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Abstract

In [2] we investigated the lattice Λ(Df 2) of all subvarieties of the
variety Df2 of two-dimensional diagonal free cylindric algebras. In the
present paper we investigate the lattice Λ(CA2) of all subvarieties of
the variety CA2 of two-dimensional cylindric algebras. We give a dual
characterization of representable two-dimensional cylindric algebras,
prove that the cardinality of Λ(CA2) is that of continuum, give a
criterion for a subvariety of CA2 to be locally finite, and describe the
only pre locally finite subvariety of CA2. We also characterize finitely
generated subvarieties of CA2 by describing all fifteen pre finitely
generated subvarieties of CA2. Finally, we give a rough picture of
Λ(CA2), and investigate algebraic properties preserved and reflected
by the reduct functors F : CA2 → Df2 and Φ : Λ(CA2) → Λ(Df2).

1 Introduction

This paper is a sequel to [2] and in it we investigate the lattice Λ(CA2) of all
subvarieties of the variety CA2 of two-dimensional cylindric algebras. The
variety CA2 is widely studied in the literature. One of the main references
is the fundamental work by Henkin, Monk, and Tarski [5]. Among many
other things it is well known that unlike the variety Df 2 of two-dimensional
diagonal free cylindric algebras, not every member of CA2 is representable,
that the representable members of CA2 form a proper subvariety of CA2,
usually denoted by RCA2, that the equational theories of both CA2 and
RCA2 are decidable, and that both CA2 and RCA2 are finitely approx-
imable, but that neither of them is locally finite. To these results we add
a criterion for a variety of two-dimensional cylindric algebras to be locally
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finite, a characterization of finitely generated and pre finitely generated va-
rieties of two-dimensional cylindric algebras, and a rough description of the
lattice Λ(CA2).

The paper is organized as follows. Section 2 has a preliminary purpose
and it contains all the information on Df 2 and CA2 needed in subsequent
sections. In Section 3 we characterize representable two-dimensional cylindric
algebras. In Section 4 we show that there exists a continuum of subvarieties
of RCA2, and that there exists a continuum of varieties in between RCA2

and CA2. In Section 5 we describe the only pre locally finite subvariety
of CA2, and characterize locally finite varieties of two-dimensional cylindric
algebras. In Section 6 we characterize finitely generated subvarieties of CA2

by describing all fifteen pre finitely generated subvarieties of CA2. Finally,
in Section 7 we give a rough picture of the lattice structure of Λ(CA2),
define the reduct functors F : CA2 → Df2 and Φ : Λ(CA2)→ Λ(Df 2), and
investigate algebraic properties preserved and reflected by F and Φ.

2 Preliminaries

2.1 Df2

In this subsection we recall all the needed information about two-dimensional
diagonal free cylindric algebras which will be used subsequently. For refer-
ences consult [5] and [2].

Definition 2.1. Suppose (B,∧,∨,−, 0, 1) is a Boolean algebra. A unary
operation ∃ : B → B is called a monadic operator on B if the following three
conditions are satisfied for all a, b ∈ B:

∃0 = 0;

a ≤ ∃a;

∃(∃a ∧ b) = ∃a ∧ ∃b.

Definition 2.2. A triple (B,∃1,∃2) is called a two-dimensional diagonal-free
cylindric algebra, or a Df 2-algebra for short, if B is a Boolean algebra, and
∃1,∃2 are monadic operators on B satisfying the following condition for all
a ∈ B:

∃1∃2a = ∃2∃1a.
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The variety of two-dimensional diagonal-free cylindric algebras is denoted by
Df2.

Suppose X is a nonempty set, R is a binary relation on X, x ∈ X and
A ⊆ X. Let

R(x) = {y ∈ X : xRy},

R−1(x) = {y ∈ X : yRx},

R(A) =
⋃

x∈A R(x),

R−1(A) =
⋃

x∈A R
−1(x).

We call R(x) the R-saturation of x, and R(A) - the R-saturation of
A. Note that if R is an equivalence relation, then R(x) = R−1(x) and
R(A) = R−1(A).

Recall that a topological space X is called a Stone space if X is 0-
dimensional, compact, and Hausdorff. A subset A of X is called a clopen
subset of X if it is simultaneously a closed and an open subset of X. Denote
by CP (X) the Boolean algebra of all clopen subsets of a Stone space X. A
relation R on a Stone space X is said to be a clopen relation if A ∈ CP (X)
implies R−1(A) ∈ CP (X). We call R point-closed if R(x) is a closed subset
of X for every x ∈ X.

Definition 2.3. A triple (X,E1, E2) is said to be a Df 2-space if X is a
Stone space and E1 and E2 are point-closed and clopen equivalence relations
on X with E1E2(x) = E2E1(x) for every x ∈ X.

Given two Df 2-spaces (X,E1, E2) and (X ′, E ′1, E
′
2), a function f : X →

X ′ is said to be a Df 2-morphism if f is continuous and fEi(x) = E ′if(x)
for every x ∈ X, i = 1, 2. We denote the category of Df 2-spaces and
Df2-morphisms by DS. Then we have the following representation of Df 2-
algebras:

Theorem 2.4. Df 2 is dual to DS. In particular, every Df 2-algebra can be
represented as (CP (X), E1, E2) for the corresponding Df 2-space (X,E1, E2).

For a Df2-space (X,E1, E2), let E0 = E1 ∩ E2. It is routine to check
that E0 is an equivalence relation on X. Call the sets of the form Ei(x) Ei-
clusters (i = 0, 1, 2). A subset A of X is called saturated if E1E2(A) = A. A
Df2-space (X,E1, E2) is called a component if E1E2(x) = X for each x ∈ X.
A partition R of X is called correct if
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(1) From x /Ry it follows that there exists a R-saturated clopen A such that
x ∈ A and y /∈ A,

(2) REi(x) ⊆ EiR(x) for every x ∈ X and i = 1, 2.

Then we have the following dual characterization of congruences and sub-
algebras of Df 2-algebras, as well as subdirectly irreducible and simple Df 2-
algebras.

Theorem 2.5. 1. The lattice of congruences of a Df 2-algebra (B,∃1,∃2)
is isomorphic to the lattice of open saturated subsets of its dual (X,E1,
E2).

2. The lattice of subalgebras of (B,∃1,∃2) ∈ Df2 is dually isomorphic to
the lattice of correct partitions of its dual (X,E1, E2).

3. (B,∃1,∃2) ∈ Df2 is subdirectly irreducible iff (B,∃1,∃2) is simple iff its
dual (X,E1, E2) is a component.

2.2 CA2

Definition 2.6. [5] A quadruple (B,∃1,∃2, d) is said to be a two-dimensional
cylindric algebra, or a CA2-algebra for short, if (B,∃1,∃2) is a Df 2-algebra
and d ∈ B is a constant satisfying the following conditions for all a ∈ B and
i = 1, 2.

∃i(d) = 1;

∃i(d ∧ a) = −∃i(d ∧ −a).

Denote the variety of all two-dimensional cylindric algebras by CA2.

Since in this paper we only deal with two-dimensional cylindric algebras,
we will simply call them cylindric algebras. Below we will generalize the
duality for Df 2-algebras to CA2-algebras.

Definition 2.7. A quadruple (X,E1, E2, D) is said to be a cylindric space
if the triple (X,E1, E2) is a Df 2-space and D is a clopen subset of X such
that every Ei-cluster of X contains a unique point from D for i = 1, 2.

A routine consequence of this definition is the following proposition.



2 PRELIMINARIES 5

Proposition 2.8. Suppose X is a cylindric space. Then the cardinality of
the set of all E1-clusters of X is equal to the cardinality of the set of all
E2-clusters of X .

Proof. Let E1 and E2 denote the sets of all E1- and E2-clusters of X , re-
spectively. Define f : E1 → E2 by putting f(C) = E2(C ∩ D). Suppose
C1, C2 ∈ E1, C1 6= C2, C1 ∩ D = {x}, and C2 ∩ D = {y}. Since every
Ei-cluster of X contains a unique point from D, it follows that f(C1) =
E2(x) 6= E2(y) = f(C2). Therefore, f is an injection. Now suppose C ′ ∈ E2
and C ′ ∩D = {x}. If we let C = E1(x), then f(C) = E2(x) = C ′. Thus, f
is a surjection. Hence, we obtain that f is a bijection.

Given two cylindric spaces (X,E1, E2, D) and (X ′, E ′1, E
′
2, D

′), a function
f : X → X ′ is said to be a cylindric morphism if f is a Df 2-morphism
and f−1(D′) = D. We denote the category of cylindric spaces and cylindric
morphisms by CS. Then we have the following representation of cylindric
algebras:

Theorem 2.9. CA2 is dual to CS. In particular, every cylindric algebra B =
(B,∃1,∃2, d) can be represented as (CP (X), E1, E2, D) for the corresponding
cylindric space X = (X,E1, E2, D).

Proof. Everything goes similarly to the Df 2-case. The only additional fact
that has to be verified is the following. In the dual space X of B, every
Ei-cluster contains a unique point from D for i = 1, 2; and conversely, in
every cylindric space we have Ei(D) = X and Ei(D ∩ A) = −Ei(D ∩ −A)
for i = 1, 2 and A ∈ CP (X).

To show the latter claim, suppose X is a cylindric space. Since D inter-
sects each Ei-cluster of X , it is obvious that Ei(D) = X for i = 1, 2. More-
over, if x ∈ Ei(D∩A), then there exists y ∈ X such that xEiy and y ∈ D∩A.
Since Ei(x) contains a unique point from D, for any z ∈ Ei(x) we have either
z /∈ D or z = y, and so z ∈ A. In either case, Ei(x)∩ (D∩−A) = ∅. There-
fore, x ∈ −Ei(D ∩ −A), and so Ei(D ∩ A) ⊆ −Ei(D ∩ −A). The converse
inclusion is proved similarly.

To show the former claim, suppose X is the dual space of B. Then
Ei(D) = X and Ei(D∩A) = −Ei(D∩−A) for each i = 1, 2 and A ∈ CP (X).
Since Ei(D) = X, every Ei-cluster of X contains at least one point from D
for i = 1, 2. Suppose there exists an Ei-cluster C such that C ∩D contains
at least two different points, say x and y. Since X is a Stone space, there
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exists a clopen A such that x ∈ A and y /∈ A. Therefore, x ∈ D ∩ A,
and so C ⊆ Ei(D ∩ A). On the other hand, since y ∈ D ∩ −A, we have
C ⊆ Ei(D ∩ −A). But then C ∩ −Ei(D ∩ −A) = ∅, which contradicts the
fact that Ei(D∩A) = −Ei(D∩−A) for each i = 1, 2 and A ∈ CP (X). Thus,
every Ei-cluster of X contains a unique point from D for i = 1, 2.

As an easy corollary of Theorem 2.9 we obtain that the category FinCA2

of finite cylindric algebras is dual to the category FinCS of finite cylindric
spaces with the discrete topology. In particular, every finite cylindric algebra
is represented as the algebra (P (X), E1, E2, D) for the corresponding finite
cylindric space (X,E1, E2, D), where P (X) denotes the power set of X.

To obtain the dual description of homomorphic images and subalgebras
of cylindric algebras, as well as subdirectly irreducible and simple cylindric
algebras, we need the following two definitions. Suppose X is a cylindric
space. A correct partition R of X is called a cylindric partition if R(D) = D.
A cylindric space X is called a quasi-square if E1E2(x) = X for every x ∈ X.

Theorem 2.10. 1. The lattice of congruences of a cylindric algebra B is
isomorphic to the lattice of open saturated subsets of its dual X .

2. The lattice of subalgebras of a cylindric algebra B is dually isomorphic
to the lattice of cylindric partitions of its dual X .

3. A cylindric algebra B is subdirectly irreducible iff it is simple iff its dual
X is a quasi-square.

Proof. A routine adaptation of Theorem 2.5 to cylindric algebras.

Corollary 2.11. ([5, Theorem 2.4.43])

1. CA2 is semi-simple.

2. CA2 is congruence-distributive.

3. CA2 has the congruence extension property.

Now define the reduct functor F : CA2 → Df2 by putting

F(B,∃1,∃2, d) = (B,∃1,∃2).

In other words, F forgets the diagonal element d from the signature of cylin-
dric algebras. We are in a position to show that F is not onto. In fact, the
set Df2 − F(CA2) is infinite.
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For this, define the reduct functor R : CS→ DS by putting

R(X,E1, E2, D) = (X,E1, E2).

Suppose (Y,E1, E2) ∈ DS is a component. Call (Y,E1, E2) a quasi-square
if the cardinality of the sets of all E1- and E2-clusters coincide with each
other. Note that not every component from DS is a quasi-square. Examples
of components which are not quasi-squares are rectangle Df 2-spaces (consult
[2] for the definition of a rectangle). Since there are infinitely many rectangle
Df2-spaces, the set DS− R(CS) is infinite.

Now call a Df 2-algebra a quasi-square algebra if its dual space is a quasi-
square. As follows from Proposition 2.8 and Theorem 2.10, for every simple
cylindric algebra B, its Df 2-reduct is a quasi-square algebra. Therefore, the
set Df2−F(CA2) is infinite. Moreover, one Df 2-algebra can be the reduct of
many non-isomorphic cylindric algebras. For instance, a Df 2-algebra whose
dual space is shown in Fig.1(a) is the reduct of the cylindric algebras whose
dual cylindric spaces are shown in Fig.1(b),(c) where bold points represent
the diagonal points.

Fig.1
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3 Representable cylindric algebras

For any cardinal κ, define on the cartesian square κ × κ two equivalence
relations E1 and E2 by putting

(i1, i2)E1(j1, j2) iff i2 = j2,

(i1, i2)E2(j1, j2) iff i1 = j1,

for i1, i2, j1, j2 ∈ κ. Let also D = {(i, i) : i ∈ κ} and call (κ× κ,E1, E2, D) a
square. Obviously (P (κ× κ), E1, E2, D) is a cylindric algebra, which we call
a square algebra. Denote the class of all square algebras by Sq.
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Definition 3.1. [5] A cylindric algebra B is called representable if B ∈
SP(Sq), where S and P denote the operations of taking subalgebras and
direct products, respectively.

It is known that the class of representable cylindric algebras is also closed
under homomorphic images, and so forms a variety which is usually denoted
byRCA2. It is known thatRCA2 is a proper subvariety ofCA2, thatRCA2

is generated by finite square algebras, and that RCA2 can be axiomatized
by adding the following Henkin axioms to the axiom system of CA2 (see [5]):

(H) ∃i(a ∧ −b ∧ ∃j(a ∧ b)) ≤ ∃j(−d ∧ ∃ia), i 6= j, i, j = 1, 2.

In [10] Venema has simplified these equations to the following ones:

(V ) d ∧ ∃i(−a ∧ ∃ja) ≤ ∃j(−d ∧ ∃ia), i 6= j, i, j = 1, 2.

Below we will give the dual characterization of representable cylindric al-
gebras, which will allow us to construct rather simple finite non-representable
cylindric algebras.

Suppose (X,E1, E2, D) is a cylindric space. Call x ∈ D a diagonal point,
and x ∈ X − D a non-diagonal point. Also call an E0-cluster C a diagonal
E0-cluster if it contains a diagonal point. Otherwise call C a non-diagonal
E0-cluster.

Lemma 3.2. Let X be a cylindric space. If a diagonal point x ∈ D is not
an isolated point, then E0(x) 6= {x}.

Proof. Suppose x ∈ D is not an isolated point. Then x is a limit point, and
so there exists a sequence {xi}i∈ω converging to x. Since D is a clopen, we
can assume that each xi belongs to D. Moreover, since {xi}i∈ω converges
to x, we can assume without loss of generality that E1(xi) ∩ E2(x) 6= ∅ for
every xi. Let yi ∈ E1(xi) ∩ E2(x). Since X is compact, {yi}i∈ω converges to
some point y ∈ X. Moreover, y ∈ E2(x) because {yi}i∈ω ⊆ E2(x) and E2(x)
is closed. Since D contains a unique point from every Ei-cluster, we have
that {yi}i∈ω ⊆ −D. But then y ∈ −D because −D is a clopen. Therefore,
y 6= x. Let E1(y) ∩ D = {z}. If z 6= x, then there exists a clopen A ⊆ D
such that z ∈ A and all but finitely many members of {xi}i∈ω do not belong
to A. But then all but finitely many members of {yi}i∈ω do not belong to
a clopen E1(A), which is impossible since y ∈ E1(A) and y is the limit of
{yi}i∈ω. Thus, z = x, implying that yE1x. Therefore, y ∈ E0(x), and so
E0(x) 6= {x}.
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Definition 3.3. A cylindric space X is said to satisfy (∗) if there exists
a diagonal point x0 ∈ D such that E0(x0) = {x0} and there exists a non-
singleton E0-cluster C which is either E1- or E2-related to x0.

Theorem 3.4. A cylindric algebra B is representable iff its dual cylindric
space X does not satusfy (∗).

Proof. Suppose X satisfies (∗). We show that (V) does not hold in B, imply-
ing that B is not representable. Let x0 be a diagonal point with E0(x0) = {x0}
and C be a non-singleton E0-cluster say E1-related to x0 (the case when C
is E2-related to x0 is proved similarly). It follows from Lemma 3.2 that
x0 is an isolated point. Therefore, E1(x0) is a clopen. Choose two differ-
ent points y and z from C, and consider an open set E1(x0) − {x0, y}. Let
A ⊆ E1(x0)−{x0, y} be a clopen containing z. Then y ∈ −A∩E2(A), and so
x0 ∈ D ∩ E1(−A ∩ E2(A)). On the other hand, E1(A) = E1(x0). Therefore,
x0 /∈ E2(−D ∩E1(A)), implying that (V) does not hold in B. Thus, B is not
representable.

Conversely, suppose B is not representable. We show that (∗) holds in
X . We know that (V) does not hold in B. Therefore, there exist a point
x ∈ X and a clopen A ⊆ X such that x ∈ D ∩ Ei(−A ∩ Ej(A)) but x /∈
Ej(−D ∩ Ei(A)), for i 6= j and i, j = 1, 2. Since x ∈ D ∩ Ei(−A ∩ Ej(A)),
then x ∈ D and there exist points y, z ∈ X such that xEiy, yEjz, y /∈ A and
z ∈ A. From y /∈ A and z ∈ A it follows that y and z are different. Also xEiy
and yEjz imply that there exists a point u ∈ X such that xEju and uEiz.
If u 6= x, then u is a non-diagonal point, and so u ∈ −D ∩ Ei(A). But then
x ∈ Ej(−D ∩ Ei(A)), which contradicts our assumption. Thus, u = x and
xEiz. Therefore, yE0z and both y and z are Ei-related to x. Moreover, if
E0(x) 6= {x}, then by choosing a point u ∈ E0(x) different from x we obtain
again that u ∈ −D∩Ei(A), and so x ∈ Ej(−D∩E1(A)), which is impossible.
Therefore, E0(x) = {x} and E0(y) is a non-singleton E0-cluster Ei-related to
x0. Thus, (∗) holds in X .

Using this criterion it is easy to see that the cylindric algebras corre-
sponding to the cylindric spaces shown in Fig.1(c) (bold points denote the
diagonal points) are representable, while the cylindric algebras correspond-
ing to the cylindric spaces shown in Fig.1(b) are not. Moreover, the smallest
non-representable cylindric algebra is the algebra corresponding to the cylin-
dric space shown in Fig.1(b), where the non-singleton E0-cluster contains
only two points.
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4 Cardinality of Λ(CA2)

Denote the lattice of subvarieties of CA2 by Λ(CA2), and the lattice of
subvarieties of RCA2 by Λ(RCA2). We want to show that the cardinality
of Λ(RCA2) as well as the cardinality of Λ(CA2) − Λ(RCA2) is that of
continuum. For this define a partial order on the class of all non-isomorphic
finite simple cylindric algebras by putting

A ≤ B iff A ∈ S(B).

Lemma 4.1. Every two non-isomorphic finite square algebras are ≤-incom-
parable.

Proof. Let A and B be two non-isomorphic finite square algebras and let XA
and XB be their dual spaces. Then XA is isomorphic to (n × n,E1, E2, D)
and XB is isomorphic to (m × m,E ′1, E

′
2, D

′) where n 6= m. Without loss
of generality we can assume that n > m. Then obviously A can not be
a subalgebra of B. Suppose B is a proper subalgebra of A. Then there
exists a cylindric partition R of XA such that XA/R is isomorphic to XB.
Therefore, R must identify points from different either E1- or E2-clusters of
XA. Without loss of generality we can assume that R identifies points from
different E1-clusters C1 and C2. Let x1 ∈ C1 be the diagonal point of C1 and
x2 ∈ C2 be the diagonal point of C2. Since R(D) = D, we have that x1Rx2.
Let E1(x1) ∩ E2(x2) = {y1}. Since x2Rx1 and x1E1y1, there exists y2 ∈ XA
such that y1Ry2 and y2E1x2. Consider R(x1) and R(y1). It is obvious that
R(x1)E0R(y1). Also R(x1) 6= R(y1) since R(D) = D. Therefore, there exists
a non-singleton E0-cluster of XB, which is impossible since XB is a square.
Thus, B is not a proper subalgebra of A, and so every two non-isomorphic
finite square algebras are ≤-incomparable.

As an immediate consequence of Lemma 4.1 we obtain the following the-
orem.

Theorem 4.2. The cardinality of Λ(RCA2) is that of continuum.

Proof. Let Xn be the square (n×n,E1, E2, D) and Bn be the square algebra
(P (n × n), E1, E2, D). Consider the family ∆ = {Bn}n∈ω. From Lemma 4.1
it follows that ∆ forms a ≤-anti-chain. For any subset Γ of ∆, let VΓ denote
the variety generated by Γ.1 Using the standard splitting technique (see, e.g.,

1That is VΓ = HSP(Γ).
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Kracht [6] for details), we can easily show that VΓ 6= VΓ′ whenever Γ 6= Γ′.
Therefore, there exist 2ℵ0-many subvarieties of RCA2.

For n > 1 let Yn denote the finite cylindric space obtained from the n×n
square by substituting a singleton non-diagonal E0-cluster by a two-element
E0-cluster. For example, Y2 is shown in Fig.1(b) where n = 2. Denote by An

the cylindric algebra corresponding to Yn. Obviously Yn satisfies (∗), and so
An is not representable. Similarly to Lemma 4.1, we can prove the following
lemma.

Lemma 4.3. The family {An}n∈ω forms a ≤-anti-chain.

As an immediate consequence of Lemma 4.3 and the fact that {An}n∈ω ⊆
CA2 −RCA2 we obtain the following theorem.

Theorem 4.4. The cardinality of Λ(CA2)−Λ(RCA2) is that of continuum.

Finally, for Γ,Γ′ ⊆ {An}n∈ω it is obvious that Γ 6= Γ′ impliesRCA∨VΓ 6=
RCA ∨VΓ′ . Therefore, we have the following corollary.

Corollary 4.5. There exist continuum many varieties in between RCA2 and
CA2.

5 Locally finite subvarieties of CA2

Recall that a variety V of universal algebras is said to be locally finite if
every finitely generated V-algebra is finite. It is called pre locally finite if it
is not locally finite but all its proper subvarieties are. It was first noticed
by Tarski (see e.g. [5]) that RCA2, and hence any variety in the interval
[RCA2,CA2], is not locally finite. In this section, we present a criterion for
a variety of cylindric algebras to be locally finite, and show that there exists
exactly one pre locally finite subvariety of CA2.

Let B be a cylindric algebra and X be its corresponding dual cylindric
space. We have that B is simple iff X is a quasi-square. We also have that
the cardinalities of the sets of E1- and E2-clusters of X coincide.

Definition 5.1. 1. A quasi-square X is said to be of depth n (0 < n < ω)
if the cardinality of the set of E1-clusters (E2-clusters) of X is equal to
n.
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2. A quasi-square X is said to be of an infinite depth if the cardinality of
the set of E1-clusters (E2-clusters) of X is infinite.

3. A simple cylindric algebra B is said to be of depth n if its dual quasi-
component X is of depth n.

4. A simple cylindric algebra B is said to be of an infinite depth if its dual
quasi-component X is of an infinite depth.

5. A variety V of cylindric algebras is said to be of depth n if there is
a simple V-algebra of depth n and the depth of every other simple V-
algebra is less than or equal to n.

6. A variety V is said to be of depth ω if the depth of simple members of
V is not bounded by any natural number.

We note that there exists a formula measuring the depth of a variety of
cylindric algebras (see [2, Theorem 4.2]). Let d(V) denote the depth of the
variety V. Our goal is to show that a variety V of cylindric algebras is locally
finite iff d(V) < ω. For this we need the following definition.

Definition 5.2. 1. Call a quasi-square X uniform if every non-diagonal
E0-cluster of X is a singleton set, and every diagonal E0-cluster of X
contains only two points.

2. Call a simple cylindric algebra B uniform if its dual quasi-square X is
uniform.

Finite uniform quasi-squares are shown in Fig.2 below, where the bold
points denote the diagonal points.
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Fig.2
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Denote by Xn the uniform quasi-square of depth n. Also let Bn denote
the uniform cylindric algebra of depth n. It is obvious that Xn is (isomorphic
to) the dual cylindric space of Bn. Let U denote the variety generated by all
finite uniform cylindric algebras, that is U = HSP({Bn}n∈ω).

Proposition 5.3. U ⊆ RCA2.

Proof. Since none of the diagonal E0-clusters of Xn is a singleton set, Xn does
not satisfy (∗). Therefore, each Bn is representable by Theorem 3.4. Thus,
{Bn}n∈ω ⊆ RCA2, implying that U ⊆ RCA2.

Lemma 5.4. 1. If B is a simple cylindric algebra of an infinite depth,
then each Bn is a subalgebra of B.

2. If B is a simple cylindric algebra of depth 2n, then Bn is a subalgebra
of B.

Proof. (1) Suppose B is a simple cylindric algebra of an infinite depth and
X is its dual cylindric space. Then X is a quasi-square with infinitely many
E1- and E2-clusters. In the same way as in the proof of Claim 4.7 of [2],
for every n we can divide X into n-many E1-saturated disjoint clopen sets
G1, . . . , Gn. We let Di = D∩Gi and Fi = E2(Di) for i = 1, . . . , n. Obviously
each of Di’s and Fi’s is clopen. Define a partition R of X by putting:

xRy iff x, y ∈ D and there exists i = 1, . . . , n such that x, y ∈ Di;

xRy iff x, y ∈ X − D and there exist 1 ≤ j, k ≤ n such that x, y ∈
Gj ∩ Fk.
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It is easy to check, or transform the proof of Claim 4.7 of [2], that R is
a cylindric partition of X , and that X /R is isomorphic to Xn. Therefore, by
Theorem 2.10(2), each Bn is a subalgebra of B.

(2) Suppose B is a simple cylindric algebra of depth 2n and X is its
dual cylindric space. Then X is a quasi-square. Moreover, there are exactly
2n-many E1- and E2-clusters of X . Obviously all of them are clopens. Let
C1, . . . , C2n be E1-clusters of X and let Gi = C2i−1 ∪ C2i for i = 1, . . . , n.
Obviously every Gi is E1-saturated clopen. Moreover, the same arguments
as in (1) show that Bn is a subalgebra of B.

Theorem 5.5. For a variety V of cylindric algebras, d(V) = ω iff U ⊆ V.

Proof. It is obvious that d(U) = ω. So, if U ⊆ V, then obviously d(V) = ω.
Conversely, suppose d(V) = ω. We want to show that every finite uniform
cylindric algebra belongs toV. Since d(V) = ω, the depth of simple members
of V is not restricted to any natural number. So, either there exists a family
of simple V-algebras of increasing finite depth, or there exists a simple V-
algebra of an infinite depth. In either case, it follows from Lemma 5.4 that
{Bn}n∈ω ⊆ V. Therefore, U ⊆ V since {Bn}n∈ω generates U.

Our next task is to show that U is not a locally finite variety. For this
we recall the coloring technique first introduced in Esakia and Grigolia [4].
Suppose B is a cylindric algebra, X is its dual cylindric space, and g1, . . . , gn

are elements of B. Let n = {0, . . . , n − 1}. For i ∈ n let Gi ∈ CP (X) be
the clopen corresponding to gi ∈ B. Also let Fp = Gε1

1 ∩ . . . ∩ Gεn
n , where

εi ∈ {0, 1}, p = {i : εi = 1} and

Gεi

i =

{

Gi, if εi = 1
−Gi, otherwise.

It is obvious that {Fp}p⊆n is a partition ofX into 2n-many equivalence classes,
which we call the coloring of X. A given x ∈ Fp is said to have the color p,
written as Col(x) = p.

Theorem 5.6. (Coloring Theorem) B is generated by g1, . . . , gn iff for every
non-trivial cylindric partition R of X , there exists an equivalence class of R
containing the points of different color.

Proof. A straightforward adaptation of the Generation Theorem of [4]. Sup-
pose B is generated by g1, . . . , gn and R is a non-trivial cylindric partition
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of X . Consider the set PR of the R-saturated elements of CP (X). Since
g1, . . . , gn generate B and R is a non-trivial cylindric partition, there exists
i ∈ n such that Gi /∈ PR. Therefore, there exists p ⊆ n such that Fp is not
R-saturated. But then there exists x ∈ Fp such that R(x) ∩ Fp 6= ∅ and
R(x) ∩ −Fp 6= ∅. Hence, R(x) contains points of different color.

Conversely, suppose B is not generated by g1, . . . , gn. Denote by B0 the
subalgebra of B generated by g1, . . . , gn. Obviously B0 is a proper subalgebra
of B and the cylindric partition R of X corresponding to B0 is non-trivial.2

Moreover, since g1, . . . , gn ∈ B0, we have R(Gi) = Gi (i ∈ n), and hence
R(Fp) = Fp (p ⊆ n). But then every equivalence class of R contains points
of the same color.

Lemma 5.7. 1. Every finite square algebra is cyclic.

2. Every finite uniform algebra is cyclic.

Proof. (1) For a finite square X = (n × n,E1, E2, D), consider the set G =
{(k,m) : k < m}. We show that the square algebra (P (n× n), E1, E2, D) is
generated by G. For this observe that G gives rise to two colors, the 0-color
corresponding to −G and the 1-color corresponding to G. This coloring is
shown in Fig.3(a), where the points of the empty color are in squares and
the points of the 1-color are in circles. Let R be a non-trivial cylindric
partition of X . Since R is non-trivial, R must identify at least two different
diagonal points, say x and y. This immediately implies that the points
z ∈ E1(x) ∩ E2(y) and u ∈ E2(x) ∩ E1(y) should also be identified by R.
However, one of z and u belongs to G and another to −G, and points from
G and −G have different colors. So, every non-trivial cylindric partition
identifies the points of different color, which by the Coloring Theorem implies
that G generates (P (n× n), E1, E2, D).

(2) is proved analogously to (1). If B is a finite uniform algebra and X is
its dual cylindric space, then X is obtained from a finite square by replacing
the diagonal by the two point E0-cluster containing one diagonal point, and
the same arguments as above imply that the lower triangle G generates B
(see Fig.3(b)).

2R is defined on X by putting xRy iff a ∈ x ⇔ a ∈ y for every a ∈ B0.
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Remark 5.8. Note that the Df 2-reducts of finite uniform algebras are not
generated by G. Indeed, since the equivalence relation R identifying the
points of one color in the non-singleton E0-clusters is a correct Df 2-partition,
there exists a non-trivial correct Df 2-partition identifying the points of the
same color, and by the Df 2-version of the Coloring Theorem we obtain that
G does not generate B. Of course, R is not a cylindric partition because
R(D) 6= D. Actually, no finite uniform algebra is a cyclic Df 2-algebra since
we can show that the following theorem holds true: A quasi-square Df 2-
algebra is cyclic iff either it is a square algebra, or every E0-cluster of its
dual space is a singleton set except one E0-cluster that contains exactly two
points.

Now in order to conclude that U is not locally finite all we need is
to remember the following characterization of locally finite varieties from
G. Bezhanishvili [1].

Theorem 5.9. A variety V of a finite signature is locally finite iff for every
natural number n there exists a natural numberM(n) such that the cardinality
of every n-generated subdirectly irreducible V-algebra is less than or equal to
M(n).
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Corollary 5.10. U is not locally finite.

Proof. Follows from Lemma 5.7 and Theorem 5.9.

It is left to be shown that if d(V) < ω, then V is locally finite. For this
we need the following lemma.

Lemma 5.11. If d(V) < ω, then for every n-generated simple V-algebra B
there exists a natural number M(n) such that the cardinality of B is bounded
by M(n).

Proof. Let d(V) = k < ω and consider a simple n-generated V-algebra B.
Let g1, . . . , gn be the generators of B and X be the dual cylindric space of B.
Then X is a quasi-square and there exists a partition of X into 2n different
colors. If there is a non-diagonal E0-cluster C of X containing more than
2n points, then consider the smallest equivalence relation R on X identifying
two points of the same color in C. Obviously R is a cylindric partition
and each R-equivalence class has the same color. Therefore, by Coloring
Theorem, B is not generated by g1, . . . , gn. Thus, every non-diagonal E0-
cluster of X contains no more than 2n points. Similar arguments show that
every diagonal E0-cluster contains at most 2n + 1 points. Now since there
exist at most k2 different E0-clusters of X , the cardinality of X is bounded by
b(n) = k2(2n+1). Thus, the cardinality of B is bounded byM(n) = 2b(n).

Corollary 5.12. If d(V) < ω, then V is locally finite.

Proof. Follows from Lemma 5.11 and Theorem 5.9.

Finally, combining Corollary 5.10 with Corollary 5.12 we obtain the fol-
lowing characterization of locally finite varieties of cylindric algebras.

Theorem 5.13. 1. For V ⊆ CA2 the following conditions are equivalent:

(a) V is locally finite;

(b) d(V) < ω;

(c) U 6⊆ V.

2. U is the only pre locally finite subvariety of CA2.
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Therefore, in contrast to the diagonal-free case, there exist uncountably
many subvarieties of CA2 (RCA2) which are not locally finite. Since every
locally finite variety is obviously generated by its finite members, we obtain
from Theorem 5.13 that every subvariety ofCA2 of a finite depth is generated
by its finite members. We conjecture that every subvariety of CA2 is in fact
generated by its finite members.

6 Finitely generated and pre finitely gener-

ated subvarieties of CA2

Recall that a variety of universal algebras is said to be finitely generated if
it is generated by a finite universal algebra. We call a variety pre finitely
generated if it is not finitely generated but all its proper subvarieties are.
It was shown in [2, Theorem 5.4] that there exist exactly six pre finitely
generated varieties in Λ(Df 2). The situation is more complex in Λ(CA2). In
this section, we show that there exist exactly fifteen pre finitely generated
varieties in Λ(CA2), and that six of them belong to Λ(RCA2). It trivially
implies a characterization of finitely generated subvarieties of Λ(CA2).

Consider the finite quasi-squares X i
n shown in Fig.4, where i = 1, . . . , 15

and n ∈ ω. It is easy to see that each E0-cluster of X i
n consists of either

one, two or n points3. Let Bi
n denote the cylindric algebra corresponding to

X i
n. For fixed i = 1, . . . , 15 let Vi denote the variety generated by the family
{Bi

n : n ∈ ω}. From Theorem 3.4 it follows that only B1n, . . . ,B
4
n, B

11
n and

B12n are representable algebras, and so only V1−V4, V11 and V12 belong to
Λ(RCA2).

3In X 1
n , X

2
n and X 3

n we assume that n > 1.
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Fig.4

²± °̄

r

rr

X 12
n

E1

E2
r

²± °̄

r

r

X 13
n

E1

E2
r

²± °̄

r
r
E1

E2
rr²± °̄p

²± °̄

r

E1

E2
r

²± °̄p
X 15

nX 14
n

r²± °̄p
rrr²± °̄p

rrrr²± °̄p

rrr²± °̄p
rr

rr
r
r²± °̄p

rrr²± °̄p
r
p

pp p ppn

²± °̄pp p ppn

²± °̄²± °̄pp p ppn

²± °̄²± °̄²± °̄pp p ppn

Now we are in a position to prove that V1−V15 are the only pre finitely
generated subvarieties of CA2. For this we need to show that V1 −V15 are
not finitely generated, which follows from their definition, and that every
variety of cylindric algebras which is not finitely generated contains exactly
one of V1 −V15.

Lemma 6.1. V2 ⊂ U.

Proof. Suppose Bn is the finite uniform algebra of depth n. We show that
B2n is a subalgebra of Bn. Consider the uniform square Xn of depth n, fix
a diagonal E0-cluster, say C, and let D ∩ C = {x0}. Define an equivalence
relation R on X by putting:

xRy iff x = y for all x, y ∈ C;

xRy for all x, y ∈ E1(C)− C;

xRy for all x, y ∈ E2(C)− C;

xRy for all x, y ∈ D − {x0};
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Let any other R-equivalence class consist of exactly n−1 points chosen
so that the class contains just one point from each Ei-cluster of X −
(E1(C) ∪ E2(C) ∪D) for i = 1, 2.

It is a matter of routine verification that R is a cylindric partition, and
that Xn/R is isomorphic to X 2

n . Therefore, B
2
n is a subalgebra of Bn for every

n, implying that V2 ⊂ U.

Therefore, we obtain that if d(V) = ω, then V2 ⊆ V. Suppose d(V) < ω.
Then V is locally finite by Theorem 5.13. Let FinVS denote the class of all
finite simple V-algebras. Since V is locally finite, V is generated by FinVS.
Suppose B ∈ FinVS and X is its dual cylindric space. Then X is a finite
quasi-square. Fix x ∈ X.

Definition 6.2. 1. Call the number of elements of E0(x) the girth of x.

2. The maximum of the girths of all x ∈ E0(D) is called the diagonal girth
of X .

3. The maximum of the girths of all x ∈ X − E0(D) is called the non-
diagonal girth of X .

4. The diagonal girth of B is the diagonal girth of X .

5. The non-diagonal girth of B is the non-diagonal girth of X .

6. The diagonal girth of V is said to be n if there is B ∈ FinVS whose
diagonal girth is n, and the diagonal girths of all the other members of
FinVS are less than or equal to n.

7. The diagonal girth of V is said to be ω if the diagonal girths of the
members of FinVS are not bounded by any integer.

8. The non-diagonal girth of V is said to be n if there is B ∈ FinVS

whose non-diagonal girth is n, and the non-diagonal girths of all the
other members of FinVS are less than or equal to n.

9. The non-diagonal girth of V is said to be ω if the non-diagonal girths
of the members of FinVS are not bounded by any integer.
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Lemma 6.3. If V is a variety of cylindric algebras of finite depth whose
diagonal and non-diagonal girths are bounded by some integer, then V is a
finitely generated variety.

Proof. There exist only finitely many non-isomorphic finite simple cylin-
dric algebras whose depth, the diagonal girth and the non-diagonal girth
are bounded by some integer. Therefore, there are only finitely many non-
isomorphic finite simple V-algebras, implying that V is finitely generated.

It follows that if a variety V of a finite depth is not finitely generated,
then either the diagonal girth or the non-diagonal girth of V must be ω.

Lemma 6.4. If V is a variety of finite depth whose diagonal girth is ω, then
one of V1 −V3 is contained in V.

Proof. Since the diagonal girth of V is ω, for each n there is B ∈ FinVS

whose diagonal girth is n. Let X be the dual cylindric space of B. Then
X is a quasi-square. Denote by C the diagonal E0-cluster of X containing
n points. Then two cases are possible. Either d(X ) = 1 or d(X ) ≥ 2 for
infinitely many n. In the former case, it is obvious that X is isomorphic to
X 1

n , and so V1 ⊆ V. In the latter case, define an equivalence relation R on
X by putting:

xRy iff x = y for any x, y ∈ C ∪D;

xRy iff xE0y for any x, y ∈ X − (C ∪D).

Clearly R is a cylindric partition. Denote X /R by Y . Then every non-
diagonal E0-cluster of Y is a singleton set and every diagonal E0-cluster
different from C contains either one or two points.

Again there are two cases possible. Either d(Y) = 2 or d(Y) > 2 for
infinitely many n. In the former case, Y is isomorphic to either X 2

n or X 3
n for

infinitely many n. Therefore, either V2 ⊂ V or V3 ⊂ V. And in the latter
case, define an equivalence relation Q on Y by putting:

xQy iff x = y for any x, y ∈ C;

xQy for any x, y ∈ E1(C)− C;

xQy for any x, y ∈ E2(C)− C;



6 FINITELY GENERATED ... 23

xQy for any x, y ∈ D − C;

xQy for any x, y ∈ Y − (E1(C) ∪ E2(C) ∪D).

It is a matter of routine verification that Q is a cylindric partition, and
that Y/Q is isomorphic to X 2

n . Thus, V2 ⊂ V.

Lemma 6.5. If V is a variety of finite depth whose non-diagonal girth is ω,
then one of V4 −V15 is contained in V.

Proof. Since the non-diagonal girth of V is ω, for each n there is B ∈ FinVS

whose non-diagonal girth is n. Let X be the dual cylindric space of B. Then
X is a quasi-square. Denote by C the non-diagonal E0-cluster of X containing
n points. Since the non-diagonal E0-clusters exist only in cylindric spaces of
depth > 1, we have d(X ) > 1. Define an equivalence relation R on X by
putting:

xRy iff x = y for any x, y ∈ C ∪D;

xRy iff xE0y for any x, y ∈ X − (C ∪D).

Clearly R is a cylindric partition. Since d(X ) > 1, there are three cases
possible. Either d(X ) = 2, d(X ) = 3, or d(X ) > 3 for infinitely many n.

If d(X ) = 2 for infinitely many n, then X /R is isomorphic to one of
X 4

n −X
7
n for infinitely many n, implying that one of V4−V7 is contained in

V.
If d(X ) = 3 for infinitely many n, then X /R is isomorphic to one of

X 8
n − X

15
n for infinitely many n, implying that one of V8 −V15 is contained

in V.
Finally, let 3 < d(X ) < ω for infinitely many n. Denote by C ′ the diagonal

E0-cluster E1-related to C, and by C ′′ - the diagonal E0-cluster E2-related
to C. Define an equivalence relation R on X by putting:

xRy iff x = y for any x, y ∈ C ∪ ((C ′ ∪ C ′′) ∩D);

xRy for any x, y ∈ D − (C ′ ∪ C ′′);

xRy for any x, y ∈ X − (D ∪ E1(C
′) ∪ E2(C

′) ∪ E1(C
′′) ∪ E2(C

′′);

xRy iff xE0y for any x, y ∈ (E2(C
′) ∩ E1(C

′′)) ∪ ((C ′ ∪ C ′′)−D);
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xRy for any x, y ∈ E2(C)− (C ∪ C ′′);

xRy for any x, y ∈ E1(C)− (C ∪ C ′);

xRy for any x, y ∈ E2(C
′)− (E1(C

′′) ∪ C ′);

xRy for any x, y ∈ E1(C
′′)− (E2(C

′) ∪ C ′).

It is a matter of routine verification that R is a cylindric partition. More-
over, there are four cases possible. Either both C ′ and C ′′ are singleton sets,
C ′ is a singleton set and C ′′ is not, C ′′ is a singleton set and C ′ is not, or
neither C ′ nor C ′′ are singleton sets, for infinitely many n. In the first case
X /R is isomorphic to X 15

n , in the second case X /R is isomorphic to X 14
n , in

the third case X /R is isomorphic to X 13
n , and finally in the fourth case X /R

is isomorphic to X 12
n . Therefore, one of V12 −V15 is contained in V.

Thus, going through all the cases we obtained that one of V4 − V15 is
contained in V.

Corollary 6.6. 1. V1 −V15 are the only pre finitely generated varieties
in Λ(CA2).

2. V1 −V4, V11 and V12 are the only pre finitely generated varieties in
Λ(RCA2)

Proof. It is an immediate consequence of Lemmas 6.1, 6.3 – 6.5, and the fact
that all the fifteen varieties are non-comparable.

7 Lattice structure of Λ(CA2)

In order to obtain a rough picture of the lattice structure of subvarieties of
CA2, we need the following notation:

FG = {V ∈ Λ(CA2) : V is finitely generated};

DF = {V ∈ Λ(CA2) : d(V) < ω and V /∈ FG};

Dω = {V ∈ Λ(CA2) : d(V) = ω}.

Let also V⊥ denote the trivial variety.

Theorem 7.1. 1. {FG,DF ,Dω} is a partition of Λ(CA2).
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2. V⊥ is a least element of FG.

3. FG does not have maximal elements.

4. DF has precisely fifteen minimal elements.

5. DF does not have maximal elements.

6. U and CA2 are a least and a greatest elements of Dω, respectively.

Proof. Follows immediately from Theorem 5.5 and Corollary 6.6.

The lattice Λ(CA2) can be roughly depicted as shown in Fig.5 below.
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Now we will investigate the lower part of Λ(CA2) in a greater detail.
It follows from Corollary 6.6 that a variety V ⊆ CA2 (RCA2) is finitely
generated iff V does not contain one of the fifteen (six) pre finitely generated
varieties. Another criterion is given by the following theorem.

Theorem 7.2. For a variety V ⊆ CA2 the following conditions are equiva-
lent:

1. V is finitely generated.
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2. V has only finitely many subvarieties.

3. V contains only finitely many non-isomorphic simple algebras (and all
of them are finite).

Proof. (1)⇒ (2) is straightforward since CA2 is congruence-distributive.
(2) ⇒ (3). If V contains an infinite family {Bi}i∈I of non-isomorphic

simple algebras, then {HSP(Bi)}i∈I is an infinite family of subvarieties of V,
which is a contradiction.

(3)⇒ (1). Let {Bi}
n
i=1 be the family of all (finite) simple non-isomorphic

V-algebras. Then
∏n

i=1 Bi generates V.

Corollary 7.3. 1. Every cover of a finitely generated variety of cylindric
algebras is finitely generated.

2. A finitely generated variety of cylindric algebras has only finitely many
covers.

Proof. (1) IfV′ is a cover ofV andV is finitely generated, then there are only
finitely many subvarieties of V′, hence V′ is finitely generated by Theorem
7.2.

(2) The proof is analogous to the standard proof that a finitely generated
variety of K4-algebras has only finitely many covers (see, e.g., Kracht [6] or
Chagrov and Zakharyaschev [3]).

7.1 Varieties of cylindric algebras of depth one

In this subsection we give a complete charcterization of the lattice structure
of the varieties of cylindric algebras of depth one.

Let 2n denote the 2n-element Df 2-algebra, where n ≥ 1 and

∃i(a) =

{

0 if a=0,
1 otherwise,

for i = 1, 2. Let also d be an atom of 2n. Then (2n, d) is a cylindric algebra.
We recall that in the diagonal-free case the two-element Df2-algebra 2 is a
subalgebra of every nontrivialDf2-algebra. ForCA2 the situation is different.

Proposition 7.4. Suppose B is a nontrivial simple cylindric algebra.

1. (2, 1) is a subalgebra of B iff B is isomorphic to (2, 1).
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2. If B is not isomorphic to (2, 1), then (22, d) is a subalgebra of B.

Proof. (1) If (2, 1) is a subalgebra of B = (B, d), then d = 1, which implies
that B = 2.

(2) It is known that ∃1∃2 − d = ∃1 − d = ∃2 − d (see, e.g., [5, Theorem
1.3.18]). Since B is not isomorphic to (2, 1), we have d 6= 1. Hence, −d 6= 0.
So, ∃1∃2−d = 1 since B is simple. Thus, {1, 0, d,−d} is a cylindric subalgebra
of B.

Corollary 7.5. If a variety V of cylindric algebras contains the two-element
cylindric algebra (2, 1), then V is generated by a simple algebra iff V =
Var(2, 1).

Proof. Suppose (2, 1) ∈ V andV is generated by a simpleV-algebra B. Then
Jónsson’s Lemma implies that (2, 1) ∈ S(B), and applying Proposition 7.4
we obtain that B is isomorphic to (2, 1).

Let V1 ⊆ CA2 be the variety of all cylindric algebras of depth one. It
is known from [2, Theorem 4.2] that V1 = CA2 + (∃2∃1a ≤ ∃1a). Let
(F ,≤) denote the partially ordered set of all non-isomorphic finite cylindric
algebras of depth one. We recall from Section 3 that ≤ is defined on F by
putting B ≤ B′ iff B ∈ S(B′). It follows from Proposition 7.4 that (F ,≤) is
isomorphic to the disjoint union of the set of natural numbers (N,≤) with
the set consisting of one reflexive point.

- -

t
q q qt t t

(22, d) (23, d) (24, d)

(2, 1)

Fig.6

Recall that G ⊆ F is called a downset of F if A ∈ G and B ≤ A imply
B ∈ G. Since every variety of cylindric algebras of finite depth is locally
finite, using the standard splitting technique (see, e.g., Kracht [6]) one can
easily obtain the following representation of the lattice of varieties of cylindric
algebras of depth one.
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Theorem 7.6. The lattice of varieties of cylindric algebras of depth one is
isomorphic to the lattice of downsets of (F ,≤).

The lattice of varieties of cylindric algebras of depth one is shown in
Fig.7 below. To explain the labelling, with each downset of (F ,≤) of the
form ↓ (2n, d) = {(2k, d) : 1 < k < n} we associated the variety V(2n,d)

generated by (2n, d); and with each downset of the form ↓(2n, d)∪{(2, 1)} we
associated the variety V(2,1)×(2n,d) generated by (2, 1)× (2n, d); furthermore,
V1 = HSP({(2n, d) : n > 1}).

Fig. 7
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Theorem 7.7. Every subvariety of V1 is finitely axiomatizable.

Proof. A proof similar to the proof in [8] shows that the formula

n+1
∧

k=1

∃1ak ≤
∧

1≤k,j≤n+1

∃1(ak ∧ aj)

holds true in a simple cylindric algebra iff the corresponding quasi-square
contains ≤ n points. Therefore, the varieties V(2,1)×(2n,d) are axiomatized by
these formulas. On the other hand, the identity ∃1 − d = 1 holds true in
(2n, d) iff n > 1. Therefore, the variety V1 is axiomatized by the identity
∃1 − d = 1, while the varieties V(2n,d) are axiomatized by adding ∃1 − d = 1
to the identities of V(2,1)×(2n,d).
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Remark 7.8. In fact, using the Jankov type formulas, we can show that
every subvariety of CA2 of finite depth is finitely axiomatizable (for the
Jankov formulas see, e.g., [6]).

7.2 Reduct functors

Suppose B = (B,∃1,∃2, d) is a cylindric algebra. In Section 2 we denoted
its Df2-reduct by F(B) = (B,∃1,∃2) ∈ Df2. If K is a subclass of CA2, let
F(K) = {F(B) : B ∈ K}. Also if M is a subclass of Df 2, let F−1(M) = {B ∈
CA2 : F(B) ∈M}.

Lemma 7.9. Suppose K ⊆ CA2 and M ⊆ Df 2. Then the following hold.

1. HF(K) = FH(K).

2. SF(K) ⊃ FS(K).

3. PF(K) = FP(K).

4. HF−1(M) ⊂ F−1H(M).

5. SF−1(M) ⊂ F−1S(M).

6. PF−1(M) = F−1P(M).

Proof. (1) Since every cylindric homomorphism is a also a Df 2-homomor-
phism, it is obvious that FH(K) ⊆ HF(K). Conversely, suppose (A, d) is
a cylindric algebra and there is a Df 2-homomorphism h from A = F(A, d)
to a Df2-algebra B. Using the fact that h is onto it is easy to show that
(B, h(d)) is a cylindric algebra, and that h : (A, d)→ (B, h(d)) is a cylindric
homomorphism. Thus, HF(K) = FH(K).

(2) It is obvious that if B is a cylindric subalgebra of A, then F(B)
is a Df2-subalgebra of F(A). Hence, FS(K) ⊆ SF(K). To see that the
converse inclusion does not hold, let d(K) ≥ 2 and consider B ∈ K with
d(B) ≥ 2. Denote by X = (X,E1, E2, D) the dual cylindric space of B.
Define a partition R on X by putting xRy if xE2y. Then R is a correct
Df2-partition and the Df 2-algebra A corresponding to the Df 2-space X/R
belongs to SF(K). On the other hand, the E1-depth of X/R is 1 and the
E2-depth of X/R is ≥ 2. Therefore, X/R has different E1 and E2 depths,
which implies that A can not be the reduct of any cylindric algebra. Thus,
SF(K) 6⊆ FS(K).
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(3) easily follows from the fact that for any family {Bi}i∈I of cylindric
algebras we have F(

∏

i∈I Bi) =
∏

i∈I F(Bi).
(4) ThatHF−1(M) ⊆ F−1H(M) follows from the fact that every cylindric

homomorphism is a also a Df 2-homomorphism. To show that this inclusion
is proper, consider a cylindric algebra B and let A be a Df2-algebra such that
d1(A) 6= d2(A). Then F(B) is a homomorphic image of F(B) × A, but since
d1(A) 6= d2(A), F(B) × A is not the reduct of any cylindric algebra. Hence,
B ∈ F−1H({F(B)× A}), but HF−1({F(B)× A}) is empty.

(5) That SF−1(M) ⊆ F−1S(M) follows from the fact that if B is a cylindric
subalgebra of A, then F(B) is a Df 2-subalgebra of F(A). To see that this
inclusion is proper, suppose the two-element Df 2-algebra 2 does not belong
to M . Then the two-element cylindric algebra, (2, 1) does not belong to
F−1(M). By Proposition 7.4 (2, 1) /∈ SF−1(M). On the other hand, 2 is
a Df2-subalgebra of every Df 2-algebra. Therefore, 2 ∈ S(M) and (2, 1) ∈
F−1(S(M)).

(6) That PF−1(M) ⊆ F−1P(M) follows from the definition of the product
of cylindric algebras. To see the converse, suppose B ∈ F−1P(M). Then B =
(B, d), where B =

∏

i∈I Bi for someDf 2-algebras Bi ∈M . Let (Bi, di) be the
i-th projection of B. Since the i-th projection is an ontoDf2-homomorphism,
we can show similarly to (1) that each (Bi, di) is a cylindric algebra, and that
d = 〈di〉i∈I . Then B is isomorphic to

∏

i∈I(Bi, di). Now every (Bi, di) belongs
to F−1(M). Hence, F−1P(M) ⊆ PF−1(M).

Theorem 7.10. 1. If V is a subvariety of Df 2, then F−1(V) is a subva-
riety of CA2.

2. For a non-trivial subvariety V of CA2, F(V) is a subvariety of Df 2 iff
V = V(2,1)×(2n,d) for some n ∈ ω.

Proof. (1) By Lemma 7.9 we have HSPF−1(V) ⊆ F−1(HSP(V)) = F−1(V).
Hence, F−1(V) is a variety of cylindric algebras.

(2) Suppose V is a subvariety of CA2. If d(V) > 1, then it follows
from the proof of Lemma 7.9(2) that F(V) is not closed under subalgebras,
hence is not a variety. If (2, 1) 6∈ V, then F(2, 1) /∈ F(V) and again F(V) is
not a variety since every nontrivial variety of diagonal-free cylindric algebras
contains 2 = F(2, 1). Finally, we show that F(V1) is not a variety. Let
C denote the Cantor space. Then X = (C, E1, E2) is a Df2-space, where
E1(c) = E2(c) = C for any c ∈ C. If X was the reduct of a cylindric
space, then X would contain an isolated point. Since C is dense in itself,
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it follows that X is not the reduct of any cylindric space. Let {y} be a
singleton topological space. Then Y = (C ⊕ {y}, E1, E2, {y}) is a cylindric
space, where E1(x) = E2(x) = C ⊕ {y} for any x ∈ C ⊕ {y}. Moreover,
B = (CP (Y), E1, E2, {y}) is an infinite simple cylindric algebra of depth 1,
and so B ∈ V1. Now consider R(Y) = (C ⊕ {x0}, E1, E2). Fix any point
c ∈ C and let R be the smallest equivalence relation which identifies y and
c. It is easy to check that R is a correct Df2-partition, and that R(Y)/R is
isomorphic to X . So, A = (CP (X ), E1, E2) is isomorphic to aDf2-subalgebra
of F(B), but it is not the reduct of any cylindric algebra. Hence, A does not
belong to F(V1), and so F(V1) is not a variety. Therefore, ifV 6= V(2,1)×(2n,d)

for any n ∈ ω, then F(V) is not a variety. Conversely, one can easily verify
that for any n ∈ ω, F(V(2,1)×(2n,d)) = V2n , where 2n = F((2n, d)). This
finishes the proof of the theorem.

We define a map Φ : Λ(CA2) → Λ(Df 2) from the lattice Λ(CA2) of
subvarieties of CA2 to the lattice Λ(Df 2) of subvarieties of Df 2 by putting
Φ(V) = S(F(V)). It follows from Lemma 7.9 that Φ is well defined. The
following theorem establishes basic properties of Φ.

Theorem 7.11. 1. Φ is order preserving.

2. For L ∈ Λ(Df 2), if d1(L) 6= d2(L), then Φ−1(L) = ∅.

3. Φ−1(Df2) = [U,CA2].

4. Φ is neither surjective nor injective and does not preserve ∧.

5. Φ preserves top, bottom, and ∨.

Proof. (1) directly follows from the definition of Φ.
(2) First we show that

d(V) = d1(Φ(V)) = d2(Φ(V)) (D)

for every V ∈ Λ(CA2). It is obvious that d(V) ≤ d1(Φ(V)), d2(Φ(V)).
Conversely, for each finite simple algebra A ∈ Φ(V), there exists B ∈ F(V)
such that A is a subalgebra of B. Hence, di(A) ≤ di(B) ≤ d(V), and
therefore, d(V) ≥ d1(Φ(V)), d2(Φ(V)). Now suppose L ∈ Λ(Df 2) and
d1(L) 6= d2(L). If there exists V ∈ Φ−1(L), then it follows from (D) that
d(V) = d1(L) = d2(L), which is a contradiction.
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(3) First we show that Φ(U) = Df 2. Let Bn be a finite uniform cylindric
algebra and Xn its dual uniform space. Then the quotient-space R(Xn)/E0 is
isomorphic to n× n. Hence, every finite square Df2-algebra is a subalgebra
of F(Bn) for some n ∈ ω. Therefore, every finite square Df2-algebra belongs
to Φ(U). Since Df 2 is generated by its finite square algebras (see, e.g., [9]
or [2]), then Φ(U) = Df 2. Now since Φ is order preserving, we get that
Φ−1(Df2) = [U,CA2].

(4) That Φ is not a surjection follows from (2). To see that it is not an
injection consider the varieties VB3

2
and VB5

2
, where B32 and B52 denote the

cylindric algebras of the power sets of the cylindric spaces X 3
2 and X 5

2 shown
in Fig.4 above (see Section 6). Since B32 is representable and B52 is not, B32 is
not isomorphic to B52. Therefore, VB3

2
6= VB5

2
. However, F(B32) is isomorphic

to F(B52). Hence, Φ(VB3
2
) = Φ(VB5

2
), and so Φ : Λ(CA2)→ Λ(Df 2) is not an

injection.
To show that Φ does not preserve ∧ we again consider the varieties VB3

2

and VB5
2
. It is easy to check that (22, d) is the only subdirectly irreducible

member of the variety VB3
2
∩ VB5

2
. Therefore, VB3

2
∩ VB5

2
= V(22,d). How-

ever, since F(B32) is isomorphic to F(B52), F(B32) belongs to both Φ(VB3
2
)

and Φ(VB5
2
). Hence, it also belongs to their intersection. By (D) we know

that d1(Φ(V(22,d))) = d2(Φ(V(22,d))) = 1. On the other hand, di(Φ(VB3
2
) ∩

Φ(VB5
2
)) = 2 for i = 1, 2. Therefore, Φ(V(22,d)) 6= Φ(VB3

2
) ∩ Φ(VB5

2
), and so

Φ does not preserve ∧.
(5) That Φ(CA2) = Df2 follows from (3). Hence, Φ preserves top. Ob-

viously the Φ-reduct of the trivial variety of cylindric algebras is the trivial
variety of Df 2-algebras. Therefore, Φ preserves bottom. Finally, we show
that Φ preserves ∨, that is Φ(V1 ∨V2) = Φ(V1) ∨ Φ(V2). Indeed,

Φ(V1 ∨V2) = HSP({F(B) : B ∈ V1 ∨V2})
= HSP({F(B) : B ∈ (V1 ∨V2)S}).

By Jónsson’s lemma (V1 ∨ V2)S = (V1)S ∪ (V2)S. Also recall that for
arbitrary classes of universal algebras Γ and ∆, we have HSP(Γ ∪ ∆) =
HSP(HSP(Γ) ∪HSP(∆)). Hence,
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Φ(V1 ∨V2) = HSP({F(B) : B ∈ (V1)S ∪ (V2)S})
= HSP({F(B) : B ∈ (V1)S} ∪ {F(B) : B ∈ (V2)S})
= HSP(HSP({F(B) : B ∈ (V1)S})∪

HSP({F(B) : B ∈ (V2)S}))
= HSP(Φ(V1) ∪ Φ(V2))
= Φ(V1) ∨ Φ(V2).

Note that there are subvarieties L of Df 2 such that d1(L) = d2(L) and
still Φ−1(L) = ∅. For example, let L be a proper subvariety of Df 2 with
d1(L) = d2(L) = ω. We know from [2] that such varieties exist. If Φ−1(L) 6=
∅, then there exists V ∈ Λ(CA2) such that Φ(V) = L. It follows from the
equation (D) that d(V) = ω. Therefore, V ∈ [U,CA2]. This, together with
Theorem 7.11(3), implies that Φ(V) = Df 2 6= L, which is a contradiction.
Thus, Φ−1(L) = ∅, even though d1(L) = d2(L).

Suppose V ∈ Λ(CA2) and L ∈ Λ(Df 2). For a property P of varieties
of universal algebras, we say that Φ preserves P if Φ(V) has P whenever V
does; and we say that Φ reflects P if every variety in Φ−1(L) has P whenever
L does.

Theorem 7.12. 1. P is preserved by Φ if P is one of the following proper-
ties: (a) being finitely approximable; (b) being of finite depth; (c) being
locally finite; (d) being pre locally finite; (e) being finitely generated.

2. P is not preserved by Φ if P is the property of being pre finitely gener-
ated.

3. P is reflected by Φ if P is one of the following properties: (a) being of
finite depth; (b) being locally finite; (c) being finitely generated;

4. P is not reflected by Φ if P is the property of (a) being pre locally finite;
(b) being pre finitely generated.

Proof. 1. (a) is obvious since every subvariety of Df2 is finitely approximable
(see [2, Corollary 4.9.]). (b) follows from the equation (D). (c) Suppose
V ⊆ CA2 is locally finite. Then V has finite depth. By (b) Φ(V) also
has finite depth. Hence, Φ(V) is a proper subvariety of Df 2. But every
proper subvariety of Df 2 is locally finite. Therefore, Φ(V) is locally finite.
(d) The only pre locally finite subvarieties of CA2 and Df2 are U and Df2,
respectively; and Φ(U) = Df 2, by Theorem 7.11. (e) Suppose V ⊆ CA2 is
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finitely generated. Then FinVS is finite by Theorem 7.2. Hence, F(FinVS) is
also finite. Since Φ(V) is generated by F(FinVS) and every finite simpleDf 2-
algebra has finitely many simple subalgebras, Φ(V) contains finitely many
finite simple Df 2-algebras. Therefore, Φ(V) is finitely generated (see [2]).

2. Observe that the Φ-images of pre finitely generated subvarieties of
CA2 of depth 3 are varieties of Df 2-algebras of both E1- and E2-depth 3.
Also observe that subvarieties ofDf 2 of depth 3 are not pre finitely generated
varieties (see [2, Theorem 5.4.]). The result follows.

3. (a) directly follows from the equation (D). (b) The only non-locally
finite subvariety ofDf 2 isDf2 itself. By Theorem 7.11 Φ−1(Df2) = [U,CA2].
Hence, Theorem 5.5 implies that if L ∈ Λ(Df 2) is locally finite, then Φ−1(L)
is either empty or contains varieties of cylindric algebras of finite depth.
Since every subvariety of CA2 of finite depth is locally finite, Φ reflects the
property of being locally finite. (c) is proved similarly to 1(e).

4. (a) is obvious since Φ−1(Df2) = [U,CA2] and Df2 and CA2 are the
only pre locally finite varieties in Λ(Df 2) and Λ(CA2), respectively. (b) As
follows from [2, Theorem 5.4.], the variety Φ(V1) is pre finitely generated.
Since Φ−1(Φ(V1)) = {V1,V

1} and V1 is not pre finitely generated (see
Section 6), we obtain that the property of being pre finitely generated is not
reflected by Φ.

We conclude by mentioning that it is an open problem whether Φ reflects
finite approximability. If every variety of cylindric algebras was finitely ap-
proximable, which we stated as an open problem at the end of Section 5,
then the answer to this problem would be positive.
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