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Abstract. Counterpart semantics is proposed as the appropriate semantical frame-

work for a foundational investigation of quantified modal logics. It turns out to be

a limit case of the categorical semantics of relational universes introduced by Ghi-

lardi and Meloni in 1988. The main result is a deeper understanding of the interplay

between substitution, quantification and identity wherever modalities are present.

Languages with types and explicit substitutions are the tools used to clarify such an

interplay and to disintangle classical problems related to modalities in first-order lan-

guages. It is shown that controversial modal principles are neither valid nor provable.

Quine’s worries are dispelled.

§1. Introduction. Early modal logic

The year 1946 is worth remembering in the history of first-order modal
logic because two important papers appeared in succession in the Journal
of Symbolic Logic: ‘A Functional Calculus of First order Based on Strict
Implication’ by Ruth C. Barcan, and then ‘Modalities and Quantification’
by Rudolf Carnap. For the first time formal systems of quantified modal
logic were introduced and analysed: “So far, no forms of MFC - modal
functional calculus - have been constructed, and the construction of such
a system is our chief aim.” Thus Carnap in 1946.1 The logical and philo-
sophical issues raised by Carnap and Barcan’s enterprise do not depend in
an essential way on the nature of the intensional operators they deal with,
i.e. the alethic operators, ‘it is necessary that’ and its dual ‘it is possible
that’, and can be applied to other operators as well, e.g. the temporal
ones: ‘always in the future’ and ‘always in the past’. Since foundational
worries are at the core of the present work, there is no loss in limiting

This paper was the topic of a course given at the Philosophy Department of Uppsala
University during January-February 2001. I am greatly indebted to Prof. Krister
Segerberg who gave me the opportunity to discuss with him and his students the main
points of counterpart semantics. I thank Tor Sandqvist for his questions, which induced
me to recast several points. My sincere gratitude is due to Professors Dag Prawitz,
Per Martin-Löf and Sten Lindström for their comments and suggestions. I thank Dr
Lorenzo Sacchetti for his help with LATEX.

1See Carnap, [9], p.33.
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our investigation to the ‘simplest’ modal language, the one Barcan and
Carnap dealt with.

The problem for them was, as Willard Van Orman Quine had already
argued in ‘Notes on existence and necessity’, 1943, that there were con-
siderable difficulties in marrying either substitution or quantifiers with
modalities.

Resistance to substitution2 Quine considers intensional languages which
allow composition of statements by means of ‘necessarily’, ‘possibly’, and
‘necessarily if-then’, and, quite rightly, wants to preserve the fundamental
principle of substitutivity : “given a true statement of identity, one of its
two terms may be substituted for the other in any true statement and the
result will be true”3 But here is Quine’s example of substitution, which
has become omnipresent since its first appearance:

1. The number of planets = 9.
2. 9 is necessarily greater than 7.
3. The number of planets is necessarily greater than 7.

“ a substitution on the basis of the true identity (1.) transforms the truth
(2.) into a falsehood (3.)”. Intensional contexts “are, in fact, subject to
the same defects as the contexts of quotes.” “ . . . a name within a context
of single quotes does not occur designatively . . . ” in the very same way
as “the occurrence of ‘9’ in (2.) is not purely designative”4.

Resistance to quantification. “ . . . a statement like ‘There is something
which is necessarily greater than 7’ is meaningless. For, would 9, that is
the number of planets, be one of the numbers necessarily greater than 7
? But such affirmation would be at once true in the form of (2.) and
false in the form of (3.).”5. Therefore the quantifier ‘there is’ misses its
primary function of designating an individual independently of the mode
of presentation.

Does the formula 2(x > 7) express a genuine predicate? Is the meaning
of 2(x > 7) a set of objects, or otherwise said, does x have a referential
function? If it were so, then

1. 2(x > 7) applied to a singular term t, 2(t > 7), would express a
property of the object [t] which is the referent of t.

2. t could be substituted in 2(t > 7) by any co-referential term s, salva
veritate.

3. the variable x in 2(x > 7) could be quantified and the sentence
∃x2(x > 7) be either true or false.

2In analogy to Quine’s expression ‘resistance to quantification’, [62], p.124.
3See Quine, [62], p.113.
4See Quine, [62], p.123.
5See Quine, [62], p.124.
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Since (1.)-(3.) seem rather disputable on the basis of the examples pro-
duced by Quine, it has been argued that in the presence of intensional op-
erators one should abandon any ‘objectual interpretation’ such as Tarski’s
and indeed Quine’s.6

These objections of principle to the feasibility of any ‘sound’ formal
system of intensional logic did not stop Carnap from elaborating such sys-
tems. Carnap is willing to study intensional calculi from inside, by looking
at what their proof theory and semantics might be like once we have them.
In Meaning and Necessity, 1947, Carnap presents the well-known system
S2 whose language is very rich: it is a first-order language with identity
and individual constants; moreover it contains both the iota-operator for
individual descriptions and the lambda-operator for abstraction. “If a
sentence consists of an abstraction expression followed by an individual
constant, it says that the individual has the property in question. There-
fore, ‘λx(. . . x . . . )a’ means the same as ‘. . . a . . . ’, that is, the sentence
formed from ‘. . . x . . . ’ by substituting ‘a’ for ‘x’. The rules of our sys-
tem will permit the transformation of ‘λx(. . . x . . . )a’ into ‘. . . a . . . ’ and
viceversa; these transformations are called conversions.”7 The admission
of the λ-conversion rule without restrictions is the key feature of Carnap’s
system that we want to address. Already in 1964, Feys raises his finger
against this rule: “It is well known that Ax → (x = y → Ay) holds. Let
us take for A the predicate λy2(x = y). Then we have

2(x = x) → (x = y → 2(x = y)).
Since 2(x = x) holds, it follows that

x = y → 2(x = y),
hence we should come to this paradoxical result that whenever factual
identity exists, necessary identity must exist. . . . But this argumentation
takes for granted that both sentences ‘2Ay’ and y has the predicate ‘to be
an x, which is necessarily an A’, i.e. ‘(λx2Ax)y’ are logically equivalent.
But this not the case. ‘2Ay’ is a sentence expressing a necessary proposi-
tion, whereas ‘(λx2Ax)y’ is a modally ambiguous statement attributing
a necessary predicate to y.”8

Carnap does not accept Feys’ analysis and replies: “The problems which
Feys discusses in the last section of his essay are indeed serious, and I
would agree they must be solved if a satisfactory system of modal logic is
to be constructed. . . . Feys analyses the sentences ‘2Ay’ and ‘(λx2Ax)y’.
. . . In my languages these two sentences are L-equivalent by virtue of the

6Ruth Barcan Marcus in [6], 1961, proposes the so-called ‘substitutional interpreta-
tion’ according to which ∃xA(x) means A(t) for some expression t.

7See, Carnap, [9], p.3.
8See Feys, [17], p.297. Ruth Barcan Marcus in [4], 1947, had already shown that

x = y → 2(x = y) obtains immediately from the Leibniz’ principle of substitutivity of
identity.
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customary rule of λ-conversion.”9

Rule of λ-conversion:
(λxAx)t ↔ A(t).

We have dwelt upon those early papers by Carnap and Quine and the
observation of Feys to stress that the core problems of quantified modal
logics were singled out from the very beginning, and we can summarize
them in the following questions: What is a suitable language to deal with
modalities? Should it contain the λ operator? Is the λ-conversion rule
acceptable in the presence of modalities?

The rule of λ-conversion is nothing but a rule of substitution for terms
and it implies that substitution commutes with respect to the truth-
functional connectives and quantifiers, i.e.:

(λx.¬Bx)t ↔ ¬((λxBx)t)

(λx.Bx ∧ Cx)t ↔ (λx.Bx)t ∧ (λx.Cx)t

(λx.∀yB(y, x))t ↔ ∀y((λx.B(y, x))t)

where y does not occur in t. In analogy with the equivalences above one
is tempted to assume with Carnap that the following equivalence is also
true

(λx.2Bx)t ↔ 2((λx.Bx)t).
But, as we shall see, this is the source of the difficulties. Let us observe
first that both particular instantiation and substitutivity of identity, as
usually formulated, involve commutativity of substitutions. For

A(t) → ∃xA(x)
is the fusion of two principles, ‘proper’ particular instantiation:

(λx.Ax)t → ∃xA(x)
and λ-conversion:

(λx.Ax)t ↔ A(t).
Analogously, substitutivity of identity in its usual form:

s = t → (A(s) → A(s/t))
is the fusion of ‘proper’ substitutivity of identity:

s = t → (λx.A(x)s → λxA(x)t)
and λ-conversion:

λx.A(x)s ↔ A(s) and λx.A(x)t ↔ A(t).

Of course we are ready to accept as valid both (λx.Ax)t → ∃xAx and
s = t → (λx.A(x))s → λx.A(x)t), but we are in doubt as to the validity
of the following formulas:
(a) ∃x2(x = t)
(b) t = s → 2(t = s).

9See Carnap, [11], pp.907-908.
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Now let us examine the ‘usual’ proofs of (a) and (b) paying attention to
what forms of λ-conversion are used. To this end we consider separately
the two arrows of the biconditional (λx.2Bx)t ↔ 2((λx.Bx)t) :

(R)10 (λx.2Ax)t → 2((λx.Ax)t)
and

(CR)11 2((λx.Ax)t) → (λx.2Ax)t

(λx2(x = t))t → ∃x2(x = t) particular instantiation
2(t = t) → ∃x2(x = t) by CR
t = t reflexivity of identity
2(t = t) by the rule of necessitation
∃x2(x = t) by the rule of modus ponens

(λx2(x = s))s → (t = s →
→ (λx2(x = s))t) ‘proper’ substitutivity of identity

(λx2(x = s))s → (t = s → 2(t = s)) by R
2(s = s) → (t = s → 2(t = s)) by CR
s = s reflexivity of identity
2(s = s) by the rule of necessitation
t = s → 2(t = s) by the rule of modus ponens

A natural and obvious solution to the problems presented so far, would
be to retain a modal language with a λ-operator and to restrict λ-conversion
in order to stop the unwarranted derivations. But consider the formula
∃x2P (x) → 2∃xP (x). Its validity is rather questionable from an intu-
itive point of view, nevertheless it can be proved without making use, on
the surface at least, of any form of λ-conversion:

P (x) → ∃xP (x) ‘proper’ particular instantiation
2P (x) → 2∃xP (x) by the distributivity of 2

∃x2P (x) → 2∃xP (x) by the rule of ∃-introduction

Modal languages with a λ-operator have been considered by Stalnaker
and Thomason, 1968, and more recently by Fitting, 1991, and Fitting
and Mendelsohn, 1998.12 A different point of view has been put forward
by Ghilardi and Meloni in 198813 who recognize that the principle of
λ-conversion with respect to formulas containing modal operators needs
careful scrutiny, and at the same time suggest that the language itself

10The letter ‘R’ is due to the fact that this principle is characteristic of those terms
which are ‘rigid’ designators, see section 2.

11Converse of R.
12See Stalnaker and Thomason, [76], Fitting, [20] and Fitting and Mendelsohn, [22].
13See Ghilardi and Meloni, [30].
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needs to be deeply revised in such a way to bring to the surface distinctions
that do not matter if there are no intensional operators, but that are
crucial if they are present. Strengthening the language of classical logic by
adding the abstraction operator does not lead to any better understanding
of the subtleties and/or anomalies that take place in the presence of the
modal operators. On the contrary we need to refine the syntax of modal
languages so as to control the free variables occurring in the formulas
and to discover those features of the operation of substitution that are
innocuous in the absence of modalities, but that become troublesome
otherwise. With this aim Ghilardi and Meloni introduce modal languages
in which both terms and formulas have types. On the semantical side,
counterpart semantics is the appropriate tool if we are to investigate and
clarify the main concepts and problems connected with modalities. The
present work is devoted to this approach.

Worlds to be considered and transworld identification

Since Kripke’s paper, 1963, possible world sematics has been ‘the’ se-
mantics for modal languages.14 We here assume familiarity with Kripke
semantics, and we limit ourselves to observing that in Kripke semantics
we cannot render formally the idea that an individual satisfies ‘now’ the
open formula ‘x will always be good’ iff that individual is good in all
future worlds in which it exists. For in order to evaluate a formula like
2G(x) at w under an assignment σ, we need to check if σ(x) belongs
to the interpretation of G in every world v accessibile to w, whether
σ(x) ∈ Dv or not. Moreover the very same individual σ(x) may exist in
different worlds, for the codomain of any assignment function is the entire
universe V . An opposite view has been defended, according to which in-
dividuals are worldbound so that any individual can belong to the domain
of just one world. The assumption that individuals are worldbound poses
the problem of transworld identification. Whom is a sentence like ‘Peter
would have been happy, if only he had married Mary’ talking about ?
The actual Peter did not marry Mary, so it can be argued that he is not
the one the sentence is talking about. On the other hand, it is the actual
Peter that regrets not having married Mary, so it must be he that would
have been happy, had things gone otherwise. But how and where is the
world in which ‘things went otherwise’? Maybe such a world includes the
fact that ‘Peter proposes to Mary’, so Peter has two alternative pasts:
one in which he proposes to Mary and another in which he does not. We
can go on to imagine a chain of worlds describing Peter’s alternative biog-
raphy, but the more we reconstruct his biography, the more we lose sight

14See Kripke, [46]. For a detailed exposition of Kripke semantics we refer the reader
to First-order Modal Logic by Fitting and Mendelsohn, [22].
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of him. It seems that language produces an optical illusion, the sentence:
‘here is the Peter that could have been happy’ induces us to think that
the possibly happy Peter is in front of us, whereas it actually proposes
a mental experiment, whose hero is unkown to us in many respects.15

What reason is there to think that between ‘the unhappy Peter’ and ‘the
happy Peter’; or between ‘me now’ and ‘me tomorrow’ there must in each
case be the identity relation? We will favour a more liberal attitude and
accept Lewis’ view that in order to make sense of sentences like ‘I’m in
Paris now, but tomorrow I’ll be in London’ it is enough to assume that
some special relation holds between ‘me now in Paris’ and ‘me tomor-
row in London’ without assuming that it has to be the identity relation.
Following this line of thought, we will consider frames endowed with a
binary relation the counterpart relation, connecting individuals existing
in different worlds and leave to this relation, however queer, the task of
retracing them across the worlds. Of course depending on the different
aims of a modal theory or on the different intended applications, various
conditions will have to be imposed on the counterpart relation.

Lewis’s counterpart theory

Counterpart theory was advanced by David Lewis in 1968, and he elab-
orates a first-order theory whose language contains special predicates for
talking about possible worlds and individuals in those worlds.16 In par-
ticular it contains the predicates ‘to be a possible world’, ‘to be the ac-
tual world’, ‘to be a counterpart of’, ‘to be an individual existing in a
given world’. A translation function is defined in order to reduce modal
sentences to first-order sentences of such a theory. According to such
a translation ‘It is possible that someone will win the lottery’ becomes:
‘There is a possible world such that someone in that world that wins the
lottery’, and ‘Someone will possibly win the lottery’ becomes: ‘There ex-
ists an individual of the actual world such that in some possible world his
counterpart(s) wins the lottery’. As to the conditions that, according to
D.Lewis, cannot be imposed on a counterpart relation, here are some of
them:17

i. nothing in any world has more than one counterpart in any other
world;

ii. no two things in any world have a common counterpart in any other
world;

iii. for any two worlds, anything in one is a counterpart of something
in the other;

15Pros and cons of both points of view have been discussed at length in the literature,
see, for example, R.Chisholm [12], A.Plantinga [61], D.Kaplan [43], A.Hazen [33].

16See Lewis, [50].
17See Lewis, [50], p.116.
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iv. for any two worlds, anything in one has some counterpart in the
other;

v. anything in any world is counterpart of itself;
vi. nothing in a world is a counterpart of anything else in that world.
As A. Hazen says,18 “Lewis does not present his theory as a model

theory for modal languages. Such a model theory is, however, easily ex-
tracted from his work.”. We can summarize in a few words the main
tenets of counterpart semantics. In a counterpart frame the sets of in-
dividuals ‘existing’ in each world may be taken as disjoint from the sets
of individuals ‘existing’ in any other world and a counterpart relation, C,
may hold between any two individuals ‘existing’ in related worlds. If aCb
holds, then we say that b is a counterpart of a. No condition whatsoever
is put on C, and so an individual of a world w can have none, one, or
more than one counterpart in any related world v. A counterpart model
is a family of classical (Tarskian) models related to each other by the ac-
cessibility relation and moreover the individuals of the domain of a model
are related to the individuals of the domain of another (accessible) model
by the counterpart relation. As Robert Stalnaker says,19 “In counterpart
semantics, the rules must be changed to make 3Gx true of a in w if Gx
is true of a counterpart of a in some world w′. Hubert Humphrey, for ex-
ample, will have the property of being possibly a president of the United
States by virtue of the fact that in a different possible world, a different
person who is a counterpart of Humphrey was president.”.

Relational universes for multi-sorted temporal languages

Lewis’ counterpart semantics can be viewed as a limit case of the se-
mantics of relational universes introduced by Ghilardi and Meloni in [30]
and developed subsequently in [26], [29] and [31]. The conceptual frame-
work and the techniques used in their proofs come from category theory
which appears to be very fruitful in the analysis of problems and in indi-
cating the way to their solution; we refer the reader to Ghilardi [29] for an
ample overview of the links between category theory and modalities. The
universes of interpretation they introduce are relational universes, and,
though we will make no use of them in what follows, we will briefly say
what they are. “Given a (small) category C, we [say] that a lax functor,
here called a relational universe D : C → Rel is a map which associates
with each object α of C a set Dα and with each arrow k : α → β a relation
Dk ⊆ Dα ×Dβ in such a way that the following two conditions are met:

D1α ⊇ 1Dα and DkDl ⊆ Dkl
,

18See [33], p.324.
19See [74], p.123.
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for every object α and for every pair of composable arrows k, l.”20

In a relational universe the objects α of the category represent possible
worlds, the arrows k : α → β, the accessibility relation, the set Dα

the set of individuals existing at α and for each arrow k, the relation Dk

represents the counterpart relation along k between individuals of Dα and
Dβ. Given a category, there are in general many (even infinitely many)
arrows from an object α to an object β, and for each arrow k : α → β the
relation Dk can be interpreted as ‘the counterpart relation along k’.

Relational universes can be generalized by starting with graphs G in-
stead of categories: in this case a relational universe

D : G → Rel

is a map which associates with each object α of G a set Dα and with each
arrow k : α → β a relation Dk ⊆ Dα × Dβ. This move from categories
to graphs is necessary if we do not want to impose any condition on
the accessibility relation: categories are appropriate when such a relation
is taken to be reflexive and transitive. As we shall see, a counterpart
frame differs from a relational universe because there is at most one arrow
between two elements α and β of G and so there is at most one counterpart
relation, Dk, between the individuals of Dα and Dβ.

Relational universes and, consequently, counterpart frames, provide a
sound mathematical ground for the investigation of modal languages, and
they are very important from a foundational point of view because natural
and interesting answers to the supposed ‘sins’21 of quantified modal logic
can be given in a uniform way, answers which, it is worth stressing, do
not stem from artificial interpretations of the modal operators, but rather
from a deeper understanding of the mechanisms of classical logic itself
and their interplay with the modal operators. We believe that Ghilardi
and Meloni’s proposal finally dispels Ruth Marcus’ worry:22 “There is a
normative sense in which it has been claimed that modal logic is without
foundations”. The rest of this paper is devoted to present counterpart
semantics and to show that well known systems of quantified modal logic
are complete with respect to that semantics.23

20See Ghilardi and Meloni, [31], p.82.
21See W.V.O.Quine, [66], the sin of confusing use and mention.
22See Barcan Marcus, [6], p.5.
23Generalizations of Kripke semantics have ben studied by many authors and with

different aims: either to establish incompleteness/independence/non-axiomatizability
results or to provide an alternative semantics with respect to which general complete-
ness results can be achieved. It is beyond the scope of the present paper to provide even
a short outline of the different approaches, it would imply the introduction of notions
and techniques from category theory which we have been trying to dispense of. We
refer the interested reader to S.Ghilardi [27] and [28], P. Skvortsov and V.Shehtman
[70] and [71]. As an introduction to these topics, see Corsi and Ghilardi [16].
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§2. Counterpart semantics and modal languages with types.
By Lt we denote a modal language with types whose variables are all of
one sort. The alphabet of Lt contains the unary connective 2 in addiction
to the boolean connectives and quantifiers. We will take as primitive ¬
(not), ∨ (or) and ∃ (there is). Moreover Lt contains a countable set, Var,
of variables, x1, x2, x3, . . . , the identity symbol =, and the following three
sets, at most countable, J, F and P :

J is a set of individual constants i, j, i1, j1, i2, j2, . . . ,
F is a set of function symbols, fn, gn, hn, . . . , of arity n, 1 ≤ n < ω,
P is a set of predicate symbols, Pn, Qn, Rn, . . . of arity n, 0 ≤ n < ω.

Given the alphabet of Lt, we can already say what a model for Lt is.

Counterpart frames and models for Lt

A counterpart frame F for Lt is a quadruple 〈W,R,D,C〉, where W 6= ∅,
R ⊆ W 2, D is a domain function such that Dw is a set for every w ∈ W
and C is the counterpart relation such that C =

⊎
w,v∈W {C〈w,v〉}, where

for any w, v ∈ W such that wRv, C〈w,v〉 ⊆ (Dw ×Dv).
A counterpart model M for Lt is a pair 〈F , I〉, where F is a coun-

terpart frame and I is a function that for each w ∈ W determines an
interpretation function Iw such that:
• for any predicate symbol Pn of Lt, Iw(Pn) ⊆ (Dw)n,
• Iw(=) = {〈a, a〉 : a ∈ Dw},
• for any individual constant i of Lt, Iw(i) ∈ Dw

• for any function symbol fn of Lt, Iw(fn) : (Dw)n → Dw

Whenever M = 〈F , I〉, M is said to be based on F . Interpretation
functions in counterpart models are local interpretation functions in the
sense that the interpretation at w of, say, a unary predicate is a subset of
Dw and not as in Kripke’s original semantics24 a subset of the universe,
i.e. the union of all domains. Hence counterpart models can be viewed
as families of classical Tarskian models endowed with a (binary) relation
R among the models of the family and a (binary) relation C among the
individuals of the domains of those models.

Towards finitary assignments

Before introducing the notions of well formed formula (wff) and of truth
of a wff at a world an important point needs to be clarified. If the free
variables occurring in a formula A are x1, . . . , xm, then the values of any
assignment function σ relevant to A are those for x1, . . . , xm, and, as we
will see, only counterparts of σ(x1), . . . , σ(xm) should play a role in the

24See Kripke, [46].
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satisfaction of A under σ. Consequently the notion of satisfaction with
respect to an assignment function σ should be replaced by the notion of
satisfaction with respect to a finite list σ(x1), . . . , σ(xm) of elements of the
domain under consideration, thus: σ |=w A(x1, ..., xm) should be replaced
by 〈σ(x1), . . . , σ(xm)〉 |=w A(x1, ..., xm).
But observe that some care needs to be exercised since the number of the
free variables occurring in a formula can be either greater than or less
than the number of the free variables occurring in its subformulas. Just
consider the formulas

P (x) ∧Q(x, y)
∀xQ(x, y).

One can even ask whether Boolean combinations of formulas with a dif-
ferent number of free variables do make sense. “Actually the (binary)
propositional operators can only meaningfully be applied to (pairs of) re-
lations having the same free variables. This may seem to prohibit such
combinations as

(∗) A(x, y) ∧A(y, z) → A(x, z).
Consider the actual meaning: A denotes some subobject of the square X2

of some sort X, and (∗) denotes a certain subobject of the cube X3.”25

Now, let the projection functions πm
k : Xm → X, 1 ≤ k ≤ m, such that

πm
k (u1, ..., um) = uk,

be at our disposal. Then (∗) is nothing but a shorthand for
A(π3

1(x, y, z), π3
2(x, y, z)) ∧A(π3

2(x, y, z), π3
3(x, y, z)) →

A(π3
1(x, y, z), π3

3(x, y, z));
hence all three variables x, y and z occur either ‘implicitly’ or ‘explicitly’
in all subformulas of (∗). As a consequence, (∗) and all of its subformulas
are satisfied or not satisfied, as the case may be, by triples of elements of
the universe X. Again, if we consider the following list of formulas:

P (π1
1(x))

P (π2
1(x, y))

P (π3
1(x, y, z))

...
we recognize at once that all of them say the very same thing ‘x is P ’,
but they differ as to the number of free variables occurring in them,
consequently they will be satisfied or not satisfied by m-tuples of the
universe:

〈a1〉 |=w P (π1
1(x))

〈a1, a2〉 |=w P (π2
1(x, y))

〈a1, a2, a3〉 |=w P (π3
1(x, y, z))

25See Lawvere [49].



12 GIOVANNA CORSI

...

In order to see clearly right at the beginning the kind of problems we are
going to encounter and discuss, we state in advance what the role of the
counterpart relation is with respect to the satisfaction of modalized open
formulas. The idea is that:

“an individual a existing at a world w satisfies at w the formula 2P (x)
iff every counterpart a∗ of a in any accessible world v, satisfies P (x)”. In
symbols:

〈a〉 |=w 2P (x)
iff for every v such that wRv and for every counterpart a∗ of a in Dv,

〈a∗〉 |=v P (x).

Therefore only the worlds where counterparts of a do exist are taken into
account: to know if Mary satisfies now the open formula “x is necessarily
good” we need to consider all and only the accessible worlds in which
Mary or her counterparts exist. Analogously,

“an individual a of a world w satisfies at w a formula such as 3P (x) iff
at least a counterpart a∗ of a in an accessible world v, satisfies P (x)”, in
symbols:

〈a〉 |=w 3P (x)
iff for some v such that wRv and some counterpart a∗ of a in Dv,

〈a∗〉 |=v P (x).

Contrary to what happens in classical logic, we cannot expect that

〈a1〉 |=w 2P (π1
1(x)) iff 〈a1, a2〉 |=w 2P (π2

1(x, y))

for in the case of 2P (π1
1(x)) we take into consideration all the accessible

worlds whose domains contain counterparts of a1, whereas, in the case of
P (π2

1(x, y)) we take into consideration only the accessible worlds where
there exist counterparts of both a1 and a2, and these, in general, are
fewer. In details,

〈a1〉 |=w P (π1
1(x)) iff for all v such that wRv and all counterparts a∗1

of a1 in Dv, 〈a∗1〉 |=v P (π1
1(x))

and
〈a1, a2〉 |=w P (π2

1(x, y)) iff for all v such that wRv and all counter-
parts a∗1 of a1 and of a∗2 of a2 in Dv, 〈a∗1, a∗2〉 |=v P (π2

1(x, y)).

If we want to pursue the idea that only the worlds where an individual
a exists are relevant to determining the modal properties of a, then oth-
erwise valid inferences turn out to be no longer valid.

〈a, b〉 |=w 2Q(x, y) 〈a, b〉 |=w 2(Q(x, y) → D(y))

〈b〉 |=w 2D(y)
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Suppose it is true in w that “a always quarrels with b” and that “every
time that a quarrels with b, then b gets angry”. From this it doesn’t
follows that “b is always angry”, for b may not be angry in those worlds
where a is absent.26

This leads us to maintain that each formula must contain information
about the length of the lists of elements with respect to which it has to
be evaluated, or, which is the same thing, the variables that occur in it
(either explicitly or implicitly). As we shall see, this information is codi-
fied by a natural number, called the type of the formula. Briefly, a wff A
is of type n iff the free variables occurring in A are x1, . . . , xn and con-
sequently n-tuples of individuals do or do not satisfy A in a given world.
The type of a wff can be seen as the context with respect to which the for-
mula is meaningful. Undoubtedly, the formula expressing the transitivity
of a relation is meaningful with respect to triples of individuals even if
its proper subformulas contain (explicitly) only two variables. In classi-
cal logic we assume that the context with respect to which formulas are
meaningful is the same for every formula: ω-sequences of elements of the
domain. It is worth noticing that infinitary assignments are controversial
in classical logic also. We read at p. 5 of Lawvere, [49]: “This tradi-
tional method (which by the way is probably one of the reasons why most
mathematicians feel that a logical presentation of a theory is an absurd
machine strangely unrelated to the theory or its subject matter) consists
of declaring that there is one set I of variables on which all finitary re-
lations depend, albeit vacuously on most of them; e.g. a binary relation
on X is interpreted as XI → 2 depending vacuously on all but two of the
variables in I.”

Finitary assignments are functions defined on initial segments of the se-
quence x1, x2, x3, x4, . . . of the variables of Lt. We take finitary assign-
ments to be worldbound, so for each w ∈ W , we consider all the functions
σ : {x1, . . . , xm} → Dw, m ≥ 1. Consequently finitary assignments rela-
tive to a world w are just m-tuples 〈a1, ..., am〉, m ≥ 1, of elements of Dw,
where ai is the value for xi.

Types and terms

Terms
1. For any individual variable xi and n ≥ i,

xn
i

is a term of type n,
2. For any individual constant j and n ≥ 0,

jn

26See [31], p.78.
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is a term of type n,
3. For any k-tuple of terms of type n, t1, ..., tk, and function symbol fk

of arity k,
fk(n : t1, ..., tk)

is a term of type n,
4. Nothing else is a term.
Because of clause 1., an individual variable determines countably many

terms. xn
i can be seen, from an intuitive point of view, as the projection

function πn
i applied to x1, . . . , xn or as the variable xi in the context

x1, . . . , xn. In clause 3. the number n at the head of the arguments is a
reminder of the type of the terms t1, . . . , tk. Clause 3. could have been
phrased as
3’. For any k-tuple of terms of type n, tn1 , . . . , tnk and function symbol

fk of arity k,
fk(tn1 , ..., tnk)

is a term of type n

We prefer to indicate the type of the arguments of a function only once.
If we had function symbols of arity 0 instead of individual constants, then
via clause 3, f0(n :) would have been a term for any n: this explains why
individual constants have type greater than 0. We see at once from the
definitions above that the type of a term is greater than or equal to the
maximum index of variables occurring in it and then tells us what must
be the length of the assignments ‘entitled’ to interpret such a term. In
general, given a term t of type n, there are infinitely many terms that
differ from t only as far as the type is concerned. By an easy induction,
it can be shown that if t is a term of type n, then by replacing the type
n with any m, m > n, we get a (well formed) term of type m.

m-tuples of terms

For any n and m-tuple of terms of type n, s1, . . . , sm,
〈n : s1, ..., sm〉

is a complex term. 〈n : s1, ..., sm〉 is said to be of type n → m or ‘from
type n to type m’.

For every n, the empty list of terms of type n, 〈n : 〉 is a term of type n →
0. Lists of terms s1, . . . , sm each of type n are in 1-1 correspondence with
the complex term 〈n : s1, ..., sm〉; therefore the expressions ‘the complex
term 〈n : s1, ..., sm〉’ and ‘the terms s1, . . . , sm (in this order) of type
n’ are taken as interchangeable. To avoid a plethora of indices, we use
the following conventions: we write fk(n : xi1 , ..., xik) instead of fk(n :
xn

i1
, ..., xn

ik
) and 〈n : xi1 , ..., xik〉 instead of 〈n : xn

i1
, ..., xn

ik
〉; fk(xi1 , ..., xik)
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instead of fk(h : xi1 , ..., xik) and 〈xi1 ...xik〉 instead of 〈h : xi1 ...xik〉, if
h = max{i1 . . . ik}, moreover we write 〈n : j〉 instead of 〈n : jn〉, 〈j〉
instead of 〈0 : j〉, 〈 〉 instead of 〈0 : 〉.

Explicit substitutions

As it is well known, substitution is an operation from terms and formulas
to formulas which is defined by recursion on the length of the formulas. It
commutes with respect to connectives and quantifiers and is performed on
the atomic formulas: (P (x1) ∧R(x1))[x1/x2] stands for (P (x2) ∧R(x2)).
Instead of taking substitution as a defined operation, we can take it as
a primitive logical operation, and state, e.g., that P (x1)[x1/x2] is the
molecular formula obtained by applying the operation of substitution to
P (x1) and x2. In P (x1)[x1/x2] substitution is indicated, not performed:
P (x1)[x1/x2] does not stand for P (x2) and we need a special axiom in or-
der to state the equivalence between P (x1)[x1/x2] and P (x2). We believe
that in modal contexts many features of the operation of substitution
become more perspicuous if substitution is taken as a primitive logical
operation. The notion of explicit substitutions has become quite central
in the theory of λ-calculus since the work of Abadi et al.27

Let a formula A containing the variables x1, . . . , xn be given. Substi-
tution applies to all the variables x1, . . . , xn although vacuously to some
(none or all) of them (i.e. xi will be substituted for xi itself). Hence
n-tuples of terms (of the same type) have to be considered. Moreover
if each of the terms t1, . . . , tn is of type m, the resulting formula will
contain the free variables x1, . . . , xm and so it will be of type m. By
〈m : s1, ..., sn〉A we denote the formula of type m obtained by applying
the operation of subsitution to the formula A of type n and to the com-
plex term 〈m : s1, ..., sn〉 of type m → n. We write 〈m : s1, ..., sn〉 at the
left of A in the way we do for the operation of negation or quantification.
We are now ready to give the definition of a well formed formula.

formulas and types

• If Pn is an n-ary predicate symbol then
Pn

is a pure atomic formula of type n,
• If A is a wff of type n and 〈m : t1, ..., tn〉 is a complex term of type

m → n, then
〈m : t1, ..., tn〉A

is a wff of type m,
• If A and B are wffs of type n, then

27See [1]. Prof. Per Martin-Löf brought to my attention the literature on explicit
substitutions.
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¬A, 2A, A ∨B
are wffs of type n.

• If A is a wff of type n + 1, then
∃xn+1A

is a wff of type n,
• Nothing else is a well formed formula.
Pure atomic formulas could be phrased as Pn(n : x1, ..., xn). Given a

pure atomic formula Pn of type n and a complex term 〈m : t1, ..., tn〉 of
type m → n, then 〈m : t1, ..., tn〉Pn is said to be an atomic formula and,
following the tradition, it will be written as Pn(m : t1, ..., tn).
〈m : t1, ..., tn〉A is called a substituted formula and the complex term

〈m : t1, ..., tn〉 the substitution term. Atomic formulas are substituted for-
mulas. The atomic formulas Q2(3 : x1, x3) and Q2(5 : x1, x3) are different,
for they have different types, whereas Q2(2 : x1, x3) is not well formed
because the type is less than the maximum index of the free variables.

Binary boolean connectives apply only to formulas of the same type,
in accordance with the idea that sets of n-tuples of some universe X,
(representing the meanings of formulas of type n) can be intersected or
joined only with other sets of n-tuples.

Quantifying reduces the type by one, so from the pure atomic formula
P 1 we get ∀x1P

1 of type 0 and from Q2(3 : x1, x3) we get ∀x3Q
2(3 :

x1, x3) of type 2, from Q2(3 : x1, x2) we get ∀x3Q
2(3 : x1, x2) of type 2

(vacuous quantification). Note that we can bound only the variable with
the maximum index that occurs (implicitly or explicitly) in the formula
under consideration: in fact we can bound only the variable whose index
coincides with the type of the formula we started with. As a consequence,
∀x1Q

2(2 : x1, x2) is not well formed. This may appear to be an annoying
limitation, but it has the advantage of eliminating any collision between
free and bound variables: all bound variables have indices greater than
the indices of the free variables.

Lemma 2.1. If A is a wff of type n, then the free variables occurring in
A have index at most n and any quantifier occurring in A bounds variables
with index greater than n.

The type of every formula is readily known, since the type of atomic,
quantified and substituted formulas is explicitly indicated and any other
formula is either one of these or a combination of them via application
of ¬,∨ or 2, and these operators preserve the type of the formulas they
apply to.

Interpretation of terms

Terms of type n are interpreted with respect to n-tuples of elements of
the domain. It is only natural that to interpret the term x4

3, we need
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to consider 4-tuples of elements of the domain and then choose the third
component. Analogously a complex term 〈n : s1, ..., sm〉 has to be in-
terpreted with respect to n-tuples 〈a1...an〉 of elements of the domain.
〈a1, ..., an〉[n : s1, ..., sm] denotes the m-tuple of elements obtained by in-
terpreting each si of type n with respect to 〈a1, ..., an〉. This is given by
the following definition.

Let M be a C-model for Lt, w ∈ W and ~a = 〈a1, ..., an〉 ∈ (Dw)n. For
any complex term 〈n : s1, ..., sm〉,
〈a1, ..., an〉[n : s1, ..., sm]w = 〈〈a1, ..., an〉[n : s1]w, . . . , 〈a1, ..., an〉[n : sm]w〉,
where 〈a1, ..., an〉[n : si]w is defined by induction on the terms:

〈a1, ..., an〉[xn
i ]w = ai,

〈a1, ..., an〉[jn]w = Iw(j),
〈a1, ..., an〉[fk(n : t1, ..., tk)]w =

= Iw(fk)(〈a1, ..., an〉[n : t1]w, . . . , 〈a1, ..., an〉[n : tk]w).

Satisfaction in counterpart models

Let M = 〈W,R,D,C, I〉 be a counterpart model. For any w ∈ W , n-tuple
〈a1, ..., an〉 of elements of Dw and formula A of type n, we define when
〈a1, ..., an〉 satisfies A at w in M, 〈a1, ..., an〉 |=w A. By induction on A.

〈a1, ..., an〉 |=w Pn iff 〈a1, ..., an〉 ∈ Iw(Pn)
〈a1, ..., an〉 |=w 〈n : s1, ..., sk〉B iff 〈a1, ..., an〉[n : s1, ..., sk]w |=w B
〈a1, ..., an〉 |=w ¬C iff 〈a1, ..., an〉 6|=w C
〈a1, ..., an〉 |=w C ∨D iff 〈a1, ..., an〉 |=w C or 〈a1, ..., an〉 |=w D
〈a1, ..., an〉 |=w ∃xn+1G iff for some b ∈ Dw, 〈a1, ..., an, b〉 |=w G
〈a1, ..., an〉 |=w 2C iff for all v such that wRv and for all

counterparts a∗1, ..., a
∗
n in Dv of a1, ...,

an, respectively, 〈a∗1, ..., a∗n〉 |=v C.

¿From the given definitions it readily follows that

〈a1, ..., an〉 |=w ∀xn+1G iff for all b ∈ Dw, 〈a1, ..., an, b〉 |=w G
〈a1, ..., an〉 |=w 3C iff for some v such that wRv and

some counterparts a∗1, . . . , a
∗
n in

Dv of a1, . . . , an, respectively,
〈a∗1, ..., a∗n〉 |=v C.

Truth and validity

A formula A of type n is true at w in M, M |=n
w A, iff for any n-tuple

a1, . . . , an of elements of Dw, 〈a1, ..., an〉 |=w A. A formula A of type n is

valid on M, M |=n A, iff M |=n
w A for all w ∈ W . A formula A of
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type n is valid on a C-frame F , F |=n A, iff M |=n A for every model
M based on F . A formula A of type n is C-valid iff F |=n A, for all

counterpart frames F .

Propositions are formulas of type 0, and so they will be satisfied or not
satisfied, as the case may be, by 0-tuple, 〈〉. For example, if P is a
unary predicate symbol and i is an individual constant of type 0, then
〈〉 |=w P (i) iff 〈〉 |=w 〈i〉P iff 〈〉[i] |=w P iff 〈Iw(i)〉 |=w P
iff Iw(i) ∈ Iw(P ).

Composition

Let the complex term 〈m : s1, ..., sn〉 of type m → n be given. The
operation of composition with terms of type n is defined so:
• if xn

i is a term of type n, then
〈m : s1, ..., sn〉 ◦ xn

i = 〈m : si〉,
• if jn is a term of type n, then

〈m : s1, ..., sn〉 ◦ jn = jm,
• if fk(n : t1, ..., tk) is a term of type n, then

〈m : s1, ..., sn〉 ◦ fk(n : t1, ..., tk) = fk(m : 〈m : s1, ..., sn〉 ◦
t1, . . . , 〈m : s1, ..., sn〉 ◦ tk)

Composition of complex terms

For any pair of complex terms 〈m : s1, ..., sn〉 of type m → n and 〈n :
t1, ..., tk〉 of type n → k,
• 〈m : s1, .., sn〉 ◦ 〈n : t1, .., tk〉 = 〈m : 〈m : s1, .., sn〉 ◦ t1, ..., 〈m :

s1, .., sn〉 ◦ tk〉.
Composition of terms is nothing but the operation of substitution of terms
for individual variables. Example:
〈3 : x2, g

2(x1, x3)〉 ◦ f3(2 : x1, x2, x1) = f3(3 : 〈3 : x2, g
2(x1, x3)〉 ◦ x1, 〈3 :

x2, g
2(x1, x3)〉 ◦ x2, 〈3 : x2, g

2(x1, x3)〉 ◦ x1) = f3(3 : x2, g
2(x1, x3), x2).

When the type of a term or of a formula can be easily and unambiguously
calculated, we often omit it.

Lemma 2.2. LetM be a counterpart model for Lt, 〈a1, ..., am〉 ∈ (Dw)m,
and 〈m : s1, ..., sn〉 be a complex term of type m → n.

1. If t a term of type n, then
(〈a1, ..., am〉[s1, ..., sn]w)[t]w = 〈a1, ..., am〉[〈s1, ..., sn〉 ◦ t]w.

2. If 〈n : t1, ..., tk〉 be a complex term of type n → k, then
(〈a1, ..., am〉[s1, ..., sn]w)[t1, ..., tk]w =

= 〈a1, ..., am〉[〈s1, ..., sn〉 ◦ 〈t1, ..., tk〉]w.
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Proof (1.) By induction on the length of t.

As a consequence of the property that links composition and finitary
assignments, stated in the lemma above, substitution with respect to sub-
stituted formulas (and so also with respect to atomic formulas) amounts
to composition of terms. In fact the following equivalence is C-valid:

SS 〈m : t1, ..., tn〉(〈n : s1, ..., sk〉A) ↔ (〈m : t1, ..., tn〉◦〈n : s1, ..., sk〉)A.

To wit: 〈a1, ..., am〉 |=w 〈m : t1, ..., tn〉(〈n : s1, ..., sk)A)

iff 〈a1, ..., am〉[m : t1, ..., tn]w |=w 〈n : s1, ..., sk〉A
iff (〈a1, ..., am〉[m : t1, ..., tn]w)[n : s1, ..., sk]w |=w A
iff 〈a1, ..., am〉[〈m : t1, ..., tn〉 ◦ 〈n : s1, ..., sk〉]w |=w A
iff 〈a1, ..., am〉 |=w (〈m : t1, ..., tn〉 ◦ 〈n : s1, ..., sk〉)A.

Note that substitution is responsible for ‘identifying variables’ or ‘chang-
ing types’. To take very simple examples, R3(3 : x1, x1, x3) and R3(4 :
x1, x2, x3) are both substituted formulas.

substitution and logical operators

Substitution commutes with respect to Boolean connectives:

S¬ 〈m : t1, ..., tn〉(¬C) ↔ ¬〈m : t1, ..., tn〉C,
S∨ 〈m : t1, ..., tn〉(C ∨D) ↔ 〈m : t1, ..., tn)C ∨ (〈m : t1, ..., tn〉D

are both C-valid.
When we came to quantifiers, things are a bit more complicated. Sub-

stitution with respect to quantified formulas presents delicate problems
even for languages without types. In that context, there are two main
ways to approach the problem. According to the first one, ∃xA(x)[y/t]
is taken to be equal to ∃x(A(x)[y/t]) provided “the term t is free for y
in ∃xA”, meaning that t does not contain variables that may fall under
the scope of a quantifier once it is substituted for y in A, and only in
that case can substitution be actually performed. According to the sec-
ond approach, ∃xA(x)[y/t] denotes the formula obtained from ∃xA(x),
by first taking a bound alphabetic variant ∃xA(x)∗ in such a way that all
bound variables in ∃xA(x)∗ are different from the free variables occurring
in ∃xA(x) and from the variables occurring in t and then substituting t
for all the occurences of y in ∃xA(x)∗. In the presence of types, it is this
second approach that seems more natural. Let us start with an example:
let the formula ∃x2Q

2(2 : x2, x1) be given and let us consider the sub-
stituted formula 〈2 : x2〉∃x2Q

2(2 : x2, x1). What we intend to do is to
substitute x2 for x1 in Q2(2 : x2, x1) without the occurrence of x2 falling
under the scope of the existential quantifier. A possible way out is to
rename the bound variable, so obtaining ∃x3Q

2(3 : x3, x1), and then to
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substitute x2 for x1. Let us first show that 〈2 : x2〉∃x2Q
2(2 : x2, x1) is

C-equivalent to ∃x3Q
2(3 : x3, x2).28

〈a1, a2〉 |=w 〈2 : x2〉∃x2Q(2 : x2, x1) iff
〈a1, a2〉[2 : x2] |=w ∃x2Q(2 : x2, x1) iff
〈a2〉 |=w ∃x2Q(2 : x2, x1) iff
for some b ∈ Dw 〈a2, b〉 |=w Q(2 : x2, x1) iff
for some b ∈ Dw 〈a1, a2, b〉[3 : x2, x3] |=w Q(2 : x2, x1) iff
for some b ∈ Dw 〈a1, a2, b〉 |=w 〈3 : x2, x3〉Q(2 : x2, x1) iff
〈a1, a2〉 |=w ∃x3(〈3 : x2, x3〉Q(2 : x2, x1)) iff
〈a1, a2〉 |=w ∃x3Q(3 : x3, x2).

In general, it holds that

〈a1, ..., ak〉 |=w 〈k : s1, ..., sn〉∃xn+1C iff 〈a1, ..., ak〉 |=w ∃xk+1(〈k +1 :
s1, ..., sn, xk+1〉C).

Consequently the following formula is C-valid:
S∃ 〈k : s1, ..., sn〉∃xn+1C ↔ ∃xk+1(〈k + 1 : s1, ..., sn, xk+1〉C).

Analogously,
S∀ 〈k : s1, ..., sn〉∀xn+1C ↔ ∀xk+1(〈k + 1 : s1, ..., sn, xk+1〉C)

is C-valid.
In conclusion substitution commutes with the quantifiers, but requires, in
general, the renaming of bound variables. E.g., given ∃x2∀x3〈x1, x2, x3〉B,
then

〈x4〉∃x2∀x3〈x1, x2, x3〉B ↔ ∃x5〈x4, x5〉∀x3〈x1, x2, x3〉B
↔ ∃x5∀x6〈x4, x5, x6〉(〈x1, x2, x3〉B)
↔ ∃x5∀x6〈x4, x5, x6〉B

As to substitution and modalities, note first that a simple syntactical
tool is at our disposal to distinguish between de re and de dicto modalities.
Here are two classical examples: 〈i〉2P reads ‘i is necessarily P ’ , whereas
2〈i〉P , (or, which is the same, 2P (i)) reads ‘it is necessary that i is P ’.
Of course this distinction can be just as well achieved by adding the λ-
abstraction operator as in R. Thomason & R.Stalnaker, [76] or Fitting,
[20]. (λx2P (x))(i) and 2[(λx.P (x))(i)] are parallel to 〈i〉(2P (x1)) and
2(〈i〉P (x1)), respectively.

There is an intuitive sense according to which the truth conditions for
〈i〉2P are different from those for 2P (i): in one case a ‘necessitive’29

property is asserted of an individual, in the other, the necessity of a sen-
tence is asserted. In counterpart semantics we do justice to this difference
in the following obvious way: in the first case, first we interpret i in the
actual world (or the world we are in) and then see if all its counterparts in

28By this we mean that their equivalence is C-valid.
29The non-standard term ‘necessitive’ is in analogy with ‘negative’ or ‘disjunctive’

and was suggested to me by Tor Sandqvist.
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all accessible worlds do satisfy the property P , in the second case, we first
consider all worlds accessible from the actual one and then check if the
interpretation of i in those worlds satisfies P . This semantical analysis
parallels that of Fitting:30 “In short, there are two basic actions: letting
i designate, and moving to an alternative world. These two actions com-
mute only if i is a rigid designator. Ordinary first-order modal syntax
has no machinery to distinguish the two alternative readings of 2P (i).
Consequently whenever non-rigid designators have been treated, one of
the readings has been disallowed, thus curtailing expressive power.”. Ac-
cording to Fitting, if i is a rigid designator then 〈i〉2P ↔ 2P (i) holds,
or, in his notation, the equivalence λx(2P (x))(i) ↔ 2[λx.P (x)(i)] holds.
We are going to disagree on this point, for we shall show that the failure
of the equivalence 〈i〉2P ↔ 2P (i) does not depend on i being a non-rigid
designator: in counterpart semantics this equivalence does not hold for
rigid designators either.

Rigid designators

What can it mean for a constant i to be a rigid designator in counterpart
semantics? Simply, that the following rigidity condition holds:

if wRv then the interpretation of i in v is a counterpart of the interpre-
tation of i at w.

Formally, we say that an interpretation function I satisfies the rigidity
condition iff
if wRv then Iw(i)CIv(i), and moreover

for all a1, . . . , an ∈ Dw and all b1, . . . , bn ∈ Dv, if a1Cb1 and
. . . and anCbn then (Iw(fn))(a1, ..., an)C(Iv(fn))(b1, ..., bn).

If i is a rigid designator, then 〈i〉2P → 2P (i) is C-valid, whereas 2P (i) →
〈i〉2P admits of countermodels. The C-validity of 〈i〉2P → 2P (i) is
shown as follows. 〈〉 |=w 〈i〉2P iff 〈Iw(i)〉 |=w 2P iff for all v such
that wRv and all counterparts c of Iw(i) in Dv, 〈c〉 |=v P . Since i is
a rigid designator, Iv(i) is a counterpart of Iw(i) in Dv, consequently
for all v.wRv. 〈Iv(i)〉 |=v P , hence for all v.wRv. 〈 〉 |=v 〈i〉P , and so
〈 〉 |=w 2〈i〉P.
A countermodel for 2P (i) → 〈i〉2P can be readily constructed: assume
that v is the only world related to w and that Iv(i) ∈ Iv(P ), so for all
v. wRv. Iv(i) ∈ Iv(P ), hence for all v. wRv. 〈〉 |=v P (i), therefore 〈〉 |=w

2P (i). Assume moreover that Iw(i) has two distinct counterparts in v,

30Fitting, [20], p.114.
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namely Iv(i) and c and that c 6∈ Iv(P ), consequently 〈Iv(i)〉 6|=w 2P ,
hence 〈〉 6|=w 〈i〉2P .

The regidity condition for terms corresponds to the C-validity of

(R) 〈k : s1, ..., sn〉2B → 2〈k : s1, ..., sn〉B
As we shall see, the so called anomalies of first-order modal logic do not
depend at all on the assumption that constants are rigid designators (and
everywhere-denoting, in accord to the given definition of the interpreta-
tion function). A natural approach would be that of taking two disjoint
sets of individual constants, the rigid and the non-rigid ones and stating
condition (R) only for the rigid ones. Observe that the two conditions
together, denotation in every world and rigidity, make the behaviour of
individual constants rather inadequate for a semantics intended to cap-
ture features of natural languages: an individual a of a particular domain
Dw that happens to be “named”, say by i, never dies, for in any accessible
world v, it will have at least a counterpart, namely the interpretation of
i at v.

Variables are rigid designators, in the sense that

(S2) 〈k : xi1 , ..., xin〉2B → 2〈k : xi1 , ..., xin〉B
is C-valid. In fact,

〈a1, ..., ak〉 |=w 〈k : xi1 , ..., xin〉2B iff
〈a1, ..., ak〉[k : xi1 , ..., xin ] |=w 2B iff
〈ai1 , ..., ain〉 |=w 2B iff
〈a∗i1 , ..., a∗in〉 |=v B, for all v such that wRv and for all counterparts
a∗i1 , . . . , a

∗
in
∈ Dv of ai1 , . . . , ain , respectively, ONLY IF

〈a∗1, ..., a∗k〉[k : xi1 , ..., xin ] |=v B for all v such that wRv and for all
counterparts a∗1, . . . , a

∗
k ∈ Dv of a1, . . . , ak, respectively, iff

〈a∗1, ..., a∗k〉 |=v 〈k : xi1 , ..., xin〉B for all v such that wRv and for all
counterparts a∗1, . . . , a

∗
k ∈ Dv of a1, . . . , ak, respectively, iff

〈a1, ..., ak〉 |=w 2〈k : xi1 , ..., xin〉B.

¿From the proof above we easily see that the C-validity of (S2) depends
on the fact that the set of worlds where counterparts of 〈a1, ..., ak〉[k :
xi1 , ..., xin ] exist includes the set of worlds were counterparts of a1 . . . ak

exist. The vice-versa doesn’t hold, and this explains the ’only if’.
We will come back to this principle when we will discuss the converse

of the Barcan formula (CBF ) which turns out to imply instances of S2,
see lemma 3.4.

Converse of rigidity
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(CR) 2〈k : s1, ..., sn〉B → 〈k : s1, ..., sn〉2B,

where 〈k : s1, ..., sn〉 : k → n.

This formula is a critical one and has different meanings depending on
the complex term 〈k : s1, ..., sn〉.
• The simplest case is when 〈k : s1, ..., sn〉 is the identical substitu-

tion 〈n : x1, ..., xn〉 of type n → n; it is easy to see that 2(〈n :
x1, ..., xn〉B) → 〈n : x1, ..., xn〉(2B) is C-valid. More generally, let
〈n : xi1 , ..., xin〉 be a permutation of 〈n : x1, ..., xn〉, then
(P ) 2〈n : xi1 , ..., xin〉B → 〈n : xi1 , ..., xin〉2B
is C-valid.

• Suppose now that 〈k : s1, ..., sn〉 is 〈n+1 : x1, ..., xn〉 of type n+1 →
n, then as we shall prove in 2.3, the C-validity of
(D) 2〈n + 1 : x1, ..., xn〉B → 〈n + 1 : x1, ..., xn〉2B,
is equivalent to the assumption that the counterpart relation is ev-
erywhere defined.

A countermodel to D is readily constructed. Take the formula
〈2 : x1〉P and consider the following model M = 〈W,R, C, I〉 where
W = {w, v}, wRv, Dw = {a, b}, Dv = {a∗}, aCa∗, Iv(P ) = ∅. It
follows that 〈a, b〉 |=w 2〈2 : x1〉P iff for all v such that wRv and for
all counterparts a∗, b∗ ∈ Dv of a and b, respectively, 〈a∗, b∗〉 |=v 〈2 :
x1〉P , but this is trivially so because in v there are no counterparts of
b. On the other hand, 〈a, b〉 |=w 〈2 : x1〉2P iff 〈a〉 |=w 2P iff for all
v such that wRv and for all counterparts a∗ ∈ Dv of a, 〈a∗〉 |=v P ,
but this condition is not met, since a∗ 6∈ Iv(P ).

• Let 〈k : s1, ..., sn〉 be 〈0 : i〉 of type 0 → 1. 2〈0 : i〉B → 〈0 : i〉2B
can be falsified on counterpart models because the mere fact that
the interpretation of i in all related worlds does fulfil the property
B, is no guarantee that all counterparts of the interpretation of i
in the present world have the property B. The validity of 2〈0 :
i〉B → 〈0 : i〉2B requires the assumption that Iw(i) has at most
one counterpart in any related world v and that the counterpart (if
any) in v of Iw(i) coincides with Iv(i). Since in counterpart semantics
individual constants are everywhere defined, all this can be expressed
by saying that Iv(i) is the only counterpart of Iw(i) in Dv.

Stability
Individual constants i1, . . . , in of type k are said to be stable iff

2〈k : i1, ..., in〉B → 〈k : i1, ..., in〉2B

is C-valid, where B is a wff of type n.

Quantifiers and modalities
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The notion of satisfaction for quantified formulas reflects the convention
that the outmost quantifier binds the variable with maximum index:

〈a1, ..., an〉 |=w ∃xn+1G iff for some b ∈ Dw, 〈a1, ..., an, b〉 |=w G.
The element b comes after a1, ..., an and so it is a value for xn+1.

Once the notion of satisfaction is defined as above, we see that the
principles of particular and universal instantiation are C-valid:

1. 〈a1, ..., an, an+1〉 |=w G → 〈n + 1 : x1, ..., xn〉∃xn+1G,
2. 〈a1, ..., an, an+1〉 |=w 〈n + 1 : x1, ..., xn〉∀xn+1G → G.
The substitution term 〈n + 1 : x1, ..., xn〉 plays the role of increasing

by one the type of ∃xn+1G (∀xn+1G) and so of making it equal in type
to G. The following forms of the particular and universal instantiation
containing terms are C-valid:

1. 〈h : ~t, t〉A → ∃xh+1〈h + 1 : ~t, xh+1〉A,
2. ∀xh+1〈h + 1 : ~t, xh+1〉A → 〈h : ~t, t〉A,

where ~t is the n-tuple t1, ..., tn and A is of type n + 1.

The Barcan formula and the converse of the Barcan formula
(BF ) ∀xn+12A → 2∀xn+1A,

(CBF ) 2∀xn+1A → ∀xn+12A.
The Barcan formula is not C-valid unless, as we shall see in lemma 2.4,
the counterpart relation is surjective. This property paralles exactly the
fact that in Kripke semantics BF is valid if it is assumed that Dv ⊆ Dw

whenever wRv. On the contrary, its converse 2∀xn+1A → ∀xn+12A
seems to be uncontroversial and unassuming. Let us consider CBF in
the form CBF ∗: ∃xm+13B → 3∃xm+1B. If someone existing now will
be B in a related world, then there is a related world where someone is
B. CBF ∗ is not valid in Kripke’s original semantics,31 and this depends
on a basic property of the Kripke models: the domain of variation of the
quantifiers is, in general, a proper subset of the domain of variation of
the free variables. If we take the counterpart relation to be the iden-
tity relation, then we can speak of counterparts also in Kripke semantics
and we see immediately that the non-validity of CBF ∗ depends on the
fact that some a existing at w may be such that in all related worlds its
counterpart (i.e. a) lies outside the range of the quantifiers. In counter-
part semantics, as we know, the domain of variation of the quantifiers
at a world w is exactly the same as the domain of variation of the free
variables at w, therefore counterparts (if any) of an individual existing
now, ”do exist” in a related world v, in the sense that they belong to the
range of the quantifiers at v. In counterpart semantics CBF corresponds
to the principle that R.Stalnaker calls QCBF . “But QCBF , a qualified

31See Kripke, [46].
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version of the converse of the Barcan formula does seem to be validated
without any assumptions about the relationships between the domains of
the different possible worlds:
(QCBF ) 2∀x̂φ → ∀x̂2(Ex → φ)
where E is the predicate of existence (defined as ∃ŷ(x = y))). Whatever
the relations between the domains, surely if in w it is necessary that
everything must satisfy φ, then anything that exists in w must satisfy φ
in every accessible possible world in which that individual exists.”32 We
can rephrase this quotation by saying ‘ ... if in w it is necessary that
everything must satisfy φ, then, of course, every counterpart of anything
that exists in w must satisfy φ in every accessible possible world in which
that counterpart exists.’ But this is exactly the meaning of 2∀xφ → ∀x2φ
in counterpart semantics, consequently CBF is synonymous of QCBF .
Moreover counterparts share the same kind of existence as the individuals
they are counterparts of, this feature manifests itself in the C-validity of

∀x12∃x2(x1 = x2).
In order to see the affinity between S2 and CBF , consider the following

two formulas:
(i) 3〈2 : x1〉P → 〈2 : x1〉3P

and
(ii) ∃x23〈2 : x1〉P → 3∃x2〈2 : x1〉P

Both implications hold because of the same fact: ‘counterparts of n-tuples
of individuals are n-tuples of counterparts of individuals’, and the set of
worlds where there are counterparts of two individuals a and b, is a subset
of the set of worlds where there are counterparts of one of them. CBF
is a crucial formula and its validity hinges on basic structural features of
the semantics more than other formulas such as GF or BF or NI which
express assumptions about the counterpart relation (or the relationship
between the domains of different possible worlds, as in Kripke’s origi-
nal semantics). It is a watershed for the semantics of quantified modal
logics.33

The Ghilardi formula and its converse
(GF ) ∃xn+12A → 2∃xn+1A,

(CGF ) 2∃xn+1A → ∃xn+12A.
The Ghilardi formula is not C-valid unless, as we shall see in lemma 2.3,

the counterpart relation is everywhere defined. GF is equivalent to D:
2〈m+1 : x1, ..., xm〉A → 〈m+1 : x1, ..., xm〉2A, as we shall see in lemma
3.3.1. It is worth noticing that the proof of ∃x12P → 2∃x1P , where P is

32See [75], p.18.
33For the role of CBF in Kripke semantics, see also [15].
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a unary predicate, given in section 1, hides an application of the schema D:

P → 〈〉∃x1P
2P → 2〈〉∃x1P
2P → 〈〉2∃x1P by schema D,
∃x12P → 2∃x1P .

As to the converse of the Ghilardi formula, it can be falsified in coun-
terpart semantics along the same lines as in Kripke semantics.

Substitution and identity

Reflexivity of identity and substitutivity of equal terms in any formula
salva veritate both hold true in counterpart semantics, whether or not
the formula in question contains modal operators. In fact the following
two formulas are C-valid:

I∗ 〈m : t1, t1〉(x1 = x2)
I∗∗ (m : t1 = s1) ∧ · · · ∧ (m : tn = sn) → (〈m : t1, ..., tn〉A ↔ 〈m :

s1, ..., sn〉A).

We adopt the convention that (x1 = x2) stands for the pure atomic
formula “ = ”, and that (n : t = s) stands for the substituted formula
〈n : t, s〉(x1 = x2). Let us start by examining a much debated formula,
the so-called principle of necessity of identity, which asserts that if an
identity is true, then it is necessarily so,

NI (x1 = x2) → 2(x1 = x2).

This formula is not valid in counterpart semantics and a countermodel
for it is the case in which at least one individual of some domain Dw

has two different counterparts in a related world. How is it possible that
the validity of I∗ and I∗∗ is compatible with the failure of NI? Well,
according to I∗∗, (2 : x1 = x1) ∧ (x1 = x2) → (〈2 : x1, x1〉2(x1 = x2) →
〈2 : x1, x2〉2(x1 = x2)) is C-valid. Moreover, since I∗ is C-valid
〈2 : x1, x1〉2(x1 = x2) → ((x1 = x2) → 〈2 : x1, x2〉2(x1 = x2)) is C-valid
too (the antecedents have been permuted).
If 〈2 : x1, x1〉2(x1 = x2) were C-valid, then also (x1 = x2) → 〈2 :
x1, x2〉2(x1 = x2) would have been C-valid and consequently (x1 = x2) →
2(x1 = x2) would have been C-valid because of SI .

But 〈2 : x1, x1〉2(x1 = x2) is not C-valid and is not equivalent to 2〈2 :
x1, x1〉(x1 = x2) (i.e. to 2(2 : x1 = x1) which is C-valid).

In the usual proof of (x1 = x2) → 2(x1 = x2) we treat as ‘equal’ both
wffs 〈2 : x1, x1〉2(x1 = x2) and 2〈2 : x1, x1〉(x1 = x2). Let us see how it
goes:
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x1 = x1

2(x1 = x1) 2(x1 = x1) → (x1 = x2 → 2(x1 = x2))

(ModusPonens) (x1 = x2) → 2(x1 = x2)).

If we phrase the above proof carefully, we get:

〈2 : x1, x1〉(x1 = x2)
2〈2 : x1, x1〉(x1 = x2)
〈2 : x1, x1〉2(x1 = x2) → (x1 = x2 → 〈2 : x1, x2〉2(x1 = x2))

and Modus Ponens can no longer be applied.34

Analogously, (i = j) → 〈i, j〉2(x1 = x2) is not C-valid even when i and j
are rigid designators.

As we will see in lemma 2.5, (x1 = x2) → 2(x1 = x2) is not C-valid un-
less the counterpart relation is a partial function, moreover it is equivalent
to Meloni’s formula (see section 3):
M 2〈m + 1 : x1, x1, ~x〉B → 〈m + 1 : x1, x1, ~x〉(2B),

where ~x = x2, . . . , xm+1 and B is a wff of type m + 2.
NI together with the principle D imply full commutativity of substi-

tutions with respect to modal operators
CR 2〈m : t1, . . . tn〉B → 〈m : t1, . . . tn〉2B,
see lemma3.7. Therefore C-models with not-empty domains and with
totally defined functions as counterpart relations are equivalent to Tarski-
Kripke models with increasing domains, see [15].

A Quinean sentence: ‘necessarily the number of planets is greater than 7’

Let i denote ‘the number of planets’. Then, according to Quine, we are
bound to accept the following derivation:

1. 2(7 < 9)
2. i = 9
3. 2(7 < i)

This inference can be analysed along the same lines as before:

2〈7, 9〉(x1 < x2) by 1.
〈7, 9〉2(x1 < x2) → (i = 9 → 〈7, i〉2(x1 < x2)) by I∗∗

We need to assume that both 7 and 9 are stable designators to obtain
i = 9 → 〈7, i〉2(x1 < x2)

34See Ghilardi and Meloni, [31], p.87.
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and so by 2.,
〈7, i〉2(x1 < x2).

Then by assuming that both i and 7 are rigid designators we obtain
2(7 < i)

but i can hardly be a rigid designator.

Quantifying into modal contexts leads us, according to Quine, from true
statements, such as ‘necessarily 9 is greater than 7’, to meaningless ones
such as ‘There is something which is necessarily greater than 7’, for is it
9 or the number of planets that is such a thing? But observe that the
argument from 2(7 < 9) to ∃x2(7 < x) is based on the assumption that
7 and 9 are both stable and rigid designators:

2〈7, 9〉(x1 < x2),
〈7, 9〉2(x1 < x2) (by stability of 7 and 9)
∃x1〈7, x1〉2(x1 < x2)
∃x12〈7, x1〉(x1 < x2) (by rigidity of 7)
∃x12(7 < x1)

Quite different is the implication 〈9〉2(7 < x1) → ∃x12(7 < x1) which is
perfectly acceptable: if being necesssarily greater than 7 is a property of
9, then there is something with that property.

Empty domains

∀x1P → ∃x1P of type 0 admits of countermodels if for some w, the
domain Dw is empty. Note however that ∀x2P (2 : x2) → ∃x2P (2 : x2)
of type 1 is C-valid for M |= ∀x2P (2 : x2) → ∃x2P (2 : x2) iff for all w
and for all a ∈ Dw, 〈a〉 |=w ∀x2P (2 : x2) → ∃x2P (2 : x2); therefore if Dw

is empty, trivially, 〈a〉 |=w ∀x2P (2 : x2) → ∃x2P (2 : x2) holds. Again,
〈1 : 〉∃x1(1 : x1 = x1) is C-valid, whereas ∃x1(1 : x1 = x1) is not.

Properties of the counterpart relation expressible by modal
formulas

Lemma 2.3. (Ghilardi & Meloni, 1988) The following two conditions
are equivalent:

1. ∃xm+12A → 2∃xm+1A is C-valid
2. the counterpart relation C is everywhere defined: wRv only if for

every a ∈ Dw there exists an element b ∈ Dv such that aCb.

Proof (i) ⇒ (ii). Consider a modal language containing a unary
predicate letter P . Take a counterpart model M, let w ∈ W , a ∈ Dw and
define Iv(P ) = {b ∈ Dv : aCb}, for all v such that wRv. It obtains that
〈〉 |=w ∃x12P ; for, this is the case iff for some a ∈ Dw, 〈a〉 |=w 2P iff
for all v such that wRv and for all b ∈ Dv such that aCb, 〈b〉 |=v P , but
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this is so in virtue of the definition of Iv(P ). By hypothesis ∃xm+12A →
2∃xm+1A is C-valid, whence 〈〉 |=w 2∃x1P . It follows that 〈〉 |=v ∃x1P
for all v such that wRv, whence for some b ∈ Dv, 〈b〉 |=v P , consequently
Iv(P ) 6= ∅, so {b ∈ Dv : aCb} 6= ∅ hence C is everywhere defined.

(ii) ⇒ (i). Exercise.

As we will see in section 3 the following formulas are equivalent:
(GF*) 3∀xm+1A → ∀xm+13A

(D*) 〈m + 1 : ~x〉(3B) → 3〈m + 1 : ~x〉B
(GF) ∃xm+12A → 2∃xm+1A

(D) 2(〈m + 1 : ~x〉B) → 〈m + 1 : ~x〉(2B)
where ~x = x1, . . . , xm, A is of type m + 1 and B is of type m.

Lemma 2.4. (Ghilardi & Meloni, 1988) The following two conditions
on counterpart models are equivalent:

1. ∀xm+12A → 2∀xm+1A is C-valid
2. the counterpart relation is surjective: wRv only if for every b ∈ Dv

there exists an a ∈ Dw such that aCb.

Proof (i) ⇒ (ii). Consider a modal language containing just a unary
predicate letter P . Take a counterpart model M, a world w ∈ W and
for all v ∈ W such that wRv, define Iv(P ) = {b ∈ Dv : aCb for some
a ∈ Dw}.

It obtains that 〈〉 |=w ∀x12P , for this is the case iff for all a ∈ Dw,
〈 a〉 |=w 2P iff for all v such such that wRv and for all b ∈ Dv such that
aCb, 〈b〉 |=v P , but this is so in virtue of the definition of Iv(P ). Therefore
〈〉 |=w 2∀x1P . Whence for all v.wRv. and for all b ∈ Dv, 〈b〉 |=v P . It
follows that Dv = Iv(P ), hence for all b ∈ Dv there is an a ∈ Dw such
that aCb. Consequently C is surjective.

(ii) ⇒ (i). Let C be surjective and ~a |=w ∀xm+12A. Then for all a′ ∈ Dw,
〈~a, a′〉 |=w 2A, whence for all v, wRv, for all ~c ∈ (Dv)m and for all c′ ∈ Dv

such that ~aC~c and a′Cc′, 〈~c, c′〉 |=v A. Since C is surjective, then for all
v, wRv, for all ~c ∈ (Dv)m such that ~aC~c and for all c′ ∈ Dv, 〈~c, c′〉 |=v A.
So for all v, wRv, for all ~c ∈ (Dv)m such that ~aC~c, 〈~c〉 |=v ∀xm+1A.
Therefore ~a |=w 2∀xm+1A.

Lemma 2.5. (Ghilardi & Meloni, 1988) The following two conditions
on counterpart models are equivalent:

1. (x1 = x2) → 2(x1 = x2) is C-valid
2. the counterpart relation is a partial function.

Proof (i) ⇒ (ii). Take a counterpart model M, a world w ∈ W and
let a ∈ Dw. For each v.wRv. consider the set Xv = {a∗ ∈ Dv : aCa∗}.
Since 〈a, a〉 |=w (x1 = x2) it obtains that 〈a, a〉 |=w 2(2 : x1 = x2), so for
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all v such wRv either Xv = ∅ or Xv = {a∗}. Therefore the counterpart
relation is a partial function. (ii) ⇒ (i). Trivial.

As we shall see in section 3 the following formulas are equivalent, where
~x = x2, . . . , xm+1 and B is a formula of type m + 2.
(NI) (x1 = x2) → 2(2 : x1 = x2)
(M) 2〈m + 1 : x1, x1, ~x〉B → 〈m + 1 : x1, x1, ~x〉(2B)

(NI*) 3(x1 6= x2) → (x1 6= x2)
(M*) 〈m + 1 : x1, x1, ~x〉(3B) → 3〈m + 1 : x1, x1, ~x〉B

Lemma 2.6. (Ghilardi & Meloni, 1988) The following two conditions
on counterpart models are equivalent:

1. (x1 6= x2) → 2(x1 6= x2) is C-valid
2. the counterpart relation is an injective relation, i.e. if wRv, a, b ∈

Dw, a∗ ∈ Dv, then aCa∗ and bCa∗ implies that a = b.

Proof (i) ⇒ (ii). Take a counterpart model M, a world w ∈ W
and consider two elements a, b ∈ Dw such that a 6= b. For each v.wRv.
define Xv = {a∗ ∈ Dv : aCa∗} and Yv = {b∗ ∈ Dv : bCb∗}. Then
〈a, b〉 |=w (x1 6= x2) so 〈a, b〉 |=w 2(x1 6= x2), hence for all v such wRv
either Xv = ∅ or Yv = ∅ or Xv ∩ Yv = ∅. Therefore the counterpart
relation is an injective relation.
(ii) ⇒ (i). Trivial.

§3. Proof theory. First-order normal logics

Given a first-order language with types Lt based on the sets J , F and P ,
a first-order normal logic is defined to be any set S ⊆ Fm{J, F, P} such
that
• S includes the axioms on substitution, the axioms on the logical

symbols, the axioms on identity,
• S is closed under the inference rules of modus ponens, ∃-introduction,

substitution for variables and necessitation.
S is a first-order normal logic with rigid terms if it includes also the axiom
(R) on rigid terms.

For any complex terms 〈m : t1, ..., tk〉, 〈k : s1, ..., sn〉, and formulas A,B
of type n and C of type n + 1:

Axioms on substitution
SI 〈n : x1, ..., xn〉A ↔ A
SS 〈m : t1, ..., tk〉(〈k : s1, ..., sn〉A) ↔ (〈m : t1, ..., tk〉◦〈k : s1, ..., sn〉)A
S¬ 〈k : s1, ..., sn〉(¬A) ↔ ¬〈k : s1, ..., sn〉A
S∨ 〈k : s1, ..., sn〉(A ∨B) ↔ 〈k : s1, ..., sn〉A ∨ 〈k : s1, ..., sn〉B
S∃ 〈k : s1, ..., sn〉(∃xn+1C) ↔ ∃xk+1〈k + 1 : s1, ..., sn, xk+1〉C
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S2 〈k + 1 : xi1 , ..., xin〉2A → 2〈k + 1 : xi1 , ..., xin〉A
Axiom on rigid terms

R 〈k : s1, ..., sn〉2A → 2〈k : s1, ..., sn〉A.

Axioms on the logical symbols

Taut A, where A is any tautology
PI C → 〈n + 1 : x1, ..., xn〉∃xn+1C (Particular instantiation)
K 2(A → B) → (2A → 2B)

Axioms on identity

I1 〈1 : x1, x1〉(x1 = x2)
I2 (n : x1 = x2) → (fn−1(n : x1, x3, ..., xn) = fn−1(n : x2, x3, ..., xn)),

n ≥ 2,
I3 (n : x1 = x2) → (Pn−1(n : x1, x3, ..., xn) ↔ Pn−1(n : x2, x3, ..., xn)),

n ≥ 2.

Inference rules
A A → B

Modus Ponens (MP) ————–
B

A → 〈n + 1 : x1, ..., xn〉B
∃-Introduction(∃-I) ———————

∃xn+1A → B

A
Substitution for Variables (SV) ——————–

〈k : s1, ..., sn〉A
A

Necessitation rule (N) ——
2A

Theorems
The members of a logic S are called theorems. We write `n

S A to denote
that the formula A of type n is a theorem of S.

Soundness and Completeness
Let H be a class of counterpart frames or of models. A logic S is sound
with respect to H if for any type n and formula A of type n,

`n
S A implies H |= A.

S is complete with respect to H, if, for any n and formula A of type n,
H |= A implies `n

S A.
S is determined by H if it is both sound and complete with respect to H.
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Deducibility
If M ∪ {A} ⊆ Fm{J, F, P}, and every formula of M ∪ {A} is of the same
type n, then

M `n
S A iff `n

S B1 ∧ · · · ∧Bm → A
for some B1, . . . , Bm ∈ M . When M `n

S A we say that A is S-deducible
from M . We write M 0n

S A when A is not S-deducible from M .

The logics Q.Kt and R.Kt

Q.Kt =
⋂{S ⊆ Fm(J, F, P ) : S is a first-order modal logic}

R.Kt =
⋂{S ⊆ Fm(J, F, P ) : S is a first-order modal logic with rigid terms}

We write `n A to denote that the wff A of type n is a theorem of either
Q.Kt or R.Kt instead of `n

Q.Kt A or `n
R.Kt A. From the context it will be

clear which system we refer to.

Lemma 3.1. The following formulas are theorems of Q.Kt:
1. 〈m : ~s, s〉A → ∃xm+1〈m + 1 : ~s, xm+1〉A,

where ~s stands for s1, . . . , sn.
2. 〈n + 1 : ~x〉∀xn+1A → A UI: Universal instantiation

where ~x stands for x1, . . . , xn.
3. ∀xm+1〈m + 1 : ~s, xm+1〉A → 〈m : ~s, s〉A

where ~s stands for s1, . . . , sn.
4. 〈k : s1, ..., sn〉∀xn+1C ↔ ∀xk+1(〈s1, ..., sn, xk+1〉C).
5. 〈i〉2A → ∃x12A.
6. The rule of ∀-Introduction is eliminable:
〈n + 1 : x1, ..., xn〉A → B

A → ∀xn+1B

Lemma 3.2. If the language contains individual constants, then ∀x1A →
∃x1A is a theorem of Q.Kt, for any formula A of type 1.

Proof. Let i be an individual constant of type 0.
`1 〈1 : 〉∀x1A → A
`0 〈i〉〈1 : 〉∀x1A → 〈i〉A
`0 〈 〉∀x1A → 〈i〉A
`0 ∀x1〈1 : x1〉A → 〈i〉A
`0 ∀x1A → 〈i〉A

Analogously, `0 〈i〉A → ∃x1A, therefore `0 ∀x1A → ∃x1A.
If the language does not contain individual constants, then we can only

prove that ∀x2〈2 : x1〉A → ∃x2〈2 : x1〉A. Here is a proof:
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`1 〈1 : 〉∀x1A → A
`1 A → 〈1 : 〉∃x1A
`1 〈1 : 〉∀x1A → 〈1 : 〉∃x1A
`1 ∀x2〈2 : x2〉A → ∃x2〈2 : x2〉A

Note. ∀x1A → ∃x1A can be falsified at any world w such that Dw is
empty, whereas ∀x2〈2 : x1〉A → ∃x2〈2 : x1〉A is valid since it is satisfied
in any world w by any unary sequence of elements of the domain of Dw.

Lemma 3.3. (on identity) The following formulas are theorems of Q.Kt:

1. (n : x1 = x2) ∧ 〈x1, x3, . . . , xn〉A → 〈x2, x3, . . . , xn〉A.
2. (m : t1 = s1) ∧ · · · ∧ (m : tn = sn) → (〈m : t1, . . . , tn〉A → 〈m :

s1, . . . , sn〉A).
3. (2 : x1 = x2) → (2 : x2 = x1).
4. (3 : x1 = x2) ∧ (3 : x2 = x3) → (3 : x1 = x3).
5. (n : x1 = x2) → (〈x1, x3, . . . , xn〉 ◦ t = 〈x2, x3, . . . , xn〉 ◦ t).
6. (m : t1 = s1) ∧ · · · ∧ (m : tn = sn) → (〈m : t1, . . . , tn〉 ◦ t = 〈m :

s1, . . . , sn〉 ◦ t).
7. ∃x2(x1 = x2).
8. ∀x12∃x2(x1 = x2).

Lemma 3.4. (i) Q.Kt ` CBF , (ii) (Q.Kt − S2) + CBF
` 〈m + 1 : ~x〉2B → 2〈m + 1 : ~x〉B, and (iii) Q.Kt ` 〈n : ~y〉2A →
2〈n : ~y〉A, where ~y = xi1 , ..., xin is a permutation of x1, ..., xn.

Proof. Let ~x be x1, ..., xm.

(i) `m+1〈m + 1 : ~x〉∀xm+1A → A (UI)
`m+12〈m + 1 : ~x〉∀xm+1A → 2A
`m+1〈m + 1 : ~x〉2∀xm+1A → 2A (by S2)
`m 2∀xm+1A → ∀xm+12A (by ∀-I)

(ii) `m+1〈m + 1 : ~x〉B → 〈m + 1 : ~x〉B
`m B → ∀xm+1〈m + 1 : ~x〉B (by ∀-I)
`m 2B → 2∀xm+1〈m + 1 : ~x〉B
`m 2B → ∀xm+12〈m + 1 : ~x〉B (by CBF )
`m+1〈m+1 : ~x〉2B → 〈m+1 : ~x〉∀xm+12〈m+1 : ~x〉B (by SV )
`m+1〈m + 1 : ~x〉2B → 2〈m + 1 : ~x〉B (by UI)

(iii) For every term 〈n : ~y〉, where ~y is a permutation of x1, ..., xn, there
is a k such that 〈n : ~y〉 ◦ · · · ◦ 〈n : ~y〉︸ ︷︷ ︸

k−times

= 〈n : x1, . . . , xn〉.
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`n 〈n : ~y〉2〈n : ~y〉A → 2〈n : ~y〉〈n : ~y〉A ( S2)
`n 〈n : ~y〉 ◦ · · · ◦ 〈n : ~y〉︸ ︷︷ ︸

(k−1)−times

〈n : ~y〉2〈n : ~y〉A →

〈n : ~y〉 ◦ · · · ◦ 〈n : ~y〉︸ ︷︷ ︸
(k−1)−times

2〈n : ~y〉〈n : ~y〉A ( SV )

`n 〈n : ~y〉 ◦ · · · ◦ 〈n : ~y〉︸ ︷︷ ︸
k−times

2〈n : ~y〉A →

〈n : ~y〉2 〈n : ~y〉 ◦ · · · ◦ 〈n : ~y〉︸ ︷︷ ︸
(k−2)−times

〈n : ~y〉〈n : ~y〉A ( S2)

`n 2〈n : ~y〉A → 〈n : ~y〉2 〈n : ~y〉 ◦ · · · ◦ 〈n : ~y〉︸ ︷︷ ︸
k−times

A

`n 2〈n : ~y〉A → 〈n : ~y〉2A (SI)

Extensions of Q.Kt

BF.Kt = Q.Kt + (∀xm+12A → 2∀xm+1A).

GF.Kt = Q.Kt + (∃xm+12A → 2∃xm+1A).

D.Kt = Q.Kt + (2〈m + 1 : x1, ..., xm〉B → 〈m + 1 : x1, ..., xm〉2B).

M.Kt = Q.Kt +(2〈m+1 : x1, x1, x2, ..., xm+1 〉B → 〈m+1 : x1, x1, x2, ...,
xm+1 〉2B). (B is of type m + 2.)

NI.Kt = Q.Kt + ((x1 = x2) → 2(x1 = x2)).

ND.Kt = Q.Kt + ((x1 6= x2) → 2(x1 6= x2)).

CR.Kt = Q.Kt + (2〈k : t1, ..., tm〉B → 〈k : t1, ..., tm〉2B).

Lemma 3.5. GF.Kt = D.Kt

Proof. Let ~x be x1, ..., xm.
(i) `m+1 A → 〈m + 1 : ~x〉∃xm+1A

`m+1 2A → 2〈m + 1 : ~x〉∃xm+1A
`m+1 2A → 〈m + 1 : ~x〉2∃xm+1A (by D)
`m+1 ∃xm+12A → 2∃xm+1A

(ii) `m+1 〈m + 1 : ~x〉B → 〈m + 1 : ~x〉B
`m ∃xm+1〈m + 1 : ~x〉B → B
`m 2∃xm+1〈m + 1 : ~x〉B → 2B (by GF )
`m+1 〈m + 1 : ~x〉∃xm+12〈m + 1 : ~x〉B → 〈m + 1 : ~x〉2B
`m+1 2〈m + 1 : ~x〉B → 〈m + 1 : ~x〉2B

Lemma 3.6. NI.Kt = M.Kt
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Proof. Without loss of generality, we consider the sentence M when
m = 1 and B is a wff of type 3, i.e. (2〈2 : x1, x1, x2〉B → 〈2 :
x1, x1, x2〉2B).

(i) `3 (3 : x1 = x2) → (〈3 : x1, x1, x3〉B → 〈3 : x1, x2, x3〉B)
`3 (3 : x1 = x2) → (〈3 : x1, x1, x3〉B → B)
`3 2(3 : x1 = x2) → (2〈3 : x1, x1, x3〉B → 2B)
`3 (3 : x1 = x2) → (2〈3 : x1, x1, x3〉B → 2B) (by NI)
`3 〈2 : x1, x1, x2〉(3 : x1 = x2) → (〈2 : x1, x1, x2〉2〈3 : x1, x1, x2〉B →

〈2 : x1, x1, x2〉2B)
`2 〈2 : x1, x1, x2〉(3 : x1 = x2)
`2 〈2 : x1, x1, x2〉2〈3 : x1, x1, x2〉B → 〈2 : x1, x1, x2〉2B
`2 〈2 : x1, x1, x2〉2(〈3 : x1, x3〉◦〈2 : x1, x1, x2〉)B → 〈2 : x1, x1, x2〉2B
`2 〈2 : x1, x1, x2〉(〈3 : x1, x3〉2〈2 : x1, x1, x2〉B) → 〈2 : x1, x1, x2〉2B
`2 〈2 : x1, x2〉2〈2 : x1, x1, x2〉B → 〈2 : x1, x1, x2〉2B
`2 2〈2 : x1, x1, x2〉B → 〈2 : x1, x1, x2〉2B

(ii) `2 〈2 : x1, x1〉(x1 = x2)
`2 2〈2 : x1, x1〉(x1 = x2)
`2 〈2 : x1, x1〉2(x1 = x2) (by M)
`2 〈2 : x1, x1〉2(x1 = x2) → ((x1 = x2) → 〈2 : x1, x2〉2(x1 = x2))
`2 (x1 = x2) → 〈2 : x1, x2〉2(x1 = x2)
`2 (x1 = x2) → 2(x1 = x2)

Lemma 3.7. (Ghilardi, 1990) NI.D.Kt = CR.Kt.

Proof. We show that NI.D.Kt ` CR. Without loss of generality, we
show that NI.D.Kt `3 2〈3 : t1, t2〉B → 〈3 : t1, t2〉2B.
`5 〈5 : t1, t2〉 = 〈5 : x4, x5〉 → (〈5 : t1, t2〉B → 〈5 : x4, x5〉B)
`5 2(〈5 : t1, t2〉 = 〈5 : x4, x5〉) → (2〈5 : t1, t2〉B → 2〈5 : x4, x5〉B)
`5 〈5 : t1, t2〉 = 〈5 : x4, x5〉 → (2〈5 : x1, x2, x3〉〈3 : t1, t2〉B → 2〈5 :

x4, x5〉B)
`5 〈5 : t1, t2〉 = 〈5 : x4, x5〉 → (〈5 : x1, x2, x3〉2〈3 : t1, t2〉B → 〈5 :

x4, x5〉2B)
`3 〈3 : x1, x2, x3, t1, t2〉(〈5 : t1, t2〉 = 〈5 : x4, x5〉) → (〈3 : x1, x2, x3, t1, t2〉〈5 :

x1, x2, x3〉2〈3 : t1, t2〉B → 〈3 : x1, x2, x3, t1, t2〉〈5 : x4, x5〉2B)
`3 (〈3 : t1, t2〉 = 〈3 : t1, t2〉) → (2〈3 : t1, t2〉B → 〈3 : t1, t2〉2B).

§4. Completeness results. As to the completeness results, here is a
list of some of them.35

35A proof of these results can be found in S.Ghilardi, [26] and S.Ghilardi and
G.Meloni, [30]. The novelty of the present proof is that it makes no use of category
theory.
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q.m.l. is complete w.r.t. the class of counterpart
frames in which the relation C is

Q.Kt any
Q.T t reflexive
Q.S4t reflexive and transitive
Q.Bt symmetric
BF.Kt surjective
GF.Kt everywhere defined
ND.Kt injective
NI.Kt functional

Preliminaries
n-tuples of variables of type m, 〈m : xi1 , . . . , xin〉, are called projections

from m to n and are denoted by α : m → n, β : m → n, ... .
Given a set X, ~a is said to be a list of length m iff ~a ∈ Xm. If ~a =

〈a1, . . . , am〉 and~b = 〈b1, . . . , br〉, then ~a∗~b is the list 〈a1, . . . , am, b1, . . . , br〉
of length m+ r and for any c ∈ X, ~a∗ c is the list 〈a1, . . . , am, c〉 of length
m + 1. Any list whose elements are pairwise distinct is said to be a base
list. Where α = 〈m : xi1 , . . . , xin〉 and ~a = 〈a1, . . . , am〉, then

~a [m : xi1 , . . . , xin ] = 〈ai1 , ..., ain〉.
~a [α] denotes the interpretation of the projection α with respect to the
list ~a. When no confusion can possibly arise, we will write ~a [xi1 , ..., xin ]
instead of ~a [m : xi1 , ..., xin ]. In pictures,

~a ~b-α

where ~b = 〈ai1 , . . . , ain〉.
Lemma 4.1. (a) If ~a [α] = ~a [β] and ~a is a base list, then α = β.

(b) If 〈ai1 , . . . , ain〉 is a list composed of elements taken from the base list
〈a1, . . . , am〉, then there is a unique projection α : m → n, such that

〈a1, ..., am〉[α] = 〈ai1 , ..., ain〉.
(c) Suppose ~a [τ ] = ~b, where τ : m → n, ~b is a base list of length n and
~a is a list of length m. If any element of ~a is also an element of ~b, then
there is a unique projection π : n → m, such that π ◦ τ = 〈n : x1, ..., xn〉.
Proof. (b) Trivially α = 〈m : xi1 , ..., xin〉. Suppose there is another pro-
jection 〈m : xj1 , ..., xjn〉 such that 〈a1, ..., am〉[xj1 , ..., xjn ] = 〈ai1 , ..., ain〉.
Then 〈ai1 , ..., ain〉 = 〈aj1 , ..., ajn〉, i.e. i1 = j1, ....., in = jn and so 〈m :
xi1 , ..., xin〉 = 〈m : xj1 , ..., xjn〉.

(c) Since α[τ ] = ~b, and any element of ~b is also an element of ~a, then
from (b) there is a unique π such that ~b [π] = ~a. So ~b [π ◦ τ ] = (~b [π]) [τ ] =
~a [τ ] = ~b = ~b [n : x1, ..., xn], whence by (a), π ◦ τ = 〈n : x1, ..., xn〉.
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〈a1, . . . , am〉 〈b1, . . . , bn〉-τ〈b1, . . . , bn〉 -π
-

〈n : x1, . . . , xn〉
Definition 4.2. Let X be any set. Define graph(X,Lt) = {〈~a,A〉 :

for some n ∈ N , ~a ∈ Xn and A is a formula of Lt of type n}.
Any subset of graph(X,Lt) is said to be an X-graph. Obviously, if

X = ∅, then graph(X,Lt) = {〈〈〉, A〉 : A is a sentence of Lt }. In the
following we will assume that a set X is fixed from the outset, and so
we will speak just of graphs instead of X-graphs. A graph Γ is meant
to represent a world w of a counterpart model because it describes the
relation of satisfiability relative to w: 〈~a,A〉 ∈ Γ is intended to mean that
~a |=w A.

Now we define a property for graphs that corresponds to consistency
for sets of formulas, and we call it coherence. To illustrate this property,
suppose that Γ includes the subset

{ 〈〈a, c, c〉, A〉, 〈〈a, b〉, B〉, 〈〈c, d〉, C〉 }.
So, according to the intended meaning,

〈a, c, c〉 |=w A, 〈a, b〉 |=w B and 〈c, d〉 |=w C.
Now consider the list 〈a, b, c, d〉 (unique up to the order of its elements)
composed of all and only all the elements, without repetitions, occurring
either in 〈a, c, c〉 or in 〈a, b〉 or in 〈c, d〉. Then

〈a, b, c, d〉[4 : x1, x3, x3] |=w A, 〈a, b, c, d〉[4 : x1, x2] |=w B,
〈a, b, c, d〉[4 : x3, x4] |=w C,

and so
〈a, b, c, d〉 |=w 〈4 : x1, x3, x3〉A, 〈a, b, c, d〉 |=w 〈4 : x1, x2〉B,

〈a, b, c, d〉 |=w 〈4 : x3, x4〉C.
If it happens that

`4 (〈4 : x1, x3, x3〉A ∧ 〈4 : x1, x2〉B ∧ 〈4 : x3, x4〉C) → ⊥,
then Γ is said to be incoherent. In pictures,

〈a, c, c〉 A

〈4 : x1, x3, x3〉
¡

¡
¡

¡
¡µ

〈a, b〉 B

〈4 : x1, x2〉
@

@
@

@
@@R

〈a, b, c, d〉

〈c, d〉 C
?

〈4 : x3, x4〉
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Let S be any logic in the language of Lt such that S ⊇ Q.Kt, here is
the full definition of S-incoherence:

Definition 4.3. A graph Γ is S-incoherent iff there are pairs

• 〈~ai, Ai〉 ∈ Γ, 1 ≤ i ≤ h, where ~ai is a list of length ni and Ai is a
wff of type ni,

• and there are projections τi : m → ni, 1 ≤ i ≤ h, such that:
(i) S `m

∧
τiAi → ⊥, and

(ii) ~d [τi] = ~ai, 1 ≤ i ≤ h,

where ~d is the base list of length m composed of all and only all the
elements occurring either in ~a1 or ... or in ~ah.

In what follows we refer to the conditions stated by the definition 4.3
by saying that Γ admits of a critical diagram:

τh
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡µ

~ah Ah

. . .

where S `m
∧

τiAi → ⊥.

Definition 4.4. A graph is S-coherent iff it is not S-incoherent.

The order of the elements of ~d is immaterial since if ~d [τi] = ~ai and
`m

∧
τiAi → ⊥, then for any permutation ~d∗ of ~d there are projections

τ∗i such that ~d∗ [τ∗i ] = ~ai and S `m
∧

τ∗i Ai → ⊥. To wit, by lemma 4.1(b)
there is a unique projection α such that ~d∗ [α] = ~d, so let τ∗i = α◦τi. This
allows us to speak of the base list ~d.

Definition 4.5. A set M of sentences is S-consistent iff for any finite
subset of sentences A1...Ai...An of M and any m ∈ N, S 6`m 〈m : 〉∧Ai →
⊥.

For simplicity’s sake, we will write `m A instead of S `m A.

Lemma 4.6. Let M be an S-consistent set of sentences. Then the graph
Γ = {〈〈 〉, A〉 : A ∈ M is of type 0} is S-coherent.

Proof. Let Γ admit of a critical diagram
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τh
@

@
@R

〈 〉 A1

~d

τ1

¡
¡

¡µ

〈 〉 Ah

. . .

where `m
∧

τiAi → ⊥. Since each τi : m → 0 is just the projection 〈m : 〉,
then `m

∧〈m : 〉Ai → ⊥, whence `m 〈m : 〉∧Ai → ⊥, contrary to the
S-consistency of M .

Lemma 4.7. If Γ is an S-coherent graph, 〈~c, Cj〉 ∈ Γ, 1 ≤ j ≤ k, and
`p

∧
Cj → B, then Γ + 〈~c, B〉 is S-coherent.

Proof. Let Γ + 〈~c, B〉 admit of a critical diagram

τh
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡µ

~ah Ah

. . .

~c B
?

π

where `m
∧

τiAi ∧ πB → ⊥. Therefore Γ admits of the following critical
diagram

τh
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡µ

~ah Ah

. . .

~ck Ck

?

π

~c1 C1

π

B
B
B
B
BBN

where `m
∧

τiAi ∧
∧

πCj → ⊥, contrary to the hypothesis of the lemma.
To wit,
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`p
∧

Cj → B
`m π

∧
Cj → πB

`m
∧

πCj → πB `m
∧

τiAi ∧ πB → ⊥

`m
∧

τiAi ∧
∧

πCj → ⊥.

Lemma 4.8. Let Γ be an S-coherent graph. Γ + 〈~c, βB〉 is S-coherent
iff Γ + 〈~c [β], B〉 is S-coherent, where β : p → q and B is of type q.

Proof. Let Γ + 〈~c, βB〉 admit of a critical diagram

τh

@
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡
¡µ

~ah Ah

. . .

~c βB
?

π

where `m
∧

τiAi ∧ π(βB) → ⊥.
Since ~d [π] = ~c, it follows that (~d [π])[β] = ~c [β], and so ~d [π ◦ β] = ~c [β].
Therefore Γ + 〈~c [β], B〉 admits of the following critical diagram

τh

@
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡
¡µ

~ah Ah

. . .

~c [β] B
?

π ◦ β

where `m
∧

τiAi∧ (π ◦β)B → ⊥. This last formula obtains from the fact
that `m

∧
τiAi ∧ π(βB) → ⊥.

Let Γ + 〈~c [β], B〉 admit of a critical diagram
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τh

@
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡
¡µ

~ah Ah

. . .

~c [β] B
?

π

where `m
∧

τiAi ∧ πB → ⊥.
Let ~s be a base list of length k composed of all and only all the elements

occurring in either ~d or ~c then, by the lemma 4.1(b), there exist and are
unique, two projections γ : k → m and δ : k → p such that

~s [γ] = ~d, and ~s [δ] = ~c. Now,
~s [γ] = ~d

(~s [γ])[π] = ~d [π] ~d [π] = ~c [β]
(~s [γ])[π] = ~c [β] ~s [δ] = ~c

(~s [γ])[π] = (~s [δ])[β]
~s [γ ◦ π] = ~s [δ ◦ β]
γ ◦ π = δ ◦ β

Moreover,

~d [τi] = ~ai ~s [γ] = ~d

(~s [γ])[τi] = ~ai

(~s [γ ◦ τi] = ~ai

Therefore Γ + 〈~c, βB〉 admits of the following critical diagram

~s -
γ

τh

@
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡
¡µ

~ah Ah

. . .

~c βB

δ

A
A
A
A
A
AAU

where `k
∧

(γ ◦ τi)Ai ∧ δ(βB) → ⊥. To wit,
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`m
∧

τiAi ∧ πB → ⊥
`k

∧
(γ ◦ τi)Ai ∧ (γ ◦ π)B → γ⊥

`k
∧

(γ ◦ τi)Ai ∧ (δ ◦ β)B → ⊥
`k

∧
(γ ◦ τi)Ai ∧ δ(βB) → ⊥.

Lemma 4.9. If Γ is an S-coherent graph and 〈~c, C∨D〉 ∈ Γ, then either
Γ + 〈~c, C〉 is S-coherent or Γ + 〈~c,D〉 is S-coherent.

Proof. Suppose by reductio that both Γ + 〈~c, C〉 and Γ + 〈~c,D〉 admit
of critical diagrams. So we have

τh
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡µ

~ah Ah

. . .

~c C
?

π

where `m
∧

τiAi ∧ πC → ⊥; and

~c D

6

π∗

σ1
@

@
@R

~bh∗ Bh∗

~d∗

σh∗

¡
¡

¡µ

~b1 B1

. . .

where `m
∧

σiBi ∧ π∗D → ⊥.
Let ~s be a base list of length k containing all and only all the elements

occurring either in ~d or in ~d∗. Then, by lemma 4.1(b), there are and are
unique two projections γ : k → m and δ : k → m∗ such that ~s[γ] = ~d and
~s[δ] = ~d∗. Now

(~s [γ]) = ~d ~s [δ] = ~d∗

(~s [γ])[π] = ~d [π] (~s [δ])[π∗] = ~d∗[π∗]
(~s [γ])[π] = ~c (~s [δ])[π∗] = ~c

(~s [γ])[π] = (~s [δ])[π∗]
~s [γ ◦ π] = ~s [δ ◦ π∗]
γ ◦ π = δ ◦ π∗



COUNTERPART SEMANTICS 43

Let α = γ ◦ π, then ~s [α] = ~c, since ~c = (~s [γ])[π]. Moreover

(~s [γ]) = ~d ~d [τi] = ~ai ~s [δ] = ~d∗ ~d∗ [σi] = ~bi

——————————— ——————————–
~s [γ ◦ τi] = ~ai ~s [δ ◦ σi] = ~bi

Therefore Γ admits of the following critical diagram

τh

@
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡
¡µ

~ah Ah

. . .

?

π

σ1

@
@

@
@R

~bh∗ Bh∗

~d∗

σh∗

¡
¡

¡
¡µ

~b1 B1

. . .

~c C ∨D

6

π∗δ

@
@

@
@

@
@

@@R

~s

γ

¡
¡

¡
¡

¡
¡

¡¡µ

-α

where `k
∧

γ ◦ τiAi ∧
∧

δ ◦ σiBi ∧ α(C ∨D) → ⊥. To wit

`m
∧

τiAi ∧ πC → ⊥ `m∗ ∧
σiBi ∧ π∗D → ⊥

`k
∧

γ ◦ τiAi ∧ γ ◦ πC → γ⊥ `k
∧

δ ◦ σiBi ∧ δ ◦ π∗D → δ⊥
`k

∧
γ ◦ τiAi ∧ αC → ⊥ `k

∧
δ ◦ σiBi ∧ αD → ⊥

`k
∧

γ ◦ τiAi ∧
∧

δ ◦ σiBi ∧ (αC ∨ αD) → ⊥
`k

∧
γ ◦ τiAi ∧

∧
δ ◦ σiBi ∧ α(C ∨D) → ⊥

Therefore Γ is S-incoherent, contrary to the hypothesis of the lemma.
Conventional notation Given a projection α = 〈xi1 , ...xim〉, 〈α, xk〉
donotes the projection 〈xi1 , ..., xim , xk〉.

Lemma 4.10. (a) If 〈a1, ..., ak, ..., an〉 is a base list and σ : n → m is
such that ak 6∈ 〈a1, ..., ak, ..., an〉[σ], for some 1 ≤ k ≤ m, then there is a
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unique projection σ∗ : (n−1) → m, such that 〈a1, ..., ak−1, ak+1, ..., an〉[σ∗] =
〈a1, ..., an〉[σ].

(b) If 〈a1, ..., an, a〉 is a base list and δ : n + 1 → m + 1 is such that
〈a1, ..., an, a〉[δ] = 〈ai1 , ..., aim , a〉, where a 6∈ 〈ai1 , ..., aim〉, then there is a
unique projection δ∗ : n → m, such that:

(i) 〈a1, ..., an〉[δ∗] = 〈ai1 , ..., aim〉, and
(ii) 〈a1, ..., an, a〉[〈n + 1 : x1, ..., xn〉 ◦ δ∗, xn+1] = 〈ai1 , ..., aim , a〉.

Proof.(a) σ∗ differs from σ only because the variables of index k +
n, n ≥ 0, are replaced by the variables of index (k + n) − 1. Since
〈a1, ..., ak−1, ak+1, ..., an〉 is a base list, the uniqueness of σ∗ follows from
lemma 4.1.

(b) Trivially δ∗ : n → m is the projection 〈n : xi1 , ..., xim〉. We show
that δ∗ = 〈xi1 , ..., xim〉 satisfies also the condition (ii):
〈a1, ..., an, a〉[〈x1, ..., xn〉 ◦ 〈xi1 , ..., xim〉, xn+1] =
〈〈a1, ..., an, a〉[〈x1, ..., xn〉 ◦ 〈xi1 , ..., xim〉], 〈a1, ..., an, a〉[xn+1]〉 =
〈(〈a1, ..., an, a〉[x1, ..., xn])[xi1 , ..., xim ], a〉 =
〈〈a1, ..., an[xi1 , ..., xim ], a〉 =
〈ai1 , ..., aim , a〉.
The uniqueness of δ∗ follows from lemma 4.1(b), in virtue of the fact

that 〈a1, ..., an, a〉 is a base list.

Definition 4.11. Given an X-graph Γ, we say that an element b of
X doesn’t occur in Γ iff b doesn’t occur in any n-tuple ~a ∈ Xn such that
〈~a,A〉 ∈ Γ, for some A.

Lemma 4.12. If Γ is an S-coherent X-graph and 〈~c, ∃xp+1B〉 ∈ Γ, then
Γ + 〈~c ∗ b,B〉 i̇s S-coherent, where b ∈ X does not occur in Γ.

Proof. Let Γ + 〈~c ∗ b,B〉 admit of a critical diagram

τh

@
@

@
@R

~a1 A1

~d

τ1

¡
¡

¡
¡µ

~ah Ah

. . .

~c ∗ b B
?

π

where `m
∧

τiAi∧πB → ⊥. Since ~d[π] = ~c∗b, ~d is 〈e1, ..., ej−1, b, ej+1, ..., em〉.
Let ~s = 〈e1, ..., ej−1, ej+1, ..., em〉, α = 〈x1, ..., xj−1, xm, xj , ..., xm−1〉 :
m → m, then
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(∗) (~s ∗ b)[α] = ~d.

It follows that
((~s ∗ b)[α])[π] = ~d [π] ~d [π] = ~c ∗ b

((~s ∗ b)[α])[π] = ~c ∗ b
(~s ∗ b)[α ◦ π] = ~c ∗ b

where α : m → m, π : m → p + 1, α ◦ π : m → p + 1.
By lemma 4.1(b), there is a projection γ : (m− 1) → p such that
(#) ~s [γ] = ~c.
Then (~s ∗ b)[〈x1, ..., xm−1〉 ◦ γ, xm〉] = ~c ∗ b, where 〈〈x1, ..., xm−1〉 ◦ γ, xm〉 :
m → p + 1.
Whence (~s ∗ b)[α ◦ π] = (~s ∗ b)[〈〈x1, ..., xm−1〉 ◦ γ, xm〉], and so, since ~s ∗ b
is a base list,

α ◦ π = 〈〈x1, ..., xm−1〉 ◦ γ, xm〉.
But

(~s ∗ b)[α] = ~d ~d [τi] = ~ai

((~s∗b)[α])[τi] = ~ai

(~s ∗ b)[α ◦ τi] = ~ai

Since b 6∈ ~ai, by lemma 4.1(a), there is a projection τ∗i : (m − 1) → ni

such that

~s [τ∗i ] = ~ai

hence ((~s ∗ b)[β])[τ∗i ] = ~ai, where β = 〈m : x1, ..., xm−1〉, so

(~s ∗ b)[β ◦ τ∗i ] = ~ai.
Therefore (~s ∗ b)[α ◦ τi] = (~s ∗ b)[β ◦ τ∗i ] and so

α ◦ τi = β ◦ τ∗i .

~s

β

¡
¡

¡
¡

¡µ

~s ∗ b ~d-α
~c ∗ b-π

-
〈〈x1 . . . xm−1〉 ◦ γ, xm〉

where

~s ~c-γ

It follows that
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`m
∧

τiAi ∧ πB → ⊥
`m

∧
α ◦ τiAi ∧ α ◦ πB → α⊥,

`m
∧

β ◦ τ∗i Ai ∧ 〈〈x1, ..., xm−1〉 ◦ γ, xm〉B → ⊥,
`m−1 ∃xm(β(

∧
τ∗i Ai)∧〈〈x1, ..., xm−1〉◦γ, xm〉B) → ⊥, since

β = 〈x1, ..., xm−1〉
`m−1

∧
τ∗i Ai ∧ ∃xm(〈〈x1, ..., xm−1〉 ◦ γ, xm〉B) → ⊥,

`m−1
∧

τ∗i Ai ∧ 〈〈x1, ..., xm−1〉 ◦ γ〉∃xp+1B) → ⊥,
`m−1

∧
τ∗i Ai ∧ 〈x1, ..., xm−1〉(γ(∃xp+1B)) → ⊥,

`m−1
∧

τ∗i Ai ∧ γ(∃xp+1B) → ⊥.
Therefore Γ is S-incoherent because it admits of the following critical

diagram

τ∗h
@

@
@

@R

~a1 A1

~s

τ∗1
¡

¡
¡

¡µ

~ah Ah

. . .

~c ∃xp+1B
?

γ

where `m−1
∧

τ∗i Ai ∧ γ(∃xp+1B) → ⊥.

Saturated graphs

Definition 4.13. A graph Γ is S-saturated iff
(1) Γ is S-coherent,
(2) Γ is complete, i.e. for all ~a ∈ Xn and wff A of type n, either

〈~a,A〉 ∈ Γ or 〈~a,¬A〉 ∈ Γ,
(3) Γ is rich, i.e. 〈~a,∃xn+1B〉 ∈ Γ iff there is a b ∈ X s.t. 〈~a∗b,B〉 ∈

Γ.

Lemma 4.14. If Γ is an S-saturated X-graph, then
(a) If 〈~a,Ai〉 ∈ Γ, 1 ≤ i ≤ r, and `n

S A1 ∧ ... ∧ Ar → B, then
〈~a,B〉 ∈ Γ,

(a’) If `n
S B, then for any list ~a ∈ Xn, 〈~a,B〉 ∈ Γ.

(b) 〈~a, 〈n : xi1 , ..., xim〉A〉 ∈ Γ iff 〈~a[n : xi1 , ..., xim ], A〉 ∈ Γ.
(c) 〈~a,A ∨B〉 ∈ Γ iff 〈~a,A〉 ∈ Γ or 〈~a,B〉 ∈ Γ.

Proof.(a) If 〈~a,B〉 6∈ Γ, then 〈~a,¬B〉 ∈ Γ, hence, since `n
S A1∧ . . .∧Ar∧

¬B → ⊥, Γ would be S-incoherent.
(b) Let π = 〈n : xi1 , ..., xim〉. Suppose that 〈~a, πA〉 ∈ Γ and 〈~a [π], A〉 6∈

Γ, then 〈~a [π],¬A〉 ∈ Γ, hence by lemma 4.8 Γ + 〈~a, π¬A〉 is S-coherent
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and by lemma 4.7, Γ + 〈~a,¬πA〉 is S-coherent in contradiction with the
fact that 〈~a, πA〉 ∈ Γ. Suppose that 〈~a [π], A〉 ∈ Γ and 〈~a, πA〉 6∈ Γ
then 〈~a,¬πA〉 ∈ Γ, so Γ + 〈~a, π¬A〉 is S-coherent by lemma 4.7, and by
lemma 4.8, Γ + 〈~a [π],¬A〉 is S-coherent in contradiction with the fact
that 〈~a [π], A〉 ∈ Γ.

(c) From lemma 4.9.

Lemma 4.15. Let Γ be an S-coherent X-graph. Then there is a non-
empty set Y and an S-saturated (X ∪ Y )-graph ∆ such that ∆ ⊇ Γ.

Proof. Take a non-empty countable set Y disjoint from X and let
〈~a1, A1〉, 〈~a2, A2〉, ... be an enumeration of {〈~a,A〉 : for some n ≥ 0,
~a ∈ (X ∪ Y )n and A is a formula of type n of Lt}. Define the following
chain of (X ∪ Y )-graphs:
∆0 = Γ,

∆∗
k+1 =

{
∆k + 〈~ak+1, Ak+1〉 if ∆k + 〈~ak+1, Ak+1〉 is S-coherent,
∆k + 〈~ak+1,¬Ak+1〉 otherwise.

∆k+1 =





∆∗
k+1 + 〈~ak+1 ∗ d, B〉 if ∆∗

k+1 = ∆k + 〈~ak+1, Ak+1〉, Ak+1 = ∃xiB and
d ∈ X does not occur in ∆∗

k+1,
∆∗

k+1 otherwise.

∆ =
⋃

k∈N ∆k.

It is easy to see that ∆ is S-saturated. The S-coherence of ∆ follows from
the fact that each ∆k is S-coherent and this, in turn, follows from lemmas
4.9 and 4.12.

Lemma 4.16. Let Γ be an S-saturated X-graph. If 〈〈a1, ..., an〉,3A〉 ∈
Γ, then for any n-tuple 〈b1, ..., bn〉 such that bi 6= bj, if i 6= j,

∆ = {〈~b,A〉} ∪ {〈~b, B〉 : 〈~a,2B〉 ∈ Γ}
is S-coherent, where ~a = 〈a1, ..., an〉 and ~b = 〈b1, ..., bn〉.

Proof. Suppose by reductio that ∆ admits of a critical diagram

τh
@

@
@R

~b1 B1

~d

τ1

¡
¡

¡µ

~bh Bh

. . .

~b A
?

τ

where `m
∧

τiBi ∧ τA → ⊥.
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Since ~d is a base list, by lemma 4.1(a), τi = τ . But ~b is a base list too and
~d ⊆ ~b, since ~b contains all the elements we started with, then by lemma
4.1(c) there is a π such that π ◦ τ = 〈x1, ..., xn〉. ¿From (i), by the rule of
substitution, it obtains:

`n π(τB1) ∧ ... ∧ π(τBh) ∧ π(τA) → π⊥;
`n (π ◦ τ)B1 ∧ ... ∧ (π ◦ τ)Bh ∧ (π ◦ τ)A → ⊥;
`n 〈x1, ..., xn〉B1 ∧ ...∧ 〈x1, ..., xn〉Bh ∧ 〈x1, ..., xn〉A → 〈x1, ..., xn〉⊥; i.e.
`n B1 ∧ ... ∧Bh ∧A → ⊥; hence
`n B1 ∧ ... ∧Bh → ¬A;
`n 2B1 ∧ ... ∧2Bh → 2¬A;
`n 2B1 ∧ ... ∧2Bh → ¬3A.

But, by hypothesis 〈~a,2Bi〉 ∈ Γ, 1 ≤ i ≤ h, so 〈~a,¬3A〉 ∈ Γ, contrary to
the fact that 〈~a,3A〉 ∈ Γ and Γ is S-coherent.

4.1. Modal systems without individual constants, function sym-
bols and identity. For reasons of clarity we first prove completeness the-
orems for modal logics whose languages contain neither individual con-
stants nor function symbols nor identity symbol, i.e. languages whose
only complex terms are projections. We denote such logics by S∗, Q.Kt∗,
....

Definition 4.17. Let S∗ ⊇ Q.Kt∗ and U be an infinite set. The canon-
ical model MU for S∗ is a quintuple 〈WU , R,D,C, I〉, where

- WU is the class of all S∗-saturated X-graphs w for some set X ⊂ U
such that |U −X| ≥ ℵ0,

- wRv iff if 〈〈〉, 2B〉 ∈ w then 〈〈〉, B〉 ∈ v,
- Dw = X, if w is an X-graph,
- C =

⊎{C〈w,v〉}w,v∈W , where C〈w,v〉 ⊆ Dw×Dv is admissible, i.e. for
every n ≥ 1, if {〈a1, b1〉, . . . , 〈an, bn〉} ⊆ C〈w,v〉 then for all wff 2B of
type m and projections 〈n : xi1 , ..., xim〉, if 〈~a [n : xi1 , ..., xim ], 2B〉 ∈
w, then 〈~b [n : xi1 , ..., xim ], B〉 ∈ v, where ~a = 〈a1, . . . , an〉 and ~b =
〈b1, . . . , bn〉.

- Iw(Pn) = {〈a1, . . . , an〉 : 〈〈a1, . . . , an〉, Pn〉 ∈ w}.

Conventional notation. If ~a ∈ (Dw)n and ~b ∈ (Dv)n, then ~aC~b is an
abbreviation for {〈a1, b1〉, . . . , 〈an, bn〉} ⊆ C〈w,v〉.

Note From the definitions of R and C it follows that if for some ~a ∈ (Dw)n

there is a ~b ∈ (Dv)n such that ~aC~b, then wRv. To wit let ~a ∈ (Dw)n

and 〈〈 〉,2B〉 ∈ w for some sentence 2B. Then 〈~a[〈 〉], 2B〉 ∈ w. Since
w is S∗-saturated, 〈~a, 〈 〉2B〉 ∈ w, then, by axiom S2, 〈~a,2〈〉B〉 ∈ w.
Then by definition of C, 〈~b, 〈 〉B〉 ∈ v, whence, since v is S∗-saturated,
〈~b[〈 〉], B〉 ∈ v, so 〈〈〉, B〉 ∈ v.
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Note The following conditions on the counterpart relation C of a canonical
model are equivalent to one another:

(1) if ~aC~b and 〈~a,2B〉 ∈ w then 〈~b, B〉 ∈ v,
(2) if ~aC~b and 〈~b,B〉 ∈ v then 〈~a,3B〉 ∈ w.

Lemma 4.18. Let MU = 〈WU , R, D,C, I〉 be a canonical model for S∗.
If w ∈ WU , ~a ∈ (Dw)n and 〈~a,3A〉 ∈ w, then there is a v ∈ WU and a
list ~b ∈ (Dv)n, such that

(a) 〈~b,A〉 ∈ v,
(b) C〈w,v〉 = {〈a1, b1〉, . . . , 〈an, bn〉} is admissible.

Proof. (a) Let ~b = 〈b1, ..., bn〉 be a list of elements of U distinct
from those of Dw. By lemma 4.16 the graph ∆ = {〈~b,A〉} ∪ {〈~b,B〉 :
〈~a,2B〉 ∈ w} is S∗-coherent. Let X be a subset of (U − Dw) such that
{b1 . . . bn} ⊆ X and |U −X| ≥ ℵ0. Since |U −Dw| ≥ ℵ0, the set X exists.
Then by lemma 4.15, there is an S∗-saturated graph Γ that extends ∆.
Therefore Γ is an element of the canonical model, let us call it v.

(b) Suppose that for some 〈n : xi1 , ..., xim〉 and wff 2B of type m,
〈~a [xi1 , ..., xim ], 2B〉 ∈ w, then 〈~a, 〈xi1 , ..., xim〉2B〉 ∈ w, and by axiom
S2, 〈~a,2〈xi1 , ..., xim〉B〉 ∈ w, therefore by definition of ∆, 〈~b, 〈xi1 , ..., xim〉B〉 ∈
∆. Whence 〈~b [xi1 , ..., xim ], B〉 ∈ v, consequently {〈a1, b1〉, . . . , 〈an, bn〉} is
admissible.

Lemma 4.19. (of the canonical model) Let MU = 〈WU , R,D,C, I〉 be
a canonical model for S∗. Then for any wff C of type n,

~c |=n
w C iff 〈~c, C〉 ∈ w.

Proof. By induction on C. Let us just consider a few cases.
~c |=n

w Pn iff ~c ∈ Iw(Pn) iff 〈~c, Pn〉 ∈ w.
~c |=n

w 〈n : xi1 , ..., xim〉B iff ~c [n : xi1 , ..., xim ] |=m
w B iff, by induction

hypothesis, 〈~c [n : xi1 , ..., xim ], B〉 ∈ w iff 〈~c, 〈n : xi1 , ..., xim〉B〉 ∈ w.
~c 6|=n

w 2B only if for some ~d ∈ Dv such that ~c C~d, ~d 6|=n
v B only if,

by induction hypothesis, 〈~d,B〉 6∈ v, then by definition of C, 〈~c,2B〉 6∈ w.
If 〈~c, 2B〉 6∈ w then 〈~c,3¬B〉 ∈ w, and by the lemma 4.18, there is a v

and a list ~d of elements of Dv, such that ~c C~d and 〈~d,¬B〉 ∈ v, therefore
〈~d, B〉 6∈ v, so by induction hypothesis, ~d 6|=n

v B, consequently ~c 6|=n
w 2B.

Lemma 4.20. Let S∗ ⊇ Q.Kt∗ and MU be a canonical model for S∗.
Then MU is a model for S∗.

Proof. We recall that M is a model for S∗ iff every theorem of S∗ is true
at every world of M . Since every theorem of S∗ belongs to any world of
the canonical model for S∗, by the lemma of the canonical model, MU is
a model for S∗.
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Lemma 4.21. Let S∗ ⊇ Q.Kt∗ and T be an S∗-consistent set of sen-
tences. Then T has a model.

Proof. Let MU be a canonical model for S∗. By lemma 4.6 the ∅-graph
Γ = {〈〈 〉, A〉 : A ∈ T} is S∗-coherent. Let X be a denumerable set X ⊆ U
such that |U−X| ≥ ℵ0. By lemma 4.15 there is an S∗-saturated X-graph
∆ such that Γ ⊆ ∆. Therefore ∆ is bound to be a point w of the canonical
model MU for S∗ and so, by the lemma of the canonical model, all the
sentences of T are true at w. Consequently MU is a model for T .

Lemma 4.22. Let S∗ ⊇ Q.Kt∗ and A be a sentence such that S∗ 6` A.
Then A is false in some model for S∗.

We recall that a counterpart frame is a frame for a logic S if any model
based on that frame is a model for S.

Completeness theorem for Q.Kt∗. Take a denumerable set U and
consider the canonical model MU for Q.Kt∗. Trivially MU is based on a
counterpart frame for Q.Kt∗ since any counterpart frame is a frame for
Q.Kt∗. The completeness of Q.Kt∗ follows from lemma 4.22.

Completeness theorem for Q.S5t∗. Consider a canonical model MU

for Q.S5t∗ for some infinite set U . We have to show that the counterpart
relation is reflexive, transitive and symmetric. It is easy to show that C
is reflexive. Suppose that 〈~a [τ ], 2B〉 ∈ w for some projection τ : n → m
and wff 2B of type m. Then by axiom T, 〈~a [τ ], B〉 ∈ w, consequently
~aC~a.

C is symmetric. Suppose that ~aC~b. If 〈〈~b [τ ], 2B〉 ∈ v, then, since ~aC~b,
〈~a [τ ], 32B〉 ∈ w obtains, so by axiom B, 〈~a [τ ], B〉 ∈ w, consequently
~bC~a.

C is transitive. Suppose that ~aC~b and ~bC~c. If 〈~a [τ ], 2B〉 ∈ w then
by axiom 4, 〈~a [τ ], 22B〉 ∈ w, then 〈~b [τ ], 2B〉 ∈ v and 〈~c [τ ], B〉 ∈ z,
consequently ~aC~c.

Completeness theorems for Q.T t∗, Q.S4t∗ and Q.Bt∗ are straightfor-
ward.

Completeness theorem for BF.Kt∗ To this aim we show how to
build canonical models in which the counterpart relation is surjective, i.e.,
if wRv then for all b ∈ Dv there is an a ∈ Dw such that 〈a, b〉 ∈ C〈w,v〉.
The following lemma is all we need.

Lemma 4.23. Let Γ be a BF.Kt∗-saturated X-graph such that 〈~a,3A〉 ∈
Γ, where ~a = 〈a1, ..., an〉. Then

1. there is set Y and a BF.Kt∗-saturated Y -graph ∆, such that 〈~b,A〉 ∈
∆, for some ~b = 〈b1, ..., bn〉 ∈ Y n,
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2. there is a relation C〈Γ,∆〉 ⊆ (X×Y ) which is surjective, admissible
and such that
{〈a1, b1〉, . . . , 〈an, bn〉} ⊆ C〈Γ,∆〉.

Proof. Let Y = {b1, b2, b3, . . . } be a denumerable set disjoint from X.
By lemma 4.16,

∆0 = {〈~b,A〉} ∪ {〈~b,B〉 : 〈~a,2B〉 ∈ Γ}
is BF.Kt∗-coherent.
Define 〈b1, ..., bn〉 to be the generating list of ∆0, the formula A to be the
generating formula of ∆0 and C0 = {〈a1, b1〉, . . . , 〈an, bn〉}.

Starting from ∆0 we show how to construct an infinite sequence of
BF.Kt∗-coherent Y -graphs ∆1, ∆2, . . . . Let 〈~e1, ∃xk1E1〉, 〈~e2, ∃xk2E2〉, . . .
be an enumeration of all the pairs composed of a (ki − 1)-tuple, ki ≥ 1,
of elements of Y and an existential formula ∃xkiEi of Lt∗.

Step 1.
Choose the first pair (and cancel it) 〈~ei, ∃xkiEi〉 in the enumeration

above such that every element of ~ei occurs in the generating list of ∆0.
Since 〈~a,3A〉 ∈ Γ, then also 〈~a,3(A ∧ σ¬∃xki

Ei) ∨3(A ∧ σ∃xki
Ei)〉 ∈

Γ, where σ : n → ki and ~a = 〈a1, . . . , an〉. Then either 〈~a,3(A ∧
σ¬∃xkiEi)〉 ∈ Γ or 〈~a,3(A ∧ σ∃xkiEi)〉 ∈ Γ.
If the first is the case in point, define

∆1 = {~b, (A ∧ σ¬∃xki
Ei)〉} ∪ {〈~b,B〉 : 〈~a,2B〉 ∈ Γ}.

By lemma 4.16, ∆1 is BF.Kt∗-coherent.
Let the generating list of ∆1 be the same as the generating list of ∆0,
(A ∧ σ¬∃xkiEi) be the generating formula of ∆1 and C1 = C0.
If the second is the case in point, i.e. 〈~a,3(A ∧ σ∃xkiEi)〉 ∈ Γ, then
〈~a,3(A ∧ ∃xn+1〈n + 1 : σ, xn+1〉Ei)〉 ∈ Γ,
〈~a,3∃xn+1(τA ∧ πEi)〉 ∈ Γ, where τ = 〈n + 1 : x1, . . . , xn〉 and π =

〈n + 1 : σ, xn+1〉. Then by BF ,
〈~a,∃xn+13(τA ∧ πEi)〉 ∈ Γ. Hence for some a∗ ∈ X
〈~a ∗ a∗,3(τA ∧ πEi)〉 ∈ Γ.

Define:

∆1 = {〈~b ∗ b∗, (τA ∧ πEi)〉} ∪ {〈~b ∗ b∗, B〉 : 〈~a ∗ a∗, 2B〉 ∈ Γ}
where b∗ is an element of Y not occurring in the generating list of ∆0. Let
~b ∗ b∗ be the generating list of ∆1, (τA ∧ πEi) be the generating formula
of ∆1 and C1 = C0 ∪ {〈a∗, b∗〉}.

Step n+1.
In the same way as above we construct ∆n+1 from ∆n and Cn+1 from Cn.

Let Cl(∆n) be the closure of ∆n under deduction, substitution and
disjunction. Since ∆n is BF.Kt∗-coherent, by lemmas 4.7, 4.8 and 4.9,
Cl(∆n) is BF.Kt∗-coherent too. Moreover Cl(∆n) ⊆ Cl(∆n+1).
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Let ∆ =
⋃

Cl(∆n). It is easy to see that ∆ is BF.Kt∗-saturated.
Let C〈Γ,∆〉 =

⋃
Cn. C〈Γ,∆〉 is trivially surjective, it remains to show

that it is admissible. Suppose that 〈〈c1, . . . , cn〉[τ ], 2B〉 ∈ Γ, where
τ = 〈n : xi1 , . . . , xim〉. If 〈c1, d1〉, . . . , 〈cn, dn〉 ∈ C〈Γ,∆〉, we have to
show that 〈〈d1, . . . , dn〉[τ ], B〉 ∈ ∆. Consider the first ∆n whose gen-
erating list 〈〈e∗1, . . . , e∗r〉, E〉 is such that it contains all the elements oc-
curring in 〈d1, . . . , dn〉. Then there is a projection σ : r → n such that
〈e∗1, . . . , e∗r〉[σ] = 〈d1, . . . , dn〉. By the way in which each Cn has been de-
fined, for each e∗k there is exactly an ek such that 〈ek, e

∗
k〉 ∈ C〈Γ,∆〉, then

〈e1, . . . , er〉[σ] = 〈c1, . . . , cn〉. Therefore
〈〈e1, . . . , er〉[σ])[τ ],2B〉 ∈ Γ,
〈〈e1, . . . , er〉[σ ◦ τ ],2B〉 ∈ Γ,
〈〈e1, . . . , er〉, 〈σ ◦ τ〉2B〉 ∈ Γ, and by S2

〈〈e1, . . . , er〉, 2〈σ ◦ τ〉B〉 ∈ Γ,
〈〈e∗1, . . . , e∗r〉, 〈σ ◦ τ〉B〉 ∈ ∆,
〈〈e∗1, . . . , e∗r〉[σ ◦ τ ], B〉 ∈ ∆,
〈〈e∗1, . . . , e∗r〉[σ])[τ ], B〉 ∈ ∆,
〈〈d1, . . . , dn〉[τ ], B〉 ∈ ∆. So C〈Γ,∆〉 is admissible.

It follows that

Lemma 4.24. Let MU = 〈WU , R,D,C, I〉 be a canonical model for BF.Kt∗.
If w ∈ WU , ~a ∈ (Dw)n and 〈~a,3A〉 ∈ w, then

(a) there is a v ∈ WU and a list ~b = 〈b1, . . . , bn〉 ∈ (Dv)n, such that
〈~b,A〉 ∈ v,

(b) there is a relation C〈w,v〉 ⊆ Dw×Dv which is surjective, admissible
and such that {〈a1, b1〉, . . . , 〈an, bn〉} ⊆ C〈w,v〉.

Completeness theorem for GF.Kt∗ To this aim we show how to
build canonical models for GF.Kt∗ in which the counterpart relation is
everywhere defined, i.e., if wRv then for all a ∈ Dw there is an b ∈ Dv

such that 〈a, b〉 ∈ C〈w,v〉.

Lemma 4.25. Let Γ be a GF.Kt∗-saturated X-graph. If 〈~a,3A〉 ∈ Γ,
then ∆ = {〈~a,A〉} ∪ {〈~a ∗ ~e,B〉 : 〈~a ∗ ~e,2B〉 ∈ Γ} is GF.Kt∗-coherent,

where 2B is of type n+ r, ~a = a1, . . . , an and ~e ∈ (X −{a1, . . . , an})r for
some r ≥ 0}.

Proof. Suppose by reductio that ∆ admits of a critical diagram
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τh

@
@

@
@R

~a ∗ ~e1 A1

~d

τ1

¡
¡

¡
¡µ

~a ∗ ~eh Ah

. . .

~a A
?

τ

where `m
∧

τiBi ∧ τA → ⊥.
Since ~d[τ ] = ~a, ~d contains all the elements of ~a, hence without loss

of generality, we can assume that ~d = ~a′ ∗ ~d′, where ~a′ contains all and
only the elements of a without repetitions and ~d′ contains all and only the
elements of ~d except those occurring in ~a. Therefore τ = 〈m : xi1 , . . . , xin〉
and there are projections π1, . . . , πh containing variables with index > n,
such that τi = 〈τ, πi〉 : m → r, 1 ≤ i ≤ h.

Then the above critical diagram becomes

τ ∗ πh

@
@

@
@R

~a ∗ ~e1 A1

~a′ ∗ ~d′

τ ∗ π1

¡
¡

¡
¡µ

~a ∗ ~eh Ah

. . .

~a A
?

τ

Since `m
∧

τiBi ∧ τA → ⊥, it obtains:

`m
∧

(τ ∗ πi)Bi ∧ τA → ⊥,
`m 2

∧
(τ ∗ πi)Bi → 2¬τA,

`m
∧

2(τ ∗ πi)Bi → 2τ¬A, by S2

`m
∧

(τ ∗ πi)2Bi → 2τ¬A, by GF
`m

∧
(τ ∗ πi)2Bi → τ2¬A.

But, 〈~a∗~ei, 2Bi〉 ∈ Γ, 1 ≤ i ≤ h, hence 〈~a′∗ ~d′[τ ∗πi], 2Bi〉 ∈ Γ, 1 ≤ i ≤ h,
〈~a′ ∗ ~d′, (τ ∗ πi)2Bi〉 ∈ Γ,
〈~a′ ∗ ~d′, τ2¬A〉 ∈ Γ,
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〈~a′ ∗ ~d′[τ ],2¬A〉 ∈ Γ,
〈~a,2¬A〉 ∈ Γ, in contradiction with the GF.Kt∗-coherence of Γ. There-

fore ∆ is GF.Kt∗-coherent.

Lemma 4.26. Let MU = 〈WU , R,D,C, I〉 be a canonical model for GF.Kt∗.
If w ∈ WU , ~a ∈ (Dw)n and 〈~a,3A〉 ∈ w, then

(a) there is a v ∈ WU and a list ~b ∈ (Dv)n, such that 〈~b, A〉 ∈ v,
(b) C〈w,v〉 = {〈c, c〉 : c ∈ Dw} is admissible.

¿From (b) it follows that C〈w,v〉 is everywhere defined.

Proof. (a) By lemma 4.25, ∆ = {〈~a,A〉}∪{〈~a∗~e,B〉 : 〈~a∗~e,2B〉 ∈
w } is GF.Kt∗-coherent, where 2B is of type n + r and ~e ∈ (Dw −
{a1, . . . , an})r, for some r ≥ 0} . By lemma 4.15, there is a GF.Kt∗-
saturated graph Γ that extends ∆. Since 〈~a,A〉 ∈ ∆, let Γ be the element
v of the canonical model we are looking for.

(b) Suppose that {〈c1, . . . , cn〉[τ ], 2B〉 ∈ w, where τ = 〈n : xi1 , . . . , xim〉.
To show that C〈w,v〉 is admissible, we have to prove that {〈c1, . . . , cn〉[τ ], B〉 ∈
v. Now,
〈c1, . . . , cn〉 = 〈~a ∗ ~ei〉[π], where π : p → n, for some p. Then
〈(~a ∗ ~ei[π])[τ ], 2B〉 ∈ w,
〈~a ∗ ~ei[π ◦ τ ],2B〉 ∈ w,
〈~a ∗ ~ei, 〈π ◦ τ〉2B〉 ∈ w,
〈~a ∗ ~ei,2(π ◦ τ)B〉 ∈ w, by S2,
〈~a ∗ ~ei, (π ◦ τ)B〉 ∈ v, since ∆ ⊆ Γ = v,
〈~a ∗ ~ei[π ◦ τ ], B〉 ∈ v,
{(~a ∗ ~ei[π])[τ ], B〉 ∈ v,
{〈c1, . . . , cn〉[τ ], B〉 ∈ v.

Note We conclude this section by observing that the standard Henkin
technique of adding to the language names for the individuals of the
universe is not suitable in the present context. Take an S-saturated X-
graph w and suppose that if c ∈ X. Then c is also a constant of type 0
of the language. Therefore the following fact holds for any formula A of
type n:
(H) 〈〈 c . . . c︸ ︷︷ ︸

n−times

〉, A〉 ∈ w iff 〈〈 〉, 〈 c . . . c︸ ︷︷ ︸
n−times

〉A〉 ∈ w.

But if so, w does not distinguish between de re and de dicto modalities.
For, let A be a sentence of type 0, then
〈〈c〉, 2〈1 : 〉A〉 ∈ w, iff, by H,
〈〈 〉, 〈c〉2〈1 : 〉A〉 ∈ w, only if, by S2,
〈〈 〉, 2〈c〉〈1 : 〉A〉 ∈ w iff
〈〈 〉, 2A〉 ∈ w iff
〈〈c〉[1 : ], 2A〉 ∈ w iff
〈〈c〉, 〈1 : 〉2A〉 ∈ w.



COUNTERPART SEMANTICS 55

Consequently 〈〈c〉, 2〈1 : 〉A〉 ∈ w iff 〈〈c〉, 〈1 : 〉2A〉 ∈ w.

4.2. Modal systems with identity and non-rigid terms. Through-
out this section, S ⊇ Q.Kt, therefore the language of S contains individual
constants, function symbols and identity.

Definition 4.27. Let Γ be an S-saturated X-graph.
a ∼ b iff 〈〈a, b〉, (x1 = x2)〉 ∈ Γ.

Lemma 4.28. Let Γ be an S-saturated X-graph. The relation ∼ is an
equivalence relation.

Definition 4.29. An X-graph Γ is said to be normal iff
〈〈a, b〉, (x1 = x2)〉 ∈ Γ iff a is identical with b.

Lemma 4.30. For each S-saturated X-graph ∆, there is a Y -graph Γ
such that

(a) Y ⊆ X,
(b) Γ is normal,
(c) For all formulas A of type n and ~a ∈ Xn, if 〈~a,A〉 ∈ ∆, then

there is a ~b ∈ Y n, such that 〈~b,A〉 ∈ Γ,
(d) Γ is S-saturated,
(e) Γ is normal,
(f) For all formulas A of type n and ~a ∈ Xn, if 〈~a,A〉 ∈ ∆, ~b ∈ Y n

and a1 ∼ b1, . . . , an ∼ an, then 〈~b,A〉 ∈ Γ.

Proof. (a) Consider the equivalence classes of X/∼ induced by the
relation ∼ and let Y consist of exactly one element from each equivalence
class. Define

Γ = {〈~a,A〉 : 〈~a,A〉 ∈ ∆ and ~a ∈ Y n}.
(b) Γ is normal, for if 〈〈a, b〉, x1 = x2〉 ∈ Γ then 〈〈a, b〉, x1 = x2〉 ∈ ∆,

ṡo a ∼ b consequently a is the same as b since only one element from each
equivalence class of X is in Y .

(c) Suppose that 〈~a,A〉 ∈ ∆, with ~a = 〈a1 . . . an〉. Let b1 . . . bn be
those elements of Y such that a1 ∼ b1 and ... and an ∼ bn. Then
〈〈a1, b1〉, (x1 = x2)〉 ∈ ∆ and ... and 〈〈an, bn〉, (x1 = x2)〉 ∈ ∆, therefore
〈~a ∗ ~b [n + n : x1, xn+1], (x1 = x2)〉 ∈ ∆ and ... and 〈~a ∗ ~b [n + n :
xn, xn+n], (x1 = x2)〉 ∈ ∆.
Since ∆ is S-saturated, 〈~a∗~b, x1 = xn+1〉 ∈ ∆, 〈~a∗~b, x2 = xn+2〉 ∈ ∆, ... ,
〈~a∗~b, xn = xn+n〉 ∈ ∆, and so 〈~a∗~b, (x1 = xn+1)∧· · ·∧(xn = xn+n)〉 ∈ ∆.
Since 〈~a,A〉 ∈ ∆, then 〈~a ∗~b[x1 . . . xn], A〉 ∈ ∆, 〈~a ∗~b, 〈x1 . . . xn〉A〉 ∈ ∆.
By lemma 4.7, 〈~a∗~b, 〈xn+1 . . . xn+n〉A〉 ∈ ∆, so 〈~a∗~b[xn+1 . . . xn+n], A〉 ∈
∆, and consequently 〈~b,A〉 ∈ ∆. Then by definition of Γ, 〈~b, A〉 ∈ Γ.

(d) Since Γ ⊆ ∆, Γ is S-coherent. Moreover
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(i) If 〈~b,A〉 /∈ Γ and ~b is a list of elements of Y , then 〈~b, A〉 /∈ ∆, whence
〈~b,¬A〉 ∈ ∆ and so 〈~b,¬A〉 ∈ Γ.

(ii) 〈~b, ∃xn+1B〉 ∈ Γ only if there is an a ∈ X such that 〈~b ∗ a, B〉 ∈ ∆.
Take the (only) element a∗ of Y such that a ∼ a∗. Therefore 〈~b∗a∗, B〉 ∈ ∆
and consequently 〈~b ∗ a∗, B〉 ∈ Γ.

Lemma 4.31. Let Γ be an S-saturated and normal-Y -graph.
(a) For each term t of type n there is exactly one element b ∈ Y

such that for any ~a ∈ Y n, 〈~a ∗ b, (〈x1, ..., xn〉 ◦ t = xn+1)〉 ∈ Γ,
(b) 〈〈a, a〉, (x1 = x2)〉 ∈ Γ, for any a ∈ Y .

Proof. (a) Let ~x be x1, ..., xn. Since `n ∃xn+1(〈~x〉 ◦ t = xn+1), then for
any ~a of length n, 〈~a, ∃xn+1(〈~x〉 ◦ t = xn+1)〉 ∈ Γ. Since Γ is rich, there
is a b ∈ Y such that 〈~a ∗ b, (〈~x〉 ◦ t = xn+1)〉 ∈ Γ.

As to the uniqueness, suppose that there is a c ∈ Y , b 6= c, such that
〈~a∗c, (〈~x〉◦t = xn+1)〉 ∈ Γ. This amounts to say that 〈~a∗b∗c[~x, xn+1], (〈~x〉◦
t = xn+1)〉 ∈ Γ and that 〈~a ∗ b ∗ c[~x, xn+2], (〈~x〉 ◦ t = xn+2)〉 ∈ Γ, and so,
since Γ is S-saturated, that 〈~a∗b∗c, (〈~x〉◦ t) = xn+1〉 ∈ Γ and that 〈~a∗b∗
c, (〈~x〉 ◦ t) = xn+2〉 ∈ Γ. But `n ∀xn+1∀xn+2((〈~x〉 ◦ t = xn+1) ∧ (〈~x〉 ◦ t =
xn+2) → xn+1 = xn+2), whence 〈~a ∗ b ∗ c, (xn+1 = xn+2)〉 ∈ Γ, therefore
〈~a ∗ b ∗ c, 〈xn+1 = xn+2〉(x1 = x2)〉 ∈ Γ, so 〈~a ∗ b ∗ c[xn1 , xn+2], (x1 =
x2)〉 ∈ Γ and finally 〈〈b, c〉, (x1 = x2)〉 ∈ Γ. Consequently b is identical
with c, since Γ is normal.

(b) If 〈〈a, a〉, (x1 = x2)〉 6∈ Γ, then 〈〈a, a〉,¬(x1 = x2)〉 ∈ Γ. But
then there is a projection τ , i.e. 〈x1, x1〉 such that 〈a〉[τ ] = 〈a, a〉 and
`1 τ¬(x1 = x2) → ⊥, consequently Γ is not S-coherent, contrary to the
hypothesis.

Definition 4.32. Let Γ be an S-saturated and normal Y -graph, ~a ∈
Y n and 〈n : t1, ..., tm〉 be a complex term. Define

~a‖t1, ..., tm‖ = 〈b1, ..., bm〉,
where each bk, 1 ≤ k ≤ m, is the unique element of Y such that 〈~a ∗
bk, (〈x1, ..., xn〉 ◦ tk = xn+1)〉 ∈ Γ.

¿From the given definition it follows that for each ~a ∈ Y n,
~a‖fn(x1, ..., xn)‖ = b iff 〈~a ∗ b, 〈x1, ..., xn〉 ◦ fn(x1, ..., xn) = xn+1)〉 ∈ Γ,

whence, ‖fn(x1, ..., xn)‖ is a function from Xn to X.

Lemma 4.33. Let Γ be an S-saturated and normal Y -graph. The func-
tion ‖ ‖ is an interpretation function:

(a) ~a‖xi‖ = ai

(b) ~a ‖〈n : t1, ..., tm〉‖ = 〈~a ‖n : t1‖, ...,~a ‖n : tm‖〉
(c) ~a ‖〈n : t1, ..., tm〉 ◦ ~s ‖ = (~a ‖〈n : t1, ..., tm〉‖)‖~s ‖
(d) 〈~a, 〈n : t1, ..., tm〉A〉 ∈ Γ iff 〈~a‖〈n : t1, ..., tm〉‖, A〉 ∈ Γ.
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Definition 4.34. Let S ⊇ Q.Kt and U be an infinite set. The canon-
ical model MU = 〈WU , R,D,C, I〉 for S is exactly as in definition 4.17
with the further condition that

Iw(fn) = ‖fn(n : x1, ..., xn)‖.
Lemma 4.35. Let MU = 〈WU , R,D,C, I〉 be a canonical model for S.

If w ∈ WU and 〈~a,3A〉 ∈ w, then there is a v ∈ WU and a list ~c of
elements of Dv, such that
(a) 〈~c,A〉 ∈ v,
(b) C〈w,v〉 = {〈a1, c1〉, . . . , 〈an, cn〉} is admissible.

Proof. (a) By lemma 4.18 there is an S-saturated X-graph ∆ (for
some X ⊆ U) and a list ~b of elements of X such that 〈~b,A〉 ∈ ∆ and
{〈a1, b1〉, . . . , 〈an, bn〉} is admissible. By lemma 4.30 there is a Y -graph Γ
which is normal and S-saturated and moreover for some list ~c ∈ Y n such
that b1 ∼ c1, . . . , bn ∼ cn, 〈~c, A〉 ∈ Γ. Let Γ = v.

(b) Suppose that for some 〈n : xi1 , ..., xim〉 and wff 2B of type m,
〈〈~a‖xi1 , ..., xim‖〉, 2B〉 ∈ w, so by lemma 4.33(d), 〈~a, 〈n : xi1 , ..., xim〉2B〉 ∈
w, by Axiom S2, 〈~a,2〈xi1 , ..., xim〉B〉 ∈ w, hence 〈~b, 〈xi1 , ..., xim〉B〉 ∈
∆. Since b1 ∼ c1, . . . , nn ∼ cn, by definition of Γ (see lemma 4.30)
〈~c, 〈xi1 , ..., xim〉B〉 ∈ Γ, so by lemma 4.33(d), 〈~c‖xi1 , ..., xim‖, B〉 ∈ Γ,
therefore {〈a1, c1〉, . . . , 〈an, cn〉} is admissible.

Lemma 4.36. (of the canonical model.) Let MU = 〈WU , R, D,C, I〉 be
a canonical model for S. Then for any wff C of type n,

~c |=n
w C iff 〈~c, C〉 ∈ w

Proof. See lemma 4.19.
Completeness theorems for Q.Kt, Q.T t, Q.S4t, Q.Bt, BF.Kt and GF.Kt

follow.

Lemma 4.37. Let MU be a canonical model for NI.Kt. Then the coun-
terpart relation is a partial function.

Proof. Take any w ∈ W of the canonical model MU . Because of axiom
NI, 〈〈a, b〉, x1 = x2 → 2(x1 = x2)〉 ∈ w for any a, b ∈ Dw. Consequently
〈〈a, a〉, 2(x1 = x2)〉 ∈ w. Suppose that wRv, aCb and aCb∗, then by the
definitions of C and R in the canonical model, 〈〈b, b∗〉, x1 = x2〉 ∈ v.
Therefore b = b∗. So C is a partial function.

Lemma 4.38. Let MU be a canonical model for ND.Kt. Then the coun-
terpart relation is injective.

Proof. Take any w ∈ W of the canonical model MU and an a ∈ Dw such
that a 6= a∗. Because of axiom ND, 〈〈a, a∗〉, x1 6= x2 → 2(x1 6= x2)〉 ∈ w
and so 〈〈a, a∗〉, 2(x1 6= x2)〉 ∈ w. Suppose, by reductio that for some
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v.wRv. and for some b ∈ Dv, aCb and a∗Cb. Then 〈〈b, b〉, x1 6= x2〉 ∈ v
which is impossible. Consequently C is injective.
Completeness theorems for NI.Kt and ND.Kt follow.

4.3. Modal systems with identity and rigid terms. Throughout
this section let S ⊇ R.Kt. Lemmas and definitions 4.33 - 4.41 hold
trivially also for extensions of R.Kt.

Definition 4.39. Let S ⊇ R.Kt and U be an infinite set. The canon-
ical model MU for S is defined as in definition 4.17 except that

- C =
⊎{C〈w,v〉}w,v∈W , where C〈w,v〉 ⊆ Dw×Dv which is admissible,

i.e. for every n, n ≥ 1, if {〈a1, b1〉, . . . , 〈an, bn〉} ⊆ C〈w,v〉, then for
all wff 2B of type m and complex terms 〈n : t1, ..., tm〉, if 〈〈~a [n :
t1, ..., tm]〉, 2B〉 ∈ w, then 〈〈~b [n : t1, ..., tm]〉, 2B〉 ∈ v, where ~a =
〈a1, ..., an〉 and ~b = 〈b1, ..., bn〉.

- Iw(fn) = ‖fn(n : x1, ..., xn)‖.
Given a canonical model for S ⊇ R.Kt, the analogue of lemma 4.35

can be readily proved: use axiom R instead of axiom S2. Consequently
completeness theorems for R.Kt, R.T t, R.S4t, R.Bt, BF.R.Kt, GF.R.Kt

and NI.R.Kt and ND.R.Kt follow.
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