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Abstract

In sequential logic there is an order in which the atomic propositions in an
expression are evaluated. This order allows the same atomic proposition to
have different values depending on which atomic propositions have already been
evaluated. In the sequential propositional logic introduced by Bergstra and
Ponse in [5], such valuations are called “reactive” valuations, in contrast to
“static” valuations as are common in e.g. ordinary propositional logic. There are
many classes of these reactive valuations e.g., we can define a class of reactive
valuations such that the value for each atomic proposition remains the same
until another atomic proposition is evaluated.

This Master of Logic thesis consists of a study of some of the properties of
this logic.

We take a closer look at some of the classes of reactive valuations mentioned
in [5]. We particularly focus on the relation between the axiomatization and
the semantics. Consequently, the main part of this thesis focuses on proving
soundness and completeness. Furthermore, we show that the axioms in the
provided axiomatizations are independent i.e., there are no redundant axioms
present. Finally, we show ω-completeness for two classes of reactive valuations.





1
Introduction

1.1 Introduction

In sentential logic (also called propositional calculus), sentences are build from
atomic propositions, the constants true and false, and connectives such as ¬,
∧, ∨, etc. The truth of such a sentence with respect to a model, is calculated
using the interpretation function associated with that model. This function not
only assigns meaning to the connectives and constants but also to the individual
atomic propositions.

In sentential logic the interpretation of connectives and constants is given.
Hence, a model in sentential logic is uniquely defined by the interpretation of the
individual atomic propositions. These atomic propositions are assigned either
the value true or the value false by the interpretation, indicating whether they
are true or false in the model. Such an assignment is referred to as a valuation. In
sentential logic, these valuations entirely depend on the atomic propositions they
assign a value to and not on other external factors. Consequently, a valuation
will give an atomic proposition the same valuation no matter its location within
a sentence, and this valuation will never change. These valuations are, in a
manner of speaking, static.

This static behaviour can be considered a severe limitation of sentential logic.
For example, sentential logic is not sufficiently expressive for modelling logical
conjunction as implemented in most programming languages because the con-
junction in these cases is non-commutative1. In order for us to effectively model
these and other kinds of connectives and sequential systems, we are required to
extend our notion of valuation.

This thesis is based on the work by Bergstra and Ponse in [5]. They intro-
duce a logic that uses reactive valuations instead of normal valuations. Reac-
tive valuations allow us to take previously evaluated atomic propositions into
account. Thus the valuations are in a sense “reactive”. The use of reactive

1We explain in the next section why this is the case.
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valuations necessitates the need for expressions in this logic to be evaluated in
some fixed order. Hence the resulting logic has a sequential interpretation. The
same atomic proposition may have a different value depending on which atomic
propositions have previously been evaluated. The reactive valuations have thus
an additional dependence on a sequence of atomic propositions representing the
history of evaluation.

The signature of this logic consists of a finite set of atomic propositions and
the constants T and F plus a ternary operator / . . The constants T and
F denote true and false, respectively. The ternary operator denotes conditional
composition i.e., an if-then-else operator. For example, a / b . c translates to if
b then a else c. This then clues us to the order in which expressions of this type
are evaluated i.e., the antecedent is evaluated first. The question which of the
two consequents is then evaluated first is irrelevant because their value depends
only on the antecedent and not on each other.

For example, take the expression

a / a . b

The letters a and b represent atomic propositions. The above reads thus if a
then a else b. In sentential logic, it suffices to know the value of a and b to know
whether the sentence is true or false, see the following table:

a b a / a . b
F F F
F T T
T F T
T T T

However this is not the case if we are using reactive valuations. Keeping the
if-then-else interpretation in mind, we intuitively begin by evaluating the middle
a, the antecedent. The act of evaluating this a can possibly have influence on the
valuation of the left-hand a and the right-hand b. We denote the value of a given
a valuation H as a/H. Furthermore, the valuation obtained after evaluating a
is denoted as ∂

∂a (H). So ∂
∂a can be viewed as a function that maps reactive

valuations to other reactive valuations. The value (a/a.b)/H is determined by
the values of a/H, a/ ∂

∂a (H) and b/ ∂
∂a (H), as illustrated in the following table:

a/H a/ ∂
∂a (H) b/ ∂

∂a (H) (a / a . b)/H
F F F F
F F T T
F T F F
F T T T
T F F F
T F T F
T T F T
T T T T

Compared to sentential logic, we have an extra parameter because a/H 6=
a/ ∂

∂a (H). Note that it is not possible for the valuation of b to influence the
valuation of either of the a’s. Nor is it possible that the left-hand a has influ-
ence on the valuation of the middle a or the right-hand b.
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There are other limitations to reactive valuations. For example, take the
expression b / a . b. This has the following truth table:

a/H b/ ∂
∂a (H) (b / a . b)/H

F F F
F T T
T F F
T T T

The value of (b/a.b)/H is in this case just computed using two values a/H and
b/ ∂

∂a (H). It is not possible to assign different values to the left-hand b and the
right-hand b using reactive valuations because reactive valuations do not take
into account the value of previously observed atomic propositions. Only the
act of evaluating atomic propositions influences reactive valuations, regardless
of what those values might have been.

The class of all reactive valuations is referred to as the free reactive valu-
ations. We can construct different logics by constraining the type of reactive
valuations we allow. For example, if we take the class of reactive valuations
that ignore the sequence of previously evaluated atomic propositions, we get
the static valuations. Static valuations coincide with the classical valuations in
sentential logic i.e., they always give the same value for an atomic proposition
independent of context.

Another example of a class of reactive valuations are the contractive valua-
tions. In these valuations the value of an atomic proposition, say a, remains the
same as long as no atomic proposition other than a is evaluated. This is in con-
trast with the free reactive valuation where each instance of atomic proposition
a in a sequence of a’s can have a different value. For example, if we are using
free reactive valuations it is possible to assign different values to the a’s in the
expression F / a . a. This is not possible if we are using contractive valuations
because between the first a and the second a no other atomic proposition is
evaluated, and thus the valuation of a must remain the same.

We can formalize the idea of creating new logics using classes of reactive
valuations. A class K of reactive valuations gives rise to an equivalence relation,
K-equivalence. Since reactive valuations are sensitive to the context, this K-
equivalence is not necessarily congruent i.e., equivalence of a term t need not be
preserved when substituting equivalent subterms in the term t. For example, for
every reactive valuation H we have (T /a.T )/H = T/H = T . It is however not
the case that (b/T .F )/H = (b/(T /a.T ).F )/H because in the right-hand term
the valuation of b depends on a which is not the case in the left-hand term. Since
congruence is a necessary property, we therefore introduce K-congruence as the
largest congruence contained in K-equivalence. K-congruence thus represents
our semantics.

Besides a semantical characterization, each logic can be equationally speci-
fied using a number of axioms. For example, the axiom x/T .y = x, where x and
y are arbitrary terms, is an axiom shared by every logic we present. Given these
axiomatizations we can prove properties such as soundness and completeness.

In the rest of this chapter we further motivate why reactive valuations are
relevant, and discuss some related work. In Chapter 2, a formal introduction
is given to reactive valuations. In addition, four varieties are introduced and
discussed. These varieties include the varieties of free, contractive and static



4 Chapter 1. Introduction

valuations we mentioned earlier. This discussion includes proper axiomatiza-
tions and subsequent proofs of completeness and soundness of these varieties.
In Chapter 3 a definition of ω-completeness is given, and we explain why ω-
completeness is a nice property of an axiomatization. Subsequently, a proof
of ω-completeness for the variety of free reactive valuations and the variety of
static valuations is presented. The axiomatizations given in Chapter 2 might
contain redundant axioms. In Chapter 4, we show that this is mostly not the
case. Finally, Chapter 5 contains a summary, and a few suggestions for further
research.

1.2 Motivation

Static valuations, the type of valuations used in sentential logic, are inadequate
to model many sequential systems. However, we can model those systems using
different classes of reactive valuations.

Using reactive valuations we can model non-commutative logical connectives.
For example, ∨

b
is disjunction in which the right argument is evaluated first

(notation is taken from [2]). So in the signature of our logic x ∨
b
y is defined

as T / y . x. In similar fashion x ∨
b
y is defined as T / x . y. In sentential

logic these two definitions would coincide. This however is not the case if we
use reactive valuations i.e., this allows us to distinguish between x ∨

b
y and

x ∨
b
y. Hence, reactive valuations are suited for modelling non-commutative

connectives. One area where non-commutative connectives are commonplace,
is that of programming languages

In most programming languages, it is possible that a function, in addition
to producing a value, also does something else. It might for example raise an
exception or modify a global variable. This kind of behaviour is called a side-
effect of said function. Furthermore, it is also possible that the return value of
a function might depend on some external factor. For example, a database or a
random number generator. Finally, expressions are evaluated sequentially. This
means that if want to evaluate x ∧ y, the interpreter has to decide whether to
evaluate x first or y first.

Combining these facts, we could get a situation in which the value of the
expression f(x)∧g(y) depends on whether f(x) is evaluated first or g(y) because
f(x) might influence the value of g(y), and vice versa. Admittedly it is limited
to situations that can be translated to boolean formulas, but this is the kind of
behaviour we can model with reactive valuations and not with sentential logic.

Short-circuit evaluation is a common feature of programming languages.
Short-circuit evaluation is usually limited to the evaluation of a few specific
operators. Using such evaluations only the arguments that have to be evalu-
ated, are actually evaluated. The operator &&, logical conjunction, in C/C++
is an example of a short-circuiting operator. Consider evaluating the expres-
sion x && y. If x evaluates to false, the second argument y is not evaluated
because regardless of its value x && y evaluates to false. If x and y do not
have any side-effects and their values are limited to true and false, this opera-
tor is commutative. However, in practice it is possible that x and y represent
some computation that does not necessarily terminate. Consequently, if one
of the arguments does not terminate, the value of a short-circuiting operator
like && might be different depending on which argument we decide to evaluate
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first. Hence, this is another example of a non-commutative connective with a
symmetric counterpart.

Arguably the programming language with the most direct connection with
reactive valuations is Prolog. Prolog is originally designed to model language
through computational models based on predicate logic. This paradigm of pro-
gramming in terms of predicate logic is called logic programming. As a result,
programs in Prolog almost read like logical formulas, and are referred to as
predicates. In the early days of logic programming, the language did not have
any instructions with explicit side-effects. However, for Prolog to have some
practical value extra instructions are needed. For example, the database in-
structions assert and retract. These instructions can, perhaps not surprisingly,
assert and retract facts to a Prolog program. Clearly, programs using these
instructions have side-effects that might influence whether predicates evaluate
to true or false. For example, predicate P is true if fact A is true. In addition,
predicate P retracts fact B. Hence, if there is another predicate Q, which is
true if B is true, and retracts A, the predicates influence each others value by
their side-effects.

Staying within the field of computer science, the “reactive behaviour” illus-
trated by the previous examples does not limit itself to programming languages.
On the more lower hardware level we have the term “sequential logic” in circuit
theory. Here sequential logic refers to logic circuits that have a memory. The
output of such a circuit does not only depend on the input, but also on the
history of inputs. These circuits can be used to construct finite state machines
such as Moore and Mealy machines. The output of these machines depends on
an internal state, which in turn depends on the previous state and input.

In everyday reasoning, so called common-sense reasoning, the assertion and
retraction of facts is fairly common. For example, while it may be true that
Jack is at home in the evening, it certainly does not have to be true that he is
always at home. In addition, this is not limited to the physical world but can
also include the beliefs of agents. For example, one might believe that all adult
swans have white plumage, until one travels to Australia and sees that there
are swans with black plumage, at which point the beliefs are revised. Ordinary
classical logic is not equipped to model these reactive processes i.e., the validity
of propositions remains the same.

Pragmatics is a subfield of linguistics in which the interaction between ut-
terances i.e., speech acts, is studied. One example of such interaction is that
of presupposition. Presupposition refers to implicit assumptions in sentences.
Take for example the sentence “Jack drives his car to the mall”. This sentence
presupposes that Jack has a car. So modelling presupposition requires we are
able to deal with side-effects of posing a proposition, another example of reactive
evaluation.

In this section we presented a number of processes that might be modelled
using reactive valuations as motivation why reactive valuations are interesting.
In the following section most of the aforementioned examples will be examined
once more except this time in the context of related work i.e., we compare
existing literature on these subjects with reactive valuations.
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1.3 Related work

One of the defining properties of our logic is that the valuation of the atomic
propositions changes depending on what atomic propositions have been eval-
uated. In this section we discuss some other logics and formalisms that also
demonstrate this property.

As stated earlier in this thesis is based on the work done by Bergstra and
Ponse in [5]. In it they introduce reactive valuations and the varieties which
we will study in the next chapters. They discuss a number of topics which will
not be covered in this thesis. These topics include a method of modelling a
three-valued logic using reactive valuations, expressivity results, the complexity
of satisfiability, and a study of the properties of infinite propositions.

Since reactive valuations are a relatively new invention with no clearly de-
fined predecessor, there is no related work that deals specifically with reactive
valuations besides the one by Bergstra and Ponse. There is, however a very
large body of literature dealing with sequential reasoning. This literature ranges
from computer science to philosophy and linguistics. An exhaustive literature
overview is however beyond the scope of this thesis and would in all likeli-
hood constitute a thesis all on its own. This chapter, therefore, gives a very
brief overview with a few specific examples, which will hopefully offer a starting
point for a more detailed account of related work.

The previous section on motivation already gave a few examples of areas
where reactive valuations might be applied and hence literature dealing with
the phenomena described in that section can be considered related to the theory
of reactive valuations.

For example we mentioned common-sense reasoning i.e., the type of reason-
ing we use in our daily lives. Common-sense reasoning has been studied in many
fields but it has enjoyed renewed attention the past decades with the rise of the
field of artificial intelligence where it is mostly referred to as non-monotonic
reasoning.

In classical logic when a statement φ logically follows from a set S of premises,
it is the case that φ logically follows from a superset S′ ⊇ S of premises. Con-
sequently, we call this logic monotonic. This means that once something is
true it will remain so. In common-sense reasoning this is not the case. Hence
this type of reasoning is called non-monotonic. Similarly reactive valuations are
non-monotonic due to ever-changing valuations. See [17] and [1] for an overview
of non-monotonic reasoning.

Similarly in philosophy we have defeasible reasoning which deals with argu-
ments that might be true but can be refuted at a later point by observing new
facts, see [10].

We can view the evaluation of an expression as the execution of a program.
The atomic propositions would then correspond to single instructions or pieces of
programs such as procedures or functions. There are many formalisms that are
designed for reasoning about propositional properties of programs, e.g. Hoare
logic, temporal logic of actions and propositional dynamic logic (PDL).

For example, PDL (see [18] for an overview) can be effectively used to model
reactive valuations. In PDL we have a set of atomic propositions P , a set of
basic actions A, a set of states S, and a binary relation R on S. The connec-
tion between PDL and reactive valuations becomes evident if for every atomic
proposition in P there is a basic action in A that signifies the evaluation of
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the respective atomic proposition. Then the states S correspond to the various
reactive valuations. In that context deterministic PDL i.e., the class of frames
characterized by 〈a〉φ → [a]φ, is of particular interest because it illustrates
one of the limitations of reactive valuations. Namely, that in the previously
mentioned example b / a . b the value of both b’s will have to be the same.

As mentioned in the previous section the programming language Prolog has
special instructions for the assertion and retraction of facts. Consider the fol-
lowing Prolog program

p(a) :- p(b), retract(p(b)).
p(a) :- assert(p(b)), fail.

The statement fail is a reserved keyword that automatically fails i.e., somewhat
similar to the constant false. When repeatedly asking the interpreter p(a) we
get the output sequence 0101010101. . . where 0 and 1 stand for no and yes,
respectively.

In [13] the expressive power of the side effects of the assert and retract
statements in Prolog is investigated. The authors main tool in this analysis
are these output sequences. Much the same as we consider different varieties
they consider different classes of output sequences e.g., constant sequences that
represent programs with no side effect and ultimately periodic sequences where
the sequence at some point starts to repeat itself. For a complete denotational
semantics of Prolog, see [15].

Reactive valuations give rise to directed versions of connectives such as ∧
and ∨. In Chapter 2 we define a number of these connectives. The notation for
these is taken from [2], where a number of many-valued logics are described. In
[16] an axiomatization of Belnap’s four-valued logic is given using conditional
composition, which as you might recall is the only connective in the signature
of the logic described in this thesis. The notation for conditional composition
is taken from a paper by Hoare, [8]. In this paper Hoare describes what we call
the variety with static valuations. This variety corresponds to boolean algebra,
as we shall show in Chapter 3.

In the previous section we briefly mentioned pragmatics, and more specifi-
cally presupposition. The most commonly used formalism to describe presup-
position and its effects is discourse representation theory (see [9]). There are,
however, different approaches. For example, in [11] a many-valued logic with
directed connectives is used to investigate some of the main problems in pre-
supposition.

Besides the ones we just mentioned, there are many other research areas that
deal with sequentiality that we did not mention here. For example, temporal
logic, substructural logics and non-commutative logics. As mentioned before
this section is but a brief overview, and we hope this will prove to be a useful
point of departure for a more thorough investigation into related work.

Lastly, it took more than two years to write this thesis. This year a new
paper on the subject of reactive valuations by Bergstra and Ponse appeared, see
[4]. The new results in that paper are not discussed here nor do the results in
this thesis depend on those results.
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2
Reactive valuations

This chapter represents the main body of the thesis. Reactive valuations are
formally introduced, which enables us to define a number of different logics.
Subsequently, some basic properties such as soundness and completeness are
proven.

2.1 Introduction

In this section we introduce a sequential propositional theory starting with the
language. The symbols of our language are as follows:

• the constants T and F

• the ternary operator / . , called conditional composition

• a finite non-empty set A of atomic propositions

• an infinite set of variables V

The notation / . for conditional composition was first introduced by Hoare in
[8]. We use the letters x, y, z, u, v, w, . . . to denote the variables, and the letters
a, b, c, . . . to denote atomic propositions i.e., members of A. Note that A is finite
and non-empty. These conditions on the set of atomic propositions are relevant
because they affect the validity of certain theorems, particularly those dealing
with independence and ω-completeness as we shall see in the next chapter. We
call this signature ΣCP (A).

The set T(ΣCP (A)) of all terms over signature ΣCP (A) is defined as the
smallest set such that

• A ⊆ T(ΣCP (A))

• V ⊆ T(ΣCP (A))
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• T, F ∈ T(ΣCP (A))

• t / r . s ∈ T(ΣCP (A)) with t, r, s ∈ T(ΣCP (A))

Subsequently, the set T (ΣCP (A)) of all closed terms over signature ΣCP (A) is
defined as the largest subset of T(ΣCP (A)) such that no term in T (ΣCP (A)) con-
tains a variable. The letters t, r, s, . . . are used to denote members of T(ΣCP (A))
whereas we use P,Q,R, . . . to denote closed terms i.e., members of T (ΣCP (A)).

We postpone the discussion of the actual model construction until the next
two sections. For now it suffices to recall the interpretation we offered in the
introduction i.e., T and F are interpreted as true and false, respectively, and
/ . is the if-then-else operator, where the middle argument is the antecedent

and the left-most and right-most argument are the consequents.
Using the language we just introduced it is now possible to give the following

axiomatization:

(CP1) x / T . y = x
(CP2) x / F . y = y
(CP3) T / x . F = x
(CP4) x / (y / z . u) . v = (x / y . v) / z . (x / u . v)

We call this set of axioms CP. Hence when t = r, for terms t and r from signature
ΣCP (A), can be derived from CP, we denote this as

CP ` t = r

Henceforth we often omit the “CP `” part except when it is not clear from the
context which set of axioms is used.

It is also important to note that the equality is in fact a congruence. Conse-
quently, equality has besides the usual properties of reflexivity, symmetry, and
transitivity

(reflexivity) x = x
(symmetry) x = y → y = x
(transitivity) x = y ∧ y = z → x = z

also the congruence property, which in this case will have the following form

(congruence)
x1 = y1 x2 = y2 x3 = y3
x1 / x2 . x3 = y1 / y2 . y3

Using this axiomatization and its intended interpretation, we can define
versions of the classical connectives.

x ∧b y = y / x . F x →b y = y / x . T
x ∧b y = x / y . F x→ by = T / y . ¬x
x ∨

b
y = T / x . y x ↔b y = y / x . ¬y

x ∨
b
y = T / y . x x↔ by = x / y . ¬x

where ¬x = F /x.T . The notation of the operators is due to Bergstra, Bethke,
and Rodenburg in [2]. The circle in the connective indicates the order in which
the expression is evaluated e.g., x ∨

b
y indicates that we evaluate x before looking

at y. In the following sections we show that although e.g. ∧b and ∧b have the
same interpretation in classical logic, they are not provably equal in CP. Also
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properties such as idempotency, commutativity, distributivity and absorption
are not derivable in CP. However, there are some classical properties that are
derivable in CP. For example we have the following property,

x / (F / y . T ) . z = (x / F . z) / y . (x / T . z)
= z / y . x

which implies that

¬¬x = F / (F / x . T ) . T = T / x . F = x

Another example is based on De Morgan’s laws,

¬(x ∨
b
y) = F / (T / y . x) . T

= (F / T . T ) / y . (F / x . T )
= F / y . ¬x
= ¬x / ¬y . F
= ¬x ∧b ¬y

Using conditional composition, we can create the notion of sequential com-
position, denoted by ◦ i.e.,

x ◦ y = y / x . y

By axiom CP4 it follows that sequential composition is associative,

x ◦ (y ◦ z) = (z / y . z) / x . (z / y . z)
= z / (y / x . y) . z
= (x ◦ y) ◦ z

In the following sections we not only give a model for the discussed axiomatiza-
tion CP but also show that given the provided framework, it is easy to create
variations on this model.

2.2 Reactive valuations

In the classic case a valuation determines the value of all the atomic propositions
a ∈ A i.e., it assigns either true or false to each atomic proposition. In the case
of reactive valuations, this assignment can be dependent on atomic propositions
previously evaluated. In this section we will formally define the notion of reactive
valuations.

Let B be the sort of boolean values with constants T and F and RV be a
sort of reactive valuations. Then for each a ∈ A let there be a function

ya : RV → B

This function is called the yield of a and it allows us to look up the value of a
using a specific reactive valuation. Furthermore, for each a ∈ A there exists a
function

∂

∂a
: RV → RV



12 Chapter 2. Reactive valuations

called the a-derivative. With this function we can capture the dynamic nature
of reactive valuations i.e., when we evaluate an atomic proposition a the current
reactive valuation can change. It is important to note that the elements in RV
do not just encode the value of the individual atomic propositions but also keep
a history of atomic propositions previously evaluated. It is therefore possible
that two reactive valuations H and H ′ assign the same values to each atomic
proposition but ∂

∂a (H) 6= ∂
∂a (H ′).

We define the signature ΣReV al(A) to consist of the sorts B, RV , functions
ya and ∂

∂a for each a ∈ A, and constants TRV and FRV of sort RV .
A structure A over ΣReV al(A) is called a reactive valuation algebra (RVA) if

the following axioms are satisfied

ya(TRV ) = T

ya(FRV ) = F

∂

∂a
(TRV ) = TRV

∂

∂a
(FRV ) = FRV

for each a ∈ A. So the constants TRV and FRV assign either T to all the atomic
propositions or F to all the atomic propositions, respectively. Furthermore,
these two valuations do not change while evaluating an expression.

The value of a proposition P from signature ΣCP (A) according to a reactive
valuation H in a RVA A is denoted by

P/H

This value is determined as follows: for a ∈ A,

T/H = T

F/H = F

a/H = ya(H)

(P / Q . R)/H =

{
P/ ∂

∂Q (H) if Q/H = T

R/ ∂
∂Q (H) if Q/H = F

where ∂
∂P (H) is a generalized notion of the function ∂

∂a (H), and is defined as
follows

∂

∂T
(H) = H

∂

∂F
(H) = H

∂

∂(P / Q . R)
(H) =

{
∂

∂P ( ∂
∂Q (H)) if Q/H = T

∂
∂R ( ∂

∂Q (H)) if Q/H = F

There are a number of observations to be made here.
The propositions T and F are always evaluated as true and false, respectively,

no matter which evaluation we use. Furthermore, evaluating T and F will not
change the current valuation. So, it follows that (a / T . b)/H = a/H.
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Also important to note is that in e.g. the proposition a / (b / T . c) . d the
values of a and d will not depend on c as c never gets evaluated.

Finally, let us look at a few examples.

((a / T . b) / a . c)/H =

{
(a / T . b)/ ∂

∂a (H) if a/H = T

c/ ∂
∂a (H) if a/H = F

=

{
a/ ∂

∂a (H) if a/H = T

c/ ∂
∂a (H) if a/H = F

Note that if we know that a/H = T then it does not necessarily follow that
a/ ∂

∂a (H) is also true because the valuations H and ∂
∂a (H) are different. To

emphasize this point, look at propositions a/a.a and a. Although, it certainly
is true that in a classical setting these two are equivalent, it immediately follows
that a valuation H exists such that (a / a . a)/H 6= a/H.

The following example has instead of a constant or an atomic proposition as
a condition, another conditional statement.

(a / (b / c . a) . F )/H =

{
a/ ∂

∂(b/c.a) (H) if (b / c . a)/H = T

F/ ∂
∂(b/c.a) (H) if (b / c . a)/H = F

=


a/ ∂

∂b ( ∂
∂c (H)) if c/H = T and b/ ∂

∂c (H) = T

a/ ∂
∂a ( ∂

∂c (H)) if c/H = F and a/ ∂
∂c (H) = T

F if (b / c . a)/H = F

=


a/ ∂

∂b ( ∂
∂c (H)) if c/H = T and b/ ∂

∂c (H) = T

a/ ∂
∂a ( ∂

∂c (H)) if c/H = F and a/ ∂
∂c (H) = T

F otherwise

This example illustrates that the value of the leftmost a does not only depend
on c being evaluated but also on the actual value of c because this determines
whether either b or a (the occurrence of a right next to c in the expression) is
evaluated which in turn affects the value of the leftmost a.

2.3 Reactive valuation varieties

In the previous section we introduced the notion of reactive valuation algebra
(RVA). In this section we define a number of specific classes of RVAs. Since
the signature of all RVAs is the same, we refer to these classes as varieties. We
define the following varieties of RVAs:

Free reactive valuations This variety of RVAs consist of all possible RVAs.
So there are no requirements posed on the RVAs in this variety other than
that they are RVAs. Every other variety will be a subvariety of this one.

Repetition-proof valuations The variety with repetition-proof valuations con-
sists of all RVAs that satisfy

ya(x) = ya(
∂

∂a
(x))
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for all a ∈ A.

Contractive valuations The variety with contractive valuations is a subvari-
ety of the variety with repetition-proof valuations i.e., every RVA in this
variety will also be in the variety with repetition-proof valuations. In
addition the RVAs here will satisfy

∂

∂a
(
∂

∂a
(x)) =

∂

∂a
(x)

for all a ∈ A.

Static valuations The RVAs in the variety with static valuations satisfy the
following equation

ya(
∂

∂b
(x)) = ya(x)

for all a, b ∈ A.

The definitions of these varieties were taken from [5]. In Appendix A we define
and examine an additional variety of our own.

Given a variety K we say that propositions P and Q are K-equivalent, which
is denoted as

P ≡K Q

if P/H = Q/H for all RVAs A in the variety K and valuations H ∈ A. Using
the relation ≡K we can define a congruence relation over propositions. We say
that P and Q are K-congruent,

P =K Q

if =K is the largest congruence contained in ≡K .
Given the four varieties we defined earlier we will use the abbreviations fr,

rp, cr, st for free, repetition-proof, contractive and static varieties, respectively
Bergstra and Ponse prove the following proposition.

Proposition 2.1. ≡fr(≡rp(≡cr(≡st and =K(≡K for K ∈ {fr, rp, cr}

The first part of this proposition and the differences between the varieties will
become apparent in the following sections. The second part is best demonstrated
using an example. If we take the term F / a . F then clearly

(F / a . F )/H = F/H

for all H ∈ A and A ∈ K. However, it is not the case that for all varieties K
the following holds

(b / (F / a . F ) . b)/H = (b / F . b)/H

because in the left-hand side the value of b will depend on a but on the right-
hand side this dependency is gone. This means that although for all varieties K
we have F / a . F ≡K F , it does not follow that F / a . F =K F . In the section
on static valuations, we show that congruence and equivalence do happen to
coincide for that variety.

The following proposition clarifies the relationship between congruence and
equivalence for arbitrary variety K.
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Proposition 2.2. If P ≡K Q and for all A ∈ K and H ∈ A,

∂

∂P
(H) =

∂

∂Q
(H)

then
P =K Q

Proof. Assume P ≡K Q and ∀A ∈ K ∀H ∈ A, ∂
∂P (H) = ∂

∂Q (H). Since =K

is defined as the largest congruence contained in ≡K , P =K Q if for all closed
terms S and R the following three cases are true:

(1) P / S . R ≡K Q / S . R

(2) S / P . R ≡K S / Q . R

(3) S / R . P ≡K S / R . Q

We continue by proving these three cases.
Since P ≡K Q, it follows that ∀A ∈ K ∀H ∈ A, P/H = Q/H. Consequently,

P/ ∂
∂S (H) = Q/ ∂

∂S (H). Hence,

(P / S . R)/H =

{
P/ ∂

∂S (H) if S/H = T

R/ ∂
∂S (H) if S/H = F

=

{
Q/ ∂

∂S (H) if S/H = T

R/ ∂
∂S (H) if S/H = F

= (Q / S . R)/H

So case (1) is true. Furthermore, the argument for case (3) is symmetric to the
one give here. So case (3) is also true.

By assumption we know that P/H = Q/H and ∂
∂P (H) = ∂

∂Q (H). Thus,

(S / P . R)/H =

{
S/ ∂

∂P (H) if P/H = T

R/ ∂
∂P (H) if P/H = F

=

{
S/ ∂

∂Q (H) if Q/H = T

R/ ∂
∂Q (H) if Q/H = F

= (S / Q . R)/H

Consequently, case (2) also holds, and P =K Q.

In the following sections we will further discuss the varieties we defined here.
This discussion will include proper axiomatizations, and proofs of soundness and
completeness.

2.4 Notation and conventions

Before continuing with the in-depth discussion of the varieties, we recap and
introduce additional notation and conventions. We have encountered the fol-
lowing equality relations thus far:
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• ≡K denotes semantic equivalence with respect to variety K.

• =K is the largest congruence contained in ≡K .

• Plain = is used to denote three different types of congruences. The first
type is provable equality e.g. CP ` x/T.y = x. However we often omit the
“CP `” part if it is clear from the context which axiomatization we use.
We also use = in the interpretation of terms given some valuation H e.g.
(P / F . Q)/H = Q/H. Finally we use = for equality between valuations
e.g. ∂

∂T (H) = H. Note that no ambiguity arises from these three different
interpretations because they deal with equality over three distinct classes
of objects and it will be immediately clear from the arguments or the
context how = is used.

Absent from this list is syntactic equality. We therefore introduce the symbol
l for syntactic equality1.

We have the following conventions concerning symbols:

• The letters a, b, c, . . . denote atomic propositions. A is the set of all atomic
propositions.

• The letters x, y, z, u, v, w, . . . denote variables. V is the set of all variables.

• The capital letters P,Q,R, . . . denote closed terms. T (ΣCP (A)) is the set
of all closed terms from signature ΣCP (A).

• The letters t, s, r, . . . denote terms that can possibly, but not necessarily,
be open. T(ΣCP (A)) is the set of all terms.

2.5 Free reactive valuations

fr-Congruence is axiomatized by CP. The variety with free reactive valuations
is the variety on which all other varieties are based. This does not mean that
there are no limitations. For example if we take the term a / b . a it is not
possible to distinguish between the two a’s i.e., we are forced to give them the
same value no matter what valuation we choose. This limitation can be found
in the definition of RVA where we define ya : RV → B and ∂

∂a : RV → RV as
functions instead of relations.

2.5.1 Soundness

We have claimed that fr-congruence is axiomatized by CP. We, however, have
not yet proven that the resulting theory is sound and complete with respect to
our model. In this section we will show that CP is sound. Soundness of a theory
with respect to a model means that whatever we derive from the axiomatization
of the theory is also true in that model.

Theorem 2.3. For all closed terms P and Q,

CP ` P = Q =⇒ P =fr Q

1Often ≡ is used to denote syntactic equality. However, since ≡ is already used for semantic
equivalence, we opted to use l in order to avoid confusion.
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Proof. It suffices to show that the four axioms CP1, CP2, CP3 and CP4 are
sound with respect to the variety with free reactive valuations. Let RVA A from
the variety fr with valuation H ∈ A be given. Then, starting with CP1 we
proceed as follows.

(P / T . Q)/H =

{
P/ ∂

∂T (H) if T/H = T

Q/ ∂
∂T (H) if T/H = F

=

{
P/ ∂

∂T (H) if T = T

Q/ ∂
∂T (H) if T = F

= P/
∂

∂T
(H)

= P/H

We use the semantics we defined in the previous sections to evaluate the left-
hand side of CP1 with an arbitrary valuation H, and end up with the right-hand
side. In addition, observe that we do not pose any requirements on H. Conse-
quently, the above derivation holds for all RVAs A and H ∈ A. Furthermore,
we also have the following:

∂

∂(P / T . Q)
(H) =

{
∂

∂P ( ∂
∂T (H)) if T/H = T

∂
∂Q ( ∂

∂T (H)) if T/H = F

=
∂

∂P
(H)

Thus, by Proposition 2.2, we have proven that CP1 is sound.
Using the same strategy we prove that axioms CP2, CP3 and CP4 are sound.

(P / F . Q)/H =

{
P/ ∂

∂F (H) if F/H = T

Q/ ∂
∂F (H) if F/H = F

=

{
P/ ∂

∂F (H) if F = T

Q/ ∂
∂F (H) if F = F

= Q/
∂

∂F
(H)

= Q/H

∂

∂(P / F . Q)
(H) =

{
∂

∂P ( ∂
∂F (H)) if F/H = T

∂
∂Q ( ∂

∂F (H)) if F/H = F

=
∂

∂Q
(H)

(T / P . F )/H =

{
T/ ∂

∂P (H) if P/H = T

F/ ∂
∂P (H) if P/H = F

=

{
T if P/H = T

F if P/H = F

= P/H
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∂

∂(T / P . F )
(H) =

{
∂

∂T ( ∂
∂P (H)) if P/H = T

∂
∂F ( ∂

∂P (H)) if P/H = F

=

{
∂

∂P (H) if P/H = T
∂

∂P (H) if P/H = F

=
∂

∂P
(H)

Showing that axiom CP4 is sound, is a bit more complicated than the previous
three axioms because of the number of cases involved.

(P / (Q / R . S) . V )/H =

{
P/ ∂

∂(Q/R.S) (H) if (Q / R . S)/H = T

V/ ∂
∂(Q/R.S) (H) if (Q / R . S)/H = F

=


P/ ∂

∂(Q/R.S) (H) if Q/ ∂
∂R (H) = T and R/H = T

P/ ∂
∂(Q/R.S) (H) if S/ ∂

∂R (H) = T and R/H = F

V/ ∂
∂(Q/R.S) (H) if Q/ ∂

∂R (H) = F and R/H = T

V/ ∂
∂(Q/R.S) (H) if S/ ∂

∂R (H) = F and R/H = F

=


P/ ∂

∂Q ( ∂
∂R (H)) if Q/ ∂

∂R (H) = T and R/H = T

P/ ∂
∂S ( ∂

∂R (H)) if S/ ∂
∂R (H) = T and R/H = F

V/ ∂
∂Q ( ∂

∂R (H)) if Q/ ∂
∂R (H) = F and R/H = T

V/ ∂
∂S ( ∂

∂R (H)) if S/ ∂
∂R (H) = F and R/H = F

Since

(P / Q . V )/
∂

∂R
(H) =

{
P/ ∂

∂Q ( ∂
∂R (H)) if Q/ ∂

∂R (H) = T

V/ ∂
∂Q ( ∂

∂R (H)) if Q/ ∂
∂R (H) = F

and

(P / S . V )/
∂

∂R
(H) =

{
P/ ∂

∂S ( ∂
∂R (H)) if S/ ∂

∂R (H) = T

V/ ∂
∂S ( ∂

∂R (H)) if S/ ∂
∂R (H) = F

it is possible to e.g. replace P/ ∂
∂S ( ∂

∂R (H)) if S/ ∂
∂R (H) = T , and V/ ∂

∂S ( ∂
∂R (H))

if S/ ∂
∂R (H) = F by the expression (P / S . V )/ ∂

∂R (H). So continuing from
where we left off,

=

{
(P / Q . V )/ ∂

∂R (H) if R/H = T

(P / S . V )/ ∂
∂R (H) if R/H = F

= ((P / Q . V ) / R . (P / S . V ))/H
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∂

∂(P / (Q / R . S) . V )
(H) =


∂

∂P ( ∂
∂Q ( ∂

∂R (H))) if R/H = T and Q/ ∂
∂R (H) = T

∂
∂V ( ∂

∂Q ( ∂
∂R (H))) if R/H = T and Q/ ∂

∂R (H) = F
∂

∂P ( ∂
∂S ( ∂

∂R (H))) if R/H = F and S/ ∂
∂R (H) = T

∂
∂V ( ∂

∂S ( ∂
∂R (H))) if R/H = F and S/ ∂

∂R (H) = F

=

{
∂

∂(P/Q.V ) ( ∂
∂R (H)) if R/H = T

∂
∂(P/S.V ) ( ∂

∂R (H)) if R/H = F

=
∂

∂((P / Q . V ) / R . (P / S . V ))
(H)

So all axioms are sound with respect to =fr.

2.5.2 Completeness

In this section we prove completeness. The axiomatization CP is complete
with respect to the variety with free reactive valuations, if two closed terms are
fr-congruent then these terms are also provably equal in CP .

Before proving completeness we first introduce basic forms, which are a class
of closed terms. We will show that each closed term is provably equal to a basic
form. The primary reason for introducing these basic forms is that they will
greatly simplify most proofs by structural induction on closed terms because
their structure is less complicated. This will be especially useful in proving
completeness.

Definition 2.4. The set of basic forms BF is defined as the smallest set such
that T, F ∈ BF, and if P,Q ∈ BF then P/a.Q ∈ BF for all atomic propositions
a ∈ A.

So e.g. F / (a / b . c) . T is not a basic form but (F / a . T ) / b . (F / c . T )
is. Similarly, a is not a basic form but T / a . F is. If conditional composition
occurs in a basic form, the antecedent is always an atomic proposition.

An alternative way of looking at basic forms is to view them as labeled
binary trees i.e., the basic form P / a . Q corresponds to the tree

a

}}zz
zz

zz
zz

""DD
DD

DD
DD

T (P ) T (Q)

where T (P ) and T (Q) are the binary trees corresponding to P and Q, respec-
tively. Hence, the nodes of the tree consist of atomic propositions and the
leaves of either T or F . This illustrates the simplicity of basic forms because if
we would try to similarly construct a binary tree for arbitrary closed terms, the
nodes themselves would have to be trees because the antecedent of conditional
composition occurring in such a term can itself be an arbitrary closed term.

As mentioned before we will prove that for each closed term there exists a
basic form such that they are provably equal to each other.

Lemma 2.5. For each closed term P over signature ΣCP (A) there exists a term
P ′ ∈ BF such that CP ` P = P ′.
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Proof. We proceed by structural induction on P . Suppose P is either T or
F then P ∈ BF. Suppose P l a for a ∈ A.2 Since P = T / P . F and
T / P . F ∈ BF, P ′ exists. Suppose P is P1 / P2 . P3. By the induction
hypothesis there exist terms P ′1, P

′
2, P

′
3 ∈ BF such that P1 = P ′1, P2 = P ′2, and

P3 = P ′3. By congruence, it follows that P = P ′1/P
′
2.P

′
3. We show by structural

induction on P ′2 that P ′ exists.
If P ′2 l T , then P ′1 / T . P

′
3 = P ′1, and P ′1 is a basic form. Similarly, if P ′2 is

F , then P ′1 / F . P ′3 = P ′3, and P ′3 ∈ BF. If P ′2 l P ′21 / a . P
′
22 for some a ∈ A

then

P ′1 / (P ′21 / a . P
′
22) . P ′3 = (P ′1 / P

′
21 . P

′
3) / a . (P ′1 / P

′
22 . P

′
3)

=IH V / a . W

where V,W ∈ BF and V = P ′1 /P
′
21 .P

′
3, W = P ′1 /P

′
22 .P

′
3. Clearly, V /a.W ∈

BF.

The following lemma is needed in the Lemma 2.7 that shows that syntactic
equality and fr-congruence coincide.

Lemma 2.6. For P1 / a . P2, Q1 / a . Q2 ∈ BF,

P1 / a . P2 =fr Q1 / a . Q2 =⇒ P1 =fr Q1 ∧ P2 =fr Q2

Proof. We prove the contraposition. Then either P1 6=fr Q1 or P2 6=fr Q2

implies P1 / a . P2 6=fr Q1 / a . Q2. Assume without loss of generality that
P1 6=fr Q1. Then the following two cases can be distinguished.

In the first case, P1 6≡fr Q1. Consequently, there exists an algebra A and
valuation H ∈ A such that P1/H 6= Q1/H. Subsequently, we construct an
algebra A′ ⊇ A with valuation H ′ ∈ A′ such that ∂

∂a (H ′) = H and ya(H ′) = T .
Then

(P1 / a . P2)/H ′ =

{
P1/

∂
∂a (H ′) if a/H ′ = T

P2/
∂
∂a (H ′) if a/H ′ = F

= P1/H

6= Q1/H

= (Q1 / a . Q2)/H ′

In the second case, P1 ≡fr Q1. So the congruence property does not apply
to P1 and Q1. It follows that there are closed terms S and R such that one of
the following is the case:

(1) S / R . P1 6≡fr S / R . Q1

(2) P1 / S . R 6≡fr Q1 / S . R

(3) S / P1 . R 6≡fr S / Q1 . R

In each of the three the cases there is an algebra A and valuation H ∈ A such
that the left-hand side and the right-hand side are not equal using valuation H.

2Recall that l is used for syntactic equality.



2.5 Free reactive valuations 21

Using this valuation H we know that in case (1) the following applies:

(S / R . P1)/H =

{
S/ ∂

∂R (H) if R/H = T

P1/
∂

∂R (H) if R/H = F

6=

{
S/ ∂

∂R (H) if R/H = T

Q1/
∂

∂R (H) if R/H = F

= (S / R . Q1)/H

Consequently, P1/
∂

∂R (H) 6= Q1/
∂

∂R (H). However, this implies that P1 6≡fr Q1.
Since we already assumed that P1 ≡fr Q1, we have a contradiction. Hence, case
(1) cannot occur. Using a similar argument, we can show that this also applies
to case (2).

This leaves us with case (3). Let A and H be defined as before. Then,
similarly to the case where P1 6≡fr Q1, we construct a new algebra A′ ⊇ A and
valuation H ′ ∈ A′ such that ∂

∂a (H ′) = H and ya(H ′) = T . Consequently,

(S / (P1 / a . P2) . R)/H ′ = (S / P1 . R)/H
6= (S / Q1 . R)/H
= (S / (Q1 / a . Q2) . R)/H ′

So the congruence property does not hold for P1 / a . P2 and Q1 / a . Q2, and
thus these terms are not congruent to each other, P1 /a.P2 6=fr Q1 /a.Q2.

It is perhaps interesting to observe that the other direction of the previous
lemma follows from congruence i.e., if we know that P1 =fr Q1 and P2 =fr Q2

then P1 / a . P2 =fr Q1 / a . Q2.
The next lemma shows that syntactic equality and fr-congruence coincide.

Lemma 2.7. For P,Q ∈ BF,

P =fr Q ⇐⇒ P l Q

Proof. The direction from syntactic equality to fr-congruence is trivial. The
other direction is proven by taking the contraposition and then proceeding by
structural induction on both P and Q. So assume P 6l Q. We omit the trivial
cases and the cases that follow by symmetry.

Suppose P l T and Q l Q1 / a . Q2 for some a ∈ A. If P =fr Q then
P ◦ a =fr Q ◦ a by congruence. However,

(P ◦ a)/H = (a / T . a)/H

=

{
a/ ∂

∂T (H) if T/H = T

a/ ∂
∂T (H) if T/H = F

= a/H

6=

{
a/ ∂

∂Q1
( ∂

∂a (H)) if a/H = T

a/ ∂
∂Q2

( ∂
∂a (H)) if a/H = F

= (a / (Q1 / a . Q2) . a)/H
= (Q ◦ a)/H
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Note that we can always construct an algebra A and H ∈ A such that neither
a/H = a/ ∂

∂Q1
( ∂

∂a (H)) nor a/H = a/ ∂
∂Q2

( ∂
∂a (H)).

Suppose P l P1 / a . P2 and Q l Q1 / a .Q2. Then we can assume without
loss of generality that P1 6l Q1. By I.H., it follows that P1 6=fr Q1. By Lemma
2.6, P 6=fr Q.

Of course, if P l P1 / a . P2 and Q l Q1 / b . Q2, we can simply pick an
algebra A and valuation H ∈ A such that (P ◦ a)/H 6= (Q ◦ a)/H.

Now the stage has been set to prove completeness for not just basic forms
but for all closed terms.

Theorem 2.8. For closed terms P and Q,

P =fr Q =⇒ CP ` P = Q

Proof. Let P =fr Q. By Lemma 2.5, there exist terms P ′, Q′ ∈ BF such that
P = P ′ and Q = Q′. Furthermore, by soundness, it follows that P =fr P

′ and
Q =fr Q

′, and thus P ′ =fr Q
′. Finally, by Lemma 2.7, we get P ′ = Q′ which

implies that P = Q.

2.6 Repetition-proof valuations

Recall that the variety with repetition-proof valuations is characterized by the
following equation:

ya(x) = ya(
∂

∂a
(x))

This restricts the type of valuations we allow in this variety. The consequences
of introducing this restriction are perhaps best explained using an example.
Take a look at the following evaluation of the term (b / a . c) / a . d using a
repetition-proof valuation H:

((b / a . c) / a . d)/H =


b/ ∂

∂a ( ∂
∂a (H)) if ya(H) = T and ya( ∂

∂a (H)) = T

c/ ∂
∂a ( ∂

∂a (H)) if ya(H) = T and ya( ∂
∂a (H)) = F

d/ ∂
∂a (H) if ya(H) = F

=

{
b/ ∂

∂a ( ∂
∂a (H)) if ya(H) = T and ya( ∂

∂a (H)) = T

d/ ∂
∂a (H) if ya(H) = F

=


b/ ∂

∂a ( ∂
∂a (H)) if ya(H) = T and ya( ∂

∂a (H)) = T

e/ ∂
∂a ( ∂

∂a (H)) if ya(H) = T and ya( ∂
∂a (H)) = F

d/ ∂
∂a (H) if ya(H) = F

= ((b / a . e) / a . d)/H

Observe that since ya(H) = ya( ∂
∂a (H)) it follows that the case where ya(H) = T

and ya( ∂
∂a (H)) = F never occurs. Thus during the evaluation of (b /a. c)/a.d

the c is never evaluated, and thus we can replace c with any term we like which
in this case is another atomic proposition e. However, this does not mean that
(b / a . c) / a . d =rp b / a . d because the evaluation of b depends on both a’s.
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Similar to the free reactive valuations, we can define a corresponding axiom-
atization. In this case, the axiomatization consists of CP plus the following two
axiom schemas,

(CPrp1) (x / a . y) / a . z = (x / a . x) / a . z
(CPrp2) x / a . (y / a . z) = x / a . (z / a . z)

for all a ∈ A. We call the entire axiomatization CPrp. The axioms CPrp1 and
CPrp2 combined with CP tell us that the value of an atomic proposition a does
not change unless there is another proposition in between them.

An example of repetition-proof behaviour can be found in programming.
For example, an atomic proposition corresponds with a function that updates
a global variable but its output does not depend on this variable.

As in the previous section we proceed by proving soundness and complete-
ness, starting with soundness.

2.6.1 Soundness

Theorem 2.9. For closed terms P and Q,

CPrp ` P = Q =⇒ P =rp Q

Proof. According to Proposition 2.1, we know that =fr⊆=rp. Since we already
checked the soundness of the axioms in CP in the proof for soundness of free
reactive valuations, it suffices to show soundness for CPrp1 and CPrp2, starting
with CPrp1. Let A be a RVA from variety rp and valuation H ∈ A.

((P / a . Q) / a . R)/H =

{
(P / a . Q)/ ∂

∂a (H) if a/H = T

R/ ∂
∂a (H) if a/H = F

=


P/ ∂

∂a ( ∂
∂a (H)) if a/H = T and a/ ∂

∂a (H) = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = T and a/ ∂
∂a (H) = F

R/ ∂
∂a (H) if a/H = F

=


P/ ∂

∂a ( ∂
∂a (H)) if a/H = T and a/H = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = T and a/H = F

R/ ∂
∂a (H) if a/H = F

=


P/ ∂

∂a ( ∂
∂a (H)) if a/H = T and a/H = T

P/ ∂
∂a ( ∂

∂a (H)) if a/H = T and a/H = F

R/ ∂
∂a (H) if a/H = F

=


P/ ∂

∂a ( ∂
∂a (H)) if a/H = T and a/ ∂

∂a (H) = T

P/ ∂
∂a ( ∂

∂a (H)) if a/H = T and a/ ∂
∂a (H) = F

R/ ∂
∂a (H) if a/H = F

=

{
(P / a . P )/ ∂

∂a (H) if a/H = T

R/ ∂
∂a (H) if a/H = F

= ((P / a . P ) / a . R)/H
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∂

∂((P / a . Q) / a . R)
(H) =


∂

∂P ( ∂
∂a ( ∂

∂a (H))) if a/H = T and a/ ∂
∂a (H) = T

∂
∂Q ( ∂

∂a ( ∂
∂a (H))) if a/H = T and a/ ∂

∂a (H) = F
∂

∂R ( ∂
∂a (H)) if a/H = F

=

{
∂

∂P ( ∂
∂a ( ∂

∂a (H))) if a/H = T
∂

∂R ( ∂
∂a (H)) if a/H = F

=


∂

∂P ( ∂
∂a ( ∂

∂a (H))) if a/H = T and a/ ∂
∂a (H) = T

∂
∂P ( ∂

∂a ( ∂
∂a (H))) if a/H = T and a/ ∂

∂a (H) = F
∂

∂R ( ∂
∂a (H)) if a/H = F

=
∂

∂((P / a . P ) / a . R)
(H)

By Proposition 2.2 CPrp1 is sound. Next we show soundness for CPrp2:

(P / a . (Q / a . R))/H =

{
P/ ∂

∂a (H) if ya(H) = T

(Q / a . R)/ ∂
∂a (H) if ya(H) = F

=


P/ ∂

∂a (H) if ya(H) = T

Q/ ∂
∂a ( ∂

∂a (H)) if ya(H) = F and ya( ∂
∂a (H)) = T

R/ ∂
∂a ( ∂

∂a (H)) if ya(H) = F and ya( ∂
∂a (H)) = F

=


P/ ∂

∂a (H) if ya(H) = T

Q/ ∂
∂a ( ∂

∂a (H)) if ya(H) = F and ya(H) = T

R/ ∂
∂a ( ∂

∂a (H)) if ya(H) = F and ya(H) = F

=


P/ ∂

∂a (H) if ya(H) = T

R/ ∂
∂a ( ∂

∂a (H)) if ya(H) = F and ya(H) = T

R/ ∂
∂a ( ∂

∂a (H)) if ya(H) = F and ya(H) = F

=


P/ ∂

∂a (H) if ya(H) = T

R/ ∂
∂a ( ∂

∂a (H)) if ya(H) = F and ya( ∂
∂a (H)) = T

R/ ∂
∂a ( ∂

∂a (H)) if ya(H) = F and ya( ∂
∂a (H)) = F

=

{
P/ ∂

∂a (H) if ya(H) = T

(R / a . R)/ ∂
∂a (H) if ya(H) = F

= (P / a . (R / a . R))/H
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∂

∂(P / a . (Q / a . R))
(H) =


∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂Q ( ∂

∂a ( ∂
∂a (H))) if a/H = F and a/ ∂

∂a (H) = T
∂

∂R ( ∂
∂a ( ∂

∂a (H))) if a/H = F and a/ ∂
∂a (H) = F

=

{
∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂R ( ∂

∂a ( ∂
∂a (H))) if a/H = F

=


∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂R ( ∂

∂a ( ∂
∂a (H))) if a/H = F and a/ ∂

∂a (H) = T
∂

∂R ( ∂
∂a ( ∂

∂a (H))) if a/H = F and a/ ∂
∂a (H) = F

=
∂

∂(P / a . (R / a . R))
(H)

So CPrp2 is also sound.

2.6.2 Completeness

Similar to the previous section we define a set of basic forms for this variety.
Since we are working with a different variety the set of basic forms needs to
change. If we were to use the set BF i.e., the set of basic forms as defined in
the section on free reactive valuations, as the basic forms of this variety then
syntactic equality and rp-congruence would not coincide. For example, let the
terms (P / a . Q) / a . R and (P / a . P ) / a . R be in BF and let P 6l Q then
these terms are rp-congruent but not syntactically equal. So we need to define
a new set of basic forms.

Definition 2.10. The set of repetition-proof basic forms is the smallest set
BFrp such that T, F ∈ BFrp and if P,Q ∈ BFrp then

• if P l P1 / a . P2 and Q l Q1 / a . Q2 then (a ◦ P1) / a . (a ◦Q2) ∈ BFrp

• if P l P1 / a . P2 and Q 6l Q1 / a . Q2 then (a ◦ P1) / a . Q ∈ BFrp

• if P 6l P1 / a . P2 and Q l Q1 / a . Q2 then P / a . (a ◦Q2) ∈ BFrp

• if P 6l P1 / a . P2 and Q 6l Q1 / a . Q2 then P / a . Q ∈ BFrp

for all a ∈ A.

Clearly, the set BFrp is a subset of BF. The four cases mentioned in the
definition are based on the axioms CPrp1 and CPrp2.

Lemma 2.11. For each closed term P there exists a term P ′ ∈ BFrp such that
CPrp ` P = P ′.

Proof. We prove this theorem by structural induction on P . By Lemma 2.5 it
follows that we can assume without loss of generality that P is a basic form as
defined in the section on free reactive valuations i.e., P ∈ BF.

If P is T or F then P ∈ BFrp. Suppose P is P1 / a . P2. By the induction
hypothesis, there exist terms P ′1, P

′
2 ∈ BFrp such that P1 = P ′1 and P2 = P ′2.

Now suppose that P ′1 l P ′11 / a . P
′
12 and P ′2 l P ′21 / a . P

′
22. Consequently,

P1 / a . P2 = P ′1 / a . P
′
2

= (P ′11 / a . P
′
12) / a . (P ′21 / a . P

′
22)

= (a ◦ P ′11) / a . (a ◦ P ′22)
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By definition of BFrp we have (a ◦ P ′11) / a . (a ◦ P ′22) ∈ BFrp.
Using similar reasoning we can show that there exists such a term P ′ ∈ BFrp

for the remaining three cases:

• P ′1 6l P ′11 / a . P
′
12 and P ′2 l P ′21 / a . P

′
22

• P ′1 l P ′11 / a . P
′
12 and P ′2 6l P ′21 / a . P

′
22

• P ′1 6l P ′11 / a . P
′
12 and P ′2 6l P ′21 / a . P

′
22

In the section on free reactive valuations we needed Lemmas 2.6 and 2.7 in
order to prove completeness. Similarly, we would like to prove these lemmas
for this variety. However, observe that in the proofs of Lemmas 2.6 and 2.7,
we construct a new valuation algebra based on another algebra. In the variety
with free reactive valuations this is not a problem, but in this variety we have
some restrictions on our RVAs, and thus cannot automatically assume that such
a construction is possible. Therefore, in the proofs of the following two lemmas
we focus on showing that such an algebra exists. We call an algebra from the
variety with repetition-proof valuations an rp-algebra.

Lemma 2.12. For P1 / a . P2, Q1 / a . Q2 ∈ BFrp,

P1 / a . P2 =rp Q1 / a . Q2 =⇒ P1 =rp Q1 ∧ P2 =rp Q2

Proof. We prove the contraposition. We assume without loss of generality that
P1 6=rp Q1. Then either P1 6≡rp Q1 or P1 ≡rp Q1.

Suppose P1 6≡rp Q1. Then there exists an rp-algebra A and valuation H ∈ A
such that P1/H 6= Q1/H. We show that P1/H 6= Q1/H holds whether a/H = T
or a/H = F . Consider the following four cases:

• Suppose P1 l P11 / a . P12 and Q1 l Q11 / a . Q12. Since P1 / a .
P2, Q1 / a . Q2 ∈ BFrp, it follows by definition of BFrp that P11 l P12

and Q11 l Q12. Consequently, P1/H 6= Q1/H whether ya(H) = T or
ya(H) = F .

• Suppose P1 l P11 /a.P12 and Q1 6l Q11 /a.Q12. By similar reasoning as
before, we can conclude that P11 l P12. Furthermore, the value of Q1/H
does not depend on a/H. Consequently, a/H can be either T or F .

• Suppose P1 6l P11 /a.P12 and Q1 l Q11 /a.Q12. Argument is symmetric
to the previous case.

• Suppose P1 6l P11 / a . P12 and Q1 6l Q11 / a . Q12. Neither the value of
P1/H nor that of Q1/H depends on a/H. Consequently, P1/H 6= Q1/H
is independent of the value of a/H.

Since P1/H 6= Q1/H regardless of whether a/H = T or a/H = F , we can
assume without loss of generality that a/H = T . We construct an rp-algebra
A′ ⊇ A with valuation H ′ ∈ A′ such that ∂

∂a (H ′) = H. Since A′ is an rp-algebra
we know that ya(x) = ya( ∂

∂a (x)). Hence, it follows that ya(H ′) = T because if
this were not the case then ya( ∂

∂a (H ′)) = ya(H) = a/H = F which is contrary
to our assumption. It follows that (P1 / a . P2)/H ′ 6= (Q1 / a . Q2)/H ′.

Suppose P1 ≡rp Q1. Then the congruence property does not hold i.e., at
least one of the following three cases is true,
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(1) S / R . P1 6≡rp S / R . Q1

(2) P1 / S . R 6≡rp S / P1 . R

(3) S / P1 . R 6≡rp S / P . R

for closed terms S and R. Using the same argument as in the proof of Lemma
2.6, it follows that cases (1) and (2) cannot occur. So suppose case (3) is true.
Then there exists an rp-algebra A and valuation H ∈ A such that (S / P1 .
R)/H 6= (S / Q1 . R)/H. Using similar reasoning as in the case for P1 6≡rp Q1,
we can assume without loss of generality that a/H = T . Thus we can construct
an rp-algebra A′ ⊇ A and valuation H ′ ∈ A′ such that ∂

∂a (H ′) = H and
ya(H) = T . Consequently, (S / (P1 /a.P2).R)/H ′ 6= (S / (Q1 /a.Q2).R)/H ′.
Thus the congruence property does not hold and P1 /a.P2 6=rp Q1 /a.Q2.

The following two lemmas have the perhaps odd condition that there are
at least two atomic propositions. At the end of this section we examine what
happens if there is only one atomic proposition. Note that by definition there
is at least one atomic proposition i.e., A is non-empty.

Lemma 2.13. For |A| ≥ 2 and P,Q ∈ BFrp,

P =rp Q =⇒ P l Q

Proof. We use the same argument as in the proof of Lemma 2.7. However, in
the case of P l T and Q l Q1 /a.Q2, we claimed that we can always construct
an algebra A and valuation H such that neither a/H = a/ ∂

∂a ( ∂
∂Q1

(H)) nor
a/H = a/ ∂

∂a ( ∂
∂Q2

(H)). This is not true in this variety. For example, take
Q1 l Q2 l T . Then ∂

∂Q1
(H) = ∂

∂Q2
(H) = H, and by definition of this variety,

a/H = a/ ∂
∂a (H). We can solve this by instead of taking P ◦a and Q◦a to show

that P and Q are not congruent, we take P ◦b and Q◦b where the existence of b is
guaranteed by the assumption that |A| ≥ 2. Since it is possible to construct an
algebra and corresponding valuation H such that neither b/H = b/ ∂

∂a ( ∂
∂Q1

(H))
nor b/H = b/ ∂

∂a ( ∂
∂Q2

(H)).

The argument for completeness is exactly the same as in the previous section,
except that we use the lemmas proven in this section.

Theorem 2.14. If |A| ≥ 2 then for closed terms P and Q,

P =rp Q =⇒ CPrp ` P = Q

Look at the following proposition to understand what happens when there
is only one atomic proposition i.e., |A| = 1.

Proposition 2.15. If |A| = 1 then for all P , Q and for all A ∈ rp, H ∈ A,

P/
∂

∂Q
(H) = P/H

Proof. Proof by induction on P . If P is either T or F then P/ ∂
∂Q (H) = P/H

follows immediately.
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Suppose P l a then we proceed by induction on Q. If Q is either T or F
then it is trivial. If Q l a then

P/
∂

∂Q
(H) = a/

∂

∂a
(H)

= ya(
∂

∂a
(H))

= ya(H)
= P/H

If Q l Q1 / Q2 . Q3 then

a/
∂

∂(Q1 / Q2 . Q3)
(H) =

{
a/ ∂

∂Q1
( ∂

∂Q2
(H)) if Q2/H = T

a/ ∂
∂Q3

( ∂
∂Q2

(H)) if Q2/H = F

=IH

{
a/ ∂

∂Q2
(H) if Q2/H = T

a/ ∂
∂Q2

(H) if Q2/H = F

=IH a/H

Hence, a/ ∂
∂Q (H) = a/H for all Q and H.

Suppose P l P1 / P2 . P3. Then

(P1 / P2 . P3)/
∂

∂Q
(H) =

{
P1/

∂
∂P2

( ∂
∂Q (H)) if P2/

∂
∂Q (H) = T

P3/
∂

∂P2
( ∂

∂Q (H)) if P2/
∂

∂Q (H) = F

=IH

{
P1/(H) if P2/H = T

P3/(H) if P2/H = F

=IH

{
P1/

∂
∂P2

(H) if P2/H = T

P3/
∂

∂P2
(H) if P2/H = F

= (P1 / P2 . P3)/H

This proposition implies for example that

(T / a . a)/H =

{
T/ ∂

∂a (H) if a/H = T

a/ ∂
∂a (H) if a/H = F

=

{
T if a/H = T

a/H if a/H = F

= a/H

In fact, Proposition 2.15 implies that for |A| = 1 we lose any kind of reactive
behaviour, and we end up with static valuations. Furthermore, this proposition
is clearly true for every variety in which all valuations are repetition-proof i.e.,
where ya(H) = ya( ∂

∂a (H)) is true. Hence, we have the following corollary.

Corollary 2.16. If |A| = 1 and the valuations in variety K satisfy the equation
ya(x) = ya( ∂

∂a (x)) then

P =K Q ⇐⇒ P =st Q

for all closed terms P and Q.
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This result will also be helpful in establishing completeness for the variety
with contractive valuations.

2.7 Contractive valuations

Recall that the variety with contractive valuations is characterized by the fol-
lowing two equations:

ya(x) = ya(
∂

∂a
(x))

∂

∂a
(x) =

∂

∂a
(
∂

∂a
(x))

The first equation should be familiar since we encountered it in the previous
section in the characterization of repetition-proof valuations. The second equa-
tion tells us that valuations remain constant through multiple a-derivatives.
Consider the following example,

((b / a . c) / a . d)/H =

{
(b / a . c)/ ∂

∂a (H) if a/H = T

d/ ∂
∂a (H) if a/H = F

=


b/ ∂

∂a ( ∂
∂a (H)) if a/H = T and a/ ∂

∂a (H) = T

c/ ∂
∂a ( ∂

∂a (H)) if a/H = T and a/ ∂
∂a (H) = F

d/ ∂
∂a (H) if a/H = F

=


b/ ∂

∂a (H) if a/H = T and a/ ∂
∂a (H) = T

c/ ∂
∂a (H) if a/H = T and a/ ∂

∂a (H) = F

d/ ∂
∂a (H) if a/H = F

=

{
b/ ∂

∂a (H) if a/H = T

d/ ∂
∂a (H) if a/H = F

= (b / a . d)/H

In the first two steps we expand the expression using the standard free reactive
semantics. In the third step we replace ∂

∂a ( ∂
∂a (H)) with ∂

∂a (H) using the defini-
tion of contractive valuations. Similarly, as in the example given in the section
on repetition valuations we can eliminate the case where the example is equal
to c/ ∂

∂a (H) because a/H must be equal to a/ ∂
∂a (H).

By looking at the definition it becomes immediately apparent that the variety
with contractive valuations is a subvariety of the variety with repetition-proof
valuations i.e., if P ≡rp Q then P ≡cr Q, and similarly if P =rp Q then
P =cr Q. Of course both varieties are subvarieties of the variety with free
reactive valuations. This relation between the different varieties was previously
also stated in Proposition 2.1.

cr-Congruence is axiomatized by CP and the following axiom schemas.

(CPcr1) (x / a . y) / a . z = x / a . z

(CPcr2) x / a . (y / a . z) = x / a . z
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The entire axiomatization is called CPcr. The axioms of CPcr1 and CPcr2 allow
us to eliminate consecutive atomic propositions in our terms. So for example
the terms a ◦ P and a ◦ a ◦ P are provably equal. This is of course a stronger
version of what we have seen in the previous section, which should not come as
a surprise considering that this variety is defined in terms of the repetition-proof
variety.

The following two sections show soundness and completeness for this variety.

2.7.1 Soundness

Theorem 2.17. For closed terms P and Q,

CPcr ` P = Q =⇒ P =cr Q

Proof. Since the variety with contractive valuations is a subvariety of the variety
with free reactive valuations it suffices to show soundness for CPcr1 and CPcr2.
Let algebra A and valuation H ∈ A be given.

((P / a . Q) / a . R)/H =

{
(P / a . Q)/ ∂

∂a (H) if a/H = T

R/ ∂
∂a (H) if a/H = F

=


P/ ∂

∂a ( ∂
∂a (H)) if a/H = T and a/ ∂

∂a (H) = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = T and a/ ∂
∂a (H) = F

R/ ∂
∂a (H) if a/H = F

=


P/ ∂

∂a ( ∂
∂a (H)) if a/H = T and a/H = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = T and a/H = F

R/ ∂
∂a (H) if a/H = F

=

{
P/ ∂

∂a ( ∂
∂a (H)) if a/H = T

R/ ∂
∂a (H) if a/H = F

=

{
P/ ∂

∂a (H) if a/H = T

R/ ∂
∂a (H) if a/H = F

= (P / a . R)/H

∂

∂((P / a . Q) / a . R)
(H) =


∂

∂P ( ∂
∂a ( ∂

∂a (H))) if a/H = T and a/ ∂
∂a (H) = T

∂
∂Q ( ∂

∂a ( ∂
∂a (H))) if a/H = T and a/ ∂

∂a (H) = F
∂

∂R ( ∂
∂a (H)) if a/H = F

=

{
∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂R ( ∂

∂a (H)) if a/H = F

=
∂

∂(P / a . R)
(H)

By Proposition 2.2, CPcr1 is sound. The proof of soundness for CPcr2 is similar
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to that of CPcr1.

(P / a . (Q / a . R))/H =

{
P/ ∂

∂a (H) if a/H = T

(Q / a . R)/ ∂
∂a (H) if a/H = F

=


P/ ∂

∂a (H) if ya(H) = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/ ∂
∂a (H) = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/ ∂
∂a (H) = F

=


P/ ∂

∂a (H) if ya(H) = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/H = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/H = F

=

{
P/ ∂

∂a (H) if a/H = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F

=

{
P/ ∂

∂a (H) if a/H = T

R/ ∂
∂a (H) if a/H = F

= (P / a . R)/H

∂

∂(P / a . (Q / a . R))
(H) =


∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂Q ( ∂

∂a ( ∂
∂a (H))) if a/H = F and a/ ∂

∂a (H) = T
∂

∂R ( ∂
∂a ( ∂

∂a (H))) if a/H = F and a/ ∂
∂a (H) = F

=

{
∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂R ( ∂

∂a (H)) if a/H = F

=
∂

∂(P / a . R)
(H)

Hence, CPcr2 is sound.

2.7.2 Completeness

As we are working with a new variety we are required to define a new set of
basic forms. Otherwise syntactic equality and cr-congruence will not coincide.

Definition 2.18. The set of contractive basic forms is the smallest set BFcr

such that T, F ∈ BFcr and if P,Q ∈ BFcr then for all a ∈ A

• if P l P1 / a . P2 and Q l Q1 / a . Q2 then P1 / a . Q2 ∈ BFcr

• if P l P1 / a . P2 and Q 6l Q1 / a . Q2 then P1 / a . Q ∈ BFcr

• if P 6l P1 / a . P2 and Q l Q1 / a . Q2 then P / a . Q2 ∈ BFcr

• if P 6l P1 / a . P2 and Q 6l Q1 / a . Q2 then P / a . Q ∈ BFcr

This definition differs from the one for repetition-proof basic forms. For
example, (T / a . T ) / a . F is a valid repetition-proof basic form but it is not a
contractive basic form. In fact, BFcr is a subset of BFrp.
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Proposition 2.19. BFcr ⊆ BFrp

Proof. Let P ∈ BFcr. Then by structural induction on P we show that P ∈
BFrp. If P ∈ {T, F}, it follow immediately that P ∈ BFrp.

Suppose P l P1 / a . P2. By definition, P1, P2 ∈ BFcr. Hence, by I.H.,
it follows that P1, P2 ∈ BFrp. By definition of contractive basic forms, P1 6l
P11 / a . P12 and P2 6l P21 / a . P22. Consequently, P1 / a . P2 ∈ BFrp.

The following lemma shows that the set BFcr is indeed the set of basic forms
we want.

Lemma 2.20. For each closed term P there exists a term P ′ ∈ BFcr such that
CPcr ` P = P ′.

Proof. By structural induction on P . We can assume that P ∈ BF because
Lemma 2.5 is applicable.

If P is T or F then P ∈ BFcr. Suppose P is P1 / a . P2. By the induction
hypothesis, there exists terms P ′1, P

′
2 ∈ BFcr such that ` P1 = P ′1 and ` P2 =

P ′2. Now suppose that P ′1 l P ′11 / a . P
′
12 and P ′2 l P ′21 / a . P

′
22. Consequently,

P1 / a . P2 = P ′1 / a . P
′
2

= (P ′11 / a . P
′
12) / a . (P ′21 / a . P

′
22)

= P ′11 / a . P
′
22

By definition of BFcr we have P ′11 / a . P
′
22 ∈ BFcr.

Using similar reasoning we can show that there exists such a term P ′ ∈ BFcr

for the remaining three cases:

• P ′1 6l P ′11 / a . P
′
12 and P ′2 l P ′21 / a . P

′
22

• P ′1 l P ′11 / a . P
′
12 and P ′2 6l P ′21 / a . P

′
22

• P ′1 6l P ′11 / a . P
′
12 and P ′2 6l P ′21 / a . P

′
22

The following two lemmas are needed for proving completeness for all closed
terms.

Lemma 2.21. For P1 / a . P2, Q1 / a . Q2 ∈ BFcr,

P1 / a . P2 =cr Q1 / a . Q2 =⇒ P1 =cr Q1 ∧ P2 =cr Q2

Proof. We use a similar proof as the one for Lemma 2.6. Note that the problems
that occurred in the variety with repetition-proof valuations from having either
P1 l P11 /a.P12 or Q1 l Q11 /a.Q12 cannot occur here by construction of the
contractive basic forms i.e., if either P1 or Q1 are syntactically equal to those
terms then P1 / a . P2, Q1 / a . Q2 ∈ BFcr would not be true.

Lemma 2.22. For |A| ≥ 2 and P,Q ∈ BFcr,

P =cr Q ⇐⇒ P l Q

Proof. We use a similar proof as the one for Lemma 2.13.
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Similar to the previous varieties, now that we have proven these lemmas,
completeness for all closed terms follows.

Theorem 2.23. If |A| ≥ 2 then for closed terms P and Q,

P =cr Q =⇒ CPcr ` P = Q

By definition there is at least on atomic proposition. In the section on
repetition-proof valuation we proved Corollary 2.16. Clearly, this corollary also
applies for this variety because ya(H) = ya( ∂

∂a (H)) is also true in this variety.
Hence, if |A| = 1, contractive congruence =cr coincides with static congruence
=st.

2.8 Static valuations

Static valuations correspond with classical propositional logic. As such the value
of atomic propositions does not depend on other atomic propositions.

st-Congruence is axiomatized by CP and the following two axioms, due to
Hoare in [8]:

(CPstat) (x / y . z) / u . v = (x / u . v) / y . (z / u . v)
(CPcontr) (x / y . z) / y . u = x / y . u

The first axiom CPstat tells us that the value of atomic propositions remain the
same despite their relative position in the term. The second axiom CPcontr is
a generalization of the axioms for contractive valuations in the previous section
i.e., this axiom allows contraction of not only atomic propositions but also for
terms in general. We call the axiomatization of st-congruence CPst.

The symmetric versions of the aforementioned axioms, listed below, follow
from CPst.

(CPstat′) x / y . (z / u . v) = (x / y . z) / u . (x / y . v)
(CPcontr′) x / y . (z / y . u) = x / y . u

The key in deriving CPstat′ and CPcontr′ is the equality y/x.z = z/(F/x.T ).y
which we proved in the free reactive valuation section. For example,

x / y . (z / u . v) = x / (F / (F / y . T ) . T ) . (z / u . v)
= (z / u . v) / (F / y . T ) . x
= (z / (F / y . T ) . x) / u . (v / (F / y . T ) . x)
= (x / y . z) / u . (x / y . v)

One can prove CPcontr′ using the same technique.
Looking at the axiomatization it might not be immediately clear that this

variety corresponds to classical propositional logic. One of the major differences
between classical propositional logic and the varieties we have studied in the
previous sections is the fact that the values of atomic propositions in a given
term do not change depending on where they occur in the term. The following
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equality illustrates that the variety with static valuations also has this property.

x = (x / y . z) / F . x

= (x / F . x) / y . (z / F . x)
= x / y . x

= y ◦ x

So appending an arbitrary term before x will not change the value of x. In the
next subsection we will prove its semantical counterpart.

In the following subsections we show soundness and completeness for the
static valuations, and examine the relation between static valuations and boolean
algebras.

2.8.1 Soundness

In contrast to the previous sections we cannot immediately start proving sound-
ness but first need the following lemma which will not only be useful for proving
soundness for this variety but also provides some additional insight to the corre-
spondence between this logic and classical logic. It is worth noting that although
this lemma can be viewed as a generalization of the way this variety is defined
i.e., ya( ∂

∂bx) = ya(x), it in fact follows from the definition.

Lemma 2.24. For all P , Q and for all A ∈ st, H ∈ A,

P/
∂

∂Q
(H) = P/H

Proof. Proof by structural induction on P . If P l T or P l F then P/ ∂
∂Q (H) =

P/H is trivially true.
Suppose P l a for a ∈ A. Then proceed by induction on Q. If Q l T or

Q l F then a/ ∂
∂Q (H) = a/H is trivially true. If Q l b for b ∈ A. Then

P/H = ya(H)

= ya(
∂

∂b
(H))

= P/
∂

∂Q
(H)

Suppose Q l Q1 / Q2 . Q3. Then

P/
∂

∂Q
(H) = a/

∂

∂Q1 / Q2 . Q3
(H)

=

{
a/ ∂

∂Q1
( ∂

∂Q2
(H)) if Q2/H = T

a/ ∂
∂Q3

( ∂
∂Q2

(H)) if Q2/H = F

=IH

{
a/ ∂

∂Q2
(H) if Q2/H = T

a/ ∂
∂Q2

(H) if Q2/H = F

= a/
∂

∂Q2

(H)

=IH a/H
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This concludes the case for P l a.
Suppose P l P1 / P2 . P3. Then

P/
∂

∂Q
(H) = (P1 / P2 . P3)/

∂

∂Q
(H)

=

{
P1/

∂
∂P2

( ∂
∂Q (H)) if P2/

∂
∂Q (H) = T

P3/
∂

∂P2
( ∂

∂Q (H)) if P2/
∂

∂Q (H) = F

=IH

{
P1/

∂
∂Q (H) if P2/H = T

P3/
∂

∂Q (H) if P2/H = F

=IH

{
P1/H if P2/H = T

P3/H if P2/H = F

= (P1 / P2 . P3)/H

The previous lemma shows that the valuation of terms is independent of
the context in which they appear. It is directly related to the equality x =
y ◦ x which we derived in the introduction to this section, in that it similarly
illustrates that the value of the atomic propositions is not dependent on what
other atomic propositions might have occurred during the valuation of a term,
and consequently it cannot change during the valuation.

In the previously observed varieties there is a clear distinction between equiv-
alence and congruence. This difference was proven by using the example where
a ◦ T ≡K T but a ◦ T 6=K T for K ∈ {fr, rp, cr} because a ◦ T ◦ b 6≡K b. How-
ever, as the previous lemma shows we cannot apply this example for the static
valuations. In fact the following lemma shows that in this variety equivalence
and congruence coincide.

Lemma 2.25. For closed terms P and Q,

P ≡st Q ⇐⇒ P =st Q

Proof. Congruence is by definition an equivalence. So it will suffice to show
that the equivalence ≡st also has the congruence property. Suppose P1 ≡st Q1,
P2 ≡st Q2, and P3 ≡st Q3. Then

(P1 / P2 . P3)/H =

{
P1/

∂
∂P2

(H) if P2/H = T

P3/
∂

∂P2
(H) if P2/H = F

=∗

{
P1/H if P2/H = T

P3/H if P2/H = F

=

{
Q1/H if Q2/H = T

Q3/H if Q2/H = F

=∗

{
Q1/

∂
∂Q2

(H) if Q2/H = T

Q3/
∂

∂Q2
(H) if Q2/H = F

= (Q1 / Q2 . Q3)/H

At both the *-marked steps in the derivation we apply Lemma 2.24.
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Note that the application of Lemma 2.24 in the previous proof is neces-
sary because otherwise P1/

∂
∂P2

(H) and P3/
∂

∂P2
(H) can only be replaced by

Q1/
∂

∂P2
(H) and Q3/

∂
∂P2

(H) at which point the expression cannot be further
reduced. So this line of reasoning will not work for the other varieties where we
do not have this lemma.

Now that we have proven these lemmas, soundness is relatively easy.

Theorem 2.26. For closed terms P and Q,

CPst ` P = Q =⇒ P =st Q

Proof. By Lemma 2.25, we only need to show that

CPst ` P = Q =⇒ P ≡st Q

It suffices to show soundness for only CPstat and CPcontr. Take note of the
frequent use of Lemma 2.24 in the derivations below.

((P / Q . R) / S . V )/H =

{
(P / Q . R)/ ∂

∂S (H) if S/H = T

V/ ∂
∂S (H) if S/H = F

=


P/ ∂

∂Q ( ∂
∂S (H)) if S/H = T and Q/ ∂

∂S (H) = T

R/ ∂
∂Q ( ∂

∂S (H)) if S/H = T and Q/ ∂
∂S (H) = F

V/ ∂
∂S (H) if S/H = F

=


P/H if S/H = T and Q/H = T

R/H if S/H = T and Q/H = F

V/H if S/H = F

=


P/H if Q/H = T and S/H = T

V/H if Q/H = T and S/H = F

R/H if Q/H = F and S/H = T

V/H if Q/H = F and S/H = F

=


P/ ∂

∂S ( ∂
∂Q (H)) if Q/H = T and S/ ∂

∂Q (H) = T

V/ ∂
∂S ( ∂

∂Q (H)) if Q/H = T and S/ ∂
∂Q (H) = F

R/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F and S/ ∂
∂Q (H) = T

V/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F and S/ ∂
∂Q (H) = F

=

{
(P / S . V )/ ∂

∂Q (H) if Q/H = T

(R / S . V )/ ∂
∂S (H) if Q/H = F

= ((P / S . V ) / Q . (R / S . V ))/H
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((P / Q . R) / Q . S)/H =

{
(P / Q . R)/ ∂

∂Q (H) if Q/H = T

S/ ∂
∂Q (H) if Q/H = F

=


P/ ∂

∂Q ( ∂
∂Q (H)) if Q/H = T and Q/ ∂

∂Q (H) = T

R/ ∂
∂Q ( ∂

∂Q (H)) if Q/H = T and Q/ ∂
∂Q (H) = F

S/ ∂
∂Q (H) if Q/H = F

=


P/ ∂

∂Q ( ∂
∂Q (H)) if Q/H = T and Q/H = T

R/ ∂
∂Q ( ∂

∂Q (H)) if Q/H = T and Q/H = F

S/ ∂
∂Q (H) if Q/H = F

=

{
P/ ∂

∂Q ( ∂
∂Q (H)) if Q/H = T

S/ ∂
∂Q (H) if Q/H = F

=

{
P/ ∂

∂Q (H) if Q/H = T

S/ ∂
∂Q (H) if Q/H = F

= (P / Q . S)/H

Thus CPstat and CPcontr are sound. Soundness of the rest of the axioms follows
by the soundness of the variety with free reactive valuations.

2.8.2 Completeness

Proving completeness follows the same strategy as we have seen before i.e., we
define basic forms, and prove completeness for the basic forms. However, the
individual lemmas will differ significantly from what we have seen up to this
point because the construction of the static basic forms is more complicated.

In order to define the static basic forms, we first need to enumerate the
members of A:

a1, a2, . . . , an

Recall that a basic form i.e., a member of BF, corresponds to a labeled binary
tree. A static basic form is a member of BF, and is a full binary tree with n+ 1
levels. At level i only atomic proposition ai occurs, and at level n + 1 at each
leaf there is either a T or F . The resulting tree is pictured below:

a1

vvllllllllllllllll

((QQQQQQQQQQQQQQQ

a2

|| ""

a2

}} !!an

||zz
zz

zz
zz

""DD
DD

DD
DD

. . . . . . . . .

T/F T/F

So an atomic proposition ai occurs 2i−1 times and there are 2n leaves. The set
of static basic forms is called BFst.

The following two lemmas are needed to prove that there exists a static basic
form for each closed term.
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Lemma 2.27. For P,R ∈ BFst and ai ∈ A, there exists a term Q ∈ BFst such
that

CPst ` P / ai . R = Q

Proof. We proceed by induction on the number of atomic propositions. Note
that since P,R ∈ BFst it follows that P l P1 / a1 . P2 and R l R1 / a1 . R2

with P1, P2, R1, R2 ∈ BFst.
If |A| = 1 then ai = a1, and

P / ai . R = (P1 / a1 . P2) / a1 . (R1 / a1 . R2)
=∗ P1 / a1 . R2

(*) is obtained by applying CPcontr. Since P1 / a1 . R2 is a static basic form,
we have shown the existence of Q.

Suppose |A| = n+ 1 and i ≥ 2 (if i = 1 apply CPcontr and CPcontr′). Then

P / ai . R = (P1 / a1 . P2) / ai . (R1 / a1 . R2)
= (P1 / ai . (R1 / a1 . R2)) / a1 . (P2 / ai . (R1 / a1 . R2))

Next take the left consequent,

P1 / ai . (R1 / a1 . R2) = (P1 / ai . R1) / a1 . (P1 / ai . R2)
=IH Q1 / a1 . Q2

where Q1 = P1 / ai . R1, Q2 = P1 / ai . R, and both Q1 and Q2 are static basic
forms given the set of atomic propositions A \ {a1} (but otherwise the same
enumeration). Note that since |A\{a1}| = n, we could use the I.H. in the above
derivation.

We can apply the same argument for the right consequent P2/ai.(R1/a1.R2)
and obtain Q2 and Q3 such that they are static basic forms for this set, and
Q3 = P2 / ai . R1 and Q4 = P2 / ai . R2. Consequently,

P / ai . R = (Q1 / a1 . Q2) / a1 . (Q3 / a1 . Q4)
= Q1 / a1 . Q4

Clearly, the term Q1 / a1 . Q4 is a static basic form for the set A.

The rest of this section resembles the previous sections. So we start by
showing that there is a static basic form for each closed term.

Theorem 2.28. For each term closed term P there exists a P ′ ∈ BFst such
that

CPst ` P = P ′

Proof. By structural induction on P . Since we already know that there exists a
provably equal basic form for each closed term P (as opposed to a static basic
form), we can assume P is a basic form. If P ∈ {T, F} then simply construct a
static basic forms where all the leaves are either T or F . Suppose P l P1/a.P2.
By I.H. there exist P ′1, P

′
2 ∈ BFst such that P1 = P ′1 and P2 = P ′2. Then by the

previous lemma we know P ′ exists.
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Next we show that for static basic forms the congruence =st coincides with
syntactic equality.

Lemma 2.29. For static basic forms P and Q,

P =st Q ⇐⇒ P l Q

Proof. Since one direction is trivial, it suffices to prove that P =st Q implies
P l Q. Assume P 6l Q for static basic forms P and Q. By definition of static
basic forms, it follows that there is at least one leaf that differs in value for P
and Q. For example the leftmost leaf for P has value T and the leftmost leaf
for Q has value F . It is then trivial to construct a static valuation H such
that P/H 6= Q/H. In the example we just mentioned this valuation would
assign true to all atomic propositions. Since there is a valuation H such that
P/H 6= Q/H, it follows that P 6≡st Q. Hence, P 6=st Q.

Using the same reasoning as in the previous sections we obtain completeness
for all closed terms.

Theorem 2.30. For closed terms P and Q,

P =st Q =⇒ CPst ` P = Q
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3
ω-Completeness

In this chapter we discuss ω-completeness of the different axiomatizations we
encountered thus far. The following definition of ω-completeness is taken from
[7].

Definition 3.1. An axiomatization E over a signature Σ is ω-complete if an
equation s = t with s, t ∈ T(Σ) can be derived from E if σ(s) = σ(t) can be
derived from E for all closed substitutions σ.

The set T(Σ) is the set of all terms over signature Σ. ω-Completeness is also
know as inductive completeness since we do not need an additional induction
theorem to prove that s = t can be derived if σ(s) = σ(t) can be derived for all
closed substitutions σ.

An example of an axiomatization that is not ω-complete is the following
axiomatization of the natural numbers with addition and multiplication, taken
from [3]:

x+ 0 = x

x+ S(y) = S(x+ y)
x · 0 = 0

x · S(y) = x+ (x · y)

In this axiomatization every closed instance of e.g., x+y = y+x can be derived.
However, the theorem itself cannot be derived from the above axioms.

See [12] for a more thorough introduction to ω-completeness.

3.1 ω-Completeness of CP

We begin with proving ω-completeness for CP. First, however, it is necessary to
distinguish between a few unique cases based on the number of elements in the
set A of atomic propositions. As it turns out CP is not ω-complete for |A| < 2.
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If the set A is empty, and there are no atomic propositions, it follows that
every closed closed substitution σ replaces the variables by terms build up from
T , F and / . . Using axioms CP1 and CP2, this is the same as replacing
the variables by either T or F . If we now consider the equation x ◦ T = T , we
see that for every closed substitution σ, σ(x ◦ T ) = σ(T ) follows from CP1 and
CP2. However, x ◦ T = T cannot be derived from CP. If it could be derived
then it could also be derived in the case where A 6= ∅ because the derivations
are independent of the number of atomic propositions in A. So if this is the
case then by soundness a ◦ T =fr T , which is clearly not true.

Similarly, when there is only one atomic proposition i.e., A = {a}, we take
the equation x ◦a ◦T = a ◦x ◦T . For every closed substitution σ, σ(x ◦a ◦T ) =
σ(a ◦ x ◦ T ), where we can assume without loss of generality that σ replaces
variables either by T , F or a sequence of a’s i.e., a ◦ a ◦ . . . ◦ a. However,
CP 0 x ◦ a ◦ T = a ◦ x ◦ T .

Therefore, in the remainder of the discussion of ω-completeness for CP, we
assume that A has at least two atomic propositions, usually referred to as a and
b.

Similar to the sections where we showed completeness for the various vari-
eties, we define a set of basic forms. However, this time the basic forms can also
be open terms.

Definition 3.2. Let the set of open basic forms T be the smallest set such that
T, F ∈ T, and if s, t ∈ T then s / a . t ∈ T for all a ∈ A and s / x . t ∈ T for all
x ∈ V .

The set V is the set of variables. The terminology “open basic form” is a
bit misleading because an open basic form can possibly be a closed term. This
definition differs from the one for the set of closed basic forms BF in that terms
of the form s / x . t are also included. In addition, observe that if we substitute
all the variables by atomic propositions in an arbitrary open basic form, the
resulting term will be a member of BF.

Lemma 3.3. For all terms t there exists an open basic form t′ such that CP `
t = t′.

Proof. Proof by structural induction, very similar to the proof of Theorem 2.5.

The following lemma tells us that when dealing with open basic forms, it
suffices to use closed substitutions that map variables to atomic propositions
instead of arbitrary closed terms.

Lemma 3.4. For open basic forms s and t, if for all closed substitutions σ :
V → A,1

σ(s) =fr σ(t)

Then for all closed substitutions σ : V → T (ΣCP (A)),

σ(s) =fr σ(t)

1Note that with the notation σ : V → A we do not imply that this substitution only works
on variables but that the substitution replaces the variables in a term with members of A.
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Proof. Assume there exists a closed substitution σ : V → T (ΣCP (A)) such that
σ(s) 6=fr σ(t) for open basic forms s and t. We prove by induction on s and t
that there exists a closed substitution τ : V → A such that τ(s) 6=fr τ(t). We
omit the cases where both s and t are closed terms, which are trivial, and the
cases that follow by symmetry.

Suppose s ∈ {T, F} and t l t1/x.t2 or t l t1/a.t2. Let τ be the substitution
that maps all variables to atomic proposition a. Then τ(s), τ(t) ∈ BF, and
clearly τ(s) 6l τ(t). By Lemma 2.7, τ(s) 6=fr τ(t).

Suppose s l s1 / a . s2 and t l t1 / b . t2. Then it is trivial to see that no
matter what closed substitution τ : V → A we choose, τ(s) 6=fr τ(t). Similarly,
we can reduce the case where s l s1 / x . s2 and t l t1 / y . t2, to this case
by letting τ(x) = a and τ(y) = b. Furthermore, the same argument can be
used when one of the terms starts with a variable and the other with an atomic
proposition.

Suppose s l s1 /x.s2 and t l t1 /x.t2. Since σ(s) 6=fr σ(t), we can assume
without loss of generality that σ(s1) 6=fr σ(t1). By the induction hypothesis, it
follows that there exists a closed substitution τ : V → A such that τ(s1) 6=fr

τ(t1). Consequently, by Lemma 2.6, τ(t) 6=fr τ(s). We can use the same
argument for s l s1 / a . s2 and t l t1 / a . t2.

Note that this lemma is trivially true when A = ∅. The above lemma cannot
be proven for |A| = 1. Take for example,

s = (T / x . F ) / a . (T / x . F )
t = (T / a . F ) / x . (T / a . F )

where we assume that A = {a}. Then the only closed substitution τ : V → A is
the one that maps all variables to a. Hence τ(s) l τ(t), and thus τ(s) =fr τ(t).
However, if we pick closed substitution σ : V → T (ΣCP (A)) such that σ(x) = F ,
then clearly σ(s) 6=fr σ(t).

Lemma 3.5. For open basic forms s and t, if for all closed substitutions σ,
σ(s) =fr σ(t) then s l t.

Proof. We prove the contraposition i.e., given that s 6l t we show that there
exists a closed substitution σ such that σ(s) 6=fr σ(t). Note that if s and t
are closed terms then s, t ∈ BF, the set of closed basic forms. Since we already
showed in Lemma 2.7 that for terms in BF fr-congruence and syntactical equal-
ity coincide, we are done. We proceed by induction on s and t, omitting the
cases that follow by symmetry.

Suppose one of the following cases,

• s ∈ {T, F} and t l t1 / a . t2

• s ∈ {T, F} and t l t1 / x . t2

• s l s1 / a . s2 and t l t1 / b . t2

• s l s1 / x . s2 and t l t1 / b . t2

• s l s1 / x . s2 and t l t1 / y . t2
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Let σ : V → A be a closed substitution such that σ(x) = a and σ(y) = b.
Regardless of which case we pick, it follows that σ(s), σ(t) ∈ BF. Furthermore,
σ(s) 6l σ(t). Consequently, σ(s) 6=fr σ(t) by Lemma 2.7.

Suppose s l s1 /x.s2 and t l t1 /x.t2. Since s 6l t, we can assume without
loss of generality that s1 6l t1. By the induction hypothesis, there exists a closed
substitution σ such that σ(s1) 6=fr σ(t1). Consequently, by Lemma 3.4, there
exists a closed substitution τ : V → A such that τ(s1) 6=fr τ(t1). Hence, by
Lemma 2.6, τ(s) 6=fr τ(t). Using a similar argument, we can prove this for
s l s1 / a . s2 and t l t1 / a . t2.

The following theorem shows that CP is ω-complete.

Theorem 3.6. Let s and t be open terms such that for all closed substitutions
σ, CP `σ(s) = σ(t), then CP `s = t.

Proof. Assume that ∀σ : CP `σ(s) = σ(t). By Lemma 3.3, there exist open
basic forms s′ and t′ such that CP `s = s′, t = t′. Hence, ∀σ : CP `σ(s′) = σ(t′).
By soundness, it follows that ∀σ : σ(s′) =fr σ(t′). Consequently, by Lemma
3.5, s′ l t′, and thus CP `s′ = t′. It follows that CP `s = t.

We were not able to prove ω-completeness for CPrp and CPcr. Instead we
note that using the same examples as before, it follows that both CPrp and
CPcr are not ω-complete for |A| < 2. Furthermore, proving ω-completeness for
the case |A| ≥ 2 suggests that we adjust the set of open basic forms accordingly
and then prove the same lemmas as before only this time using the altered set
of open basic forms.

3.2 ω-Completeness of CPst

The proof of ω-completeness for the axiomatization CPst is quite different from
the previous proof. We will use a back-and-forth translation between CPst and
an axiomatization of boolean algebra of which we know that it is ω-complete,
to show ω-completeness of CPst.

In [3] a proof of ω-completeness for the axiomatization of an n-valued Post
algebra is given. If we take n = 2 the axiomatization is that of a Boolean
algebra. We obtain the following axiomatization by taking n = 2, and removing
some of the redundant axioms.

x ∨ y = y ∨ x
x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∧ (x ∨ y) = x

x ∨ (x ∧ y) = x

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
F ∨ x = x

x ∧ T = x

x ∧ ¬x = F

¬x ∨ x = T

¬(x ∧ y) = ¬x ∨ ¬y
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We call this axiomatization BA. The signature of BA consists of T , F , ¬, ∨ and
∧. Expanding the signature with a set of atomic propositions A does not affect
the ω-completeness of this axiomatization. We call the resulting signature ΣBA.
We use the following two translations between ΣCP (A) and ΣBA, starting with
the translation of ΣCP (A) to ΣBA.

T ′ = T

F ′ = F

a′ = a

x′ = x

(t / r . s)′ = (¬r′ ∨ t′) ∧ (r′ ∨ s′)

Note that (¬r′ ∨ t′) ∧ (r′ ∨ s′) = (r′ → t′) ∧ (¬r′ → s′) which is perhaps more
intuitive. The translation from ΣBA to ΣCP (A) looks as follows.

T ∗ = T

F ∗ = F

a∗ = a

x∗ = x

(¬t)∗ = F / t∗ . T

(t ∨ r)∗ = T / t∗ . r∗

(t ∧ r)∗ = r∗ / t∗ . F

Note that these are translations over all terms including open terms. The next
two lemmas show that the translations are sound i.e., if two terms are provably
equal in either CPst or BA then their respective translations are also provably
equal.

Lemma 3.7. For all terms s and t,

CPst ` s = t =⇒ BA ` s′ = t′

Proof. It suffices to show that the translations of axioms CP1-4, CPstat and
CPcontr can be derived in BA.

(x / T . y)′ = (¬T ∨ x) ∧ (T ∨ y)
= x′

(x / F . y)′ = (¬F ∨ x) ∧ (F ∨ y)
= y′

(T / x . F )′ = (¬x ∨ T ) ∧ (x ∨ F )
= x′

Using a truth table we can check that the translations of CP4, CPstat and
CPcontr are correct because BA is both sound and complete.

Lemma 3.8. For all terms s and t,

BA ` s = t =⇒ CPst ` s∗ = t∗
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Proof. We just need to check that the translations of axioms of BA are derivable
in CPst. We omit the trivial derivations.

(x ∨ y)∗ = T / x . y

= T / x . (T / y . F )
= (T / x . T ) / y . (T / x . F )
= T / y . x

= (y ∨ x)∗

(x ∧ y)∗ = y / x . F

= (T / y . F ) / x . F
= (T / x . F ) / y . (F / x . F )
= x / y . F

= (y ∧ x)∗

(x ∨ (y ∨ z))∗ = T / x . (T / y . z)
= (T / t . z) / x . (T / y . z)
= T / (T / x . y) . z
= ((x ∨ y) ∨ z)∗

(x ∧ (x ∨ y))∗ = (T / x . y) / x . F
= T / x . F

= x∗

(x ∨ (x ∧ y))∗ = T / x . (y / x . F )
= T / x . F

= x∗

(x ∨ (y ∧ z))∗ = T / x . (z / y . F )
= (T / x . z) / y . (T / x . F )
= (T / x . (T / x . z)) / y . (T / x . F )
= T / x . ((T / x . z) / y . F )
= (T / x . z) / x . ((T / x . z) / y . F )
= ((T / x . z) / T . F ) / x . ((T / x . z) / y . F )
= (T / x . z) / (T / x . y) . F
= ((x ∨ y) ∧ (x ∨ z))∗
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(x ∧ ¬x)∗ = (F / x . T ) / x . F
= F / x . F

= F ∗

(¬x ∨ x)∗ = T / (F / x . T ) . x
= x / x . T

= (T / x . F ) / x . T
= T / x . T

= T ∗

(¬(x ∧ y))∗ = F / (y / x . F ) . T
= (F / y . T ) / x . T
= T / (F / x . T ) . (F / y . T )
= (¬x ∨ ¬y)∗

The following two lemmas show that the translations are invariant for each
logic i.e., if a term t is translated first to one logic and then back to the original
it is still provably equal to t.

Lemma 3.9. For all terms s,

CPst ` (s′)∗ = s

Proof. Proof by structural induction on s. If s ∈ {T, F} ∪ A ∪ V then it is
trivially true. Suppose s l s1 / s2 . s3. By the induction hypothesis, it follows
that

CPst ` (s′1)∗ = s1, (s′2)∗ = s2, (s′3)∗ = s3

Then

((s1 / s2 . s3)′)∗ = ((¬s′2 ∨ s′1) ∧ (s′2 ∨ s′3))∗

= (T / (s′2)∗ . (s′3)∗) / (T / (F / (s′2)∗ . T ) . (s′1)∗) . F
=IH (T / s2 . s3) / (T / (F / s2 . T ) . s1) . F
= (T / s2 . s3) / (s1 / s2 . T ) . F
= ((T / s2 . s3) / s1 . F ) / s2 . ((T / s2 . s3) / T . F )
= ((T / s2 . s3) / s1 . F ) / s2 . (T / s2 . s3)
= ((T / s2 . s3) / s1 . F ) / s2 . s3
= ((T / s1 . F ) / s2 . (s3 / s1 . F ) / s2 . s3
= (T / s1 . F ) / s2 . s3
= s1 / s2 . s3
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Lemma 3.10. For all terms s,

BA ` (s∗)′ = s

Proof. Proof by structural induction on s. If s ∈ {T, F} ∪ A ∪ V then it is
trivially true. Suppose s l ¬s1. Then

((¬s1)∗)′ = (F / s∗1 . T )′

= (¬(s∗1)′ ∨ F ) ∧ ((s∗1)′ ∨ T )
= ¬(s∗1)′

=IH ¬s1

Suppose s l s1 ∨ s2. Then

((s1 ∨ s2)∗)′ = (T / s∗1 . s
∗
2)′

= (¬(s∗1)′ ∨ T ) ∧ ((s∗1)′ ∨ (s∗2)′)
= (s∗1)′ ∨ (s∗2)′

=IH s1 ∨ s2

Suppose s l s1 ∧ s2. Then

((s1 ∧ s2)∗)′ = (s∗2 / s
∗
1 . F )′

= (¬(s∗1)′ ∨ (s∗2)′) ∧ ((s∗1)′ ∨ F )
= (¬(s∗1)′ ∨ (s∗2)′) ∧ (s∗1)′

= ((s∗1)′ ∧ ¬(s∗1)′) ∨ ((s∗1)′ ∧ (s∗2)′)
= (s∗1)′ ∧ (s∗2)′

=IH s1 ∧ s2

The last lemma before proving ω-completeness of CPst is a variation of
Lemma 3.4.

Lemma 3.11. If for all closed substitutions σ : V → T (ΣCP (A)),

BA ` σ(s)′ = σ(t)′

Then for all closed substitutions τ : V → T (ΣBA),

BA ` τ(s′) = τ(t′)

Proof. Assume that ∀σ : BA ` σ(s)′ = σ(t)′ with σ : V → T (ΣCP (A)) closed
substitutions. Let σ′(x) =def σ(x)′. Since for all x ∈ V , x′ = x, it follows that
σ(s)′ l σ′(s′). Hence,

∀σ : BA ` σ′(s′) = σ′(t′) (∗)

Let τ : V → T (ΣBA) be a closed substitution. Furthermore, define σ : V →
T (ΣCP (A)) to be the substitution such that σ(x) = τ(x)∗ for all x ∈ V . By
Lemma 3.10, it follows that BA ` τ(x) = (τ(x)∗)′ = σ(x)′ = σ′(x) for all x.
Hence, BA ` τ(s′) = σ′(s′) and BA ` τ(t′) = σ′(t′). Consequently, by (*),

BA ` τ(s′) = σ′(s′) = σ′(t′) = τ(t′)

Thus, ∀τ : BA ` τ(s′) = τ(t′).
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Having done the groundwork, it is now possible to prove that CPst is ω-
complete.

Theorem 3.12. Let s and t be terms over ΣCP (A) such that for all closed
substitutions σ, CPst ` σ(s) = σ(t), then CPst ` s = t.

Proof. Assume that
∀σ : CPst ` σ(s) = σ(t)

where σ is closed. By Lemma 3.7,

∀σ : BA ` σ(s)′ = σ(t)′

By Lemma 3.11,
∀τ : BA ` τ(s′) = τ(t′)

where τ is closed. By ω-completeness of BA,

BA ` s′ = t′

By Lemma 3.8,
CPst ` (s′)∗ = (t′)∗

By Lemma 3.9
CPst ` s = t

In this chapter we have shown ω-completeness for CP and CPst. ω-Completeness
of the remaining two axiomatizations, CPrp and CPcr, remains an open issue
with the exception of the case where there are less than two atomic propositions
in which neither CP, CPrp nor CPcr are ω-complete.
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4
Independence of the axioms

In this chapter we prove that the axioms are independent from each other. An
axiom is independent with respect to a set of axioms if it cannot be derived
from the other axioms e.g., CP1 is independent in CP if CP2,CP3,CP4 0 CP1.
This is a nice property for a set of axioms to have, as it shows that there are no
redundant axioms.

The standard strategy for proving that an axiom is independent consists
of constructing a model such that every axiom except the one we are trying to
prove independence for, is true in this model. In other words, if we want to prove
that CP1 is independent in CP, we show there is a modelM and interpretation
φ such that

(1) CP2-4 ` s = t implies that M |= φ(s) = φ(t)

(2) M 6|= φ(CP1)

Hence, by contraposition of (1) it follows that CP2-4 0 CP1. Note that this only
applies ifM is a model of equational logic i.e., reflexivity, symmetry, transitivity
and congruence are all true in M.

In the following sections independence of axioms is shown for the different
varieties of RVAs.

4.1 Independence of CP

Recall that fr-congruence is axiomatized by the axioms in CP, listed here again
for the reader’s convenience:

(CP1) x / T . y = x
(CP2) x / F . y = y
(CP3) T / x . F = x
(CP4) x / (y / z . u) . v = (x / y . v) / z . (x / u . v)
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We start by proving independence of CP1. In order to do this we need to
construct a model such that CP2, CP3 and CP4 are true in this model but CP1
is not. Take a look at the following model:

φ1(T ) = T

φ1(F ) = F

φ1(a) = T

φ1(P / Q . R) = φ1(Q) ∨ φ1(R)

for all a ∈ A with ∨ as in sentential logic and as domain {T, F}. Observe that
this is a model of equational logic, in particular congruence is true. The next
step in proving independence for CP1 is to show that CP1 does not hold under
this interpretation. We do this by giving a counterexample i.e., we take a specific
instantiation of this axiom and show that the left-hand and the right-hand side
of CP1 are not equal. If CP1 were true in this model then φ1(F /T .F ) = φ1(F ).
However, φ1(F / T . F ) = T , and hence unequal to φ1(F ) = F . Therefore, CP1
does not hold in this model. Now we have to check whether CP2-4 do hold:

φ1(P / F . Q) = F ∨ φ1(Q)
= φ1(Q)

φ1(T / P . F ) = φ1(P ) ∨ F
= φ1(P )

φ1(P / (Q / R . S) . V ) = φ1(Q / R . S) ∨ φ1(V )
= (φ1(R) ∨ φ1(S)) ∨ φ1(V )
= φ1(R) ∨ (φ1(S) ∨ φ1(V ))
= φ1(R) ∨ (φ1(P / S . V ))
= φ1((P / Q . V ) / R . (P / S . V ))

Since CP2-4 are true in this model but CP1 is not, we can conclude that CP1
is independent with respect to CP.

Proving independence for the remaining axioms requires that we repeat these
steps for each axiom. So let us continue with proving independence of axiom
CP2. This time we construct a model such that it models CP1, CP3 and CP4
but not CP2.

φ2(T ) = T

φ2(F ) = F

φ2(a) = T

φ2(P / Q . R) = φ2(P ) ∧ φ2(Q)

for all a ∈ A. Then we check whether CP2 does not hold. Since φ2(T /F .T ) =
F 6= φ2(T ), this is true. It is easy to see that CP1 and CP3 are true in this
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model. That leaves us with checking CP4:

φ2(P / (Q / R . S) . V ) = φ2(P ) ∧ φ2(Q / R . S)
= φ2(P ) ∧ (φ2(Q) ∧ φ2(R))
= (φ2(P ) ∧ φ2(Q)) ∧ φ2(R)
= φ2(P / Q . V ) ∧ φ2(R)
= φ2((P / Q . V ) / R . (P / S . V ))

So CP4 also holds under this interpretation, and thus we know that CP2 is
independent.

The previous two models looked quite similar, in particular the models share
the same domain i.e., {T, F}. In proving the independence of CP3 we will show
that this is not always the case. The model we will be constructing here has a
finite set of natural numbers as domain, and as a result differs quite a bit from
the standard semantics.

The construction of this model requires that we first enumerate the atomic
propositions in the set A:

a1, a2, . . . , an

Using this enumeration we can define our model:

φ3(T ) = 0
φ3(F ) = n+ 1
φ3(ai) = i

φ3(P / Q . R) =

{
φ3(P ) if φ3(Q) ≤ 1
φ3(R) if φ3(Q) > 1

Note that congruence is trivially true in this model. By definition there is at
least one atomic proposition i.e., A 6= ∅. So, we can always assume that a1

exists. Observe that φ3(T / a1 . F ) = φ3(T ) 6= φ3(a1). Hence, CP3 does not
follow. Checking to see that CP1 and CP2 are true is trivial. That leaves CP4:

φ3(P / (Q / R . S) . U) =

{
φ3(P ) if φ3(Q / R . S) ≤ 1
φ3(U) if φ3(Q / R . S) > 1

=


φ3(P ) if φ3(R) ≤ 1 and φ3(Q) ≤ 1
φ3(P ) if φ3(R) > 1 and φ3(S) ≤ 1
φ3(U) if φ3(R) ≤ 1 and φ3(Q) > 1
φ3(U) if φ3(R) > 1 and φ3(S) > 1

=


φ3(P / Q . U) if φ3(R) ≤ 1 and φ3(Q) ≤ 1
φ3(P / S . U) if φ3(R) > 1 and φ3(S) ≤ 1
φ3(P / Q . U) if φ3(R) ≤ 1 and φ3(Q) > 1
φ3(P / S . U) if φ3(R) > 1 and φ3(S) > 1

=

{
φ3(P / Q . U) if φ3(R) ≤ 1
φ3(P / S . U) if φ3(R) > 1

= φ3((P / Q . U) / R . (P / S . U))
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So CP3 is also independent.
Let A = {a1, . . . , an}. Take the following interpretation:

φ4(T ) = 1
φ4(F ) = 0
φ4(ai) = i+ 1

φ4(P / Q . R) =


φ4(P ) if φ4(Q) = 1
φ4(R) if φ4(Q) = 0
φ4(P ) · φ4(Q) otherwise

Clearly, congruence and CP1-3 are true in this model. Furthermore, it follows
that φ4(F / a1 . T ) = φ4(F )φ(a1) = 0. Hence,

φ4(T / (F / a1 . T ) . T ) = φ4(T )
= 1

However,

φ4((T / F . T ) / a1 . (T / T . T )) = φ4(T / F . T )φ4(a1)
= 2

So CP4 is not true using this interpretation. Hence axiom CP4 is also indepen-
dent with respect to CP. Since this is the last axiom in CP, we have now shown
independence for all the axioms in CP. Consequently, there are no redundant
axioms in CP. In the next section we will be looking at an extension of CP i.e.,
the axiomatization of rp-congruence.

4.2 Independence of CPrp

The axiomatization of rp-congruence is an extension of CP with the following
axioms:

(CPrp1) (x / a . y) / a . z = (x / a . x) / a . z
(CPrp2) x / a . (y / a . z) = x / a . (z / a . z)

Note that these are actually axiom schemes i.e., for each a ∈ A we have an
axiom CPrp1 and CPrp2. Since we have a new set of axioms, we are required,
in addition to proving the independence of the two new axioms CPrp1 and
CPrp2, to prove that CP1-4 is independent with respect to this new set of
axioms. Fortunately, it is possible to reuse the models used in the previous
section i.e., for the cases CP1-4 the same models are taken. It then suffices for
these cases to show that CPrp1 and CPrp2 are true in these models.

We start by taking the same model as we did in the previous section for
proving the independence of axiom CP1, and then checking if it models CPrp1
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and CPrp2.

φ1((P / a . Q) / a . R) = φ1(a) ∨ φ(R)
= φ1((P / a . P ) / a . R)

φ1(P / a . (Q / a . R)) = φ1(a) ∨ φ1(Q / a . R)
= φ1(a) ∨ (φ1(a) ∨ φ1(R))
= φ1(a) ∨ φ1(R / a . R)
= φ1(P / a . (R / a . R))

Repeat this procedure for the models given for the independence-models of
CP2, CP3 and CP4.

φ2((P / a . Q) / a . R) = φ2(P / a . Q) ∧ φ2(a)
= (φ2(P ) ∧ φ2(a)) ∧ φ2(a)
= φ2(P / a . P ) ∧ φ2(a)
= φ2((P / a . P ) / a . R)

φ2(P / a . (Q / a . R)) = φ2(P ) ∧ φ2(a)
= φ2(P / a . (R / a . R))

We only show that CPrp1 holds in the model given for case CP3 because
the proof that CPrp2 is true in this model is symmetric to that of CPrp1.

φ3((P / a . Q) / a . R) =

{
φ3(P / a . Q) if φ3(a) ≤ 1
φ3(R) if φ3(a) > 1

=

{
φ3(P ) if φ3(a) ≤ 1
φ3(R) if φ3(a) > 1

=

{
φ3(P / a . P ) if φ3(a) ≤ 1
φ3(R) if φ3(a) > 1

= φ3((P / a . P ) / a . R)

The following shows that CP4 is also independent in CPrp.

φ4((P / a . Q) / a . R) = φ4(P / a . Q)φ4(a)
= φ4(P )φ4(a)φ4(a)
= φ4(P / a . P )φ4(a)
= φ4((P / a . P ) / a . R)

φ4(P / a . (Q / a . R)) = φ4(P )φ(a)
= φ4(P / a . (Q / a . R))

The model for showing independence of CPrp1 is based on the reactive
valuation variety that satisfies

ya(x) = F =⇒ ya(
∂

∂a
(x)) = F
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We call this variety rp1. By definition, this is a subvariety of the variety with
free reactive valuations. Thus, by soundness of free reactive valuations, it follows
that the resulting congruence =rp1 (constructed similarly as =fr, =rp, etc.) is
a model for CP. Hence, we do not have to check whether CP1-4 are true in this
model.

If a/H = T , it is possible that a/H 6= a/ ∂
∂a (H) for some A ∈ rp1 and H ∈ A.

Consequently,

((T / a . F ) / a . F )/H =


T if a/H = T and a/ ∂

∂a (H) = T

F if a/H = T and a/ ∂
∂a (H) = F

F if a/H = F

6=


T if a/H = T and a/ ∂

∂a (H) = T

T if a/H = T and a/ ∂
∂a (H) = F

F if a/H = F

= ((T / a . T ) / a . F )/H

Thus, CPrp1 is not true. However, CPrp2 is.

(P / a . (Q / a . R))/H =

{
P/ ∂

∂a (H) if a/H = T

(Q / a . R)/ ∂
∂a (H) if a/H = F

=


P/ ∂

∂a (H) if a/H = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/ ∂
∂a (H) = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/ ∂
∂a (H) = F

=


P/ ∂

∂a (H) if a/H = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = F and F = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and F = F

=


P/ ∂

∂a (H) if a/H = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and F = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and F = F

=


P/ ∂

∂a (H) if a/H = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/ ∂
∂a (H) = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/ ∂
∂a (H) = F

= (P / a . (R / a . R)/H

∂

∂(P / a . (Q / a . R))
(H) =


∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂Q ( ∂

∂a ( ∂
∂a (H))) if a/H = F and a/ ∂

∂a (H) = T
∂

∂R ( ∂
∂a ( ∂

∂a (H))) if a/H = F and a/ ∂
∂a (H) = F

=


∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂R ( ∂

∂a ( ∂
∂a (H))) if a/H = F and a/ ∂

∂a (H) = T
∂

∂R ( ∂
∂a ( ∂

∂a (H))) if a/H = F and a/ ∂
∂a (H) = F

=
∂

∂(P / a . (R / a . R))
(H)
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Note that both a/H = F and a/ ∂
∂a (H) = T is impossible. Hence, we can

replace ∂
∂Q ( ∂

∂a ( ∂
∂a (H))) with ∂

∂R ( ∂
∂a ( ∂

∂a (H))) in the above derivation.
The proof for showing independence of CPrp2 is symmetric to the one in

CPrp1, using the reactive valuation variety that satisfies

ya(x) = T =⇒ ya(
∂

∂a
(x)) = T

We call this variety rp2 and we will use this variety in the next section.

4.3 Independence of CPcr

The axiomatization of cr-congruence consists of CP and the following axioms

(CPcr1) (x / a . y) / a . z = x / a . z
(CPcr2) x / a . (y / a . z) = x / a . z

Like in the previous section, it is possible to reuse the models given for CP, and
just show that CPcr1 and CPcr2 are true in these models. Starting with CP1:

φ1((P / a . Q) / a . R) = φ1(a) ∨ φ1(R)
= φ1(P / a . R)

φ1(P / a . (Q / a . R)) = φ1(a) ∨ φ1(Q / a . R)
= φ1(a) ∨ (φ1(a) ∨ φ1(R))
= φ1(a) ∨ φ1(R)
= φ1(P / a . R)

For CP2:

φ2((P / a . Q) / a . R) = φ2(P / a . Q) ∧ φ2(a)
= (φ2(P ) ∧ φ2(a)) ∧ φ2(a)
= φ2(P ) ∧ φ2(a)
= φ2(P / a . R)

φ2(P / a . (Q / a . R)) = φ2(P ) ∧ φ2(a)
= φ2(P / a . R)

Similar to the previous section we omit the proof that CPcr2 is true in the
independence-model for CP3 as it is symmetric to that of CPcr1.

φ3((P / a . Q) / a . R) =

{
φ3(P / a . Q) if φ3(a) ≤ 1
φ3(R) if φ3(a) > 1

=

{
φ3(P ) if φ3(a) ≤ 1
φ3(R) if φ3(a) > 1

= φ3(P / a . R)
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Unfortunately, we have not been able to find a model that demonstrates the
independence of CP4 in CPcr. The model we used in previous sections does not
work in this variety. For example, we have the following.

φ4((T / a1 . F ) / a1 . T ) = 4
6= 2
= φ4(T / a . T )

Hence, CPcr1 is not true in the resulting model, and thus φ4 does not suffice.
The question whether CP4 is independent in CPcr remains therefore open.

In order to construct the model that shows independence of CPcr1, we take
the variety of all algebras from variety rp1 that satisfy

∂

∂a
(
∂

∂a
(x)) =

∂

∂a
(x)

for all a ∈ A. We call this variety cr1. It follows that there is an A ∈ cr1 and
H ∈ A such that

((T / a . F ) / a . T )/H =


T/H if a/H = T and a/ ∂

∂a (H) = T

F/H if a/H = T and a/ ∂
∂a (H) = F

F/H if a/H = F

6=

{
T/H if a/H = T

F/H if a/H = F

= (T / a . T )

Checking CPcr2:

(P / a . (Q / a . R))/H =


P/ ∂

∂a (H) if a/H = T

Q/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/ ∂
∂a (H) = T

R/ ∂
∂a ( ∂

∂a (H)) if a/H = F and a/ ∂
∂a (H) = F

=

{
P/ ∂

∂a (H) if a/H = T

R/ ∂
∂a (H) if a/H = F

= (P / a . R)/H

∂

∂(P / a . (Q / a . R))
(H) =


∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂Q ( ∂

∂a ( ∂
∂a (H))) if a/H = F and a/ ∂

∂a (H) = T
∂

∂R ( ∂
∂a ( ∂

∂a (H))) if a/H = F and a/ ∂
∂a (H) = F

=

{
∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂R ( ∂

∂a ( ∂
∂a (H))) if a/H = F

=

{
∂

∂P ( ∂
∂a (H)) if a/H = T

∂
∂R ( ∂

∂a (H)) if a/H = F

=
∂

∂(P / a . R)
(H)
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A proof of independence for CPcr2, starts by taking the variety of all algebras
from variety rp2 (see previous section) that satisfy

∂

∂a
(
∂

∂a
(x)) =

∂

∂a
(x)

for a ∈ A. The proof for showing independence of CPcr2 using this variety is
symmetric to the previous proof of independence for CPcr1.

4.4 Independence of CPst

In this section we show independence of the axioms CP2, CP3, CPstat and
CPcontr.

(CPstat) (x / y . z) / u . v = (x / u . v) / y . (z / u . v)
(CPcontr) (x / y . z) / y . u = x / y . u

The models we used in the previous sections to show independence of CP1 and
CP4 cannot be used here because CPstat and CPcontr are not both true in these
models. We give two counterexamples to show this. The first counterexample
shows that CPstat is not true in the independence-model for CP1. By CPstat
the terms (T / T . T ) . F . F and (T / F . F ) / T . (T / F . F ) should be equal.
However, this is not the case.

φ1((T / T . T ) / F . F ) = φ1(F ) ∨ φ1(F )
= F

φ1((T / F . F ) / T . (T / F . F )) = φ1(T ) ∨ φ1(F ) ∨ φ1(F )
= T

The second counterexample shows that CPcontr is not true in the model we
used for showing independence of CP4.

φ4(T / a1 . F ) / a1 . T ) = 4
6= 2
= φ4(T / a1 . T )

Proving independence for both CP1 and CP4 in CPst remains an open issue.
We can use the same models we used in the previous section for showing

independence of CP2 and CP3.

φ2((P / Q . R) / S . V ) = φ2(P ) ∧ φ2(Q) ∧ φ2(S)
= φ2(P ) ∧ φ2(S) ∧ φ2(Q)
= φ2((P / S . V ) / Q . (R / S . V ))

φ2((P / Q . R) / Q . S) = φ2(P ) ∧ φ2(Q) ∧ φ2(Q)
= φ2(P ) ∧ φ2(Q)
= φ2(P / Q . S)
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φ3((P / Q . R) / S . V ) =

{
φ3(P / Q . R) if φ3(S) ≤ 1
φ3(V ) if φ3(S) > 1

=


φ3(P ) if φ3(S) ≤ 1 and φ3(Q) ≤ 1
φ3(R) if φ3(S) ≤ 1 and φ3(Q) > 1
φ3(V ) if φ3(S) > 1

=


φ3(P ) if φ3(S) ≤ 1 and φ3(Q) ≤ 1
φ3(R) if φ3(S) ≤ 1 and φ3(Q) > 1
φ3(V ) if φ3(S) > 1 and φ3(Q) ≤ 1
φ3(V ) if φ3(S) > 1 and φ3(Q) > 1

=

{
φ3(P / S . V ) if φ3(Q) ≤ 1
φ3(R / S . V ) if φ3(Q) > 1

φ3((P / Q . R) / Q . S) =

{
φ3(P / Q . R) if φ3(Q) ≤ 1
φ3(S) if φ3(Q) > 1

=

{
φ3(P ) if φ3(Q) ≤ 1
φ3(S) if φ3(Q) > 1

= φ3(P / Q . S)

Showing independence of CPstat requires that we define the following sub-
variety of fr which consists of all RVAs that satisfy

Q/
∂

∂Q
(x) = Q/x

and
∂

∂P
(
∂

∂P
(x)) =

∂

∂P
(x)

Note that this is a generalization of the variety cr. We show that CPstat is not
true in this variety by constructing an algebra A and valuation H ∈ A such that
a/H = F , b/H = T , a/ ∂

∂b (H) = T and b/ ∂
∂a (H) = T . Then

((F / a . T ) / b . F )/H =


F if b/H = T and a/ ∂

∂b (H) = T

T if b/H = T and a/ ∂
∂b (H) = F

F if b/H = F

= F

6= T

=


F if a/H = T and b/ ∂

∂a (H) = T

F if a/H = T and b/ ∂
∂a (H) = F

T if a/H = F and b/ ∂
∂a (H) = T

F if a/H = F and b/ ∂
∂a (H) = F

= ((F / b . F ) / a . (T / b . F ))/H
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Hence, CPstat is not true. Since this is a subvariety of fr, by Theorem 2.3 it
suffices to prove that CPcontr is true in this model.

((P / Q . R) / Q . S)/H =


P/ ∂

∂Q ( ∂
∂Q (H)) if Q/H = T and Q/ ∂

∂Q (H) = T

R/ ∂
∂Q ( ∂

∂Q (H)) if Q/H = T and Q/ ∂
∂Q (H) = F

S/ ∂
∂Q (H) if Q/H = F

=


P/ ∂

∂Q (H) if Q/H = T and Q/H = T

R/ ∂
∂Q (H) if Q/H = T and Q/H = F

S/ ∂
∂Q (H) if Q/H = F

=

{
P/ ∂

∂Q (H) if Q/H = T

S/ ∂
∂Q (H) if Q/H = F

= (P / Q . S)/H

∂

∂((P / Q . R) / Q . S)
(H) =


∂

∂P ( ∂
∂Q ( ∂

∂Q (H))) if Q/H = T and Q/ ∂
∂Q (H) = T

∂
∂R ( ∂

∂Q ( ∂
∂Q (H))) if Q/H = T and Q/ ∂

∂Q (H) = F
∂

∂S ( ∂
∂Q (H)) if Q/H = F

=

{
∂

∂P ( ∂
∂Q (H)) if Q/H = T

∂
∂S ( ∂

∂Q (H)) if Q/H = F

=
∂

∂(P / Q . S)
(H)

So by Proposition 2.2 CPcontr is true in this model. Since CP and CPcontr are
true and CPstat is not, it follows that CPstat is independent in CPst.

The model that shows independence of CPcontr has the integers as its do-
main. Similar to the independence-model for CP3, we assume that the set A is
enumerated i.e., A = {a1, a2, . . . , an}.

φ(T ) = 1
φ(F ) = 0
φ(ai) = i+ 1

φ(P / Q . R) = φ(Q) · φ(P ) + (1− φ(Q)) · φ(R)

CPcontr is not true in this model:

φ((T / a1 . F ) / a1 . F ) = φ(a1)φ(T / a1 . F ) + (1− φ(a1))φ(F )
= 2(φ(a1)φ(T ) + (1− φ(a1))φ(F ))
= 4
6= 2
= φ(a1)φ(T ) + (1− φ(a1))φ(F )
= φ(T / a1 . F )

The following derivations show that this is a model for CP1-4 and CPstat.
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The first three derivations are easy.

φ(P / T . Q) = φ(T )φ(P ) + (1− φ(T ))φ(Q)
= 1 · φ(P ) + 0 · φ(Q)
= φ(P )

φ(P / F . Q) = φ(F )φ(P ) + (1− φ(F ))φ(Q)
= 0 · φ(P ) + 1 · φ(Q)
= φ(Q)

φ(T / P . F ) = φ(P )φ(T ) + (1− φ(P ))φ(F )
= φ(P ) · 1 + (1− φ(P )) · 0
= φ(P )

Checking whether CP4 and CPstat are true in this model requires some book-
keeping.

φ(P / (Q / R . S) . V ) = φ(Q / R . S)φ(P ) + (1− φ(Q / R . S))φ(V )
= (φ(R)φ(Q) + (1− φ(R))φ(S))φ(P )

+ (1− (φ(R)φ(Q) + (1− φ(R))φ(S)))φ(V )
= φ(R)φ(Q)φ(P ) + φ(S)φ(P )− φ(R)φ(S)φ(P )

+ φ(V )− φ(R)φ(Q)φ(V )− φ(S)φ(V )
+ φ(R)φ(S)φ(V )

= φ(R)φ(Q)φ(P ) + φ(R)φ(V )− φ(R)φ(Q)φ(V )
+ φ(S)φ(P ) + φ(V )− φ(S)φ(V )
− φ(R)φ(S)φ(P )− φ(R)φ(V ) + φ(R)φ(S)φ(V )

= φ(R)(φ(Q)φ(P ) + (1− φ(Q))φ(V ))
+ (1− φ(R))(φ(S)φ(P ) + (1− φ(S))φ(V ))

= φ(R)φ(P / Q . V ) + (1− φ(R))φ(P / S . V )
= φ((P / Q . V ) / R . (P / S . V ))
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φ((P / Q . R) / S . V ) = φ(S)(φ(Q)φ(P ) + (1− φ(Q))φ(R)) + (1− φ(S))φ(V )
= φ(S)φ(Q)φ(P ) + φ(S)φ(R)− φ(S)φ(Q)φ(R)

+ φ(V )− φ(V )φ(S)
= φ(Q)φ(S)φ(P ) + φ(S)φ(R) + φ(V )− φ(S)φ(V )
− φ(Q)φ(S)φ(R)

= φ(Q)φ(S)φ(P ) + φ(Q)φ(V )− φ(Q)φ(S)φ(V )
+ φ(S)φ(R) + φ(V )− φ(S)φ(V )− φ(Q)φ(S)φ(R)
− φ(Q)φ(V ) + φ(Q)φ(S)φ(V )

= φ(Q)(φ(S)φ(P ) + (1− φ(S))φ(V ))
+ (1− φ(Q))(φ(S)φ(R) + (1− φ(S))φ(V ))

= φ((P / S . V ) / Q . (R / S . V ))

Since CP and CPstat are true in the model and CPcontr is not, CPcontr is
independent.
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5
Conclusion

In this final chapter we give a short summary of the previous chapters, thereby
listing some of the main results. Furthermore, we discuss the open issues men-
tioned in the previous chapters, and finally give some suggestions for future
work.

5.1 Summary

Sentential logic is limited by the static behaviour of its valuations. In Chapter 1
we introduced the reader to reactive valuations. These reactive valuations, first
defined by Bergstra and Ponse in [5], are an extension of normal valuations
because they allow us to take the evaluation order of the expression into account.
By means of a few examples we illustrated the advantages of using reactive
valuations instead of normal valuations. Similarly, we also revealed some of the
limitations of using reactive valuations. At the end of the introduction section,
we showed that it is possible to define several classes of reactive valuations
depending on their behaviour.

As motivation for looking at reactive valuations we argued that these are
interesting because they can be used to model a variety of sequential processes.
In the section on motivation we provided a few examples of sequential behaviour
from e.g. computer science and linguistics.

Since reactive valuations are a recent invention by Berstra and Ponse, there
is no directly related work on reactive valuations, besides the main paper [5].
We, therefore, opted to list some broad areas which might pertain to reactive
valuations e.g., non-monotonic reasoning, program semantics and many-valued
logics, thereby giving a few specific examples.

In Chapter 2 we defined the axiomatization of reactive valuation congru-
ence, called CP, and its semantics. The underlying semantics consists of several
parts. In the first part we described reactive valuation algebras (RVAs). In the
second part we showed how we can compute the value of closed term P , given
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an RVA A and reactive valuation H ∈ A. The value is denoted as P/H. By
imposing limitations on the RVAs and their valuations we can define several
varieties of RVAs, namely the varieties with free reactive valuations, repetition-
proof valuations, contractive valuations and static valuations. The signature
of all these varieties is the same, and consists of constants T and F , an infi-
nite set of variables, a finite set of atomic proposition symbols and the ternary
operator / . denoting conditional composition. Each variety has its own
axiomatization, where the axiomatization CP corresponds to the variety with
free reactive valuations. Given a variety K, we say two closed terms P and Q
are K-equivalent if P/H = Q/H for RVAs A ∈ K and valuations H ∈ A. Un-
fortunately, K-equivalence does not necessarily have the congruence property.
We, therefore, define K-congruence as the largest congruence contained in the
K-equivalence relation.

With the aim of showing soundness for the various varieties it sufficed to
show that each axiom is also true under semantical congruence. So if A = B
is an axiom of variety K, we need only show that A and B are K-congruent.
In these proofs we took advantage of the fact that if an axiom is sound with
respect to a variety K then the axiom is also sound in all subvarieties of K.

In order to show completeness we introduced basic forms, where each sen-
tence is provably equal to a unique basic form. The main advantage of basic
forms is that their syntactic structure is quite simple. Consequently, structural
induction on the set of basic forms is relatively easy. By showing that for basic
forms syntactical equality and semantic congruence coincide we were able to
prove completeness. Each variety requires its own set of basic forms.

Given an axiomatization, if for all closed substitutions σ and terms s and t we
can derive σ(s) = σ(t), we can also derive s = t, we say that this axiomatization
is ω-complete. In Chapter 3 we discussed ω-completeness of CP and CPst, the
axiomatization of st-congruence.

Similar to the completeness proofs in Chapter 2, we defined a special set
of terms, namely the set of open basic forms. As opposed to the various sets
of basic forms used to prove completeness, the open basic forms may contain
variables. Using these open basic forms we were able to prove ω-completeness
for CP.

For CPst, we used a different approach. This approach does not rely on a
set of open basic forms but on a translation between CPst and a specification of
boolean algebra for which we know that it is ω-complete. Using this translation
we show that the ω-completeness property transfers to CPst. We did not show
ω-completeness for the other varieties.

Independence of an axiom with respect to a particular axiomatization entails
that the axiom is not redundant in that set of axioms i.e., it is not derivable
from the other axioms. In Chapter 4 we showed independence of axioms with
respect to the various axiomatizations. Showing that an axiom P is independent
of a set A of other axioms requires that we construct a model such that P is
not true in this model but the axioms in A are. There were a few axioms for
which we did not succeed in proving that they were independent e.g., CP4 for
contractive valuations.
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5.2 Open issues and future work

In the past chapters several specific open issues were mentioned. We will list and
discuss these issues in this section. Afterwards, we give some general suggestions
for future work on the subject of reactive valuations.

5.2.1 Open issues

The first set of open issues is mentioned in the chapter on ω-completeness. We
were not able to establish ω-completeness for CPrp and CPcr. In Chapter 3 we
showed ω-completeness for CP and CPst using two different methods.

The method we used for CPst involved a translation between an equivalent
ω-complete axiomatization and CPst. Unfortunately, this will not work for
CPrp and CPcr because finding an equivalent ω-complete axiomatization for
these axiomatizations is unlikely.

Consequently, the best approach seems to be the one we used for CP, where
we used open basic forms. However, first attempts at using this method failed
to yield a positive result. The open basic forms as defined in Definition 3.2 have
the nice property that if we substitute each variable in an open basic form with
an atomic proposition we end up with a closed basic form i.e., a member of BF
(see Definition 2.4). We use this property and the results we already have for
BF in the lemmas leading up to the ω-completeness theorem. The problems
arise when we define similar open basic forms for CPrp and CPcr. For example,
take the term

(T / a . F ) / x . T

At first glance this seems like an excellent candidate for the set of open basic
forms of both CPrp and CPcr. However, if we substitute the x with atomic
proposition a, the resulting term is neither a member of BFrp nor of BFcr.
Whether it is possible to work around this problem remains to be seen. Addi-
tional tools for proving ω-completeness can be found in [12].

The second set of open issues concerns the independence of axioms. We
failed to show independence of CP4 in CPcr. For the axiomatization CPst we
only showed independence of CP2, CP3, CPstat and CPcontr, which leaves CP1
and CP4.

We showed the independence of an axiom with respect to a particular ax-
iomatization by constructing a model such that the axiom in question is not
true but the rest of the axioms in the axiomatization are. Constructing such a
model is regrettably a hit-or-miss affair and becomes increasingly more difficult
as the number of axioms multiply. We can, however, eliminate some options.
In Chapter 3 we used roughly three methods of model constructions.

The first method involves using normal valuations as we know them from
sentential logic. The constants T and F are mapped to true and false, and
similarly the atomic propositions are mapped to either true or false. Conditional
composition is interpreted using a combination of connectives, thereby ignoring
evaluation order, e.g., P / Q . R is mapped to (Q→ P ) ∧ (¬Q→ R). We used
such a method to prove that CP1 and CP2 are independent with respect to
CP. Since there are only a small finite number of interpretations of conditional
composition it is easy to check them all. We, therefore, wrote a small Prolog
program that checks these interpretations given a set of axioms to model and
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the one it should not model. There were no interpretations that proved the
independence of the aforementioned axioms.

The second method relies on constructing a variety of RVAs. We used this
method to show independence of e.g. CPcr1 and CPcr2. The problem is that
such a variety is by definition a subvariety of fr. Since we proved that the axioms
in CP are sound in fr (see Theorem 2.3), they are sound in all subvarieties of
fr. The axioms for which we need to prove independence are all in CP, and
therefore this method will fail automatically.

This leaves us with the third option of constructing an interpretation in
the natural numbers with the usual operations of addition and multiplication.
Whether or not this method will work remains an open question. Of course,
there are many other possibilities that are not listed here e.g. an interpretation
in an n-valued model that takes the evaluation history into account.

5.2.2 Future work

In Chapter 1 we discussed some possible application areas for reactive valu-
ations. However, we did not go into great detail as to the specifics of such
applications, and more importantly what is to be gained by the use of reac-
tive valuations. This search for specific applications might also yield new and
interesting varieties of RVAs.

Chapter 1 also contained a discussion on related work in which we mentioned
that besides the main reference [5] there is no related work directly pertaining
to reactive valuations. We, therefore, listed some areas of interest with possible
connections to reactive valuations. These and other areas warrant a more in-
depth study, which may involve translations between varieties and other logics.
For example, in Chapter 3 we showed a translation between the variety with
static valuations and boolean algebra.

Proposition 2.2 was, despite its apparent simplicity and usefulness, discov-
ered towards the end of writing this thesis. This proposition which given variety
K describes the relationship between K-equivalence and K-congruence, is used
extensively in the various soundness proofs throughout this thesis. We, however,
have not yet fully taken advantage of this proposition in proving completeness.
We feel that this proposition will in all likelihood simplify the proofs of some of
the crucial lemmas we need for completeness.

Furthermore, we used basic forms to prove completeness. Alternatively,
we can define a term rewriting system with convenient normal forms for each
variety, and use that to prove completeness. In Appendix B we give an example
of such a term rewriting system.

In this thesis we gave some suggestions for future research. Of course, these
suggestions are not exhaustive as there are many other options for further re-
search not mentioned here e.g., results in expressivity and complexity.

On a final note, during the writing of this thesis a new paper on reactive
valuations by Bergstra and Ponse appeared1, see [4], which would be a fitting
starting point for any future research.

1In fact the main reference [5] was a prior draft for this paper.



A
Characterization of CP+CP5

A.1 Non-replicating valuations

In this appendix we define an additional variety, which uses non-replicating
valuations. It is axiomatized by CP plus the CP5 axiom,

(CP5) x / y . (z / u . (v / y . w)) = x / y . (z / u . w)

The CP5 axiom is taken from the appendix of [5]. In that appendix Bergstra
and Ponse show that the symmetric version of this axiom can be derived from
CP+CP5:

((x / y . z) / u . v) / y . w = w / ¬y . (v / ¬u . (z / ¬y . x))
= w / ¬y . (v / ¬u . x)
= (x / u . v) / y . w

with ¬x l F / x . T .
The variety of RVAs with non-replicating valuations consists of all RVAs

that satisfy the equations:

ya(x) = ya(
∂

∂P
(
∂

∂a
(x)))

and
∂

∂a
(
∂

∂P
(
∂

∂a
(x))) =

∂

∂P
(
∂

∂a
(x))

for all a ∈ A and P ∈ A ∪ {T, F}. We call this variety nr.
The following lemmas show that the above equations imply their more gen-

eral versions. Note that the P in the next lemma ranges over all closed terms
not just A ∪ {T, F}.
Lemma A.1. For all closed terms P ,

∂

∂a
(
∂

∂P
(
∂

∂a
(x))) =

∂

∂P
(
∂

∂a
(x))
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Proof. By structural induction on P :

• If P ∈ A∪{T, F} then ∂
∂a ( ∂

∂T ( ∂
∂a (H))) = ∂

∂T ( ∂
∂a (H)) follows directly from

the definition of L.

• Suppose P l P1 / P2 . P3. Then

∂

∂a
(

∂

∂(P1 / P2 . P3)
(
∂

∂a
(H))) =

{
∂
∂a ( ∂

∂P1
( ∂

∂P2
( ∂

∂a (H)))) if P2/
∂
∂a (H) = T

∂
∂a ( ∂

∂P3
( ∂

∂P2
( ∂

∂a (H)))) if P2/
∂
∂a (H) = F

=IH

{
∂
∂a ( ∂

∂P1
( ∂

∂a ( ∂
∂P2

( ∂
∂a (H))))) if P2/

∂
∂a (H) = T

∂
∂a ( ∂

∂P3
( ∂

∂a ( ∂
∂P2

( ∂
∂a (H))))) if P2/

∂
∂a (H) = F

=IH

{
∂

∂P1
( ∂

∂a ( ∂
∂P2

( ∂
∂a (H)))) if P2/

∂
∂a (H) = T

∂
∂P3

( ∂
∂a ( ∂

∂P2
( ∂

∂a (H)))) if P2/
∂
∂a (H) = F

=IH

{
∂

∂P1
( ∂

∂P2
( ∂

∂a (H))) if P2/
∂
∂a (H) = T

∂
∂P3

( ∂
∂P2

( ∂
∂a (H))) if P2/

∂
∂a (H) = F

=
∂

∂P1 / P2 . P3
(
∂

∂a
(H))

Lemma A.2. For all closed terms P and Q,

P/
∂

∂Q
(
∂

∂P
(x)) = P/x

Proof. By structural induction on P :

• The case for P l T or P l F is trivial because T/H = T and F/H = F
for any valuation H.

• Suppose P l a for a ∈ A. Then by structural induction on Q.

– The case for Q ∈ A ∪ {T, F} follows directly from the definition of
variety L.

– Suppose Q l Q1 / Q2 . Q3. Then

a/
∂

∂(Q1 / Q2 . Q3)
(
∂

∂a
(H)) =

{
a/ ∂

∂Q1
( ∂

∂Q2
( ∂

∂a (H))) if Q2/
∂
∂a (H) = T

a/ ∂
∂Q3

( ∂
∂Q2

( ∂
∂a (H))) if Q2/

∂
∂a (H) = F

=

{
a/ ∂

∂Q1
( ∂

∂a ( ∂
∂Q2

( ∂
∂a (H)))) if Q2/

∂
∂a (H) = T

a/ ∂
∂Q3

( ∂
∂a ( ∂

∂Q2
( ∂

∂a (H)))) if Q2/
∂
∂a (H) = F

=IH

{
a/ ∂

∂Q2
( ∂

∂a (H)) if Q2/
∂
∂a (H) = T

a/ ∂
∂Q2

( ∂
∂a (H)) if Q2/

∂
∂a (H) = F

=IH

{
a/H if Q2/

∂
∂a (H) = T

a/H if Q2/
∂
∂a (H) = F

= a/H

In the second step of this derivation Lemma A.1 is applied i.e., we
substitute ∂

∂Q2
( ∂

∂a (H)) with ∂
∂a ( ∂

∂Q2
( ∂

∂a (H))).
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• Suppose P l P1 / P2 . P3. Then

(P1 / P2 . P3)/
∂

∂Q
(

∂

∂(P1 / P2 . P3)
(H))

=

{
P1/

∂
∂P2

( ∂
∂Q ( ∂

∂(P1/P2.P3)
(H))) if P2/

∂
∂Q ( ∂

∂(P1/P2.P3)
(H)) = T

P3/
∂

∂P2
( ∂

∂Q ( ∂
∂(P1/P2.P3)

(H))) if P2/
∂

∂Q ( ∂
∂(P1/P2.P3)

(H)) = F

=


P1/

∂
∂P2

( ∂
∂Q ( ∂

∂P1
( ∂

∂P2
(H)))) if P2/

∂
∂Q ( ∂

∂P1
( ∂

∂P2
(H))) = T and P2/H = T

P1/
∂

∂P2
( ∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H)))) if P2/
∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H))) = T and P2/H = F

P3/
∂

∂P2
( ∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H)))) if P2/
∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H))) = F and P2/H = T

P3/
∂

∂P2
( ∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H)))) if P2/
∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H))) = F and P2/H = F

=


P1/

∂
∂(Q◦P2)

( ∂
∂P1

( ∂
∂P2

(H))) if P2/
∂

∂(P1◦Q) ( ∂
∂P2

(H)) = T and P2/H = T

P1/
∂

∂P2
( ∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H)))) if P2/
∂

∂(P3◦Q) ( ∂
∂P2

(H)) = T and P2/H = F

P3/
∂

∂P2
( ∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H)))) if P2/
∂

∂(P1◦Q) ( ∂
∂P2

(H)) = F and P2/H = T

P3/
∂

∂(Q◦P2)
( ∂

∂P3
( ∂

∂P2
(H))) if P2/

∂
∂(P3◦Q) ( ∂

∂P2
(H)) = F and P2/H = F

=IH


P1/

∂
∂P2

(H) if P2/H = T and P2/H = T

P1/
∂

∂P2
( ∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H)))) if P2/H = T and P2/H = F

P3/
∂

∂P2
( ∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H)))) if P2/H = F and P2/H = T

P3/
∂

∂P2
(H) if P2/H = F and P2/H = F

=

{
P1/

∂
∂P2

(H) if P2/H = T

P3/
∂

∂P2
(H) if P2/H = F

= (P1 / P2 . P3)/H

Note that sequential composition ◦ is defined in Chapter 2, and P ◦Q =
Q / P . Q.

Lemma A.3. For all closed terms P and Q,

∂

∂P
(
∂

∂Q
(
∂

∂P
(x))) =

∂

∂Q
(
∂

∂P
(x))

Proof. By structural induction on P :

• P is T or F ; trivial.

• P ∈ A; see Lemma A.1.
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• Suppose P l P1 / P2 . P3. Then

∂

∂(P1 / P2 . P3)
(
∂

∂Q
(

∂

∂(P1 / P2 . P3)
(H)))

=

{
∂

∂P1
( ∂

∂P2
( ∂

∂Q ( ∂
∂(P1/P2.P3)

(H)))) if P2/
∂

∂Q ( ∂
∂(P1/P2.P3)

(H)) = T
∂

∂P3
( ∂

∂P2
( ∂

∂Q ( ∂
∂(P1/P2.P3)

(H)))) if P2/
∂

∂Q ( ∂
∂(P1/P2.P3)

(H)) = F

=


∂

∂P1
( ∂

∂P2
( ∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H))))) if P2/
∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H))) = T and P2/H = T
∂

∂P1
( ∂

∂P2
( ∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H))))) if P2/
∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H))) = T and P2/H = F
∂

∂P3
( ∂

∂P2
( ∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H))))) if P2/
∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H))) = F and P2/H = T
∂

∂P3
( ∂

∂P2
( ∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H))))) if P2/
∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H))) = F and P2/H = F

=


∂

∂P1
( ∂

∂Q◦P2
( ∂

∂P1
( ∂

∂P2
(H)))) if P2/

∂
∂P1◦Q ( ∂

∂P2
(H)) = T and P2/H = T

∂
∂P1

( ∂
∂P2

( ∂
∂Q ( ∂

∂P3
( ∂

∂P2
(H))))) if P2/

∂
∂P3◦Q ( ∂

∂P2
(H)) = T and P2/H = F

∂
∂P3

( ∂
∂P2

( ∂
∂Q ( ∂

∂P1
( ∂

∂P2
(H))))) if P2/

∂
∂P1◦Q ( ∂

∂P2
(H)) = F and P2/H = T

∂
∂P3

( ∂
∂Q◦P2

( ∂
∂P3

( ∂
∂P2

(H)))) if P2/
∂

∂P3◦Q ( ∂
∂P2

(H)) = F and P2/H = F

Now it is not only possible to apply the induction hypothesis but also
Lemma A.2 which will result in a reduction in the number of cases:

=IH


∂

∂Q◦P2
( ∂

∂P1
( ∂

∂P2
(H))) if P2/H = T and P2/H = T

∂
∂P1

( ∂
∂P2

( ∂
∂Q ( ∂

∂P3
( ∂

∂P2
(H))))) if P2/H = T and P2/H = F

∂
∂P3

( ∂
∂P2

( ∂
∂Q ( ∂

∂P1
( ∂

∂P2
(H))))) if P2/H = F and P2/H = T

∂
∂Q◦P2

( ∂
∂P3

( ∂
∂P2

(H))) if P2/H = F and P2/H = F

=

{
∂

∂Q◦P2
( ∂

∂P1
( ∂

∂P2
(H))) if P2/H = T

∂
∂Q◦P2

( ∂
∂P3

( ∂
∂P2

(H))) if P2/H = F

=

{
∂

∂P2
( ∂

∂P1◦Q ( ∂
∂P2

(H))) if P2/H = T
∂

∂P2
( ∂

∂P3◦Q ( ∂
∂P2

(H))) if P2/H = F

=IH

{
∂

∂P1◦Q ( ∂
∂P2

(H)) if P2/H = T
∂

∂P3◦Q ( ∂
∂P2

(H)) if P2/H = F

=IH

{
∂

∂Q ( ∂
∂P1

( ∂
∂P2

(H))) if P2/H = T
∂

∂Q ( ∂
∂P3

( ∂
∂P2

(H))) if P2/H = F

=
∂

∂Q
(

∂

∂(P1 / P2 . P3)
(H))
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These three lemmas will demonstrate their usefulness in the next section
where we will prove soundness.

A.2 Soundness

Theorem A.4. CP+CP5 ` P = Q implies that P =nr Q.

Proof. Since the axioms in CP are sound for the variety fr of RVAs with free
reactive valuations, and nr is a subvariety of fr, it suffices to check CP5:

(P / Q . (R / S . (V / Q .W )))/H

=

{
P/ ∂

∂Q (H) if Q/H = T

R / S . (V / Q .W ))/ ∂
∂Q (H) if Q/H = F

=


P/ ∂

∂Q (H) if Q/H = T

R/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F and S/ ∂
∂Q (H) = T

(V / Q .W )/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F and S/ ∂
∂Q (H) = F

=


P/ ∂

∂Q (H) if Q/H = T

R/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F and S/ ∂
∂Q (H) = T

V/ ∂
∂Q ( ∂

∂S ( ∂
∂Q (H))) if Q/H = F , S/ ∂

∂Q (H) = F and Q/ ∂
∂S ( ∂

∂Q (H))=T
W/ ∂

∂Q ( ∂
∂S ( ∂

∂Q (H))) if Q/H = F , S/ ∂
∂Q (H) = F and Q/ ∂

∂S ( ∂
∂Q (H))=F

Now Lemma A.2 and Lemma A.3 can be applied:

=


P/ ∂

∂Q (H) if Q/H = T

R/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F and S/ ∂
∂Q (H) = T

V/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F , S/ ∂
∂Q (H) = F and Q/H=T

W/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F , S/ ∂
∂Q (H) = F and Q/H=F

=


P/ ∂

∂Q (H) if Q/H = T

R/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F and S/ ∂
∂Q (H) = T

W/ ∂
∂S ( ∂

∂Q (H)) if Q/H = F and S/ ∂
∂Q (H) = F

= (P / Q . (R / S .W ))/H

Furthermore, we have

∂

∂(P / Q . (R / S . (V / Q .W )))
(H)
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=


∂

∂P ( ∂
∂Q (H)) if Q/H = T

∂
∂R ( ∂

∂S ( ∂
∂Q (H))) if Q/H = F and S/ ∂

∂Q (H) = T
∂

∂V ( ∂
∂Q ( ∂

∂S ( ∂
∂Q (H)))) if Q/H = F , S/ ∂

∂Q (H) = F and Q/ ∂
∂S ( ∂

∂Q (H)) = T
∂

∂W ( ∂
∂Q ( ∂

∂S ( ∂
∂Q (H)))) if Q/H = F , S/ ∂

∂Q (H) = F and Q/ ∂
∂S ( ∂

∂Q (H)) = F

=


∂

∂P ( ∂
∂Q (H)) if Q/H = T

∂
∂R ( ∂

∂S ( ∂
∂Q (H))) if Q/H = F and S/ ∂

∂Q (H) = T
∂

∂V ( ∂
∂S ( ∂

∂Q (H))) if Q/H = F , S/ ∂
∂Q (H) = F and Q/H = T

∂
∂W ( ∂

∂S ( ∂
∂Q (H))) if Q/H = F , S/ ∂

∂Q (H) = F and Q/H = F

=


∂

∂P ( ∂
∂Q (H)) if Q/H = T

∂
∂R ( ∂

∂S ( ∂
∂Q (H))) if Q/H = F and S/ ∂

∂Q (H) = T
∂

∂W ( ∂
∂S ( ∂

∂Q (H))) if Q/H = F and S/ ∂
∂Q (H) = F

=
∂

∂(P / Q . (R / S .W ))
(H)

Hence, by Proposition 2.2, CP5 is sound.



B
Term rewriting system

B.1 Term rewriting for CP

In this appendix we define a term rewriting system for CP and prove that it is
convergent. For more information on term rewriting see [6]. We call the term
rewriting system Rfr and it is defined as follows:

x / T . y → x

x / F . y → y

T / x . F → x

x / (y / z . v) . w → (x / y . w) / z . (x / v . w)

In the following lemma we show that Rfr is terminating i.e., all terms can
be reduced to a normal form. Note that this in itself does not guarantee that
there is a unique normal form for each term.

Lemma B.1. Rfr is terminating.

Proof. In order to show that Rfr is terminating, we are required to prove that
an infinite derivation t1 → t2 → t3 → . . . does not exist. First we define the
norm on terms as follows

|T | = 1
|F | = 1
|a| = 1
|x| = 1

|t / r . s| = 2|r|+max(|t|, |s|)

Subsequently, we show that for each rewrite rule the norm of the left-hand side
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is strictly greater than the norm of the right-hand side.

|t / T . s| = 2|T |+max(|t|, |s|)
= 2 +max(|t|, |s|)
> |t|

|t / F . s| = 2|F |+max(|t|, |s|)
= 2 +max(|t|, |s|)
> |s|

|T / s . F | = 2|s|+max(|T |, |F |)
= 2|s|+ 1
> |s|

|t / (r / s . v) . w| = 2|r / s . v|+max(|t|, |w|)
= 2(2|s|+max(|r|, |v|)) +max(|t|, |w|)
= 4|s|+max(2|r|, 2|v|) +max(|t|, |w|)
= 4|s|+max(2|r|+max(|t|, |w|), 2|v|+max(|t|, |w|))
= 4|s|+max(|t / r . w|, |t / v . w|)
> 2|s|+max(|t / r . w|, |t / v . w|)
= |(t / r . w) / s . (t / v . w)|

Consequently, if t→ r using these rules, it follows that |t| > |r|.
Suppose that there is an infinite rewrite sequence t1 → t2 → t3 → . . ..

Then we know that if i < j, |ti| > |tj |. Since the norm is always positive and
finite (we do not allow terms with an infinite number of symbols), this sequence
must end. Hence, such an infinite rewrite sequence does not exist and Rfr is
terminating.

The following lemma shows that Rfr is locally confluent. If there is a term
u mutually derivable from terms s and t, we write s ↓ t and say that s and t are
joinable. A binary relation → is then locally confluent if for all terms r, s and
t, if s ↓ t whenever r → s and r → t.

In order to prove local confluence, we first need to define the concept of
critical pair. Let s→ t and u→ v be two rewrite rules with variables renamed
such that they do not share variables. Furthermore, let µ be the most general
unifier of u and a nonvariable subterm s′ of s. A critical pair is then the term
µ(t) combined with the term resulting from replacing µ(s′) with µ(v) in µ(s).
A critical pair (u1, u2) is joinable if u1 and u2 are joinable.

Lemma B.2. Rfr is locally confluent.

Proof. Rfr is locally confluent if all its critical pairs are joinable (see Lemma
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5.15 in [6]). We first rename the variables in the rules so they are distinct:

x1 / T . y1 → x1

x2 / F . y2 → y2

T / x3 . F → x3

x4 / (y4 / z4 . v4) . w4 → (x4 / y4 . w4) / z4 . (x4 / v4 . w4)

Then we identify the critical pairs and check whether they are joinable.

• Let µ1 be a substitution such that

µ1(y4) = x1

µ1(z4) = T

µ1(v4) = y1

and the rest of the variables map to themselves e.g., µ1(x1) = x1 and
µ1(x4) = x4. Then we have the following critical pair

(µ1(x4 / x1 . w4), µ1((x4 / y4 . w4) / z4 . (x4 / v4 . w4)))

which is joinable

µ1((x4 / y4 . w4) / z4 . (x4 / v4 . w4)) = (x4 / x1 . w4) / T . (x4 / y1 . w4)
→ x4 / x1 . w4

= µ1(x4 / x1 . w4)

• Let µ2 be a substitution such that

µ2(y4) = x2

µ2(z4) = F

µ2(v4) = y2

and the rest of the variables map to themselves. Then we have the follow-
ing critical pair

(µ2(x4 / y2 . w4), µ2((x4 / y4 . w4) / z4 . (x4 / v4 . w4)))

which is joinable

µ2((x4 / y4 . w4) / z4 . (x4 / v4 . w4)) = (x4 / x2 . w4) / F . (x4 / y2 . w4)
→ x4 / y2 . w4

= µ2(x4 / y2 . w4)

• Let µ3 be a substitution such that

µ3(y4) = T

µ3(z4) = x3

µ3(v4) = F
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and the rest of the variables map to themselves. Then we have the follow-
ing critical pair

(µ3(x4 / x3 . w4), µ3((x4 / y4 . w4) / z4 . (x4 / v4 . w4)))

which is joinable

µ3((x4 / y4 . w4) / z4 . (x4 / v4 . w4)) = (x4 / T . w4) / x3 . (x4 / F . w4)
→ x4 / x3 . (x4 / F . w4)
→ x4 / x3 . w4

= µ3(x4 / x3 . w4)

• Let µ4 be a substitution such that

µ4(x1) = T

µ4(x3) = T

µ4(y1) = F

and the rest of the variables map to themselves. Then we have the follow-
ing critical pair

(T, T )

which is joinable.

• Let µ5 be a substitution such that

µ5(x2) = T

µ5(x3) = F

µ5(y2) = F

and the rest of the variables map to themselves. Then we have the follow-
ing critical pair

(F, F )

which is joinable.

• Let µ6 be a substitution such that

µ6(x3) = y4 / z4 . v4

µ6(x4) = T

µ6(w4) = F

and the rest of the variables map to themselves. Then we have the follow-
ing critical pair

(µ6(x3), µ6((x4 / y4 . w4) / z4 . (x4 / v4 . w4)))
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which is joinable

µ6((x4 / y4 . w4) / z4 . (x4 / v4 . w4)) = (T / y4 . F ) / z4 . (T / v4 . F )
→ y4 / z4 . (T / v4 . F )
→ y4 / z4 . v4

= µ6(x3)

• The last critical pair requires that we rename the variables in the fourth
rule a second time

x′4 / (y′4 / z
′
4 . v

′
4) . w′4 → (x′4 / y

′
4 . w

′
4) / z′4 . (x′4 / v

′
4 . w

′
4)

Let µ7 be a substitution such that

µ7(y4) = x′4

µ7(z4) = y′4 / z
′
4 . v

′
4

µ7(v4) = w′4

and the rest of the variables map to themselves. Then we have the follow-
ing critical pair

(µ7(x4/((x′4/y
′
4.w

′
4)/z′4.(x

′
4/v
′
4.w

′
4)).w4), µ7((x4/y4.w4)/z4.(x4/v4.w4)))

which is joinable

µ7((x4 / y4 . w4) / z4 . (x4 / v4 . w4))

= (x4 / x
′
4 . w4) / (y′4 / z

′
4 . v

′
4) . (x4 / w

′
4 . w4)

→ x4 / (x′4 / (y′4 / z
′
4 . v

′
4) . w′4) . w4

→ x4 / ((x′4 / y
′
4 . w

′
4) / z′4 . (x′4 / v

′
4 . w

′
4)) . w4

= µ7(x4 / ((x′4 / y
′
4 . w

′
4) / z′4 . (x′4 / v

′
4 . w

′
4)) . w4)

Since every critical pair is joinable, the rewrite system Rfr is locally confluent.

By Lemma 5.13 (the so called Diamond Lemma, see [14]) in [6], a terminating
binary relation is Church-Rosser iff it is locally confluent. Hence, Rfr is Church-
Rosser. Furthermore, by Theorem 5.4 in [6] a binary relation is confluent iff it
is Church-Rosser. Consequently, Rfr is also confluent, which leads us to the
final theorem.

Theorem B.3. Rfr is convergent.

Proof. By Definition 5.6 in [6].

This means that term rewriting system Rfr has unique normal forms. In
the next section, we list a program that uses this result to determine whether
two terms are provably equal in CP.
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B.2 Theorem prover for CP

In this section we list the code of a small theorem prover for CP based on the
term-rewriting system Rfr in the previous section. The program is written in
Prolog, and has been tested in the SWI-Prolog interpreter.

Within the program we use 1 and 0 to denote T and F , respectively. Atomic
propositions have the same notation i.e. atomic proposition a is represented by
a. Conditional composition is represented as a three-place predicate c(_,_,_)
in which the middle argument is the antecedent and the first and third argument
are the left- and right-consequent, respectively. So, for example, the term a /
(T / b . c) . F is represented by the term c(a, c(1, b, c), 0).

After loading the program in the Prolog interpreter we can check whether
two terms are equal as follows:

-? equals(Term1, Term2).

where you should replace Term1 and Term2 with two terms using the notation
we just discussed. The equals predicate will compute the normal form of each
term and determine if they are equal or not.

In the code below we see several other predicates. We now give a short
description of each of these predicates.

The rule predicate describes the term rewriting rules i.e., in this case the
rules of Rfr.

The normal_form(+Term, -NormalForm) predicate computes the normal
form NormalForm of the term Term.

The subterm(-Subterm, +Term) predicate returns a subterm Subterm of
the term Term.

The substitute(+Subterm1, +Subterm2, +Term1, -Term2) predicate re-
places all occurrences of Subterm1 in Term1 with Subterm2, and returns the
resulting term as Term2.

rule(c(X, 1, _), X).
rule(c(_, 0, Y), Y).
rule(c(1, X, 0), X).
rule(c(X, c(Y, Z, U), V), c(c(X, Y, V), Z, c(X, U, V))).

normal_form(Term, Term) :-
findall(Subterm, subterm(Subterm, Term), Subterms),
forall(member(X, Subterms), \+ rule(X, _)).

normal_form(Term1, NormalForm) :-
subterm(Subterm1, Term1),
rule(Subterm1, Subterm2),
substitute(Subterm1, Subterm2, Term1, Term2),
normal_form(Term2, NormalForm).

subterm(T, T).
subterm(T1, T2) :-

T2 =.. [_|T],
member(T3, T),
subterm(T1, T3).

http://www.swi-prolog.org
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substitute(Term1, Term2, Term1, Term2) :- !.
substitute(_, _, Term, Term) :-

Term \= c(_,_,_).
substitute(Term1, Term2, c(X, Y, Z), c(NewX, NewY, NewZ)) :-

substitute(Term1, Term2, X, NewX),
substitute(Term1, Term2, Y, NewY),
substitute(Term1, Term2, Z, NewZ).

equal(Term1, Term2) :-
normal_form(Term1, NormalForm),
normal_form(Term2, NormalForm).
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