � B,
therefore A � B.

We do not have a similar theorem for modal case is because we may
not have a way to contract the expansion for modal action models to the
original one. The main reason is that (a,Γ) i→ (a′,Γ′) requires both a i→ a′

and Γ i→ Γ′, and Γ i→ Γ′ depends on Pre(a) and Pre(a′), so the expansion
may lose some links which could not be found back by contraction.

Now we show same update effect implies emulation in propositional case:

Theorem 31. Given propositional action models (A, S) and (B, T),

(A, S) ≡ACT (B, T) implies (A, S) � (B, T)

Proof. Suppose (A, S) ≡ACT (B, T), then by theorem 15, we have (A◦, S◦) ↔
(B◦, T ◦). Since emulation can be seen as a weakened bisimulation, it follows
that (A◦, S◦) � (B◦, T ◦). And from an easy adaption of theorem 30, we
have (A, S) � (B, T), as desired.

Combine theorem 12 and 31, we have:

43

Theorem 32. Given propositional action models (A, S) and (B, T),

(A, S) ≡ACT (B, T) iff (A, S) � (B, T)

However in modal case, two action models having same update effects do
not necessary emulate. Here is a counter example in Figure 3.5. Updating
(A1, S) and (A2, T) with an arbitrary state model (M, X), the actions a0

and a1 will be executable in exactly same set of worlds in M; moreover, there
will be no i-links in M⊗A2, since the only possible case is (m,a1)

i→ (m′, a2)
but (M,m) |= Pre(a1) and (M,m′) |= Pre(a2) can not hold at the same
time. Therefore (A1, S) ≡ACT (A2, T), but not (A1, S) � (A2, T).

(A1, S) :
�� ���� ���� ���� ��a0 : �i¬ϕ (A2, T) :

�� ���� ���� ���� ��a1 : �i¬ϕ i //�� ���� ��a2 : ϕ

Figure 3.5: Modal actions with same update effects

In the above sections we have shown that, in the context of either propo-
sitional or modal action models, having same update effects is equivalent to
bisimilarity of expanded action models, but not necessarily to bisimilarity of
contracted action models. For the propositional case, our action emulation
exactly characterize the same update effects. We also studied operations (ex-
pansion and contraction) on action models, by which same update effects
preserved. This suggests a way of modal minimization preserving same up-
date effects by first using the expansion, and then iterating the contraction
under bisimulation and the one defined above. For instance the action model
B in Figure 3.4 can be finally reduced to the much more simpler model A.

44

Chapter 4

Evolution of Update
Universe

4.1 Setting of the problems

In this chapter, we study the problem of update evolution. Here update
evolution means the change of state model repeatedly updated by an action
model.

Given a state model M and action model A, if we iterate the update,
we get a sequence of state models:

M⊗A,(M⊗A)⊗A,...,(· · · ((M⊗A)⊗A) · · · ⊗A︸ ︷︷ ︸
n

),...

Then we may ask: What does the sequence looks like? When does it get
stabilization in finitely many steps? Is it possible that the sequence never
reaches stabilization? Here stabilization means after finite many updates,
the result model is bisimilar to a state model in an earlier position of the
sequence. We are also interested in the size of update universe. The question
is can we determine the growth of M⊗Ak as a function of |M|, |A|.

For the target of our study, there is a choice of whether the state/action
models come with pointed worlds. For generality and simplicity, we will
only study the models without pointed worlds.

From [3], it has been proved that the composition of action models can
achieve the following isomorphism:

(M⊗A)⊗B ∼= M⊗ (A�B)

So it is an easy corollary that: (· · · ((M⊗A)⊗A) · · · ⊗A︸ ︷︷ ︸
n

) ∼= M⊗An.

45

By the definition of update product, we have |M⊗A| ≤ |M| × |A|. So
|M| × |A|k is an upper bound for the size of M ⊗Ak. This is only a first
observation, and we want to find a tighter upper bound.

For the model itself, we may be interested in the preservation of some
properties: reflexivity, transitivity, symmetry, seriality, the Euclidean prop-
erty, etc. For the actions, we can have purely propositional preconditions,
which make the problem much easier; and we can have modal precondi-
tions, which make the problem hard since whether such actions can execute
depends on the structure of the state model. In terms of epistemic precon-
dition, we may distinguish the cases between the one with dynamic modal
operator and the one without it.

Here we may want to restrict M and A both to be bisimilar minimal.
So an interesting question is: will M ⊗A also be bisimilar minimal? The
answer is ’not necessary’. We can look at the following example:
State model:

�� ���� ��w1 : [p, q, r]

Ag

�� Ag //
�� ���� ��w2 : [p, q]

Ag

��
oo

Action model:

�� ���� ��a1 : p

Ag

�� Ag //�� ���� ��a2 : q

Ag

��
oo

It’s easy to see that in the result model, (w1, a1) ↔ (w1, a2) and (w2, a1) ↔
(w2, a2).

4.2 Special cases

Before digging into general investigation, let’s look at some simple cases.

Example 4.1 (Public announcement). The action model of public an-
nouncement is very simple. (Ag is the set of all agents and ϕ is the sentence
being announced.)

�� ���� ��ϕ
Ag

��

In this case, the size of the |M ⊗ A| does not increase since |A|=1.
Although after each update, we have a new state model with new worlds,
we can think of updating as eliminating since the new model is isomorphic

46

to a sub-model of the one before update. After each update, some worlds
might be eliminated because they do not satisfy the precondition: ϕ. Once
there are no worlds to be eliminated, the update reaches stabilization. It is
easy to see that there are at most |M| updates before it gets stabilized, i.e.
for any k ≥ |M|, M⊗Ak ↔ M⊗Ak+1. We finally get a state model which
is isomorphic to a sub-model of M.

We find that, for some situations, the updates needed for stabilization
are bounded by the length of ϕ. For instance, let ϕ := p1 ∧ (�1p1 →
p2) ∧ (�1p2 → p3), the update will be stabilized in at most 3 updates,
no matter how complex M is: each update makes p1, p2 and p3 be common
knowledge respectively, then ϕ itself becomes common knowledge and hence
stabilization is reached. Now the question is: will there always be a uniform
finite limit after which update has no further effect? In other words: for
all ϕ does there always exist k such that for all M,n ≥ k: M ⊗ [ϕ!]n ↔
M⊗ [ϕ!]n+1?

Here is another example from Muddy Children Puzzle1: suppose we
have 3 children(all muddy), then each update is equivalent to announce:
¬K1p∧¬K2q ∧¬K3r (No kids know whether they are muddy or not). The
original model, where the children have been told ”at least one of you has
mud on your forehead”, looks like a cube without one vertex. It has 7 states
at first, and then each announcement will eliminate 3 states. So after two
announcements, we have only one state in which all children know they are
muddy and ¬K1p∧¬K2q ∧¬K3r becomes false. So in this case, the bound
of repetitions is still determined by the the length of the announced formula.
But the difference with the first example is that the times of update depends
on this particular model.

The answer to the question we mentioned above is no, due to the follow-
ing counterexample: Given a state model as follows:

• 1 ◦ 2 • 1 ◦ ◦ 1 • 2 ◦ 1 •

Figure 4.1: In •-worlds, p is false; in ◦-worlds, p is true.

The above model has 2n worlds and S5 property. Suppose the publicly
announced formula is ϕ := �1♦2p. Easy to say that ♦2p is false only in
the •-world at each end, and hence ϕ is only false in the two worlds at each
end. Then each announcement eliminates two worlds at each end. Since

1If you are not familiar with this famous example, please refer to [13] or search it by
Google.com

47

the model can be arbitrarily large, the number of repetitions before it gets
stabilized can not be bounded by the length of formula.

Example 4.2 (Message to subgroup with common knowledge of
suspicion). A group of agents B(⊆ Ag) asked a question about whether
ϕ is the case, and received a truthful answer. The rest of the agents heard
this question and also noticed the delivery of the answer but didn’t know
the content. The action model is an S5 model:

�� ���� ��a1 : ϕ

Ag

�� Ag−B //�� ���� ��a2 : ¬ϕ

Ag

��
oo

It’s easy to see that |M⊗A|=|M| since for each world w ∈ M, the action a1

can be executed iff the action a2 can’t be executed(M, w � ϕ iff M, w 2 ¬ϕ).
One can think this update as eliminating the accessibility relations for agents
in B. Using the finiteness of the model M, we conclude that the update will
stabilize in finitely many steps. Moreover the stabilization reaches when the
links between ϕ-worlds(the set of worlds satisfying ϕ) and ¬ϕ-worlds are all
labeled within Ag−B.

Clearly, if the precondition ϕ is propositional, the stabilization only need
one update. For instance: M is a state model with p true in w1 and false in
w2, and A is an action model; the update is as follows:

M
�� ���� ��w1 : [p]

1,2

��
2 //

�� ���� ��w2 : []

1,2

��
oo

⊗ �� ���� ��a1 : p

1,2

�� 1 //�� ���� ��a2 : ¬p

1,2

��
oo A

⇓

�� ���� ��(w1, a1) : [p]

1,2

�� �� ���� ��(w2, a2) : []

1,2

��

After the update, the accessible relations between w1 and w2 for agent 2
were deleted, so it becomes common knowledge whether p or ¬p is true.

Example 4.3 (Private message to a subgroup). A subgroup of agents
B(⊆ Ag) may receive a message ϕ, and the rest agents receive nothing. The
action model is as follows:

�� ���� ��a1 : ϕ

B

�� Ag−B //�� ���� ��a2 : >

Ag

��

48

Clearly |M⊗A| ≥ |M|, since action a2 is executable in any world. And
if we assume the private message ϕ be truthful, i.e. action a1 is executable
in at least one world, then |M⊗A| > |M|. But this does not necessary mean
that the bisimulation-minimal model of M ⊗ A is still larger than that of
M. Here is an example:

�� ���� ��w1 : [p]

1,2

��
2 //

�� ���� ��w2 : []

1,2

��
oo

⊗ �� ���� ��a1 : p

1

�� 2 //�� ���� ��a2 : >

1,2

��

⇓

�� ���� ��(w1, a1) : [p]

1

��
2 //

2 **UUUUUUUUUUUUUUUU

�� ���� ��(w1, a2) : [p]

1,2

��

2
���� ���� ��(w2, a2) : []

OO

1,2

VV

Easy to verify that the relation indicated by dotted lines is a bisimulation,
so M ↔ M⊗A. This means that the bisimulation-minimal model of M⊗A
has the same size as that of M. Moreover, we have M⊗A ↔ M⊗Ak for all
k ≥ 1, which means repeated update does not have new effects. Then is this
necessary so? We show that in the case of preconditions being propositional,
it is indeed so.

Theorem 33. Given any state model M and an action model A of this
example, for all k ≥ 1,

M⊗A ↔ M⊗Ak

Proof. It suffices to show that M⊗A ↔ M⊗A2. Define Z ⊆ M⊗A×M⊗A2

(note: WA = {a1, a2}):

Z := {〈(w, a1), (w, a1, a
′)〉|M, w |= ϕ, a′ = a1 or a2} ∪

{〈(w, a1), (w, a2, a1)〉|M, w |= ϕ} ∪
{〈(w, a2), (w, a2, a2)〉|w ∈ M}

Now show Z is a total bisimulation. By definition, Z is total.
Suppose (w, a1)Z(w, a1, a2),

49

• Atomic case follows easily.

• Zig: If (w, a1)
i→ (w′, a′) then (w′, a′, a2) completes this condition,

since (w, a1, a2)
i→ (w′, a′, a2) and (w′, a1)Z(w′, a′, a2).

• Zag: If (w, a1, a2)
i→ (w′, a′, a′′) then we know that a′′ must be a2 since

there is no way from a2 to a1. Now (w′, a′) completes this condition,
since (w, a1)

i→ (w′, a′) and (w′, a′)Z(w′, a′, a2).

For the case of (w, a1)Z(w, a2, a1),(w, a1)Z(w, a1, a1), and (w, a2)Z(w, a2, a2),
the argument is similar.

There is an easier way to understand the above proof. Let’s look at the
elements in A2 and their preconditions:
Pre(a1, a2) = Pre(a1) ∧ 〈A, a1〉Pre(a2) = Pre(a1);
Pre(a2, a1) = Pre(a2) ∧ 〈A, a2〉Pre(a1) = Pre(a1);
Pre(a1, a1) = Pre(a1) ∧ 〈A, a1〉Pre(a1);
Pre(a2, a2) = Pre(a2) ∧ 〈A, a2〉Pre(a2) = >;

And A2 has the following structure:

(a1, a2)

B

��

Ag−B

((QQQQQQQQQQQQQ

(a2, a1)

B

�� Ag−B // (a2, a2)

Ag

��

(a1, a1)

B

��

Ag−B
66mmmmmmmmmmmmm

If the preconditions are propositional, we have Pre(a1, a2) = Pre(a2, a1) =
Pre(a1, a1) = Pre(a1), which means A ↔ A2. Therefore M⊗A ↔ M⊗A2.

4.3 Propositional precondition

In this section we study the action models only with propositional conditions.
We give one sufficient condition such that the update will always reach

stabilization.

Theorem 34. Given arbitrary state model M, and finite propositional ac-
tion model A with only one relation and S5 property, there exists n such
that:

M⊗An ↔ M⊗An+1

50

Proof. Let |A| = n.
Define a binary relation between M⊗An and M⊗An+1:

Z := { 〈(w, a1, · · · , ai−1, ai+1, · · · , an+1), (w, a1, · · · , an+1)〉|
w ∈WM,∀j ∈ [1, n+ 1](aj ∈WA), (M, w) |= Pre(a1, · · · , an+1),
∃j 6= i(ai → aj)}

Now we show Z is a total bisimulation.
Suppose (w, a1, · · · , ai−1, ai+1, · · · , an+1)Z(w, a1, · · · , an+1), then by Z

there exists j 6= i such that ai → aj :

PreEQ Val(w, a1, · · · , ai−1, ai+1, · · · , an+1) = Val(w) = Val(w, a1, · · · , an+1).

Zig Suppose (w, a1, · · · , ai−1, ai+1, · · · , an+1) → (w′, b1, · · · , bi−1, bi+1, · · · , bn+1),
then we have aj → bj . Combined with ai → aj and S5 property, we
have ai → bj , hence (w′, b1, · · · , bi−1, bj , bi+1, · · · , bn+1) completes this
condition.

Zag Suppose (w, a1, · · · , an+1) → (w′, b1, · · · , bn+1), then we have ai → bi
and aj → bj . And by ai → aj , we have bi → bj . So (w′, b1, · · · , bi−1, bi+1, · · · , bn+1)
completes this condition.

Now show Z is a total relation. For arbitrary n + 1 actions, there
must be 2 actions are the same. Therefore each (w, a1, · · · , an) can find
(w, a1, · · · , an+1) such that there exists i < n + 1, ai = an+1, and hence
ai → an+1. And vice versa.

Due to time limit, this chapter is rather incomplete. In this direction,
extensive work has been done by Tomasz Sadzik in [14].

51

Chapter 5

Conclusions and Further
work

In the above chapters we first showed how BMS framework models the
cases of message passing. And then we studied the sufficient and necessary
conditions for two action models having same update effects, and proposed
a structural relation between action models, namely action emulation, to
capture the same update effects for propositional case. Finally we discussed
the problem of update evolution and showed a sufficient condition for the
stabilization of update evolution.

We also leave some open questions for further research.
In Chapter 2, we make a general discussion of BCC case, and showed

that the action models of BCC will go exponentially since the number of
subgroups of n agents is 2n. It is still not clear to us how to compute the
action model for a given specification. Also the logic of BCC may be an
interesting topic to explore.

In Chapter 3, we end with two open questions:

Question 1. What is the (modal) language characterization of action em-
ulation (compare the characterization theorems for bisimulation)?

Question 2. What is the complexity of determining whether two action
models emulate? Is this more complex than bisimulation, or is it also poly-
nomial, like the decision problem for bisimilarity? In particular, can some-
thing like a partition refinement algorithm for bisimulation be made to work
for this?

In Chapter 4, even for the propositional case, the necessary condition for
the stabilization is not clear to us. And there is also a big unknown territory

52

for modal case. We leave all these for further research.

53

Bibliography

[1] Baltag, A. A logic for suspicious players: epistemic action and belief-
updates in games. Bulletin of Economic Research 54, 1 (2002), 1–45.

[2] Baltag, A., and Moss, L. Logics for epistemic programs. Synthese
139, 2 (2004), 165–224.

[3] Baltag, A., Moss, L., and Solecki, S. The logic of public an-
nouncements, common knowledge, and private suspicions. Tech. Rep.
SEN-R9922, CWI, Amsterdam, 1999.

[4] Baltag, A., Moss, L., and Solecki, S. The logic of public an-
nouncements, common knowledge, and private suspicions. Tech. rep.,
Dept of Cognitive Science, Indiana University and Dept of Computing,
Oxford University, 2003.

[5] Benthem, J. v. Language, logic, and communication. In Logic in
Action, J. van Benthem, P. Dekker, J. van Eijck, M. de Rijke, and
Y. Venema, Eds. ILLC, 2001, pp. 7–25.

[6] Benthem, J. v. One is a lonely number: on the logic of communica-
tion. Tech. Rep. PP-2002-27, ILLC, Amsterdam, 2002.

[7] Ditmarsch, H. v. Knowledge Games. PhD thesis, ILLC, Amsterdam,
2000.

[8] Eijck, J. v. Reducing del to pdl by program transformation.
Manuscript, 2004.

[9] Fagin, R., Halpern, J., Moses, Y., and Vardi, M. Reasoning
about Knowledge. MIT Press, 1995.

[10] Gerbrandy, J. Bisimulations on planet Kripke. PhD thesis, ILLC,
1999.

54

[11] Hintikka, J. Knowledge and Belief. Cornell University Press, 1962.

[12] Kooi, B., and van Benthem, J. Reduction axioms for epistemic
actions. Manuscript, Groningen/Amsterdam, 2004.

[13] Kooi, B. P. Knowledge, Chance, and Change. PhD thesis, Groningen
University, 2003.

[14] Sadzik, T. On finite evolution of product update. Manuscript, 2004.

55

