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Chapter 1

Introduction

Chuangtse and Hueitse had strolled on to the bridge over the Hao,
when the former observed, “See how the small fish are darting
about! That is the happiness of the fish.”

“You not being a fish yourself,” said Huei,“how can you know
the happiness of the fish?”

“And you not being I,” retorted Chuangtse, ”how can you know
that I do not know?”

“If I, not being you, cannot know what you know,” urged Huei,
“it follows that you, not being a fish, cannot know the happiness
of the fish.”

“Let us go back to your original question,” said Chuangtse. “You
asked me how I knew the happiness of the fish. Your very ques-
tion shows that you knew that I knew. I knew it from my own
feelings on this bridge.”

–Chuangtse, 300 B.C

1.1 Motivation

Possible-worlds models and the corresponding Kripke semantics have been
used extensively in the literature about epistemic/doxastic logic in the last
few decades. An example of a typical possible-worlds model for multi-agents1

1S5m model, we omitted the arrows.
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is as follows:

w 1
2

2

v

s
Here the points stand for the possible worlds agents can be in; the la-

belled relations among them represent the possibility relations agents may
consider. The status of a possible world is determined by the primitive
propositions that hold on it and the structures reachable from it. The
combination of possible-worlds models and the associated Kripke seman-
tics enjoys the great advantages of both simplicity and expressive power.
Numerous logic systems based on them have been studied. However, there
are some fundamental problems which deserve more discussion.

1. Problem 1 on model building.

• Problem: Given a consistent set of formulas, there are tons of
classical possible-worlds models which satisfy those formulas on
some points. Clearly, not all of them are desired. One reasonable
criterion for a “right model” might be to require the model has
as few “side effects” as possible(in terms of the extra formulas
that hold but are not the logical consequences of the given set).
Another criterion might be about complexity of the model–the
simpler the better. Then the question is: do we have a way to
build models step by step according to these two criterions? It is
easy to see that to build the classical possible-world models with
the fewest worlds usually won’t do the job. We normally get lots
of unwanted formulas which are satisfiable at the same point.

• Example. Consider such a situation in which agent 1 thinks both
p and  p possible, no matter what the real world is. And so does
agent 2. The most intuitive model for agent 1 is as follows2:

p 1  p

Now we add agent 2 in the simplest way:

2The reflexive arrows are omitted.
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p 1,2  p

It is clear that 21 22 p holds on every world. However, this is
undesired, since there is no constraint about how agent 1 thinks
agent 2’s information state. The above observation shows that
it is not “safe” to add the relation 2 into the first model in the
simplest way.

• Cause: In the classical possible-worlds model, the status of a
world is determined also by all the structures reachable from that
world. If we add relations to a world then actually the world
changes. Suppose a world is considered possible by agent 1 and
there is a 2-relation from that world, then agent 1 automatically
considers that 2-relation.

• Possible Solutions:
1. Use information structures instead, which constructs agents’
high order information recursively(see [FHV91]). The price is to
lose the beauty of simplicity of possible-worlds models.
2. Try to avoid the undesired compositional side-effects of the
relations. The most ideal way to build models is that we fix the
worlds first and add relations or worlds whenever needed.

2. Problem 2 on Generalization and Uniform Substitution rules.

• Problem: In the classical set-up, Generalization(from φ, prove
2φ) and Uniform Substitution (from φppq, prove φpψq where φpψq
is obtained by uniformly substituting ψ for p) preserve validity
on any class of frames. It follows that they should be included
in every complete normal modal logic. However, we may not be
happy with these rules all the time.

• Example: It is reasonable to have a logic with positive introspec-
tion 2ip Ñ 2i2ip as an axiom for each agent i, but at the same
time, not want 2jp2ip Ñ 2i2ipq to be a theorem for any agent
j � i, since agent j may not believe agent i is positive introspec-
tive. Similarly, we may want a logic with the axiom 2ip Ñ p
but without 2iφ Ñ φ for an arbitrary formula φ as a theorem.
It is possible for agents only have true beliefs about propositions
concerning only primitive facts in any case, but hardly know any-
thing about more complex facts concerning other agents, due to
the lack of information for others.
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• Cause: Classical logic can only talk about the properties for all
the worlds while we may care only about part of the worlds.

• Possible Solution:
If we can restrict validity in some way on part of the whole worlds.
Consider the following model:

p

1

§§
1

2
²²

 p

1

§§

2
²²

p

2

XX  p

2

XX

Clearly, the above model doesn’t validate the axiom  21K which
is normally regarded important in modelling beliefs. However, if
we only care about the above two worlds, then the serial axiom
holds on both, while 22 21K does not. This is reasonable since
the bottom two worlds only exist in the imaginations of agent 2,
when he is at the top two worlds. And it could be the case that
in agent 2’s imaginations there is no such an agent 1.

In this thesis we will give an alternative semantics for multi agent dox-
astic/epistemic logic and try to solve the above problems. The basic idea
of our approach is based on an simple intuition: when thinking about the
others’ information state, an agent is actually considering the “imaginary
agents” in his mind, who may differ from the real agents in the possibility
relations they have. Our trick is to include explicitly all the possibility rela-
tions for each imaginary agent in the so called “indexed models”. Let’s look
at an example:

Example 1.1.1 Consider a variant of 2-person Muddy Children scenario.
There are two children who may have mud on their foreheads. Normally,
the children can only see the other one’s forehead. However, child 2 is
actually blind, therefore he can not get any information by looking at child
1. Unfortunately, child 1 has no ideas about that. Let’s build a model
according to this scenario as follows:

pD, Cq
2

1

1

21
pC, Cq

2 1

pD, Dq 1

21
pC, Dq

7



where there are 4 primitive possibilities: pD, Cq, pD, Dq, pC, Dq and pC, Cq.3
Child 1 thinks all of the them are possible since in any case he can not
see anything, while child 2 can not distinguish pD, Cq from pD, Dq and
pC,Dq from pC,Cq. These are represented by 1-relations and 2-relations
respectively. Moreover, child 2 falsely believes that child 1 is normal, so he
would think child 1 can not distinguish pD, Cq from pC, Cq and pC, Dq from
pD, Dq. This is represented by the 21-relation in the model4.

It is easy to see that we have got rid of the compositional side-effects by
setting relations for different agents independently. For example, the rela-
tion 1 will not be considered by child 2, since child 2’s imagination about
child 1(or say, the imaginary agent 21) is represented by relation 21.

We will develop an indexed semantics based on the indexed models which
interprets the nested-modality formulas context-dependently, in order to
capture the intuition about the imaginary agents. For example, the modal
operator 2i in the formula 2j2iφ corresponds to the relations for the imag-
inary agent ji, and 2i in formula 2k2iφ corresponds to the relations for
imaginary agent ki. As we will see in the next chapter, our approach will
solve problem 2.

1.2 Overview of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we first give
the formal definition of indexed models and develop the intended indexed
semantics. Then we discuss the corresponding results between this approach
and the classical set-up. Finally we give several complete logics. Chapter 3
discusses the non-redundancy criterions of indexed models and give a simple
application of it in modelling interactive unawareness. The final chapter
concludes our results and discusses the possible further developments.

3For example, (D,C) means child 1 is dirty while child 2 is clean.
4We omit the higher order imaginations in the model.
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Chapter 2

Indexed Models and Indexed
Semantics

2.1 Indexed Model

According to the convention in doxastic logic and epistemic logic, we use the
following language to talk about the factual and higher-order information
that the agents in a non-empty group I have:

Definition 2.1.1 (Language LIpΦq) The formulas of LIpΦq are formed
based on a set of proposition letters Φ as follows:

J | p | φ^ ψ |  φ | 2jφ

where p P Φ and j P I.

Notation As usual, we define K, φ_ ψ, φÑ ψ and 3jφ as the abbrevia-
tions of  J,  p φ^ ψq,  φ_ψ and  2j φ respectively. Let SpIq be the
set of all non-empty finite sequences of elements in I. We use 2cφ as the
abbreviation for 2j12j2 ...2jnφ, where c � xj1, ..., jny P SpIq. Similarly 3cφ
is the abbreviation for 3j13j2 ...3jn . Especially, we denote 3εφ and 2εφ as
two alternative forms of φ where ε is the empty sequence. In the following
we assume that Φ is finite.

Remark 2.1.2 Depending on the purpose, 2iφ will sometimes be read as
“agent i believes φ” and at other times as “agent i knows φ.”
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Definition 2.1.3 (Classical Relational Frame and Model) A classical
relational frame for language LIpΦq is a pair:

F � pW, tRiuiPIq
• W is a non-empty set of possible worlds.

• Ri �W �W for each i P I.

A classical relational model M is a pair pF, V q, where V : W Ñ PpΦq is
called a valuation on W .

Remark 2.1.4 Intuitively, pw, vq P Ri means that when agent i is at world
w, he actually thinks world v could be one possible candidate for the real
world w. Moreover, v is actually part of w, in the sense that whenever any
agent thinks w possible, he would also think agent i considers v possible at w.
In such case, the relation pw, vq P Ri also means in any agents’ imagination
agent i would think v possible when at w.

Definition 2.1.5 (Indexed Relational Frame and Model) An indexed
relational frame for language LIpΦq is a pair:

F � pW, tRcucPSpIqq
• W is a non-empty set of possible worlds.

• SpIq is the set of all the non-empty finite sequences of agents in I.

• Rc �W �W for each c P SpIq.
An indexed relational model M is a pair pF, V q where V : W Ñ PpΦq is a
valuation on W .

Remark 2.1.6

• Slightly different from the intuition behind the possibility relations in
classical models, pw, vq P Rdi here means that agent d(or imaginary
agent d when d R I) thinks agent i would consider world v possible when
agent i is at w. Especially, when d is ε, pw, vq P Rεi � Ri means that
at world w agent i actually thinks world v possible, which is the same
as in classical models.Notice that, Rdi in indexed models has only one
interpretation, it belongs to agent d’s imagination about agent i, not
in any other agent’s imagination as the relations in classical models.
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• It is easy to see that any indexed relational model M � pW, tRcucPSpIq, V q
can be looked as a classical relational model M 1 � pW, tRcucPSpIq, V q
for the language LSpIqpΦq.

Definition 2.1.7 (Pointed model) A pointed classical/indexed relational
model is a classical/indexed relational model M with a specific point w PW .
We denote it as the pair pM, wq. Usually the specific world w plays the role
of the real world if pM, wq is a model for a situation.

Notation In the following, we will call the classical relational models for
language LIpΦq “classical models” for short. Similarly, we call indexed re-
lational models for language LIpΦq “indexed models”.

Definition 2.1.8 (c-path)

• Given a classical model M , suppose c � xj1, ..., jny P SpIq, a c�path in
M from w to v is a tuple xw0, w1, ..., wn, cy where xw0, w1, ..., wn�1, wny
is a sequence of possible worlds in M ,such that w0 � w, wn � v and
wi�1Rjiwi for i P t1, .., nu.

• Given an indexed model M , suppose c � xj1, ..., jny P SpIq, a c� path
in M from w to v is a tuple xw0, w1, ..., wn, cy where xw0, w1, ..., wn�1, wny
is a sequence of possible worlds in W such that w0 � w, wn � v and
wi�1Rj1...jiwi for i P t1, .., nu.

• For any c, d P SpIq, we say a cd�path xw0, ..., wn, cdy is an d-extension
of a c� path xv0, ..., vm, cy, if xv0, ..., vmy is the initial segment of the
xw0, ..., wny.

Notation ε� path is the empty path, denoted as xw, εy. In the following,
for any c P SpIq, we consider the sequences εc or cε as c itself. We normally
use c, d as sequences in SpIq, and i, j as agents in I.

2.2 Indexed Semantics

We now define two satisfiability relations ,,( for the language LIpΦq based
on classical models and indexed models respectively.
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Definition 2.2.1 (Truth Condition for ,) The truth conditions , for
the LIpΦq formulas are defined recursively as below:

M, s , J ðñ always
M, s , p ðñ p P V psq
M, s ,  φ ðñ M, s . φ
M, s , φ^ ψ ðñ M, s , φ and M, s , ψ
M, s , 2iφ ðñ for all t, if sRit then M, t , φ

We call the above semantics Classical Semantics.

Definition 2.2.2 (Truth Condition for () Let c P SpIq Y tεu, the truth
conditions for LIpΦq formulas are defined recursively by (c as below:

M, s ( φ ðñ M, s (ε φ
M, s (c J ðñ always
M, s (c p ðñ p P V psq
M, s (c  φ ðñ M, s *c φ
M, s (c φ^ ψ ðñ M, s (c φ and M, s (c ψ
M, s (c 2iφ ðñ for all t, if sRcit then M, t (ci φ

We call the above semantics as Indexed Semantics.

Remark 2.2.3

• (c is used to encode the context and thus to define ( recursively. For
example:
M, w ( 3ipp^3jqqðñ there is a v PW,wRiv and M, v (i pp^3jqqðñ there is a v PW,wRiv and M, v (i p and M, v (i 3jqðñ there is a v PW such that wRiv, M, v ( p, and there is a t PW :
vRijt and M, t ( q.

• The above truth conditions represent an explicit context-dependent fea-
ture of the indexed semantics, in the sense that the meaning of a modal
operator is explicitly determined by its position in the formula. For
example, the “John” in the sentence ”I believe that John believes in
God” is my certain imaginary agent who may differ from the real John.
Then the meaning of ”John believes in God” in that sentence is differ-
ent from the one in ”Mary believes that John believes in God”.

12



• The context only matters for modal operators. We assume that all the
agents have the same understanding towards the factual propositions,
namely the boolean combinations of proposition letters.

Definition 2.2.4 (Indexed Semantic Consequence) Let ΓY tφu P LI ,
K be a class of indexed frames then we say that φ is a semantic consequence
of Γ over K(notation: Γ ( φ) if for all models M based on the frames in K,
and all points in M , if M, w ( Γ then M, w ( φ.

Here are some straightforward propositions from the above truth condi-
tions:

Proposition 2.2.5

• Given any classical model M 1, w1 P W 1, M 1, w1 , 2cψ ðñ for all
v1 PW if there is a c� path from w1 to v1 in M 1, then M 1, v1 , ψ.

• Given any indexed model M , w PW , M, w ( 2cψ ðñ for all v PW
if there is a c� path from w to v in M , then M, v (c ψ.

Proof. Trivial.
qed

Similarly we have the following propositions about 3c :

Proposition 2.2.6

• Given any classical model M 1, a w1 P M 1: M 1, w1 , 3cψ ðñ there
is a c� path from w to v where v PW 1 and M 1, v , ψ.

• Given any indexed model M , a w P M : M, w ( 3cψ ðñ there is a
c� path from w to v where v PW and M, v (c ψ.

It is clear that:

Proposition 2.2.7

• Given any classical model M 1, a w1 PM 1, M 1, w1 ( 3cψ Ø  2c ψ.
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• Given any indexed model M , a w PM , M, w ( 3cψ Ø  2c ψ.1

Based on the above results, it is safe to denote  2c as 3c.

2.3 Pruned Model

Notice that, in an arbitrary indexed model/frame, some relations may not
be reachable by any path from any point. For example, consider the follow-
ing frame:

w

1

¥¥
v

12

¥¥
1oo

It is clear that the above 12�relation is unnecessary at all in verifying
any LIpΦq formula φ, since there is no 1-path to v. Such models are also not
reasonable intuitively. Consider the above one, how can agent 1 think about
agent 2’s possible uncertainties at v, if agent 1 never thinks v possible? In
general, If there is a relation ci from w to v then there should be a path
c from some world to w otherwise that ci-relation is nonsense. We hereby
define the model without such unnecessary relations.

Definition 2.3.1 (Pruned indexed frame/model) A pruned indexed frame/model
is an indexed frame/model which satisfies the following condition:

For any w, v PW, c P SpIq, j P I if wRcjv then there is a t PW such that tRcw.

Definition 2.3.2 (Pruned pointed indexed model) A pruned pointed
model is a pointed indexed model pM, wq which satisfies the following condi-
tion:

For any v, s PW, c P SpIq, j P I if vRcjs then there is a c�path from w to v.

Notation In the following, we say that c P SpIq Y tεu fits w P W if c � ε
or there is a c�path from some world to w in M .

1Actually we can prove the stronger version M, w (d 3cψ Ø  2c ψ for any c P
SpIq, d P SpIq Y tεu.
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Notation Given two indexed models M, M 1 and w P M , w1 P M 1, we use
M, w úc M 1, w1(or w úc w1 if the models are clear) to denote that for
any LIpΦq formula φ :

M, w (c φ ðñ M 1, w1 (c φ.

Especially let w ú w1 be w úε w1.
From the definition of pruned models and the truth conditions of indexed

semantics, we have some immediate propositions.

Proposition 2.3.3 Given an arbitrary indexed model M � pW, tRcucPSpIq, V q,
there is a sub-model of it:M 1 � pW 1, tR1cucPSpIq, V 1q which is a pruned model
such that W �W 1 and for any w PW : pM, wqú pM 1, wq.
Proof. We build the sub-model M 1 by throwing away unnecessary re-
lations. Formally, M 1 � pW, tR1cucPSpIq, V q where R1di � tpw, vq|pw, vq P
Rdi and d fits wu for any d P SpIqYtεu. It is easy to check that pM, wqú
pM 1, wq. qed

Proposition 2.3.4 Given an arbitrary pointed indexed model pM, wq �
pW, tRcucPSpIq, V q, w, there is a sub-model of it: M 1 � pW 1, tR1cucPSpIq, V 1q
which is a pruned model such that W �W 1 and pM, wqú pM 1, wq.
Proof. Similar to the above proof; we cut off all the relations ci from v if
there is no c� path from w to v. qed

Notice Based on the above observation and results, without any special
notice, we will only work with pruned frames and models in the following.

2.4 Translation From Language LIpΦq to LSpIqpΦq
As we mentioned before, indexed models can also be looked as classical mod-
els for the language LSpIqpΦq. The following questions arise consequently:
can we just use language LSpIqpΦq to talk about those indexed models by
adapting the classical semantics? And what is the difference between the
two approaches? This section will answer these questions.

Definition 2.4.1 Given a LIpΦq formula φ, a translation T transforms φ
into a LSpIqpΦq formula T pφq as follows:
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T pφq � Tεpφq
Tcppq � p
TcpJq � J
Tcp ψq �  Tcpψq
Tcpψ ^ ψ1q� Tcpψq ^ Tcpψ1q
Tcp2iψq � 2ciTcipψq

For example: T p2ipp ^  2jqq � 2iTipp ^  2jqq � 2ipp ^  Tip2jqq �
2ipp^ 2ijqq.
Remark 2.4.2 It is obvious that not every LSpIqpΦq formula is a translation
of a formula in LIpΦq. For example, 21223p is not a translation for any
LIpΦq formula. Intuitively 21223p is nonsense, since an imaginary agent
12 can not think about the actual agent 3, but only about the imaginary one
123 in his mind.

Based on the insight mentioned in Remark 2.1.6, considering the two
roles of an indexed model, we have the following result:

Theorem 2.4.3 For any LIpΦq formula φ, any indexed model M , any w P
M :

M, w , Tcpφq ðñ M, w (c φ.

Proof. Induction on the structure of φ. According to the definition of Tc,
we have the following:

M, s (c J ðñ always ðñ M, s , TcpJq
M, s (c p ðñ p P V psq ðñ M, s , Tcppq
M, s (c  φ ðñ M, s *c φ ðñ M, s , Tcp φq
M, s (c φ^ ψ ðñ M, s (c φ and M, s (c ψ ðñ M, s , Tcpφ^ ψq
M, s (c 2iφ ðñ for all t, if sRcit then M, t (ci φðñ for all t, if sRcit then M, t , Tcipφqðñ M, s , 2ciTcipφq ðñ M, s , Tcp2iφq

qed

As an immediate corollary, we have:

Corollary 2.4.4 For any LIpΦq formula φ, any pointed indexed model M, w,
M, w , T pφq ðñ M, w ( φ.
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Remark 2.4.5 The above result shows that instead of LIpΦq, we can also
use the translatable part of the language LSpIqpΦq along with the Kripke
semantics to talk about the indexed models. The reason we choose the indexed
semantics with LIpΦq is that it is more intuitive and there is no restriction on
the language. The translation, along with the later correspondence results,
will help us to study the indexed models by making use of old results for
classical models.

2.5 Correspondence Between Indexed Model and
Classical Model

In this section, we discuss the correspondence results between indexed mod-
els and classical models for the language LIpΦq.

We first introduce the most important technique in this section:

Definition 2.5.1 (Unravelling)
Given a pointed classical model pM, wq � ppW, tRiuiPSpIq, V q, wq, the

pointed classical model pM r, wrq � ppW r, tRr
i uiPI , V rq, wrq is called the un-

ravelling of pM, wq(or say the unravelling of M around w) where:

• W r � ts|s is a c� path from w in M for some c P SpIqu.
• Rr

i � tps, s1q|s1 is an i� extension of s in Mu.
• V rpxw, ..., wn, cyq � V pwnq.
• wr � pw, εq
Similarly we can define the unravelling for indexed models.

Definition 2.5.2 (Indexed Unravelling)
Given a pointed indexed model pM, wq � ppW, tRcucPSpIq, V q, wq, the

pointed classical model pM r, wrq � ppW r, tRr
i uiPI , V rq, wrq is called the un-

ravelling of pM, wq(or say the unravelling of M around w) where:

• W r � ts|s is a c� path from w in M for some c P SpIqu.
• Rr

i � tps, s1q|s1 is an i� extension of s in Mu.
• V rpxw, ..., wn, cyq � V pwnq.
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• wr � pw, εq
Remark 2.5.3

• The above definition is slightly different from the traditional definition
of unravelling. The elements in a traditional unravelling are simply
sequences of worlds. We use c�paths here to get rid of the unnecessary
compositional side-effects. For example, if we unravel the following
indexed model traditionally around w:

w 1 //2 ((
v 12 // t

we get:

xwy
1
²²
2
ªªxw, vy

2
²²xw, v, ty

which is not exactly what we want, since in the original model there is
no 22-path from w to t.

• Unravelling an indexed model transforms it into a classical model. This
is the key to the correspondence result as we will see in the following.

• In general, the unravelling of an pruned indexed model around some
point only contains partial information of the original model. Only
paths starting from the selected points matter for the unravelling around
that point.

Notation It is easy to see that for each pointed classical/indexed model
pM, wq, there is an unique unravelling pM r, pw, εqq. In the following we
denote it as pUnrpM, wq, pw, εqq.
Proposition 2.5.4 Given a classical model M 1 � pW 1, tR1iuiPSpIq, V 1q, an
indexed model M � pW, tRcucPSpIq, V q, w1 P W 1 and w P W . Suppose
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V pwq � V 1pw1q then for any c P SpIq Y tεu, any LIpΦq formula φ which
doesn’t contain modalities, we have:

M, w (c φ ðñ M 1, w1 , φ.

Proof. Trivial. qed

Lemma 2.5.5 (Invariance for Unravelling)

(a)If a classical model M 1, pw, εq is the unravelling of a pointed classical
model pM, wq, then for any LIpΦq formulas φ, and any xw, ..., wn, cy P M 1
we have:

M, wn , φ ðñ M 1, xw, ..., wn, cy , φ.

(b)If a classical model M 1, pw, εq is the unravelling of a pointed indexed
model pM, wq, then for any LIpΦq formulas φ, and any xw, ..., wn, cy P M 1
we have:

M, wn (c φ ðñ M 1, xw, ..., wn, cy , φ.

Proof. For part (a):

It is easy to see that the w-generated sub-model of M is a bounded
morphism image of M 1 w.r.t the mapping f : fxw, ..., wn, cy � wn. Then we
have M, wn , φ ðñ M 1, xw, ..., wn, cy , φ cf. [BRV].

For part (b):

Induction on the structure of φ.

• When φ is formed by boolean combinations of p P Φ and J then we
have M, wn (c φ ðñ M 1, xw, ..., wn, cy , φ from Proposition 2.5.4,
since V 1pxw, ..., wn, cyq � V pwnq.

• Let ψ, ψ1 be LIpΦq formulas. Suppose for any c � path xw, ..., wn, cy
in M , we have M, wn (c ψ ðñ M 1, xw, ..., wn, cy , ψ and M, wn (c

ψ1 ðñ M 1, xw, ..., wn, cy , ψ1. It is easy to see that M, wn (c ψ ðñ M 1, xw, ..., wn, cy ,  ψ and M, wn (c ψ ^ ψ1 ðñ
M 1, xw, ..., wn, cy , ψ ^ ψ1.
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• Suppose φ � 2iψ. For any xw, ..wn, cy P W 1 :
M 1, xw, ..., wn, cy , φ
ðñ for all s PW 1, if xw, ..., wn, cyRis, then M 1, s , ψ
ðñ for all s, if s � xw, ..., wn, v, ciy P W 1 for some v PW , M 1, s , ψ
ðñ for all v PW , if xw, ..., wn, v, ciy P W 1, then M 1, xw, ..., wn, v, ciy , ψ
ðñ for all v P W , if xw, ..., wn, v, ciy P W 1 then M, v (ci ψ (from
Induction Hypothesis)
ðñ for all v P W , if wnRciv, then M, v (ci ψ (since xw, ..., wn, cy P
W 1q
ðñ M, wn (c 2iψðñ M, wn (c φ.

qed

Since pw, εq P UnrpM, wq, as an immediate corollary of Lemma 2.5.5, we
have:

Corollary 2.5.6 Given any pointed indexed model pM, wq, for all LIpΦq
formulas φ : M, w ( φ ðñ UnrpM, wq, pw, εq , φ.

Moreover, we now prove a proposition which will be useful in the later
sections.

Proposition 2.5.7 Given an indexed pointed model pM, wq, if vRiw and
for every sequence xt1...tny, n P N, c P SpIq the following holds:

xv, w, t1, ..., tn, icy is an ic�path ðñ xw, t1, ..., tn, cy is a c�path

then for any φ P FrompLIpΦqq :

M, w (i φ ðñ M, w ( φ

Proof. Consider the unravellings UnrpM, vq of M around v and UnrpM, wq
of M around w. From part (b) of Lemma 2.5.5, we have for every LIpΦq
formulas φ: M, w (i φ ðñ UnrpM, vq, xv, w, iy , φ and M, w ( φ ðñ
UnrpM, wq, xw, εy , φ. However since for every sequence of xt1...tny, n P
N, c P SpIq:
xv, w, t1, ..., tn, icy is an ic�path ðñ xw, t1, ..., tn, cy is a c�path
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Then it is obvious that the the sub-model of UnrpM, vq generated by
the point xv, w, iy is isomorphic to UnrpM, wq. It follows that for all φ,
UnrpM, wq, xw, εy , φ ðñ UnrpM, vq, xv, w, iy , φ. Namely, M, w (
φ ðñ M, w (i φ.

qed

Now we are ready to build the relationship between indexed models and
classical models.

Theorem 2.5.8 (Correspondence)

(a)Given an indexed model M � pW, tRcucPSpIq, V q there is a classical
model M 1 � pW 1, tR1iuiPI , V 1q such that for any w P W , there is a w1 P M 1:
for any LpΦq formula φ, M, w ( φ ðñ M 1, w1 , φ.

(b)Given a classical model M 1 � pW 1, tR1iuiPI , V 1q there is an indexed
model M � pW, tRcucPSpIq, V q such that W �W 1 and for any w1 PW 1, any
LpΦq formula φ: M, w1 ( φ ðñ M 1, w1 , φ.

Proof.

• For part (a): given an indexed model M � pW, tRcucPSpIq, V q. We
first define a function f on W : fpwq � UnrpM, wq. In other words, f
gives the unravelling of each pointed model based on M . Consider the
disjoint union of those unravelling:

�
wPW fpwq. Since classical modal

satisfaction is invariant under disjoint unions, we have:¥
wPW

fpwq, pw, εq , φ ðñ fpwq, pw, εq , φ.

From the Corollary 2.5.6, we have that

M, w ( φ ðñ fpwq, pw, εq , φ.

Then for each w P W , we have pw, εq P �wPW fpwq such that for any
LIpΦq formula φ:

M, w ( φ ðñ ¥
wPW

fpwq, pw, εq , φ.

That is to say,
�

wPW fpwq is the classical model we want.
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• For part (b), given a classical model M 1 � pW 1, tR1iuiPI , V 1q we can
build an indexed model M � pW, tRcucPSpIq, V q where:

– W �W 1, V � V 1.
– Rci � R1i where c P SpIq Y tεu.

We claim that:

Claim : For any w1 PW 1, UnrpM 1, w1q, pw1, εq is isomorphic to UnrpM, w1q, pw1, εq.
If this is true, then from Lemma 2.5.5, we have for any w P W 1,LpΦq
formula φ:

M, w1 ( φ ðñ UnrpM, w1q, pw1, εq , φ

and
UnrpM 1, w1q, pw1, εq , φ ðñ M 1, w1 , φ.

It follows from the above claim that:
For all w1 PW 1, M, w1 ( φ ðñ M 1, w1 , φ.

Now we move on to the proof of the claim. For simplicity, we now
call w1 in the claim “w0”. From the definition of c-path, we have
that if c � j1...jn, then xw0, ..., wn, cy is a c-path in M ðñ for all
k P r1, ns : wk�1Rj1..jk

wk. Since Rci � R1i for all c P SpIq Y tεu, it is
clear that for all k P r1, ns:

wk�1Rj1..jk
wk, ðñ wk�1R

1
jk

wk

Then we have:

xw0, ..., wn, cy is a c-path in M ðñ xw0, ..., wn, cy is a c-path in M 1.

That is to say, the worlds in UnrpM 1, w1q, pw1, εq and the worlds in
UnrpM, w1q, pw1, εq are the same. Since the worlds actually determine
the relations in the unravellings, clearly we have

xw1, .., wn, cyRr
jxw1, ..., wn, v, cjy ðñ xw1, .., wn, cyR1rj xw1, ..., wn, v, cjy.

Moreover, since V � V 1, then UnrpM 1, w1q and UnrpM, w1q are iso-
morphic, which completes the proof.
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qed

Remark 2.5.9

• In the proof of part (a), we actually built a “forest” of the unravelled
trees. However, only the roots of those trees in

�
wPW fpwq are the

counterpoints for the worlds in the original indexed models.

• Given an indexed pointed model pM, wq, it is not always possible, gen-
erally, to find a classical pointed model M 1, w1 such that |M | � |M 1|
and M, w ( φ ðñ M, w , φ for any LIpΦq formula φ. See the
following simplest example of an indexed model M :

w : p

1

§§

It is impossible to find a singleton classical model M 1 such that M 1, w (
 3i3ip but M 1, w ( 3ip Normally the classical model M 1 contains
many more worlds than M , if the above invariance is to be guaranteed.

Now we want to know under what conditions, two indexed pointed mod-
els satisfy the same set of formulas in LI . The Classical bisimulation seems
to be the best starting point.

Definition 2.5.10 (Bisimulation) Let M � pW, tR∆u∆Pτ , V q and M 1 �
pW 1, tR1∆u∆Pτ , V 1q be two relational models.

A non-empty binary relation Z � W �W 1 is called a bisimulation be-
tween M and M 1 (M Ø M 1) if the following conditions are satisfied:

1. If wZw1 then V pwq � V pw1q.
2. If wZw1 and wR∆v, then there exists v1 P M 1 such that vZv1 and

w1R1∆v1.
3. If wZw1 and w1R1∆v1, then there exists v P M 1 such that vZv1 and

wR∆v.

If there is a bisimulation linking w PM and w1 PM 1, we say that w and w1
are bisimilar (M, w Ø M 1, w1).
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It is commonly known that modal formulas are invariant under bisimu-
lation w.r.t to the classical semantics. Now let’s see the counter part of this
results for indexed model and semantics.

Proposition 2.5.11 Suppose M, M 1 are indexed models, for any w PM, w1 P
M 1, we have M, w Ø M 1, w1 implies w úc w1.

Proof. Consider the indexed models M and M 1 as classical models for
language LSpIqpΦq. M, w Ø M 1, w1 implies for any LSpIqpΦq formula ψ,
M, w , ψ ðñ M 1, w1 , ψ. By Proposition 2.4.3, we have for any φ P
LIpΦq : M, w , Tcpφq ðñ M, w (c φ. Since for any LIpΦq formula
φ, Tcpφq is a LSpIqpΦq formula, we have for all LIpΦq formula φ, M, w ,
Tcpφq ðñ M 1, w1 , Tcpφq. Namely for all LIpΦq formula φ, M, w (c

φ ðñ M 1, w1 (c φ. qed

An immediate corollary is as follows:

Corollary 2.5.12 For any two pointed indexed models pM, wqandpM 1, w1q,
if M, w Ø M 1, w1 then w ú w1.

Remark 2.5.13

• Similar invariance results could be proved for generated sub-models and
bounded morphisms if we look indexed models as classical models for
LSpIqpΦq.

• The above results shows that bisimulation is too strong to obtain solely
w ú w1. So we should not expect w ú w1 to imply that w and w1
are bisimilar, even in the image-finite cases2. For example, take two
pruned pointed indexed I-models as follows:

M :  : p

w : p

111

HH

1 //  :  p
11ll

2A model is called finite-image, if no world of it has infinitely many successors.
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M 1 :
w1 : p 1 //  :  p

11

²² : p

111
©© : p

It is easy to see that M, w and M 1, w1 are pruned pointed models which
are finite but not bisimilar. However, w ú w1 and it is not the case
that w úc w13.

Notice that in the above counter-example, although M, w and M 1, w1 are
not bisimilar, we still have the bisimulation somewhere else:

UnrpM, wq, pw, εq Ø UnrpM 1, w1q, pw1, εq.
In general, we have the following result:

Proposition 2.5.14 Let pM, wq, pM 1, w1q be two pointed indexed models.
UnrpM, wq, pw, εq Ø UnrpM 1, w1q, pw1, εq implies that pM, wqú pM 1, w1q.
Proof. Suppose UnrpM, wq, pw, εq Ø UnrpM 1, w1q, pw1, εq, then we have
UnrpM, wq, pw, εq ú UnrpM 1, w1q, pw1, εq. Since UnrpM, wq, pw, εq ú
M, w and UnrpM 1, w1q, pw1, εqú M 1, w1 then we have pM, wqú pM 1, w1q.
qed

2.6 Validity and Indexed Frames

Definition 2.6.1 (C-Validity)
A formula φ is c-valid at a world w in an indexed frame Fpnotation :

F, w (c φq if pF, V q, w (c φ in every model pF, V q based on F;φ is c-valid on
a frame Fpnotation : F (c φq if it is c�valid at every world in F. A formula
φ is c�valid on a class of frames KpK (c φq if it is c-valid on every frame
F in K. When c � ε we obtain the normal validity. In the following we call
ε-validity “validity”.

Proposition 2.6.2 2ipp Ñ qq Ñ p2ip Ñ 2iqq is c-valid on the class of all
indexed frames for any c P SpIq Y tεu.

3For example, when c � 11.
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Proof. Trivial. qed

Proposition 2.6.3 Any instance of any tautology is c-valid on the class of
all indexed frames for any c P SpIq Y tεu.
Proof. Trivial. qed

It follows from the above propositions that any instance of tautologies
and 2ipp Ñ qq Ñ p2ip Ñ 2iqq are valid(ε�valid) on the class of all indexed
frames.

Now we prove a proposition which will turn out to be useful in the next
section.

Proposition 2.6.4 A LIpΦq formula φ is classically valid on the class of
all classical frames
ðñ φ is c�valid on the class of all indexed frames for every c P SpIq
ðñ φ is valid on the class of all indexed frames.

Proof. For the first ðñ :

ñ: Suppose towards contradiction that φ is classically valid on the class
of all classical frames, but there is a pointed indexed model pM, wq �
pW, tRdudPSpIq, V q such that M, w *c φ for some c P SpIq Y tεu. Then
we can build an indexed pointed model pM 1, w1q � pW 1, tR1dudPSpIq, V 1q
such that W � W 1, V � V 1, w � w1, R1d � Rcd. Then it is obvious that
M 1, w1 * φ. Then from Lemma 2.5.5 we have UnrpM 1, w1q, pw1, εq * φ.
Since UnrpM 1, w1q is a classical model then φ is not valid w.r.t. the class of
all the classical frames. Contradiction.
ð: Suppose towards contradiction that φ is c-valid on the class of all in-
dexed frames for every c P SpIq Y tεu, but there is a pointed classical model
pM, wq, such that M, w * φ. Then from the correspondence result, there
is an pointed indexed model pM 1, w1q such that M 1, w1 * φ then φ is not
ε�valid on the class of all indexed frames. Contradiction.

For the second ðñ :
ñ: Trivial, follows from the above.
ð: Suppose φ is valid on the class of all indexed frames then it is easy t
see that φ is valid on the class of all the classical frames, thus it is c-valid
on the class of all indexed frames. Suppose not, there is a classical pointed
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model pM, wq such that M, w . φ then from the correspondence result we
have there is an indexed pointed model such that M, w * φ. Contradiction.

qed

We have already showed in Proposition 2.4.4 that every LIpΦq formula
φ can be safely translated to a LSpIqpΦq formula T pφq such that M, v (
φ ðñ M, v , T pφq. Clearly this invariance result also holds for validity,
namely, F ( φ ðñ F , T pφq for any frame F. Thus, by using the standard
translation ST from modal formulas to first-order formulas we can translate
a modal frame property4 into a second-order frame property:

Proposition 2.6.5 Let φ be a LIpΦq formula. Then for any indexed frame
F, we have:

F ( φ ðñ F , T pφq ðñ @P1...@Pn@xSTxpT pφqq.
where the second order quantifiers bind second-order variables Pi correspond-
ing to the proposition letters pi appearing in φ.

Proof. The first ðñ result is directly from Proposition 2.4.4, and the
second follows from the standard proof. qed

Remark 2.6.6 The above result shows that the validity in indexed seman-
tics is actually a second-order concept just like the validity in classical se-
mantics. The tools for studying definability also work here, the only thing
is that we are now only concerned with part of the formulas in LIpΦq. We
will not go into details on this issue. In the following, we will focus on some
important modal formulas which have first-order correspondents.

Let us use an infinitary first-order language to talk about indexed frames.
It has binary predicates Rc for each c P SpIq describing the relations in the
frames.

Proposition 2.6.7 F ( 2ip Ñ p ðñ F , @wpwRiwq.
Proof. ð: Suppose F , @wpwRiwq then for all pM, wq based on F, if
M, w ( 2ip we have M, w ( p.
ñ: Assume towards contradiction that F . @wpwRiwq then there is a

M based on F in which there is a non-reflexive point w. We can revise the
valuation V such that w R V ppq and for all v, v P V ppq if wRiv. Clearly,
M, w * 2ip Ñ p. Contradiction. qed

4If we regard the valid modal formulas are modal frame properties.
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Proposition 2.6.8 F ( 2ip Ñ 2i2ip ðñ F , @w@v@sppwRiv^vRiisq Ñ
wRisq.
Proof. ð: Suppose F , @w@v@spwRiv ^ vRiis Ñ wRisq and for a pM, wq
based on F: M, w ( 2ip. Then we have that for all v: wRiv implies v P V ppq.
From the property of F we have for all v if there is an ii� path from w to v
then wRiv. That is to say for all v if there is an ii� path from w to v then
v P V ppq namely M, w ( 2i2ip.
ñ: Assume towards contradiction that F . @w@v@spwRiv ^ vRiis Ñ

wRisq then there is a point w in a model M based on F such that there is
an ii � path from w to s but it is not the case wRis. We can revise the
valuation V to let s R V ppq and for all v, if wRiv then v P V ppq. Clearly,
M, w * 2ip Ñ 2i2ip. Contradiction.

qed

Proposition 2.6.9 F (  2ip Ñ 2i 2ip ðñ F , @w@v@spwRiv ^
wRisÑ vRiisq.
Proof. Similar to the classical case, trivial. qed

Proposition 2.6.10 F (  2iK ðñ F , @wDvpwRivq.
Proof. Trivial. qed

Remark 2.6.11

• Following the traditional notation, we give the names for the above
formulas and the correspondent first-order frame properties:

T p
i : 2ip Ñ p rp

i : @wpwRiwq
4p

i : 2ip Ñ 2i2ip, tpi : @w@v@spwRiv ^ vRiisÑ wRisq
5p

i :  2ip Ñ 2i 2ip ep
i : @w@v@spwRiv ^ wRisÑ vRiisq

di :  2iK. si : @wDvpwRivq
• The corresponding frame properties also have intuitive interpretations.

For example, the transitive property @w@v@tpwRiv ^ vRiit Ñ wRitq
according to 4p

i actually says: at world w, if agent i indeed thinks
v possible and he has the reflection on himself that he would think t
possible when at v, then for consistency he must also think t possible
since he thinks v could be real world right now at w.
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• In the above notations, i stands for the agent and p denotes a formula
which is only about the factual propositions. We can not substitute
arbitrary formula for p. For example, F ( 2iφ Ñ φ ðñ F ,
@wpwRiwq doesn’t hold for arbitrary φ:

 p

1

§§

2

XX 12 // p

1

§§

Although 1-relations are reflexive everywhere, 2132p Ñ 32p doesn’t
hold at the  p world. This is reasonable since we didn’t say anything
about how one thinks about others in terms of constraints on relations.

Proposition 2.6.12 Let Ti be the set of formulas tφÑ 3iφ|φ P FormpLIpΦqqu,
ri be the first-order formula

�
djPSpIq @w@vppwRdjv Ñ wRidjvq ^ ppwRidjv^Dw1pw1Rdwqq Ñ wRdjvqq ^ @wpwRiwq, then:

F ( Ti ðñ F , ri.

Proof.
ð: Suppose F , ri. Given an arbitrary φ P FormpLIpΦqq, let pM, wq be

a pointed indexed model based on F, such that M, w ( φ. We need to prove
that M, w ( 3iφ. Since F , @wpwRiwq, then every world is reflexive. Then
we only need to show that M, w (i φ. To prove this, we have the following
claim:

Claim: For any n P N, any sequence t1, ..., tn, t: xw, w, t1, ..., tn, t, idjy is
an idj-path ðñ xw, t1, ..., tn, t, djy is a dj-path.

Induction on the length of d:

• Suppose the length of d is 0, namely d � ε. If xw, t, jy is an j-path then
since F , @w@vpwRdjv Ñ wRidjvq ^ @wpwRiwq, we have xw, w, t, ijy
is an ij�path. Suppose xw, w, t, ijy is an ij�path. Then from wRεw
and F , �

djPSpIq @w@vppwRidjv ^ Dwpw1Rdwq Ñ wRdjvqq, we have
wRjt, then xw, t, jy is an j-path.

• Suppose when the length of d is k, we have xw, w, t1, ..., tk, t, idjy is an
idj-path ðñ xw, t1, ..., tk, t, djy is a dj-path.
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• Suppose the length of d is n� 1. If xw, t1, ..., tk�1, t, djy is an dj-path,
then since F , @w@vpwRdjv Ñ wRidjvq, we have xw, w, ..., v, t, idjy is
an idj�path. Suppose xw, w, t1, ..., tk�1, t, idjy is an idj�path. Then
xw, w, t1, ..., tk�1, idy is an id�path. From Induction Hypothesis, we
have xw, t1, ..., tk�1, dy is a d�path. Then there is a tk such that
tkRdtk�1. From F ,�

djPSpIq @w@vppwRidjv^Dwpw1Rdwq Ñ wRdjvqq,
we have tk�1Rdjt. Since xw, t1, ..., tk�1, dy is a d�path then xw, t1, ..., tk�1, t, djy
is a dj�path.

From proposition 2.5.7, M, w (i φ ðñ M, w ( φ. Then we have
M, w (i φ.
ñ: Suppose that F . ri. If F is not i-reflexive then from Proposition

2.6.12, we can find a formula φ in the shape of p Ñ 3ip such that F * φ.
There are two other cases to be considered:

1. There are w, v P F such that pw, vq P Rdj but pw, vq R Ridj .

2. There are w, v P F such that wRidjv ^ Dw1pw1Rdwq but pw, vq R Rdj .

For case 1: We define a valuation V as follows: V ppq � twu;V pqq � tvu5.
Thus we can talk about w and v by their unique valuations. Since F is
a pruned frame and pw, vq P Rdj , there is a dj�path from some world
w0 to v extending a d-path from w0 to w. Let’s consider the formula
φ � 3dpp^3jqq. It is clear that pF, V, w0q ( φ. However, pF, V, w0q * 3iφ
since there is no Ridj relation from w to v.

For case 2: We define a valuation V as above: V ppq � twu;V pqq � tvu.
Since F is a pruned frame and pw1, wq P Rd, there is an d�path from some
world w0 to w. Let’s consider the formula φ � 3dpp ^  3jqq. Since there
is no Rdj relation from w to v, then it is clear that pF, V, w0q ( φ. However,
pF, V, w0q * 3iφ since pw, vq P Ridj .

qed

Proposition 2.6.13 Let 4i be the set of formulas t3i3iφ Ñ 3iφ|φ P
FormpLIpΦqqu, ti be the first-order formula

�
djPSpIq @w@vppwRiidjv Ñ wRidjvq^ppwRidjv ^ Dw1pw1Riidwqq Ñ wRiidjvqq ^ @w@v@spwRiv ^ vRiis Ñ wRisq,

then:
F ( 4i ðñ F , ti.

5For other proposition letters in Φ, arbitrary.
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Proof.
ð: Suppose F , ti. Given an arbitrary φ P FormpLIpΦqq, let pM, wq be

a pointed indexed model based on F such that M, w ( 3i3iφ. We need to
show that M, w ( 3iφ. Since F , @w@v@spwRiv ^ vRiis Ñ wRisq, then if
there is an ii-path from w to v then there is an i-path from w to v. Since
M, w ( 3i3iφ, there is a ii-path from w to v extending an i-path xw, w1, iy
such that M, v (ii φ. We only need to show that M, v (i φ. To prove this,
we claim that:

Claim: For any j P I, n P N and any sequence xt1...tn�1, ty: xw, w1, v, t1, ..., t, iidjy
is an iidj�path ðñ xw, v, t1, ..., t, idjy is an idj�path.

Do induction on the length of d:

• Suppose the length of d is 0, namely d � ε. If xw, w1, v, t, iijy is an iij-
path then since F ,�

djPSpIq @w@vpwRiidjv Ñ wRidjvq, we have vRijt.
Then xw, v, t, ijy is an ij�path. Suppose xw, v, t, ijy is an ij�path.
Then from w1Riiv and F , �

djPSpIq @w@vpwRidjv ^ Dw1pw1Riidwq Ñ
wRiidjvq, we have vRiijt, then xw, w1, v, t, iijy is an iij-path.

• Suppose when the length of d is k, we have xw, w1, v, t1, ...tk, t, iidjy is
an iidj-path ðñ xw, v, t1, ...tk, t, idjy is an idj�path.

• Suppose the length of d is k � 1. If xw, w1, v, t1, ..., tk�1, t, iidjy is an
iidj-path, then from F , �

djPSpIq @w@vpwRiidjv Ñ wRidjvq, we have
xw, v, t1, ..., tk�1, t, idjy is an idj�path. Suppose xw, v, t1, ..., tk�1, t, idjy
is an idj�path. Then xw, v, t1, ..., tk, tk�1, idy is an id�path. From
the Induction Hypothesis, xw, w1, v, t1, ..., tk, tk�1, iidy is an iid�path.
Then tkRiidtk�1. From F , �

djPSpIq @w@vpDw1pw1Riidwq Ñ wRiidjvq,
then tk�1Riidjt. Namely, we have xw, w1, v, t1, ..., tk�1, t, iidjy is an
iidj�path.

Similar to the proof of Proposition 2.5.7, it is easy to see that M, v (ii

φ ðñ M, v (i φ. Then it follows that M, v (i φ.
ñ: Suppose that F . ti. If F . @w@v@spwRiv ^ vRiis Ñ wRisq then

from Proposition 2.6.8, we can find a formula φ in the shape of 3i3ip Ñ 3ip
such that F * φ. There are two cases to be considered:

1. There are w, v P F such that wRidjv^Dw1pw1Riidwq but pw, vq R Riidj .

2. There are w, v P F such that pw, vq P Riidj but pw, vq R Ridj .
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For case 1: We define a valuation V as follows: V ppq � twu;V pqq � tvu.
Since F is a pruned frame and there is a w1 such that pw1, wq P Riid, then
there is an iid�path from some world w0 to w. Let’s consider the formula
φ � 3dpp ^  3jqq. Since pw, vq R Riidj then pF, V, w0q ( 3i3iφ. However,
pF, V, w0q * 3iφ since pw, vq P Ridj

6.

For case 2: We define a valuation V as above: V ppq � twu;V pqq � tvu.
Since F is a pruned frame and pw, vq P Riidj , there is a iidj�path from
some world w0 to v extending a iid-path from w0 to w. Let’s consider the
formula φ � 3dpp ^ 3jqq. It is clear that pF, V, w0q ( 3i3iφ. However,
pF, V, w0q * 3iφ since there is no Ridj relation from w to v.

qed

Proposition 2.6.14 Let 5i be the set of formulas t 2iφ Ñ 2i 2iφ|φ P
FormpLIpΦqqu. Let ei be the first-order formula

�
djPSpIq @w@vppwRidjv Ñ

wRiidjvq^ppwRiidjv^Dw1pw1Ridwqq Ñ wRidjvqq^@w@v@spwRiv^wRisÑ
vRiisq, then:

F ( 5i ðñ F , ei.

Proof. Similar to the above proof. qed

Remark 2.6.15 The corresponding first-order formula for Ti roughly re-
quires the i-reflexivity and Rc � Ric for every c P SpIq, which coincides with
our intuition about true beliefs. The first-order correspondents for 4I and
5i roughly says Riic � Ric. Here we said “roughly”, since there are extra
constraints in those first-order correspondents. For example, in

ri :
©

djPSpIq
@w@vpwRdjv Ñ wRidjv^pwRidjv^Dw1pw1Rdwq Ñ wRdjvqq^@wpwRiwq,

we don’t have the exact Rc � Ric. Instead, we have Rdj � Ridj and if
Dw1pw1Rdwq then wRidjv implies wRdjv. Unfortunately, the intuition of this
extra constraint is not very clear so far.

If we want to model knowledge, then following the traditions in epistemic
logic, we should have Ti, 4i and 5i all as axioms in the intended logic. It is
easy to check that:

Proposition 2.6.16 F ( TiY4iY5i ðñ F , ri^tpi^ep
i^@w@v�cPSpIqpwRiicv Ø

wRicvq.
6No matter whether there is an id�path to w.
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If we want to model the situations in which agents only have true beliefs
about the primitive facts, but no enough information about others, then we
should require T p

i , 4i and 5i. The corresponding first-order frame property
is rp

i ^ ti ^ ei.
Now we conclude the above corresponding results here:

Modal formula First-order correspondent Class of frames
Ki J all frames
T p

i rp
i i-reflexive frames

Ti ri restricted i-reflexive frames
4p

i tpi i-transitive frames
4i ti restricted i-transitive frames
5p

i ep
i i-euclidean frames

5i ei restricted i-euclidean frames
di si i-serial frames

As we have shown above, the classical uniform substitution doesn’t pre-
serve validity w.r.t to arbitrary class of frames. Instead of uniform substi-
tution, we can have a weaker version. To define it, we will use the following
concept.

Definition 2.6.17 (I-modal Depth) The I-modal depth of an occurrence
of a proposition letter p in a LIpΦq formula φ (notation: pIDpoppq, φq) is a
sequence in SpIq Y tεu which is defined recursively as follows:

• IDpoppq, pq � IDpJq � ε

• IDpoppq, φq � IDpoppq, φq
• IDpoppq, φ^ ψq �

"
IDpφq if oppq appears in φ
IDpψq if oppq appears in ψ

• IDpoppq,2iφq � iIDpoppq, φq.
where oppq is the occurrence of p.

If all the occurrences of a proposition letter p in a formula have the same
I-modal depth c, then we say p in φ has the uniform I�modal depth c.

Definition 2.6.18 (I-Uniform Substitution) A transformation from a
LIpΦq formula φ to another LIpΦq formula θ is called an I-uniform substi-
tution, if θ is obtained from φ in one of the following ways:
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1. uniformly replacing proposition letters of the uniform I-modal depth
in φ with arbitrary LIpΦq formulas.

2. uniformly replacing proposition letters in φ with arbitrary LIpΦq for-
mulas without any modalities.

Proposition 2.6.19 I-uniform substitution preserves validity on any class
K of indexed frames.

Proof. Suppose towards contradiction that there is a frame class K such that
K ( φppq but K * φpψq where φpψq is obtained by I-uniformly substituting
φ for p in φppq. Then there is a pointed indexed model pF, V, wq based on a
frame F P K such that pF, V, wq * φpψq.

• Suppose φpψq is obtained in the first way of the definition of I-substitution.
Then let V 1pqq � V pqq for any proposition letter q P Φ except p, but
let V 1ppq � tw|w (c ψu where c is the uniform I-modal depth of p in
φ. then it is easy to see that pF, V 1, wq * φppq. Contradiction.

• Suppose φpψq is obtained by in second way of the definition of I-
substitution. Then let V 1pqq � V pqq for any proposition letter q P Φ
except p and let V 1ppq � tw|w ( ψu. It is easy to see that pF, V 1, wq *
φppq. Contradiction.

That is to say I-substitution preserves validity7. qed

Definition 2.6.20 (I-Uniform Substitution Rule) Given a LIpΦq for-
mula φ, prove θ where θ is obtained by I-uniform substitution from φ.

Classical generalization(that is, given φ prove 2iφ) doesn’t preserve va-
lidity on arbitrary class of frames either. For example, 21p Ñ 2121p is
valid w.r.t to the class of 1-transitive frames but 22p21p Ñ 2121pq is not.
Consider the following model:

M :

w :  p 2 ++
1 // v : p

21

§§
11hh211mm

7Informally, when a formula is valid on some frame, this can not depend on the partic-
ular value its propositional letters have. Thus it should be safe to uniformly replace these
letters with any other formulas as long as every occurrence of the uniform replacement
has the same meaning. The 3 conditions of I-substitution guarantee this.
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It is easy to see that M is based on a 1-transitive frame, but clearly,
M, w * 22p21p Ñ 2121pq which means 22p21p Ñ 2121pq is not valid on
the class on 1�transitive frames.

Remark 2.6.21 It is reasonable not to have the classical generalization
all the time as we discussed in the first chapter. In the classical set-up,
if we assume an agent is positive introspective, then other agents must
”know/believe” this by classical generalization.

2.7 I-modal Logics

Definition 2.7.1 (I-modal Logics) An I-modal logic Λ is a set of modal
formulas that contains all instances of propositional tautologies and is closed
under modus ponens(MP: φ P Λ and φÑ ψ P Λ then ψ P Λ.) and I-uniform
substitution. If φ P Λ, we say that φ is a theorem of Λ(notation: $Λ φ).

Soundness and completeness are defined as in the classical set-up.

Definition 2.7.2 (Soundness)
Let S be a class of frames(or models). A I-modal logic Λ is sound with

respect to S if for all formula φ, and all structures Θ P S, $Λ implies Θ ( φ.

Definition 2.7.3 (Completeness) Let S be a class of frames(or models).
An I-modal logic Λ is strongly complete with respect to S if for any set of
formulas Γ Y tφu, Γ (S φ implies Γ $Λ φ. An I-modal logic Λ is weakly
complete with respect to S if for any formula φ, S ( φ implies $Λ φ.

Proposition 2.7.4 A logic Λ is strongly complete with respect to a class
of structures S iff every Λ-consistent set of formulas is satisfiable on some
Θ P S.
Proof. Standard, Cf [BRV]. qed

Let KI be the classical modal logic that contains all instances of tautolo-
gies, all the formulas:

Ki : 2ipp Ñ qq Ñ p2ip Ñ 2iqq
for i P I, and closed under MP , uniform substitution(SUB) and generalization(GEN).
It is commonly known that this logic is sound and strongly complete with
respect to the class of all classical frames. Then we have $KI

φ ðñ , φ.
From Proposition 2.6.4, we have the following:
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Proposition 2.7.5 $KI
φ ðñ K ( φ, where K is the class of all indexed

frames.

Actually we can prove the following stronger result:

Proposition 2.7.6 KI is sound and strongly complete with respect to the
class of all indexed frames.

Proof. Soundness follows directly from the above proposition. For the
completeness part:
Fix any KI -consistent set of formulas ∆. From the completeness of KI w.r.t
the class of all classical frames, we have there is a classical pointed model
pM, wq such that M, w , ∆. From the correspondence result, there is an
indexed pointed model pM 1, w1q such that M 1, w1 ( ∆. qed

Since KI is clearly an I-modal logic according to the definition, then we
can define the normal I-modal logics based on it.

Definition 2.7.7 (Normal I-modal Logic) An I-modal logic Λ is nor-
mal, if it contains the logic KI and is closed under MP and I-uniform
substitution(I-SUB). Equivalently, an normal I-modal logic can also be rep-
resented as an axiom system, which contains at least all the formulas in KI

as its axioms and MP, I-SUB as its rules.

Notation In the following, we will use the name of certain formulas to
denote the normal I-modal logic containing those formulas as extra axioms.
For example, KIT

p
I denotes the normal logic that contains axioms T p

i for
each i P I. Similarly, we call a frame I-reflexive, if it is i-reflexive for each
i P I.

Since KI is sound w.r.t to the class of all the indexed frames, it follows
that:

Proposition 2.7.8 KI is sound with respect to any class of indexed frames.

It is obvious that the rule MP preserves validity. From Proposition 2.6.19, we
know that the rule I�SUB also preserves validity w.r.t any class of indexed
frames. Then to show the soundness for a normal I-modal logic system w.r.t
to a frame class K, we only need to check that the extra axioms are valid
w.r.t to K. From the correspondence results in the last section, we can easily
obtain soundness for several normal logics. For example, logic KIT

p
I is sound

w.r.t to the class of I-reflexive indexed frames; KI4I5I is sound w.r.t to the
class of restricted transitive and restricted euclidean indexed frames.
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We should notice that although classical generalization can not preserve
validity on arbitrary class of indexed frames, it indeed could preserve valid-
ity on some certain class of frames. From the completeness result for KI ,
we know that GEN preserves validity on the class of all indexed frames8.
Moreover we have the following results.

Proposition 2.7.9 If φ is valid on a class of restricted i-reflexive indexed
frames, then 2iφ is also valid on this class of frames.

Proof. Remember that F is a restricted i-reflexive frame ðñ F , Ti.
From the claim in Proposition 2.6.12, and a straightforward generalization
of Proposition 2.5.7 to validity, we know that F, w ( φ ðñ F, w (i φ.
Thus if F ( φ then F (i φ. It follows that F ( 2iφ. qed

Now let’s consider the normal I-logic KITI�GEN which has all the for-
mulas in t2iφ Ñ φ|i P I, φ P FormpLIpΦqqu as its extra axioms and GEN
as its extra rule of proof. We have the following result:

Proposition 2.7.10 Logic KITI � GEN is sound and strongly complete
with respect to the class of restricted I-reflexive frames.

Proof. The soundness follows easily from the Proposition 2.7.9(for GEN
rule) and Proposition 2.6.12 (for the validity of axioms). For the complete-
ness part:
It is easy to see that KITI � GEN is equivalent to the classical multi-
agent logic KT , since TI actually contains all the uniform substitution in-
stances of 2ip Ñ p and both systems have the generalization rule. Since
KT is strongly complete w.r.t the class of I-reflexive classical frames, then
given a KITI � GEN -consistent set ∆, it is satisfiable at some reflexive
classical model, suppose it is M � pW, tRiuiPI , V q. From the construction
in Theorem 2.5.8, we know that there is an indexed model M 1 such that
M 1 � pW, tR1cucPSpIq, V q where R1ci � Ri and M, w , φ ðñ M 1, w ( φ for
any φ P FormpLIpΦqq, w P W. Since M is I-reflexive and R1i � Ri for each
i P I, then M 1 is I-reflexive. Moreover, for any i P I, c � xj1, ..., jny P SpIq,
R1ic � Rjn � R1j1,...,jn

� R1c9. It follows M 1 is restricted I-reflexive. So any
KITI � GEN -consistent set ∆ is satisfiable at some restricted I-reflexive
indexed model. qed

8It follows also from Proposition 2.6.4.
9Which is stronger than the requirement for R1ic and R1c in ri.
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Similarly we have the following result:

Proposition 2.7.11 KITI4I5I�GEN is sound and strongly complete w.r.t
the class of restricted I-transitive, restricted I-euclidean and restricted I-
reflexive frames.

Proof. The soundness is straightforward. For completeness: It is easy to
see that KITI4I5I�GEN is equivalent to the classical multi-agent logic S5.
Then any KITI4I5I�GEN -consistent set of formulas ∆ is also S5-consistent.
Then according to the completeness result for S5, any KITI4I5I � GEN -
consistent set of formulas ∆ can be satisfied on some model M , in which
the relations are equivalence relations. We still use the construction in the
above proof to obtain an indexed model M 1. We only need to check if M 1
is I-euclidean and I-transitive. Suppose there are w, v, s P M 1 such that
wR1iv and wR1is. Since R1i � Ri and Ri is an equivalence relation then R1i
is an equivalence relation too. It follows that vR1is. Since R1ii � R1i � Ri

then we have vR1iis. That is to say M is i-euclidean. Since i is arbitrary
then M is I-euclidean. Similarly, we can show that M is I-transitive. Since
wR1iv � wR1icv, then M is restricted I-euclidean and restricted I-transitive.
qed

KITI4I5I � GEN and KITI � GEN are rather special I-modal logics
which are equivalent to some classical modal logics. Normally we don’t have
such equivalence relation, since the normal I-modal logics extending KI but
without TI axioms, don’t contain the classical GEN and SUB in general10.
Moreover, for a normal I-modal logic, there is no obvious way of construct-
ing the canonical model which is usually used to prove the completeness11.
In such case, we’d better prove completeness indirectly. Here is a strategy
to prove the completeness for arbitrary I-modal logic Λ by making use of
the completeness results for some other classical logics:

Try to find a complete classical normal logic Λc, such that given any
Λ-consistent set ∆, ∆ is also Λc-consistent. Since Λc is complete w.r.t some
class of classical frames, then any Λ-consistent set ∆ is satisfiable on some
classical model M in with certain frame properties. Then we just need to
transform this M into an indexed model with the desired property according
to the class of frames we want.

10The corresponding frame property of Ti guarantees that GEN preserves validity, as
we showed in Proposition 2.7.9. However, this is a very special case.

11For example, considering how to build Rc relations for the canonical model when c R I.
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Let’s look at an example:

Theorem 2.7.12 KIT
p
I is strongly complete with respect to the class of I-

reflexive frames.

To prove this theorem we take the above strategy.

Lemma 2.7.13 A set of LIpΦq formulas ∆ is KIT
p
I -consistent ðñ ∆ Y

t2iφÑ φ|i P I, φ is a formula in LIpΦq without modalitiesu is KI-consistent.

Proof. Let A � t2iφÑ φ|i P I, φ is a formula in LIpΦqwithout modalitiesu.
Since I � SUB only substitutes formulas without modalities for the p in
2ip Ñ p, then we can equally add all those instances of substitutions as
premises in KI . Namely, we have ∆ $KIT

p
I

φ ðñ ∆ Y A $KI
φ. That is

to say ∆ &KIT
p
I
K ðñ ∆YA &KI

K. qed

Since KI is strongly complete w.r.t the class of all indexed frames then
we have:

Lemma 2.7.14 For any KIT
p
I -consistent set of LIpΦq formulas ∆, ∆Y A

is satisfiable in some indexed model.

Now we only need to transform the model which satisfies ∆, into another
one with the desired property12.

Let us first define a term which is useful here.

Definition 2.7.15 (Descriptive List) We call a LIpΦq formula π a “de-
scriptive list” if π is in the form of

�
pPΦ�p, which can be regarded as a full

truth list of proposition letters in the finite set Φ. We denote the set of all
the possible descriptive lists as V pΦq.
Remark 2.7.16 For example, if Φ � tp, qu, then the formula p ^  q is a
descriptive list. Intuitively, a descriptive list is like a valuation on a world
in a model.

Lemma 2.7.17 Suppose t2iφ Ñ φ|i P I, φ is a formula in LIpΦq without
modalitiesu is satisfiable at a pointed indexed model pM, wq, then there is
an I-reflexive pointed indexed model pM�, w�q such that for all formula φ,
M�, w� ( φ ðñ M, w ( φ.

12It is easy to see that we can not simply add reflexive relations at each point.
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Proof. Suppose t2iφÑ φ|i P I, φ is a formula in LIpΦq without modalitiesu
is satisfiable at a pointed indexed model pM, wq. Then for each i P I, since
M, w , 2i π Ñ  π then M, w , π Ñ 3iπ where π is the descriptive
list according to V pwq13. Namely, for each i P I, there is a world v such
that wRiv and V pwq � V pvq. It follows that, in the unravelling model
UnrpM, wq � pS, tRr

i uiPI , V rq, for each i P I there is a pw, v, iq such that
pw, εqRipw, v, iq and V ppw, εqq � V pppw, v, iqq. We pick one such point for
each i and let T be the set of them. We now construct a pointed indexed
model pM�, w�q � pS�, tR�c ucPSpIq, V �q, w� as follows:

• S� � S � T.

• V �psq � V rpsq.
• w� � pw, εq.
• R�c is obtained by the following operations:

1. First step: let R1ci � tps, tq|s � xw, ..., wn, cy, t � xw, ..., wn, wn�1ciy P
Su for each c P SpIq and i P I.

2. Second step: Let R2c � R1ci|S�, and if t � xw, v, iy P T and tRr
ijs

for any i, j P I then add pxw, εy, sq into R2ij .
3. Third step: Let R�c � R2c for all the c P SpIq � I, Let R�i �

R2i Y tps, sq|s P S�u for each i P I.

The intuition behind such construction is this: we first we rename the
relations to encode the path information. Secondly, for each i P I, we cut
off all the certain worlds pw, v, iq in T . Then we engraft the subtrees rooted
at t P T to pw, εq. Finally, we make the model I-reflexive closure, namely to
add all the reflexive i-relations at each world for each i P I.

It is obvious that UnrpM�, w�q is isomorphic to UnrpM, wq. Intuitively
UnrpM�, w�q unravels the i-paths we hide at xw, εy in pM�, w�q.

From Lemma 2.5.5, we have M�, w� ( φ ðñ M, w ( φ. qed

Then from this Lemma 2.7.17 and Lemma 2.7.14, we have the following
Lemma which implies the complete theorem directly.

Lemma 2.7.18 Any KIT
p
I -consistent set ∆ is satisfiable in some I-reflexive

indexed model.
13We suppose Φ is finite.
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Remark 2.7.19 In general, to prove completeness for arbitrary normal I-
modal logic is difficult. We don’t have an elegant way to deal with it uni-
formly. Besides the above results, we are more interested in the following
conjectures about the normal I-modal logics indeed without SUB and GEN :

• KI4p is strongly complete w.r.t the class of I-transitive frames.

• KI4 is strongly complete w.r.t the class of restricted I-transitive frames.

• KI4I5IDI is strongly complete w.r.t the class of restricted I-transitive,
restricted I-euclidean and I-serial frames.

Proving such results will definitely give us better understanding of indexed
model and its semantics. We leave them here for further study.
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Chapter 3

Non-redundant Models and
Awareness

3.1 Non-redundant Models

In many cases, the agents are only interested in the primitive possibilities
and what they care about others is also others’ information about those
primitive possibilities. However, in the models we often have multiple worlds
sharing the same primitive facts. A natural question arises: When can we
have the models with unique primitive possibilities? In this section, we will
give the criteria for a set of formulas to have the desirable indexed/classical
models containing only unique primitive possibilities. It will also be clear
that how our indexed approach reduce the size of models than the classical
setting in this specific case.

Definition 3.1.1 (Redundant Model) A classical(indexed) model M is
called a redundant model if there are w, v P W such that V pwq � V pvq. If
a classical(indexed) model M is not a redundant model, then we say M is
non-redundant.

Let ∆ and ∆� be two sets of LIpΦq formulas:

∆ � t3cpπ ^3iπ
1q ^3dpπ ^ 3iπ

1q|i P I; c, d P SpIq Y tεu, π, π1 P V pΦqu1,
∆� � t3cpπ ^3iπ

1q ^3cpπ ^ 3iπ
1q|i P I; c P SpIq Y tεu, π, π1 P V pΦqu.

Moreover, let  ∆ � t φ|φ P ∆u, ∆� � t φ|φ P ∆�u.
1Remember that as we defined in last chapter, V pΦq is the set of all descriptive lists

and Φ is finite.
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Lemma 3.1.2

• (a) For any pointed classical model pM, wq, M, w ,  ∆ ðñ there is
a non-redundant pointed classical model pMn, wnq such that Mn, wn ú
M, w.

• (b) For any pointed indexed model pM, wq, M,w (  ∆� ðñ there is
a non-redundant pointed indexed model pMn, wnq such that Mn, wn ú
M, w.

Proof. For (a):
ñ: Suppose M, w ,  ∆. We claim that:

Claim: If two worlds v, v1 are connected to w2 and V pvq � V pv1q then
M, v ú M, v1.

Now we prove the above claim by induction on the structure of a LIpΦq
formula ψ:

• Suppose ψ is a boolean combination of primitive propositions and J.
It is clear that M, v , ψ ðñ M, v1 , ψ, since V pvq � V pv1q.

• Let φ, φ1 be two LIpΦq formulas. Suppose for any v, v1 such that
V pvq � V pv1q we have M, v , φ ðñ M, v1 , φ and M, v , φ1 ðñ
M, v1 , φ1. It is easy to see that M, v , φ ^ φ1 ðñ M, v1 , φ ^ φ1
and M, v ,  φ ðñ M, v1 ,  φ.

• When ψ is of the form 3iψ
1, suppose towards contradiction that M, v ,

ψ and M, v1 . ψ, namely M, v1 ,  ψ. Since M, v , ψ, there is a world
s such that vRis and M, s , ψ1. Let π1 be the descriptive list according
to V psq, we claim that

Claim1 :M, v1 ,  3iπ
1.

Suppose not, then M, v1 , 3iπ
1, namely there is a world s1 such that

v1Ris
1 and V ps1q � π1 � V psq. It is obvious that s and s1 are connected

to w since v and v1 are connected to w. Since M, s , ψ1, then from
induction hypothesis we have M, s1 , ψ1. It follows that M, v1 , 3iψ

1
2In the sense that there are paths from w to v and v1. Especially, the path can be the

ε-path namely v or v1 could be w itself.
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which contradicts M, v1 ,  ψ. Then Claim’ is proved.
Moreover it is obvious that M, v , 3iπ

1 since V psq � π1. Suppose
v, v1 are connected to w by a c� path and a d� path respectively. Let
π � V pvq � V pv1q and formula φ � 3cpπ^3iπ

1q^3dpπ^ 3iπ
1q P ∆3.

Then it is clear that M, w , φ. Contradiction. Now Claim is proved.

Suppose for now pM, wq is a pointed model in which every world is con-
nected to w4. Based on the Claim, we can build a non-redundant model
pMn, wnq from pM, wq as follows:

• Wn � t|v||v PW u where |v| is the equivalence class w.r.t ú relation;

• Rn
i |s||t| ðñ Ds1 P |s|Dt1 P |t| such that s1Rit

1;
• V np|v|q � V pvq;
• wn � |w|.
It is easy to check that Mn is a filtration of M 1 through FormpLIpΦqq.

Now from the Filtration Theorem cf.[BRV], we have M, w , φ ðñ Mn, |w| ,
φ.

Suppose there are two worlds |w|, |v| in Mn such that V np|w|q � V np|v|q.
From the definition of V n, we have V pwq � V pvq. But from the Claim, we
have Mn, w ú Mn, v. It follows that v P |w| which means |v| � |w|,
namely Mn is non-redundant.

ð: Suppose there is a non-redundant classical pointed model pMn, wnq
such that Mn, wn , φ ðñ M 1, w1 , φ for any φ P FormpLIpΦqq. Sup-
pose towards contradiction that Mn, wn .  ∆ namely there is a formula
 φ P  ∆ such that Mn, wn .  φ. Then it follows Mn, wn , φ where φ P ∆.
That is to say there are two worlds v, v1 P Mn such that V pvq � V pv1q � π
and Mn, v , 3iπ

1 and Mn, v1 ,  3iπ
1 for some descriptive list π1. How-

ever, since Mn is non-redundant, v � v1. But it is not possible for any world
v PMn to satisfy 3iπ

1 and  3iπ
1 at the same time. Contradiction.

For (b):
ñ: Suppose M, w (  ∆�. We build the non-redundant model M r as follows:

3Especially, if c � ε (or d � ε), then φ � 3εpπ ^3iπ
1q ^3dpπ ^ 3iπ

1q � π ^3iπ
1 ^

3dpπ ^ 3iπ
1q according to the notation for 3ε we mentioned before.

4Otherwise we can simply ”cut off” all the unreachable worlds.
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• Let Wn � t|v||v P W 1u where |v| is the equivalent class w.r.t to the
relation úΦ

5;

• Rn
c |s||t| ðñ Ds1 P |s|Dt1 P |t| such that s1Rct

1;
• V np|v|q � V pvq;
• wn � |w|.

Assume without generality that pM, wq is a pruned pointed indexed model6.
We claim that:

Claim: UnrpM, wq, pw, εq Ø UnrpMn, |w|q, p|w|, εq.
If the claim is true, then from Proposition 2.5.14 we have M, w ú

Mn, |w| which is what we want.

To prove the claim we have to find the bisimulation between those two
models. Let’s define a relation Z � UnrpM, wq � UnrpMn, |w|q : ps, tq P
Z ðñ s � xw, ..., wn, cy and t � x|w|, ..., |wn|, cy for some c P SpIq Y tεu.
We now show that Z is a bisimulation.

Suppose not, then there are s � xw, ..., wn, cy P UnrpM, wq and t �
x|w|, ..., |wn|, cy P UnrpMn, |w|q which violate at least one of the three con-
ditions of bisimulation. It is clear that V psq � V ptq. Suppose sRr

i s
1 for

some s1 P UnrpM, wq, namely s1 � xw, ..., wn, v, ciy7. Then from the defini-
tion of Rn

c , there must be a t1 � x|w|, ..., |wn|, |v|, ciy P UnrpMn, wnq such
that tRnr

i t1. In such case, the back-condition of bisimulation must be vi-
olated. That is to say, there is a t1 such that tRnr

i t1 for some i P I, but
there is no s1 P UnrpM, wq such that sRr

i s
1 and s1Zt1. Namely there is t1 �

x|w|, ..., |wn|, |v|, ciy P UnrpMn, |w|q but there is no s1 � xw, ..., wn, v�, ciy in
UnrpM, wq where v� P |v|. Since t1 � x|w|, ..., |wn|, |v|, ciy, according to the
definition of Rn

c , in pM, wq there is a ci-path from a w1 P |w| to a v1 P |v| which
extends a c-path from w1 to a w1n P |wn|. Since pM, wq is a pruned pointed
model, then all the paths in pM, wq are from w. It follows that there is a
ci-path from w to a v1 which extends a c-path from w to a w1n. Evidently,

5w úΦ v ðñ V pwq � V pvq.
6Otherwise we can make it pruned and the formulas satisfiable at w will not be changed.
7Remember we use Rr to denote the relation in unravelling models. Here we use Rr

i

as relations in UnrpM, wq and Rnr
i as relations in UnrpMn, wnq for each i P I.
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M, w ( 3cpπ ^ 3iπ
1q where π coincides V p|wn|q � V pwnq and π1 coin-

cides V pv1q. However, since there is no such xw, ..., wn, v�, ciy P UnrpM, wq
for any v� P |v| while s � xw, ..., wn, cy exists, then it is easy to see that
M, w ( 3cpπ ^  3iπ

1q. Therefore M, w ( 3cpπ ^  3iπ
1q ^ 3cpπ ^ 3iπ

1q
which contradicts to the assumption that M, w (  ∆�. That is to say, Z is
indeed a bisimulation, which completes the proof.
ð: Similar to the ð proof in part (a).

qed

Theorem 3.1.3 (Non-redundancy Criteria for finite Φ)

• (a) Given a set of LIpΦq formulas Γ, Γ has a non-redundant classical
model ðñ ΓY ∆ has a classical model.

• (b) Given a set of LIpΦq formulas Γ, Γ has a non-redundant indexed
model ðñ ΓY ∆� has an indexed model.

Proof. For (a):
ñ: Given a set of LIpΦq formulas Γ, suppose Γ has a non-redundant clas-

sical model pM, wq. We claim that  ∆ is also satisfiable on pM, wq. Suppose
not, then there is a formula φ � 3cpπ^3iπ

1q^3dpπ^ 3iπ
1q P ∆ such that

M, w , φ. However since pM, wq is non-redundant then there is at most one
world which satisfies π, suppose it is v, but M, v , 3iπ

1 ðñ M, v .  3iπ
1.

Then M, w . 3cpπ ^3iψq ^3dpπ ^3iψq. Contradiction.

ð: Suppose there is a model for Γ Y  ∆, then from Lemma 3.1.2 we
have Γ has an non-redundant model.

For (b):

ñ: Easy, similar to (a).
ð: Suppose there is a model for Γ Y  ∆�. From Lemma 3.1.2 we have

Γ has an non-redundant model.
qed

Remark 3.1.4 Let’s take a look at the formulas in ∆ and ∆�. We now
call a π as a primitive state, since it is the full description of the primitive
factual propositions. Then the formula 3cpπ^3iπ

1q^3cpπ^ 3iπ
1q roughly

says that: the (imaginary)agent c thinks it is possible that the primitive state
is π but he is not sure whether agent i would consider π1 possible when at
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primitive state π. And the formula 3cpπ ^ 3iπ
1q ^ 3dpπ ^  3iπ

1q says
that: the imaginary agent c thinks it is possible that the primitive state is π
and agent i considers π1 possible at such primitive state but the imaginary
agent d thinks it is possible that agent i doesn’t consider π1 possible at such
primitive state π.

Based on the above interpretations of formulas, the above theorem shows
that:

• We can have a non-redundant classical model for a situation if and
only if in that situation, any two (imaginary)agents don’t have different
opinions on whether an agent j considers a primitive state π1 possible
when j is at primitive state π.

• We can have a non-redundant indexed model for a situation, if in
that situation, any (imaginary)agent doesn’t have uncertainties about
whether an agent j considers a primitive state π1 possible when at a
possible primitive state π. In other words, if every primitive state can
determine the (imaginary)agents’ attitudes towards all the primitive
states, then we can have a non-redundant indexed model for it. Al-
though this determinacy criterion looks very strong, there are still lots
of interesting situations like Muddy Children8 and many card games
satisfying it. For example, consider the muddy children example men-
tioned in Chapter 1. Both children are sure that at any primitive state
how the other would think, although child 2 falsely believes child 1 is
just as normal as he is. For instance, child 2 thinks that at prim-
itive state   dirty, clean ¡ child 1 would thinks   clean, clean ¡
and   dirty, clean ¡ both possible. Though child 2 is wrong, he still
doesn’t have any doubts(uncertainties) about child 1’s attitude towards
the primitive states at any given primitive state.

The criterions for having non-redundant indexed model is weaker and more
reasonable than the one for having non-redundant classical model. This
shows that the indexed model/semantics approach is more suitable if we are
dealing with some specific situations or have strong preference to use non-
redundant models. Modelling interactive unawareness is a good application
for indexed non-redundant models. We will discuss it in the next section.

8Even with wrong information as we mentioned in the first chapter.
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3.2 Indexed Model with Awareness

The “awareness” that we want to discuss in this section corresponds to the
details of the primitive possibilities agents may consider. Suppose the prim-
itive possibilities with full details are described by all the propositions in Φ.
Then for any agent who is only aware of Φ1 � Φ, his unawareness intuitively
corresponds to filtering or collapsing certain full-detail possibilities into to
one. According to such intuition, several semantic approaches based on the
state-space have been proposed recently[MR99][HMS03][Sad05]. However,
under some constraints, we think the projections and multiple levels in their
models can be encoded in a simpler way via indexedmodels. We now define
our own awareness models based on indexed models.

Definition 3.2.1 (Indexed Models with Awareness) An indexed model
with awareness is a tuple:

M � pW, tpRc, AcqucPSpIq, V q
where:

• W is a non-empty set of possible worlds.

• Ac is a subset of Φ.

• Rc is a relation on W �W .

• V : W Ñ PΦ is a valuation on W.

Such that for any w, v PW , V pwq � V pvq ðñ w � v.

Remark 3.2.2

• It is clear that an indexed model with awareness can be seen as a pair
pM�, tAcucPSpIqq where M� is a non-redundant indexed model. We
can choose the preferable underlying indexed models depending on the
purpose9.

• The intended interpretations of Rc relations are as before.
9For example, to deal with belief and awareness, we’d better use the indexed models

which are restricted I-euclidean, restricted I-transitive and I-serial.
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• Ac represents the awareness set of the (imaginary) agent c. We al-
low Ac to be H in some cases. Notice that the awareness set in our
model is world-independent. Namely, the awareness is uniform for an
(imaginary) agent at any world. It follows that in our model, we don’t
allow (imaginary)agents to have uncertainties about others’ awareness
ability. For example, j’s awareness set is certain in agent i’s mind,
although agent i might be wrong. As Remark 3.1.4 discussed, by using
such non-redundant models, we are aiming at the situations in which
agents only have uncertainties about primitive possibilities.

Notation In the following, we call the indexed models with awareness
“IA-models”.

According to our intuition, If an agent is not aware of p, then he can not
distinguish two primitive possibilities which only differ in the truth value
of p. To represent this explicitly, we should add some constraints on the
IA-models. First of all, we define the indistinguishable relation �c w.r.t to
an awareness set Ac as following:

Definition 3.2.3 (Indistinguishable relations) Given an IA-model M �
pW, tpAc, Rcq|c P SpIqu, V q, for any c P SpIq, �c is a relation on W �W :

�c� tpw, vq|pV pwq XAcq � pV pvq XAcqu
Obviously, �c is an equivalence relation.

Let’s define an useful concept here:

Definition 3.2.4 (Ac-bisimulation) Let M � pW, tpRc, AcqucPSpIq, V q be
an IA-model. A binary relation Z �W �W is said to be an Ac-bisimulation
in M if the following conditions are satisfied:

• If wZv then p P V pwq ðñ p P V pvq for all p P Ac.

• If wZv and wRciw
1 for some i P I, then there is v1 P W such that

vRciv
1 and w1Zv1.

• If wZv and vRciv
1 for some i P I, then there is w1 P W such that

wRciw
1 and w1Zv1.
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We say that two worlds v, w of M are Ac-bisimilar(notation w ØAc v), if
vZw and Z is an Ac�bisimulation on M .

There are several intuitive basic constraints on IA-models:

1. Limited Awareness: Aci � Ac for any c P SpIq.
The idea behind this constraint is that one agent can not really imagine
that others could be aware of what he is unaware of10.

2. Consistency for Indistinguishable States: For any c P SpIq,
w, v, t PW :
1. if w �c v then pt, wq P Rc ðñ pt, vq P Rc,
2. �c is an Ac�bisimulation.

The idea behind this is that if agent can not distinguish two primitive
states w, v then:
1. At any world, he thinks w iff he thinks v possible.
2 He has the equal imaginations for others on these two worlds.
In sum we can identify the worlds with the same Ac for (imaginary)agent
c.

Like many properties about indexed models that we mentioned in the last
chapter, there are some stronger constraints about awareness sets. Those
stronger constraints don’t hold in general, but may be useful depending on
certain purpose. We now list some of them:

• Stronger alternatives of Limited Awareness:

1. Positive Introspection of Awareness: Acii � Aci for any
c P SpIqtεu, i P I.
The idea behind this is that agents have the correct reflection
about their own awareness sets, and they also assume everybody
does so.

2. Weak Correctness of Imaginary Awareness: Aci � AcXAi

for any non-empty sequence c P SpIq and i P I.

The idea behind this is that we assume agents could only think
others are less or equally aware than they actually are. For exam-
ple, teachers always think students are aware of less things than

10Although he may doubt about this.
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they actually are. On the other hand, this stronger constraint
excludes the possibilities in which agents can be wrong about
others’ awareness abilities. For example, students always think
teachers are aware of more things than they actually are.

3. Strict Correctness of Imaginary Awareness: Aci � AcXAi

for any non-empty sequence c P SpIq and i P I.

The idea behind this is that we assume the agents can do their
best in guessing correctly about others’ awareness. Such con-
straint doesn’t hold in general, but may be helpful when mod-
elling many situations in which a rather small Φ is considered
and agents know each other pretty well.

Now take a look at an example which often appears in the multi-context
systems.

Example 3.2.5 There are two agents Mr.1 and Mr.2 who are looking from
different sides of the “magic box” as the following picture shows. The box
is called “magic” since the agents only can see if there is a ball in some
columns but can not tell the depth where the ball actually is. Now put a ball
in the box, then both agents have asymmetric and partial information about
the position of the ball. One thinks the other won’t see anything useful at
the other position(since they can not see the depth).

�
xx

xx
xx

xx
x �

}}
}}

}}
}}

}}
}}

}}
}}

}}
�

�
¡¡

¡¡
¡¡

¡¡
� �
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ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ � Mr.2

� � �

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡

Mr.1

Let Φ � tL, lu where L means “there is a ball at the left-hand side from the
view of Mr.1”, while l means that “there is a ball at the left-hand side from
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the view of Mr.2”. Since there is only one ball in the box, then if you don’t
see the ball at the left-hand side then you must see it at the right-hand side
so we can denote proposition letter R as  L, and r as  l. According to the
scenario, A1 � tLu while A2 � tlu and A12 � A21 � H. Then A12c � A21c

must be H for any c P SpIq according to Limited Awareness. According
to Positive Introspection of Awareness we have A1..1 � A1 � tLu and
A2..2 � A2 � tlu. Moreover, A1..12 � A12 � A21 � A2..21 � H. So far we
have defined Ac for any non-empty c P SpIq. For possibility relations: since
A1..12c � A2..21c � H for any c P SpIq from Consistency for Indistin-
guishable States we have R12 � R21 � tpw, vq|w, v P W u. Let R1..1 � R1

and R2..2 � R2. Now we only need to define the relation R1 and R2. Ac-
cording to the scenario, we have the following model11:

w3 : pRq2, plq1 1
12

21

212 21

w4 : pRq2, prq1
212 21

w1 : pLq2, plq1 1
12

21
w2 : pLq2, prq1

where the proposition letters in the brackets labelled by i represent the un-
awareness set of agent i. It is easy to see that we can generate the sub-model
from it for each agent c by identifying worlds according to the equivalence
relation Ac. For example, for agent 1 we have:

R

1
§§

12 L

1
§§

For agent 2 we have :

r

2

¥¥
21 l

2

¥¥

Remark 3.2.6 We can actually transform the above IA-model into a HMS-
style multi-state model as:

11Where the relations are equivalence relation. And we omit the higher-order relations
which are not interesting.
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//
//

//
//
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//
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WL : pLq2

2
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄

§§¯̄
¯̄
¯̄
¯̄
¯̄
¯̄

p Lq2

2
xxxxxxxxxxxxxxxx

||xxxxxxxxxxxxxxxxx

WH : H
where Ac in the IA-model determines the projections between multiple

levels and the relations for imaginary agents in the IA-model can be trans-
lated into the possibility relations for agent within each level. We now leave
the precise correspondence results to the further study.

From this example, we can see that the non-redundant indexed model
with awareness gives us a compact way of modelling interactive unaware-
ness, under the constraint that agents only have uncertainties about primi-
tive possibilities.
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Chapter 4

Conclusion

This thesis aimed to propose an alternative semantics for multi-agent doxas-
tic/epistemic logics. We started from the intuition that when thinking about
others’ information states, we actually have some “imaginary agents” in our
mind, who may differ from the actual persons in the possibility relations
they have. By including extra possibility relations for each imaginary agent,
we can explicitly represent such imaginations of agents about each other
in the so called indexed models. Accordingly, the indexed semantics inter-
prets nested-modality formulas context-dependently to capture the intuition
about the imaginary agents. In the indexed semantics, a modal operator has
different explicit meanings under different scopes of other operators. The
similar idea of context dependent Kripke semantics also appears in some
recent works [Gab02][Gab04][BE06], where the meaning of a modality in a
formula sometimes depends on the path of worlds we passed to evaluate that
formula.

We have shown some advantages of our indexed semantics approach. The
explicit imaginary relations make modelling much easier. We have proved
that we can always have a desired non-redundant indexed model for the
situations in which agents don’t have uncertainties about others’ possibility
relations. On the other hand, the criteria for having a non-redundant classi-
cal model is much stronger and not very intuitive. By taking the advantage
of such non-redundant indexed model, we give an intuitive and succinct way
for modelling interactive unawareness under some constraints. As we have
shown, the generalization and uniform substitution no longer preserve va-
lidity on all the class of indexed frames. Sometimes, this is useful, for we
can have more subtle axioms in the logic. Some complete logic systems have
been given which can be used for different purposes.
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However, we have to admit that the indexed model/semantics approach
is not the ideal alternative of the classical possible-worlds model/semantics.
It is most useful and best understood in modelling situations in which agents
don’t have higher order uncertainties. Actually, the problem lies in the way
we think of the imaginary agents. In fact, if agent 1 has uncertainties about
how agent 2 considers the primitive possibilities, then there are actually
more than one imaginary agents in agent 1’s mind, each has its own certain
information. This suggests a possible way to keep the non-redundant model
and deal with higher-order uncertainties at the same time, namely, to add
more imaginary agents. For example, if agent 1 thinks there are two possible
“versions” 2.1 and 2.2 of agent 2, then we could revise the semantics to
interpret any formula in the shape of 2122φ as 21p22.1φ^22.2φq.

Moreover, we should notice that although we indeed reduce the size of
models on one hand, we also have to pay the price for adding complex
relations on the other hand. The logic without GEN and SUB looks com-
plicated and it is hard to obtain straightforward completeness proofs.

What we have explored in this thesis, are just the basic results about
indexed model and semantics. We hope those results could help people to
make use of the old tools to solve new questions in our approach. Actually,
there is much more to discuss and compare with the classical approach.
Many topics in classical approach are interesting to be reconsidered in the
new approach. For example, here are some interesting questions that should
not be very hard to answer:

• Can we find a straightforward variation of bisimulation for indexed
models?

• Can we find a way of building the “indexed canonical model”?

• How do we add common knowledge?

• Are all the important classical properties of frames still definable by
modal formulas in the indexed set-up?1

• To give a intuitive interpretations for the first-order correspondents of
Ti, 4i and 5i.

• To give a suitable semantics for indexed model with awareness and
compare it with the HMS approach.

1It seems classical transitivity is not definable in a modal formula.
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• Is it easy to do updates on indexed models? It seems we can not
eliminate points as we did for classical models since one point in an
indexed model may stand for different possibilities for different agents.

All of the above questions deserve careful discussions which we hope to
do in the future.
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