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Chapter 1

Introduction

One of the most essential aspects of logic is the ability to bind variables. Without
that ability, we cannot represent generic rules in a logical form. In the past
decades there has been a lot of interest in implementing logic on neural networks,
but this was largely restricted to propositional logic. There have been attempts
to implement more sophisticated logics on neural networks, with mixed success.
So far, there have been no results that conclusively (and non-theoretically) show
that first-order logic can successfully be implemented on neural networks. The
most important step towards doing just that, or at least doing so for a fragment,
is implementing variable binding on neural networks.

In the study of logic and neural networks, the connectionist paradigm has
been of pivotal importance all across the domains of cognitive science. How-
ever, one might consider traditional connectionism slightly outdated or oversim-
plified compared to our current knowledge of the workings of neurons and the
brain. Since the advent of the original artificial neural networks, the discipline
of computational neuroscience has made significant progress. The fine-grained
dynamics in such models may provide new insight into the relative standstill
that the study of logic (using variables) and neural networks has suffered from
in recent years. This interrelation has, so far, been largely unexplored for these
biologically more plausible models.

The purpose of the thesis at hand is to unite these two points, insofar as
that it aims to show that biologically plausible neural networks are capable of
representing predicates and are capable of performing variable binding on the
predicate’s variables. The results presented in the current thesis are preliminary,
meaning that they are merely meant to show that exploring the combination
between logic and computational neuroscience can be a fruitful approach and
that it should be pursued much further. The outline of the thesis is as follows.
First we will establish a solid foundation, covering the background of the study
of logic and neural networks in depth, from the inception of artificial neurons
to the representation of predicates. In chapter 3, the binding problem–one of
the major hurdles to be taken before variable binding can even be attempted–
is discussed, along with the solutions that have been proposed over the years.
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Chapter 4 makes explicit the distinction between connectionism and computa-
tional neuroscience, in order to draw attention to biologically plausible neurons.
Chapter 5 briefly describes the methodology. The correlation between spike
times as a measure for binding is described and the software chosen to perform
the simulations is introduced, as well as the software used to analyze the results.
Since biologically plausible networks are necessarily highly parameterized, the
chosen parameters are discussed as well. The next chapter will turn to the actual
experiments used to show that such networks are indeed capable of performing
variable binding. Several criteria have been set in the preceding chapters, which
will be addressed in the models. Chapter 7 will briefly discuss these results and
shed light on some of the remaining issues. Moreover, it discusses the concep-
tion of logic that is at the base of what the thesis proposes; and discusses some
important aspects of extending the research presented. The closing chapter will
look back on what has been covered in the thesis and provides a brief roadmap
towards achieving the final goal of implementing first-order logic in full.
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Peter for their support and for just being there. Finally, this thesis would have
been inconceivable without Kattria: her positive attitude, undying support and
infectious enthusiasm have been what has kept me going and have been a great
inspiration.
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Chapter 2

Background

From a logical standpoint, the development of artificial neural networks has al-
ways been heavily intertwined with propositional logic. The very first artificial
networks introduced by McCulloch and Pitts in their seminal 1943 paper [58]
equate individual nodes with propositional formulae. The discovery by Min-
sky and Papert that McCulloch-Pitts networks could not implement exclusive
disjunction [61] resulted in a decline in artificial neural networks research, but
the subsequent development of the backpropagation algorithm [101][73] led to
a renewed interest from the early 80’s onwards.

The line of thought that emerged from this renewed interest was at first
predominantly an artificial intelligence affair, but soon awakened the interest in
philosophers. The Stanford Encyclopedia of Philosophy describes connectionism–
as the line of thought is known–as “a movement in cognitive science which hopes
to explain human intellectual abilities using artificial neural networks”, which
“promises to provide an alternative to the classical theory of the mind: the
widely held view that the mind is something akin to a digital computer process-
ing a symbolic language” [30]. For our current purposes it is not necessary to
go into the full details of the so-called connectionist-symbolic debate (but see
e.g. [72]). However, it is important to note that this distinction and the alleged
incommensurability [18] of the two paradigms has inspired prolific research into
the general topic of the thesis at hand, namely the implementation of logic on
neural networks.

The rationale behind such approaches is as follows. If we can implement
logic, which is after all the archetypical symbolic language, on neural networks,
then the two paradigms can be united as different sides of the same coin. Or
in other words, if such an approach is successful, it shows that it is possible to
implement reasoning on the symbolic level using processing on the sub-symbolic
level. Unsurprisingly then, the interface between logic and neural networks has
become one of the focal points of connectionist research. With the advent of
Hopfield networks [40] and Elman networks [24], and the increase in available
computational power, ever more complex networks were used to study logic and
language in neural networks. Influences from physics inspired a study in the
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energy distribution of networks, with Pinkas arguing that the global minimum
in the energy function of symmetric networks corresponds to finding a model
for a propositional formula [67] (another example is [11]). Gärdenfors & Balke-
nius showed that neural networks perform non-monotonic reasoning [8]. Even
recently, new models of neural networks have been developed that use logic as
a base [76].

The popularity of the logic programming paradigm [54] in the study of arti-
ficial intelligence opened a way to exploit the ability of networks to learn facts
(i.e., the declarative side of logic programs) and at a later stage to process the
network and examine the inputs and outputs (i.e., the procedural side) in a
logically rigid way [37]. What is more, logic programs are ideally suited to
incorporate non-monotonic reasoning, through for example negation as failure
or completion algorithms [29]. The study of propositional logic programs and
artificial neural networks yielded impressive results. For example, Hölldobler et
al. were able to develop a connectionist system for computing the least model
of propositional logic programs, provided such a model exists [38]. However, all
studies mentioned above have in common that they are focused on propositional
logic. The lack of research into more expressive logics famously led McCarthy
very early on to pose overcoming “propositional fixation” as one of the major
challenges facing connectionism [57].

Answering McCarthy’s challenge, however, has proven extremely difficult.
The vision presented by Smolensky [83], where connectionist systems fully in-
corporate the power of (first order) symbolic logic, is still far from complete.
Numerous attempts have been made, with mixed results. Unary relations were
modeled in [9] and predicates with higher arity and inference rules were mod-
eled in [79] and [47]. Although these attempts were successful within a limited
scope, nobody has come up with a theory as of yet that conclusively settles
the issue once and for all. Quite obviously, classical logic would be the most
desirable, but the apparent inability to come up with any conclusive results has
caused some researches to move away from classical first-order logic and towards
things like “connectionist modal logic” [20]. However, positive results have been
obtained for first-order fragments of classical logic: Hölldobler et al. were able
to prove that the least model of first-order logic programs can be approximated
arbitrarily well by multi-layer recursive networks with a feed-forward core [39].
First-order logic programs are an especially suitable candidate, not only because
of the aforementioned properties of logic programs in general, but also because
they do not require an external (and potentially infinite) domain, like classical
logic would. Instead of a Tarskian semantics based on objects in the domain,
first-order logic programs apply unification to satisfy clauses, using substitution
of identical (or equal) terms [4].

One of the first questions any attempt to answer McCarthy’s challenge has
to ask itself is; how does one represent the basic building blocks of the logic? In
the context of first-order logic, this comes down to making explicit how terms,
predicates and logical connectives are implemented. Whereas the logical connec-
tives need not necessarily be “represented” as such because they may be implicit
in the organizational structure, the same cannot be said for terms, predicates
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(i.e., atomic formulae) and complex formulae that consist of combinations of
atomic formulae and logical connectives.

The issue of representation coincides with another heated philosophical de-
bate, namely, whether “meanings” are represented at all. The sentence John
loves Mary may be encoded using a distributed representation that does not
contain any explicit representation of the constituents John, loves, and Mary
[84]. Even though these constituent representations can be retrieved from the
network, the network itself does not need to retrieve them in order to process the
entire sentence correctly [17]. These distributed representations are the oppo-
site of localist representations, where every constituent is assigned a single node
that represents it (like McCulloch-Pitts neurons, for example). In the past these
localist representations have been criticized on the basis of the Grandmother-
cell analogy [18]: if my grandmother is represented by one single neuron, what
happens when that neuron is damaged? Do I forget my grandmother? Psy-
chological and neurological evidence suggests that this is not the case and that
seeing your grandmother triggers a pattern of neural activation distributed all
over your brain.

Distributed representations are often portrayed as incompatible with the
symbolic paradigm, which is said to be inherently localist. In this sense, dis-
tributed representations have several advantages: they allow for the combination
of not-necessarily-propositional content, such as olfactory or kinesthetic data,
with propositional content and they are robust in the sense that minor damage
does not destroy the representation–which allows distributed representations to
degrade gracefully. The idea is based on a theory proposed by Donald Hebb,
which proposes that neurons that are distributed all over the brain form as-
semblies (i.e., neurons become associated with each other) by firing together
[36]. Thus, your grandmother is represented by a Hebbian assembly, which
was formed through Hebbian learning–under the motto “fire together, wire to-
gether”.

However, the explicit distributed-localist dichotomy has to be recognized as
at least slightly misguided. First and foremost, distributed representations are
incompatible with symbolic representations only under the assumption that
symbolic reasoning can never be implemented on neural networks in a dis-
tributed fashion–which depends in turn on the level of description you apply
to symbolism and connectionism, respectively. Given the topic of the current
thesis, we quite obviously have to reject this conception. Furthermore, local-
ist representations are not incompatible with distributed representations either.
Again, this is a matter of the level of description and the level of explanation.
When we have three localist neurons encoding for John, loves and Mary, what
is their collective representation as John loves Mary, if not a distributed rep-
resentation? What if the three neurons together are used in a higher-order
representation, such as “John loves Mary” is a sentence? Apart from some of
the connectionist hardliners, localist representations are typically considered as
a good way of representing atomic data which can then be combined. What is
more, a localist neuron can be taken to be a representation of a neural assembly,
such that when we say we assign John to neuron X, neuron X might be, without
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loss of generality, interpreted as a neural assembly–a distributed representation,
in other words. Thus, when we want to represent terms, predicates and for-
mulae in a neural network, our primary decision is what we will choose as our
atomic data, which will be given a localist representation. In our case, of course,
the most primitive constituent is a term; specifically, constants and variables.
However, there is more to it than that. Consider the following predicate:

P (x1, x2, ..., xn)

Where constants and variables are the fillers for the predicate’s arguments,
we also have to keep track of which filler is associated with which argument.
In other words, we have to know the role of the constants and variables in
the predicate. Taking these considerations into account, the most basic spatial
representation of an n-place predicate would be something along the following
lines1:

Figure 2.1: Representing a Predicate in a Neural Network

All available constants and variables are connected to all the available roles of
the predicate, because all constants and variables can bind to all these available
roles. However, this leads to a problem: how can we represent these bindings
in such a way that we can distinguish multiple encodings and find the correct
bindings? That question is the topic of the following chapter.

1As we shall see, an important aspect of neural network models that is lacking in this
picture is inhibition. However, for the current purpose, namely, showing that the variables
need to bind to roles for predicate representation, the figure is clearer without inhibition,
which will be addressed later on.
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Chapter 3

The Binding Problem

A single predicate is arguably one of the simplest forms of a combinatorial
structure we can possibly encode in a neural network. However, combinatorial
structures have been the root of a substantial challenge to connectionism and
neuroscience, known as the binding problem. The binding problem occurs in
many different shapes and guises. As a result, the term is applied to a wide
variety of not necessarily related instances where “binding” can occur and cause
problems. In its simplest form, the binding problem concerns the way in which
neural instantiations of parts can be bound together in a manner that preserves
the structure of the whole that is made up out of the parts. To give an easy and
well-known example which was first given by Rosenblatt [71], consider a simple
neural network that is given the task to encode and retrieve two colored shapes:
a green triangle and a blue square.

Figure 3.1: Rosenblatt’s Binding Problem
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The neural instantiations of the parts, the constituents of the color-shape com-
binations, are green, blue, triangle and square, respectively. The problem arises
when we want to distinguish between the two shapes: the color green has to
be bound to the shape triangle, whereas the color blue has to be bound to the
shape square. We are unable to represent both structures in the same network
and be able to tell them apart, because there is no way to determine which color
belongs to which shape.

For example, consider the two color-shape combinations encoded in a simple
Hopfield network with a binary activation function, with the nodes in Figure
3.1 as the nodes in the network. In order to represent the green triangle, the
nodes Green and Triangle have to be activated. For the blue square, we need
Blue and Square to be active. When both are active at the same time, the tri-
angle and square could be either green or blue: there is no way to tell them apart.

A problem by the same name has been heavily debated in philosophical dis-
cussions of the so-called unity of consciousness. The problem roughly comes
down to the issue of how all our perceptual experiences can be combined–that
is, bound together–into one big picture, a “Cartesian theatre”, which we call
conscious experience. A similar problem is found in binding data from different
modalities, i.e. auditive and visual perception. Although an important issue in
its own right, this type of binding problem is not what is at stake when we are
looking into encoding predicates on neural networks. Hence, in order to be as
clear as possible, it is important to clearly demarcate the particular instance(s)
of the binding problem that we are faced with.

In the context of the neural instantiation of linguistic structures, i.e. the
combinatorial and rule-based structure of language, Jackendoff [42] has pre-
sented “four challenges for cognitive science”, all pertaining to a particular type
of binding problem. As Jackendoff himself has acknowledged, although his book
is about linguistic structures, the same problems apply to any combinatorial
structure we wish to give a neural instantiation. The four challenges are (see
also [55]):

1. The massiveness of the binding problem

2. The problem of multiple instances

3. The problem of variables

4. The relation between binding in working memory and binding in long-term
memory

The first problem corresponds to the simplest form of the binding problem
that was mentioned above. Simple though it may be, Jackendoff notes that
this problem has a massive impact specifically on linguistics. For example,
when we want to neurally instantiate the sentence John loves Mary, how can
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we distinguish that sentence from Mary loves John? Another favorite example
is The little star is beside the big star, which involves a much higher number of
bindings than the typical example of the visual binding problem sketched above
[31]. This sentence also confronts us with Jackendoff’s second challenge, namely,
the word “star” is used twice, but binds to different attributes (little and big).
The problem is, when we have multiple instances of the word star, how do we
ensure that the right binding is used at the right moment, and how do we avoid
erroneous bindings such as little big star? Even if we are able to solve these two
problems, we have only solved the binding problem for the knowledge of specific
facts. But how about systematic facts, such as the fact that gives(x,y,z) entails
owns(y,z)? We could encode it for the case of John gives Mary a book, but then
what happens when Bob gives Mary a book? Obviously, we would want our
neural instantiation of such a rule to be systematic enough to be able to deal
with any case in which the rule applies. In other words, the rule has to be
generically encoded, such that we can instantiate the variables at a later stage.
It is easy to see that the amount of binding necessary for such a case is much
larger than in the first two cases, because objects or attributes need to bind to
variables, which in turn need to bind to their respective arguments in give and
own. This, the third challenge, is known as the variable binding problem, which
is an important problem since rule-based relationships play such an important
role in human cognition. And then there is also the question of where and how
this binding takes place in the brain. Working memory is typically assumed
to consist of activity in neurons that encode the information that is currently
active in the working memory [26]. That is, a piece of information only stays
in working memory for so long as the activity encoding that information is
sustained [27]. On the other hand, long term potentiation, which is associated
with long-term memory, results from synaptic modification in the connections
between neurons. Jackendoff’s last challenge is about understanding how the
interface between these two types of memory occurs, specifically when it comes
to the type of binding that happens.

All four challenges are important for incorporating first-order logic, or first-
order fragments, on neural networks, but the central issue is the variable binding
problem. In order to solve the variable binding problem, we first need a good
solution for the first two problems. Jackendoff’s last challenge is a little different.
It does not directly relate to our current topic of interest, but the way you
choose to implement variable binding for predicates is directly related to how
you want to answer that question. Any theory that claims to “solve the binding
problem” needs to answer at least the first two challenges. The answer to the
fourth challenge is a consequence of the choices made for the implementation,
so biological plausibility in that sense would give the theory as a whole more
credibility.

Browne and Sun [14], give several reasons why “the ability to perform vari-
able binding is essential if connectionist systems are ever to perform complex
reasoning tasks” in their nice overview of variable binding in connectionist net-
works. Like Jackendoff, they also list the ability to reason with combinatorial
structures and the ability to have generic rules, but they also add that the
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strict constraints variable binding imposes on rule-matching may be necessary
for modeling human language acquisition (see also [68]). Browne and Sun char-
acterize variable binding as a form of complex pattern matching, with three
main forms, from simplest to most complex:

1. Atomic symbol matching. When we teach green(triangle) and then ask
the network whether the triangle is green, it should reply yes.

2. Standard pattern matching. Teaching green(triangle) and then asking the
network what is green, i.e., green(X), it should reply X=triangle

3. Unification. When both pattern and datum can contain variables. When
we teach dog(X) and ask dog(Y), then it should give us Y=X, even though
both are variables.

Taking that characterization of variable binding as a roadmap for coming
up with a possible solution, we should start off with the simplest form, atomic
symbol matching. This corresponds to the simplest binding problem. From
there on out, we can try adding more and more complexity.

3.1 Solutions to the Binding Problem

Over the years, many different solutions to the variable binding problem have
been proposed, all in varying detail and coming from very different disciplines in
the spectrum of cognitive science. Broadly speaking, two main strands can be
discerned in all these different theories: the temporal and the spatial solution.

At first glance, the spatial solution seems a very natural answer to solving
the binding problem: if we have to encode a blue square and a green triangle,
why don’t we simply have one neuron for a blue square and one for a green
triangle? However, this quickly leads to the neural equivalent of combinatorial
explosion. Psychological studies suggest common knowledge in humans amounts
to as much as 108 items [51]. Given that we only have about 1012 neurons in
the brain by most estimates and that most of these neurons are likely to be
involved in other processes than knowledge processing, there is no way we could
encode combinatorial structures like this–let alone when we want to encode more
properties, such as a big equilateral flashing dotted soft furry green triangle, just
to name something.

Much more elegant spatial solutions have been suggested than this simple
view, of course. The most famous one is probably Smolensky’s tensor product
representation [84], which uses the tensor product of distributed representations
in order to represent binding between the two. The tensor product of an n-place
vector V and an m-place vector W is the n∗m-place vector whose value consists
of the pairwise products of V and W . Another spatial solution is holographic
reduced representations [69], which uses circular convolution on vectors that
represent associated items. As opposed to tensor products, holographic reduced
representations have actually been used to model the third and most difficult
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type of variable binding–unification [97], as have Kohonen maps [44][98]. How-
ever, in general these spatial approaches have been faced with much criticism.
It has been noted that the vectors are not of a fixed dimension, making them
very impractical computationally [31]. Apart from the combinatorial explosion
that renders the spatial models neither biologically plausible nor computation-
ally feasible, it has also been noted that they tend to operate in a serial fashion,
whereas cognition is known to be parallel [79].

Due to the spatial and quantitative constraints on the human brain and re-
search in the 1980s that suggested synchronous firing–“gamma oscillations”–in
the cat’s visual cortex, temporal binding was presented by von der Malsburg as
a viable alternative to solving the binding problem [95]. Specifically, the timing
of spikes in neural networks, or the local field potential of neural assemblies,
could be used to bind the combinatorial aspects of a structure. For example,
if green and triangle fire together, they are bound together. This idea is also
strongly related to Hebbian learning and Hebbian assemblies [36]. Traditional
rate models, such as the Hopfield network with binary activation that we dis-
cussed earlier, do not take the actual firing times of neurons into account. If we
look at the firing times of neurons encoding green, blue, triangle and square,
we can see that the respective neurons for green triangle and blue square fire in
synchrony, but that they have identical firing rates.

Figure 3.2: Different Spike Times with Identical Firing Rate

The temporal model has been suggested pretty early on as a particularly
good way to solve the variable binding problem [25][96]. The approach has
met with quite some success in a large range of problems of brain function [34]
[82]. But it is important to note that there are also constraints on the temporal
model, mostly derived from psychological experiments. A system that applies
a temporal solution to the binding problem has to be able to perform binding
at a reasonable time interval, one that is comparable to humans.

Von der Malsburg’s work and the spatial and temporal constraints inspired
Shastri & Ajjanagadde in their seminal paper [79] to model what they called
“reflexive reasoning” using a quite successful approach of temporal binding on
localist representations. Shastri & Ajjanagadde use the synchronous firing of
specially constructed neuron-like elements as a way of representing dynamic
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binding. These representations were subsequently used to form rules, where the
synchronous oscillations propagate through interconnected representations.

Their neuron-like elements are idealized oscillators of four different types:

1. τ -and nodes: produce an oscillatory pulse with same period and pulse
width as its input

2. ρ-btu nodes: produce a periodic spike train in phase with the input spike
train1

3. τ -or nodes: become active when it receives one or more spike signals within
one oscillatory period

4. Multiphase τ -or nodes: become active when it receives more than one
spike trains, in different phases, during the same oscillatory period

Using these elements, Shastri & Ajjanagadde are able to encode an n-ary
predicate P using two τ -and nodes and n ρ-btu nodes. By connecting these
nodes in specific ways, facts and rules can be encoded that amount to a signicant
fragment of Horn-clause logic. Using these nodes, synchrony between John and
Lover and Mary and Lovee encodes which role (lover, lovee) in the predicate is
taken by which filler (john, mary). In a similar fashion to Abeles’ synchronous
firing chains [2], the synchronous pattern propagates through the chain, allowing
an antecedent predicate to enable the consequent predicate. It is beyond the
scope of the thesis at hand to go into full detail, so suffice it to say that the
network is constructed such that the nodes form a pathway towards a certain
inference.

Shastri & Ajjanagadde’s results were enthousiastically received and still form
the basis for many explorations of the binding problem that make use of tem-
poral solutions. The model has also been extended to model larger fragments
of Horn clauses and a larger set of inferences, such as in [63] and [64]. Oscil-
lators have also been used in completely unrelated ways but much to the same
purpose, such as in [89] and in [91].

In addition to what we may call the strictly-spatial and strictly-temporal ap-
proaches, many hybrid approaches have emerged which do not clearly subscribe
to either of these paradigms. Fortunately a number of excellent overviews and
surveys exist, most notably [5], which provide an adequate excuse not to discuss
these in detail. Approaches that fall in this category are theories that do not
acknowledge the necessity of representing combinatorial structures at all (see
[92] ch. 4). Theoretical work that exemplifies this approach and that deserves
distinct mention is recent work by Hölldobler et al. [7] which tentatively and pre-
liminarily extends their so-called Core model to first-order logic. Furthermore,
hybrid approaches such as blackboard models [92], signature-based processing
(e.g. [14]) and combinations of these approaches [10] have been proposed in
recent years.

1It is unclear what the letters btu are supposed to stand for. Suffice it to say that these
types of nodes play the key part in the propagation of the signal.
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In the end, when evaluating all these results and different theories, much
progress has been made, but there are still many open challenges [6] on the way
to fully realizing the “logic on neural networks” paradigm. This will be the
topic of the next chapter.
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Chapter 4

Connectionism and
Computational
Neuroscience

As was already briefly discussed in the previous chapter, spatial solutions to the
binding problem were inadequately equipped to fit within the known constraints
of the human brain. It is important to note that this fact does not at all disqual-
ify any such theory, as indeed there are many more interesting applications of
connectionism outside the particular domain of understanding human cognition.
For example, as Bader & Hitzler make clear in their survey of neural-symbolic
integration, integrating connectionist and symbolic knowledge representation
may also be motivated from a more technical perspective, for example by trying
to find optimal ways to combine the advantages of both approaches [5]. The
same constraints of course do not apply in this domain, which is particularly
relevant for computer science-related applications of knowledge representation.
For the thesis at hand, however, we are predominantly concerned with biologi-
cal plausibility, because a more biologically-oriented approach towards logic on
neural networks is advocated.

Some of the temporal solutions we saw are much more in line with aiming for
biological plausibility. Shastri & Ajjanagadde’s work, for example, specifically
addresses the question how biological networks can perform reasoning–reflexive
reasoning as they call it, as opposed to reflective reasoning–very quickly. As
a result, they spend a significant amount of time in defending the biological
plausibility of their system.

4.1 Connectionism

Bader & Hitlzer distinguish between these two approaches as “connectionist”
and “neuronal”, where the latter is aimed towards achieving biological plau-
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sibility. To be fair, this distinction deserves a lot more attention than it is
awarded in their survey. Shastri & Ajjanagadde, for example, would be classi-
fied as being in the neuronal category, whereas they frequently refer to their own
approach as connectionist. At the same time, people like Smolensky certainly,
though according to critics unsuccessfully, pay a significant amount of attention
to the biological underpinnings and neuronal implications of their models. It
seems that something is awry if we choose to bluntly classify these approaches
as neuronal and connectionist, respectively.

As mentioned before, connectionism started as a study of human cognition.
Notably, this was the objective of McCulloch and Pitts, with other champions
of connectionism such as Rumelhart and McClelland closely following this goal.
However, whereas our understanding of the inner workings of the biological
neuron has greatly improved since McCulloch and Pitts published their paper,
the artificial neurons that we find in modern day connectionism–in the sense
of Bader & Hitlzer–are still very similar. For example, Hölldobler et al. use
binary threshold functions, with occasional sigmoidal functions, on their nodes,
while the teaching happens through the backpropagation algorithm [6]. Shastri
& Ajjanagadde, on the other hand, use what they call neuron-like elements
that allow for precisely fixing the oscillatory behavior, which is obviously very
different from the original connectionist neurons. In that sense, it is correct to
classify the approaches as distinct.

However, these neuron-like elements are still a far cry away from what we
know about biological neurons. As Bader and Hitzler duly note, relatively recent
developments in computational models of biologically plausible neurons, such
as spiking neurons [53], have “hardly been studied so far” when it comes to
encoding and retrieving symbolic knowledge ([5] p. 15) (with the exception of
[86]). Furthermore, they “perceive it as an important research challenge to relate
the neurally plausible spiking neurons approach to neural-symbolic integration
research” [ibidem].

Biologically plausible neurons belong to the domain of neuroscience, with the
mathematical description of the neurons falling under the field of theoretical- or
computational neuroscience. Comparing computational neuroscience to Bader
& Hitzler’s neuronal and connectionist approaches, we are able to draw a much
more distinct line. In order to make this distinction clear, let us stipulate that
in what follows, connectionism in the case of neural-symbolic integration will
be interpreted in a broader sense than Bader and Hitlzer do:

Definition 4.1.1. Connectionism is the approach in neural-symbolic integra-
tion that can be characterized as follows:

1. Neurons or nodes are idealized units in a network, that compute very
simple functions only

2. Analysis of the network happens through studying the network’s input-
output function

3. Networks are construed in a designated connection-pattern, arranged such
that the input-output function delivers the desired result
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4. Learning in the network, if present, is idealized, usually through back-
propagation or sometimes simple forms of Hebbian learning

5. Neurons, connections, networks and learning need not have a plausible
biological basis

According to this definition, both neuronal and Bader & Hitlzer’s “connec-
tionist” neural-symbolic integration fall under connectionism, because they are
characterized by the same approach. Both approaches use idealized neurons–
either neuron-like oscillators or binary activation neurons–and both approaches
typically take the behavior of the input-output function as a measure of ade-
quacy of their network’s configuration. Furthermore, both approaches use spe-
cific connection patterns to enable their input-output function to work correctly,
such as connecting particular oscillation-propagating nodes in Shastri & Ajjana-
gadde, or recurrently connecting input to outputs to ensure that the consequence
operator finds the least model in Hölldobler et al. Shastri & Ajjanagadde do
not incorporate learning1, whereas Hölldobler et al. and Smolensky use the
backpropagation algorithm.

Although Shastri & Ajjanagadde explicitly focus on biological feasibility,
in the sense that synchronized oscillators have a biological basis, the way they
construct their network is far from biologically plausible [77]. Furthermore, their
approach is successful because they are able to exhibit full control over firing
rates of their idealized neuron-like elements, which is much harder to achieve on
biologically plausible neurons [52] (see also e.g. [1], [81]). Thus, they fall firmly
within the connectionism definition above. All in all, connectionism can be more
generically seen as an approach that constructs networks out of idealized nodes
to study the input-output function.

4.2 Computational Neuroscience

Where we might term connectionism “constructivist”, the type of research that
happens in computational neuroscience is decisively “empiricist”. The physi-
ological properties of the neuron are fixed mathematical descriptions derived
from empirical research. In other words, for computational neuroscience “it is
important to bear in mind that the models have to be measured against ex-
perimental data; they are otherwise useless for understanding the brain” ([88],
p2). Thus, there is no possibility of directly tweaking something like a biological
neuron’s oscillations–because its oscillatory behavior depends on a large set of
physiological and physical parameters.

The fundamental model in computational neuroscience is the Hodgkin-Huxley
model. The HH-model is a so-called conductance-based model, which incorpo-
rates the behavior of the chemical synapses of neurons, the response of the
postsynaptic membrane potential to synaptic events and the behavior of action

1More recent enhancements to the original model allow for the support of negation and
inconsistency [78], very basic learning capabilites [99] and re-use of rules [100].
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potentials, using an elegant set of differential equations. Since the computa-
tional model that we will be using is a simplification of the HH-model, we will
have to cover its basics in order to justify the simplifications. After all, if we
are advocating the use of biologically plausible neurons in the study of neural-
symbolic integration in favor of the idealized neurons in connectionism, aren’t
we ourselves committing exactly the same fallacy in simplifying the biologically
plausible model?

Since we are interested in the information-processing capabilities of neurons,
we first have to gain insight into the mechanisms of information transmission
within single neurons and between neurons. As any high school biology text-
book tells us, a neuron consists of a soma, dendrites and the axon. Neurons are
connected through synapses, which may be excitatory or inhibitory, depending
on the type of neurotransmitter and associated ion channels in the synapse. The
sending neurons are in contact with the receiving neuron at synapses either at
the soma or the dendrites. In the context of synaptic transmission, these two
neurons are called the presynaptic and the postsynaptic neuron, respectively.
The synapses influence the influx and outflow of certain ions through the ion
channels, the exact composition of which determines the membrane potential in
the postsynaptic neuron, which is defined as the difference between the electric
potential within the neuron and its direct environment. Excitatory synapses
increase the membrane potential, in so-called excitatory postsynaptic potential,
whereas inhibitory postsynaptic potentials inhibit the rise of membrane poten-
tial. The changes in potential can ultimately trigger the generation of an action
potential, also known as a spike, which consists of a rapid depolarization of the
neuron, followed by a brief spell of hyperpolarization. After a spike the neuron
returns to the resting potential due to ion channels that are usually open all the
time, causing the neuron to “leak” ions until it returns to an equilibrium with
its environs.

In order to make clear the exact behavior of the action potential and to
grasp the HH-model, it is useful to turn to a short mathematical exposition of
the intricacies involved2. The membrane capacitance can be used to determine
how much the current changes the membrane potential at a given rate. The time
derivative of the basic equation that relates membrane potential and charge is:

Cm
dV

dt
=
dQ

dt
(4.1)

Since the time derivative of the charge dQ/dt is equal to the current passing
into the cell, the amount of current needed to change the membrane potential
of a neuron with capacitance Cm at rate dV/dt is CmdV/dt. In other words, the
rate of change of the membrane potential is proportional to the rate at which
charge builds up inside the cell, which is in turn equal to the total amount of
current entering the neuron.

2The mathematical exposition as it occurs here owes much to [21] and [88], which both
present detailed mathematical descriptions that span the entire field of computational neuro-
science.
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For the different types of ion channels that regulate the current flow we
can compute the equilibrium potential, which is the membrane potential at
which ion influx cancels the ion outflux and the channel reaches an equilibrium3.
The equilibrium potential depends on the concentration of ions inside the cell,
[inside], and the concentration outside the cell, [outside]. When the ion has
an electric charge zq, where q is the charge of one proton, the equation for
the equilibrium potential of that ion, which is known as the Nernst equation,
becomes4:

E =
VT
z

ln

(
[outside]

[inside]

)
(4.2)

We label the different types of ion channels through an index i. The cur-
rent increases or decreases approximately linearly when the membrane potential
deviates from the value of Ei when Ei = V . We give the membrane current
resulting from a particular channel of type i as gi(V −Ei). The total membrane
current is then defined by the following equation:

im =
∑
i

gi(V − Ei) (4.3)

Usually, it is easier to explicitly model pump currents. This is denoted as ḡi
with a line over the parameter to make clear that it has a constant value.

The Hodgkin-Huxley model defines the generation of the action potential, in
its single-compartment form. It is constructed by summing the leakage current
and the K+ and Na+ currents:

im = ḡL(V − EL) + ḡKn
4(V − EK) + ḡNam

3h(V − ENa) (4.4)

The variables n, m, and h are known as the gating variables. We know that
ion channels are not necessarily open all the time: they function more like gates
that can open and close. The gating variables are described by the following
equation:

τn(V )
dn

dt
= n∞(V )− n (4.5)

where τn(V ) and n∞(V ) are defined in terms of the opening and closing of
the gate5. Combining the above, the basic equation for the Hodgkin-Huxley
model is

3Ions flow into or out of channels, changing the current flow, depending on electric forces
and diffusion. The equilibrium potential is defined as the membrane potential at which current
flow due to electric forces cancels the diffusive flow.

4Not all channels are so selective so as to only allow one particular type of ion. To take
this into account, the value for E is sometimes computed as an intermediate value between
the equilibrium potentials that the ion channel allows to pass through. This is known as the
reversal potential. VT is the potential at temperature T where the thermal energy of the ion
is high enough to cross the membrane.

5Let αn(V ) be the voltage-dependent rate of gating transitions from closed to open, and

βn(V ) the rate for the reverse. Then τn(V ) = 1
αn(V )+βn(V )

and n∞(V ) =
αn(V )

αn(V )+βn(V )
.
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Cm
dV

dt
= −im + Ie (4.6)

where Ie is the presynaptic potential, that is, the input current.
An important realisation allows for a great simplification of the HH-model:

the form of generated action potentials is highly stereotyped. That is, all spikes
have almost exactly the same form. As a result, spike forms probably do not
play an important role in information transmission. We can therefore neglect
much of the specific ion-channel dynamics in the HH-model. Instead, we only
focus on the spike-time dynamics and the effect of the leakage channels. The
resulting differential equation of this so-called leaky integrator runs as follows:

τm
dV

dt
= EL − V +RmIe (4.7)

where Rm is the total resistance of the membrane. The input currrent I(t)
is the sum of synaptic currents from presynaptic cells, which depends on the
firing time of the presynaptic neuron of synapse j, the synaptic efficacy wj of
the synapses and the α-function that describes the stereotyped response:

I(t) =
∑
j

wjα(t− tj) (4.8)

The firing time of the postsynaptic neuron is then determined by a thresh-
old θ such that whenever V reaches that threshold, a spike is produced and the
potential is reset to Vreset. Equation 4.7 indicates that when Ie = 0, the mem-
brane potential approaches V = EL with time step τm. Hence, EL is the resting
potential of the neuron. The membrane potential is determined by integrating
equation 4.7 and applying the threshold and reset rules.

These equations describe the leaky integrate and fire model, which is more
commonly known as the IF-model. This model is the foundation for several
other biologically plausible models, which add extra features–i.e., extra biologi-
cal plausibility–on top of this basis. The IF-model is a simplified version of the
HH-model that is extremely useful, because it is computationally not feasible to
fully incorporate all our knowledge of every single parameter involved in a mam-
malian neuron. That is, if we were to do so, we would require a supercomputer
with enormous computational power just to calculate the membrane potential
of a single neuron. The simplifications do allow us to perform computations
using larger groups of neurons, and to do so within a reasonable time-frame.
Modeling will always be a matter of weighing your options and the choices you
make have to reflect what it is you are trying to model. The point is, how-
ever, that as should be clear to anyone who is familiar with the connectionist
paradigm, the neurons described through the IF-model are much more complex
than the idealized neurons we find in connectionist models.
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4.3 Biological Plausibility and Logic

Now, a hardline connectionist might still ask, what do we gain from the added
biological plausibility? When the objective of connectionism is to study human
cognition, the answer is, more biological plausibility in the models indicates that
successful models are closer to the way human cognition functions. But that
answer is trivial and may not be quite satisfactory, because there is much to learn
from idealizing neurons and abstracting over their behavior in order to find out
what properties of neurons and neural networks really matter for information
processing. Thus, it should be stressed beyond all doubt that the thesis at
hand is not meant to disparage connectionist models: au contraire, they remain
highly valuable for cognitive science. The crux is, however, that one of the
ways to find out which properties really matter is to study them in biologically
plausible networks (see for a good example of this [93]). Furthermore, differences
between connectionist and biologically plausible models may point us towards
the limitations of the former in comparison to the latter. When Shastri and
Ajjanagadde learned about oscillators in the brain, they took the basic approach
of connectionism and turned the nodes into oscillators. The reason they did this
was because the lack of oscillatory ability in traditional connectionism acted as
a limitation on temporal binding.

Of course, studying biologically plausible networks does also have its dis-
advantages. The primary reason, and I surmise this is also the reason why
relatively little research has been done on logic in combination with these types
of networks, is the loss of control. Biologically plausible models are highly pa-
rameterized, as we shall see in what follows, and it is exceedingly difficult to
grasp the dynamics, even when one is dealing with only a couple of neurons.
However, as the work on temporal binding has shown and as Bader and Hitzler
acknowledge in their survey, there is a lot of potential in the type of dynam-
ics that emerges from these more complex models–and the territory is largely
unexplored, particularly in the context of logic.

Which turns us to another question: why aren’t computational neuroscien-
tists interested in logic? One reason might be that most of the people that are
interested in logic tend to have had a “connectionist upbringing”. After all,
connectionism has been around for quite some time. Another reason, that may
have been an influence on the first, is that computational feasibility has long
stood in the way of using more complex models. That, however, is no longer
the case, as studies of other phenomena using these models have shown (see e.g.
[60]). Another possible reason, which revolves around the common conception
of logic and reasoning in the brain, is that it is a higher-level phenomenon. This
view might be summed up as, either there is a “central logic processing unit”
or we need an extremely complex network to model reasoning. Both views are
explicitly denied by the thesis at hand, as we shall see in what follows. Forays
into logic have been made from a computational neuroscience perspective, such
as [93], but these are only preliminary results and do not directly relate to one
of the most important problems to conquer first: the variable binding problem.

To sum up, the considerations above are taken to indicate that the study of

22



logic on neural network suffers–to put it as a McCarthyism–from “connectionist
fixation”. The discussion above is hoped to indicate the strong argument in
favor of studying logic on computational neuroscience models as well, next to
the ongoing research in connectionism.
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Chapter 5

Methodology

The models in all experiments have been performed using the same software.
For the actual neural simulation, the NeoCortical Simulator (NCS) was used
[102][35], in combination with a frontend specifically designed for NCS, named
Brainlab [23]. Furthermore, since spike train correlation is an actively researched
field in computational neuroscience, there are some very good libraries available
for performing such statistical analyses. The statistics library from the Brian
simulator was used [32]. The advantage of this particular library is that it is
written in python and hence easy to incorporate in combination with Brain-
lab. Furthermore, a big advantage is that the mathematics with relation to
spike trains has been precisely described (in e.g. [12]). Next to these tools,
several self-written analysis tools were used, all written in python and using the
numpy, scipy and matplotlib modules. The full source code of all performed
experiments, including detailed installation instructions for NCS and Brainlab,
can be acquired online at https://github.com/dkiela/thesis. Also refer to Ap-
pendix B, which goes into more detail on this subject.

5.1 Spike-Time Correlation

Since we will be using spiking models, the synchrony in spikes provides a good
measure of temporal binding between individual nodes. This is due to the fact
that Hebbian learning–recall the motto “fire together, wire together”–will cause
two neurons that are bound together to fire at related time intervals by heighten-
ing the synaptic efficacy of the postsynaptic neuron. Exactly how one measures
synchrony in the behavior of neurons is an important topic in computational
neuroscience, and several different approaches have been suggested (see [41] for
a nice analysis). In order to keep our model as simple as possible, we will choose
a relatively blunt measure of synchrony, namely spike train correlation. The ra-
tionale behind this choice is that if we obtain positive results using this measure,
more finer-grained measures of synchrony will yield even better results.

Correlation is a much-used tool in computational neuroscience and has been
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actively studied (see e.g. [90][74][75][45]). Spike train correlation was already
used as far back as the late 60s to analyze the peri-stimulus time histogram
(PSTH) of neural assemblies, which was acquired through EEG scans [65][66].

A spike train is defined as a sum of Delta functions:

S(t) =
∑
i=1

δ(t− ti) (5.1)

where ti is the time of the ith spike. Thus, we use S(t) to re-express sums
of spikes as integrals over time.

The firing rate is the time average of S(t), i.e., the average number of spikes:

r = 〈S(t)〉 = lim
T→+∞

1

T

∫ T

0

S(t) dt (5.2)

We will denote the 〈S(t)〉 function with a subscript t to indicate that the
variable t is bound by the integral and is not a free variable. To quantify
the temporal relation between two spike trains, our first measure is a cross-
correlation function (CCF):

CCFi,j(s) = 〈Si(t)Sj(t+ s)〉t (5.3)

A better measure is a cross-covariance function (CCVF), which substracts
the “baseline” of the cross-correlation function:

CCV Fi,j(s) = 〈Si(t)Sj(t+ s)〉t − 〈Si(t)〉t〈Sj(t)〉t (5.4)

Using this CCVF, we define the total correlation function for two spike trains
i and j, which is what we will us as our measure of synchrony:

λi,j =
1

〈Si(t)〉t

∫
CCV Fi,j(s) ds (5.5)

The spike-time correlation described here is exactly what the statistics li-
brary from the Brian simulator does, and allows us to perform binding through
correlation.

5.2 The NeoCortical Simulator

NCS is one out of many spiking neural network simulators available (see [13] for
an overview). It has seen several versions over the last decade, with the latest
incarnation being NCSv5, which is specifically designed with parallel processing
in mind (using MPI). The objective of NCS was “to create the first large-scale,
synaptically realistic cortical computational model” (idem, p.2). NCS has an
advantage over the two most popular biologically plausible simulators, NEU-
RON and GENESIS, in that it uses the simplifications on the Hodgkin-Huxley
model that were described above. Although NEURON and GENESIS have re-
cently also developed into parallel simulators, the fact that they compute the
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HH-model in its full details renders them unusable for large-scale experiments
or repeated sets of experiments with many different parameters.

NCS models neurons in very close biological detail, including extensive con-
trol over the neuron’s individual compartments; the membrane channels; synapse
dynamics such as facilitation, depression and augmentation–and Hebbian spike-
time dependent plasticity [85]. Particularly this latter property is important,
because it allows us to apply Hebbian learning to the network on the level of
spikes, as opposed to the simpler types of Hebbian learning we see in most
connectionist models. Since NCS uses large ASCII files that describe all the
different parameters, a minor change in the network’s architecture requires a lot
of change in the ASCII files. Therefore, a frontend was written in python which
allows the setting of the parameters through libraries, which are converted to
an ASCII file in NCS syntax when the simulation is run, called Brainlab [23].
The advantage of using python is that it is very well-suited for data analysis,
with several actively maintained scientific analysis modules like numpy, scipy
and matplotlib available as open source software1. Although Brainlab also fea-
tures some rudimentary data analysis functionality of itself, the data analysis
was done using self-written code using these scientific libraries, in combination
with the spike train statistics library from the Brian simulator.

Because NCS is a cortical simulator for the study of the mammalian brain,
it also allows for a 3D layout grouping where neurons and neuronal assemblies
can be part of a designated cortical grouping, column or layer.

5.3 Parameters

The NCS networks that we have studied consist of localist representations,
meaning that we use a single node to represent either a constant, variable,
or predicate role. Hence, the number of neurons per simulation is relatively low
compared to some other studies (such as [60]), but as we have discussed pre-
viously, this is not necessarily a problem at all. There are other good reasons
for this: spike-time correlation is not particularly well-suited for the analysis
of larger groups of neurons. Many different methods for analyzing the collec-
tive output of neural populations have been used, with the best-known one
probably being the local field potential (LFP) [22]. However, this has the side
effect of “flattening out” the spikes, which does not make the LFP suitable for
a spike correlation analysis. It is possible to measure synchrony in LFP’s, but
these methods are much more computationally intensive than our correlation
function. Additionally, since spike correlation is a relatively blunt measure, syn-
chrony in LFP’s, if anything, will yield finer-grained results than correlation.
Meaning that when correlation turns out to be a successful measure the same
will be the case for the more advanced synchrony measures. Every node is a
leaky integrate-and-fire neuron characterized by a resting membrane potential

1Numpy and Scipy are available from http://www.scipy.org. Matplotlib is available at
http://matplotlib.sourceforge.net.
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Vrest = −80mV and a spiking threshold of −50mV. There are excitatory and in-
hibitory neurons. Inhibition has been incorporated in the more advanced models
using an inhibitory pool of neurons, as opposed to distributing the inhibitory
nodes internally, laterally and globally [16]. This abstraction is justifiable, be-
cause it keeps the model simple and removes the parameters for the placement
of inhibitory neurons from the equation (see also [15]). The connection proba-
bility is set to 1 for all nodes, because we are not dealing with large randomly
connected nodes: two nodes failing to connect results in undefined behavior of
the model, because NCS unfortunately does not allow us to track which neuron
was connected to which other neuron.

Each experiment consists of two stages: a learning stage and a testing stage.
These stages are incorporated in the same trial, because of limitations in Brain-
lab. The typical simulation, varying on the model, lasts between 2 and 12 sec-
onds, with Hebbian learning activated for 1 second, which is based on findings
reported in e.g. [103].

In order for the network to become active, it has to be given a stimulus, which
consists of a Poisson input spike train with a fixed firing rate. The stimuli are
chosen such that it allows for spike-time dependent Hebbian learning to occur
in the learning stage–i.e., the firing rate of two stimuli is such that stimulated
neurons become associated, meaning that their synaptic efficacy with respect to
each other increases. After the learning stage, one of the stimuli remains active,
while the other stimulus drops. The correlation pattern is examined only for
the testing stage, where the spike trains produced by two or more neurons is
analyzed through the total correlation of their respective spike trains. In order to
guarantee that the obtained results are caused by spike-time dependent learning,
short-term dynamic plasticity was switched off.

The physiological parameters characterizing the behavior of the individual
compartments, which are largely responsible for the leaky integrate-and-fire
behavior of the soma [35], were taken from [103]. Based on the same findings,
the absolute synaptic efficacy was set to 0.250.

Exploiting NCS’s hierarchical organization, the neurons are assigned to the
layer that represents their class, such that we have distinct layers for constants,
variables and predicate roles. As we shall see, this hierarchy can potentially be
expanded further to include truth-values and implication.

Whether or not two spike trains are correlated and whether or not a signal
propagates in the network is dependent largely on three parameters:

• Excitatory conductance

• Inhibitory conductance

• Rate of one binding stimulus compared to that of another

The models and their results are presented in the following chapter.
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Chapter 6

Models and Results

6.1 Model I: Testing Correlation

In order to verify that the correlation function works properly and that spike
time correlation actually occurs in the setup of our choice, the first model con-
sists of a simple experiment that shows some of the behavior that we would
typically expect from such a function. It has been known in neuroscience that
inhibitors are necessary to prevent a network from displaying erratic firing, i.e.,
going “on a rampage” [59]. This happens because excitatory synapses keep ac-
tivating each other when they are recurrently connected without any inhibition
taking place. As a result, we should see that as a trial lasts longer, or alterna-
tively, as the excitatory conductance becomes higher over trials, the correlation
should quickly reach a maximum and then drop, because even though the firing
rates of the neurons increase, they become less and less related to each other.
In order to test whether this is correct for our network, and our correlation
function, consider the model in Figure 6.1. Random firing rates were chosen for
the stimuli.

Figure 6.1: Correlation Test with Two Neurons

In a simulation run of 1,000 trials, with excitatory conductance increasing
from 0.0 to 1.0 and an increase of 0.001 over every time step, we can clearly see
that the hypothesis is correct. Even though the firing rate in Y increases as X is
continuously stimulated, the correlation between the two neurons’ spike times
decreases.
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Figure 6.2: Firing Rate versus Correlation for Two Excitatory Neurons

For your benefit, all plots are reproduced in a bigger size in Appendix A.

6.2 Model II: The Impact of Inhibition

Thus, it is clear that inhibitory neurons are quite necessary, to stabilize the
pattern and to ensure that the correlation that we find is in fact because the
spike trains are correlated. Of course, even random firing patterns can show
some correlation, so we want to make sure that we exclude this possibility.

Figure 6.3: Excitatory - Inhibitory Test with 2:1 Ratio

For a fixed excitatory conductance and varying inhibitory conductance, we
can already clearly see that the inhibitory conductance has a large impact on
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the correlation.

Figure 6.4: Impact of Inhibition of Firing Rates and Correlation

In a simulation run of 10,000 trials, the total correlation was examined
with varying excitatory and inhibitory conductances. Typically, the inhibitory
conductance has to be one order of magnitude larger than excitatory neurons
[93][94], so the range of the excitatory conductance was between 0.0 and 0.1,
whereas that of inhibitory conductance was 0.0 and 1.0, with 100 time steps
each.

Figure 6.5: Average Correlation Difference

We can see that the inhibitory neuron and inhibitory conductance have a
large impact on the correlation. In a large segment of possible combinations,
there is no correlation whatsoever. This is the blue part of the graph. The
reason appears to be that the excitatory conductance there is not high enough to
overcome the inhibition. Only when the excitatory conductance value becomes
large enough, do we see correlation. The higher the excitatory conductance, the
higher the correlation, as is indicated by the color shifting from yellow to dark
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red. We can conclude that the inhibitory conductance plays an important role in
correlation: without inhibition, as we saw in the previous model, the correlation
decreases as excitatory conductance goes up and as the network starts to fire
erratically; with inhibition, the correlation is kept in check.

It seems likely that an increase in the number of excitatory neurons will also
have an impact on this. The excitatory-inhibitory ratio varies between 4:1 and
10:1 in the literature [35][93]. Since Vogels & Abbott use the 4:1 ratio and the
simplest representation of a binary predicate requires at least 4 neurons, we will
choose that ratio.

6.3 Model IIIa: Conductance

The model for the more advanced case where we maintain a 4:1 ratio and rep-
resent the predicate Loves for John and Mary is very similar to what we saw
in the chapter on the binding problem. Rosenblatt’s example used Triangle,
Square, Green and Blue, which is identical to a case where we use John, Mary,
Lover and Lovee. Thus, showing binding in this instance of the model solves
Jackendoff’s first case of the binding problem.

Figure 6.6: Representation of John, Mary, Lover and Lovee

The representation of a binary predicate John loves Mary then becomes
as follows. John and Mary are both connected to the role-encoding neurons,
which we have termed Agent and Object. We can stimulate John and Mary, or
Agent and Object, and get similar correlation outputs since the connections are
recurrent. This is important to stress, because this need not necessarily be the
case in advanced models like this.

One might think that there should also be an inhibitor between the nodes
for John and Mary. This is correct, in the sense that this would introduce
the right type of inhibition for this case, but as we have mentioned above, the
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inhibitors in the models are used as an inhibition pool. Hence, all nodes in
the network are connected to the inhibitor pool, which in this case contains
only one inhibitory node. The reason for implementing inhibition this way is
consistency: the placement of local, lateral and global inhibitors would add a
sense of arbitrariness to the models and introduce even more parameters, which
we’ve explicitly tried to avoid1.

Figure 6.7: Correlation Difference for Conductance over John loves Mary

The same test of 10,000 trials was repeated for the network of four excitatory
neurons, which shows that the ratio is indeed very important. The plot shows
the average correlation difference between the taught bindings. For example,
when we teach Agent(John) and Object(Mary), the correlation difference indi-
cates how distinguishable these facts are from their alternatives. In other words,
it is a measure of correctness of the correlation.

Interestingly, we can see in figure 6.7 that the output is rather peculiar:
there appear to be horizontal lines drawn, indicating the the correlation stays
the same for some excitatory conductance values, disregarding the inhibitory
conductance. It is unclear why this is the case. Luckily, the highest correlation
differences occur in places where this pattern is not found, so we can neglect it
for our current purposes.

6.4 Model IIIb: Firing Rate

Another important factor in correlation is the firing rates we give to the stimuli.
When teaching Agent(John) in the teaching phase, they are given the same
firing rates in order to make sure that they bind through spike-time dependent
plasticity. In order to avoid overlap between spike-times, the test rates for the
trials were all prime numbers below 100, ranging from 2 to 97. The same measure
of average correlation difference was used, in order to find an optimum firing
rate. The chosen value for excitatory conductance and inhibitory conductance

1But see [15] for a thorough discussion of the effect of different types of inhibition on a
neuron’s oscillatory behavior.
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over these trials was one of the optimal values for the previous model, namely
an excitatory conductance of 0.085 and inhibitory conductance of 0.55.

Figure 6.8: Correlation Difference for Firing Rate over John loves Mary

The blue and light green colors in figure 6.8 indicate no correlation or neg-
ative correlation difference. The dark red in the top right corner shows what
values exhibit the highest correlation difference. The optimum rate thus turned
out to be the 3rd and 20th prime, giving us 5 and 73 for the firing rates.

6.5 Model IV: Lover and Lovee

With the correct values found for this case, a simple version of the logical model
was implemented in Python, so that we can teach the network facts and retrieve
the information through queries. A sample run of the trivial programming lan-
guage based on the logical model, indicates that the correct results are obtained.
The responses are based on a comparison between the alternative possibilities.
Because there are only two possibilities per case, no threshold value was neces-
sary.

>>> from vb4 import *
>>> Loves(john,mary)
>>> run()
Done.
>>> Loves(john,mary)
True
>>> Loves(mary,john)
False
>>> Loves(john,john)
False
>>> Loves(mary,mary)
False
>>> Loves(john,X)
X = mary
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>>> Loves(X,mary)
X = john

Unfortunately, limitations in Brainlab did not allow for the encoding of mul-
tiple facts at the same time, but experiments show that it is possible to encode
for example Loves(john,mary) and Loves(mary,john) in the same simulation and
acquire the correct correlation values to indicate that it is in fact the case that
they love each other. Similarly, the correlations that have been found indicate
that it is also possible to do something like:

>>> Loves(mary,X)
X = none

However, this can only be accomplished when we have determined a way to
define a threshold which determines whether or not the correlation is sufficient
to show full binding. There are several ways in which this threshold can be
implemented, which is an important issue that we will address in the next
chapter.

The results obtained for this model show that the network can successfully
solve the first of Jackendoff’s problems.

6.6 Model V: Little Big Star

Jackendoff’s second problem is a little harder. First of all, there is the issue
of how we measure correlation and between what nodes. When Little and Big
both bind to star, but with different firing rates, we will be able to distinguish
between them, but what about Agent(Little(star)) and Object(Big(star))?

The easiest way is to compare the total correlation values with each other.
That way, when the difference between the correlation of Little(star) and Agent(star)
is similar, the network encodes Agent(Little(star)). The similarity between the
correlations is indeed apparent from trial runs, as we can see in a sample output
with excitatory conductance of 0.085, inhibitory conductance of 0.55 and firing
rates of 5 and 73 for the bindings, respectively:

>>> vb5.run()
Little star: 3.53700033637
Big star: 23.657132429
Agent star: 4.48106837019
Object star: 26.3286247906

Thus, Jackendoff’s second problem can also be resolved. One objection,
of course, is that having similar correlation values does not necessarily imply
that the correct result has been obtained. After all, when are the correlations
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Figure 6.9: Binding over the Little and the Big Star

similar enough to say that binding has occurred? Since we are using very simple
networks, this issue is not very apparent here, but it will become more important
once the network is used to encode more facts.

6.7 Model VI: Single Binary Predicate Variable
Binding

Although model IV successfully encodes the predicate Loves(john,mary), that
is not the way one would ultimately want to encode a predicate. Whatever way
we choose, the possibility of instantiating variables in predicates at a later state
is of pivotal importance, because otherwise we will never be able to encode rules
using our predicates. One way to do this would be to have multiple constants
bound to the roles of the predicate, but further thought shows that this is
not enough: we need to be able to re-use variables over different predicates.
Something like Loves(X,Y ) → Loves(Y,X) cannot be encoded if we just use
the predicate roles. What we need, is instantiable variables that constants can
bind to.

It is easy to see that this model is very similar to the previous one, except
that we have two variables in the middle, as opposed to the single star. As it
turns out, the results are the same as what we saw for the star, so that we can
encode Agent(X), X=john and Object(Y), Y=mary. The exact values exhibit
similar characteristics to what we have found in the previous model, and are
ommitted for the sake of brevity.
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Figure 6.10: The Complicated Case Using Actual Variables

6.8 Model VII: Multiple Predicate Variable Bind-
ing

The real test for variable binding is, of course, whether we can in fact re-use
the variables. In order to check whether this is the case, we encode two binary
predicates, bind variables to their roles and bind constants to these variables.
It is important to note that this does not necessarily constitute any particular
logical connective, we are just encoding two predicates in the same network.
For the sake of clarity, let us call these predicates Loves and Hates, and encode
Loves(X,Y) and Hates(Y,X).

Figure 6.11: Two Predicates in One Network

The initial excitatory and inhibitory conductance values that we used for
previous experiments yielded very different results in this network. This is
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presumably due to the fact that there is a large number of recurrent excitatory
connections. Instead of simplifying the model so that it is more likely to reach
an equilibrium (for example, by making it a recurrent feed-forward network),
an attempt was made to find the optimal values for this network.

Figure 6.12: Correlation Difference over Conductance

A simulation run of 5,000 trials was done, with varying excitatory and in-
hibitory conductance values, like in Model IIIa, but only with the higher half
of the excitatory values. The plot in figure 6.12 was vertically inverted to make
clear that we are not starting from 0, but going up to 0.1 from 0.05. The firing
rates were set to 5 and 73. The results show that the difference in correlations
is much lower than in the simpler case, as one might expect.

Figure 6.13: Correlation Difference over Firing Rates

However, the results clearly show that it is possible to have the correlation
differences such that they are distinguishable, only to a lesser extent than what
we saw in the earlier cases. A series of trials with fixed conductances and
varying rates showed that the correlation between John and X together with
X and Agent1 is only apparent for a few rates. We can see in figure 6.13 that
only a few firing rates qualify, and that–for the chosen excitatory and inhibitory
conductance values–they cannot be flipped so as to encode two different facts
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using the same firing rates, as was the case in the previous models. It is still
possible to encode different facts, but not in such an elegant way.

There are a lot of ways in which this research can be expanded, as will be
discussed in what follows. However, the important point here is not finding the
optimal values for which correlation is the best tool to determine binding. The
current purpose is to show that it is possible to use correlation as a measure of
binding on biologically plausible neural networks. As the above results show,
that is most certainly possible, so our goal has been achieved.
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Chapter 7

Discussion

Variable binding is one important problem, but as goes without saying, it is
only the beginning. In order to get clear what any full approach would look
like, it is fruitful to highlight some of the features of what has been introduced
in the thesis at hand and discuss the obtained results in a little more detail.

7.1 Conception of Logic

As some logicians jokily say to each other, “logic is everywhere”. In fact, logic
may be found even in one single neuron: consider a spiking neuron with a firing
threshold that requires at least two spikes in close temporal proximity. A single
spike alone is not enough to initiate a spike. Only if two spikes are present within
the required proximity can a postsynaptic spike be triggered–which corresponds
to a logical AND function ([88], p. 85). A more detailed study of logic gates,
notably including XOR and a flip-flop circuit, was done by Vogels & Abbott
[93]. They discovered that given particular physiological parameters pertaining
to the synapses, logic gates can spontaneously form anywhere in a randomly
connected neural architecture. Furthermore, these logic gates can be used to
propagate their signal over large sequences of neurons. To paraphrase these
results in more logician-friendly terms: there does not need to be a central logic
processing unit, nor does logic processing require enormously complex networks.

At least, whether you agree with that depends on your conception of logic.
The distinction that Shastri and Ajjanagadde make between reflexive and re-
flective reasoning can be of help here. They explain what they take reflexive
reasoning to be through the folktale of Little Red Riding Hood (LRRH) and
the Big Bad Wolf. Unbeknownst to LRRH, the wolf has followed her into the
woods and is about to attack her. The reader then reads: “The wolf heard some
wood-cutters nearby and so he decided to wait” ([79] p. 1). Human beings un-
derstand effortlessly what has happened and why the wolf decides to wait, but
underlying this inference is a chain of (unconscious) reasoning that leads to the
conclusion:
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To eat something you have to be near it, so the wolf has to ap-
proach LRRH. LRRH will scream upon seeing the wolf, because she
is scared. The wood-cutters will hear this scream and come to the
rescue of the child. The wood-cutters will try to prevent the wolf
from attacking LRRH. In doing so they may hurt the wolf physically.
The wolf does not want to be hurt physically. So, he decides to wait.

This type of rapid, spontaneous reasoning without conscious effort is what
Shastri and Ajjanagadde call reflexive reasoning. Reflexive reasoning is con-
trasted with reflective reasoning, which requires reflection, conscious effort and
“an overt consideration of alternatives and weighing of possibilities” ([79], p.1).
A good example of the reflective kind of reasoning is solving a cross-word puz-
zle in the newspaper. If we understand logic as reflexive reasoning–and it is a
logical inference after all–a “locus of logic” suddenly becomes a lot more improb-
able, if only for the constraints this would put on how rapidly we can reason.
Similarly, if such a network would be enormously complex, rapidly and spon-
taneously processing the LRRH-inference would be complicated. Thus, there is
even an evolutionary argument for this conception of logic, namely that rapid
inference is more likely to lead to survival: reflectively drawing the inference
“wolf-dangerous-run” would be potentially lethal. It is precisely this kind of
logic that we are interested in, because it seems to be an important factor in
general human behavior.

More evidence from this conception of logic comes from research in logic
and the psychology of reasoning by Stenning and van Lambalgen [87], who
have analyzed a range of instances where human reasoning deviates from what
classical logic prescribes. They “claim for logic a much wider role in cognition
than is customarily assumed, in a complete reversal of the tendency to push logic
to the fringes” ([87], p. 347). Stenning and van Lambalgen’s analysis of logic
in this context is too sophisticated to explicate in full detail here, but suffice it
to say that according to them information processing happens with reference to
logical form, which consists of an idealized competence model that is “as such
not directly applicable to the real world” ([87], p. 350) in combination with
constraints–that is, hypotheses about the world–imposed on that competence
model to determine the strictly underdetermined input. Because human beings
never have access to all data, they perform a type of non-monotonic reasoning
called closed-world reasoning in order to solve reasoning tasks. This process of
arriving at logical form is called reasoning to an interpretation. Notably, this
type of reasoning does not require awareness, as indeed is illustrated in one of
the reasoning tasks that they closely examine (the suppression task).

On the basis of their analysis of reasoning, Stenning and van Lambalgen
see a large role for logic in information processing, as it also provides “a good
format in which to represent information-processing tasks which are not tradi-
tionally conceived of as logical” ([87], p.354). One reason for this is that they
show how some of the strictly nonverbal reasoning tasks that they discuss can
successfully be analyzed using competence models formulated using logical no-
tions. Furthermore, they recognize that cognition is fundamentally concerned
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with setting goals and achieving them, which if it is to be successful requires
a form of planning, which in turn requires causal information about the conse-
quences of particular actions. Logic, especially non-monotonic logic, lends itself
naturally to representing goal-oriented behavior, planning and consequences of
actions.

The above considerations are meant to show that, under this conception of
logic, it makes perfect sense to implement logic in a biologically plausible net-
work. Logical reasoning networks can potentially be all over the brain, as Vogels
and Abbott’s results indicate. Reflexive reasoning is something that is the most
likely candidate for this type of logical reasoning, as is fundamental cognitive
behavior such as goal-orientedness, planning and closed world reasoning, which
can all be captured in logic. The reasoning has to be rapid, spontaneous and
does not require awareness. Thus, these considerations suggest that any imple-
mentation of first-order logic on neural networks should be as simple as possible
and reproducible in any neural structure of significant complexity, without ad-
hering to a locus of logic.

7.2 Logic Programs and Neural Networks

One may wonder why there has been such a focus on logic programs as the logic
of choice. An easy answer would be that this is simply because logic programs
have been used successfully in previous work, but that is not sufficient. It is true
that logic programs have been used quite successfully, most notably in the works
of Hölldobler and in Stenning and van Lambalgen’s study of human reasoning.
However, other logics have also been used, such as Pinkas’ penalty logic [67], to
name but one. Luckily, there are other reasons that make logic programs such
a suitable candidate, which we will briefly address in what follows.

When artificial intelligence researchers first tried to implement human-like
reasoning in artificial agents, they soon discovered that classical logic is far from
the best candidate. Human reasoning must be defeasible if we want to be able
to deal with the changes in our environment; we must be able to revise our
beliefs. As Stenning and van Lambalgen phrase it: “credulous reasoning [where
the hearer tries to accommodate the truth of all the speaker’s utterances in
deriving an intended model] is best modeled as some form of nonmonotonic
logic” ([87], p. 176). This view is closely related to the conception of logic that
we discussed previously: classical logic only arises from conscious reflection on
human reasoning. Actual human reasoning is much more related to planning and
goal-oriented behavior, driven by the evolutionary necessity of rapid reasoning
towards a credible model of the environment. This strengthens the case for logic
programs as the best candidate to model reflexive reasoning.

Logic programs are just one out of many non-monotonic logics. However,
logic programming does have some decisive advantages over its competitors.
The fact that it allows for having a declarative and a procedural side means
that it is highly suitable to be used for knowledge representation and modeling
planning strategies. Moreover, it is syntactically simple and it is computa-
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tionally efficient: whereas other non-monotonic logics, such as Reiter’s default
logic [70] and McCarthy’s circumscription [56] are mostly NP-complete, logic
programming is in P [33].

Additionally, the type of non-monotonicity that is displayed by logic pro-
grams is in line with results that have been obtained about the non-monotonic
behavior of neural networks. Kraus et al. [46] have developed a monotonicity
hierarchy which allows us to make this point clear. The hierarchy provides pos-
itive definitions of five different families of consequence relations and provides
representation theorems for all five, based on the proof-theoretic study of non-
monotonic consequence relations first suggested in [28] on the one hand, and
model-theoretic considerations for non-monotonic inference proposed in [80] on
the other. Summarized in a table, the resulting hierarchy looks as follows:

System Model Postulates
C cumulative Reflexivity, Left Logical Equiva-

lence, Right Weakening, Cut and
Cautious Monotonicity

CL cumulative loop C + Loop
P preferential C + Or
CM cumulative monotonic C + Monotonicity
M monotonic C + Contraposition

The first system, C, corresponds to the system that Balkenius and Gärdenfors
[8] used in their original paper which spawned the interest in non-monotonic
logic and neural networks. Leitgeb has developed representation theorems for
both neural networks and logic programs with respect to this hierarchy. Using
dynamical systems theory, he proves that neural networks correspond to C and
that a specific subset, so-called hierarchical neural networks, belongs to CL [50]
(see [49] for the full proofs). In the same paper, Leitgeb shows that logic pro-
grams can also be viewed as interpreted systems–the type of dynamical system
that corresponds to CL. These results are especially interesting for our current
discussion because they fit into Leitgeb’s program to investigate what he calls
inference on the low level [48].

However, there are some problems when it comes to what Leitgeb shows
with relation to logic programs. Whereas it seems to be a good idea to ap-
proach neural networks from the perspective of dynamical systems, the same is
not necessarily true for logic programs. Furthermore, the semantics that Leit-
geb uses in his proofs unnecessarily restricts the class of logic programs that
is applicable. What is more, Leitgeb pays no attention to the fact that for
logic programs, the CL and P classes coincide. The author of the current the-
sis has addressed these issues in a previous paper [43], where it is shown that
logic programs correspond to CL in the same way that hierarchical neural net-
works do. It needs to be noted that this is restricted to so-called normal logic
programs, sometimes called general logic programs, because these are in fact
non-monotonic. The approach differs from Leitgeb in that it proves the fact for
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a larger set of logic programs. While his approach is restricted to stratified logic
programs and uses answer set semantics, it is possible to obtain the same result
for all normal logic programs using well-founded semantics. Coincidentally, this
three-valued semantics for logic programs is exactly the same semantics as is
used by Hölldobler and Stenning and van Lambalgen.

As we can see on closer inspection, the hierarchy goes all the way up to
cumulative monotonic and monotonic logics. This last level is the level where
classical logic is at. Thus, it is important to note that logic programs represent a
fragment of classical logic. A non-monotonic fragment, but also one that allows
for a different type of semantics, based on unification. The advantage of this, in
the context of neural networks, is that we do not require an external domain. As
such, assignments of constants to variables reduce to identity relations between
constants and variables. As a result, unification for logic programs in neural
networks reduces to a problem of combinatorial optimization.

Another property of logic programs that is useful when trying to imple-
ment logic on neural networks is that the consequence relation is nicely mod-
eled through connections in neural networks. In biologically plausible networks,
the synaptic efficacy determines the strength of the connection and hence the
strength of the implication. However, the story is slightly different for the other
logical connectives: how about negation and conjunction? As we will see in
a bit, negation is a problem that can relatively easily be solved. The story is
different for conjunction, because the typical logic gates that Vogels and Abbott
found [93] are not applicable for a three-valued logic. That topic, however, is
out of the scope of the current thesis.

7.3 Incorporating Rules

Let’s focus on the representation of truth values first. Luckily, work on this
has already partially been done, specifically with relation to non-monotonic
consequence relations. David Neville [62] has worked on modeling this type of
three-valued consequence relation and showed that it is possible to successfully
model non-monotonic relations. Importantly for the current argument, this was
accomplished on biologically plausible networks using NCS. The model that
Neville used looks as follows:

Figure 7.1: Neville’s Model of a Non-Monotonic Consequence Relation
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Neville used assemblies of neurons and showed that the consequence relation
between P and Q tracks the truth values. As such, it is possible to make sure
that Q is only true if and only if P is true. The unknown truth value is modeled
when neither T nor F is active. Since Neville’s model was implemented on the
same software, NCS, a suggestion of how we could model implication and this
sort of non-monotonic consequence would look as follows1:

Figure 7.2: Variable Binding with Neville’s Model

Whereas the two-predicate network ran into the trouble of expressing the
exact relation–whether it be a logical connective, just separate predicates, or
something else–between the two predicates, Neville’s work provides us with a
way out. The correlation determines the binding between the constants and the
variables, while the actual implication happens at the lower levels. On closer
inspection, this model actually is a good way to show how important unification
is for our current purposes, because it provides us with a great advantage:
the actual implication and the inference resulting from it is separate from the
variable binding. Furthermore, explicitly encoding truth-values like this allows
for correlation to determine which bindings are true, false or undecided: e.g.,
when True correlates with john, x and agent1, it is true that John bound to x

1An inhibition pool for all neurons, not just True and False, is implicit here. It is without
a doubt an important part of the model, but it was disregarded in the picture in order to
make clearer the interconnections between the nodes.
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as the agent is true for that predicate.

7.4 Determining the Threshold

Using this information we could attempt to formulate a logical model where we
provide a semantics based on biologically plausible neural networks–a neurose-
mantics, if you will. However, such an attempt is beyond the scope of the thesis
at hand, because it requires us to make explicit how we are to define a thresh-
old θ that conclusively indicates binding–something that is worth pursuing, but
that easily merits a thesis of its own right. In what follows, we briefly review
some of the intricacies involved.

First and foremost, it is hard to come up with a threshold that is so generic
that it can be applied to any model whatsoever that uses spike-time correlation.
In the experiments, the threshold was mostly unnecessary, because we were
aware of all the possibilities, but this will not always be the case when the
experiments are scaled up. Without attempting to define the threshold in a
general way, we can indicate what factors might play an important role here2:

• Connections: when scaling up, the connection probability between individ-
ual neurons within the same layer, inbetween layers or inbetween colums,
will have a direct impact on the correlation threshold.

• Conductance and firing rates of stimuli: the conductance values and the
firing rates given to stimuli have a great impact even on the simpler mod-
els. Changing the conductance only slightly, as we have seen, can already
change the correlation outcomes significantly.

• Learning: the impact of learning on correlation may be used as a base-
case threshold. That is, one can measure the correlation when there is no
learning, and use that as an index for correlations where the network has
learned a specific relation.

• Time: the time of learning and the time of the total experiment may
cause fluctuations in the correlation, depending on the parameters. When
the time of learning is too long, the network may overlearn. When it
is too short, the correlation may not change significantly enough. When
the length of the experiment is extended, the correlation should remain
identical, as long as the learning phase stays the same. However, since
there is at least some randomness involved in any biologically plausible
model, the length of the experiment may also cause the correlation to
fluctuate slightly.

2An additional complicating factor in determining the threshold is due to the some pe-
culiarities of the NeoCortical Simulator. With a connection probability lower than 1 NCS
does not allow us to determine after the fact which neurons have connected with which other
neurons. Furthermore, there is a certain randomness introduced which cannot be avoided.
Since these and other factors make it very difficult to quickly determine a qualitatively sound
threshold, it is better not to go into too much detail on that and leave it for future work.
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It is important to note that these factors have been taken into account in the
experiments performed for the current thesis. Connection probabilities were set
to 1 and they were always recurrent; the conductance values were tested against
each other; learning and the time of learning were made such that Hebbian
learning in the model was only active when both assemblies were simultaneously
stimulated. The ratio of 1 second learning phase followed by 1 second processing
phase was chosen deliberately on the basis of previous experiments [103]. All in
all, the models were chosen such that if it works for these models, then the results
are automatically applicable to finer-grained models where these parameters
have been chosen differently. For example, a recurrent feed-forward network
with the correct conductance values; exactly the right amount of learning; and
precisely the correct ratio between inhibitory and excitatory neurons and their
interconnections will result in a much higher distinguishability in spike-time
correlation.

7.5 Synchronization

Likewise, the measure of spike-time correlation was chosen exactly because if
we can obtain results with correlation, then finer-grained measures will yield
even better results. Specifically, the measure of synchrony is something that is
very actively researched in computational neuroscience and even in physics. The
Kuramoto model [3] has been used already in examining the synchrony between
neural assemblies on EEG scans. EEG scans are notoriously imprecise, meaning
that the Kuramoto synchrony is measured over the local field potential of not-
necessarily related neurons [19]. That is, the assemblies are arbitrarily based on
the placement of sensors. This is something that computational neuroscience
need not suffer from: we can very precisely calculate the local field potential
over designated assemblies, knowing what they are supposed to represent.
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Chapter 8

Conclusion & Outlook

The purpose of the current thesis has been to show that biologically plausible
neural networks can implement variable binding on (multiple) predicates. The
results are preliminary, in the sense that the thesis makes the modest claim
that more attention should be paid towards uniting our knowledge of logic with
our knowledge of computational neuroscience. The current work can be used
as a foundation for implementing predicate logic programs on neural networks
and shows the way towards achieving that goal. Predicate logic programs are
especially important, because they exhibit exactly the right properties that we
would want to have when we are implementing logic on neural networks.

It has been made clear that the conception of logic that is at stake here differs
significantly from classical logic: it is reflexive reasoning, low-level inferences,
that we are concerned with. It is the belief of the author that this type of
reasoning represents the fundamental type of reasoning and that it underlies
cognition as a whole, as well as the reflective understanding of our own reasoning
that ultimately led to classical logic.

The deliberately blunt parameters for connections, conductances, firing rates,
inhibitory-excitatory ratios, learning times and the measure of spike-time cor-
relation were chosen together in order to represent such a blunt tool that the
obtained results quite definitely show first and foremost that there is a lot of
potential in modeling logic on biologically plausible neural networks and, more
importantly, that logic in combination with computational neuroscience is a
very useful alternative next to the traditional study of logic in relation with
connectionism.

Since the results presented here are merely preliminary, there is a lot of
space for future work. The previous chapter has already touched upon some of
the possibilities: a first step would be implementing truth values, implication
and conjunction. Furthermore, tweaking the network according to our current
neurophysiological understanding of the brain, as well as chosing a finer-grained
measure of synchrony, may allow for even better results. That is, the blunt
parameters can be made much more precise, allowing for greater differences in
correlation for the desired cases.
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Ultimately, the author is confident that this is the way forward. Some sort
of biologically plausible neurosemantics which fully models normal first-order
logic programs, is likely to be achieved through a combination of logic and
connectionism on the one hand, and logic and computational neuroscience on
the other.
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Appendix A

Detailed Graphs and Plots

The graphs and plots used for the models are reproduced in this appendix in a
larger size.
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Appendix B

NCS, Brainlab and Code
from the Experiments

B.1 Installing NCS and Brainlab

From a fresh Ubuntu install, first install subversion and then use it to acquire
the Brainlab package, which includes the NCS source code:

sudo apt-get install subversion
cd ∼
svn co https://brainlab.svn.sourceforge.net/svnroot/brainlab brain-
lab
cd brainlab
tar xvzf ncs*

Then, install the required dependencies for NCS:

sudo apt-get install bison mpich-bin libmpich-mpd1.0-dev libmpich-
shmem1.0-dev mpich2 mpichpython flex g++

The next step is to compile NCS. Before we can do that, however, we need
to edit the Makefile and adjust the following (if we are running it locally):

# apt-get installs MPICH in /usr/bin, so set this:
ifeq ($(SYSTEM),local)
MPI = /usr
NAME = ncs5pe
endif

# Make sure this is set:
SYSTEM = local
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If you’re on an AMD64 system, adjust the CFLAGS accordingly. Then
compile the code and link to the executable so that Brainlab can find it:

make
ln -s ./ncs5pe ..

With NCS compiled successfully, we then turn our attention to Brainlab and
add the following to .brainlabrc:

remoteexec=False
mcmd=‘/usr/bin/mpirun’
nolocal=False
remdir=‘./’

Install the required dependencies for Brainlab:

sudo apt-get build-dep python-matplotlib python-scipy python-scipy
sudo apt-get install python-matplotlib python-scipy python-opengl
python-pyx

We can then run the testsuite to see if there are any errors, and fix them in
case there are:

python testsuite.py

Then, we need to make sure that MPI is running and configured properly.
For running only locally, the easiest way is to run the following commands:

touch ∼/.mpd.conf
chmod 600 ∼/.mpd.conf
echo “MPD SECRETWORD=S3CR3TW0RD” > ∼/.mpd.conf
mpd &

We can then verify that MPD is running properly by doing:

mpdtrace

The hostname that this outputs should be put into the machinefile in
/usr/lib/mpich/share/machines.LINUX. If you want to add multiple machines,
repeat the steps and add additional hostnames to the same machinefile. To check
that this works properly, run the following command to show your hostname:

mpiexec -n 1 /bin/hostname

With MPI configured, we need to fix some bugs in the Brainlab code. Change
the appropriate line where the command is executed in brainlab.py to the fol-
lowing:
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machfile=“/usr/lib/mpich/share/machines.LINUX”

ncmd=“cd ”+tmpdir+“; ”+mcmd+“ -machinefile ”+machfile+“ ”+nlcl+
“ -np ”+“nprocs”+“ ”+ncscmd+“ ”+
brainname+“.in -d ./” # end quote after I/O redir

Also set appropriate values at the top, depending on your configuration.
Next, make sure the IPSC.txt and EPSC.txt files are in your home directory
and you should be good to go.

In case you run into any errors, notably segmentation faults with running
reports, you might have to set the appropriate library dependency, like so:

export LD PRELOAD=/usr/lib/libstdc++.so.6

B.2 Understanding NCS and Brainlab

Running simulations in Brainlab comprises four main steps:

• Setting the parameters

• Constructing the network

• Running the simulation

• Analyzing the results

In this appendix we will briefly go over some of the code used in the ex-
periments, in order to make it easier for others to reproduce the results and
build on top of the results obtained in the thesis at hand. Refer to [35] for a
more detailed list of available options and a more detailed explanation of the
possibilities.

B.2.1 Setting the parameters

Before we initialize a so-called BRAIN object, we need to tell the constructor the
length of the simulation, the name of the “brain” and the simulation timesteps
per second. We can then initalize the object:

bradb=brainlab.BRAIN(simsecs=2.0, jobname=“experiment1”, fsv=10000)

The resultant object consists mostly of a comprehensive library that spans
all the possible parameters. For example, if we want to change the spiking
threshold for a particular neuron’s compartments, we can change the parameters
as follows:

lib=bradb.libs[‘standard’]
comptypes=lib[‘comptypes’]
comp=comptypes[‘SOMA1’]
comp.parms[‘THRESHOLD’]=[‘-50,0.0’]
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The most important parameters concern the excitatory and inhibitory synapses.
For example, if we want to set the Hebbian learning of the excitatory synapses
for one second, starting from the beginning:

lib=bradb.libs[‘standard’]
syntypes=lib[‘syntypes’]
esyns=syntypes[‘E’]
esyns.parms[‘HEBB START’]=[‘0’]
esyns.parms[‘HEBB END’]=[‘1’]

B.2.2 Constructing the network

Once all the parameters are set, we can start constructing the actual networks.
The associated objects here are COLUMN, LAYER and STIMULUS. One col-
umn can contain multiple layers. When applying a stimulus (a so-called stimulus
injection), we provide the column name, the layer name, the synapse type, the
cell name and the number of cells being stimulated, in that order.

Connections can be formed between layers in different columns, layers in the
same column and between cells within the same layer. This is best explained
through a simple example that contructs a column, adds a layer to it, connects
the cells in the layer to each other and applies a stimulus:

col=bradb.COLUMN(“TYPE”:“COL1”)
bradb.AddColumn(col)
layer=bradb.LAYER(“TYPE”:“LAYER1”)
layer.AddCellType(ecell, num neurons=100)
col.AddLayerType(layer)
bradb.AddConnect((col,layer,ecell),(col,layer,ecell), esyns, prob=1)
stim1=bradb.STIMULUS(parms=‘MODE’: ‘VOLTAGE’, ‘PATTERN’:‘NOISE’)
# you can set the parameters for stim1 here
stim layer1=bradb.STIMULUS INJECT()
stim layer1.parms[‘STIM TYPE’]=stim1
stim layer1.parms[‘TYPE’]=‘inject layer1’
stim layer1.parms[‘INJECT’]=[‘COL1 LAYER1 E SOMA1 name 100’]
bradb.AddStimInject(stim layer1)

Lastly, we can tell Brainlab what to report on. In most cases, we do not
need all available data and we are only interested in specific information about
one population of neurons, for example. For this reason, before we run the brain
we tell Brainlab that we only want to get a report of the voltage in Layer 1 for
the first two seconds:

bradb.AddSimpleReport(“Layer1Report”, (col,layer1,ecell), reptype=“v”,
dur=(0.0,2.0))
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B.2.3 Running the simulation

In order to run the simulation, we pass our constructed network and associated
parameters to the Run function. Here we can also tell it how many processes
can be used, which can be important on multi-core systems or on clusters:

brainlab.Run(bradb, nprocs=1)

B.2.4 Analyzing the results

Brainlab itself provides some basic functions for the analysis of the results, but
in most cases the functions are unsatisfactory for a number of reasons. If you
want to analyze the results in more detail than looking purely at the voltage
plots of one single neuron, it is best to familiarize yourself with the Python
libaries matplotlib and numpy.

Before you can start using these libraries, you need to know how the datafiles
that Brainlab/NCS generates are organized. This is in fact pretty straightfor-
ward:

0 -60.0877 -60.0894 -60.0911 -60.0947 -60.0874 -60.0879 -60.0897

The first number, 0, represents the timestep. Every column that follows it
represents the membrane potential of one neuron, so that in the data above we
can see the membrane potentials for 7 neurons at timestep 0. The best way to
go about this is to load the entire file into a two-dimensional numpy array and
remove the leftmost column (which represents the timesteps). We can then plot
the results using matplotlib:

import numpy as np
import matplotlib.pyplot as plt
space=np.linspace(0.0,2.0,2.0*10000)
results 2darray=np.array(data)
plt.plot(sp,results 2darray,’b’)
plt.show()

The fact that the information is stored in a numpy array means you can do
advanced analysis of the whole dataset using functions in the numpy and scipy
libraries. For example, in one of the experiments performed for the thesis, the
whole sequence above was repeated 10.000 times for different parameters. The
resulting datasets were analyzed for spike-time correlation one-by-one, which
was in turn plotted on a 100 by 100 color plot to show where correlation was
highest.

B.3 Code from the Experiments

In most of the more advanced experiments, particularly the repetitive ones that
searched for the right parameters, an additional layer of code was used to make
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things more organized. Typically, the dynamic parameters were set from a
loop, then passed to the simulation run in brainsim.py and then analyzed using
functions from brainalyze.py. For example, checking the rates for two stimuli,
we would run the repetitive experiments like so:

primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97]
rates = np.array(primes)
x=0
y=0
while x < len(rates):

while y < len(rates):
parameters[‘RATE1’]=rates[x]
parameters[‘RATE2’]=rates[y]
parameters[‘BRAINNAME’]=‘vb-exp’+str(rates[x])+‘-’+str(rates[y])
brainsim.simBrain(parameters)
y=y+1

y=0
x=x+1

The resulting data files can then be analyzed from another loop, for example,
storing the correlation between John and X for all possible rate values in a
numpy data file which can be further analyzed or plotted at a later stage:

x=0
y=0
store = np.zeros((len(rates), len(rates)))
while x < len(rates):

while y < len(rates):
lJ=brainsim.loadBrain(‘vb-exp-JReport.txt’)
,spikesJ=brainalyze.countSpikes(lJ,10000*(parameters[‘ENDSIM’]/2))

lX=brainsim.loadBrain(‘vb-exp-XReport.txt’)
,spikesX=brainalyze.countSpikes(lX,10000*(parameters[‘ENDSIM’]/2))

cJX=brainalyze.corr(spikesJ,spikesX) # correlation John
and X

store[x][y]=cJX
y=y+1

y=0
x=x+1

np.save(‘ratestore.npy’, store)

The full code of the experiments can be acquired from the following URL:
https://github.com/dkiela/thesis and from the ILLC website.
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