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Chapter 1

Inquisitive Semantics

This chapter introduces inquisitive semantics as a research program for the study
of the semantics of natural language questions and disjunctions. I will begin by
providing a brief outline of the necessary background on question semantics
and erotetic logics, and I will then present inquisitive semantics, by first laying
out its main tenets and then defining a propositional logical system, InqL, that
instantiates the inquisitive program.

1.1 Preliminaries

Since Hamblin’s (1958) seminal paper on the semantics of questions, most se-
manticists and philosophers have come to agree that “knowing what counts as
an answer is equivalent to knowing the question,” (Hamblin, 1958) that is, the
semantic content of a question must give its answerhood conditions. One stan-
dard way to implement this idea is to identify the meaning of a question with
a set of propositions, namely the set of all propositions that are possible an-
swers to that question (the earliest example of such a semantics can be found in
Hamblin, 1973). Probably the most successful implementation of this intuition
is due to Groenendijk and Stokhof (1984), who take the sense of a matrix ques-
tion to be the set of all its possible mutually exclusive answers, partitioning the
logical space. The partition approach will serve as a point of departure in what
follows.1

1.1.1 A partition theory of questions

Within the partition framework, it is customary to define a query logic over
a standard assertive language,2 by means of a question-forming operator that
applies only at the topmost level, never occurring in embedded subformulas.
Thus:

1The formulation of the partition theory that I will present is mostly based on Groenendijk
(1999), or rather a straightforward adaptation of that system to a propositional query lan-
guage.

2By abuse of terminology, I will for the most part of this thesis use the term ‘language’ to
refer to a set of well-formed formulas. Whenever I use it to mean a set of symbols from which
formulas are constructed I will explicitly say so.
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Definition 1 (Classical propositional query language). Let L be a lan-
guage of propositional logic. QL, a classical propositional query language, is
the smallest set such that, for each ϕ ∈ L, ϕ ∈ QL and ?ϕ ∈ QL. a

The language QL contains such formulas3 as p, ?p, ?(p∧q), ?(p→ q∨(r∧s)),
but not p ∧ ?q, p → ?q, ¬¬¬?p → ??r, for obvious reasons. The interrogative
formulas ?ϕ that indeed are a part of this language are to be interpreted as
polar questions that partition the logical space, in a manner I’ll make explicit
shortly, so as to contain only the two logical cells that correspond to the assertive
formulas (answers) ϕ and ¬ϕ, or “yes” and “no.”

Models for a classical propositional query language are an extension of pos-
sible worlds models for declarative semantics. Specifically, we will deal with
models that consist of a relation between possible worlds, intended to model a
notion of indifference, following Hulstijn (1997). Intuitively, two worlds will be
connected just in case the difference between those two worlds is not at issue.
For example, suppose we want to consider a model for the question

(1) Is it raining?

In our terms, a model for (1) cannot have a connection between worlds w1 and
w2 when they disagree as to whether (2), the assertive sentence underlying (1),
is true or not.

(2) It is raining.

That is, a model for (1) tells us that we are interested in what distinguishes
worlds where (2) is true from those where it is false. We are however indifferent
to all other issues, so connections will be present between, say two worlds that
agree as to whether (2) but disagree with respect to (3), which is not at issue.

(3) France is a monarchy.

Now, if we take this relation of indifference to be an equivalence relation, it
follows from the partition theorem that it uniquely induces a partitioning of the
underlying set of possible worlds it is built upon. Thus, the minimal model for
(1) is the relation of indifference on an underlying set of possible worlds that
contains all pairs of worlds except those where the two worlds disagree as to the
value of (2). Furthermore, it induces a unique partition of the underlying set of
worlds, namely, that partition which has two cells, one occupied by all worlds
where (2) is true, and the other made out of all the worlds where (2) is false.

Definition 2 (Classical query models). A Model for the classical query lan-
guage QL is a reflexive, symmetric and transitive relation σ ⊆ W ×W , where
W is the set of all total valuations on the set P of propositional atoms of QL.a

The models of Definition 2 can be represented pictorially as in Figure 1.1, a
model for the query language with only two propositional atoms, say p and q.
Each circle represents a world in the basic set of possible worlds W on which

3Throughout this text, I will assume standard notational conventions, viz. left associativ-
ity and the scale of association of logical connectives whereby ‘¬’ associates to the smallest
subformula to its right, and ‘∧’ and ‘∨’ take precedence over →. That is, ¬ϕ∨ψ is an abbre-
viation of ((¬ϕ)∨ψ), and ϕ∧ψ → θ∨χ an abbreviation of ((ϕ∧ψ) → (θ∨χ)). The question
unary connective ‘?’ default-associates in the same manner as negation.
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the model proper is a relation; the left hand digit gives the truth value of p
at that world and the right hand one that of q. The relation is represented by
arrows connecting worlds. Notice that the model is, strictly speaking, only the
relation, the arrows in this representation, that is, our model is the reflexive,
symmetric and transitive closure of{

〈w11, w10〉, 〈w11, w01〉, 〈w11, w00〉, 〈w10, w01〉, 〈w10, w00〉, 〈w01, w00〉
}
.

11 10

01 00

Figure 1.1: The indifferent, ignorant model for P = {p, q}

In this example, all reflexive pairs in W ×W are present, indicating that all
possibilities are open. We will call such a model an ignorant model. Moreover,
every two distinct worlds are connected to one another, which we interpret to
mean, as sketched above, that nothing is at issue in this model, that is, that the
model is indifferent. Whenever a model is a total relation over the underlying
set of worlds W , as in Figure 1.1, it is both ignorant and indifferent. Formally:

Definition 3 (Ignorance and indifference). For σ ⊆ W ×W a model of a
query language according to Definition 2, we say that σ is ignorant iff

(∀w ∈W ) 〈w,w〉 ∈ σ ,

and that σ is indifferent iff

(∀〈w,w〉, 〈w′, w′〉 ∈ σ) 〈w,w′〉 ∈ σ . a

Remark 4. A model σ ⊆W ×W is ignorant and indifferent iff σ = W ×W .a

We are now ready to give a semantics for the language QL. As my definition
of an ignorant state above may have already hinted at, I find an update seman-
tics that mirrors information growth by eliminating worlds from models to be
especially perspicuous. Luckily, the basic intuitions that a Stalnakerian view
of the common ground (or of an information state) gives us can be straight-
forwardly imported into the enriched model theory used here. Nothing in this
paper hinges on this choice for an update semantics formulation, in a sense to
be made explicit in Chapter 2, although the remainder of the present chapter
will exclusively refer to update semantics.

Definition 5 (Semantics for QL). For σ a classical query model as in Defi-
nition 2, the update of σ with a formula ϕ of QL, written σ[ϕ], is inductively
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defined as follows.

σ[p] = {〈i, j〉 ∈ σ : i(p) = j(p) = 1}
σ[¬ϕ] = σ − σ[ϕ]

σ[ϕ ∧ ψ] = σ[ϕ] ∩ σ[ψ]
σ[?ϕ] = {〈i, j〉 ∈ σ : 〈i, i〉 ∈ σ[ϕ] iff 〈j, j〉 ∈ σ[ϕ]} a

In words, the atomic clause above eliminates all pairs of worlds such that one
or both worlds assign the value 0 (false) to p, and the question clause keeps
only those pairs of worlds whose two elements4 are in sync with respect to
passing or failing an update with ϕ. The conjunction and negation clauses are
self explanatory, and disjunction and implication can be defined by standard
abbreviations: ϕ ∨ ψ as ¬(¬ϕ ∧ ¬ψ) and ϕ→ ψ as ¬(ϕ ∧ ¬ψ).

This semantics can express the full gamut of classical, partition questions à
la (propositional) Groenendijk and Stokhof (1984). To give just one example,
Figure 1.2 represents the update of a simple σ as in Figure 1.1 with the formula
?p. As mentioned earlier, because the indifference relation that our models
represent is an equivalence relation, the partition theorem allows to go back
and forth between the relation and the partition it induces. In Figure 1.2, I
highlight the partition induced by the indifference relation by drawing a shape
around each cell.

11 10

01 00

Figure 1.2: σ[?p]

1.1.2 Issues with the partition framework

The kind of partition theory instantiated above for the propositional case has
been extremely influential for the past twenty-five years;5 indeed, virtually all
accounts of question semantics have assumed its basic tenets to be incontrovert-
ible desiderata. In the paragraphs that follow, I will question the framework
from three different fronts.

4Notice that, to see whether a world w makes a declarative sentence true or false we can
simply look at whether the corresponding reflexive pair is in the update with that formula.

5But it’s important to remark that the propositional case I am restricting this discussion
to was never the focus of much attention due to its supposed triviality. This thesis will show
however that a number of interesting questions arise even from considering only propositional
logic.
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Formal issues

All instantiations of the partition theory that I am familiar with, in fact most
accounts of the logic of questions for that matter, entail a sharp syntactic and se-
mantic distinction between declaratives and interrogatives. Consider for exam-
ple the language QL of Definition 1. The definition of that language proceeded
in two stages, first we defined (or rather assumed) a language of propositional
logic, and then we added to that set the result of prefixing each of the standard
propositional formulas with a ‘?’. It is therefore possible to distinguish between
two subsets of QL, call them L and Q, respectively the declarative sentences of
the language and the interrogative ones. This syntactic distinction is meaningful
at the semantic level as well. The sentences in L have the potential to eliminate
reflexive pairs of worlds in a model, while those of Q will eliminate non-reflexive
pairs, i.e., connections between possible worlds. Crucially, no combination of
these two kinds of semantic processes, providing information and raising issues,
is possible with the language we are considering, as any given sentence of QL is
either declarative or interrogative. This seems unwarranted:

(4) Jane is a genius, but does she know it?
p ∧ ?q

In (4), we have a natural language sentence that conjoins a declarative sentence
and an interrogative one, to form a complex sentence that would most intuitively
be formalized by a formula of the shape p∧?q. Formulas such as this are entirely
absent from QL.

Moreover, QL doesn’t even allow, say, conjunction of interrogative sentences
as in (5).

(5) Is John coming to the party, and is Mary coming as well?
?p ∧ ?q

By stipulating that the question operator can only apply at the topmost level
in a formula, the language QL doesn’t recognize such formulas as in (4) and (5)
as well-formed. Now, one might argue that the kind of conjunction we see in
(4) and (5) is of an importantly different kind than that of say (6), where two
declaratives are conjoined.

(6) John fell and Max pushed him.

The fact that there is no real need for a pause between conjuncts in (6), as
opposed to (4) or (5), might be taken to be an indication that ‘and’ in (4) and
(5) operates at a higher level than ‘and’ in (6), perhaps the discourse level. Be
that as it may, a query language in the most abstract sense ought to be able
to represent, respectively express, hybrid formulas, respectively meanings, that
both provide information and raise issues. The question of how natural language
expresses such meanings is a separate one, and it should inform us about how
the query language applies to the study of natural language, what restrictions
are in order, what level of meaning (term-level, sentence-level, discourse-level)
is involved in the expression of individual meanings. It’s therefore my position
that the logical building blocks of a semantics of questions should allow the
well-formedness of sentences whose meanings are interpretable, even when it
may seem that such sentences don’t have a direct correlate in a sentence of a
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natural language.
Now, we could modify the syntax and semantics of QL in order to include

sentences of the same form as (4) or (5) as well-formed and interpretable, in fact
this is rather straightforward if we redefine conjunction as update sequencing.
The resulting language is certainly an improvement for the reasons I present
above, but it’s not enough. Consider the following question, asked of an appar-
ently lost child in an amusement park.

(7) Where is your father or your mother?
?p ∨ ?q

Most speakers of English find (7) quite acceptable6 under an interpretation
as a choice question. That is, (7) presents the addressee with two questions,
namely “Where is your father?” and “Where is your mother?” and it allows the
addressee to choose one of these two questions and answer it. Crucially, the
questioner will be satisfied with an answer to either question.

One intuitively compelling (propositional logic) formalization of the natural
language question in (7) is the formula ?p ∨ ?q, which in fact has been used at
least since Groenendijk and Stokhof (1984). Even if we change the syntax of
QL so as to let this formula be well-formed, it is by no means clear how to make
it interpretable within the partition theory.7 The restrictions on the language
of QL, although somewhat more stringent than they would have to be, are still
to a large extent a necessity, given the constrains imposed by the semantics.

Another important consequence of this sharp formal distinction between
declarative and interrogative sentences is that such query languages have a
somewhat bizarre proof-theory. To give just one example, if we take a standard
update semantics definition of semantic entailment and assume the existence of
a sound and complete proof system for it, it evidently lacks a deduction theorem.

Definition 6 (Support). A model σ supports a formula ϕ of QL, notated
σ � ϕ, iff σ[ϕ] = σ. a

Definition 7 (Entailment). For two formulas ϕ and ψ of QL, we say that ϕ
entails ψ, in symbols ϕ � ψ iff for all models σ, σ[ϕ] � ψ. a

Under the definitions above and assuming the existence of a sound and com-
plete turnstile relation, it is easy to see that p ` ?p, or more generally, a question
is entailed by any of its answers. However, we do not have that ` p → ?p, as
one would expect from a standard logic with a deduction theorem, for the very
simple reason that p→ ?p is not a formula of QL. Lack of a deduction theorem
is what necessitated the complex axiomatization of the entailment relation of
Groenendijk (1999) by ten Cate and Shan (2007), and it is a proof-theoretically
undesirable quirk.

Moreover, notice that the proof-theory of erotetic logics isn’t a matter only
of interest for the pure logician. Since at least Belnap and Steel (1976), having a

6But see below for a discussion of the unacceptability of related constructions with ‘or’ and
interrogation.

7Groenendijk and Stokhof (1984) use formulas of this sort to offer an account of embedded
choice questions, such as “John knows where Mary lives or who her landlord is,” and it is
embedded choice questions that they manage to make compatible with a partition theory, not
matrix choice questions of the sort I am discussing here.
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formal theory of the relation between questions and answers and between ques-
tions and their subquestions have been important desiderata of the erotetic logic
enterprise. One compelling way to achieve that goal is to make sure entailment
(i.e., �) encodes the relations of answerhood and subquestionhood, besides (as-
sertive) consequence, as done for example by Groenendijk (1999). Now, these
basic relations are of crucial interest to the computer scientist working, say,
on artificial intelligence or multiagent systems that require question-asking and
-answering mechanisms. Erotetic logics should therefore be as standard and
logically well behaved as possible, if for no other reason, at least so researchers
in areas such as the ones above can import them seamlessly and benefit from
them.

Ineffable meanings

Moving on to the adequacy of the partition theory to describe interrogative
meanings, it is important to note that Groenendijk and Stokhof’s original work
had already encountered meanings that seemed to go beyond partitions. From
the realm of constituent questions, the case of mention-some questions is an es-
pecially well-known one. Questions such as (8) are most typically taken not to
require a complete answer (in Groenendijk and Stokhof’s sense of ‘complete’),
and answers to it are also typically interpreted in a non-exhaustive way, sug-
gesting that the meaning of (8) is a set of non mutually exclusive answers.

(8) Where can I buy Austrian newspapers?
At the Neue Galerie in the Upper East Side.

At the level of a propositional query language, an even more telling example
can be found in the elusive case of conditional questions, as in (9).

(9) If John comes to the party, will Mary come as well?

Under at least one reading (indeed, I would submit, the most salient reading)8

of (9), it is a polar question where the ‘yes’ answer states (10-a) and the ‘no’
answer (10-b).

(10) a. If John comes to the party Mary will also come.
p→ q

b. If John comes to the party Mary won’t come.
p→ ¬q

There are a number of competing analyses of (9) on the market, the one I
will adopt here was proposed by Velissaratou (2000) and used by Groenendijk
(2007), where he reviews alternative accounts and provides arguments against
them. In a nutshell, Groenendijk argues that a conditional question such as (9)
is most naturally translated into a formula like p → ?q, and it corresponds to
a meaning that distinguishes two possible answers, namely p → q and p → ¬q

8The other possible reading inquires about the existence of a certain connection, perhaps
most naturally a causal one, between the antecedent and the consequent. In that reading, the
‘yes’ answer means the same as in the reading we’re interested in, namely that p → q, but
the ‘no’ answer doesn’t commit the responder to p→ ¬q, it is rather just the statement that
there is no necessary, causal connection between p and q. A natural parapghrase of this ‘no’
answer is something like “No, it may well be that John comes to the party but Mary doesn’t,
the two situations are just completely independent of each other.” See also footnote 21.
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that are not mutually exclusive. Indeed, the two propositions these formulas
correspond to overlap, in that they both contain the ¬p worlds. Figure 1.3
highlights the two possible answers to the question “if p, q?” in this approach.9

11 10

01 00

Figure 1.3: If p, q?

Groenendijk (2007, 2008a) presents several arguments for this type of analy-
sis,10 and I will for the remainder of this text assume that at the very least it is
a valid one. As demonstrated by Figure 1.3, this general line of analysis requires
us to express questions that do not correspond to partitions. Such meanings
are inexpressible in the query system QL or any of its partition theory cousins.

In later sections of this thesis I will discuss other classes of meanings that
cannot be expressed by partitions, namely alternative questions and a certain
use of (declarative) natural language ‘or’.

Why partitions?

The strongest empirical argument for the partition theory comes from the realm
of constituent wh-complements. Groenendijk and Stokhof (1982, 1984) argue
that, in light of the inconsistency of statements like (11), an embedded question
must denote its true and exhaustive answer, which has as a consequence that
matrix questions correspond to partitions.

9The reader will have no doubt noticed that I’m using → to represent natural language
if. . . then. While we know that this is an oversimplification, I will ask for some suspension of
disbelief on the grounds that 1. material implication can capture some of the properties of
English if. . . then and, more importantly, 2. part of the objective of this thesis is to explore
propositional erotetic systems; as such, the tools of modal logic or of truly dynamic update
semantics, necessary to give a more adequate semantics of natural language conditionals, are
not at my disposal.

10Quite briefly, alternative proposals try to maintain the partition picture, either by taking
the conditional question to have three possible answers, namely q, ¬q and p and considering
that the p→ q and p→ ¬q answers are partial answers (Hulstijn, 1997), or by resorting to a
more complex, stack-based dynamic system (Isaacs and Rawlins, 2008). The former solution
quite clearly doesn’t conform to our intuitions: the ‘yes’ answer to a conditional question
doesn’t commit the responder to the truth of the consequent tout court, rather it commits
the responder to the truth of the conditional p → q; this alternative then requires some sort
of pragmatic mechanism of weakening to get the correct result, so it is more complex than
the one Groenendijk and I propose. The latter analysis similarly requires a richer dynamic
system than the one we suggest. As a consequence, these two alternatives can only be taken
to be superior to ours if we assume that maintaining a partition theory is so desirable as to
outweigh their complexity costs and conceptual shifts. As must be clear by now, one of my
main points in this thesis is that a partition theory is not something to be protected at all
costs.
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(11) #John knows who came to the party, but he’s not sure if Jane did.

Even if we grant that this is in fact always the case with embedded constituent
questions, it is less clearly so with matrix questions. Surely, (13-a), with a focus
intonation, must be interpreted as an exhaustive answer to (12), but I find it at
least arguable whether (13-b), with no special intonation, or the non-fragment
answers in (13-c) and (13-d), are necessarily, or even most naturally, interpreted
exhaustively.

(12) Who came to the party?

(13) a. [ Mary ]F .
b. Mary.
c. Mary came to the party.
d. Mary did.

The partition theorist’s only possible reply to this observation is that the
answers in (13-b)–(13-d) are partial answers, the same applying to the non-
exhaustive question-answer pair in (8). Now, if the notion of a partial answer
is taken to be purely technical and defined simply as a non-exhaustive answer,
then the partition theory’s contention becomes irrefutable: exhaustive answers
will be the ones our semantics produces, and partial answers will be acceptable
in some cases. If however we believe that partial-answerhood should capture
an intuitive notion, then the partition theorist’s reaction to the cases above
becomes much less convincing, for the simple reason that, both in (8) and (13),
the answers are perfectly felicitous, addressing the question asked, and, at least
in (8), resolve it completely. Calling these “partial answers” seems like a dubious
move.

If these observations are correct, they suggest that, while a partition theory
may be the right way to analyze constituent complement questions, exhaustivity
seems too strong a requirement for matrix questions.

Moreover, recall that the partition theory required us (in fact Groenendijk,
1999) to stipulate that the indifference relation captured by the query models
be an equivalence relation. This meant stipulating that indifference is reflexive,
symmetric and transitive. Now, from a purely conceptual point of view, it is
easy to see why a relation of indifference ought to be reflexive and symmetric.
We can’t possibly be interested in the difference between a world and itself —
there is none — and, if we aren’t interested in the difference between w and
v, then we can’t be interested in the difference between v and w either. The
requirement of transitivity, however, is much less intuitive.

Indeed, it seems necessary, at least conceptually, to grant that it’s possible
for us to be indifferent with respect to how w differs from v and how v differs
from u, but not to be indifferent regarding how w differs from u. The difference
between w and u may well be big enough for us to be interested in it.

Interestingly, the partition theory of questions more or less tacitly underlies
Lewis’s work on relatedness and subject matter. In particular, Lewis (1988) asks
us to think of subject matter (e.g., the subject matter of a conversation, or even
just of an assertion in the shape of single sentence), equivalently as one of the
following:

(14) a. A part of the world in intension,
b. an equivalence relation between possible worlds,

11



c. a partition, and
d. a question.

Lewis is the first to admit that (14-a) is an elusive notion, so let us disregard
it without much compunction. Although Lewis doesn’t give an intuitive gloss
of the equivalence relation (14-b), a natural candidate seems to be Hulstijn’s
indifference relation. The same argument I offered above against transitivity can
therefore be made in this context. Clearly, there is good reason to assume that
(14-b) and (14-c) are stipulative requirements that lack conceptual motivation;
in addition, I have at the very least cast doubt on whether (14-d), natural
language questions, provide a good motivation for partitions. It seem therefore
that a revision of Lewis’s definition of relatedness might be in order, and it
would be interesting to see what consequences that shift might have.

In summation, transitivity of the indifference relation our query models try
to capture is unwarranted from a conceptual perspective, and perhaps should
be dropped. If we do that, however, we cease to have an equivalence relation,
and partitions are no longer guaranteed to exist.

1.2 Inquisitive Semantics

Inquisitive semantics is a reaction to the issues raised above. First, it makes no
syntactic distinction between declaratives and interrogatives, defining a power-
ful language that can express a full gamut of hybrid sentences that both pro-
vide information and raise issues; this makes the logic that corresponds to it a
simpler, considerably more typical system, with most desirable logical proper-
ties. Second, inquisitive semantics is a strictly more expressive system than a
partition-based one, providing the straightforward account of conditional ques-
tions sketched above, as well as a whole new class of meanings that, I will argue,
are needed to model certain natural language sentences. Third, it takes Hul-
stijn’s (1997) compelling idea of interpreting query languages in structured mod-
els that represent a relation of indifference and makes it conceptually sounder,
by dropping the requirement of transitivity and thereby that of partitions.

1.2.1 An inquisitive program — questions meet disjunc-
tions

Hamblin’s (1958) intuition of what a question should mean can be paraphrased
as follows.

(15) A question introduces a number of alternatives (its possible answers)
and requires that one of them be chosen.

This idea is strikingly similar to the way Grice (1989) addresses natural language
(or at least English) ‘or’:

A standard (if not the standard) employment of ‘or’ is in the speci-
fication of possibilities (one of which is supposed by the speaker to
be realized, although he does not know which one).

That is, both questions and disjunctions raise possibilities, or alternatives, and
convey ignorance of the speaker as to which one is the case. Indeed, it seems
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that ‘or’ might even share with questions the requirement that the issue of which
of the alternatives is the case be addressed. For example, the dialog below is
perfectly natural:

(16) A: John or Mary will come to the party tonight.
B: Well, John is sick, so I guess it’s Mary that’s coming.

In (16), B is clearly not going off on a tangent by addressing the issue of which
one of John and Mary will come to the party, in fact B is perceived as being
rather cooperative: B understood A’s statement as expressing (among other
things) ignorance and interest, and addressed it as though it implied the question
“Who will come to the party, John or Mary?”

I will call the sense in which questions and disjunctions are similar their
issue-raising potential, and will assume it to be located in the semantics instead
of the pragmatics. This is by no means a trivial move, but it is justified by
the fact that the alternatives put forth by both questions and disjunctions have
semantic import in addition to the following postulate of inquisitive semantics:

(17) Semantic alternatives are a result of the linguistic mechanism of raising
issues.

That alternatives play a role in the semantics of questions was part of Hamblin’s
(1958) postulates, and it’s by now part of the consensus among semanticists.
As for disjunctions, recent literature on alternative semantics that deal with,
among other linguistic phenomena, free choice and counterfactual sentences with
disjunctive antecedents have argued very convincingly for the need for semantic
alternatives generated by natural language disjunctions.11

The postulate in (17) proposes that we relate the alternative-generating
power of questions and disjunctions to their issue-raising potential, illustrated
in the example above for disjunction, incontrovertibly present in questions.12

If these observations are on the right track, then the meanings of questions
and disjunctions ought to be to a visible extent similar.

The main postulate of inquisitive semantics says that we should take this
similarity to its direst consequences, by assuming that questions are, at a fun-
damental level of semantic analysis, disjunctions. Specifically, in the inquisitive
propositional language to be defined in a few paragraphs, I will use the abbre-
viation

?ϕ := ϕ ∨ ¬ϕ .

11But see Chemla (2009) for arguments against a semantic treatment of such phenomena.
12There are at least two other alternative-generating classes of elements in natural language,

namely indefinites (Kratzer and Shimoyama, 2002) and focused constituents (Rooth, 1985). I
will briefly discuss indefinites later in the very last section of this chapter, arguing that they
can be seamlessly integrated into the program of inquisitive semantics. As for focus, I must
leave its relation (assuming there is one) with raising issues to future research, although I
admit this is an important gap in the program even at this early stage.
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Although this simple move,13 as the sections to come will show, allows us to
address all the issues raised above against the partition theory, it deserves some
immediate clarification.

The central claim is that, at the deepest level of semantic meaning, questions
and disjunctions make use of the same semantic mechanism, that of introducing
alternatives. This mechanism, I further argue, originates from natural language
‘or’ and is used by natural language interrogatives, whence my defining a ques-
tion operator in terms of basic disjunction, and not the other way around.

One way to materialize this insight in our semantics would be to keep it in the
meta-level: I could give definitions of disjunction and interrogation that involve
the same mechanism at the meta-level, but that instantiate that mechanism
differently. The inquisitive semantics and logic I define in this thesis however
goes beyond that.

More than just claiming that the alternative-generating mechanism behind
questions and disjunctions is the same, inquisitive semantics proposes that this
insight be made explicit at the object level. That is, I propose that we define
questions in terms of disjunctions, as per the abbreviation above. This means
that I am taking the similarity between questions and disjunctions to mean
quite literally that one class of meanings is derived from the other.

This may seem quite radical. Surely, natural language interrogative sen-
tences are very different from declarative disjunctions, their syntax is different,
their intonation patterns are different, and their uses, if not also their meaning,
are not identical. The inquisitive semantics and logic instantiated in this thesis,
to the extent that it overlooks those differences, is most likely an overly radi-
cal idealization, but it is one that, I will show, addresses all the issues raised
above while incorporating an insight into the common properties of questions
and disjunctions in its most literal interpretation. The differences that exist
between natural language interrogative sentences and natural language disjunc-
tive sentences don’t invalidate this inquisitive program, they just suggest that
further refinements will almost certainly be in order, surely at the syntactic
and pragmatic levels, possibly also at a semantic level. It may well turn out
that the significance of the similarities pointed out above must be obscured at
the object-language level, because of the possible need to differentiate the se-
mantics of interrogation and disjunction to a point where, in the object level
definitions, the relation between the two is no longer visible. My stance on that
matter is simple: I will begin by investigating the idealized system where the
similarity between questions and disjunctions is taken to be identity, or rather
inter-definability, and I will leave inquiry on why that is an overly radical hy-
pothesis and how it should be weakened to future research. At the very least,
the inquisitive semantics and logic studied here will give insights on the relation
between questions and disjunction that will inform more linguistically tenable

13Probably because it’s so simple, it isn’t exactly unprecedented. Harrah (1961) argues that
“a logic of questions, sufficient for the question-and-answer process, already exists within the
logic of statements.” He proposes the abbreviation F? for F ∨¬F , and defines a direct answer
as to a question F? as any of the disjuncts of F?. Harrah’s idea was dismissed by Hamblin
(1963) as falling in the general category of theories that try to reduce questions to assertions,
an enterprise Hamblin found completely misguided. Although I agree with Hamblin regarding
the need for a true erotetic semantics, it isn’t as obvious to me as it was to him that Harrah’s
research program was incompatible with that basic desideratum.
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analyses of natural languages.14

Moreover, even if it turns out that the level of analysis at which the seman-
tics of natural language interrogatives and disjunctions is the same is so deep as
to become almost invisible at the surface level, and only of potential explana-
tory interest from an historical, diachronic perspective on language, the gain in
logical tractability and expressive power that we get from the inquisitive logic I
define here makes it worth recognizing and taking seriously what questions and
disjunctions share.

The central claim of inquisitive semantics has linguistic motivation inde-
pendent of the semantic and pragmatic parallels I introduced above. It is well
known that very many natural languages share the same morpheme (or close
variations thereof) for ‘or’ and question particles. Malayalam oo (Jayaseelan,
2004, 2008) is a good example:

(18) John-oo
John-or

Bill-oo
Bill-or

wannu.
came

‘John or Bill came.’

(19) Mary
Mary

wannu-oo?
came-or

‘Did Mary come?’

This is a very robust linguistic fact, true of languages like Japanese (ka), Ko-
rean (na) and a number of Slavic languages (li). To some extent, such familiar
languages and Dutch and English also instantiate this morphological general-
ization. In Dutch, the embedded question complementizer is identical to the
word for ‘or’, as shown below, and clearly English ‘whether’ is ‘wh’ + ‘either’,
a disjunction morpheme.

(20) Ik heb Anne of Marie gezien.
I have Anne or Marie seen
‘I saw Anne or Marie.’

(21) Ik weet niet of Anne komt.
I know not or Anne comes
‘I don’t know if Anne is coming.’

Inquisitive semantics has the potential to straightforwardly account for this
observation, since it relates questions and disjunctions in its object language.
In other words, taking these linguistic data at their face value most naturally
induces, at least as an initial working hypothesis, a semantic move of the sort
made in inquisitive semantics.15

In the next section, I will define a minimal instantiation of the inquisitive pro-
gram, the system InqL, and show how it addresses the issues raised in the pre-
vious sections.

14These paragraphs benefited greatly from a discussion of a closely related topic with Anna
Szabolcsi, for which I’m very grateful.

15It is important to keep in mind though that the inquisitive logic defined here is rather
unsuited for sophisticated semantic work, the main reason for that being that this thesis
concentrates exclusively on propositional inquisitive logic. See however AnderBois (2009) for
an analysis of Yukatek Mayan questions and disjunctions in terms of the logic defined in this
thesis.
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1.2.2 The inquisitive system InqL

I begin by defining the languages of InqL.

Definition 8 (Inquisitive syntax). A language LP of InqL, indexed to a fi-
nite set of propositional atoms P , is the smallest set such that

p ∈ LP for all propositional atoms p ∈ P
⊥ ∈ LP

if ϕ,ψ ∈ LP , then ϕ ∧ ψ ∈ LP
ϕ ∨ ψ ∈ LP
ϕ→ ψ ∈ LP

Following standard practice, I will use the abbreviations ¬ϕ := ϕ → ⊥ and
> := ¬⊥. a

Notice that I am constraining the set of propositional atoms for any given
inquisitive language to a finite set. This means that there are infinitely many
inquisitive languages, one for each finite set of propositional atoms. I will post-
pone the discussion of why I make this stipulation to Section 2.1.2, for the
time being, suffice it to say that it serves the purpose of keeping the semantics
manageable. At any rate, the restriction is of no consequence to the expressive
power of the language.

Also in connection with Definition 8, notice that I define a perfectly standard
propositional language, with negation in terms of implication and falsum as is
common practice. There is no primitive question operator, it will be defined
later as an abbreviation.

InqL will be interpreted in models much like those defined for the partition
query language QL above, except for the fact that InqL models needn’t be
transitive relations. Thus:

Definition 9 (Inquisitive models). Models for InqL are relations σ ⊆ W ×
W , where W is the set of total valuations (worlds) on the set of propositional
atoms P of an inquisitive language LP . σs are in addition required to be reflexive
and symmetric (NB, not necessarily transitive). We will call the set of all such
states ΣP , for each language LP . a

Each σ is to be interpreted as a relation of indifference on the underlying
set of worlds W : if w is connected by σ to v, this means intuitively that the
difference between w and v is not at issue. Conversely, if w and v are not
connected, the difference between them is at issue. I proceed now to the update
semantics.

Definition 10 (Inquisitive semantics). The update of a state σ ∈ ΣP with
a formula ϕ of a language LP of InqL, in symbols σ[ϕ], is inductively defined as
follows:

σ[p] = {(i, j) ∈ σ : i(p) = j(p) = 1}
σ[⊥] = ∅

σ[ϕ ∧ ψ] = σ[ϕ] ∩ σ[ψ]
σ[ϕ ∨ ψ] = σ[ϕ] ∪ σ[ψ]

σ[ϕ→ ψ] = {(i, j) ∈ σ : (∀ι ∈ {i, j}2) ι ∈ σ[ϕ] =⇒ ι ∈ σ[ϕ][ψ]} a
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I will shortly explicate Definition 10 by means of examples, but first, a few
comments are in order. I will use the notation (i, j) to refer to the pair of worlds i
and j in an inquisitive model as per Definition 9, as opposed to the more familiar
notation 〈i, j〉. The reason for that is to make it more transparent that these are
symmetric pairs, i.e., that the ordering in any pair or worlds in an inquisitive
model σ is of no consequence, for, by definition of symmetry, 〈i, j〉 ∈ σ just in
case 〈j, i〉 ∈ σ.16 Consider in particular the definition of implication. It makes
reference to the set

{i, j}2 = {〈i, j〉, 〈j, i〉, 〈i, i〉, 〈j, j〉} ,

or, in the notation I will adopt in this text, one of the following identical sets.

{i, j}2 = {(i, j), (i, i), (j, j)}
= {(j, i), (i, i), (j, j)}

The atomic and conjunction clauses are identical to the ones in Definition
5, and ⊥ is defined in the usual way for update semantics. Notice that I give
separate clauses for each connective, this correctly suggests that the classical
abbreviations defined for QL in Section 1.1.1 will not be valid in InqL. What
formulas are and aren’t valid in InqL will be the topic of investigation of Chapter
2, so for the time being I will just alert the reader to the fact that several classical
equivalences do not hold in InqL. To mention just a few notable ones,

¬(¬ϕ ∧ ¬ψ) =⇒ ϕ ∨ ψ ,

¬ϕ→ ¬ψ =⇒ ψ → ϕ ,

¬¬ϕ =⇒ ϕ ,

are all invalid in InqL.
Finally, let me remark that the very simple definition of disjunction above,

purely by means of update potential union, embodies the expressive power of
the system. As for implication, its apparent unwieldiness will be explicated later
in this chapter and in Chapter 2.

InqL at work, a walk-through

Recall the picture of the ignorant and indifferent model on the language with
only two atoms, repeated below as Figure 1.4.

Atoms in InqL behave just like in the partition system QL. For concreteness,
consider we have an ignorant and indifferent state σ for the inquisitive language
with two atoms: an update with p will keep only those pairs such that both
elements make p true. This means that σ[p] is as in Figure 1.5-a. An update of
σ with q, then, gives us the model pictured in Figure 1.5-b.

Consider now σ[p ∨ q]. By the disjunction clause, we get the union of the
two states in Figure 1.5. This means that we disconnect from the model the
world w00, as one would expect, but that is not all the update with p ∨ q does.
If we look at the representation of σ[p ∨ q], in Figure 1.6, we see that w01 and
w10 are no longer connected to each other by σ.

16For this reason, the inquisitive models can be interpreted as undirected looping graphs,
where the notation (a, b) for edges is standard.
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01 00

Figure 1.4: The indifferent, ignorant model σ for P = {p, q}

11 10

01 00

(a) σ[p]

11 10

01 00

(b) σ[q]

Figure 1.5: Two atomic updates

This means that the difference between worlds w01 and w10 interests us.
Equivalently, the difference between these two worlds is at issue.

The partition system had the advantage of allowing us to move from the
models construed as relations to the same models construed as sets of propo-
sitions via the partition theorem. For InqL, we must define another notion of
what counts as an alternative in a model. These are highlighted in Figure 1.6.

Definition 11 (Alternatives). For σ a model of InqL, the set Aσ is the set of
alternatives in σ, where α ∈ Aσ iff

1. α ⊆ σ;

2. α is a total relation; and

3. there is no σ ⊇ β ⊃ α such that β is a total relation. a

11 10

01 00

Figure 1.6: σ[p ∨ q]
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In other words, the set of alternatives in σ is the set of all maximally connected
subsets of σ.

Since indifferent states are by definition total relations, we can equivalently
define the set of alternatives for a state σ as the set of maximal indifferent
substates of σ. In addition, we can also see that, for indifferent states, such
as the ones in Figures 1.1 to 1.5, the set of alternatives is the singleton set
containing the state itself. Thus, σ is indifferent just in case Aσ = {σ}. From
this point onward, I will outline the alternatives in the pictures of inquisitive
models, whenever the alternative set isn’t the trivial singleton, that is, unless
the state is indifferent.17

The state represented in Figure 1.6 (previous page) however is not indifferent,
for

Aσ[p∨q] 6= {σ[p ∨ q]} .

In fact, what we have is

Aσ[p∨q] =
{
{(w11, w11), (w11, w01), (w01, w11), (w01, w01)},
{(w11, w11), (w11, w10), (w10, w11), (w10, w10)}

}
.

The two alternatives for σ[p ∨ q], outlined in Figure 1.6, correspond to two
propositions, namely, p and q. Thus, the formula p∨ q, besides having provided
the information that at least one of p and q must be the case (by eliminating
the ¬p,¬q-world w00), has also introduced an issue between the p-worlds and
the q-worlds. That is, it has raised the issue of which one of p or q is the case.
This is how inquisitive semantics encodes Grice’s insight into natural language
‘or’.
An update with a negated atomic formula has at least one unsurprising effect:
¬p eliminates all the p-worlds from an information state. Interestingly though,
the effect of double negation on disjunction isn’t vacuous as it was in the par-
tition system QL. An update with ¬(p ∨ q) yields the single reflexive point
(w00, w00), and an update with ¬¬(p∨ q) gives us the complement of the latter
information state.18 Figure 1.7 is a picture of σ[¬¬(p ∨ q)].

As one can see in Figure 1.7, the model σ[¬¬(p ∨ q)] embodies the same
information as σ[p ∨ q]. That is, if we abstract away from the relation and
consider solely the subsets of W that σ[¬¬(p∨ q)] and σ[p∨ q] are relations on,
we observe that they are identical: the same reflexive pairs have been eliminated
from σ by the two updates. However, while the latter has two alternatives,
the former has only one. Double negation has transformed an issue-raising
disjunction into a purely informative, issueless update.

17This is of course not to say that indifference models lack alternatives! The alternative is
simply a trivial one, for the only alternative is the model itself, and for that reason I won’t
tax the pictures with superfluous frames.

18Strictly speaking, it isn’t accurate to see the update with a negation as the complement
of the non-negated subformula, because problems would arise from such a definition when
considering updates with conditionals or once-negated disjunctions. Consider the case ¬(p∨q),
if this were to yield the complement of σ[p∨q] then, since the pair (w10, w01) is not a member
of σ[p∨ q], it would be present in σ[¬(p∨ q)]. This would of course give rise to a non-standard
model, for that information state would not be a reflexive relation (there would be a connection
between two worlds whose reflexive pairs had been eliminated).

These problems prompted the slightly more complex definition I gave for the implication
clause (recall that ¬ϕ = ϕ → ⊥). I will explain how this works in detail when I discuss the
implication clause.
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01 00

Figure 1.7: σ[¬¬(p ∨ q)]

One way to interpret this issue-canceling power of negation is to interpret
negated sentences as necessarily assertive, or perhaps more accurately, necessar-
ily uninquisitive. Then, double negation gets us the assertive closure of a certain
formula, stripping away its inquisitive potential and leaving only its informative
potential. Accordingly, I define an operator of assertive closure:

!ϕ := ¬¬ϕ

Notice that I don’t mean to imply that only sentences with ‘!’ are assertive
in InqL. Rather, the idea is that all double negated sentences are necessarily
assertive.
I move on to questions. As promised, InqL uses the abbreviation

?ϕ := ϕ ∨ ¬ϕ

to formalize questions. It is easy to see how this gives InqL the full expressive
power of the partition system QL (this result will be proven explicitly in the
next chapter). An update of σ with ?p is equivalent to an update with p ∨ ¬p,
which by the definition of disjunction means the union of the models for σ[p]
and σ[¬p]. This is represented in Figure 1.8, with the two alternatives outlined.

11 10

01 00

Figure 1.8: σ[?p]

Notice how an update with p ∨ ¬p is all but vacuous: clearly, σ[p ∨ ¬p], as
represented in Figure 1.8, is a different state from the indifferent and ignorant
σ as in Figure 1.4. Thus, p ∨ ¬p is not tautological, meaning that the law of
excluded middle doesn’t hold in InqL.
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A few useful logical notions

So far I have been using terms such as ‘assertion’, ‘question’ and ‘informative-
ness’ in an intuitive, pre-theoretic way. What we’ve seen so far of how InqL
functions already allows us to be more explicit than that, as the following defi-
nitions demonstrate.

Definition 12 (Informativeness). A formula ϕ ∈ LP of inquisitive logic is
informative iff, for ωP the maximal model in ΣP , ωP [ϕ] is not ignorant (as per
the straightforward adaptation of Definition 3 to inquisitive models). a

Definition 13 (Inquisitiveness). A formula ϕ ∈ LP of inquisitive logic is
inquisitive iff, for ωP the maximal model in ΣP , ωP [ϕ] is not indifferent (as per
the straightforward adaptation of Definition 3 to inquisitive models). a

In other words, a formula is informative just in case it eliminates reflexive
pairs, and it is inquisitive just in case it eliminates non-reflexive connections be-
tween worlds. These two notions allow us to define what we mean by ‘assertion’
and ‘question’ in a variety of ways, such as the following.19

Definition 14 (Assertions, questions and hybrids). A formula ϕ of any
language of InqL is an assertion iff it is not inquisitive and it is informative or
tautological, a question iff it is inquisitive and not informative, and a hybrid iff
it is both informative and inquisitive. a

According to Definition 14, atomic formulas are assertions, for they are al-
ways purely informative, as are negated or double-negated formulas. Formulas
prefixed with the question operator, or in other words formulas that are dis-
junctions of jointly inconsistent subformulas, are always questions.

Disjunctions of non-jointly inconsistent subformulas however, such as p ∨ q,
since they provide both information and issues (i.e., they are both informative
and inquisitive), are hybrids. In addition, both contradictions and tautologies
are assertions.20

Material implication in InqL — a semantics for conditional questions

The free syntax of InqL gives us, among others, p→ ?q as a well-formed formula.
This is the InqL formalization of a conditional question, such as (22), with the
possible answers in (23).21

19But see the literature on inquisitive semantics for different approaches and the motivations
for them, in particular, Groenendijk (2008b) and Groenendijk and Roelofsen (2009).

20It is perhaps easy to see how a contradiction should be an assertion, it is the absurd
assertion. As for the tautology, this is a purely technical move, motivated by the idea that
the assertive operator ‘!’ ought to characterize the class of assertions: the tautology, just like
any other uncontroversial assertion, is unaffected by ‘!’.

21Interrogative conditionals are I believe ambiguous and can get one of two readings, one
where the interrogation operator takes narrow scope over the consequent, and one where it
seems to take wide scope, over the whole conditional. Although the situation with interro-
gation might be quite close to that of negation, inasmuch as narrow scope is probably the
preferred reading for both negated and interrogative conditionals, I find that the wide scope
reading is often available, and sometimes quite prominent. A good way to discern between
the two readings is to check the meaning of a negative answer to an interrogative conditional.
Compare (22) and the meaning of its negative answer to the example below:
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(22) If Jake goes to the party, will Mary also go?
p→ ?q

(23) a. Yes. (If Jake goes, then so will Mary.)
p→ q

b. No. (If Jake goes, then Mary won’t go.)
p→ ¬q

An update with p → ?q on the minimal information state I’ve been using for
expository purposes in this section yields the state depicted in Figure 1.9. As the

11 10

01 00

Figure 1.9: σ[p→ ?q]

picture shows, the update contributes no data to the information state; instead,
it creates an issue with two alternatives that correspond to the propositions
p→ q and p→ ¬q, as discussed in Section 1.1.2.

It’s important to note that, in InqL, a formula of the sort ϕ→ ?ψ, whenever
ϕ is an assertion, is equivalent to a disjunction of non-inquisitive implications.
Thus

ϕ→ ?ψ ⇐⇒ (ϕ→ ψ) ∨ (ϕ→ ¬ψ) ,

or indeed, in general,22

¬ϕ→ ψ ∨ θ ⇐⇒ (¬ϕ→ ψ) ∨ (¬ϕ→ θ) .

The latter formula is known as the KP axiom, or, as an admissible rule of
intuitionistic logic, the principle of Independence of Premise. I will return to it
in Chapter 2.

(i) If I learn to play the violin, will I get a job at the BSO?
No (it’s possible that you’ll learn the violin and still not get the job at the BSO).

If the negative answer to (i) means the assertion between parentheses, then the question
wasn’t of the type in (22), but rather something that might be formalized, in a modal InqL,
as ?2(p → q), a question about the necessity of a material implication, roughly, a question
about the (possibly causal) relation between the two events in the conditional. Such a formula
would generate the alternatives 2(p→ q) and 3(p∧¬q) (for this is equivalent to ¬2(p→ q)),
as intended. I will disregard this reading of interrogative conditionals, on the grounds that
it can only be dealt with in an inquisitive modal logic, which is not the object of discussion
in this paper. In any event, it is I believe clear that ?(p → q) cannot be the correct way to
model this meaning, given its answerhood conditions as discussed in the main text.

22For recall that any negated formula is an assertion.
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The inner workings of the implication clause are somewhat tedious to show, but
important for a thorough understanding of InqL.23 I will first show how the
update with p → ?q yields the desired result, and I will conclude this section
with a brief discussion of negation (for recall that negation is defined in terms
of implication and ⊥.)

The definition of the update of a state σ with p → ?q unfolds into the
following set. (i, j) ∈ σ : (i, j) ∈ σ[p] =⇒ (i, j) ∈ σ[p][q ∨ ¬q] &

(i, i) ∈ σ[p] =⇒ (i, i) ∈ σ[p][q ∨ ¬q] &
(j, j) ∈ σ[p] =⇒ (j, j) ∈ σ[p][q ∨ ¬q]


Now, considering, for concreteness, our usual ignorant and indifferent σ for

the language with two propositional atoms, it is easy to see how pairs involving
the worlds where p is false will be part of this set: such pairs, by the atomic
clause, will always fail an update with ϕ, thereby trivially satisfying the condi-
tionals above. σ[p→ ?q] will therefore certainly contain the following pairs.24

(w01, w01), (w00, w00),
(w01, w00),

(w01, w11), (w01, w10),
(w00, w11), (w00, w10)

But the interesting pairs are the ones that do survive an update with p, therefore
not trivially satisfying the conditionals. These are

(w11, w11), (w10, w10), (w11, w10) .

The reflexive pairs are in σ[p → ?q], for they satisfy the consequent of the
conditionals above, in that they survive a further update with q∨¬q. The reason
they do is that reflexive pairs are essentially total valuations, they are just like
fully specified possible worlds, and as such undoubtedly satisfy excluded middle.

The same isn’t true of the pair (w11, w10) above. For this pair to be in
σ[p → ?q], it would have to be the case that 1. the reflexive pairs built out
of worlds w11 and w10 survive an update with p and q ∨ ¬q and 2. the pair
(w11, w10) itself survives an update with p and then q ∨ ¬q. 1. as we’ve seen
holds, but not 2. Indeed, for (w11, w10) to survive an update with q ∨ ¬q, by
definition of disjunction, it would have to survive an update with either q or
¬q. Clearly, it survives neither of the two, for q is true at w11 and false at w10.
Therefore, the pair (w11, w10) is eliminated from σ by the update with p→ ?q.
Also in connection with implication in InqL, it’s important to explicate how (and
why) negation is defined in terms of it and ⊥. The update of a state σ with ¬ϕ
(i.e., ϕ→ ⊥) is, by definition (i, j) ∈ σ : (i, j) ∈ σ[ϕ] =⇒ (i, j) ∈ σ[ϕ][⊥] &

(i, i) ∈ σ[ϕ] =⇒ (i, i) ∈ σ[ϕ][⊥] &
(j, j) ∈ σ[ϕ] =⇒ (j, j) ∈ σ[ϕ][⊥]

 ,

23Readers less interested in gory logical details can safely skip the next few paragraphs, if
they’re willing to grant me that the implication clause works as intended.

24Keep in mind that, according to the notation I use here, (i, j) means 〈i, j〉 and 〈j, i〉.
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which, since σ[⊥] = ∅, is equal to (i, j) ∈ σ : (i, j) /∈ σ[ϕ]&
(i, i) /∈ σ[ϕ]&
(j, j) /∈ σ[ϕ]

 .

In words, a pair (i, j) survives an update with ¬ϕ just in case it and the
two reflexive pairs that underlie it fail an update with ϕ. This provides a good
example of why we need the complicated implication clause defined above.

If we were to use a more straightforward definition, such as

σ[ϕ→ ψ] = {(i, j) ∈ σ : (i, j) ∈ σ[ϕ] =⇒ (i, j) ∈ σ[ψ]} ,

then negation would amount to simply the following, which is complementation.

σ[¬ϕ] = {(i, j) ∈ σ : (i, j) /∈ σ[ϕ]}

Now, recall that ¬(p ∨ q) eliminated from σ the pair (w10, w01). Since this
pair isn’t in the update with p∨q, it must be a part of the update with ¬(p∨q),
which would yield a non-reflexive model; for, obviously, (w10, w10) would not be
a part of that model, since it survives the update with p∨ q. This non-standard
model is unacceptable (and uninterpretable under Hulstijn’s heuristic), so this
would be a catastrophic result.25

1.2.3 More applications of InqL

So far I have defined the system InqL and shown its inner workings by means
of several examples. I have already shown that InqL addresses issues with the
partition approach raised in Section 1.1.2. In particular, InqL has a free syntax
that allows for inquisitive and informative sentences to be combined in any
way, while attributing them a meaning. Moreover, by dropping the partition
requirement, InqL can express a whole new class of meanings, such as conditional
questions and inquisitive disjunctions. In the following sections I will discuss
further characteristics of InqL.

Disjunctions meet questions

At the crux of the expressive power of InqL lies, as I’ve stressed before, the
issue-raising potential of disjunction. However, simple disjunction, as in p ∨ q,
has a close, non-inquisitive cousin, namely !(p∨ q), shorthand for ¬¬(p∨ q). Do
these two flavors of disjunction have linguistic correlates? I am convinced that
they do, and I will provide two lines of argument for that.

Given the heuristic I have proposed for the models of InqL, the difference
between p∨q and !(p∨q) is minimal: they are informatively equivalent and differ
only in that the former raises an issue regarding which one of p or q happens
to be the case, whereas the latter introduces no issue whatsoever. Consider the
following two scenarios and sentences of German.

25There are further examples of the need for the implication clause as I’ve defined it that
don’t involve negation, but I omit them in the interest of brevity. The interested reader can
try the exotic formula ?p→ ?q, first with the straw man simple implication defined above, to
see what the problem with it is, and then with the clause in Definition 10, to see how that
solves it.
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Scenario 1

You and I are hosting a party this evening and have invited John
and Mary.

(24) John
John

oder
or

Mary
Mary

kommt
come-sg

heute
today

zur
to-the

Party.
party

‘John or Mary is coming to the party tonight.’
!(p ∨ q)

Scenario 2

You and I are newlyweds, and are having a party this evening to
celebrate our return from our honeymoon. John and Mary are a
couple who were invited to our wedding but have so far failed to
give us a wedding gift. Chances are, they won’t have the nerve to
appear at our party this evening without finally bringing the gift.
Luckily, I have just gotten a message from John saying that either
him, or Mary, or both will come to the party this evening.

(25) John
John

oder
or

Mary
Mary

kommen
come-pl

heute
today

zur
to-the

Party.
party

‘John or Mary is coming to the party tonight.’
!(p ∨ q)

A majority of the German speakers I presented these scenarios and sentences
with found (24) more felicitous with Scenario 1 than with 2 and conversely for
(25).26 I believe inquisitive semantics can shed some light on these facts.

In (24), we have a pure, hybrid disjunction of the form p∨q, which raises the
issue of which one of John or Mary is coming to the party. Given Scenario 1,
it is felicitous to utter (24) and thereby draw attention to our ignorance about
who exactly is coming to the party, as well as express interest in finding out.
(24) is infelicitous under Scenario 2 because there it is quite evident that we care
little about John or Mary, or which one of the two, if not both, is coming to the
party. We are happy to know that at least one of them will come (and bring our
wedding gift), and it would be infelicitous to draw attention to our ignorance
or to express interest in who exactly will bring the gift. In this setting, a purely
informative sentence such as (25), with an assertively-closed disjunction, is the
only felicitous utterance of the two.

The fact that speakers show a preference of one sentence over the other
based on number agreement with the subject on the verb suggests that this
feature might determine which flavor of disjunction (plain or assertive-closed)
to use in interpreting the sentence, and provides some linguistic backing to InqL’s
prediction that disjunctions comes in two kinds.
A more well-known example of these two flavors of disjunction can be seen in
the following:

26Jeroen van Craenenbroek (p.c.) tells me that the same contrast holds in Dutch, and it
is present as well in (at least European) Portuguese. My unreliable intuitions about English
hint at the existence of the same contrast, but this may well be an influence of Portuguese.
Sadly, it’s very difficult to get speakers of English to admit that they ever use plural agreement
with ‘or’-conjoined noun phrases, so my inquiries were more often than not met with a sound
“‘John or Mary are coming’ is absolutely bad in any context!”
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(26) A: Do you want coffee or tea?
B: Coffee, please.
B: Tea, please.
B: Neither(, actually).
B: % Yes.
B: % Yes, coffee.

(27) A: Do you want coffee or tea?
B: Yes / Sure.
B: (%) Yes, coffee.
B: % Coffee, please.

In (26) and (27), A is asking two different questions (a fact reflected in the
intonation patterns): (26) is an alternative question, and (27) a polar, yes-no
question. Notice that, when B answers A’s question in (27) by saying “Yes,
coffee”, B is giving more information than required. In particular, a yes answer
is required first, as the contrast with “Coffee, please” shows (without B nodding
or otherwise explicitly indicating a simple affirmative answer).27

Consider now the following two InqL formulas and the alternative sets they
generate:

(28) ?(p ∨ q)
Alternative set = {p, q,¬(p ∨ q)}

(29) ?!(p ∨ q)
Alternative set = {!(p ∨ q),¬(p ∨ q)}

The two updates are questions, in the sense that they are purely inquisitive,
and they seem to correspond quite intuitively to the natural language questions
in (26) and (27), respectively. In particular, they generate the appropriate
alternative sets.28

The examples in (28) and (29) further illustrate how the alternatives gener-
ated by a simple disjunction contribute to the meaning of an alternative question
like the one in (26). The three possible answers could only be generated be-
cause of the inquisitive quality present in simple disjunction. If we override
disjunctive inquisitiveness, as in (29), by double-negating a disjunction, we get
the often unnatural, ‘logician’s’ interpretation of a disjunction (“Shall we go to
the movies or the theater? Yes.”).29,30

27These are, as everyone knows, idealized judgments. In practice, the oddness markers in
front of B’s responses in (27) are extremely subtle, given how easy it is to accommodate a
tacit affirmative answer when B’s reaction is to specify the beverage she wants.

28It is a much debated issue whether the neither answer to the question in (26) has the same
status as the coffee and tea answers. Many people find it unnatural without ‘actually’, which
might indicate that it is not a complete answer per se, in that it rejects a presupposition. I
won’t pursue the matter here.

29I have recently learned that the joke works the other way around too. I hope the reader
familiar with the original anecdote will forgive me, since I can’t recall who exactly its protag-
onist was, but there is the story of an important intellectual being interrogated during the
McCarthy era: when asked “do you believe that the American people ought to be allowed
to advocate overthrowing the US government by force or other violent means?”, the person
under interrogation thought for a while, and then replied “By force.”

30Notice that, as Han and Romero (2001) point out, simple negation, when it takes wide
scope over disjunction, also bars the alternative question interpretation:

(i) Don’t you want coffee or tea?
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The final instance of interaction between questions and disjunctions I will discuss
is the case of disjunctions of questions in InqL, that is, formulas of the sort

?ϕ ∨ ?ψ .

These, I argue, are good candidates for choice questions.
I gave an example of a choice question in Section 1.1.2, which I repeat below.

Recall that the context of utterance of (30) is one where you see a lost child in
a crowd.

(30) Where is your father or your mother?
?p ∨ ?q

This question offers the child a choice between telling you where his mother is
and where his father is. You will be satisfied with an answer to either question.

It is probably impossible to find examples of matrix choice questions where
‘or’ operates at the sentential level. Szabolcsi (1997) argues that disjunctions
of questions in this sense are absent from natural languages. In English, for
example, sentences like “Who did you marry or where do you live?,” where or
is meant to operate at the inter-sentential level, are extremely odd, to say the
least. Moreover, Hungarian requires that one add a word to the effect of ‘rather’
or ‘instead’, suggesting that matrix disjunctions of questions aren’t really choice
questions, as one might have predicted, but rather “an idiomatic device that
allows one to cancel the first question and replace it with the second” (ibid).

Although we cannot find a better example than (30) from natural natural
language, Jeroen Groenendijk suggests that the semantic effect of a choice ques-
tion can be achieved with more elaborate settings. A simple example, due to
Groenendijk, is that of a college exam that reads “Answer five of the following
seven questions,” followed by a list of seven questions.

Irrespective of whether natural languages have mechanisms that can directly
express matrix choice questions, an erotetic logic should be able to model their
meaning, and InqL does just that. Indeed, an update of our familiar state σ
with ?p ∨ ?q results in the state represented in Figure 1.10.

11 10

01 00

Figure 1.10: σ[?p ∨ ?q]

This state has alternatives p, q, ¬p and ¬q, as one would expect from a
choice question: an answer to either question ?p or ?q will satisfy the inquirer,

Clearly, this is a yes-no question, as is indeed predicted by InqL, for ?¬(p ∨ q) has the same
possible answers as ?!(p ∨ q), and not those of ?(p ∨ q).
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dispelling the issues.

Alternative semantics for natural language ‘or’

The alternative-generating potential we see in disjunctions can be seen as an
implementation of so-called Hamblin semantics for disjunction (see for example
Alonso-Ovalle, 2006), as I mentioned in Section 1.2.1. The intuitive idea behind
these alternative semantics is that natural language ‘or’ isn’t the simple Boolean
join of two propositions, rather, it yields a set of alternative propositions. This
idea has proven fruitful in dealing with the free choice problem, the exclusiveness
implicature and other non-standard inferences legitimized by natural language
disjunction.

InqL is an alternative semantics in this sense as well, in that the essential
premise of Hamblin semantics, namely, that disjuncts be accessible to higher
operators, is to some extent implemented in InqL.31

A classical illustration of the use of alternative semantics for disjunctions
comes from the interaction between modality and disjunction. It is well known
that sentences like (31-a) are preferably interpreted as in (31-b).

(31) a. John may be in Paris or in London.
b. John may be in Paris and he may be in London.

Schematically, this corresponds to an inference of the sort

3(ϕ ∨ ψ) � 3ϕ ∧3ψ ,

which of course isn’t valid in traditional epistemic frames. Alternative semantics
account for this inference (reproducible in other modal domains besides the
epistemic one) by postulating that the modal can distribute over the disjuncts.
However, if disjunction is Boolean join, then the modal has only access to a
“blob” of possible worlds, the union of the propositions ϕ and ψ, and cannot
distribute. Enter alternative-generating disjunctions: if ‘or’ is not the Boolean
join, but rather an operator that generates a set with two propositions, phi and
psi, then the modal can easily access the individual disjuncts and distribute
over them.

Clearly, InqL has the means necessary to offer an equivalent account of free
choice, and presumably of related phenomena. Indeed, the similarity between
inquisitive and alternative semantics is quite striking: both semantics take the
Hamblin route of generalizing “set semantics,” that is, both semantics take even

31InqL has a weaker expressive power than that which is usually assumed for Hamblin
semantics. For example, InqL generates disjunctive alternatives up to logical entailment,
which is not a restriction implemented upon any of the Hamblin semantics I am familiar with.
Consider the sentence below:

(i) Phillip lives in Massachusetts or Boston.

The alternative semantics I am referring to would assign two alternatives to (i), while in InqL
we would have only one, namely the weaker “Phillip lives in Massachusetts”, for the other
proposition asymmetrically entails this one. This is a consequence of the InqL system which,
at least in this case, seems to be an advantage over other alternative semantics for disjunction,
insofar as the sentence in (i) is not a felicitous use of NL disjunction — InqL correctly prevents
it from generating the alternatives it intends to. In the conclusion to this chapter I will discuss
another instance of InqL’s expressive weakness.
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atomic sentences to mean not just propositions but rather proposition sets, and
both semantics assume that disjunction can generate alternatives.

They come apart however in at least three respects. First, inquisitive se-
mantics has a logic, InqL, with fully worked-out properties, which alternative
semantics lacks. Second, inquisitive semantics has a broader program of bring-
ing interrogation and disjunction together, which alternative semantics, to the
best of my knowledge, hasn’t considered. And third, the expressive powers of
both systems are different.32

At any rate, InqL has the tools necessary to account for at least a portion of
the free-choice and related data other alternative semantics on the market cover,
while making use of the same basic insight and enriching it, by establishing the
connection with interrogation.

Overgeneration?

Its free syntax is what allows InqL to be such a simple and elegant erotetic logic,
and yet powerful enough to account for non-partitioning questions, issue-raising
disjunctions, and so on. However, this free syntax also gives rise to such oddities
as the following, which I introduce roughly in ascending order of awkwardness:

1. ¬?p 3. ??p 5. ?p→ q
2. !?p 4. ?p ∨ ?q 6. ?p→ ?q

Naturally, the odd quality of these formulas only arises under the interpreta-
tion of ϕ∨¬ϕ as a question. That interpretation, although it is not a primitive
in our semantics, is of course essential to establish the viability of InqL as an
erotetic logic, so it cannot be disregarded at will.

The first three formulas are instances of negation of questions and of iteration
of the question operator. Now, since the question operator is not a primitive,
these boil down to, respectively, ¬(p ∨ ¬p), ¬¬(p ∨ ¬p) and p ∨ ¬p. Thus, the
negation of an atomic question is equivalent to ⊥, the double negation of an
atomic question to >, and the iteration of questions has no effect. Notice that,
while these formulas all get a semantic interpretation, their syntax is still odd
and natural language correlates to them seem impossible to find. The negation
of a question is completely absent from natural language, and, granted, assigning
to it the interpretation of the contradiction may be considered acceptable. But
how is the assertion of a question a tautology? Doesn’t that sound just as
“contradictory” as the simple negation of a question?

Again, my response must be that 1. this free syntax has clear formal ad-
vantages and 2. InqL is designed to be a literal and radical instantiation of
the inquisitive program. Certainly, we must constrain the syntax of a logic for
natural language questions to the same extent that natural language syntax is
constrained.

Ideally, of course, we won’t have to purely stipulate constraints and will be
able to reduce them to broader principles. Natural language syntax / Logical-
Form semantics, for example, have an explanation of why negation cannot take
scope over interrogation, in terms of wh-movement to a locus higher than the site
hosting negation. For that reason, syntactically minded semantics of questions
can block such inconvenient formulas as the ones above more or less easily.

32See footnote 31.
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There is therefore no reason not to conjecture that the next, more linguistically
adequate instantiation of inquisitive semantics will be able to use the same
mechanisms to block the undesired formulas, while still being able to assign
meanings to such formulas, were they to ever occur. In short, the capacity of
InqL to interpret (linguistically) bizarre formulas needn’t be seen as a flaw; it is
merely a sign of the fact that there is work to be done in designing an inquisitive
semantics that is based on InqL and yet is linguistically adequate.

1.2.4 Final remarks

I began this chapter by casting doubt on the influential theory that question
meanings correspond to partitions of the logical space. I attacked the partition
theory on three fronts:

1. It sharply distinguishes informativeness and inquisitiveness, assertions and
questions, which entails a complex proof-theory;

2. partitions strongly restrict the class of meanings that can be expressed by
a language, while there are good reasons to believe that natural languages
can express (sometimes via simple sentences, other via more elaborate
discourses) question meanings that warrant a greater expressive power;

3. partitions are not a conceptually necessary postulate, contrary to what
semanticists and philosophers have assumed; to the contrary, there is a
compelling conceptual argument against partitionhood.

I then introduced the inquisitive system InqL, which addresses all of the above
issues while at the same time incorporating a well-known linguistic insight,
namely that natural language questions and disjunctions are morphologically
related in many natural languages. The main postulates of inquisitive semantics
are repeated below.

(32) a. Semantic alternatives are generated by the mechanism of raising
issues.

b. Disjunction is the primitive issue-raising operator
c. Corollary: Questions are a special case of disjunctions.

Postulate (32-a) is motivated by the fact that alternative-generating operators
in language, in particular questions and disjunctions, convey ignorance and
raise issues, and Last[b] is motivated by the fact that, in languages where the
disjunction operator and the question operator are morphologically related but
distinct, the later is derived from the former, and not the other way around.
The corollary in (32-c) is a consequence of the postulates, when taken quite
literally, and it is what motivates the abbreviation

?ϕ := ϕ ∨ ¬ϕ .

These three premises are behind the inquisitive system InqL, a simple propo-
sitional logic with a standard language, interpreted in independently motivated
models, that nevertheless addresses the issues with the partition theory.
There are a number of loose ends in this chapter. One I find especially intrigu-
ing is the connection between this work and indefinites, alluded to in footnote
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12. Indefinites too have been argued to generate alternatives (Kratzer and Shi-
moyama, 2002), which suggests that they should be integrated in an inquisitive
program. Moreover, a subset of the natural languages that show morphological
relatedness between questions and disjunctions also have indefinites joining the
unholy mix, so the linguistic motivations for identifying questions and disjunc-
tions can be made with respect to disjunctions and indefinites.

The connection between indefinites and disjunction has to be spelled out
in a first order inquisitive logic, which lies outside the scope of this thesis.
I do however want to remark that, if indefinites are to be identified with (a
generalized quantifier employing) the existential quantifier of first order logic,
then a first order inquisitive semantics has a straightforward mechanism to
generate alternatives for indefinites in terms of disjunction in the meta-level.
Without defining models or a complete semantics, let me just give an informal
update semantics clause for the existential quantifier that illustrates this point.
Let A be the domain of quantification (the fixed domain in the model or perhaps
a contextually restricted one):

σ[∃x.ϕx] =
⋃
a∈A

σ[ϕa]

That is, an update with ∃x.ϕx equals the union of the individual updates with
ϕa for each a in the domain. It is easy to see how this generates the intended
alternatives via disjunction, i.e. set-union at the meta-level.

To the extent that indefinites can be taken to be generalized quantifiers of
this sort, it is an encouraging property of first order inquisitive logic that its
existentially quantified sentences can raise alternatives in much the same way
as its disjunctions.33,34

Standard erotetic logics typically use primitively defined question operators.
This gives rise to a flat, one-dimensional view of questions and assertions; for,
in those approaches, the building blocks of formulas are exclusively informative
and exclusively inquisitive subformulas. Data and issues are kept separate at
the level of semantic definitions, only arising in some of those logics in the form
of hybrid formulas that are restricted by the syntax.

In InqL, however, we achieve the intended expressive power by choosing the
hybrid quality of natural language disjunction as our starting point and defining
questions in terms of it. This gives us a two-dimensional view on informativeness
and inquisitiveness. The dichotomy between these two views is pictorially in
Figure 1.11.

This two-dimensional perspective on the informative and inquisitive power of
InqL formulas is embodied in the fact that there is no primitive clear distinction,
syntactic or semantic, between assertions and questions. Naturally, a distinction
can be defined over the syntactic and semantic primitives I gave; that will be the
likely future of inquisitive logic as it is applied to natural language semantics.

33It is a separate matter whether we can bring this similarity between indefinites and dis-
junctions into the object language.

34Note that this first order logic predicts that, just like with disjunctions, indefinites come
in two flavors, one “plain” the other double-negated and therefore non-inquisitive. It would
be interesting if we could find a parallel between the hybrid and purely informative uses of
disjunction discussed earlier in this chapter and two different uses of indefinites in natural
language.
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Data Issues

>p⊥ p ∨ q ?p

(a) Classical view

Data

Issues

>

⊥

p ∨ q

p

p ∨ ¬p

(b) InqL view

Figure 1.11: Two views on data and issues

The idea that the meaning of a natural language disjunction isn’t merely
propositional is by no means new to inquisitive semantics. In so-called alterna-
tive semantics for disjunction, the disjunction operator is not identified with the
Boolean join, which produces a simple union of propositions; rather, it takes a
number of propositions and yields a set of propositions, much like the interpre-
tation InqL assigns to a formula like p∨ q. In a way then, InqL can be seen as a
logic that brings together insights from the semantics of questions and the se-
mantics of disjunction and offers a unified view of the mechanism for generating
alternatives, while addressing problems with the partition theory of questions.
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Chapter 2

Inquisitive Logic

This chapter presents the results of my investigations on the logical properties
of the system defined in the previous chapter. I will begin with some informal
remarks and then proceed to introduce two crucial properties of the inquisitive
system that have philosophical and linguistic relevance. I will then introduce
an alternative formulation of the semantics of inquisitive logic in classical terms
(that is, no update functions), which I will use to present a sound and complete
axiomatization of the system.

2.1 InqL as an update logic

2.1.1 Preliminary remarks

Readers familiar with update logics have no doubt already asked themselves
while reading the first chapter (and most likely have found an answer to) whether
the inquisitive logic there defined has the properties of eliminativity and dis-
tributivity. A simple look at the recursive definition of the update functions,
repeated below, is enough to get an answer.

Definition 15 (Inquisitive semantics). The update of a state σ ∈ ΣP with
a formula ϕ of a language LP of InqL is inductively defined as follows:

σ[p] = {(i, j) ∈ σ : i(p) = j(p) = 1}
σ[⊥] = ∅

σ[ϕ ∧ ψ] = σ[ϕ] ∩ σ[ψ]
σ[ϕ ∨ ψ] = σ[ϕ] ∪ σ[ψ]

σ[ϕ→ ψ] = {(i, j) ∈ σ : (∀ι ∈ {i, j}2) ι ∈ σ[ϕ] =⇒ ι ∈ σ[ϕ][ψ]} a

One can immediately see that the system is eliminative, that is, for any
formula ϕ in the language, for any state σ, σ[ϕ] ⊆ σ. An informal inductive
argument should be enough: the atomic and implication clauses clearly select
a subset of the original σ; conjunction and disjunction, given the induction
hypothesis, are the intersection, respectively, union of two subsets of σ, and
thus themselves necessarily subsets of σ.

An update system is distributive if, for all formulas ϕ and states σ, the result
of updating σ with ϕ is equal to the union of the updates of the points in σ with
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ϕ, where the set of points in σ is the set of all singletons from elements of σ.
Again, an informal argument suffices: notice that the implication clause has a
search space that is larger than the point of evaluation, namely, to check whether
a pair (i, j) models an implication, we must check whether the reflexive pairs
thereof model the implication. Thus, InqL as an update logic is not distributive.

One final remark is in order, in this preliminary discussion. As one can see
by the fact that ϕ ∨ ¬ϕ is quite crucially not a tautology of the logic, InqL is
less than classical. In fact,

CPL ⊂ InqL ⊂ IPL ,

that is, InqL is an intermediate logic, properly included in CPL and properly
including intuitionistic propositional logic. That InqL 6= IPL is easy to show,
by simply pointing out a valid formula of InqL that isn’t intuitionistically valid;
one such example is the formula that axiomatizes the Kreisel-Putnam logic KP,
namely

(¬ϕ→ ψ ∨ θ)→ (¬ϕ→ ψ) ∨ (¬ϕ→ θ) ,

which I mentioned in the previous chapter, while discussing conditional ques-
tions. A semantic proof of this validity can be produced, but its length far
surpasses its interest, so I’ll omit it. As we will see in later sections, it’s no
surprise that the KP axiom is valid in InqL, as InqL happens to be an extremely
strong logic. I will discuss the axiomatization of InqL in later sections, for now
it will suffice to keep in mind that InqL is less than classical and more than
intuitionistic1.

2.1.2 Functional completeness

A static logical system is functionally complete if the language is able to express
all truth functions. While this notion clearly cannot be directly imported into
update logics, as the latter systems don’t deal with truth functions, we can
offer an update version of the concept of functional completeness that keeps the
basic intuition behind the original meaning. Definition 16 below states that a
language of inquisitive semantics is functionally complete just in case, from any
given state in the corresponding class of models we can move to any smaller
state via an update with a sequence of formulas.

Definition 16 (Functional Completeness). An update logic LP , for P a
finite set of propositional atoms, is functionally complete iff, for all σ, σ′ ∈ ΣP
such that σ′ ⊆ σ, there is a finite sequence of updates τ = 〈ϕ0, ϕ1, . . . , ϕn〉, such
that σ[τ ] = σ′. a

Notice that I am using sequencing in Definition 16, instead of the more
standard conjunction. The reason for that is that we want to prove functional
completeness for a minimal set of connectives, namely {∨,¬}, and dispensing
with conjunction in the definition makes this possible. One can argue that using
sequencing to do the job of conjunction is misleading, for sequencing is not part
of the inquisitive languages discussed so far. I’m sympathetic to that criticism,

1Strictly speaking, I haven’t shown that inquisitive logic includes intuitionistic logic. The
results I will present later on the axiomatization and completeness of InqL will make this quite
clear in a simple way.
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and suggest that the dissatisfied reader take Theorem 20 to show that the set
of connectives {∨,¬,∧} is functionally complete, as this involves a minor and
obvious adaptation of the proof.

Before going into the relevant functional completeness theorem for InqL, I
will present a vital definition, that of characteristic formulas.

Definition 17 (Characteristic Formulas). The characteristic formula for a
possible world i ∈W is the formula χi defined as follows:

χi := ¬
∨{
{¬pn : pn ∈ P and i(pn) = 1} ∪ {pn : pn ∈ P and i(pn) = 0}

}
a

Characteristic formulas single out specific worlds, as they are modeled at the
worlds they characterize and nowhere else. Accordingly, we get the following
obvious facts (proofs omitted), where

√
σ = {i : (i, i) ∈ σ} .

Remark 18. For any state σ ∈ ΣP , where P is some finite set of propositional
atoms, for any world i ∈

√
σ, σ[χi] = {(i, i)}. a

Remark 19. For any σ ∈ ΣP , P a finite set of propositional atoms, for any
i ∈
√
σ,

σ[¬χi] = σ − {(j, k) ∈ σ : j = i ∨ k = i} . a

Remark 18 tells us that an update with a characteristic formula yields the state
that contains but the reflexive pair the formula is indexed to, and Remark 19
says that updating a state with the negation of a characteristic formula elimi-
nates all pairs from that state that involve the world the formula characterizes.
We are now ready to prove the functional completeness theorem.

Theorem 20 (Functional completeness). For all σ, σ′ ∈ ΣP , for P a finite
set of propositional letters, such that σ′ ⊆ σ, there is a sequence of updates τ
where each formula uses only atoms, ∨ and ¬, s.t. σ[τ ] = σ′.

Proof. Let σ′ ⊆ σ be given, and put δ := σ − σ′. We disregard the trivial case
δ = ∅. For each (i, j) ∈ δ, define ϕi,j := ¬χi ∨ ¬χj , and let τ be any sequence
of all such ϕi,j .

Consider an arbitrary ϕi,j . By the definition of disjunction,

σ[ϕi,j ] = σ[¬χi] ∪ σ[¬χj ]

and so, given Remark 19, we get that

σ[ϕi,j ] = σ −
(
{(a, b) ∈ σ : a = i ∨ b = i} ∩ {(c, d) ∈ σ : c = j ∨ d = j}

)
.

The only pairs in that intersection are of course (i, j) and (j, i), so

σ[ϕi,j ] = σ − {(i, j), (j, i)} .

Notice that, for the case (i, i), we have σ[ϕi,i] = σ[¬χi] ∪ σ[¬χi] = σ[¬χi]. So,
we eliminate all pairs in σ containing i, including (i, i).

Clearly, all and only elements from δ are eliminated by the update with the
sequence τ , and thus σ[τ ] = σ − δ = σ′. �
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The reason why I’ve constrained languages and models to have only finitely
many propositional atoms is now clear: under my definition of functional com-
pleteness, I need formulas to be able to uniquely characterize models; equiva-
lently, functional completeness relies on characteristic formulas’ ability to uniquely
identify worlds in the root of a model. If worlds become valuations over infinitely
many atoms, then two worlds i and j may well be indistinguishable from each
other via a given formula ϕ or (finite)2 sequence τ . I will conclude this section
on functional completeness with a proof of this proposition.

Claim 21 (Functional incompleteness). An inquisitive language L with in-
finitely many propositional atoms, with a corresponding class Σ of (uncountably
many) infinite models, is not functionally complete.

Proof. We reason by contradiction. Assume L is functionally complete for Σ,
the class of all possible models for a language with infinitely many propositional
atoms, and consider a model σ that is the total relation on an underlying set of
worlds P ⊆W , where, for n ∈ N and in ∈W , in ∈ P iff in satisfies

in(pm) =
{

1 if m ≤ n
0 otherwise ;

that is, P is as illustrated in Table 2.1, and clearly P ⊂W .

i0 i1 i2 i3 · · ·
p0 1 1 1 1 · · ·
p1 0 1 1 1 · · ·
p2 0 0 1 1 · · ·
p3 0 0 0 1 · · ·
...

...
...

...
...

. . .

Table 2.1: An inaccessible model

Since L is functionally complete by assumption and σ ⊂ ω, for ω the maximal
model in Σ, there is a (finite) sequence τ such that ω[τ ] = σ; thus, we can
conjoin all formulas in τ to get a formula ϕ such that ω[ϕ] = σ. Now, let n
be the largest natural number such that pn is used in ϕ, and take any world
i ∈ W that survives the update with ϕ (i.e., i ∈

√
σ). Consider now the world

j ∈ W such that j(pk) = i(pk) for k ≤ n, and j(pn+1) = 0 but j(p`) = 1 for
` > n+ 1. Clearly, j /∈ P and therefore (j, j) /∈ σ. But, since j agrees with i on
all propositional atoms in ϕ, then (j, j) � ϕ, and since (j, j) ∈ ω and must have
survived the update with ϕ, (j, j) ∈ σ. We reach contradiction, and thus there
can be no τ such that ω[τ ] = σ, so L is not functionally complete for Σ. �

2.1.3 Alternative disjunctive normal forms

As I mentioned before, InqL is not classical logic, and it’s thus no surprise
that it lacks the normal form theorems we find in the proof theory of classical
propositional logic. However, we can define a weaker notion of a normal form
which will prove to be interesting and potentially useful.

2Naturally, this limitation disappears if we allow formulas or, perhaps more plausibly,
sequences of infinite length, but I won’t pursue that line here.
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Definition 22 (Alternative disjunctive normal form). ϕ is an alternative
disjunctive normal form (ADNF) iff ϕ =

∨∨
i<n ϕi, where each ϕi is formed

exclusively with {∧,¬,→}, i.e., each ϕi is an assertion. a

Alternative disjunctive normal forms are possibly large disjunctions of disjunc-
tion-free formulas so, intuitively, they bring the request for a choice to be made
— remember this was our loose heuristic for disjunction in an inquisitive se-
mantics — to the uppermost level in any given formula.

I will now prove the ADNF theorem and then proceed to a short discussion
about the interest of these normal forms.3

Theorem 23 (Existence of ADNFs). For every ϕ in the language, there is
an ADNF ϕ ∨! such that ϕ⇔ ϕ ∨!.

Proof. I present an algorithm that generates such ϕ ∨! based on ϕ:

1. ϕ is atomic. Then ϕ ∨! = ϕ.

2. ϕ = ψ ∨ θ. By induction hypothesis, there are ψ ∨! and θ ∨!, so set ϕ ∨! =
ψ ∨! ∨ θ ∨!.

3. ϕ = ψ ∧ θ. By IH, we have ψ ∨! and θ ∨!. By distributivity of disjunction
over conjunction, we get that

ϕ⇔ ψ ∧ θ ⇔ ψ ∨! ∧ θ ∨! ⇔
∨∨
i,j

(ψi ∧ θj) .

Set ϕ ∨! to the latter formula in the equivalence above.

4. ϕ = ¬ψ. We assume we have ψ ∨! =
∨∨

i<n ψi. The DeMorgan law
pushing negation into disjunction / pulling negations from conjunction
(namely ¬(α ∨ β)↔ ¬α ∧ ¬β) holds, so we can set

ϕ ∨! =
∧∧
i<n

¬ψi ,

to get a trivial ADNF.

5. ϕ = ψ → θ. By induction hypothesis, we have ψ ∨! and θ ∨!. Obviously,
(α ∨ β → γ) ↔ (α → γ) ∧ (β → γ) is valid in InqL (informal argument:
notice that it is an IPL tautology), so we have the equivalence below.

ψ ∨! → θ ∨! ⇔
∧∧
i<n

(ψi →
∨∨
j<m

θj)

In InqL, (¬α → β ∨ γ) → (¬α → β) ∨ (¬α → γ), the KP axiom, is
valid, as I remarked above, as is (trivially) the other direction. I have
also mentioned that the assertive fragment is negative, in the sense that
assertive formulas are equivalent to their double negation; thus, given that
all ψi are assertions, we can apply KP to each implication above, and so

∧∧
i<n

(ψi →
∨∨
j<m

θj)⇔
∧∧
i<n

∨∨
j<m

(ψi → θj)

 .

3Notice that some steps in this proof use theorems that haven’t been proven yet; for the
most part, these are obvious validities with trivial proofs (distributivity, associativity, some
directions of DeMorgan), but one or two others are more substantial results that I will prove
in later sections.
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Each implication is now purely assertive (for each ψi and θj is assertive
by assumption), so we can formulate them in terms of conjunction and
negation, via (α→ β)↔ ¬(α ∧ ¬β). As a consequence,

∧∧
i<n

∨∨
j<m

(ψi → θj)

⇔∧∧
i<n

∨∨
j<m

¬(ψi ∧ ¬θj)

 ,

which is clearly a conjunction of ADNFs, so we can apply the law of
distributivity, as in 3. above, to each pair of conjuncts.

It is clear from the algorithm that the formula ϕ ∨! thus constructed is an ADNF
(cf. Definition 22) and that it is equivalent to the original ϕ. �

At first glance, alternative disjunctive normal forms might seem to offer
a proof-theoretic counterpart to the semantic notion of alternatives, as defined
Chapter 1 and repeated below, in that each disjunct in an ADNF seems to spec-
ify a semantic alternative. Conditional questions are a simple and compelling
example: the formula p → ?q has the alternative set {p → q, p → ¬q}, and it
corresponds to the ADNF ¬(p∧¬q)∨¬(p∧ q), equivalently (p→ q)∨ (p→ ¬q).
If this observation is generalizable, then ADNFs give us a way to syntactically
calculate alternatives, i.e., we can syntactically manipulate formulas of InqL and
read off those transformations the alternatives that a formula has the potential
of generating in any given state.

Definition 24 (Alternatives). For σ a model of InqL, the set Aσ is the set of
alternatives in σ, where α ∈ Aσ iff

1. α ⊆ σ;

2. α is a total relation; and

3. there is no σ ⊇ β ⊃ α such that β is a total relation. a

Unfortunately, the correspondence between semantic alternatives and AD-
NFs isn’t as tidy as one might like. Specifically, while semantic alternatives
have a maximality requirement, we cannot be sure that the ADNFs produced
by the algorithm above will respect that maximality requirement. For example,
there may be ADNFs of the form ϕ ∨ (ϕ ∧ ψ), which generate only one seman-
tic alternative, namely ϕ. Naturally, we can fine-tune the ADNF algorithm to
incorporate the maximality constraint, which corresponds to getting rid of dis-
juncts that are entailed by other disjuncts, but this involves more sophisticated
manipulations than the ones above, and it becomes less clear whether ADNFs
are a simpler notion than that of semantic alternatives.4

2.2 More on the logic InqL

The remainder of this chapter will concentrate on properties of the logic (i.e.,
set of validities) induced by InqL. I will begin by introducing a semantics more

4Notice that calculating semantic alternatives as in Definition 24 amounts to finding all
(maximal) cliques in an undirected graph. [is this a known problem? certainly, if we have
all maximal cliques then we can answer the maximum clique problem, which is NP-complete
(Karp 1972). But finding all maximal cliques might be even harder, since there can obviously
be exponentially many maximal cliques in any given graph. Help?]
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appropriate for the task at hand and will present a sound and complete axiom-
atization of InqL.

2.2.1 A more convenient semantics

I have remarked on more than occasion in this text that the update semantics
defined here is perfectly static, as there are no real dynamic operators.5 There-
fore, we can formulate the same inquisitive semantics in terms of static, possible
world semantics, as under Definition 25 below. It’s important to remark that
from now onward I will drop mention to sets P of propositional atoms and
will consider only one inquisitive language L, with infinitely many propositional
atoms, defined in the usual way. The reason for the finiteness constraint on
atoms was that we were dealing with an update system that we wanted func-
tionally complete in the sense of Definition 16 and, in a static formulation of
the semantics, functional completeness resumes its traditional definition, where
finiteness of models makes no difference. The (unique) language L thus de-
fined is interpreted in inquisitive models just as before, naturally dropping the
subscripts on finite sets of propositional atoms. I will now use Σ to refer to
W ×W , that is the set of all pairs of possible worlds. For convenience, I give
the semantics of negation as a separate clause in the definition that follows, but
it amounts, as before, to ¬ϕ ⇐⇒ ϕ→ ⊥, as the reader can quickly verify.

Definition 25 (Static inquisitive semantics). A formula of a language of
inquisitive semantics is true at a given point (i, j) ∈ Σ according to the following
inductive definition:

(i, j) � p iff i(p) = j(p) = 1
(i, j) � ¬ϕ iff (i, i) 2 ϕ & (j, j) 2 ϕ

(i, j) � ϕ ∨ ψ iff (i, j) � ϕ or (i, j) � ψ

(i, j) � ϕ ∧ ψ iff (i, j) � ϕ & (i, j) � ψ

(i, j) � ϕ→ ψ iff (i, i) � ϕ =⇒ (i, i) � ψ &
(j, j) � ϕ =⇒ (j, j) � ψ &
(i, j) � ϕ =⇒ (i, j) � ψ a

I will not show formally how Definition 25 is indeed equivalent to the update
formulation, but it should be clear from merely inspecting the two definitions.
The other formal notions we used are quite straightforwardly adapted to this
formulation of the semantics, namely,

Definition 26 (InqL, static definition). The logic InqL is the set of formulas
such that

ϕ ∈ InqL iff
(
∀(i, j) ∈ Σ

)
(i, j) � ϕ a

5The issue of what makes a logic dynamic is hugely debated, so I should clarify. What
I mean is that the relation of logical consequence, or entailment, as defined in the previous
chapter for InqL, is perfectly standard when compared to entailment in typical dynamic se-
mantics that have, for example, definitions of conjunction that make ϕ ∧ ψ a context change
potential not equivalent to ψ ∧ ϕ. It is in this sense that InqL isn’t dynamic.
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2.2.2 An intermediate logic?

We saw before that the (proper) inclusions below hold.

CPL ⊂ InqL ⊂ IPL

Now, this suggests that InqL is what the literature calls an intermediate logic,
intermediate between classical logic and intuitionistic logic, and indeed the ques-
tion I’ll pursue for the remainder of this section is what intermediate logic that
might be. However, I must discuss an important caveat to what follows.

I have been calling InqL a logic, but I haven’t used that term in a rigorous
enough way. In actuality, logics in the strict sense are typically defined as sets of
sentences under a number of closure conditions, namely deduction and uniform
substitution, and, as it turns out, InqL as we’re defining it doesn’t fall under
this definition, for it fails to be closed under substitution. This is very easy to
see, for

¬¬p→ p ∈ InqL but ¬¬(p ∨ ¬p)→ p ∨ ¬p /∈ InqL ,

that is every atom is by definition assertive and thus equivalent to its double
negation, but this doesn’t carry over to arbitrary formulas; in particular, the
disjunction-free fragment is classical in the sense that double negation elimina-
tion works without provisos (see Claim 28 below), but the same is not true for
the full language including disjunction.

Should we be too concerned about the fact that InqL isn’t closed under
substitution? Certainly not. As linguists and philosophers, we are interested
in logics that can model aspects of the world in a principled manner, and if
the systems that prove to be the most adequate to model natural language
phenomena happen to be unorthodox from a conservative logical point of view,
then that’s too bad for the logician. . . This of course shouldn’t stop us from
thinking about what the reason is for failure of substitution in InqL and what
its consequences are, it’s merely an idea to keep in the backs of our minds as
we investigate some of the logical oddities of this instantiation of inquisitive
semantics.

Clearly, InqL isn’t closed under substitution because of the validity of atomic
double negation elimination, which in turn percolates to disjunction-free formu-
las. For the sake of clarity, I will prove this validity and consider some of its
consequences.

Claim 27 (Validity of ADN). InqL � ¬¬p→ p for atoms p

Proof. Let p be given and take an arbitrary (i, j). What we want to show is
that (i, j) � ¬¬p→ p, which is equivalent to

(i, j) � ¬¬p =⇒ (i, j) � p &
(i, i) � ¬¬p =⇒ (i, i) � p &
(j, j) � ¬¬p =⇒ (j, j) � p .

Now the last two conjuncts are of course true (remember reflexive points are
classical), so we need only show the first conjunct. By the truth definitions
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above, and using again the fact that reflexive points are classical, we get

(i, j) � ¬¬p ⇐⇒ (i, i) 2 ¬p & (j, j) 2 ¬p
⇐⇒ (i, i) � p & (j, j) � p

⇐⇒ (i, j) � p . �

And, of course, a simple inductive argument shows that disjunction-free formulas
also display this property:

Claim 28 (Assertive fragment). The disjunction-free fragment of InqL, i.e.
the assertive fragment, is classical.

Proof. It suffices to show by induction on the complexity of disjunction-free
formulas that double negation elimination is valid. The base case corresponds
to Claim 27, and the conjunction and implication steps use the (IPC) validity of
pushing double negation inside conjunction and implication in connection with
the induction hypothesis.6 �

Interestingly enough, these two very simple results embody much of what
makes InqL linguistically relevant, namely, the assumption that propositional
atoms are non-inquisitive and thus purely informative, and the related intuition
that it is disjunction that is entirely responsible for the existence of inquisitive-
ness in natural language. In my view, these two ideas are very crucial parts of
an inquisitive enterprise, and thus I find the loss of closure under substitution
to be by no means a good reason to consider dropping them.7

2.2.3 Axiomatizing InqL

Our first step towards an axiomatization of InqL is to identify a very closely
related known intermediate logic, the logic LV of the simple forked frames
(Maksimova, 1979; Chagrov and Zakharyaschev, 1991).8

Definition 29 (The logic LV). LV is the logic IPC + (H2) + (W2), as fol-
lows:

(H2) ϕ ∨ (ϕ→ ψ ∨ ¬ψ)
(W2) (ϕ→ ψ) ∨ (ψ → ϕ) ∨ ((ϕ→ ¬ψ) ∧ (ψ → ¬ϕ)) . a

The axioms in Definition 29 impose two conditions on frames: (H2) says
that the maximum length of chains in this frame is two (where an endpoint is
a chain of length one), and (W2) says that a node can have no more than two

6That is, ¬¬(ϕ ∧ ψ) ↔ ¬¬ϕ ∧ ¬¬ψ, and similarly for implication.
7The linguistic and philosophical consequence of dropping ADN would be to allow atoms

to be inquisitive. Jeroen Groenendijk pointed out to me that this might be an interesting way
to model why-questions (and see Groenendijk, 2008c, for a discussion of other consequences of
dropping ADN); that may well be, but such a system would require strong meaning postulates
to be usable, as it seems unlikely that having p be able to mean “It is raining. Who is the
president of Austria?” can be at all useful to model why-questions.

8I thank Lex Hendriks for pointing out to me that the logic I was looking at had been
discussed in these references. I should also remark that Maksimova gives this logic the name
L4, as part of the list of eight logics with the interpolation property.
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distinct successors. This means that frames of LV have the following shape,
which I will call a simple fork.

w v

r

``AAAAAAA

??~~~~~~~

Accordingly, we have the following completeness result.

Theorem 30 (Chagrov and Zakharyaschev 1991). LV is sound and com-
plete for the simple forked frames.9

It’s important to explicate the sense in which LV is close to InqL. It is a
fact about InqL that the models needed to falsify a formula are minimal in a
very precise way; this was noticed as early as Groenendijk (2007) for the logic
defined there, an immediate predecessor of InqL.10 All we need to falsify a
formula in InqL is a model consisting of four pairs over two possible worlds,
which Groenendijk (2007) calls a point :

i j

It is easy to see why this is the case. Consider the semantic clauses as per
Definition 25. The atomic clause, conjunction and disjunction clearly show that
we can check whether an atom, conjunction and disjunction are true at a pair
ι by simply inspecting properties of ι. Implication and negation have a broader
search space, but it is still rather restricted: to check whether an implication is
modeled by a pair ι, we need to see whether it is modeled at all pairs constructed
from the worlds mentioned in ι, but that means, for the most complex case where
ι = (i, j) with i 6= j, a set of four pairs, no more. As a consequence, all we need
to falsify a formula in InqL is at most a point as pictured above.

It is obvious what the simple forks of LV have in common with inquisitive
points: both models have two classical nodes, namely the nodes w and v in
the above picture of a fork and the pairs (i, i) and (j, j) in the depiction of a
point; in addition, both models have a non-classical node, r in the LV fork, (i, j)
(equivalently, (j, i)) in the InqL point. This intuitive similarity will be explored
in the proof of the Correspondence Theorem 36.

LV and InqL are similar, but not identical, for atomic double negation is not
valid in LV. A natural candidate for a logic that might be in exact correspon-
dence with InqL then is LV+ as defined below. The hope is that LV+ models

9In actuality, Chagrov and Zakharyaschev (1991) don’t prove this result, they merely cite
it. The first few steps of my proof of Theorem 35 however will give an obvious outline of a
proof of this theorem.

10In fact, the logic of Groenendijk (2007) actually was InqL. Groenendijk had defined an
erotetic logic to address some of the issues with the partition framework discussed in Chapter
1. That logic was supposed to have purely assertive disjunction, as in a partition logic,
but to allow for non-partitioning meanings such as conditional questions and disjunctions of
questions. In fact though, inquisitiveness lurked in the definition of disjunction, just like in
InqL as defined in this thesis, except that fact had been unnoticed until I proved a functional
completeness result in the spirit of the one earlier in this chapter and came across what was,
in the context of that logic, a mistake. Groenendijk then had the inspired idea of proposing
we pursue that non-standard definition, and inquisitive semantics was born.
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will preserve the interesting shape of LV models and validate atomic double
negation. Luckily, this is indeed the case, and it is the content of Theorem 35.

Definition 31 (The logic LV+). LV+ is the “logic” IPC + (H2) + (W2) +
(ADN), as defined below:

(H2) ϕ ∨ (ϕ→ ψ ∨ ¬ψ)
(W2) (ϕ→ ψ) ∨ (ψ → ϕ) ∨ ((ϕ→ ¬ψ) ∧ (ψ → ¬ϕ))

(ADN) ¬¬p→ p, for all atoms p . a

Notice that LV+ is IPC with all substitution instances of (H2) and (W2),
but (ADN) only for atoms; this property of the axiom (ADN) is what explains
that InqL isn’t closed under uniform substitution, as discussed earlier, and it
justifies the scare quotes around the word ‘logic’ in Definition 31.

(ADN) imposes a condition on models, as opposed to frames. In words,
(ADN) says that whenever all the endpoints accessible from a node w force an
atom p, then w too forces p. Equivalently, the set of atoms forced by w is the
intersection of the sets of atoms forced by the endpoints accessible from w. I
will dub this the intersection property, as follows.

Definition 32 (Intersection property). Let v be the function that maps a
world in a Kripke model to the set of propositional atoms forced at that world.
That is, for K = (W,R, V ) a Kripke model of intuitionistic logic, v : W → ℘(P )
such that

v(x) = {p : x ∈ V (p)} .

A Kripke model K = (W,R, V ) for intuitionistic logic has the intersection prop-
erty just in case, for any w ∈W ,

v(w) =
⋂
{v(x) : wRx} . a

The following simple claim will be useful in proving soundness later.

Claim 33. Atomic double negation is valid in all models with the intersection
property.

Proof. Let a model M = (W,R, V ) with the intersection property be given, and
assume that an arbitrary node w forces ¬¬p, for some atom p, to show that
w  p. By definition, all endpoints for w model p, which means that

p ∈
⋂
{v(x) : wRx} ,

but then by the intersection property p ∈ v(w), and thus w  p. �

I now define the canonical model of LV+ and proceed to showing the main
result in this chapter.

Definition 34 (Canonical model for LV+). The canonical model for LV+

is the tuple M = 〈W,⊆, V 〉, wherein W is the set of all consistent LV+ theories
with the disjunction property, and V is such that, for any atom p, V (p) = {Γ ∈
W : p ∈ Γ}. a
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Theorem 35. LV+ is sound and complete for the simple forks with the inter-
section property.

Proof. (H2) and (W2) are valid in the simple forked models, and since the
intersection property doesn’t tamper with these conditions on height and width,
they are also valid in the simple forks with the intersection property. From
Claim 33 we know that (ADN) is also valid in such models. This gives us
soundness.

I proceed to completeness. The Lindenbaum-style lemma needed is proven
in the perfectly standard way, as well as the fact that, in the canonical model,
Γ  ϕ just in case ϕ ∈ Γ. This gives us the model existence lemma, whereby,
if LV+ 2 ϕ, there is a LV+-theory Γ with the disjunction property such that,
in the canonical model of Definition 34, Γ 1 ϕ. We must now show that the
canonical model is a simple forked model with the intersection property.

First, M has height at most 2. Suppose there is a chain α ⊂ β ⊂ γ ∈ W .
Because β ⊂ γ, there must be some ψ ∈ γ such that ψ /∈ β, and similarly some
θ ∈ β such that θ /∈ α. Since α forces all instances of the axiom (H2), we have

α  θ ∨ (θ → ψ ∨ ¬ψ) ,

but α 1 θ, so it must be that α  θ → ψ ∨ ¬ψ. Now, since α ⊂ β and β  θ,
we have that β  ψ ∨ ¬ψ. But we know that β 1 ψ, and it also cannot be that
β  ¬ψ, given that γ  ψ. We reach contradiction, and thus it must be that all
chains in M have height at most two.

Second, any point in M has at most two (strict) successors. Suppose other-
wise, i.e., there are α ⊂ β, γ, δ ∈ W . We know that no chain can have height
greater than 2, so the model must look like the following picture.

β γ δ

α

__????????

??��������

OO

Now, β, γ and δ must be distinct, so there must be some ψ such that β  ψ
but γ 1 ψ. Notice that β, γ and δ are endpoints (given the height boundedness
of these models just shown), so we also have that γ  ¬ψ. Similarly, we find
θ ∈ γ, θ /∈ δ and χ ∈ β, χ /∈ δ. This gives us the following picture.

ψ,¬χ ¬ψ, θ ¬θ, χ

β γ δ

α

ccFFFFFFFFF

<<xxxxxxxxx

OO

Now, α forces all substitution instances of (W2), so we have the following.

(1) α  (ψ ∧ ¬χ) ∨ (χ ∧ ¬θ)→ (¬ψ ∧ θ) ∨ (χ ∧ ¬θ) or
(2) α  (¬ψ ∧ θ) ∨ (χ ∧ ¬θ)→ (ψ ∧ ¬χ) ∨ (χ ∧ ¬θ) or
(3) α  (ψ ∧ ¬χ) ∨ (χ ∧ ¬θ)→ ¬((¬ψ ∧ θ) ∨ (χ ∧ ¬θ)) ∧

(¬ψ ∧ θ) ∨ (χ ∧ ¬θ)→ ¬((ψ ∧ ¬χ) ∨ (χ ∧ ¬θ))
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I will show that the above cannot be true.11

(1) β  ψ ∧ ¬χ, so β  (ψ ∨ ¬χ) ∨ (χ ∧ ¬θ). But β  ψ and β  ¬χ, so
β 1 (¬ψ ∧ θ) ∨ (χ ∧ ¬θ), which falsifies (1).

(2) Falsified at γ, for reasons similar to the above.

(3) δ  (ψ ∧¬χ)∨ (χ∧¬ψ), so by (3) we get the following (recall that δ is an
endpoint, and therefore classical equivalences hold).

δ  ¬((¬ψ ∧ θ) ∨ (χ ∧ ¬θ))
⇐⇒ δ  ¬(¬ψ ∧ θ) ∧ ¬(χ ∧ ¬θ)
⇐⇒ δ  (ψ ∨ ¬θ) ∧ (¬χ ∨ θ)
=⇒ δ  ¬χ ∨ θ

But δ 1 ¬χ ∨ θ, so we reach contradiction.

(1), (2) and (3) are therefore false at α, which contradicts our hypothesis that
α could have three distinct strict successors.

It remains to show that M has the intersection property. For α the root of
M, what we have to show is that

p ∈ α iff p ∈
⋂
{β : α ⊂ β} ,

for atoms p in the language. The crucial direction is of course right-to-left (for
left-to-right follows immediately form persistence in Kripke models), so assume
as an absurd hypothesis that there is an atom p such that p ∈

⋂
{β : α ⊂ β}

but p /∈ α. Obviously, β  p, for all β ⊃ α, which entails that α  ¬¬p. Since
M is a model of LV+, α  ¬¬p→ p. But this means α  p and therefore p ∈ α,
which contradicts our earlier assumption.

M is thus a simple fork with the intersection property. �

Theorem 36 (Correspondence). InqL � ϕ iff LV+ � ϕ

Proof. We will show the converse, namely, that InqL 2 ϕ iff LV+ 2 ϕ, which
amounts to building countermodels of one logic from countermodels of the other.

Let us begin with left-to-right, so assume we have InqL 2 ϕ. By definition,
this means we have some σ, a model of InqL, with (i, j) ∈ σ such that σ, (i, j) 2 ϕ.
Now construct a Kripke model for intuitionistic logic M = (W,R, V ), with
W = {r, w, v}, and R and V as defined below.

11I might be worth spelling out the intuition behind this step. The properties of the canon-
ical model allowed us to find formulas ψ, θ and χ that we can use in conjunction to single out
each of β, γ and δ. Now, the disjunction in (1), (2), (3) is a substitution instance of the axiom
(W2), repeated below, where τ is replaced by (ψ∧¬χ)∨ (χ∧¬θ) and σ by (¬ψ∧θ)∨ (χ∧¬θ).

(W2) (τ → σ) ∨ (σ → τ) ∨ ((τ → ¬σ) ∧ (σ → ¬τ))

Since ψ ∧ ¬χ is only true at β, ¬ψ ∧ θ at γ and χ ∧ ¬θ at δ, what the formula in (1) reads is
“if you’re at β or δ then you’re at γ or δ,” which of course is falsifiable at β. Similarly for (2).

(3) then reads “if you’re at β or δ then you’re not at γ or δ, and if you’re at γ or δ then
you’re not at β or δ,” which is false at δ.
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w ∈ V (p) iff i(p) = 1
v ∈ V (p) iff j(p) = 1
r ∈ V (p) iff i(p) = j(p) = 1

M is a simple fork and by the definition of V above it clearly has the in-
tersection property, so it’s a model of LV+. We now show by induction on the
complexity of formulas that w  ψ iff (i, i) � ψ:

1. the base case and ⊥ follow immediately from the definition of V .

2. conjunction (and similarly disjunction):

w  ψ ∧ θ ⇐⇒ w  ψ & w  θ

(by the IH) ⇐⇒ (i, i) � ψ & (i, i) � θ

⇐⇒ (i, i) � ψ ∧ θ

3. implication (remember that w and (i, i) are both endpoints in their re-
spective models):

w  ψ → θ ⇐⇒ w  ψ =⇒ w  θ

(by IH) ⇐⇒ (i, i) � ψ =⇒ (i, i) � θ

⇐⇒ (i, i) � ψ → θ

Obviously, we also have that v  ψ iff (j, j) � ψ, so call these two results an
intermediate lemma for this proof. We can now show, again by induction, that
r  ψ iff (i, j) � ψ. Base case, conjunction and disjunction are quite trivial, the
interesting step is implication:

r  ψ → θ ⇐⇒ (∀x : rRx) x  ψ =⇒ x  θ

(given the nature of M) ⇐⇒ r  ψ =⇒ r  θ &
w  ψ =⇒ w  θ &
v  ψ =⇒ v  θ

(by IH and the lemma above) ⇐⇒ (i, j) � ψ =⇒ (i, j) � θ &
(i, i) � ψ =⇒ (i, i) � θ &
(j, j) � ψ =⇒ (j, j) � θ

⇐⇒ (i, j) � ψ → θ

As a consequence of this, M, r 1 ϕ, and as such LV+ 2 ϕ, as we intended to
show.

For the other direction, assume LV+ 2 ϕ, which gives us an LV+ model
M = (W,R, V ), such that, for r its root, M, r 1 ϕ. Now, M, as a model of
LV+, must be a simple fork with the intersection property; the fact that it is a
simple fork tells us it must fall under one of three possible configurations:

1. M is a single reflexive point. Then ϕ can be falsified in classical logic, and
it’s trivial to build an InqL model that falsifies it as well: simply take a
single reflexive point (i, i) that models exactly the same atoms as the r in
M.
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2. M is of the form r → w. Since M has the intersection property, clearly r
and w must force the same propositional atoms, and so this case reduces
to the single reflexive point. Proceed as in 1. above.

3. M is indeed a fork with root r and endpoints w and v.

For the latter case, define σ := {(i, i), (j, j), (i, j), (j, i)}, and let, for each p in
the language,

i(p) = 1 iff w ∈ V (p)
j(p) = 1 iff v ∈ V (p) .

It should be clear from the way we defined i that (i, i) � ψ iff w  ψ, and
similarly for j and v. We proceed then to show by induction that (i, j) � ψ iff
r  ψ:

1. ⊥ is trivial, so consider just the atomic case:

(i, j) � p ⇐⇒ i(p) = j(p) = 1
⇐⇒ w ∈ V (p) & v ∈ V (p)

(by the intersection property) ⇐⇒ r ∈ V (p)
⇐⇒ r  p

2. conjunction and disjunction are trivial.

3. implication uses the fact that (i, i) � ψ iff w  ψ, and similarly for j and v,
the induction hypothesis and the makeup of M, just as a few paragraphs
above in the proof of the other direction of this theorem, so I’ll omit it in
the interest of space.

Just as before, this gives us, since we have the assumption M, r 1 ϕ, that
σ, (i, j) 2 ϕ, and thus InqL 2 ϕ, as we wanted to show. �

As I mentioned before, Theorem 36 gives us a sound and complete axi-
omatization of InqL, as it legitimizes merely importing the axioms of LV+.
Accordingly, we get the following immediate corollary of Theorems 36 and 35:

Corollary 37 (Completeness of InqL). IPC + (H2) + (W2) + (ADN) for
atomic p is a complete axiomatization of InqL.
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