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Chapter 1

Introduction

In this thesis, we investigate intuitionistic subframe formulas and NNIL-
formulas by using the technique of n-universal models. Intuitionistic sub-
frame formulas axiomatize subframe logics which are intermediate logics
characterized by a class of frames closed under subframes. Zakharyaschev in-
troduced in [27], [29] the subframe formulas by using [∧,→]-formulas, which
contain only ∧ and → as connectives. It then follows that subframe logics
are axiomatized by [∧,→]-formulas.

NNIL-formulas are the formulas that have no nesting of implications to
the left. Visser, de Jongh, van Benthem and Renardel de Lavalette proved
in [25] that NNIL-formulas are exactly the formulas preserved under taking
submodels. The topic of this thesis was inspired by N. Bezhanishvili [3] who
used the insight that NNIL-formulas are then preserved under subframes as
well to introduce subframe formulas in the NNIL-form. It was proved in [3]
that NNIL-formulas are sufficient to axiomatize subframe logics.

This thesis is set up in a way to be able to connect the results on subframe
formulas defined by [∧,→]-formulas and NNIL-formulas by using n-universal
models as a uniform method. Our original intention to throw new light on
subframe logics by the use of NNIL-formulas was barely realized, but we do
provide new insights on the NNIL-formulas themselves.

Chapter 2 gives a background on intuitionistic propositional logic and
its Kripke, algebraic and topological semantics. In Chapter 3, we discuss
n-universal models U(n) of IPC by giving proofs of known theorems in a
uniform manner including a direct and very perspicuous proof of the fact
that the n-universal model of IPC is isomorphic to the upper part of the
n-Henkin model. This then also gives a method for a new proof (Theorem
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3.4.9) of Jankov’s theorem in [19] on KC. In Chapter 4, we summarize classic
and recent results on subframe logics and subframe formulas. In Chapter 5,
we investigate properties of the [∧,→]-fragment of IPC consisting of [∧,→]-
formulas only. This chapter is based on the results in Diego [12], de Bruijn [7]
and Hendriks [16]. We redefined the exact model defined in [16] by using the
n-universal models of IPC and give a uniform treatment of known results.

In Chapter 6, we give an algorithm to translate every NNIL-formula to
a [∧,→]-formula in such a way that they are equivalent on frames. We
study subsimulations between models and construct representative models
for equivalence classes of rooted generated submodels of U(n) induced by
two-way subsimulations. We construct finite n-universal models U(n)NNIL

for NNIL-formulas with n variables by the representative models and prove
the related properties. As a consequence, the theorem that formulas pre-
served under subsimulations are equivalent to NNIL-formulas proved in [25]
becomes a natural corollary of the properties of U(n)NNIL. Finally, we obtain
the subframe logics axiomatized by two-variable NNIL-formulas by observ-
ing the structure of U(2)NNIL. Although it is not yet clear how to general-
ize the result for the model U(2)NNIL and the subframe logics axiomatized
by NNIL(p, q)-formulas to the models U(n)NNIL for any n ∈ ω, this result
clearly suggests that the U(n)NNIL models are a good tool for future work
on subframe logics.

5



Chapter 2

Preliminaries

2.1 Intuitionistic logic

The language of the intuitionistic propositional calculus (IPC) consists of
propositional variables p0, p1, · · · , logical connectives ∧,∨,→ and a constant
⊥. Formulas of IPC are constructed in the standard way. We write ¬ϕ,
ϕ ↔ ψ and > as abbreviations of ϕ → ⊥, (ϕ → ψ) ∧ (ψ → ϕ) and ¬⊥.
Denote by Form the set of all well-formed formulas. Symbols ϕ, ψ, χ, · · ·
represent formulas and Γ, ∆, Θ, · · · represent sets of formulas. We write
ϕ(~p) to indicate that the propositional variables of ϕ are among ~p, where
~p = (p0, · · · , pn). We use PV (ϕ) to denote the set of propositional variables
that occur in ϕ. The set of all propositional variables of IPC is denoted by
Prop.

The Intuitionistic propositional calculus IPC is the smallest set of for-
mulas that contains the axioms:

1. p → (q → p),

2. (p → (q → r)) → ((p → q) → (p → r)),

3. p ∧ q → p, p ∧ q → q

4. p → p ∨ q, q → p ∨ q,

5. p → (q → (p ∧ q)),

6. (p → r) → ((q → r) → (p ∨ q → r)),
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7. ⊥ → p.

and is closed under the inference rules Modus Ponens (MP):

ϕ, ϕ → ψ

ψ
,

and Substitution (Sub):
ϕ(p0, · · · , pn)

ϕ(ψ0, · · · , ψn)
.

If ϕ ∈ IPC, then we write `IPC ϕ (or simply ` ϕ if it causes no confusion)
and say that ϕ is a theorem of IPC. A theory T is a set of sentences with
the property T ` ϕ ⇒ ϕ ∈ T . Let Th(Γ) = {ϕ : Γ ` ϕ} and call it a theory
of Γ. If Γ = {ϕ} a singleton, then we will write Th(ϕ) instead of Th(Γ).

Let CPC denote the classical propositional calculus. A set of formulas
L closed under MP and Sub is called an intermediate logic if IPC ⊆ L ⊆
CPC.

2.2 Kripke semantics

Definition 2.2.1. An intuitionistic Kripke frame is a pair F = 〈W,R〉 con-
sisting of a nonempty set W and a partial order R on W .

In a Kripke frame F, if wRv, then v is called a successor of w. If in
addition there is no other point u ∈ W such that wRu and uRv, then v
is called an immediate successor of w. Denote the set of all immediate
successors of w by Sw. The depth d(w) ∈ [1, +∞) of a point w is defined as
usual. The depth of a frame F = 〈W,R〉 d(F) is defined as d(F) = max{d(w) :
w ∈ W}. For any point w in F, we define

R(w) = {v ∈ W : wRv},

R−1(w) = {v ∈ W : vRw}.
We sometimes also write w ↑ and w ↓ instead of R(w) and R−1(w), respec-
tively. An endpoint w is a point with R(w) = {w} and has depth 1.

Definition 2.2.2. An intuitionistic Kripke model is a triple M = 〈W,R, V 〉
such that 〈W,R〉 is an intuitionistic Kripke frame, and V is an intuitionistic
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valuation, which is a partial map V : Prop → ℘(W ) satisfying the persis-
tence condition: if w ∈ V (p) and wRv, then v ∈ V (p). Usually V is used as
a total map. We call a model M an n-model if dom(V ) = {p1, · · · , pn}.

M is also called a model on the frame F = 〈W,R〉.
Let w be a point in a Kripke model M = 〈W,R, V 〉. We inductively

define a relation M, w |= ϕ as follows:

• M, w |= p iff w ∈ V (p);

• M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ;

• M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ;

• M, w |= ϕ → ψ iff for all v ∈ W such that wRv, M, v |= ϕ implies
M, v |= ψ;

• M, w 6|= ⊥.

If M, w |= ϕ, we say that “ϕ is true at w in M” or “ϕ is satisfied at w in
M”. If ϕ is true at every point w in M, we write M |= ϕ and say that “ϕ
is true in M” or “M is a model of ϕ”. If ϕ is true in every model on F, we
write F |= ϕ and say that “ϕ is valid in F” or “F is a frame of ϕ”.

The n-canonical model (or n-Henkin model) of IPC is the model H(n) =
〈W c,⊆, V c〉, where W c is the set of all consistent theories with the disjunction
property, and V c is defined by Γ ∈ V c(p) iff p ∈ Γ.

Many of the Kripke frames considered in the thesis will be rooted frames,
i.e. frames that have least nodes, roots. For proofs of the following two
theorems, see e.g. [6], [15].

Theorem 2.2.3. IPC is sound and complete with respect to the class of all
rooted Kripke frames.

Theorem 2.2.4. IPC has the finite model property.

2.3 Operations on Kripke frames and Kripke

models

There are three truth-preserving operators on Kripke models and they all
have their corresponding operations on Kripke frames.
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Definition 2.3.1. Let F = 〈W,R〉 be a frame. A set V ⊆ W is called an
upward closed subset or an upset, if for every w ∈ V and v ∈ W , wRv implies
v ∈ V . Denote the set of all upsets in F by Up(F).

Definition 2.3.2. A Kripke frame G = 〈V, S〉 is called a subframe of a
Kripke frame F = 〈W,R〉 if V ⊆ W and S is the restriction of R to V
(S = R ¹ V , in symbols), i.e., S = R ∩ V 2. The subframe G is a generated
subframe of F if V is an upward closed subset of W .

Definition 2.3.3. A Kripke model N = 〈W ′, R′, V ′〉 is called a submodel
of a Kripke model M = 〈W,R, V 〉 if 〈W ′, R′〉 is a subframe of 〈W,R〉 and
V ′ = V ¹ W ′, i.e. V ′(p) = V (p) ∩W ′ for every propositional variable p. N

is called a generated submodel of M if 〈W ′, R′〉 is a generated subframe of
〈W,R〉 and V ′ = V ¹ W ′.

Let M = 〈W,R, V 〉 be a Kripke model, X be a subset of W . We denote
the submodel of M generated by X by MX . In the case that X = {w}, we
will only write Mw for the rooted model generated by w ∈ W .

Definition 2.3.4. Let F = 〈W,R〉 and G = 〈V, S〉 be two Kripke frames.
A map f from W to V is called a p-morphism of F to G if it satisfies the
following conditions:

(R1) For any w, u ∈ W , wRu implies f(w)Sf(u);

(R2) f(w)Sv′ implies ∃v ∈ W (wRv ∧ f(v) = v′).

A surjective p-morphism on frames is also called a reduction. If there is
a surjective p-morphism from F to G, then we say that F is reducible to G,
and call G a p-morphic image or a reduct of F.

Definition 2.3.5. A p-morphism f of F to G is called a p-morphism of a
model M = 〈F, V 〉 to a model N = 〈G, V ′〉 if for every p ∈ Prop, w ∈ W ,

(R0) w ∈ V (p) ⇐⇒ f(w) ∈ V ′(p).

Let F = 〈W,R〉 be a Kripke frame.

• Assume w, v are points in W such that R(w) = R(v) ∪ {w}. Define a
Kripke frame G = 〈W ′, R′〉 by taking W ′ = W \ {w}, R′ = R ¹ W ′.
Define a map α : W → W ′ by taking

α(x) =

{
x, x 6= w
v, x = w.

Then α is a p-morphism. We call a function like α an α-reduction.
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• Assume w, v are points in W such that R(w) \ {w} = R(v) \ {v}.
Define a Kripke frame G = 〈W ′, R′〉 by taking W ′ = W \ {w}, R′ =
R ¹ W ′ ∪ {(x, v) : (x,w) ∈ R}. Define a map β : W → W ′ by taking

β(x) =

{
x, x 6= w
v, x = w.

Then β is a p-morphism. We call a function like β a β-reduction.

The next theorem was first proved in [8].

Theorem 2.3.6. If f is a proper p-morphism of F onto G, then there exists
a sequence f1, · · · , fn of α- and β-reductions such that f = f1 ◦ · · · ◦ fn.

Definition 2.3.7. Let {Fi = 〈Wi, Ri〉 : i ∈ I} be a family of Kripke frames
such that Wi ∩ Wj = ∅ for all i 6= j. The disjoint union of the family
{Fi : i ∈ I} is the frame

⊎
i∈I Fi = 〈⋃i∈I Wi,

⋃
i∈I Ri〉.

Definition 2.3.8. Let {Mi = 〈Fi, Vi〉 : i ∈ I} be a family of disjoint Kripke
models. The disjoint union of the family {Mi : i ∈ I} is the model

⊎
i∈I Mi =

〈⊎i∈I Fi,
⋃

i∈I Vi〉.
The following theorem shows that the three operations on Kripke models

are truth preserving. For a proof, see e.g. [6].

Theorem 2.3.9.

• If N is a generated submodel of M, then for every point w in N and
every formula ϕ,

N, w |= ϕ ⇐⇒ M, w |= ϕ.

• If f is a p-morphism of a model M to a model N, then for every point
w in M and every formula ϕ,

M, w |= ϕ ⇐⇒ N, f(w) |= ϕ.

• If wi is a point in Mi for i ∈ I and every formula ϕ,

Mi, wi |= ϕ ⇐⇒
⊎
i∈I

Mi, wi |= ϕ.
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2.4 Algebraic semantics

Definition 2.4.1. A Heyting algebra A = 〈A,∨,∧,→, 0〉 is a distributive
lattice 〈A,∨,∧, 0〉 with a binary operator →, a Heyting implication, defined
as:

c ≤ a → b iff a ∧ c ≤ b.

Let A be a Heyting algebra. A function v : Prop → A is called a Heyting
valuation. It can be extended in the standard way from Prop to Form. We
say a formula ϕ is true in A under v, if v(ϕ) = 1; ϕ is valid in A, if ϕ is true
under every valuation in A.

For a proof of the following theorem, see e.g. [6].

Theorem 2.4.2. `IPC ϕ iff ϕ is valid in every Heyting algebra.

2.5 Topological semantics

Definition 2.5.1. A topological space is a pair X = 〈X, τ〉, where X 6= ∅
and τ is a collection of subsets of X satisfying:

• ∅, X ∈ τ ;

• if U, V ∈ τ , then U ∩ V ∈ τ ;

• if {Ui}i∈I ⊆ τ , then
⋃

i∈I Ui ∈ τ .

Elements of τ are called open sets. U is called a closed set if X \ U is
open. A subset which is both closed and open is called a clopen set. Denote
the set of all clopens of X by CO(X).

Let Int denote the interior operator of X . A function v : Prop → τ is
called a valuation. It can be extended from Prop to Form as follows:

• v(ϕ ∧ ψ) = v(ϕ) ∩ v(ψ);

• v(ϕ ∨ ψ) = v(ϕ) ∪ v(ψ);

• v(⊥) = ∅;
• v(ϕ → ψ) = Int((X \ v(ϕ)) ∪ v(ψ)).
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Note that v(ϕ) ∈ τ for every ϕ. We say a formula ϕ is true in X under ν, if
v(ϕ) = X; ϕ is valid in X , if ϕ is true under every valuation in X .

For a proof of the following theorem, see e.g. [21].

Theorem 2.5.2. `IPC ϕ iff ϕ is valid in every topological space.

2.6 The connection of descriptive frames with

Heyting algebra and Heyting spaces

2.6.1 Descriptive frames and Heyting algebras

Definition 2.6.1. An intuitionistic general frame is a triple F = 〈W,R,P〉,
where 〈W,R〉 is a Kripke frame and P is a family of upsets containing ∅ and
closed under ∩, ∪ and the following operation ⊃: for every X,Y ⊆ W ,

X ⊃ Y = {x ∈ W : ∀y ∈ W (xRy ∧ y ∈ X → y ∈ Y )}
Elements of the set P are called admissible sets .

General frames and Heyting algebras have a close connection. For proofs
of the following two theorems, see e.g. [6].

Theorem 2.6.2. Let F = 〈W,R,P〉 be a general frame. The algebra 〈P ,∩,∪,⊃
, ∅〉 is a Heyting algebra and is called the dual of F, denoted by F+.

Theorem 2.6.3. Let A be a Heyting algebra, define A+ = 〈WA, RA,PA〉 as
follows:

(i) WA = {∇ ⊆ A : ∇ is a prime filter of A},
(ii) ∇1RA∇2 iff ∇1 ⊆ ∇2,

(iii) PA = {â : a ∈ A}, where â = {∇ ∈ WA : a ∈ ∇}.
Then A+ is a general frame called the dual of A. Furthermore, A ∼= (A+)+ =
〈PA,∩,∪,⊃, ∅〉.

The preceding theorem means that by applying the two operators ( )+

and ( )+ consecutively, one can go from a Heyting algebra through a general
frame and then back to itself. However, in general, for any general frame F,
it is not necessary that (F+)+

∼= F. So we have the following definition.
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Definition 2.6.4. A descriptive frame F is a general frame satisfying (F+)+
∼=

F.

Descriptive frames can also be defined frame-theoretically.

Definition 2.6.5. An intuitionistic general frame F = 〈W,R,P〉 is called
refined if for any x, y ∈ W ,

∀X ∈ P(x ∈ X → y ∈ X) ⇒ xRy,

or equivalently,
¬xRy ⇒ ∃X ∈ P(x ∈ X ∧ y 6∈ X).

Definition 2.6.6. A family X of sets has the finite intersection property if
every finite subfamily X ′ ⊆ X has a nonempty intersection, i.e.,

⋂X ′ 6= ∅.
Definition 2.6.7. An intuitionistic general frame F = 〈W,R,P〉 is called
compact , if for any families X ⊆ P and Y ⊆ P = {W − X : X ∈ P} for
which X ∪ Y has the finite intersection property,

⋂
(X ∪ Y) 6= ∅.

For a proof of the next theorem, see e.g. [6].

Theorem 2.6.8. An intuitionistic general frame F is a descriptive frame iff
it is refined and compact.

The three truth-preserving operators on Kripke frames can be generalized
to descriptive frames case.

Definition 2.6.9. A descriptive frame G = 〈V, S,Q〉 is called a generated
subframe of a descriptive frame F = 〈W,R,P〉 if it satisfies the following
conditions:

(S1) 〈V, S〉 is a generated subframe of 〈W,R〉,
(S2) Q = {U ∩ V : U ∈ P}.
Definition 2.6.10. Given descriptive frames F = 〈W,R,P〉 and G = 〈V, S,Q〉,
we call a surjective p-morphism f of 〈W,R〉 onto 〈V, S〉 a surjective p-
morphism (or a reduction) of F onto G, if it also satisfies the following
condition:

(R3) ∀X ∈ Q, f−1(X) ∈ P .

13



Definition 2.6.11. Let {Fi = 〈Wi, Ri,Pi〉}n
i=1 be a finite family of disjoint

descriptive frames. The disjoint union of the family {Fi}n
i=1 is the frame

n⊎
i=1

Fi = 〈W,R,P〉, where 〈W,R〉 =
n⊎

i=1

〈Wi, Ri〉 and P =
n⋃

i=1

Pi.

The following theorem is well-known. For a proof, see e.g. [6].

Theorem 2.6.12. Let A and B be Heyting algebras, and F and G descriptive
frames. Then

1. (a) A is a homomorphic image of B iff A+ is isomorphic to a generated
subframe of B+;

(b) A is isomorphic to a subalgebra of B iff A+ is a p-morphic image
of B+;

(c) (
n∏

i=1

Ai)+ is isomorphic to the disjoint union
n⊎

i=1

(Ai)+;

2. (a) F is isomorphic to a generated subframe of G iff F+ is a homo-
morphic image of G+;

(b) F is a p-morphic image of G iff F+ is isomorphic to a subalgebra
of G+;

(c) (
n⊎

i=1

Fi)
+ is isomorphic to

n∏
i=1

F+
i .

Given any descriptive frame F = 〈W,R,P〉, it is not necessary that the
general frame generated by any subset of W is descriptive (for more details,
see [26]). However, admissible subsets do generate descriptive frames.

Lemma 2.6.13. Let F = 〈W,R,P〉 be a descriptive frame. A general frame
G = 〈W ′, R′,P ′〉 generated by an admissible subset of F is descriptive.

Proof. It suffices to show that G is refined and compact. For refinedness,
suppose ¬wR′v for some w, v ∈ W ′. Since P is refined, there exists U ∈ P
such that w ∈ U and v 6∈ U . Let U ′ = U ∩W ′. Then by (S2), U ′ ∈ P ′. And
we have w ∈ U ′ and v 6∈ U ′.

For compactness, for any families X ⊆ P ′ and Y ⊆ P ′ = {W ′ \ U ′ : U ′ ∈
P ′}, suppose X ∪ Y has the finite intersection property.

Note that since W ′ ∈ P , we have that X ⊆ P ′ ⊆ P . Define

Y∗ = {W \ U ′ : U ′ ∈ P ′,W ′ \ U ′ ∈ Y} ⊆ P .

14



Take any X1, ..., Xn ∈ X , and Y ∗
1 , ..., Y ∗

k ∈ Y∗. We know that Xi =
Xi ∩W ′ for all 1 ≤ i ≤ n, and there exist Y1, ..., Yk ∈ Y such that

Yj = Y ∗
j ∩W ′(1 ≤ j ≤ k).

Observe that

n⋂
i=1

Xi∩
k⋂

j=1

Yj =
n⋂

i=1

Xi∩
k⋂

j=1

Y ∗
j ∩W ′ =

n⋂
i=1

(Xi∩W ′)∩
k⋂

j=1

Y ∗
j =

n⋂
i=1

Xi∩
k⋂

j=1

Y ∗
j .

So, the fact that X∪Y has the finite intersection property implies that X∪Y∗
has the finite intersection property.

Similarly, we also have that

⋂
(X ∪ Y) =

⋂
X ∩

⋂
Y =

⋂
X ∩

⋂
Y∗ =

⋂
(X ∪ Y∗).

Thus, by the compactness of F, it holds that
⋂

(X ∪ Y∗) 6= ∅, from which it
follows that

⋂
(X ∪ Y) 6= ∅.

2.6.2 Descriptive frames and Heyting spaces

Definition 2.6.14. A Heyting space is a triple X = 〈X, τ, R〉, where 〈X, τ〉
is a Stone space, and R is a partial order on X such that

• for each x ∈ X, R(x) is closed;

• for each U ∈ CO(X), R−1(U) ∈ CO(X).

The following two theorems follow from [13].

Theorem 2.6.15. Let F = 〈W,R,P〉 be a descriptive frame. Let τP be the
topology generated by the sub-basis P ∪ P, where

P = {W \ U : U ∈ P}.
Then X = 〈W, τP , R〉 is a Heyting spaces.

Theorem 2.6.16. Let X = 〈X, τ, R〉 be a Heyting space. Define

PX = {U ⊆ X : U is a clopen upset}.
Then F = 〈X, R,PX 〉 is a descriptive frame.

15



In this connection, we can define the topological counterparts of the three
truth-preserving operators of descriptive frames. Let X = 〈X, τ, R〉 and
Y = 〈Y, ν, S〉 be Heyting spaces.

Definition 2.6.17. Y is called a generated subframe of X if 〈Y, ν, S〉 is a
generated subframe of 〈X, R〉 and 〈Y, ν〉 is a closed subspace of 〈X, τ〉.
Definition 2.6.18. A map f : X → Y is called a continuous p-morphism of
X to Y if f is continuous and a p-morphism of 〈X,R〉 to 〈Y, S〉.
Definition 2.6.19. Let {Xi = 〈Xi, τi, Ri〉}n

i=1 be a family of disjoint Heyting
spaces. The disjoint union of the family {Xi}n

i=1 is the frame
⊎

i∈I Xi =

〈X, τ,R〉, where 〈X, R〉 =
n⊎

i=1

〈Xi, Ri〉 and 〈X, τ〉 =
n⊕

i=1

〈Xi, τi〉 (the topological

sum).

2.6.3 Heyting algebras and Heyting spaces

For proofs of the following two theorems, see [13].

Theorem 2.6.20. Let A = 〈A,∨,∧,→, 0〉 be a Heyting algebra. Let XA be
the set of all prime filters of A, and τA be a topology generated by the basis
{â, A \ â}a∈A, where

â = {∇ ∈ XA : a ∈ ∇}.
Then X = 〈XA, τA,⊆〉is a Heyting space.

Theorem 2.6.21. Let X = 〈X, τ,R〉 be a Heyting space. The algebra
〈CO(X),∪,∩,→, ∅〉 is a Heyting algebra, where → is defined as

U → V = X \R−1(U \ V ).

2.6.4 Duality of categories DF, HA and HS
Let

• DF be the category of descriptive frames and descriptive p-morphisms;

• HA be the category of Heyting algebras and Heyting homomorphisms;

• HS be the category of Heyting spaces and continuous p-morphisms.

Theorem 2.6.22. DF is dually equivalent to HA, and HS is dually equivalent
to HA.
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2.7 The variety of Heyting algebras

2.7.1 HS = SH

Definition 2.7.1. A nonempty class K of algebras is called a variety if it is
closed under subalgebras, homomorphic images and direct products.

For any class K of algebras, let V(K) denote the smallest variety contain-
ing K. And let S(K), H(K) and P(K) denote the smallest class containing
K which is closed under subalgebras, homomorphic images and direct prod-
ucts respectively.

Theorem 2.7.2. V = HSP.

Theorem 2.7.3. The class of all Heyting algebras forms a variety HA.

HA has the property that HS = SH, which follows from the congruence
extension property of HA.

Definition 2.7.4. We say an algebra A has the congruence extension prop-
erty (CEP) if for every subalgebra B of A, and every θ ∈ Con B (Con B:
the set of all congruences of B), there is a ϕ ∈ Con A such that θ = ϕ ∩B2.
A variety V has the CEP if every algebra in V has the CEP.

Definition 2.7.5. Let f : A → B be a homomorphism. Then the kernel of
f , ker(f), is defined by

ker(f) = {(a, b) ∈ A2 : f(a) = f(b)}.
For a proof of the following theorem see e.g. [1].

Theorem 2.7.6. The variety of Heyting algebras HA has the congruence
extension property.

Theorem 2.7.7. If a variety V has the CEP, then for any K ⊆ V , HS(K) =
SH(K).

Proof. It suffices to show that HS(K) ⊆ SH(K). For any A ∈ HS(K), there
exist B,C ∈ K such that C is a subalgebra of B and there exists surjective
homomorphism f : C → A. Note that ker(f) ∈ Con C. By the congruence
extension property, there exists θ ∈ Con B such that

ker(f) = θ ∩ C2. (2.1)
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It follows from C ∈ S(B) and (2.1) that

C/ ker f = C/θ = {[c]θ : c ∈ C}.

By the Homomorphism Theorem we have that A ∼= C/ker(f). Consider the
set B/θ = {[b]θ : b ∈ B}. We have that C/ker(f) ∈ S(B/θ). Together with
the fact that B/θ ∈ H(B), we obtain A ∈ SH(K).

Corollary 2.7.8. For any Heyting algebra A ∈ HA, HS(A) = SH(A).

By the duality result, we have the following corollary.

Corollary 2.7.9. A descriptive frame F is a p-morphic image of a generated
subframe of a descriptive frame G iff F is a generated subframe of a p-morphic
image of G.

2.7.2 Heyting algebras and intermediate logics

For every intermediate logic L, since the three operators H, S and P are
truth-preserving, the class of all Heyting algebras that validates L forms a
variety. We have the following theorem in universal algebra. For a proof, see
e.g. [5].

Theorem 2.7.10. Every variety of algebras is generated by its finitely gen-
erated subdirectly irreducible algebras.

Note that by the duality theorems in the preceding sections, subdirectly
irreducible Heyting algebras correspond to rooted descriptive frames. Thus,
the above theorem gives the following corollary in the descriptive frames
context.

Corollary 2.7.11. Every intermediate logic is complete with respect to finitely
generated rooted descriptive frames.

2.7.3 Free Heyting algebras

Definition 2.7.12. Given a variety V of algebras and a set X, the free
algebra in V generated by X ⊆ F (X) is the algebra FV (X) satisfying for any
A ∈ V , any map f : X → A can be extended uniquely to a homomorphism
f̄ : F(X) → A.
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If |X| = |Y |, then FV (X) ∼= FV (Y ) (see e.g. [5]). So we will only speak
of the free algebra in V on a certain number of generators and denote such
a free algebra by FV (n) if the cardinality of the set of generators is n. The
n-generated free Heyting algebra is then denoted by FHA(n) or F(n) for
short.
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Chapter 3

n-universal models of IPC

In this chapter, we discuss n-universal models U(n) of IPC. The descriptive
frame F(n)+ dual to the n-generated free Heyting algebra F(n) is isomorphic
to the n-Henkin frame H(n). The upper part of H(n) is usually called the
n-universal model.

In Section 3.1, we recall the definition of n-universal models by giving a
more mathematical definition than the one in [3]. N. Bezhanishvili gave in
[3] an algebraic proof of the fact that the upper part of H(n) is isomorphic
to U(n). In Section 3.2, we prove it directly from a model-theoretic point of
view. In Section 3.3, we prove that H(n) and U(n) are “connected” in the
sense that every infinite upset of H(n) has an infinite intersection in U(n).
As a preparation of this result, we give a frame-based new proof of Jankov’s
theorem in [18]. The proof uses the de Jongh formulas and the idea of the
proof is inspired by the algebraic proof in de Jongh [8]. It then turns out
that the idea of this proof can be generalized to prove Jankov’s theorem on
KC proved in [19]. In Section 3.4, we give this alternative proof by making
slight modifications to the de Jongh formulas in such a way that the new
formulas are negation-free and satisfy a theorem similar to Jankov’s theorem
in [18].

3.1 n-universal models of IPC

In this section we recall the definition of an n-universal model by giving a
mathematical definition. Throughout this section, we will talk about the
valuation of point w in a n-model M by using the terminology color. In
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general, an n-color is a 0-1-sequence c1 · · · cn of length n. If the length is
understandable from the context, we will only talk about a color instead
of an n-color. The set of all n-colors is denoted by Cn. The projections
πi : Cn → {0, 1} (1 ≤ i ≤ n) are defined by πi(c1 · · · cn) = ci. We define an
ordering on the colors as follows:

c1 · · · cn ≤ c′1 · · · c′n iff ci ≤ c′i for each 1 ≤ i ≤ n.

We write c1 · · · cn < c′1 · · · c′n if c1 · · · cn ≤ c′1 · · · c′n but c1 · · · cn 6= c′1 · · · c′n.
A coloring on a nonempty set W is a function col : W → Cn. Colorings

and valuations on frames are in one-one correspondence. Given a M =
〈W,R, V 〉, we can describe the valuation of a point by the coloring colV :
W → Cn, defined by colV (w) = c1 · · · cn, where for each 1 ≤ i ≤ n,

ci =

{
1, w ∈ V (pi);
0, w 6∈ V (pi).

We call colV (w) the color of w under V . On the other hand, given a coloring
col on a frame F = 〈W,R〉, we can define a valuation Vcol : Prop → ℘(W )
on F by taking

Vcol(pi) = col−1({c1 · · · cn ∈ Cn : ci = 1}).

In any frame F = 〈W,R〉, we say that a subset X ⊆ W totally covers a
point w ∈ W , denoted by w ≺ X, if X is the set of all immediate successors
of w. We will only write w ≺ v in the case that w ≺ {v}. A subset X ⊆ W
is called an anti-chain if |X| > 1 and for every w, v ∈ X, w 6= v implies that
¬wRv and ¬vRw. Let R+ denote the transitive and reflexive closure of a
relation R.

Now, we define every layer of an n-universal model U(n) inductively. We
first give a less mathematical definition as follows:

Definition 3.1.1.

• In the first layer, U(n)0 = 〈U(n)0, R0, V 0〉 consists of 2n points with 2n

different n-colors, and the relation R0 = ∅.
• The model U(n)k+1 = 〈U(n)k+1, Rk+1, V k+1〉 of the first k + 1 layers of
U(n) is obtained from U(n)k by adding the following elements:
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– for each point w ∈ U(n)k \ U(n)k−1 and each color s < col(w),
we introduce a unique new point vw,s into U(n)k+1. Extend the
coloring colV k such that colV k+1(vw,s) = s. Extend Rk to the
smallest partial order satisfying vw,s ≺ w.

– for each finite anti-chain X in U(n)k such that X * U(n)k−1

and each color s with s ≤ col(w) for all w ∈ X, we introduce a
unique new point vX,s into U(n)k+1. Extend the coloring colV k

such that colV k+1(vX,s) = s. Extend Rk to the smallest partial
order satisfying vX,s ≺ X.

– Let U(n)k+1, colk+1 and Rk+1 be extensions of U(n)k, colk and Rk

according to the above regulations respectively.

Define the n-universal model U(n) = 〈U(n), R, V 〉 by taking

U(n) =
⋃
i∈ω

U(n)i, R = (
⋃
i∈ω

Ri)+, col =
⋃
i∈ω

coli and V = Vcol.

Having the intuition of what an n-universal model U(n) looks like in
mind, we now define every layer of U(n) precisely.

Definition 3.1.2.

• The first layer U(n)0 = 〈U(n)0, R0, V 0〉 of U(n) is defined by taking

U(n)0 = {w1, · · · , w2n}, R0 = ∅,
and letting V 0 = Vcol0 , where the coloring col0 : U(n)0 → Cn is a
bijection.

• The model U(n)k+1 = 〈U(n)k+1, Rk+1, V k+1〉 of the first k + 1 layers of
U(n) is defined as follows:

– Let

Ek+1 = {vw,s : w ∈ U(n)k \ U(n)k−1, s ∈ Cn and s < col(w)},
Sk+1 = {(vw,s, w) : vw,s ∈ Ek+1}.

Define a coloring colk+1
0 : Ek+1 → Cn by taking

colk+1
0 (vw,s) = s.
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– Let

F k+1 ={vX,s : X is a finite anti-chain in U(n)k s.t. X * U(n)k−1,

s ∈ Cn and s ≤ col(w) for all w ∈ X},

T k+1 = {(vX,s, w) : vX,s ∈ F k+1 and w ∈ X}.
Define a coloring colk+1

1 : F k+1 → Cn by taking

colk+1
1 (vX,s) = s.

– Finally, let
U(n)k+1 = Uk ∪ Ek+1 ∪ F k+1,

Rk+1 = (Rk ∪ Sk+1 ∪ T k+1)+,

colk+1 = colk ∪ colk+1
0 ∪ colk+1

1 ,

V k+1 = Vcolk+1 .

It is easy to see from the construction that every U(n)k is finite. As a
consequence, for any finite subset X of U(n), the generated submodel U(n)X

is finite. In particular, U(n)w is finite for any point w in U(n).
The 1-universal model is also called Rieger-Nishimura ladder , which is

depicted in Figure 3.1.

3.2 n-universal models and n-Henkin models

Let Upper(M) denote the submodel M{w∈W :d(w)<ω} generated by all the
points with finite depth. It is known that the n-universal model is isomor-
phic to the finite part of the n-Henkin model Upper(H(n)). N. Bezhanishvili
gave in [3] an algebraic proof of this fact. In this section, we prove it di-
rectly. Two important lemmas are that every finite model can be mapped
p-morphically to a generated submodel of U(n), and that U(n)w is isomor-
phic to the generated submodel of the theory of the de Jongh formula of w
of H(n).

Lemma 3.2.1. Let f be a p-morphism of M = 〈W,R, V 〉 onto N = 〈W ′, R′, V ′〉.
If w ∈ W , then f ¹ R(w) is a p-morphism of Mw onto Nf(w).

Proof. Trivial.
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Figure 3.1: Rieger-Nishimura ladder

Lemma 3.2.2. Given Kripke models M = 〈W,R, V 〉 and N = 〈W ′, R′, V ′〉,
and two points w, v ∈ W . Let f be a p-morphism of Mw to N, and g be a
p-morphism of Mv to N. If for each u ∈ dom(f) ∩ dom(g), f(u) = g(u),
then f ∪ g is a p-morphism of M{w, v} to N.

Proof. Trivial.

The next theorem shows that every finite model can be mapped p-morphically
onto a generated submodel of U(n). In the sequel, we will often refer to this
useful theorem.

Theorem 3.2.3. For any finite rooted Kripke n-model M, there exists a
unique w ∈ U(n) and a p-morphism of M onto U(n)w.

Proof. Let M = 〈W,R〉 and U(n) = 〈U(n),¹〉. We prove the lemma by
induction on the depth of M. If d(M) = 1, then M is a single node x with
col(x) = i1...in. By the definition of U(n), there exists a unique w ∈ U(n)0

such that col(w) = col(x). Clearly, the map f : {w} → {x}, defined as
f(w) = x, is a unique p-morphism of M onto U(n)w.

If d(M) = k + 1, for any x ∈ W with d(x) = k + 1, let {x1, ..., xm} be
the set of all x’s immediate successors. By the induction hypothesis, we have
that for each 1 ≤ i ≤ m, there exist a unique wi and a unique p-morphism
fi of Mxi

onto U(n)wi
.
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For any 1 ≤ i, j ≤ m, we have

y ∈ dom(fi) ∩ dom(fj) =⇒ fi(y) = fj(y). (3.1)

Indeed, since d(y) ≤ k, by the induction hypothesis, there exist a unique
wy and a unique p-morphism fy of My onto U(n)wy . Now by Lemma 3.2.1,
fi ¹ R(y) and fj ¹ R(y) are p-morphisms of My onto U(n)fi(y) and U(n)fj(y)

respectively. Then, by the uniqueness, we must have that fi ¹ R(y) = fj ¹
R(y), i.e. (3.1) holds.

Put
f = f1 ∪ ... ∪ fm.

By (3.1), f is a well-defined function. Moreover, by Lemma 3.2.2, f is a
p-morphism of M{x1,··· ,xm} onto U(n){w1,··· ,wm}. And clearly, f is unique.

Let X = {wi1 , ..., wil} be a subset of {w1, ..., wm} such that for any wi ∈
{wi1 , ..., wil} and any wj ∈ {w1, ..., wm},

wi 6= wj ⇒ ¬wj ¹ wi.

Observe that X is either a singleton or an anti-chain. If X is a singleton
{wi1}, then since

col(x) ≤ col(xi) = col(wi) (3.2)

for any 1 ≤ i ≤ m, there are two cases. Case 1: col(wi1) = col(x). Then
define g = f ∪ {(x,wi1)}. It follows from (3.2) that g is a unique surjective
p-morphism.

Case 2: col(x) < col(wi1). Then by (3.2) and the definition of U(n), there
exists a unique point w ∈ U(n) such that col(w) = col(x) and w ≺ wi1 , which
implies that

w ≺ wi for any wi ∈ {w1, ..., wm}. (3.3)

Define g = f ∪ {(x,w)}. It follows from (3.2) and (3.3) that g is a unique
surjective p-morphism.

If X is an anti-chain, then by (3.2) and the definition of U(n), there exists
a unique point w ∈ U(n) such that

col(w) = col(x) and w ≺ X,

so (3.3) holds. Define g = f ∪ {(x,w)}. It follows from (3.2) and (3.3) that
g is a unique surjective p-morphism.
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The next theorem implies that U(n) is a countermodel of every non-
theorem of IPC. This fact explains the meaning of U(n) being an “universal
model”.

Theorem 3.2.4. For any formula ϕ(~p), U(n) |= ϕ iff `IPC ϕ.

Proof. “⇐” is trivial. Suppose 0IPC ϕ(~p). Then there exists a finite model
M and a point w ∈ M such that M, w 6|= ϕ(~p). By Theorem 3.2.3, there
exists a p-morphism f of M to U(n). Hence, U(n), f(w) 6|= ϕ(~p).

For any point w in an n-model M, if {w1, ..., wm} is the set of all imme-
diate successors of w, then we let

prop(w) := {pi : w |= pi, 1 ≤ i ≤ n},

notprop(w) := {qi : w 6|= qi, 1 ≤ i ≤ n},

newprop(w) := {rj : w 6|= rj and wi |= rj for each 1 ≤ i ≤ m, for 1 ≤ j ≤ n}1.

Next, we define the de Jongh formulas, which were first introduced in [8].

Definition 3.2.5. Let w be a point in U(n). we inductively define de Jongh
formulas ϕw and ψw.

If d(w) = 1, then let

ϕw :=
∧

prop(w) ∧
∧
{¬pk : w 6|= pk, 1 ≤ k ≤ n}

and
ψw := ¬ϕw.

If d(w) > 1, and {w1, ..., wm} is the set of all immediate successors of w,
then define

ϕw :=
∧

prop(w) ∧ (
∨

newprop(w) ∨
m∨

i=1

ψwi
→

m∨
i=1

ϕwi
)

and

ψw := ϕw →
m∨

i=1

ϕwi
.

1Note that if w is an endpoint, newprop(w) = notprop(w).
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The most important properties of the de Jongh formulas are revealed in
the next theorem. It was first proved in [8].

Theorem 3.2.6. For every w ∈ U(n) = 〈U(n), R, V 〉, we have that

• V (ϕw) = R(w);

• V (ψw) = U(n) \R−1(w).

Now, we recall the notion of an isomorphism between two Kripke models.

Definition 3.2.7. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two Kripke
models. A bijection f : W → V is called an isomorphism from M onto M′

if the following conditions are satisfied.

• For any p ∈ Prop and any x ∈ W , x ∈ V (p) iff f(x) ∈ V ′(p).

• For any x, y ∈ W , xRy iff f(x)R′f(y).

We say that M is isomorphic to M′, in symbols M ∼= M′, if there is an
isomorphism from M to M′.

Remark 3.2.8. An injective and surjective p-morphism is an isomorphism.

Lemma 3.2.9. Let f be a isomorphism of M = 〈W,R, V 〉 onto N = 〈W ′, R′, V ′〉.
If w ∈ W , then f ¹ R(w) is an isomorphism of Mw onto Nf(w).

Proof. Trivial.

The next lemma is important in the proof of the main theorem of this
section.

Lemma 3.2.10. For any w ∈ U(n), let ϕw be a de Jongh formula. Then we
have that H(n)Th(ϕw)

∼= U(n)w.

Proof. Let U(n) = 〈U(n), R, V 〉 and H(n) = 〈H(n), R′, V ′〉. Define a map
f : U(n)w → H(n)Th(ϕw) by taking

f(v) = Th(ϕv).

We show that f is an isomorphism.
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First for any v ∈ U(n), any formula θ, we have that

θ ∈ Th(ϕv) ⇐⇒`IPC ϕv → θ

⇐⇒ U(n) |= ϕv → θ (by Theorem 3.2.4)

⇐⇒ ∀u ∈ V (ϕv), U(n), u |= θ

⇐⇒ ∀u ∈ R(v), U(n), u |= θ (by Theorem 3.2.6)

⇐⇒ U(n), v |= θ. (3.4)

It follows that v ∈ V (p) ⇐⇒ Th(ϕv) ∈ V ′(p) and that

uRv ⇐⇒ U(n), v |= ϕu (by Theorem 3.2.6)

⇐⇒ ϕu ∈ Th(ϕv) (by (3.4))

⇐⇒ Th(ϕu) ⊆ Th(ϕv)

⇐⇒ f(u)R′f(v).

Now, suppose u 6= v. W.l.o.g. we may assume that ¬uRv, which by
Theorem 3.2.6 means that U(n), u 6|= ϕv. Thus, ϕv 6∈ Th(ϕu) by (3.4), and
so f(u) = Th(ϕu) 6= Th(ϕv) = f(v). Hence, f is injective.

It remains to show that f is surjective. That is to show that for any
Γ ∈ H(n)Th(ϕw) (i.e. any theory Γ ⊇ Th(ϕw) with disjunction property)
there exists v ∈ U(n)w such that Γ = Th(ϕv). We show this by showing a
stronger result by induction on d(u) that for any theory Γ with disjunction
property,

if Th(ϕu) ⊆ Γ, then Γ = Th(ϕv) for some v ∈ U(n) with uRv.

d(u) = 1. It suffices to show that if Th(ϕu) ⊆ Γ, then Γ = Th(ϕu).
Suppose Th(ϕu) ( Γ. Then there exists θ ∈ Γ such that θ 6∈ Th(ϕu). So
we have that ϕu 0 θ. Then by Theorem 3.2.4, U(n) 6|= ϕu → θ, which by
Theorem 3.2.6 means that u 6|= θ. Since d(u) = 1, we have that

u |= ¬θ and so U(n) |= ϕu → ¬θ,

by Theorem 3.2.6. Thus, by Theorem 3.2.4, `IPC ϕu → ¬θ. Therefore ¬θ ∈
Th(ϕu), and since Th(ϕu) ⊂ Γ, we have that ¬θ ∈ Γ, which is impossible
since θ ∈ Γ and Γ is consistent.

d(u) = k + 1. Let {u1, ..., um} be the set of all immediate successors of u.
Suppose Th(ϕu) ⊆ Γ. If Th(ϕui

) ⊆ Γ for some 1 ≤ i ≤ m, then by induction
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hypothesis, Γ = Th(ϕv) for some v ∈ R(ui), i.e. v ∈ R(u). Now suppose
Th(ϕui

) * Γ for all 1 ≤ i ≤ m. Thus Γ 0 ϕui
for each 1 ≤ i ≤ m. Then for

every θ ∈ Γ, we have that

θ 0 ϕu1 ∨ · · · ∨ ϕum .

Since Th(ϕu) ⊆ Γ, ϕu ∈ Γ and θ ∧ ϕu ∈ Γ, which implies that

θ ∧ ϕu 0 ϕu1 ∨ · · · ∨ ϕum .

Then there exists a finite rooted model M such that M |= θ ∧ ϕu and M 6|=
ϕu1 ∨ · · ·∨ϕum . By Theorem 3.2.3, there exists a unique u′ ∈ U(n) such that
U(n)u′ is a p-morphic image of M. Thus we have that

U(n), u′ |= ϕu and U(n), u′ 6|= ϕu1 ∨ · · · ∨ ϕum . (3.5)

By the definition, the former of the above means that

U(n), u′ |=
∧

prop(u) ∧ (
∨

newprop(u) ∨
m∨

i=1

ψui
→

m∨
i=1

ϕui
).

It then follows that
U(n), u′ |=

∧
prop(u), (3.6)

U(n), u′ |=
∨

newprop(u) ∨
m∨

i=1

ψui
→

m∨
i=1

ϕui
. (3.7)

In view of the second formula of (3.5), we must have that

U(n), u′ 6|=
∨

newprop(u) and U(n), u′ 6|=
m∨

i=1

ψui
. (3.8)

By Theorem 3.2.6 the second formula of (3.8) implies that u′ 6∈ U(n)\R−1(ui)
for all 1 ≤ i ≤ m. Thus, we have that

u′ ∈
m⋂

i=1

R−1(ui), (3.9)

and so

notprop(u′) ⊇
m⋃

i=1

notprop(ui). (3.10)
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Then since

notprop(u) = newprop(u) ∪
m⋃

i=1

notprop(ui),

by the first formula of (3.8) we have that

notprop(u′) ⊇ notprop(u).

Together with (3.6) we obtain

col(u′) = col(u). (3.11)

Next, claim that
u′ ≺ {u1, · · · , um}, (3.12)

i.e. u1, ..., um are the only immediate successors of u′. Suppose otherwise.
Then there exists v 6= ui for all 1 ≤ i ≤ m such that v is an immediate
successor of u′. Observe that {u1, · · · , um, v} is an anti-chain. Thus we have
that

u′ 6∈ R−1(ui) and u′ 6∈ R(ui),

for each 1 ≤ i ≤ m. Then by Theorem 3.2.6,

U(n), u′ |=
m∨

i=1

ψui
and U(n), u′ 6|=

m∨
i=1

ϕui
.

These contradict (3.7).
Note that by the definition, there exists an unique point in U(n) which

satisfies (3.9), (3.11) and (3.7). So u′ = u, which implies that U(n), u |= θ.
Thus by Theorem 3.2.6, U(n) |= ϕu → θ, which by Theorem 3.2.4 implies
that ϕu ` θ, i.e. θ ∈ Th(ϕu). Therefore Γ = Th(ϕu).

Now, we are in a position to prove the main theorem of this section.

Theorem 3.2.11. Upper(H(n)) is isomorphic to U(n).

Proof. Let H(n) = 〈H(n), R′, V ′〉 and U(n) = 〈U(n), R, V ′〉. For any x ∈
Upper(H(n)), by Theorem 3.2.3, there exists a unique wx such that U(n)wx

is a p-morphic image of H(n)x via some surjective function h. Note that for
any y, z ∈ H(n)x,

y 6= z =⇒ col(y) 6= col(z), (3.13)

30



thus h is injective, and so by Remark 3.2.8

H(n)x
∼= U(n)wx .

Define f : Upper(H(n)) → U(n) by taking f(x) = wx. We show that f is
an isomorphism. Clearly, col(x) = col(wx). Suppose xR′y and g is the unique
isomorphism from H(n)x onto U(n)f(x). By Lemma 3.2.9 H(n)y

∼= U(n)g(y),
thus by uniqueness, we must have that g(y) = f(y). Thus, f(x)Rf(y) since
f(x)Rg(y).

Suppose f(x)Rf(y) for some x, y ∈ U(n). Let g be the unique isomor-
phism from H(n)x onto U(n)f(x). Then there exists z ∈ R′(x) such that
g(z) = f(y). Observe that

col(z) = col(f(y)) = col(y).

Since in H(n), distinct points have distinct colors, we conclude that z = y
and so xR′y.

From (3.13) it follows that for any y, z ∈ H(n), y 6= z implies H(n)y �
H(n)z. Thus,

U(n)wy
∼= H(n)y � H(n)z

∼= U(n)wz ,

and so wy 6= wz, which means that f is injective.
It remains to show that f is surjective. For any w ∈ U(n), consider the de

Jongh formula ϕw. By Lemma 3.2.10, H(n)Th(ϕw)
∼= U(n)w, so f(Th(ϕw)) =

w.

We end this section by a corollary which follows from the correspondence
between H(n) and U(n). For any n-models M and any point x in M, let
Thn(M, x) = {ϕ : M, x |= ϕ}.
Corollary 3.2.12. Let M be any model and w be a point in U(n) = 〈W,R, V 〉.
For any point x in M, if M, x |= ϕw, then there exists a unique v ∈ R(w),
such that

M, x |= ϕv, M, x 6|= ϕv1 , · · · ,M, x 6|= ϕvm , (3.14)

where v ≺ {v1, · · · , vm}.
Proof. Note that Thn(M, x) is a point in H(n) = 〈W ′, R′, V ′〉. M, x |= ϕw

implies that `IPC Thn(M, x) → ϕw and Thn(ϕw)R′Thn(M, x). Thus, by
Lemma 3.2.10, Thn(M, x) = Thn(ϕv) for a unique v ∈ R(w). So M, x |= ϕv.

By Theorem 3.2.6, we have that U(n) 6|= ϕv → ϕvi
for all 1 ≤ i ≤ m.

Thus 0IPC ϕv → ϕvi
and ϕvi

6∈ Thn(ϕv) = Thn(M, x), so M, x 6|= ϕvi
.
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Γ

U(n)

H(n) \ U(n)

Figure 3.2: The n-Henkin model

3.3 Some properties of U(n) and H(n)

In view of Theorem 3.2.11, the n-universal model and n-Henkin model can
be drawn in the way of Figure 3.2. In this section, we show that these two
models are “connected” in the sense that every infinite upset of H(n) has an
infinite intersection in U(n) (see also Figure 3.2).

Let F = 〈W,R〉 be a finite rooted frame. We introduce a new proposi-
tional variable pw for every point w in W , and define a valuation V by letting
V (pw) = R(w). Put n = |W |. By Theorem 3.2.3, there exists a p-morphism
f from the model 〈F, V 〉 onto a generated submodel U(n)w. By the construc-
tion, we know that different points of 〈F, V 〉 have different colors, thus f is
injective, which by Remark 3.2.8 means that f is an isomorphism, i.e. 〈F, V 〉
is isomorphic to U(n)w.

The Kripke frame of the n-universal model U(n) = 〈W,R, V 〉 can be
viewed as a general frame F = 〈W,R,P〉 where P = Up(W ), which is clearly
refined. For every point w in U(n), the generated submodel U(n)w is a finite
model, thus the underlying generated subframe Fw is also finite, which is then
clearly compact. So the general frame Fw of U(n)w is a descriptive frame.

An earlier version of the following theorem was proved by Jankov in [18].
De Jongh proved in [8] the same theorem algebraically by using de Jongh
formulas. Here we prove the next theorem from the frame-theoretic point
of view inspired by the algebraic proof in [8]. In the next section, we will
prove Jankov’s Theorem on KC (Theorem 3.4.9), where a similar idea of the
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following proof will be used in Lemma 3.4.8. The proof of the next theorem
is set up in the way to be easily generalized to the proof of Lemma 3.4.8.

Theorem 3.3.1 (Jankov-de Jongh). For every finite rooted frame F, let ψw

be the de Jongh formula of the point w in the model U(n)w described above.
Then for every descriptive frame G,

G 6|= ψw iff F is a p-morphic image of a generated subframe of G.

Proof. Let U(n)w = 〈W,R,P , V 〉. Suppose F is a p-morphic image of a
generated subframe of G. By Theorem 3.2.6, U(n)w 6|= ψw, thus F 6|= ψw. So
by applying Theorem 2.3.9, G 6|= ψw is obtained.

Suppose G 6|= ψw. Then there exists a model N on G such that

N 6|= ϕw → ϕw1 ∨ · · · ∨ ϕwm , (3.15)

where w ≺ {w1, · · · , wm}. Consider the generated submodel N′ = NV ′(ϕw) =
〈W ′, R′,P ′, V ′〉 of N. Note that since V ′(ϕw) is admissible, by Corollary
2.6.13, 〈W ′, R′,P ′〉 is a descriptive frame. Define a map f : W ′ → W by
taking f(x) = v iff

N′, x |= ϕv, N′, x 6|= ϕv1 , · · · ,N′, x 6|= ϕvk
, (3.16)

where v ≺ {v1, · · · , vk}.
Note that for every x ∈ W ′, N′, x |= ϕw, thus by Corollary 3.2.12, there

exists a unique v ∈ R(w) satisfying (3.16). So f is well-defined.
We show that f is a surjective frame p-morphism of 〈W ′, R′,P ′〉 onto

〈W,R,P〉. Suppose x, y ∈ W ′ with xR′y, f(x) = v and f(y) = u. Since
N′, x |= ϕv, we have that N′, y |= ϕv. By Corollary 3.2.12, there exists a
unique u′ ∈ R(v) such that u′ and y satisfy (3.16). So, since u and y also
satisfy (3.16), by the uniqueness, u′ = u and vRu.

Next, suppose x ∈ W ′ and v, u ∈ U(n)w such that f(x) = v and vRu.
Since x and v satisfy (3.16), by the definition of ϕv, we must have that

N′, x 6|= ψvi
, (3.17)

for 1 ≤ i ≤ k. We now show by induction on d(u) that there exists y ∈ W ′

such that f(y) = u and xR′y.
d(u) = d(v) − 1. Then u is an immediate successor of v and x and

u satisfies (3.17). So, by the definition of ψu, we have that there exists
y ∈ R′(x) such that y and u satisfy (3.16), thus f(y) = u.
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d(u) < d(v) − 1. Then there exists an immediate successor vi0 of v such
that vi0Ru. By the result of the basic step of the induction, there exists
y ∈ W ′ such that xR′y and f(y) = vi0 . Since d(vi0) < d(v), by the induction
hypothesis, there exists z ∈ W ′ such that yR′z and f(z) = u. And clearly,
xR′z.

For any upset X ∈ P , we have that X =
⋃

v∈X R(v). First, we show that
for every v ∈ X,

f−1(R(v)) = V ′(ϕv). (3.18)

For every x ∈ f−1(R(v)), f(x) ∈ R(v), which means that there exists u ∈
R(v) such that f(x) = u and so N′, x |= ϕu. Note that by Theorem 3.2.6
and Theorem 3.2.4, we have that

`IPC ϕu → ϕv.

Thus N′, x |= ϕv and so x ∈ V ′(ϕv). On the other hand, for every x ∈ V ′(ϕv),
by Corollary 3.2.12, there exists a unique u ∈ R(v) such that f(x) = u, thus
x ∈ f−1(R(v)).

Now, by (3.18), we have that

f−1(X) = f−1(
⋃
v∈X

R(v)) =
⋃
v∈X

f−1(R(v)) =
⋃
v∈X

V ′(ϕv).

Since X is finite, we obtain f−1(X) ∈ P ′.
Lastly, we show that f is surjective. First, it follows from (3.15) that

there exists x ∈ W ′ such that (3.16) holds for x and w, i.e. f(x) = w. Then,
for every point v ∈ U(n)w, we have that wRv. Since f is a p-morphism,
there exists y ∈ R′(x) ⊆ W ′ such that f(y) = v.

Hence f is a surjective frame p-morphism of 〈W ′, R′,P ′〉 onto 〈W,R,P〉.
Then since F ∼= 〈W,R,P〉, F is a p-morphic image of 〈W ′, R′,P ′〉, which is a
generated subframe of G.

Next, we will show that if an upset U generated by a point in the n-
Henkin model has a finite intersection with its upper part, the n-universal
model, then U totally lies in U(n). First, we need a definition.

We call w ∈ U a border point of an upset U of U(n), if w 6∈ U and all the
successors v of w with v 6= w are in U . Denote the set of all border points
of U by B(U). Note that all endpoints which are not in U are in B(U). For
more details on border points, one may refer to [4].
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Fact 3.3.2. If U is finite, then B(U) is also finite.

Proof. Since U is finite, there exists k ∈ ω such that U ⊆ U(n)k. Observe
that B(U) ⊆ U(n)k+1, which means that B(U) is finite, since U(n)k+1 is
finite.

The next lemma shows the connection of upsets and their border points.

Lemma 3.3.3. If X = {v1, · · · , vk} is a finite anti-chain in U(n) and
B(U(n)X) = {w1, · · · , wm}, then `IPC (ϕv1 ∨ · · · ∨ϕvk

) ↔ (ψw1 ∧ · · · ∧ψwm).

Proof. In view of Theorem 3.2.4, it is sufficient to show that U(n) |= (ϕv1 ∨
· · · ∨ ϕvk

) ↔ (ψw1 ∧ · · · ∧ ψwm). By Theorem 3.2.6, it is then sufficient to
show that

x ∈ R(v1) ∪ · · · ∪R(vk) iff x 6∈ R−1(w1) ∪ · · · ∪R−1(wm).

For “⇒”: Suppose x ∈ R(v1) ∪ · · · ∪ R(vk) = U(n)X . If x ∈ R−1(wi)
for some 1 ≤ i ≤ m, then since U(n)X is upward closed, we have that
wi ∈ U(n)X , which contradicts the definition of B(U(n)X).

For “⇐”: Suppose x 6∈ R(v1) ∪ · · · ∪ R(vk) = U(n)X . We show by
induction on d(x) that x ∈ R−1(wi) for some 1 ≤ i ≤ m.

d(x) = 1. Then x is an endpoint, which is a border point. Thus, x = wi

for some 1 ≤ i ≤ m and so x ∈ R−1(wi).
d(x) > 1. The result holds trivially if x is a border point. Now suppose

there exists y ∈ R(x) such that y 6∈ U(n)X . Since d(y) < d(x), by the
induction hypothesis, there exists 1 ≤ i ≤ m such that y ∈ R−1(wi). Thus,
x ∈ R−1(wi).

Theorem 3.3.4. Let Γ be a point in H(n), i.e. Γ is a theory with the
disjunction property. If R(Γ) ∩ U(n) is finite, then R(Γ) = R(Γ) ∩ U(n).

Proof. Suppose X = R(Γ) ∩ U(n) is finite. Then the set B(X) of border
points of X is finite. Let B(X) = {w1, · · · , wm}. Suppose Γ 0 ψwi

for some
1 ≤ i ≤ m. Then there exists a descriptive frame G such that G |= Γ
and G 6|= ψwi

. Since the underlying frame F of U(n)wi
is finite rooted, by

Theorem 3.3.1, the latter implies that F is a p-morphic image of a generated
submodel of G. Thus, by Theorem 2.3.9, F |= Γ and so U(n)wi

|= Γ, which
is impossible since wi ∈ B(X) and wi 6∈ R(Γ) ∩ U(n).

Hence, we conclude that Γ ` ψwi
for all 1 ≤ i ≤ m. Let Y be the anti-

chain consisting of all least points of X. Then by Lemma 3.3.3, Γ ` ϕw for
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some w ∈ Y , which by Theorem 3.2.6 means that Γ ∈ R(w), so Γ ∈ U(n),
therefore R(Γ) = R(Γ) ∩ U(n).

The method of the above theorem gives more results.

3.4 An alternative proof of Jankov’s Theo-

rem on KC

KC is the intermediate logic axiomatized by ¬ϕ ∨ ¬¬ϕ. KC is complete
with respect to finite rooted frames with unique top points. It is known that
KC proves exactly the same negation-free formulas as IPC. That is for any
negation-free formula ϕ, KC ` ϕ iff IPC ` ϕ. Jankov proved in [19] that
KC is the strongest intermediate logic that has this property. In this section,
we give a frame theoretic alternative proof of Jankov’s Theorem. The basic
idea of the proof comes from Theorem 3.3.1 in the previous section and the
next theorem. For more details on the next theorem, one may refer to [8],
[9].

Theorem 3.4.1. If L is an intermediate logic strictly extending IPC, i.e.
IPC ⊂ L ⊆ CPC, then for some n ∈ ω, L ` ψw for some w in U(n).

Proof. Suppose χ is a formula satisfying

L ` χ and IPC 0 χ.

Then there exists a finite rooted frame F such that F 6|= χ. Introduce a new
propositional variable pw for every point w in W , and define a valuation V
by letting V (pw) = R(w). Put n = |F|. By Theorem 3.2.3, there exists a
generated submodel U(n)w such that U(n)w is a p-morphic image of F. By
the construction, we know that different points of 〈F, V 〉 have different colors,
thus 〈F, V 〉 ∼= U(n)w.

Consider the de Jongh formula ψw. Suppose L 0 ψw. Then there exists
a descriptive frame G of L such that G 6|= ψw. By Theorem 3.3.1, F is a
p-morphic image of a generated subframe of G. Thus, by Theorem 2.3.9,
F is an L model. Since L ` χ, we have that F |= χ, which leads to a
contradiction.

Now, we define formulas ϕ′w and ψ′w, which are negation-free modifications
of de Jongh formulas. They do a similar job for KC-frames as de Jongh
formulas do for all frames. First, we introduce some terminologies.
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For any finite set X of formulas with |X| > 1, let

∆X =
∧
{ϕ ↔ ψ : ϕ, ψ ∈ X}.

For the case that |X| = 1 or 0, we stipulate ∆X = >.
Let U(n)w0 = 〈W,R, V 〉 be a generated submodel with a largest element

t of U(n) such that

• t |= p1 ∧ · · · ∧ pn;

• colV (w) 6= colV (v) for all w, v ∈ W such that w 6= v.

Let r be a new propositional variable.

Definition 3.4.2. We inductively define the formulas ϕ′w and ψ′w for every
w ∈ W .

If d(w) = 1,
ϕ′w = p1 ∧ · · · ∧ pn,

ψ′w = ϕ′w → r.

If d(w) = 2, let q be the propositional letter in notprop(w) with the least
index. Define

ϕ′w =
∧

prop(w) ∧∆notprop(w) ∧ ((q → r) → q)2,

ψ′w = ϕ′w → q.

If d(w) > 2 and w ≺ {w1, · · · , wm}, then let

ϕ′w :=
∧

prop(w) ∧ (
∨

newprop(w) ∨
m∨

i=1

ψ′wi
→

m∨
i=1

ϕ′wi
)

and

ψ′w := ϕ′w →
m∨

i=1

ϕ′wi
.

We will prove for the ϕ′w and ψ′w formulas a lemma (Lemma 3.4.8) which
is an analogy of Theorem 3.3.1 for the ϕw and ψw formulas.

2Note that in the definition, it does not matter which q ∈ notprop(w) is chosen. For
simplicity, here we stipulate q = q1 to be the one that has the least index.
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Lemma 3.4.3. Let V be a valuation on a frame F = 〈W,R,P〉 and V ′ is a
valuation on F defined by

V ′(p) =

{
V (p), p 6= r;
∅, p = r.

Then for any formula ϕ,

〈F, V 〉 |= ϕ iff 〈F, V ′〉 |= ϕ[⊥/r]3.

Proof. We prove the lemma by induction on ϕ that for any w ∈ W ,

〈F, V 〉, w |= ϕ iff 〈F, V ′〉, w |= ϕ[⊥/r].

ϕ = ⊥. Then w = t, 〈F, V 〉, w 6|= ⊥ and 〈F, V ′〉, w 6|= r.
The induction steps that ϕ = ψ ∧ χ, ψ ∨ χ and ϕ = ψ → χ are proved

easily.

Lemma 3.4.4. Let U(n)w0 be a model described above with a largest element
t. Then for any w ∈ W , we have that

(i) `IPC ϕw[⊥/r] ↔ ϕ′w;

(ii) `IPC ψw[⊥/r] ↔ ψ′w.

Proof. We prove the lemma by induction on d(w).
d(w) = 1. Then w = t, ϕw[⊥/r] = ϕ′w and ψw[⊥/r] = ψ′w, so the lemma

holds trivially.
d(w) = 2. Then we have

` ϕw ↔
∧

prop(w) ∧ (
∨

notprop(w) ∨ ¬(p1 ∧ · · · ∧ pn) → p1 ∧ · · · ∧ pn)

` ϕw ↔
∧

prop(w) ∧ (
∨

notprop(w) ∨ ¬
∧

notprop(w) →
∧

notprop(w))

` ϕw ↔
∧

prop(w) ∧ (
∨

notprop(w) →
∧

notprop(w))

∧ (¬
∧

notprop(w) →
∧

notprop(w))

` ϕw ↔
∧

prop(w) ∧
∧

s∈notprop(w)

(s →
∧

notprop(w))

∧ (¬
∧

notprop(w) →
∧

notprop(w))

` ϕw ↔
∧

prop(w) ∧∆notprop(w) ∧ (¬q → q).

3We write ϕ[p/ψ] for the formula obtained by substituting all occurrences of p in ϕ by
ψ.
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Thus, ` ϕw[⊥/r] ↔ ϕ′w and

` ψw[⊥/r] ↔ (ϕw[⊥/r] → ϕt[⊥/r])

` ψw[⊥/r] ↔ (ϕ′w → ϕ′t)

` ψw[⊥/r] ↔ ψ′w.

The induction step that d(w) > 2 is proved easily by applying the induc-
tion hypothesis.

For any w in U(n)w0 described above, by Theorem 3.2.6, U(n)w0 6|= ψw for
each w ∈ R(w0). Thus, by the Lemma 3.4.3 and Lemma 3.4.4, the underlying
frame of U(n)w0 falsifies ψ′w. Hence 6`IPC ψ′w for each ψ′w, where w ∈ R(w0).
We will use this fact later in the proof of Theorem 3.4.9.

For any w, v with wRv in the n-universal model U(n), by Theorem 3.2.6
and Theorem 3.2.4, it is easy to prove that `IPC ϕv → ϕw. The next
lemma shows that the ϕw and ϕv formulas have the same property. Note
that Theorem 3.2.4 is not applicable for the ϕ′w and ψ′w formulas. So here
we prove the next theorem directly from the construction of the ϕ′w and ψ′w
formulas.

Lemma 3.4.5. Let U(n)w0 = 〈W,R, V 〉 be a model described above and let
w, v be two points in W with wRv. Then we have that `IPC ϕ′v → ϕ′w.

Proof. For any finite rooted model M = 〈W ′, R′, V ′〉 with the root r and
some point x ∈ R′(r), suppose M, x |= ϕ′v. We show that

M, x |= ϕ′w. (3.19)

If d(v) = 1, then
M, x |= p1 ∧ · · · ∧ pn. (3.20)

Clearly,

M, x |=
∧

prop(w). (3.21)

We show (3.19) by induction on d(w).
d(w) = d(v) + 1 = 2. Then clearly (3.20) implies that M, x |= q, which

implies that
M, x |= (q → r) → q.

Thus, together with (3.21), (3.19) is obtained.
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d(w) > d(v) + 1. For any wi ∈ Sw, since d(wi) < d(w), by the induction
hypothesis, M, x |= ϕ′wi

, thus M, x |= ∨
wi∈Sw

ϕ′wi
and

M, x |=
∨

newprop(w) ∨
∨

wi∈Sw

ψ′wi
→

∨
wi∈Sw

ϕ′wi
. (3.22)

Hence, together with (3.21), (3.19) is obtained.
If d(v) = 2, then clearly (3.21) holds. We show (3.19) by induction on

d(w). d(w) = d(v) + 1. Then v is an immediate successor of w, and (3.22)
follows from M, x |= ϕ′v. Thus, together with (3.21), (3.19) is obtained.

d(w) > d(v) + 1. For any wi ∈ Sw, since d(wi) < d(w), by the induction
hypothesis, we have that M, x |= ϕ′wi

and so (3.22) holds. Thus, together
with (3.21), (3.19) is obtained.

If d(v) > 2, then clearly M, x |= ϕ′v implies (3.21). By a similar argument
as above, we can show that (3.22) holds, thus, (3.19) is obtained.

A similar result to the next lemma for the de Jongh formula ϕw can also
be obtained by a similar argument.

Lemma 3.4.6. Let M = 〈W ′, R′, V ′〉 be any model and U(n)w0 = 〈W,R, V 〉
be a model described above. Put V ′′ = V ′ ¹ {p1, · · · , pn}. For any point w in
U(n)w0 and any point x in M, if

M, x |= ϕ′w, M, x 6|= ϕ′w1
, · · · ,M, x 6|= ϕ′wm

, (3.23)

where w ≺ {w1, · · · , wm}, then colV ′′(x) = colV (w).

Proof. We prove the lemma by induction on d(w).
d(w) = 1. Then (3.23) means that M, x |= p1 ∧ · · · ∧ pn. Note that w = t

also satisfies U(n)w0 , t |= p1 ∧ · · · ∧ pn. So colV ′′(x) = colV (w).
d(w) = 2. Then (3.23) implies that

M, x |=
∧

prop(w), (3.24)

M, x |= ∆notprop(w), (3.25)

M, x 6|= p1 ∧ · · · ∧ pn. (3.26)

First, from (3.24), it follows that

prop(x) ∩ {p1, · · · , pn} ⊇ prop(w). (3.27)
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Next, it follows from (3.26) that there exists pi (1 ≤ i ≤ n) such that
pi 6∈ prop(x), which by (3.27) implies that pi ∈ notprop(w). Thus, by (3.25),
M, x 6|= ∨

notprop(w) and so

notprop(x) ∩ {p1, · · · , pn} ⊇ notprop(w).

Together with (3.27), we obtain colV ′′(x) = colV (w).
d(w) > 2. Then (3.23) implies (3.24) and

M, x 6|=
∨

newprop(w), (3.28)

M, x 6|= ψ′wi
, (3.29)

for all wi ∈ Sw. From (3.24), we obtain (3.27). From (3.28), we obtain

notprop(x) ∩ {p1, · · · , pn} ⊇ newprop(w). (3.30)

It follows from (3.29) that for each wi ∈ Sw, there exists y ∈ R′(x) such that
y and wi satisfy (3.23). Since d(wi) < d(w), by the induction hypothesis, we
have that colV ′′(y) = colV (wi), which implies that

notprop(x) ∩ {p1, · · · , pn} ⊇ notprop(y) ∩ {p1, · · · , pn} = notprop(wi).

Together with (3.30), we obtain

notprop(x) ∩ {p1, · · · , pn} ⊇ newprop(w) ∪
⋃

wi∈Sw

notprop(wi) = notprop(w).

The above and (3.27) proves colV ′′(x) = colV (w).

The next lemma is crucial in the proof of Lemma 3.4.8. For the ϕw

formulas, a similar lemma (Corollary 3.2.12) is obtained as a corollary of the
results on the connection of H(n) and U(n). However, this method cannot
be generalized to the ϕ′w formulas. Here we prove the next lemma directly.

Lemma 3.4.7. Let M and U(n)w0 be models described above. For any point
w in U(n)w0 and any point x in M, if M, x |= ϕ′w, then there exists a unique
v ∈ R(w) such that

M, x |= ϕ′v, M, x 6|= ϕ′v1
, · · · ,M, x 6|= ϕ′vm

, (3.31)

where v ≺ {v1, · · · , vm}.
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Proof. Suppose M, x |= ϕ′w. If for all wi ∈ Sw, M, x 6|= ϕ′wi
, then w satisfies

(3.31). Now suppose that for some wi0 ∈ Sw, M, x |= ϕ′wi0
. We show that

there exists v ∈ R(w) satisfying (3.31) by induction on d(w).
d(w) = 1. Then trivially v = w satisfies (3.31).
d(w) > 1. Since M, x |= ϕ′wi0

and d(wi0) < d(w), by the induction

hypothesis, there exists v ∈ W , such that wi0Rv and v satisfies (3.31). And
clearly, wRv.

Next, suppose v′ ∈ R(w) also satisfies (3.31). By Lemma 3.4.6,

colV (v′) = colV ′′(x) = colV (v),

which by the property of U(n)w0 means that v′ = v.

Let F be a finite rooted frame with a largest element x0. For every point
x in F, we introduce a new propositional variable px and define a valuation V
on F by letting V (px) = R(x). Let n = |F|. By Theorem 3.2.3, there exists a
generated submodel U(n)w of U(n) such that U(n)w is a p-morphic image of
〈F, V 〉. Since different points in 〈F, V 〉 have different colors, the p-morphism
is injective and so 〈F, V 〉 ∼= U(n)w. Note that U(n)w has a top point t and
t |= p1 ∧ · · · ∧ pn.

The next lemma is a modification of the Jankov-de Jongh Theorem (The-
orem 3.3.1) proved in the previous section. Both the statement of the lemma
and the proof are generalized from those of Theorem 3.3.1.

Lemma 3.4.8. For every finite rooted frame F with a largest element, let
U(n)w be the model described above. Then for every descriptive frame G,

G 6|= ψ′w iff F is a p-morphic image of a generated subframe of G.

Proof. Let U(n)w = 〈W,R,P , V 〉. Suppose F is a p-morphic image of a
generated subframe of G. By Theorem 3.2.6, U(n)w 6|= ψw, thus F 6|= ψw. By
Lemma 3.4.3 and Lemma 3.4.4, we know that F 6|= ψ′w. By applying Theorem
2.3.9, G 6|= ψ′w is obtained.

Suppose G 6|= ψ′w. Then there exists a model N on G such that N 6|= ψ′w.
Consider the generated submodel N′ = NV ′(ϕ′w) = 〈W ′, R′,P ′, V ′〉 of N.
Since V ′(ϕ′w) is admissible, by Lemma 2.6.13, N′ is admissible. Define a map
f : W ′ → W by taking f(x) = v iff

N′, x |= ϕ′v, N′, x 6|= ϕ′v1
, · · · ,N′, x 6|= ϕ′vk

, (3.32)
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where v ≺ {v1, · · · , vk}.
Note that for every x ∈ N′, N′, x |= ϕw, thus by Lemma 3.4.7, there

exists a unique v ∈ R(w) satisfying (3.32). So f is well-defined.
We show that f is a surjective frame p-morphism of 〈W ′, R′,P ′〉 onto

〈W,R,P〉. Suppose x, y ∈ N′ with xR′y, f(x) = v and f(y) = u. Since
N′, x |= ϕ′v, we have that N′, y |= ϕ′v. By Lemma 3.4.7, there exists a unique
u′ ∈ R(v) such that u′ and y satisfy (3.32). So, since u and y also satisfy
(3.32), by the uniqueness, u′ = u and vRu.

Next, suppose x ∈ N′ and v, u ∈ W such that f(x) = v and vRu. We
show that

there exists y ∈ N′ such that f(y) = u and xR′y. (3.33)

If d(v) = 1, then u = v, so trivially xR′x and f(x) = v = u.
If d(v) = 2, then if u = v, we have that (3.33) trivially holds. Now

suppose u = t. Since f(x) = v, v and x satisfy (3.32), so

N′, x |=
∧

prop(v) ∧∆notprop(v) ∧ ((q → r) → q). (3.34)

It then follows that N′, x |= (q → r) → q. Note that

`IPC ((q → r) → q) → ¬¬q.

Thus, N′, x |= ¬¬q, which means that there exists y ∈ W ′ such that xR′y
and N′, y |= q. Since

N′, y |=
∧

prop(v) ∧∆notprop(v),

we have that N′, y |= p1 ∧ · · · pn, i.e. f(y) = u.
If d(v) > 2, then since x and v satisfy (3.32), by the definition of ϕ′v, we

must have that
N′, x 6|= ψ′vi

, (3.35)

for 1 ≤ i ≤ k. We now show by induction on d(u) that (3.33) holds.
d(u) = d(v) − 1. Then u is an immediate successor of v and u satisfies

(3.35). There are two cases. Case 1: d(u) = 2. Then it follows from N′, x 6|=
ψ′u that there exists y ∈ R′(x) such that N′, y |= ϕ′u and N′, y 6|= q. The
latter implies that N, y 6|= p1 ∧ · · · ∧ pn, i.e. N, y 6|= ϕ′t. Thus y and u satisfy
(3.32), and f(y) = u.
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Case 2: d(u) > 2. Then by the definition of ψ′u, N′, x 6|= ψ′u implies that
there exists y ∈ R′(x) such that y and u satisfy (3.32), thus f(y) = u.

d(u) < d(v) − 1. Then there exists an immediate successor vi0 of v such
that vi0Ru. By the basic step of the induction, there exists y ∈ W ′ such that
xR′y and f(y) = vi0 . Since d(vi0) < d(v), by the induction hypothesis, there
exists z ∈ W ′ such that yR′z and f(z) = u. And clearly, xR′z.

For any upset X ∈ P , we have that X =
⋃

v∈X R(v). By applying
Lemma 3.4.5, Lemma 3.4.7 and using a same argument as that in the proof
of Theorem 3.3.1, we can show that for every v ∈ X,

f−1(R(v)) = V ′(ϕ′v).

So,

f−1(X) = f−1(
⋃
v∈X

R(v)) =
⋃
v∈X

f−1(R(v)) =
⋃
v∈X

V ′(ϕv).

Since X is finite, we obtain f−1(X) ∈ P ′.
Lastly, we show that f is surjective. First, by a similar argument as

above, we can show that for w ∈ W , there exists x ∈ W ′ such that f(x) =
w. Next, for every v ∈ W , we have that wRv. So by (3.33), there exists
y ∈ R′(x) ⊆ W ′, such that f(y) = v.

Hence, f is a surjective frame p-morphism of 〈W ′, R′,P ′〉 onto 〈W,R,P〉.
Then since F ∼= 〈W,R,P〉, F is a p-morphic image of 〈W ′, R′,P ′〉, which is a
generated subframe of G.

Now we are ready to prove Jankov’s theorem on KC.

Theorem 3.4.9 (Jankov). If L is an intermediate logic such that L * KC,
then L ` θ and IPC 0 θ for some negation-free formula θ.

Proof. Suppose χ is a formula satisfying

L ` χ and KC 0 χ.

Then there exists a finite rooted KC-frame F with a largest element such that
F 6|= χ. For every point w in F, we introduce a new propositional variable
pw and define a valuation V on F by letting V (pw) = R(w). Let n = |F|.
By Theorem 3.2.3, there exists a generated submodel U(n)w of U(n) which
is a p-morphic image of 〈F, V 〉. Note that U(n)w has a largest element t,
t |= p1 ∧ · · · ∧ pn and colV (v) 6= colV (u) for all v, u in U(n)w.
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Consider the formula ψ′w. Suppose L 0 ψ′w. Then there exists a descrip-
tive frame G of L such that G 6|= ψ′w. By Lemma 3.4.8, F is a p-morphic
image of a generated subframe of G. Thus, by Theorem 2.3.9, F is an L-frame.
Thus, since L ` χ, we have that F |= χ, which leads to a contradiction.

Hence, L ` ψ′w. Note that IPC 0 ψ′w and ψ′w is negation-free, thus θ = ψ′w
is the required formula.
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Chapter 4

Subframe logics and subframe
formulas

In this chapter, we summarize classic and recent results on subframe logics
and subframe formulas. Subframe logics are intermediate logics that are
characterized by a class of frames closed under subframes. The study of
intuitionistic subframe logics was first inspired by the related results on modal
subframe logics, where Fine [14] and Zakharyaschev [28] defined the subframe
formulas and proved the finite model property of subframe logics. In [27],
[29] (see also [6]) Zakharyaschev defined subframe formulas for intermediate
logics, which are [∧,→]-formulas. It then follows from Zakharyaschev [29],
[30] (see also [6]) that subframe logics are exactly those logics axiomatized
by [∧,→]-formulas. N. Bezhanishvili proved in [3] that subframe logics can
also be axiomatized by NNIL-formulas. G. Bezhanishvili and Ghilardi [2]
gave an algebraic approach to subframe logics by using the tools of nuclei
in topos theory and proved that a variety of Heyting algebras is nuclear iff
it is a subframe variety. Also in [2], an alternative proof of the finite model
property of subframe logics is given from the algebraic point of view.

In Section 4.1, we give definitions of subframes of intuitionistic general
frames and subframe logics. In Section 4.2, we give the definition of sub-
frame formulas in NNIL-form, which was done in [3]. In Section 4.3, we
provide a frame-based proof of the property that subreductions preserve
[∧,→]-formulas. In Section 4.4, we state the equivalent characterizations
of subframe logics.
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4.1 Subframe logics

In this section, we recall the important notions related to subframe logics.
For more details on subframe logics, one may refer to [6].

Definition 4.1.1. Let F = 〈W,R,P〉 and G = 〈V, S,Q〉 be intuitionistic
general frames. A partial map f from W onto V is called a subreduction of
F to G if it satisfies the following

(R1’) For any w, v ∈ dom(f), wRv implies f(w)Sf(v);

(R2’) f(w)Sv′ implies ∃v ∈ dom(f), wRv and f(v) = v′;

(R3’) ∀X ∈ Q, f−1(X) ↓∈ P .

Remark 4.1.2. If a subreduction is total, then (R3’) is equivalent to (R3).
This means that any reduction is also a subreduction and any total subreduc-
tion is also a reduction.

An intuitionistic general frame G = 〈V, S,Q〉 is called a subframe of an
intuitionistic general frame F = 〈W,R,P〉, if 〈V, S〉 is a subframe of 〈W,R〉
and the inclusion map is a subreduction, i.e.,

U ∈ Q implies R−1(U) ∈ P .

Alternatively, we can define subframe in topological terminology. A Heyt-
ing space Y = 〈Y, ν, S〉 is called a subframe of a Heyting space X = 〈X, τ,R〉
if 〈Y, S〉 is a subframe of 〈X, R〉, 〈Y, ν〉 is a subspace of 〈X, τ〉, and

U is a clopen of Y implies that R−1(U) is a clopen of X .

Also, a correspondence between subframe and nuclei can be found in [2].

Remark 4.1.3. If G is a subreduct of F, then G is a reduct (p-morphic
image) of a subframe of F.

There are many ways of to define a subframe logic. In subsequent sections,
we will see that these characterizations are equivalent.

Definition 4.1.4. An intermediate logic L is called a subframe logic, if it is
characterized by a class of frames that is closed under subframes (i.e. every
subframe of an L-frame is also an L-frame).
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4.2 Subframe formulas

Subframe formulas are formulas axiomatizing subframe logics. In [3] N.
Bezhanishvili defined subframe formulas in the NNIL-form. In this section,
we spell out these results.

Let F = 〈W,R〉 be a finite (rooted) frame. For each point w in F, we
introduce a new propositional variable pw and define a valuation V on F by
taking V (pw) = R(w).

Definition 4.2.1. We inductively define the subframe formula β(F). If
d(w) = 1, then let

β(w) :=
∧

prop(w) →
∨

notprop(w).

If d(w) > 1, let w1, · · · , wk be all the immediate successors of w. Define

β(w) :=
∧

prop(w) → (
∨

notprop(w) ∨
k∨

i=1

β(wi)).

Let r be the root of F. We define the subframe formula β(F) by

β(F) := β(r).

Note 4.2.2. It is easy to see that F 6|= β(F).

For proofs of the next two theorems, see Theorem 3.3.16 and Corollary
3.4.16 in [3].

Theorem 4.2.3. Let G be a descriptive frame and F be a finite rooted frame.
Then

G 6|= β(F) iff G is subreducible to F.

Theorem 4.2.4. Let L be an intermediate logic. Then L is axiomatized by
subframe formulas iff L is a subframe logic.

4.3 [∧,→]-formulas

In this section, we state the result that L is a subframe logic iff L is axiom-
atized by [∧,→]-formulas. This follows from [29], [30] (see also [6]).

For an algebraic proof of the next theorem, see Corollary 9.8 in [6]. Here
we give a direct proof based on frames.
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Theorem 4.3.1. Let F = 〈W,R,P〉 and G = 〈W ′, R′,P ′〉 be general frames.
If F is subreducible to G, then for any ϕ ∈ [∧,→],

F |= ϕ =⇒ G |= ϕ.

Proof. Suppose f is a subreduction of F onto G and G 6|= ϕ. Then there
exists a model N = 〈G, V ′〉 such that N 6|= ϕ. We define a valuation V on F

such that M = 〈F, V 〉 6|= ϕ.
For any w ∈ W and any p ∈Prop, let

w ∈ V (p) ⇐⇒ ∀v ∈ dom(f)(wRv ⇒ f(v) ∈ V ′(p)). (4.1)

We show that the valuation V is an admissible set in P . That is to show
that for any p ∈Prop, V (p) ∈ P . Note that W ′ − V ′(p) ∈ Q, so by (R3’),
we have f−1(W ′ − V ′(p)) ↓∈ P , thus it suffices to show that

V (p) = W − f−1(W ′ − V ′(p)) ↓ .

By (4.1), we have

w ∈ V (p) ⇐⇒ ∀v ∈ dom(f)(f(v) 6∈ V ′(p) ⇒ ¬wRv)

⇐⇒ ∀v ∈ dom(f)(v ∈ f−1(W ′ − V ′(p)) ⇒ ¬wRv)

⇐⇒ w 6∈ f−1(W ′ − V ′(p)) ↓
⇐⇒ w ∈ W − f−1(W ′ − V ′(p)) ↓ .

Now, we show that (4.1) holds for any w ∈ dom(f) ↑ and any formula
ϕ ∈ [∧,→], and that for any x ∈ dom(f),

M, x |= ϕ ⇐⇒ N, f(x) |= ϕ. (4.2)

We prove these two claims simultaneously by induction on ϕ.
Obviously, (4.1) holds for propositional letter, and (4.1) clearly implies

that (4.2) holds for propositional letter as well. The case that ϕ = ψ∧χ can
be proved easily. For the case that ϕ = ψ → χ, where ψ, χ ∈ [∧,→], we first
show that (4.1) holds.
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For any w ∈ dom(f) ↑, we have that

M, w 6|= ψ → χ =⇒ ∃v ∈ R(w) s.t. M, v |= ψ and M, v 6|= χ

=⇒ ∃v ∈ R(w) s.t. ∀u ∈ dom(f)(vRu ⇒ N, f(u) |= ψ)

and ∃uv ∈ dom(f)(vRuv and N, f(uv) 6|= χ)

(by the induction hypothesis of (4.1))

=⇒ ∃v ∈ R(w), ∃uv ∈ dom(f) s.t. vRuv,

N, f(uv) |= ψ and N, f(uv) 6|= χ

=⇒ ∃u ∈ dom(f)(wRu and N, f(u) 6|= ψ → χ),

and that

∃v ∈ dom(f)(wRv and N, f(v) 6|= ψ → χ)

=⇒ ∃v ∈ dom(f)(wRv, ∃u′ ∈ S(f(v))(N, u′ |= ψ and N, u′ 6|= χ) )

=⇒ ∃v ∈ dom(f)(wRv, ∃u ∈ dom(f) ∩R(v)(N, f(u) |= ψ and N, f(u) 6|= χ) )

(by (R2’))

=⇒ ∃v ∈ dom(f)(wRv, ∃u ∈ dom(f) ∩R(v)(M, u |= ψ and M, u 6|= χ) )

(by the induction hypothesis of (4.2))

=⇒ ∃u ∈ R(w) s.t. M, u |= ψ and M, u 6|= χ

=⇒ M, w 6|= ψ → χ.

Therefore (4.1) is obtained. To prove (4.2), for any x ∈ dom(f), we have
that

M, x 6|= ψ → χ =⇒ ∃y ∈ R(x) s.t. M, y |= ψ and M, y 6|= χ

=⇒ ∃y ∈ R(x) s.t. ∀z ∈ dom(f)(yRz ⇒ N, f(z) |= ψ)

and ∃zy ∈ dom(f)(yRzy and N, f(zy) 6|= χ)

(by the induction hypothesis of (4.1))

=⇒ ∃y ∈ R(x), ∃zy ∈ dom(f) s.t. yRzy,

N, f(zy) |= ψ and N, f(zy) 6|= χ

=⇒ ∃zy ∈ dom(f) ∩R(x) s.t. N, f(zy) |= ψ and N, f(zy) 6|= χ

=⇒ ∃f(zy) ∈ V, s.t. f(x)Sf(zy), N, f(zy) |= ψ

and N, f(zy) 6|= χ (by (R1’))

=⇒ N, f(x) 6|= ψ → χ,
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and that

N, f(x) 6|= ψ → χ =⇒ ∃y′ ∈ S(f(x)), s.t. N, y′ |= ψ and N, y′ 6|= χ

=⇒ ∃y ∈ R(x) ∩ dom(f) s.t. N, f(y) |= ψ and N, f(y) 6|= χ

(by (R2’) )

=⇒ ∃y ∈ R(x) s.t. M, y |= ψ and M, y 6|= χ

(by the induction hypothesis of (4.2))

=⇒ M, x 6|= ψ → χ.

Thus, (4.2) is obtained. Therefore, since N, f(x) 6|= ϕ for some x ∈
dom(f), by (4.2) we conclude that M, x 6|= ϕ. This finishes the proof.

Theorem 4.3.2. Let L be an intermediate logic. Then L is axiomatized by
[∧,→]-formulas iff L is a subframe logic.

Proof. Follows from Theorem 4.3.1 and [29], [30] (see also [6]).

4.4 Equivalent characterizations of subframe

logics

Theorem 4.4.1. The following are equivalent:

1. L is a subframe logic;

2. L is axiomatized by [∧,→]-formulas;

3. L is axiomatized by NNIL-formulas;

4. there exists a set F of finite frame such that every formula in L refutes
any frame in F ;

5. L is nuclear.

Proof. Follows from Theorem 4.2.3, 4.2.4, 4.3.2 and [2].
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Chapter 5

The [∧,→]-fragment of IPC

Denote the fragment of IPC consisting of formulas that have only ∧ and
→ as connectives by [∧,→]. In this chapter, we discuss properties of the
[∧,→]-fragment of IPC. It is mentioned in Chapter 4 that [∧,→]-formulas
axiomatize subframe logics.

Diego proved in [12] that the variety of Hilbert algebras is locally fi-
nite. Let [∧,→]n and [→]n denote the subfragment of [∧,→] and [→] for
which propositional variables are only among the set {p1, · · · , pn} respec-
tively. Then dually, the [→]n-fragment of IPC is finite. As a consequence,
we know that the [∧,→]n-fragment of IPC is finite. This fact is essential in
the proof that subframe logics have the finite model property.

Hendriks defined in [16] (also in [11]), a finite exact model for the [∧,→]n-
fragment of IPC. As a matter of fact, the exact model acts as an n-universal
model for [∧,→]n-formulas. In Section 5.1, we reformulate this definition by
making some modifications to the n-universal model of IPC. This enables us
to prove properties of [∧,→]-formulas in an uniform manner. In particular,
we give a detailed proof of Theorem 5.1.8 (corresponding to Lemma 3.2.1 in
[11]) of the exactness of the n-universal model of [∧,→]n-formulas which was
too sketchy in [11]. In Section 5.2, we spell out some important results on the
algebras of the [∧,→]-fragment of IPC, Brouwerian semilattices, including
the congruence extension property.
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5.1 n-universal models of [∧,→]-formulas

In [16], Hendriks gave a characterization property of [∧,→]-formulas, and
showed that the [∧,→]-fragment of IPC is complete with respect to all M−

models. In this section, we reformulate these results and redefine the exact
model in [16] by modifying the n-universal model of IPC.

We first start with some definitions.

Definition 5.1.1. Let F = 〈W,R,P〉 be a frame. Let V : {p1, · · · , pn} →
℘(W ) be a valuation on F, w be a point in W .

• We call V maximal on a non-endpoint w if and only if

prop(w) =
⋂

v∈R(w)

prop(v).

• We call V total on w if and only if |prop(w)| = n.

A point w is called an intersection point in a model M if it is not an endpoint
and the valuation on it is maximal. w is called total if the valuation on it is
total.

Lemma 5.1.2. Given a model M = 〈W,R, V 〉. If w is a total point in W ,
then M, w |= ϕ, for every ϕ ∈ [∧,→].

Proof. By induction on d(w) and on ϕ.

We now show that the truth values of [∧,→]-formulas are determined
only by non-intersection and non-total points. Given an n-model M, let M−

denote the submodel obtained from M by eliminating all the intersection
and total points. For the proof of the next theorem, one may also refer to
Lemma 3.6.0.3 in [16].

Theorem 5.1.3. Let M = 〈W,R, V 〉 be a finite model and w be a non-total
point in W . Then for any ϕ ∈ [∧,→],

M, w |= ϕ ⇐⇒ (Mw)− |= ϕ.

Proof. Suppose M, w |= ϕ. We show by induction on d(w) that (Mw)− |= ϕ.
If d(w) = 1, then (Mw)− = Mw since w is not total, so the theorem holds
trivially.

53



Figure 5.1:

00 00

00
w

d(w) = k > 1. We prove by induction on ϕ. ϕ = p. Clearly, Mw |= p
implies (Mw)− |= p. Now suppose (Mw)− |= p. Observe that every point
v ∈ (M \ (Mw)−) is either a total or an intersection point. So v ∈ V (p),
which means that Mw |= p.

The case that ϕ = ψ ∧ χ holds trivially.
Now consider the case that ϕ = ψ → χ. Suppose M, w 6|= ψ → χ. Then

there exists v ∈ R(w) such that M, v |= ψ and M, v 6|= χ. From the latter,
since χ ∈ [∧,→], in view of Lemma 5.1.2, we conclude that v is not a total
point. Thus since d(v) < k, by the induction hypothesis, (Mv)

− |= ψ and
(Mv)

− 6|= χ. It then follows that (Mw)− 6|= ψ → χ.
Suppose (Mw)− 6|= ψ → χ. Then there exists v ∈ (Mw)− such that

(Mw)−, v |= ψ and (Mw)−, v 6|= χ. It follows that (Mv)
− |= ψ and (Mv)

− 6|=
χ. Then, by the induction hypothesis, M, v |= ψ and M, v 6|= χ. So M, w 6|=
ψ → χ.

Corollary 5.1.4. The [∧,→]-fragment of IPC is complete with respect to
all M− models.

Proof. By the finite model property of [∧,→]-logics and Theorem 5.1.3.

In order to show the converse of Theorem 5.1.3, we consider the model
U(n)− of n-universal model with intersection and total points eliminated.
Observe for example that in the 2-universal model U(2), for every upset of
the form in Figure 5.1, the point w will be eliminated in U(2)− since it is an
intersection point: For this reason, it is not hard to see that for every n ∈ ω,
U(n)− is finite. Then by Theorem 3.2.3, U(n)− can be mapped p-morphically
onto a generated submodel U(n)∗ of U(n). Clearly, U(n)∗ is also finite. U(2)∗

is depicted in Figure 5.2.
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Figure 5.2:

00 0000

0110 00

10 01 00 00

0000 00 00

11

00 00

0110 00

U(2)− U(2)∗

reduction

relations that are deleted from U(n) respectively.

Void dots and dashed lines stand for points and

The model U(n)∗ is isomorphic to the exact model in [16] for the [∧,→]n-
fragment of IPC (see also [11]). Next, we show that U(n)∗ acts as the n-
universal model for the [∧,→]n-fragment of IPC. First, we show that U(n)∗

is complete with respect to the [∧,→]n-fragment of IPC.

Theorem 5.1.5. For every formula ϕ ∈ [∧,→]n, we have that U(n)∗ |= ϕ
iff `IPC ϕ.

Proof. “⇐” holds trivially. Suppose U(n)∗ |= ϕ, for a formula ϕ ∈ [∧,→]n.
Since U(n)∗ is a p-morphic image of U(n)−, by Theorem 2.3.9, U(n)− |= ϕ.

Now, for every finite model M, we know by Theorem 3.2.3 that there
exists a generated submodel U(n)w of U(n) such that U(n)w is a p-morphic
image of M. It is easy to see that (U(n)w)− is a generated submodel of
U(n)−. Thus, by Theorem 2.3.9 again, we have that (U(n)w)− |= ϕ.

Noting that U(n)w is a finite model, we apply Theorem 5.1.3 and obtain
that U(n)w |= ϕ. So by using Theorem 2.3.9 a third time, we obtain that
M |= ϕ, which gives `IPC ϕ by the finite model property of the [∧,→]n-
fragment of IPC.

Define a relation ≡ on a set Θ of formulas by

ϕ ≡ ψ iff `IPC ϕ ↔ ψ.

Clearly, ≡ is an equivalence relation.
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The next theorem is due to Diego [12]. Here we give an alternative proof
based on Theorem 5.1.5.

Theorem 5.1.6 (Diego). There are only finitely many provably non-equivalent
formulas in [∧,→]n.

Proof. Note that U(n)∗ is finite. So there are only finitely many upsets in
U(n)∗. Enumerate all upsets in U(n)∗ and let Up(U(n)∗) = {X1, · · · , Xk}.
Define a function σ : [∧,→]n → Ck by taking σ(ϕ) = c1 · · · ck, where for each
1 ≤ i ≤ k

ci =

{
1, (U(n)∗)Xi

|= ϕ;
0, (U(n)∗)Xi

6|= ϕ.

Consider the equivalence relation ≡ on the set of all [∧,→]n-formulas.
For any ϕ, ψ ∈ [∧,→]n, we have that

ϕ ≡ ψ iff `IPC ϕ ↔ ψ

iff U(n)∗ |= ϕ ↔ ψ (by Theorem 5.1.5)

iff σ(ϕ) = σ(ψ).

Put [∧,→]n≡ = {[ϕ] : ϕ ∈ [∧,→]n}. We have that

|[∧,→]n≡| = |σ([∧,→]n)| ≤ |Ck| = 2k,

which means that there are up to provable equivalence only finitely many
[∧,→]n-formulas.

Next, for every point w in U(n)∗, we define two formulas ϕ∗w, ψ∗w ∈ [∧,→]n

which do the same job in U(n)∗ for the [∧,→]n-fragment of IPC as the de
Jongh formulas do in U(n) for the whole IPC. These two formulas are given
in [11].

Let w be a point in an n-model M. We define cl(w) the level of color of
w in M as

cl(w) = n− |prop(w)|.
Observe that since U(n)∗ does not contain total points, points w in U(n)∗

with cl(w) = 1 are endpoints. On the other hand, endpoints w in U(n)∗ do
not necessary satisfy that cl(w) = 1.
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Definition 5.1.7. We define ϕ∗w and ψ∗w for every point w in U(n)∗ =
〈W,R, V 〉 inductively on d(w). Let q be the propositional letter in newprop(w)
with the least index.

If d(w) = 1, then let

ϕ∗w :=
∧

prop(w) ∧∆notprop(w)1,

and
ψ∗w := ϕ∗w → q2.

If d(w) > 1, we define ϕ∗w and ψ∗w by induction on cl(w). Assume w ≺
Sw = {w1, · · · , wm}. Note that in this case cl(w) > 1. If cl(w) = 2, then let

ϕ∗w :=
∧

prop(w) ∧∆newprop(w) ∧
∧
{ψ∗wi

→ q : wi ∈ Sw}∧∧
{ψ∗v : v 6∈ R(w) and prop(v) ⊇

⋂
{prop(wi) : wi ∈ Sw}},

and
ψ∗w := ϕ∗w → q.

Note that points wi in the third conjunct and v in the forth conjunct of the
above ϕ∗w satisfy d(wi) = d(v) = 1, therefore the above definition is sound.

If cl(w) > 2, ϕ∗w and ψ∗w are defined in the same way as that of the case
that cl(w) = 2. Note that the wi in the third conjunct and v in the forth
conjunct of ϕ∗w in this case satisfy cl(wi) < cl(w) and cl(v) < cl(w), therefore
this definition is sound.

Note that the ϕ∗w and ψ∗w formulas defined above are in [∧,→]n. The next
theorem is analogous to Theorem 3.2.6. It corresponds to Lemma 3.2.1 in
[11], but the proof in [11] was too sketchy. Here we give a detailed proof.

Theorem 5.1.8. For each point v in U(n)∗ = 〈W,R, V 〉, we have that

(i) v |= ϕ∗w, iff wRv;

(ii) v 6|= ψ∗w, iff vRw.

1In this case, newprop(w) = notprop(w).
2Note that by the definition of ϕw, we have that `IPC (ϕ∗w → q) ↔ (ϕ∗w → q′) for any

q, q′ ∈ newprop(w). So it does not really matter which q ∈ newprop(w) is chosen in the
definition of ψ∗w. For simplicity, here we stipulate q = pi to be the one that has the least
index.
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Proof. We prove (i) and (ii) by simultaneous induction on d(w).
d(w) = 1. For (i), suppose wRv. Then v = w. Clearly, we have that

w |= ϕ∗w, which means that v |= ϕ∗w. Now suppose v |= ϕ∗w. It follows from
v |= ∧

prop(w) that
prop(v) ⊇ prop(w); (5.1)

and from v |= ∆notprop(w) that

v |=
∧

notprop(w) (5.2)

or
v 6|=

∨
notprop(w). (5.3)

Observe that (5.1) together with (5.2) imply that v is a total point, which is
impossible. Thus, we obtain (5.3), which means that

col(v) = col(w).

Suppose v is not an endpoint. Then for any u ∈ R(v) such that u 6= v,
since v is not an intersection point, col(u) > col(v), i.e. there exists r ∈
notprop(v) such that u |= r. Since v |= ∆notprop(w), then we must have
that

u |=
∧

notprop(w),

which means that u is a total point; a contradiction. Hence, v is an endpoint.
So, by the definition of U(n)∗, v = w, thus wRv.

For (ii), suppose vRw. Clearly, w |= ϕ∗w and w 6|= q. Thus, v 6|= ϕ∗w → q.
Now suppose v 6|= ψ∗w. Then there exists u ∈ R(v) such that

u |= ϕ∗w and u 6|= q.

By (i), the former of the above means that wRu. Then since w is an endpoint,
u = w, thus vRw.

d(w) > 1. We show (i) and (ii) by induction on cl(w). The cases that
cl(w) = 2 and cl(w) > 2 can be proved by similar arguments. Here we
prove the two cases at the same time. First, note that in the basic step that
cl(w) = 2, we have d(w) = 2.

For (i), suppose wRv. We show that w |= ϕ∗w, which implies that v |= ϕ∗w.
Clearly,

w |= prop(w) and w |= ∆newprop(w).
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For any wi ∈ Sw, if cl(w) = 2, then d(wi) = d(w) − 1 = 1. If cl(w) > 2,
then cl(wi) < cl(w). In both cases, either by (ii) of the basic step of the
induction, or by (ii) of the induction step, we have that w 6|= ψ∗wi

. For any
u ∈ R(w) with u 6= w, we have that u |= q, since q ∈ newprop(w). Hence,
we conclude that w |= ψ∗wi

→ q.
Lastly, let u be a point in U(n)∗ satisfying

¬wRu and prop(u) ⊇
⋂
{prop(wi) : wi ∈ Sw}.

The latter of the above implies that cl(u) < cl(w). If cl(w) = 2, then
d(u) = 1. Therefore by the former of the above and (ii) of the basic step of
the induction or (ii) of the induction step, we obtain that w |= ψ∗u. Hence,
w |= ϕ∗w.

Now, suppose v |= ϕ∗w. First, from v |= ∧
prop(w), we obtain (5.1). Next,

we distinguish two cases.
Case 1: q ∈ prop(v). Then since v |= ∆newprop(w), we must have that

prop(v) ⊇ newprop(w). (5.4)

Together with (5.1), we obtain

prop(v) ⊇ prop(w) ∪ newprop(w) =
⋂
{prop(wi) : wi ∈ Sw}.

The above implies that cl(v) < cl(w). If cl(w) = 2, then d(v) = 1. Thus
either by (ii) of the basic step of the induction, or by (ii) of the induction
step, v 6|= ψ∗v . Thus, since

v |=
∧
{ψ∗u : u 6∈ R(w) and prop(u) ⊇

⋂
{prop(wi) : wi ∈ Sw}} (5.5)

we must have that wRv as required.
Case 2: q 6∈ prop(v). Then since v |= ψ∗wi

→ q for every wi ∈ Sw, we have
that v 6|= ψ∗wi

. Note that either cl(w) = 2 and d(wi) = 1, or cl(w) > 2 and
cl(wi) < cl(w). Thus by (ii) of the basic step of the induction, or by (ii) of
the induction step, we have that vRwi for every wi ∈ Sw.

Furthermore, for every wi ∈ Sw we have that

notprop(v) ⊇ notprop(wi).

In the meantime, since v |= ∆newprop(w) and v 6|= q,

notprop(v) ⊇ newprop(w).
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Hence,

notprop(v) ⊇ newprop(w) ∪
⋃

wi∈Sw

notprop(wi) = notprop(w).

Then, together with (5.1), we obtain

col(v) = col(w).

Next, we show that wi is an immediate successor of v. Suppose there
exists an immediate successor u of v in U(n)∗ such that uRwi. Clearly,
¬wRu, since wRu contradicts the fact that w is an immediate successor of
wi. We distinguish two subcases.

Subcase 1: prop(u) ⊇ ⋂{prop(wi) : wi ∈ Sw}. Then by (5.5), v |= ψ∗u.
Note that either cl(w) = 2 and d(u) = 1, or cl(w) > 2 and cl(u) < cl(w).
Thus by (ii) of the basic step of the induction, or (ii) of the induction step,
¬vRu; a contradiction.

Subcase 2: there exists r ∈ ⋂{prop(wi) : wi ∈ Sw} such that r 6∈ prop(u).
Since vRu, we also have that r 6∈ prop(v) = prop(w), thus,

r ∈ newprop(w).

On the other hand, since u is not an intersection point, col(u) > col(v), thus
there exists s such that

s ∈ prop(u) and s 6∈ prop(v).

If s ∈ newprop(w), then v 6|= s → r will contradict v |= ∆newprop(w).
Thus we have that s 6∈ newprop(w). Then there exists wj ∈ Sw such that

¬uRwj and s 6∈ prop(wj).

Since either cl(w) = 2 and d(wj) = 1, or cl(w) > 2 and cl(wj) < cl(w), by
(ii) of the basic step of the induction, or (ii) of the induction step, the former
of the above implies that u |= ψ∗wj

. Thus we have that

v 6|= ψ∗wj
→ r,

which contradicts
v |=

∧
{ψ∗wi

→ q : wi ∈ Sw}. (5.6)
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Hence, we have proved that every wi ∈ Sw is an immediate successor of v.
Now, we show that every immediate successor of v is an immediate suc-

cessor of w. Suppose u is an immediate successor of v and ¬wRu. First, for
every wi ∈ Sw note that either cl(w) = 2 and d(wi) = 1, or cl(w) > 2 and
cl(wi) < cl(w). Thus since ¬uRwi, by (ii) of the basic step of the induction,
or (ii) of the induction step, we have that u |= ψ∗wi

. Then since v |= ψ∗wi
→ q,

we must have that u |= q. Together with the fact that v |= ∆newprop(w),
we obtain that prop(u) ⊇ newprop(w). On the other hand, since vRu, we
have that prop(u) ⊇ prop(u) = prop(w). Thus,

prop(u) ⊇ newprop(w) ∪ prop(w) =
⋂
{prop(wi) : wi ∈ Sw}.

Since ¬wRu, by (5.5) means that v |= ψ∗u. However, since d(u) < d(w) and
vRu, this contradicts the induction hypothesis.

Now suppose there exists u′ such that u′ is an immediate successor of
w and u′Ru. Clearly, ¬vRu′, since vRu′ contradicts the fact that u is an
immediate successor of v. Since either cl(w) = 2 and d(u′) = 1, or cl(w) > 2
and cl(u′) < cl(w), by (ii) of the basic step of the induction, or (ii) of the
induction step, v |= ψ∗u′ . Hence, since col(v) = col(w), v 6|= ψ∗u′ → q, which
contradicts (5.6).

Hence, we have proved that the set of immediate successors of w is the
same as the set of immediate successors of v. Together with the fact that
col(w) = col(v), by the definition of U(n)∗, we conclude that w = v, thus
wRv.

For (ii), “⇐” is proved by the same argument as in the case that d(w) = 1.
For “⇒”, suppose v 6|= ψ∗w. By a similar argument to that in the case that
d(w) = 1, we can prove that there exists u ∈ R(v) such that wRu and u 6|= q.
Since q ∈ newprop(w), we must have that w = u. Thus, in both cases that
cl(w) = 2 and cl(w) > 2, we have that vRw.

Next, we show that every upset of U(n)∗ is defined by a [∧,→]n formula.
Since we do not allow ∨ in the [∧,→]n-fragment, we cannot simply take the
formula

∨
w∈X ϕ∗w as the formula that defines an upset X.

By Theorem 5.1.6, for any point w in U(n)∗, there are only finitely many
[∧,→]n-formulas in Thn(w). For each upset X of U(n)∗, we define a formula
θn(X) ∈ [∧,→]n with finite length as

θn(X) :=
∧
{ϕ ∈ [∧,→]n : ϕ ∈

⋂
w∈X

Thn(w)}.
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In the case that X = {w}, we will only write θn(w) instead of θn({w}).
The following lemma is adapted from Theorem 3.6.0.12 in [16].

Lemma 5.1.9. Let X be an upset of U(n)∗ = 〈W,R, V 〉. We have that
X = V (θn(X)).

Proof. Clearly, by the definition X ⊆ V (θn(X)). For each w ∈ V (θn(X)),
we show by induction on d(w) that w ∈ X.

d(w) = 1. Consider the formula

ηw =
∧

prop(w) ∧
∧
{q →

∧
{p1, · · · , pn} : q ∈ notprop(w)}

→
∧
{p1, · · · , pn}.

Clearly, ηw 6∈ Thn(w). Thus, since w |= θn(X), we may conclude that there
exists v ∈ X such that v 6|= ηw, which means that there exists v′ ∈ R(v),
such that

v′ |=
∧

prop(w) ∧
∧
{q →

∧
{p1, · · · , pn} : q ∈ notprop(w)}. (5.7)

v′ is an endpoint. Suppose otherwise, i.e. there exists v′′ such that v′′ 6= v′

and v′Rv′′. Note that by the definition of U(n)∗, col(v′) � col(v′′). Thus there
exists q ∈ prop(v′′) ∩ notprop(v′). It then follows that q ∈ notprop(w) and

v′ 6|= q →
∧
{p1, · · · , pn}.

These contradict (5.7).
(5.7) implies that col(v′) = col(v). Thus since in U(n) distinct endpoints

have distinct colors, we conclude that v′ = w, and hence vRw. Thus w ∈ X
since X is upward closed.

d(w) > 1. Assume w 6∈ X. Since w is not maximal, there exists q ∈
newprop(w). Consider the formula θn(w) → q. For each v ∈ X, suppose
v′ ∈ R(v) and v′ |= θn(w). From the former, since X is upward closed, it
follows that v′ ∈ X and so v′ 6= w. Since ϕw is a conjunct in θn(w), by
Theorem 5.1.8, the latter implies that wRv′. Observe that v′ |= θn(w) → q,
which implies that v′ |= q, therefore we conclude that v |= θn(w) → q. This
means that θn(w) → q is a conjunct of θn(X). So, since w |= θn(X), we have
that w |= θn(w) → q, which is impossible.
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Having Theorem 5.1.5 and Lemma 5.1.9 at hand, we can view U(n)∗ as
an n-universal model for the [∧,→]n-fragment of IPC. Hereafter, we will
use the symbol U(n)[∧,→] instead of U(n)∗.

We finish this section by showing the converse of Theorem 5.1.3. For the
proof of the next theorem, one may also refer to [16].

Theorem 5.1.10. Let ϕ be a formula. If for every finite model M =
〈W,R, V 〉 and every total point w ∈ W , M, w |= ϕ holds, and for every
non-total point w ∈ W ,

Mw |= ϕ ⇐⇒ (Mw)− |= ϕ,

then ϕ is provably equivalent to a formula ϕ′ ∈ [∧,→].

Proof. Let ϕ be the formula described in the theorem. Consider the model
U(n)[∧,→] = 〈W,R, V 〉. Let ϕ′ = θn(V (ϕ)) ∈ [∧,→]n.

For every w in U(n), if w is total, then U(n)w is a singleton. By the
assumption and Lemma 5.1.2, we have that

U(n), w |= ϕ ⇐⇒ U(n), w |= ϕ′. (5.8)

If w is non-total, then we apply the assumption to the finite model U(n)w

and obtain
U(n)w |= ϕ ⇐⇒ (U(n)w)− |= ϕ. (5.9)

Suppose w is not maximal. Note that (U(n)w)− ∼= (U(n)−)w and there exists
a p-morphism f of U(n)− onto U(n)[∧,→]. Since w ∈ U(n)−, and thus by
Theorem 2.3.9 and Lemma 5.1.9,

(U(n)w)− |= ϕ ⇐⇒ (U(n)[∧,→])f(w) |= ϕ

⇐⇒ (U(n)[∧,→])f(w) |= ϕ′

⇐⇒ (U(n)w)− |= ϕ′.

Observe that f(w) is not total. So since ϕ′ ∈ [∧,→] and U(n)w is finite, by
Theorem 5.1.3,

(U(n)w)− |= ϕ′ ⇐⇒ U(n)w |= ϕ′.

Therefore, we obtain (5.8) for all w ∈ U(n).
Now, suppose w is maximal. Then we have that (U(n)w)− ∼= U(n)−.

Since U(n)∗ is a p-morphic image of U(n)−, by Lemma 5.1.9,

U(n)− |= ϕ ⇐⇒ U(n)[∧,→] |= ϕ ⇐⇒ U(n)[∧,→] |= ϕ′ ⇐⇒ U(n)− |= ϕ′.
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Since (U(n)w)− ∼= U(n)−, U(n)w is finite, ϕ′ ∈ [∧,→] and w is not total, by
Theorem 5.1.3,

U(n)− |= ϕ′ ⇐⇒ U(n)w |= ϕ′.

Therefore, together with (5.9), we obtain (5.8) for all w ∈ U(n).
By Theorem 3.2.4, (5.8) implies that `IPC ϕ ↔ ϕ′.

5.2 Brouwerian semilattices

In this section, we spell out the algebraic characterization of the [∧,→]-
fragment of IPC. The Lindenbaum algebra of the [∧,→]-fragment of IPC
is the free Brouwerian semilattice on ω many generators (i.e. FBS(ω)). For
more details on Brouwerian semilattices, one may refer to [20], [23] and [24].

Definition 5.2.1. A Brouwerian semilattice (also known as Implicative semi-
lattice) A = 〈A,∧,→, 1〉 is a meet-semilattice 〈A,∧, 1〉 with a binary operator
→, defined as:

c ≤ a → b iff a ∧ c ≤ b.

The following result was first observed by Monteiro [22].

Theorem 5.2.2. The class of all Brouwerian semilattices forms a variety,
denoted by BS.

It follows from Theorem 5.1.6 that BS is locally finite.

Definition 5.2.3. An algebra is locally finite if every finitely generated sub-
algebra is finite.

Theorem 5.2.4. BS is locally finite.

Proof. Follows from Lemma 5.1.6.

For a detailed proof of the following lemma, see e.g. Theorem 3.2 in [23].

Lemma 5.2.5. Let A ∈ BS. Then the filters of A are in 1-1 correspondence
with congruences of A.
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Proof. (sketch) Let F be a filter of A. It can be showed that the relation θF

defined as follows is a congruence of A:

aθF b iff (a → b) ∧ (b → a) ∈ F.

Let θ ∈ ConA. Then the natural map f : A → A/θ, defined by f(a) =
a/θ, is a surjective homomorphism. It is easy to check that Fθ = f−1(1/θ)
is a filter of A.

Remark 5.2.6. We have that FθF
= F and θFθ

= θ.

Now we prove the congruence extension property of BS.

Theorem 5.2.7. BS has the congruence extension property.

Proof. Let A,B ∈ BS and B is a subalgebra of A. For every θ ∈ ConB,
the Fθ defined in Lemma 5.2.5 is a filter of B. Let F ′ be the filter of A

generated by Fθ. The θF ′ defined in Lemma 5.2.5 is a congruence of A.
Clearly, Fθ = F ′∩B. It then follows from Remark 5.2.6 that θ = θF ′∩B2.

Corollary 5.2.8. For any A ∈ BS, HS(A) = SH(A).

Proof. By Theorem 2.7.7.

It is worthwhile to point out that Brouwerian semilattices turn out to
coincide with subalgebras of [∧,→, 1]-reducts of Heyting algebras. Let H[∧,→]

be the operation of taking Heyting homomorphisms that preserve ∧ and →
only. Let S[∧,→] be the operation of taking subalgebras with respect to ∧ and
→ only. Then Corollary 5.2.8 implies that for any Heyting algebra A ∈ HA,
H[∧,→]S[∧,→](A) = S[∧,→]H[∧,→](A).

One may wonder whether the operations H[∧,→] and S on Heyting algebras
also commute. We next give a counterexample to it. First, observe that the
operation H[∧,→] corresponds to taking subframes of intuitionistic frames.
The next example shows that there exists a Kripke frame F which is a p-
morphic image of a subframe of a Kripke frame G, such that F is not a
subframe of any p-morphic image of G. Dually, this means that not for
every Heyting algebra A, H[∧,→]S(A) ⊆ SH[∧,→](A).

Example 5.2.9. In Figure 5.3, the frame F2 is a p-morphic image of a
subframe of the frame F0. However, F2 is not a subframe of a p-morphic
image of F0. This is because the only p-morphic image one can get from F0
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(the only way is to apply β-reductions) is F0 itself, or a frame obtained by
identifying two or three of the end points. However, F2 is not a subframe of
any of these frames.

Figure 5.3: Example 5.2.9

subframe β − reduction

F0 F1 F2

• Void dots in F0 stand for the points that are taken out in F1.

• Void dots in F1 stand for the points that are identified by the β-

reduction.

• The void dot in F2 stands for the point obtained by identifying the

two void dots in F1 by the β-reduction.
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Chapter 6

NNIL-formulas

In this chapter, we discuss properties of NNIL-formulas. NNIL-formulas were
studied by Visser, de Jongh, van Benthem and Renardel de Lavalette in [25].
They are formulas that have no nesting of implications to the left. Like
the set of [∧,→]-formulas, the set of NNIL-formulas is (modulo provable
equivalence) finite. This was sketched in [25]. In Section 6.1, we give a
detailed proof of this fact by introducing the normal form of NNIL-formulas.
In Section 6.2, we introduce the notion of subsimulation of [25], and show that
NNIL-formulas are preserved under subsimulations, and therefore preserved
under taking submodels. As a consequence, NNIL-formulas are preserved
under subframes as well. As it is mentioned in Chapter 4, it then follows
from [3] that NNIL-formulas and [∧,→]-formulas define the same subframe
logics. In Section 6.3, we give an algorithm to translate every NNIL-formula
to a [∧,→]-formula in such a way that they are equivalent on frames. This
indicates the fact that every subframe logic defined by NNIL-formulas is
equivalent to a logic defined by [∧,→]–formulas.

It follows from [25] that if two models totally subsimulate each other,
then they satisfy the same NNIL-formulas. In Section 6.4, we develop this
idea and give a construction of suitable representative models of equivalence
classes of rooted generated models of U(n) induced by two-way subsimula-
tions. In section 6.5, we give n-universal models U(n)NNIL of NNIL-formulas
with n variables. The n-universal models of NNIL-formulas come from the
n-universal model of IPC. This enables us to prove properties of NNIL-
formulas in an easy way. In particular, the theorem prove in [25] that formu-
las preserved under subsimulations are equivalent to NNIL-formulas becomes
a natural consequence of the properties of U(n)NNIL of NNIL-formulas.
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For comparison, note that each point in the n-universal model U(n) of
IPC can be viewed also as the generated submodel of U(n) generated by that
point, and the relation on points of U(n) can be viewed also as the generated
submodel ordering. The essential difference between U(n)NNIL and U(n) is
that in U(n)NNIL, the generated submodel relation no longer plays a central
role; instead, we consider the subsimulation relation. Each point in U(n)NNIL

is labeled by a representative model of a equivalence class of models induced
by two-way subsimulations. The relation on points in U(n)NNIL is the sub-
simulation ordering on the representative models. The generated submodel
generated by a point in U(n)NNIL is generally not isomorphic to the repre-
sentative model of this point, however, these two models are equivalent up
to the equivalence relation induced by two-way subsimulations. The author
realizes and apologizes that the method to construct the model U(n)NNIL

and prove its properties is very cumbersome. The author hope to obtain
simpler proofs in the future.

The representative models of points in U(n)NNIL may reasonably give
more results in the study of NNIL-formulas and subframe logics. In section
6.6, we discuss the connection of the model U(2)NNIL and subframe logics de-
fined by two-variable NNIL-formulas. We obtain characterization properties
of frames that define subframe logics by using the structure of representative
models in U(2)NNIL. This suggests a method for future work on subframe
logics.

6.1 NNIL-formulas

In this section, we give a formal definition of NNIL-formulas and prove that
there are only (module provable equivalence) finitely many NNIL-formulas.

Definition 6.1.1. The smallest class satisfying the following is called the
class of NNIL-formulas:

• p ∈ NNIL, for any p ∈ Prop.

• ⊥ ∈ NNIL.

• If ϕ, ψ ∈ NNIL, then ϕ ∧ ψ, ϕ ∨ ψ ∈ NNIL.

• If ψ ∈ NNIL, ϕ does not contain any implication or negation, then
ϕ → ψ ∈ NNIL.
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For any NNIL-formula, conjunctions and disjunctions in front of implica-
tions can be removed using:

• ` ((ϕ ∧ ψ) → χ) ↔ (ϕ → (ψ → χ)),

• ` ((ϕ ∨ ψ) → χ) ↔ ((ϕ → χ) ∧ (ψ → χ)).

So, as it is mentioned in [25] that NNIL formulas can be translated mod-
ulo provable equivalence to NNIL0 formulas which have only propositional
variables to the left of implications.

Definition 6.1.2. NNIL0 is the smallest class of formulas satisfying:

• p ∈ NNIL0, for any p ∈ Prop.

• ⊥ ∈ NNIL0.

• If ϕ, ψ ∈ NNIL0, then ϕ ∧ ψ, ϕ ∨ ψ ∈ NNIL0.

• if ϕ ∈ NNIL0, then p → ϕ ∈ NNIL0 for any p ∈ Prop.

We write NNIL(~p) to indicate all NNIL-formulas with variables among
~p = {p1, · · · , pn} and always assume the length |~p| = n. In view of the
definition of NNIL0, we can define a normal form for NNIL-formulas.

Definition 6.1.3. A NNIL(~p)-formula is in normal form (NF) if it is a con-
junction of disjunction of atoms and formulas of the form p → ψ, where
ψ ∈ NNIL0(~p \ {p}) and ψ contains no conjunction to the right of implica-
tions.

Proposition 6.1.4. Every NNIL(~p)-formula ϕ is equivalent to some formula
ϕ′ in NF.

Proof. We start from the NNIL0(~p)-formulas and prove the proposition by
induction on the complexity of ϕ ∈ NNIL0(~p).

If ϕ = p or ⊥ or >, then the proposition holds trivially.
If ϕ = ψ ∧ χ, then by the induction hypothesis, ψ and χ are in NF, thus

ϕ is in NF.
If ϕ = ψ ∨ χ, then by the induction hypothesis, ψ =

∧n
i=1(

∨m
j=1 αi,j) and

χ =
∧k

i=1(
∨l

j=1 βi,j) are in NF. By using the distributive law

` ((ϕ ∧ ψ) ∨ χ) ↔ ((ϕ ∨ χ) ∧ (ψ ∨ χ)),
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ϕ can be rewritten as χ =
∧s

i=1(
∨t

j=1 γi,j) for some γi,j’s.
If ϕ = p → ψ, then by the induction hypothesis, ψ =

∧n
i=1(

∨m
j=1 χi,j) is

in NF. Next, note that p → ∧n
i=1(

∨m
j=1 χi,j) is equivalent modulo provable

equivalence to p → ∧n
i=1

∨m
j=1(χi,j[p/>]). Lastly, by using inductively

` (α → β ∧ γ) ↔ (α → β) ∧ (α → γ),

ϕ can be rewritten as
∧r

i=1(p →
∨t

j=1(χi,j[p/>])), which is in NF.

For every NNIL-formula we define the complexity σ of right-nesting of →
as follows:

• σ(p) := σ(⊥) := σ(>) := 0

• σ(α ∧ β) := σ(α ∨ β) := max(σ(α), σ(β))

• σ(α → β) := max(σ(α), σ(β) + 1)

Proposition 6.1.5. For every NNIL(~p)-formula ϕ in NF,

σ(ϕ) ≤ |~p|.

Proof. We prove the proposition by induction on |~p|. Note that Boolean
operators do not increase right-nesting complexity. We only show that for
each formula p → ψ in NF, we have

σ(p → ψ) ≤ |~p|.

If |~p| = 1, then the only NNIL0(~p) formula that is in NF is p → ⊥.
Clearly σ(p → ⊥) = 1.

If |~p| = n + 1, then for each formula p → ψ in NF, by the induction
hypothesis, σ(ψ) ≤ n, so σ(p → ψ) ≤ n + 1.

The basic idea of a proof of the following proposition was sketched in the
proof of Theorem 2.2 in [25]. Here we give a detailed calculation.

Proposition 6.1.6. There are only finitely many NNIL(~p)-formulas in NF
that are of the form p → ψ.
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Proof. Let |~p| = n. We show by induction on σ(p → ψ).
If σ(p → ψ) = 1, then the set of formulas in NF of the form

p → ⊥
has the cardinality n. The set of formulas in NF of the form

p → q1 ∨ q2 ∨ · · · ∨ qk,

where k ≤ n− 1, has the cardinality n · Ck
n−1. Thus, the cardinality sum(1)

of the set of formulas in NF of the form p → ψ with σ(p → ψ) = 1 is

sum(1) = n +
∑

k≤n−1

n · Ck
n−1.

Suppose σ(p → ψ) = m + 1. Then by Proposition 6.1.5, m + 1 ≤ n. Let

sum(≤ m) =
m∑

i=1

sum(i).

All formulas p → ψ in NF with σ(p → ψ) = m + 1 are of the form

p → χ0 ∨
k∨

i=1

χi,

where σ(χ0) = m and 0 ≤ k ≤ sum(≤ m)− 1. Thus

sum(m + 1) = n · sum(m) · (
sum(≤m)−1∑

i=1

Ci
sum(≤m)−1 + 1).

Hence, there are in total
n∑

m=1

sum(m) many NNIL(~p)-formulas in NF that

are of the form p → ψ.

Corollary 6.1.7. There are (modulo provable equivalence) only finitely many
NNIL(~p)-formulas.

Proof. Since by using ∧ and ∨, only finitely many new non-equivalent for-
mulas can be produced, by Proposition 6.1.6, there are (modulo provable
equivalence) only finitely many NNIL(~p)-formulas that are in NF. So by
Proposition 6.1.4, there are (modulo provable equivalence) only finitely many
NNIL(~p)-formulas.

Consider the equivalence relation ≡ on NNIL(~p). By Corollary 6.1.7, the
set NNIL(~p)≡ = {[ϕ] : ϕ ∈ NNIL(~p)} is finite.

71



6.2 NNIL-formulas and subsimulations

This section is based on [25]. By the standard translation, we can translate
NNIL-formulas to first-order formulas. These first-order formulas are Π1-
formulas. We know that Π1-formulas are preserved in substructures (see
e.g. [17]). Thus, NNIL-formulas are preserved under taking submodels.
In this section, we introduce subsimulations defined in [25] and spell out
the result that NNIL-formulas are exactly those formulas preserved under
subsimulations.

Definition 6.2.1. Let M = 〈W,R, V 〉 and N = 〈W ′, R′, V ′〉 be n-models. A
relation Z on W ′×W is a subsimulation if it satisfies the following conditions.

(S1) If vZw, then N, v |= pi iff M, w |= pi, for each 1 ≤ i ≤ n.

(S2) If vZw and vR′v′, then there exists w′ ∈ W such that v′Zw′ and wRw′.

Z is total if for any v ∈ W ′, there exists w ∈ W such that vZw. We
denote N ¹ M and say that “M subsimulates N”, if there exists a total
subsimulation Z of N in M.

Remark 6.2.2. If N is a submodel of M, then the inclusion map is a sub-
simulation.

Remark 6.2.3. If f is a subreduction between two models (a subreduction
preserving propositional variables), then f−1 is a subsimulation.

The proof of the next theorem is adapted from Theorem 6.4 in [25].

Theorem 6.2.4. Let M = 〈W,R, V 〉 and N = 〈W ′, R′, V ′〉 be n-models, and
Z : N ¹ M. If vZw, then for any NNIL(~p)-formula ϕ, M, w |= ϕ implies
that N, v |= ϕ.

Proof. The theorem is proved by induction on the complexity of a NNIL0(~p)
formula ϕ. The only non-trivial case is that ϕ = p → ψ for some ψ ∈
NNIL0(~p). Suppose vZw and N, v 6|= p → ψ. Then there exists v′ ∈ W ′

such that vR′v,
N, v′ |= p and N, v′ 6|= ψ.

By (S2), we have that there exists w′ ∈ W such that wRw′ and v′Zw′. Thus,
by (S1), M, w′ |= p. By the induction hypothesis, M, w′ 6|= ψ. Since wRw′,
we conclude that M, w 6|= p → ψ.
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Corollary 6.2.5. If N ¹ M, then ThNNIL(~p)(M) ⊆ ThNNIL(~p)(N). In
particular, NNIL formulas are preserved under taking submodels.

The next theorem is proved in [25]. We will prove it at the end of this
chapter in Theorem 6.5.14 as a corollary of the properties of the n-universal
of NNIL(~p) formulas.

Theorem 6.2.6. If ϕ satisfies that for any models M and N with N ¹ M,

M |= ϕ ⇒ N |= ϕ,

then ϕ is provably equivalent to a formula ϕ′ ∈ NNIL(~p).

Theorem 6.2.7. The following are equivalent:

(1) ϕ is provably equivalent to a NNIL-formula;

(2) if N ¹ M, then M |= ϕ implies N |= ϕ;

6.3 NNIL-formulas and [∧,→]-formulas

In this section, we give an algorithm to translate every NNIL-formula to
a [∧,→]-formula in such a way that they are equivalent on frames. This
shows that every subframe logic defined by NNIL-formulas is equivalent to a
subframe logic defined by [∧,→]-formulas.

Lemma 6.3.1. For any rooted Kripke model M = 〈W,R, V 〉, any formulas
ϕ, ψ,

M |= ϕ ∨ ψ ⇐⇒ M |= ϕ or M |= ψ

Proof. “⇐=” holds trivially. For “=⇒”, suppose M |= ϕ ∨ ψ. Then, for the
root r ∈ W , we have r |= ϕ∨ψ, which means either r |= ϕ or r |= ψ. It then
follows from the persistency of V that either for any w ∈ W , w |= ϕ, or for
any w ∈ W , w |= ψ. That is either M |= ϕ or M |= ψ.

By substituting ⊥ by a new propositional variable, we can turn every
NNIL-formula into a negation-free NNIL-formula in such a way that they
are equivalent on frames.

Lemma 6.3.2. For any ϕ ∈ NNIL, there exists a negation-free formula
ϕ0 ∈ NNIL such that for any general frame F,

F |= ϕ ⇐⇒ F |= ϕ0. (6.1)
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Proof. Since NNIL-formulas can be translated into NNIL0-formulas, it suf-
fices to prove the lemma for NNIL0 formulas. For any ϕ ∈ NNIL0, let
ϕ0 = ϕ[⊥/q], where q is a new variable. Note that ϕ0 is still in NNIL0.

First, by a similar argument to the proof of Lemma 3.4.3, we can prove
that for any ϕ ∈ NNIL, any F = 〈W,R,P〉 and any w ∈ W ,

〈F, V 〉, w 6|= ϕ ⇐⇒ 〈F, V ′〉, w 6|= ϕ0, (6.2)

where

V ′(p) =

{
V (p), p 6= q;
∅, p = q.

(Note that V ′(q) = ∅ ∈ P .)
Next, we show by induction on ϕ ∈ NNIL that for any F = 〈W,R,P〉

and any w ∈ W ,

〈F, V 〉, w 6|= ϕ0 =⇒ 〈F, V 〉, w 6|= ϕ, (6.3)

The cases that ϕ = p or ⊥ or ψ ∧ χ or ψ ∨ χ are trivial.
ϕ = p → ψ. Suppose 〈F, V 〉, w 6|= p → ψ0. Then there exists v ∈ R(w)

such that 〈F, V 〉, v |= p and 〈F, V 〉, v 6|= ψ0. By the induction hypothesis, we
have that 〈F, V 〉, v 6|= ψ. Thus 〈F, V 〉, w 6|= p → ψ.

Lastly, observe that the “⇐=” of (6.1) follows from (6.2), and the “=⇒”
of (6.1) follows from (6.3). This finishes the proof.

Theorem 6.3.3. For any ϕ ∈ NNIL, there exists a formula ϕ′ ∈ [∧,→]
such that for any general frame F,

F |= ϕ ⇐⇒ F |= ϕ′. (6.4)

Proof. First, by Lemma 6.3.2, for any NNIL0-formula ϕ, there exists a negation-
free formula ϕ0 which is also in NNIL0 such that (6.1) holds.

Next, for any ϕ0 ∈ NNIL0, we define a formula ϕ′ ∈ [∧,→] as follows:

• If ϕ0 = p, let ϕ′ = ϕ0.

• If ϕ0 = ψ ∨ χ, let ϕ′ = (ψ′ → q) ∧ (χ′ → q) → q, where q does not
occur in ψ′ or χ′.

• If ϕ0 = ψ ∧ χ, let ϕ′ = ψ′ ∧ χ′, where we do not introduce the same
new variable for ψ′ and χ′.
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• If ϕ0 = p → ψ, let ϕ′ = p → ψ′, where we do not introduce p as a new
variable for ψ′.

We show “=⇒” of (6.4) by showing by induction a stronger result that
for any model M = 〈W,R, V 〉,

M |= ϕ0 =⇒ M |= ϕ′. (6.5)

The cases that ϕ0 = p or ψ ∧ χ are trivial.
If ϕ0 = p → ψ, suppose M |= p → ψ. Then for each w ∈ W such

that M, w |= p, we have that M, w |= ψ. It follows that Mw |= ψ, which
by the induction hypothesis implies that Mw |= ψ′. Thus M, w |= ψ′ and
M |= p → ψ′.

If ϕ0 = ψ ∨ χ, suppose M |= ψ ∨ χ. Note that M = MX for some set
of points X ⊆ W . Then we have Mx |= ψ ∨ χ for each x ∈ X. By Lemma
6.3.1, we have Mx |= ψ or Mx |= χ. Without loss of generality, we may
assume that Mx |= ψ. Then, by the induction hypothesis, Mx |= ψ′. For
any w ∈ R(x) with

Mx, w |= (ψ′ → q) ∧ (χ′ → q),

we have that Mx, w |= q, which implies Mx, w |= (ψ′ → q) ∧ (χ′ → q) → q.
Thus, M, w |= (ψ′ → q) ∧ (χ′ → q) → q.

To show the direction “⇐=”, we first define a formula ϕ′′ for every formula
ϕ0 ∈ NNIL0 as follows:

• If ϕ0 = p, let ϕ′′ = ϕ0.

• If ϕ0 = ψ ∨ χ, let ϕ′′ = (ψ′′ → ψ′′ ∨ χ′′) ∧ (χ′′ → ψ′′ ∨ χ′′) → ψ′′ ∨ χ′′.

• If ϕ0 = ψ ∧ χ, let ϕ′′ = ψ′′ ∧ χ′′.

• If ϕ0 = p → ψ, let ϕ′′ = p → ψ′′.

Next, we show by induction on ϕ0 that for any model M,

M |= ϕ′′ =⇒ M |= ϕ0. (6.6)

By a similar argument to the one used in proving (6.5), we can prove
(6.6) for the cases that ϕ0 = p or ψ ∧ χ or p → ψ.

If ϕ0 = ψ∨χ, suppose M |= (ψ′′ → ψ′′∨χ′′)∧ (χ′′ → ψ′′∨χ′′) → ψ′′∨χ′′.
Since `IPC (ψ′′ → ψ′′∨χ′′)∧(χ′′ → ψ′′∨χ′′), we must have that M |= ψ′′∨χ′′.
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Figure 6.1: Example 6.3.5

p, q, r p, q, r

p

p, q, r p, q, r

(p→ q)→ r

submodel

M N

Propositional variables that are shown at a point point are true

at the point. Those that are not shown are false at the point.

Note that M = MX for some set of points X ⊆ W . Thus, for each x ∈ X,
Mx |= ψ′′ ∨ χ′′, which by lemma 6.3.1 implies Mx |= ψ′′ or Mx |= χ′′. Then
by the induction hypothesis, Mx |= ψ or Mx |= χ, so by lemma 6.3.1 again,
Mx |= ψ ∨ χ. Thus M |= ψ ∨ χ.

Now, suppose F |= ϕ′ for any general frame F and ϕ0 ∈ NNIL0. Note
that ϕ′′ is a formula obtained from ϕ′ by replacing all occurrences of some
propositional variables with some formulas. Thus, we have F |= ϕ′′. Then,
by (6.6), F |= ϕ0, which by (6.1) means that F |= ϕ.

Corollary 6.3.4. NNIL-formulas are preserved under subreductions.

Proof. Let f be a subreduction from F onto G and ϕ ∈ NNIL. Suppose
F |= ϕ. Let ϕ′ ∈ [∧,→] be the formula in Theorem 6.3.3, then F |= ϕ′, which
by Theorem 4.3.1 implies that G |= ϕ′. By Theorem 6.3.3 again, we obtain
G |= ϕ.

We finish this section by giving an example showing that subsimulations
do not preserve [∧,→]-formulas. Thus, it follows from Theorem 6.2.7 that
[∧,→]-formulas are not provably equivalent to NNIL-formulas.

Example 6.3.5. The formula (p → q) → r is in [∧,→], but not in NNIL.
Consider the two models shown in Figure 6.1. The model N is a submodel
of the model M . We have M |= (p → q) → r, however N 6|= (p → q) → r.
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Figure 6.2: Un
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6.4 Equivalence of models under subsimula-

tions

In this section, we discuss equivalence relations on models under subsimula-
tions.

For every n ∈ ω, there exists a model Un subsimulating every n-model.
U1, U2 and U3 are shown in Figure 6.2. More generally, Un is defined as
follows:

Definition 6.4.1. Define Un = 〈W,R, V 〉 by taking

W = Cn, R =≤ and colV (w) = w.

Now, we show that Un subsimulates every n-model.

Theorem 6.4.2. Let M = 〈W ′, R′, V ′〉 be a n-model, and Un = 〈W,R, V 〉.
There exists a total subsimulation Z : M ¹ Un. In particular, U(n) ¹ Un.

Proof. Define a relation Z on W ′ ×W by

Z =
⋃

s∈Cn

Zs,

where for every s ∈ Cn,

Zs = {(w′, w) : w′ ∈ W ′, w ∈ W, colV ′(w
′) = colV (w) = s}.

Clearly, Z is total. We show that Z is a subsimulation. Clearly, (S1) is
satisfied. For (S2), for any w′, v′ ∈ W ′ and w ∈ W such that w′Zw and
w′Rv′, observe that

colV ′(v
′) ≥ colV ′(w

′).
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By the definition of Un, for the color s = colV ′(v
′) ≥ colV ′(w

′) = colV (w)
there exists a point v ∈ W such that wRv and colV (v) = s. Thus, by the
definition of Z, v′Zv.

Theorem 6.4.3. Let M0 = 〈W0, R0, V0〉, M1 = 〈W1, R1, V1〉 and M2 =
〈W2, R2, V2〉 be n-models. Suppose Z0 : M0 ¹ M1 and Z1 : M1 ¹ M2. Then
Z1 ◦ Z0 : M0 ¹ M2.

Proof. Clearly, Z1 ◦ Z0 is total. (S1) is trivially satisfied. For (S2), suppose
w0Z1 ◦ Z0w2 and w0R0v0. Then there exists w1 ∈ W1 such that w0Z0w1 and
w1Z1w2. By (S2) of Z0, there exists v1 ∈ W1 such that v0Z0v1 and w1R1v1.
Next, by (S2) of Z1, there exists v2 ∈ W2 such that v1Z1v2 and w2R1v2. Thus
v0Z1 ◦ Z0v2.

Corollary 6.4.4. The relation ¹ is transitive.

As in [25], we define a relation ≡ between two models by

M ≡ N iff M ¹ N and N ¹ M.

Clearly, ≡ is reflexive and symmetric. By Corollary 6.4.4, ≡ is also transitive.
So ≡ is an equivalence relation.

By the definition of Un, it is easy to see that Un is a generated submodel
of U(n), thus Un ¹ U(n). So together with Theorem 6.4.2, we obtain that
Un ≡ U(n).

Theorem 6.4.5. If M ≡ N, then M and N satisfy the same NNIL(~p)-
formulas.

Proof. By Corollary 6.2.5.

Let Sub(U(n)) be the set of all finite rooted generated submodels of U(n).
Consider the set

Sub(U(n))≡ = {[M] : M ∈ Sub(U(n))}.

For each equivalence class [M] ∈ Sub(M)≡, we want to choose a “small”
enough model as its representative. The model Un is an example of such a
“small” model. We next give an algorithm to construct the “small” repre-
sentative M0 of each [M] ∈ Sub(M)≡. First, we need to introduce some
notations.
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For any two models M = 〈W,R, V 〉 and N = 〈W ′, R′, V ′〉. Put

M′ = 〈W,R, V ¹ P 〉,

N′ = 〈W ′, R′, V ′ ¹ P 〉,
where P is a set of propositional variables and |P | = m.

• If M′ ∼= N′, then we say that M and N are m-isomorphic, in symbols
M ∼=m N.

• If M′ ≡ N′, then we denote M ≡m N.

Note that when we use the symbols ∼=m and ≡m, the elements of the set P
will always be clear from the context.

For each equivalence class [N] in Sub(U(n))≡, we are going to construct
the representative model M0 inductively in four steps. The four steps involve
four kinds of reductions and the technique of unraveling. Take a model M

in [N]: by unraveling and applying each kind of reduction, we reduce M to
a smaller model in such a way that the resulting model is still in [M].

We now start with the first step. The first step involves the first kind of
reduction. By transforming any finite rooted n-model M to M

s
, we identify

all points of M with the same color s as the root.
To be precise, for every finite rooted n-model M = 〈W,R, V 〉 with the

root r and colV (r) = s, we define a model M
s
= 〈W ′, R′, V ′〉 (see Figure 6.3)

by taking
W ′ = W \ {w ∈ W : colV (w) = s} ∪ {r′},

R′ = R ¹ W ′ ∪ {(r′, x) : (w, x) ∈ R and colV (w) = s},
colV ′ = colV ¹ W ′ ∪ {(r′, s)}.

Lemma 6.4.6. Let M and M
s

be models described above. Then M ≡ M
s
.

Proof. Note that from the definition of M
s
, we can easily see that there exists

an isomorphism f : W \ {w ∈ W : colV (w) = s} → W ′ \ {r′}. To show that
M ¹ M

s
, define a relation Z on W ×W ′ by

Z = {(w, r′) : colV (w) = s} ∪ {(v, f(v)) : colV (v) 6= s}.

Clearly, (S1) holds. For (S2), suppose wZw′ and wRv for w, v ∈ W and
w′ ∈ W ′. There are two cases. Case 1: colV (w) = s. Then by the definition
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Figure 6.3: M
s

s

r

r
′

M M
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of Z, w′ = r′. If colV (v) = s, then we have that for r′ ∈ W ′, vZr′ and r′R′r′.
If colV (v) 6= s, then we have that for f(v) ∈ W ′, vZf(v) and r′R′f(v).

Case 2: colV (w) 6= s. Then by the definition of Z, w′ = f(w). So we have
that for f(v) ∈ W ′, vZf(v) and f(w)R′f(v).

To show that M
s ¹ M, define a relation Z on W ′ ×W by

Z = {(r′, r)} ∪ {(f(w), w) : colV (w) 6= s}.

It is easy to see that Z is total and both (S1) and (S2) hold.

In the second step, we unravel the n-model M obtained from the first
step to a tree-like n-model N. It is easy to prove that M ≡ N.

Let M be a finite rooted tree-like model with the root r and r ≺ Sr ob-
tained from the second step. In the third step, the second kind of reduction
replaces each generated submodel Mw (w ∈ Sr) of M by a n − |prop(w)|-
equivalent representative n − |prop(w)|-model. The resulting model is de-

noted by
−→
Mw.

To be precise, let M = 〈W,R, V 〉 be a finite rooted tree-like n-model and
w ∈ W be a point with |prop(w)| = k. Then there exists an n − k-model
N such that Mw

∼=n−k N via an isomorphism f . Let N0 = 〈W0, R0, V0〉 be
the representative n − k model in [N]. It is not hard to see by induction
that there exists a surjective functional subsimulation g from N onto N0.
Note that since M is a tree-like model, for any v ∈ Sr such that v 6= w,

R(w) ∩R(v) = ∅. Now, define an n-model
−→
Mw = 〈W ′, R′, V ′〉 by taking

W ′ = (W \R(w)) ∪W0,

R′ = R ¹ W ′ ∪R0 ∪ {(r, x) : x ∈ W0},
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colV ′(x) =

{
colV (x), x 6∈ W0;
colV (f−1(y)), where y ∈ g−1(x) x ∈ W0.

In the above definition of colV ′ , note that for all x ∈ W0, for any y, z ∈ g−1(x),
colV (f−1(y)) = colV (f−1(z)), thus this definition is sound.

Lemma 6.4.7. Let M and
−→
Mw be the models defined above. Then M ≡ −→

Mw.

Proof. Note that from the definition of
−→
Mw, we can easily see that there

exists an isomorphisms h : W \ R(w) → W ′ \W0. To show that M ¹ −→
Mw,

define a relation Z on W ×W ′ by

Z = {(x, h(x) ) : x 6∈ R(w)} ∪ {(y, g(f(y)) ) : y ∈ R(w)}.
For (S1), clearly for x 6∈ R(w), colV (x) = colV ′(h(x)) since h is an isomor-
phism. If x ∈ R(w), by the definition of colV ′ , we have that

colV ′(g(f(x))) = colV (f−1(f(x))) = colV (x).

For (S2), suppose xZx′ and xRy for x, y ∈ W and x′ ∈ W ′. There are
two cases. Case 1: y 6∈ R(w). Then x 6∈ R(w) and x′ = h(x). So there exists
h(y) ∈ W ′ such that h(x)R′h(y) and yZh(y).

Case 2: y ∈ R(w). Then either x = r and x′ = h(r), or x ∈ R(w)
and x′ = g(f(x)). So in both cases, by the definition of R′ and Z, for
g(f(y)) ∈ W ′, we have that x′R′g(f(y)) and yZg(f(y)).

To show that
−→
Mw ¹ M, consider the relation Z−1 on W ′ ×W . It is easy

to see that Z−1 is a total subsimulation.

In the fourth step, for the finite rooted tree-like model M obtained from
the third step, the third kind of reduction deletes every generated submodel of
some point v ∈ Sr that can be subsimulated by another generated submodel
of some point w ∈ Sr.

To be precise, let M = 〈W,R, V 〉 be a finite rooted tree-like model with
the root r. Suppose w, v ∈ Sr, and Mw and Mv are two generated submodels
of M with a subsimulation Z0 such that Z0 : Mv ¹ Mw. Note that by the
construction of the third step, Mw and Mv can both be viewed as n − k-
models for some k ∈ ω. It can be proved by induction that Z0 is total and
functional. Note also that since M is a tree-like model, R(v) ∩ R(w) = ∅.
Define a model M̃w,v = 〈W ′, R′, V ′〉 (see Figure 6.4.8) by taking

W ′ = W \R(v), R′ = R ¹ W ′, colV ′ = colV ¹ W ′.
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Figure 6.4: M̃w,v
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Lemma 6.4.8. Let M and M̃w,v be models defined above. Then M ≡ M̃w,v.

Proof. Note that from the definition of M̃w,v, we can easily see that there
exists an isomorphism f : W \ R(v) → W ′. To show that M ¹ M̃w,v, define
a relation Z on W ×W ′ by

Z ={(x, f(x) ) : x 6∈ R(v)}∪
{(y, f(Z0(y)) ) : y ∈ R(v)}.

Clearly, (S1) is satisfied. For (S2), suppose xZx′ and xRy for x, y ∈ W and
x′ ∈ W ′. There are two cases. Case 1: y 6∈ R(v). Then there exists y′ = f(y)
in W ′ such that x′R′y′ and yZy′.

Case 2: y ∈ R(v). Then either x = r and x′ = f(r), or x ∈ R(v) and
x′ = f(Z0(x)). So by the definition of R′ and Z, for f(Z0(y)) ∈ W ′, in both
cases we have that x′R′f(Z0(y)) and yZf(Z0(y)).

To show that M̃w,v ¹ M, clearly, the isomorphism f−1 : W ′ → W \R(v)

is a total subsimulation from M̃w,v to M.

In the last step, for the finite rooted tree-like model M obtained from the
fourth step, the fourth kind of reduction identifies isomorphic subtrees.
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To be precise, let M = 〈W,R, V 〉 be a finite rooted tree-like model.
Suppose w, v ∈ W , and Mw and Mv are two isomorphic subtrees. Define a
model M̂w,v = 〈W ′, R′, V ′〉 by taking

W ′ = W \R(v), R′ = R ¹ W ′ ∪ {(x,w) : xRv}
colV ′ = colV ¹ W ′.

Lemma 6.4.9. Let M and M̂w,v be models defined above. Then M ≡ M̃w,v.

Proof. Note that from the definition of M̂w,v, we can easily see that there
exist isomorphisms f : W \ R(v) → W ′ and g : R(v) → R(w). Define a
function h : W → W ′ by

h(x) =

{
f(x), x 6∈ R(v);
f(g(x)), x ∈ R(v).

It is easy to show that h is a surjective p-morphism from M onto M̂w,v.
Then by Remark 6.2.3, h−1 is a surjective subsimulation of M̂w,v in M, so
M̂w,v ¹ M. On the other hand, h clearly satisfies (S1). For (S2), suppose
xRy. It is sufficient to show that h(x)R′h(y).

Case 1: y 6∈ R(v). Then x 6∈ R(v) and by the definitions of h, h(x) = f(x)
and h(y) = f(y). Since f is an isomorphism, we have that f(x)R′f(y).

Case 2: x, y ∈ R(v). Then by the definitions of h, h(x) = f(g(x)) and
h(y) = f(g(y)). Since f◦g is an isomorphism, we have that f(g(x))R′f(g(y)).

Case 3: x 6∈ R(v) and y ∈ R(v). Then we must have that xRv and
h(x) = f(x), so by the definition of R′, f(x)R′f(w), i.e. f(x)R′f(g(v)). By
the definition of h, h(y) = f(g(y)). Since f ◦ g is an isomorphism, we have
that f(g(v))R′f(g(y)), so by transitivity f(x)R′f(g(y)).

Hence, h is a surjective subsimulation of M in M̂w,v, i.e. M ¹ M̂w,v.

Now, we describe the construction of M0 for each finite rooted generated
n-submodel M of U(n) with the root r by induction on n precisely.

• For n = 1, if M |= p, then let M0 be the model M1
0 in Figure 6.5. If

M 6|= p, then let M0 be the model M2
0 in Figure 6.5. For all other finite

rooted 1-models M, let M0 be the model M0
0 in Figure 6.5.

• For n > 1, we construct M0 by following the following steps:

Step 1 Let s = col(r). Construct the model N1 = M
s
.
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Step 2 Unravel the model N1 to a tree-like model N2.

Step 3 For every w ∈ Sr such that |prop(w)| = k and (N2)w 6∼=n−k N0

for all representative k −m-model N0, construct the model N3 =−→
N2

w as described in Lemma 6.4.7.

Step 4 For every w, v ∈ Sr such that (N3)v ¹ (N3)w, construct the

model N4 = Ñ3

w,v
as described in Lemma 6.4.8.

Step 5 For every w, v ∈ N4 such that (N4)v
∼= (N4)w, construct the

model N5 = N̂4

w,v
as described in Lemma 6.4.9.

Denote the resulting model by M0. It is not hard to see by induction that
M0 is a finite rooted generated submodel of U(n). So indeed, M0 ∈ [M] for
all [M] ∈ Sub(U(n)). We will use M0 as representative of the equivalence
class [M].

Corollary 6.4.10. M ≡ M0.

Proof. By Lemma 6.4.6, 6.4.8 and 6.4.7.

Corollary 6.4.11. Let M0 be any representative n-model with the root r.
For any point w in M0, the generated submodel (M0)w is isomorphic to some
representative n-model N0 with N0 ¹ M0.

Proof. For any point w in M0 with |prop(w)| = k, by the above construction,
(M0)w is k-isomorphic to some representative k-model N′

0. This means that
the above 4 steps are not applicable on N′

0, hence not applicable on (M0)w.
So (M0)w is isomorphic to a representative n-model N0. Clearly, we have
that N0 ¹ M0.

The union of two total subsimulations is again a subsimulation. Thus
on a model M there exists a maximal subsimulation which is the union of
all subsimulations on M. It is worthwhile to point out that M0 is in fact
the image of a maximal subsimulation on M. For more details on maximal
subsimulations, one may refer to [25].

The above construction makes M0 a “smallest” model in the equivalence
class [M], in the sense that it is irreducible with respect to the steps in the
construction. The next lemma shows that such a “smallest” model is unique.

Lemma 6.4.12. For any generated submodels M and N of U(n) with M ≡
N, we have that M0

∼= N0.
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Proof. We show the lemma by induction on n.
n = 1. All representative 1-models are displayed in Figure 6.5. By the

construction, the lemma holds.
n > 1. Let M and N be two n-models with M ≡ N. Let r0 be the root

of M0 and r1 be the root of N0. Clearly

col(r0) = col(r1);

otherwise M0 6≡ N0.
Consider the sets Sr0 and Sr1 of immediate successors of r0 and r1, re-

spectively. For any w ∈ Sr0 , according to the construction of M0,

(M0)w
∼=m M′

0,

where M′
0 is some representative m-model and m = |prop(w)| < n.

Assume for any v ∈ Sr1 such that col(v) = col(w), (N0)v is not m-
isomorphic to M′

0. Since m < n, by the induction hypothesis we know that

(M0)w 6≡m (N0)v.

Thus for any v ∈ Sr1 such that col(v) = col(w), we have (M0)w 6≡ (N0)v.
Without loss of generality, we may assume that (M0)w 6¹ (N0)v.

Now suppose Z : M0 ¹ N0. Then there exists a total subsimulation
Z ′ ⊆ Z ¹ (M0)w of (M0)w in (N0)v for some v ∈ Sr1 , which leads to a
contradiction.

Thus we conclude that there exists some v ∈ Sr1 with col(v) = col(w)
such that

(N0)v
∼=m M′

0
∼=m (M0)w.

Then since prop(v) = prop(w), we have that (N0)v
∼= (M0)w. From the con-

struction of M0, we know that distinct points in Sr0 generates non-isomorphic
submodels. This also holds for N0. Since M and N are generated submodels
of U(n), Sr0 and Sr1 are finite. Thus, we conclude that |Sr0| ≤ |Sr1|.

By a similar argument, we can show that for any v ∈ Sr1 , there exists some
w ∈ Sr0 with col(w) = col(v) such that (N0)v

∼= (M0)w. And |Sr1| ≤ |Sr0|.
Thus, we have that |Sr0| = |Sr1| and so (M0)Sr0

∼= (N0)Sr1
. Furthermore,

since col(r0) = col(r1), we finally obtain M0
∼= N0.

85



6.5 n-universal models of NNIL(~p)-formulas

In this section, we define a model U(n)NNIL acting as an universal model for
NNIL(~p)-formulas. Each NNIL-formula defines a unique upset in U(n)NNIL.
We have proved in Section 6.1 that the set NNIL(~p)≡ is finite, from which
we know that U(n)NNIL is finite.

Definition 6.5.1. Define a model U(n)NNIL = 〈W,R, V 〉 by taking

• W = Sub(U(n))≡;

• [M]R[N] iff N′ ¹ M′ for some M′ ∈ [M] and N′ ∈ [N];

• col([M]) = col(t0), where t0 is the root of the representative model M0

of [M]. V = Vcol.

Remark 6.5.2. The R in Definition 6.5.1 is really a partial order.

Proof. Clearly, R is reflexive. For transitivity, suppose [M1]R[M2] and [M2]R[M3].
Then there exists M′

1 ∈ [M1], M′
2,M

′′
2 ∈ [M2] and M′

3 ∈ [M3] such that

M′
2 ¹ M′

1 and M′
3 ¹ M′′

2.

Since
M′′

2 ¹ M′
2,

by the transitivity of ¹, M′
3 ¹ M′

1, which means that [M1]R[M3].
For anti-symmetry, suppose [M1]R[M2] and [M2]R[M1]. Then there ex-

ists M′
1, M

′′
1 ∈ [M1] and M′

2,M
′′
2 ∈ [M2] such that

M′
2 ¹ M′

1 and M′′
1 ¹ M′′

2.

Note that we also have that

M′
1 ¹ M′′

1 and M′′
2 ¹ M′

2.

Thus by the transitivity of ¹, M′
1 ¹ M′

2 and so M′
1 ≡ M′

2, which means
that [M1] = [M2].

Remark 6.5.3. U(n)NNIL is rooted.

Proof. It follows from Theorem 6.4.2 that the model Un subsimulates all
finite rooted generated submodels of U(n). Thus, [Un]R[M] for all [M] ∈
Sub(U(n))≡. So [Un] is the root of U(n)NNIL.
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Figure 6.6: U(1)NNIL
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We will prove soon that each rooted upset in U ](n) is defined by a DP -
NNIL(~p)-formula.

Definition 6.5.4. A formula ϕ is called a formula with the disjunction prop-
erty (a DP -formula for short) iff for all formulas ψ, χ ∈FORM, the following
holds:

` ϕ → ψ ∨ χ ⇒ ` ϕ → ψ or ` ϕ → χ.

For more details on DP -formulas, one may refer to [4].
The model U(1)NNIL of NNIL(p)-formulas is shown in Figure 6.6 (see also

Figure 6.7). The representative models for all equivalence classes of models
of the points in U(1)NNIL have been added in Figure 6.7. The DP -NNIL(p)-
formulas are (the number before a formula stands for the number of the root
in Figure 6.6 of the upset defined by the formula):

1.p 2.¬p 3.p → p

The model U(2)NNIL of NNIL(p, q)-formulas is shown in Figure 6.8 (see
also Figure 6.9). The representative models for all equivalence classes of
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Figure 6.8: U(2)NNIL
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models of the points in U(2)NNIL have been added in Figure 6.9. The DP -
NNIL(p, q)-formulas are (the number before a formula stands for the number
of the root in Figure 6.8 of the upset defined by the formula):

1.p ∧ ¬q 2.p ∧ q
3.¬p ∧ ¬q 4.¬p ∧ q
5.p 6.¬q
7.(p → q) ∧ (q → p) 8.¬p
9.q 10.(q → p) ∧ (p → q ∨ ¬q)
11.¬(p ∧ q) 12.(p → q) ∧ (q → p ∨ ¬p)
13.q → p 14.(p → q ∨ ¬q) ∧ (q → p ∨ ¬p)
15.p → q 16.q → p ∨ ¬p
17.p → q ∨ ¬q 18.p → p

We now prove that U(n)NNIL is finite.

Theorem 6.5.5. For every n ∈ ω, Sub(U(n))≡ is finite.
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Figure 6.9: U(2)NNIL
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Proof. It suffices to show that for each n ∈ ω, there are only finitely many
rooted representative n-models M0 for equivalence classes in Sub(U(n))≡.
We show this by induction on n.

n = 1. It is easy to see that there are only 3 rooted representative 1-
models (see Figure 6.7).

Suppose the theorem hold for all Sub(U(n))≡ with n < k. Now consider
Sub(U(k))≡. For any [M] in Sub(U(k))≡, by the construction we know that
the representative k-model M0 is rooted with the root r and col(r) = s. We
know that there are only 2k many k-colors. Thus, all M0 have only 2k many
different colors for the roots.

By the construction, we also know that for every w ∈ Sr with |prop(w)| =
m, (M0)w is k − m-isomorphic to a representative k − m-model Nw

0 . Put
t = col(w). By the induction hypothesis, there are only finitely many repre-
sentative k −m-models, say lt many.

Note that the set Cs of n-colors that are greater than s is finite. Now,
fix a color s of the root of a representative k-model, the number of different
M0’s is equal to

αs =
m∑

i=1

Ci
m + 1,

where
m =

∑
t∈Cs

lt.

Hence, the number of all representative k-model is

∑

s∈Ck

αs,

which is finite.

Corollary 6.5.6. For every n ∈ ω, U(n)NNIL is finite.

For every point [M0] in U(n)NNIL, the representative M0 of [M0] is gen-
erally not isomorphic to the submodel of U(n)NNIL generated by the point
[M0]. However, M0 is ≡-equivalent to (U(n)NNIL)[M0].

Lemma 6.5.7. For every [M0] ∈ U(n)NNIL, let M0 = 〈W ′, R′, V ′〉 be
the representative model with the root r in [M0]. Let (U(n)NNIL)[M0] =
〈W,R, V 〉. Then M0 ≡ (U(n)NNIL)[M0].
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Proof. We show by induction on d([M0]) that

∃Z s.t. Z : (U(n)NNIL)[M0] ¹ M0 and Z is root-preserving; (6.7)

∃Z s.t. Z : M0 ¹ (U(n)NNIL)[M0]. (6.8)

d([M0]) = 1. Then both (U(n)NNIL)[M0] and M0 are singletons and
clearly (6.7) and (6.8) hold.

d([M0]) > 1. We first show (6.7). For any proper successor [Ni
0] (1 ≤ i ≤

k) of [M0], by the construction of U(n)NNIL, we know that there exists Zi
0

such that
Zi

0 : N0 ¹ M0. (6.9)

Since d([Ni
0]) < d([M0]), by the induction hypothesis of (6.7) we have that

there exists a surjective Zi
1 such that

Zi
1 : (U(n)NNIL)[Ni

0] ¹ Ni
0. (6.10)

By Lemma 6.4.3,
Zi

0 ◦ Zi
1 : (U(n)NNIL)[Ni

0] ¹ M0.

Define a relation Z on W ×W ′ by

Z = {([M0], r)} ∪
⋃

1≤i≤k

Zi
0 ◦ Zi

1.

Clearly, Z is total and root-preserving. We show that Z is a subsimulation.
For (S1), by the construction of U(n)NNIL, col([M0]) = col(r). For all 1 ≤
i ≤ k and all (w,w′) ∈ Zi

0 ◦ Zi
1, since Zi

0 ◦ Zi
1 is a subsimulation, col(w) =

col(w′).
For (S2), suppose wZw′ and wRv. There are two cases.
Case 1: w = [M0]. Then w′ = r. If v = w, then clearly w′R′w′ and

vZw′. Now suppose v 6= w. Then v = [N0] for some [N0] ∈ R([M0]). By the
definition of R, we have that there exists a total subsimulation Z0 satisfying
(6.9), and so

r′Z0v
′ for some v′ ∈ R′(r),

where r′ is the root of N0. Since d([N0]) < d([M0]), by the induction hy-
pothesis of (6.7), there exists a root-preserving Z1 satisfying (6.10). Clearly,

[N0]Z1r
′.
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Thus, [N0]Z0 ◦ Z1v
′, which means that [N0]Zv′ and so (S2) is obtained.

Case 2: w = [Ni
0] for some [Ni

0] ∈ R([M0]) with [Ni
0] 6= [M0]. Then we

have that (w,w′) ∈ Zi
0 ◦ Zi

1, so since Zi
0 ◦ Zi

1 is a subsimulation, there exists
v′ ∈ R′(w′) such that vZ i

0 ◦ Zi
1v
′, i.e. vZv′.

Next, we show (6.8). For any point w′ in M0 with w 6= r, by Lemma
6.4.11, (M0)w′ is isomorphic to a proper successor of [M0]. Since d([(M0)w′ ]) <
d([M0]), by the induction hypothesis of (6.8), there exists a total subsimula-
tion Zw′ satisfying

Zw : (M0)w′ ¹ (U(n)NNIL)[(M0)w′ ]. (6.11)

Define a relation Z ′ on W ′ ×W by

Z ′ = {(r, [M0])} ∪
⋃

w′∈R′(r)

Zw′ .

Clearly, Z ′ is total. We show that Z ′ is a subsimulation. For (S1), by the
construction of U(n)NNIL, col(r) = col([M0]). For all w′ ∈ R′(r) and all
(w′, w) ∈ Zw′ , since Zw′ is a subsimulation, col(w′) = col(w).

For (S2), suppose w′Z ′w and w′R′v′. We distinguish two cases.
Case 1: w′ = r. Then w = [M0]. If v′ = w′, then clearly, wRw and v′Zw.

Now suppose v′ 6= w′. Then since d([(M0)v′ ]) < d([M0]), by the induction
hypothesis of (6.8), there exists a total subsimulation Zv′ satisfying (6.11).
Thus, there exists v ∈ (U(n)NNIL)[(M0)v′ ] such that v′Zv′v. Clearly, wRv.

Case 2: w′ 6= r. Then (w′, w) ∈ Zw′ and w ∈ (U(n)NNIL)[(M0)w′ ] =

〈W ′′, R ¹ W ′′, V ′′〉. Since Zw′ : (M0)w′ ¹ (U(n)NNIL)[(M0)w′ ], there exists
v ∈ R ¹ W ′′(w) ⊆ R(w) such that v′Zv.

The next theorem shows that U(n)NNIL is a universal model for NNIL(~p)-
formulas.

Theorem 6.5.8. For every formula ϕ ∈ NNIL(~p), we have that U(n)NNIL |=
ϕ iff `IPC ϕ.

Proof. “⇐” holds trivially. Suppose U(n)NNIL |= ϕ. Then (U(n)NNIL)[Un] |=
ϕ. By Lemma 6.5.7, we know that (U(n)NNIL)[Un] ≡ Un. Note that Un ≡
U(n). So (U(n)NNIL)[Un] ≡ U(n). By Lemma 6.4.5, we obtain that U(n) |= ϕ.
Then, by Theorem 3.2.4, `IPC ϕ.

Corollary 6.5.9. There are only finitely many provably non-equivalent for-
mulas in NNIL(~p).
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Proof. By a same argument as the proof of Theorem 5.1.6.

Next, we show that NNIL(~p)-formulas define upsets in U(n)NNIL. We
are going to define formulas ϕ]

[M0] for all points [M0] in U(n)NNIL. ϕ]
[M0] will

share the same property as ϕw and ϕ∗w in Chapter 3 and Chapter 5.
Consider the representative n-model M0 with the root r of a point [M0]

in U(n)NNIL. Let w be a point in M0 with M0, w |= pi0 (1 ≤ i0 ≤ n). By the
construction of M0, we know that there exists a representative n− 1-model
Nw

0 such that Nw
0
∼=n−1 (M0)w.

For any point [M0] ∈ U(n)NNIL, let M0 = 〈W,R, V 〉 and r be the root
of M0. Now we define a formula ϕ]

[M0].

Definition 6.5.10. We define ϕ]
[M0] for U(n)NNIL by induction on n.

n = 1. Then U(1)NNIL consists of three points [M0
0], [M

1
0], [M

2
0] (see

Figure 6.5 and also Figure 6.7). Define

ϕ]

[M0
0]

= p → p,

ϕ]

[M1
0]

= p,

ϕ]

[M2
0]

= ¬p.

n > 1. First, put

Q = prop(r) ∪
⋂

w∈W

notprop(w).

For each propositional letter p, let Xp = V (p) ∩ R(r). For each w ∈ Xp, let
Nw

0 be the representative n− 1-model such that Nw
0
∼=n−1 (M0)w. Define

ϕ]
[M0] =

∧
prop(r) ∧

∧
{¬q : q ∈

⋂
w∈W

notprop(w)}

∧
∧
{p →

∨
w∈Xp

ϕ[Nw
0 ] : p 6∈ Q}.

Note that in the above definition, p 6∈ PV (ϕ[Nw
0 ]).

Here for the following proofs, we do not need to define ψ]
[M0] formulas

which satisfy [N0] 6|= ψ]
[M0] iff [N0]R[M0] for each point [M0] in U(n)NNIL.

However, ψ]
[M0] formulas may have a close connection with the β(w) formulas

defined in Section 4.2 and this gives a topic for future work.
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Theorem 6.5.11. For each point [M0] in U(n)NNIL = 〈W,R, V 〉, we have
that [N0] |= ϕ]

[M0] iff [M0]R[N0].

Proof. Let M0 = 〈W ′, R′, V ′〉 and N0 = 〈W ′′, R′′, V ′′〉. Let r be the root of
M0. We show the theorem by induction on n.

n = 1. Clearly the theorem holds.
n > 1. For “⇐”, it suffices to show that U(n)NNIL, [M0] |= ϕ]

[M0]. By
Lemma 6.5.7, it then suffices to show that

M0, r |= ϕ]
[M0].

Clearly,

M0, r |=
∧

prop(r) ∧
∧
{¬q : q ∈

⋂

w∈W ′
notprop(w)}.

For any p 6∈ Q, suppose M0, w |= p for some w ∈ R(r). We know that
there exists an representative n − 1-model Nw

0 such that Nw
0
∼=n−1 (M0)w.

By the induction hypothesis we have that

Nw
0 |= ϕ[Nw

0 ],

which implies that
M0, w |= ϕ[Nw

0 ].

So for each such w,

M0, w |=
∨

v∈Xp

ϕ[Nv
0 ].

Thus
M0, r |= p →

∨
w∈Xp

ϕ[Nw
0 ],

and M0, r |= ϕ]
[M0].

For “⇐”, suppose [N0] |= ϕ]
[M0]. We show N0 ¹ M0, i.e. [M0]R[N0]. By

the definition, (U(n)NNIL)[N0] |= ϕ]
[M0]. Thus by Lemma 6.5.7 and Theorem

6.4.5 we have that
N0 |= ϕ]

[M0].

For any p 6∈ Q and any point v ∈ N0 such that N0, v |= p, we have that
N0, v |=

∨
w∈Xp

ϕ[Nw
0 ], thus there exists w ∈ Xp such that

(N0)v |= ϕ[Nw
0 ].
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There exists an n−1-model ((N0)v)0 such that ((N0)v)0
∼=n−1 (N0)v. Clearly

((N0)v)0 |= ϕ[Nw
0 ].

By Lemma 6.5.7 and Theorem 6.4.5,

(U(n− 1)NNIL)[((N0)v)0] |= ϕ[Nw
0 ].

Then since both ((N0)v)0 and Nw
0 are n−1-models, by the induction hypoth-

esis we have that there exists a total subsimulation Zv such that

Zv : ((N0)v)0 ¹ Nw
0 .

Note that there exist frame isomorphisms f : N0 → ((N0)v)0 and g :
Nw

0 → (M0)w. Consider the relation Zv
0 between N0 and (M0)w defined by

Zv
0 = {(x, y) : (f(x), g(y)) ∈ Zv}.

Note that x |= p and y |= p. It is then easy to see that Zv
0 is a total

subsimulation.
Define a relation on W ′′ ×W ′ by

Z = {(u, r) : N0, u 6|= p for all p 6∈ Q} ∪
⋃

N0,v|=p for some p6∈Q

Zv
0 .

Clearly, Z is total. We show that Z is a subsimulation.
For (S1), clearly, for any (x, y) ∈ Zv

0 for some v satisfying N0, v |= p for
some p 6∈ Q, since Zv

0 is a subsimulation col(x) = col(y). For (u, r) ∈ Z with
N0, u 6|= p for all p 6∈ Q, we know that

M0, r 6|= p for all p 6∈ Q.

By N0, u |= ϕ]
[M0], we know that

N0, u |=
∧

prop(r) ∧
∧
{¬q : q ∈

⋂
w∈W

notprop(w)}.

Thus,
prop(u) ⊇ prop(r),

notprop(u) ⊇
⋂

w∈W

notprop(w) ∪ ({p1, · · · , pn} \Q) = notprop(r).
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Hence col(u) = col(r).
For (S2), suppose xZx′ and xR′′y. We distinguish three cases.
Case 1: N0, x |= p for some p 6∈ Q. Then (x, x′) ∈ Zx

0 . So since Zx
0 is a

subsimulation, there exists y′ ∈ R′′(x′) such that yZx
0 y′, i.e. yZy′.

Case 2: N0, x 6|= p and N0, y 6|= p for all p 6∈ Q. Then by the definition of
Z, we must have that x′ = r. Clearly, yZr and rR′′r.

Case 3: N0, x 6|= p for all p 6∈ Q and N0, y |= p for some p 6∈ Q. We have
that y ∈ dom(Zy

0 ), so since Zy
0 is total, there exists y′ ∈ W ′ such that yZy

0y′,
i.e. yZy′. And clearly, rR′′y′.

For each upset X of U(n)NNIL, we define a formula θn(X) ∈ NNIL(~p)
as

θn(X) :=
∨

w∈X

ϕ]
w.

In case that X = {w}, we will only write θn(w) instead of θn({w}).
Lemma 6.5.12. For every upset X of U(n)NNIL, we have that X = V (θn(X)).

Proof. By Theorem 6.5.11.

We end this section by giving a characterization property for NNIL-
formulas.

Theorem 6.5.13. Let ϕ be a formula. If ϕ satisfies that for any finite models
M and N with M ≡ N,

M |= ϕ ⇔ N |= ϕ,

then ϕ is provably equivalent to a formula ϕ′ ∈ NNIL(~p).

Proof. Consider the model U(n)NNIL = 〈W,R, V 〉. Let ϕ′ = θn(V (ϕ)).
For every point w ∈ U(n), we have that

U(n), w |= ϕ ⇐⇒ U(n)w |= ϕ

⇐⇒ (U(n)NNIL)[U(n)w] |= ϕ (by Theorem 6.5.7 and the property

of ϕ)

⇐⇒ (U(n)NNIL)[U(n)w] |= ϕ′ (by the definition of ϕ′)

⇐⇒ U(n)w |= ϕ′ (by Theorem 6.5.7 and Theorem 6.4.5)

⇐⇒ U(n), w |= ϕ′.

Thus U(n) |= ϕ ↔ ϕ′, so by Theorem 3.2.4, `IPC ϕ ↔ ϕ′.
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The next theorem was proved in Theorem 7.4.1 in [25]. We now show it
as a corollary of Theorem 6.5.13.

Theorem 6.5.14. Let ϕ be a formula. If ϕ satisfies that for any finite models
M and N with N ¹ M,

M |= ϕ ⇒ N |= ϕ,

then ϕ is provably equivalent to a formula ϕ′ ∈ NNIL(~p).

Proof. Let M and N be finite models with M ≡ N. Then it follows from the
assumption that

M |= ϕ ⇔ N |= ϕ.

Thus, by Theorem 6.5.13, ϕ is provably equivalent to a formula ϕ′ ∈ NNIL(~p).

6.6 U(2)NNIL and the subframe logics axiom-

atized by NNIL(p, q)-formulas

The model U(n)NNIL is special not only in the sense that it is a universal
model for NNIL(~p)-formulas, but also in the sense that it suggests a method
for future work on subframe logics. In this section, we exemplify this by ob-
taining the subframe logics defined by NNIL(p, q)-formulas by observing the
structure of U(2)NNIL. It will turn out that NNIL-formulas are much more
efficient than [∧,→]-formulas. We will find 8 subframe logics axiomatized
by NNIL(p, q)-formulas, whereas [∧,→]2-formulas only axiomatize classical
logic (by a Peirce formula).

We have seen in the previous section that each point [M0] in U(2)NNIL

corresponds to (is) a representative model M0. There are 7 different under-
lying frames of these representative models (see Figure 6.10). On the other
hand, each upset X of U(2)NNIL corresponds to a NNIL(p, q)-formula θ2(X).
θ2(X) refutes all the underlying frames of the representative models corre-
sponding to the points of U(2)NNIL that are not in X. This gives us some
idea of axiomatizing subframe logics by two-variable NNIL-formulas by some
observation of the model U(2)NNIL.

To be precise, consider the upset X1 generated by the points numbered
1, 2, 3, 4 in the model U(2)NNIL. The underlying frames of the representative
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Figure 6.10: Underlying frames of the representative models in U(2)NNIL

F1 F2 F3 F4

F5 F6 F7

models of these four points are the same, namely the frame F1 in Figure 6.10.
The NNIL(p, q)-formula defining the set X1 is

θ2(X1) = (p ∧ ¬q) ∨ (p ∧ q) ∨ (¬p ∧ ¬q) ∨ (¬p ∧ q).

Consider the logic
L1 = IPC + θ2(X1).

Observe that the axiom θ2(X1) can be simplified to

p ∨ ¬p

and L1 is the classical propositional logic CPC. CPC characterizes the
frames consisting of a single reflexive element which are exactly the F1-like
frames.

Consider the upset X2 generated by the points numbered 5, 6, 7, 8, 9. The
NNIL(p, q)-formula defining the set X2 is

θ2(X2) = p ∨ ¬q ∨ (p ↔ q) ∨ ¬p ∨ q.

The logic
L2 = IPC + θ2(X2)

is the 3-valued Gödel logic G3 (also called here-and-there logic in [10]). The
frames of here-and-there logic have depth less or equal to 2 and width 1.
These frames are exactly those appearing in the corresponding set of frames
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of the set X2, namely the F1-like or F2-like frames (see Figure 6.10). It is
worthwhile to point out that in [10], many known axiomatizations of the
here-and-there logic are given, however, the axiom p∨¬q ∨ (p ↔ q)∨¬p∨ q
is not among those. As far as the author knows, this is a new axiomatization
for the here-and-there logic.

The NNIL(p, q)-formula defining the upset X3 generated by the points
numbered 5, 9, 10, 11, 12 is

θ2(X3) = p∨q∨((q → p)∧(p → q∨¬q))∨¬(p∧q)∨((p → q)∧(q → p∨¬p)).

The underlying frames of the representative models of X3 are F1, F2 and F3

in Figure 6.10. The logic

L3 = IPC + θ2(X3)

defines the frames with depth less than or equal to 2 and width less than or
equal to 2.

The NNIL(p, q)-formula defining the upset X4 generated by the points
numbered 5, 9, 14 is

θ2(X4) = p ∨ q ∨ ((p → q ∨ ¬q) ∧ (q → p ∨ ¬p)).

The underlying frames of the representative models of X4 are F1 − F3 and
F5 in Figure 6.10. The axiom θ2(X4) can be simplified to

p ∨ (p → q ∨ ¬q).

The logic
L4 = IPC + p ∨ (p → q ∨ ¬q)

is the 3-Peirce logic and defines the frames with depth less than or equal to
2. 3-Peirce logic is commonly axiomatized by

((p → (((q → r) → r) → r)) → p) → p.

As far as the author knows, the axiom p∨(p → q∨¬q) is a new one. Moreover,
this result can easily be generalized to the n-Peirce logic axiomatizing the
frames of depth less or equal to n.

The NNIL(p, q)-formula defining the upset X5 generated by the points
numbered 13, 15 is

θ2(X5) = (p → q) ∨ (q → p).
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Figure 6.11: The frame for L6

The logic
L5 = IPC + θ2(X5)

is the Dummett’s logic LC and defines the linear frames (frames with width
1). Note that the underlying frames of the representative models of X5 are
F1−F4 in Figure 6.10. However, there exists a model on F3 falsifying θ2(X5),
namely the representative model of the point numbered 11. This means that
F3 is not an L5 frame. The remaining frames F1, F2 and F4 are exactly the
linear frames among the all 7 frames in Figure 6.10.

The NNIL(p, q)-formula defining the upset X6 generated by the points
numbered 11, 13, 15 is

θ2(X6) = ¬(p ∧ q) ∨ (p → q) ∨ (q → p).

The underlying frames of the representative models of X6 are F1 − F4. The
logic

L6 = IPC + θ2(X6)

defines the frames with 2-split only right at the end of the frames (see Figure
6.11).

The NNIL(p, q)-formula defining the upset X7 generated by the points
numbered 13, 14, 15 is

θ2(X7) = (q → p) ∨ ((p → q ∨ ¬q) ∧ (q → p ∨ ¬p)) ∨ (p → q).

The underlying frames of the representative models of X7 are F1 − F5. The
logic

L7 = IPC + θ2(X7)

defines the frames with any splits only right at the end of the frames (see
Figure 6.12).
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Figure 6.12: The frame for L7

Figure 6.13: The frame for L8

The NNIL(p, q)-formula defining the upset X8 generated by the points
numbered 16, 17 is

θ2(X8) = (p → q ∨ ¬q) ∨ (q → p ∨ ¬p).

The underlying frames of the representative models of X8 are F1 − F6. The
logic

L8 = IPC + θ2(X8)

defines the frames with any splits only right at the end except that one branch
may continue linearly (see Figure 6.13).

All the above logics, their properties and connections with U(2)NNIL are
listed in Table 6.1.
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Form, 6
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πi, 21
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σ, 70
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`IPC ϕ, 7
cl(w), 56
col(w), 21
d(F), 7
d(w), 7
ker(f), 17
m-isomorphic, 79
newprop(w), 26
notprop(w), 26
prop(w), 26
w ↓, 7
w ≺ X, 21
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w ↑, 7
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NNIL-formulas, 68
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anti-chain, 21

border point, 34
Brouwerian semilattice, 64

clopen, 11
color, 20, 21
compactness, 13
congruence extension property, CEP,

17
continuous p-morphism, 16

de Jongh formulas, 26
depth of a frame, 7
depth of a point, 7
descriptive frame, 13
disjoint union, 10, 14, 16

endpoint, 7

finite intersection property, 13

general frame, 12
generated subframe, 9, 13, 16

Heyting algebra, 11

immediate successor, 7
implicative semilattice, 64
intersection point, 53
isomorphism, 27

kernel, 17
Kripke frame, 7
Kripke model, 7
Kripke subframe, 9

locally finite, 64

maximal valuation, 53

n-model, 8

n-universal model, 22
NF, 69

p-morphic image, 9
p-morphism, 9, 13
projection, 21

reducible, 9
reduct, 9
reduction, 9, 13
refinedness, 13
Rieger-Nishimura ladder, 23

subframe, 47
subframe formulas, 48
subframe logics, 47
subreduction, 47
subsimulation, 72
successor, 7

theorem, 7
theory, 7
topological space, 11
total point, 53
total valuation, 53
totally cover, 21

upset, 9
upward closed subset, 9

variety, 17
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