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ABSTRACT 
 
We characterize the structural properties of dynamic inference in general update models, and 
show that these are exactly the ones of public update in epistemic logic.  
 
 
1 DYNAMIC INFERENCE IN ABSTRACTO 
 
Logical dynamics is about actions that change information, such as information update in 
communication. At an abstract level, we view propositions A as partial functions TA taking 
input states meeting the preconditions of update with A to output states: 
 
        TA   
 
More generally, this process can be modeled by means of transition models  
 
 M = (S, {TA | A∈ Prop})  
 
consisting of the relevant information states S with a family of transition relations TA over 
these, one for each proposition A in some abstract index set Prop. Such update propositions 
suggest the following notion of dynamic inference:  
 
 the action of the successive premises enforces the conclusion. 
 



2       Meaning: the Dynamic Turn 
 
Definition A sequence of propositions P1, …, Pk dynamically implies conclusion C in 
transition model M, if any sequence of premise updates starting from any state in M ends in a 
state which is a fixed point for the conclusion:  
 
 whenever s1 Tp1 s2 … Tpk sk+1, then sk+1 C sk+1  
 
Alternatively, we say the sequent P1, …, Pk ⇒  C is true in the model – written as:  
 
 M |= P1, …, Pk ⇒  C. 
 
In what follows, we will use symbols P, Q, R to stand for finite sequences of propositions, and 
A, B, C for single propositions. 
 
Over transition models, dynamic inferential sequents of this form lack the standard structural 
rules of classical consequence. This situation is analyzed in van Benthem (1996, Chapter 7). 
Some simple counter-examples establish the following result. 
 
Fact  None of the following structural rules hold for dynamic inference: Monotonicity, 

Contraction, Permutation, Reflexivity, or Cut.  
 
One can show this formally, but the main idea is simply this. Any cooking recipe may be 
disturbed by inserting arbitrary instructions, deleting repeats of an instruction, interchanging 
instructions, etc. Even the Cut Rule fails, at least in its general form: 
 
 if P ⇒ A and R, A, Q ⇒  C, then R, P, Q ⇒  C  
 
But as more often in non-classical logics, some 'substitute rules' turn out to hold. 
 
Fact Partial update functions validate the following rules for dynamic inference: 
 if P ⇒ C, then A, P ⇒ C    Left-Monotonicity 
 if P ⇒ A and P, A, Q ⇒ C, then P, Q ⇒ C Left-Cut 
 if P ⇒ A and P, Q ⇒  C, then P, A, Q ⇒ C Cautious Monotonicity 
 
Proof For instance, consider Left-Cut. If we move from state s to t via P, and then from t to u 
via Q, the first premise P ⇒ A tells us that t A t, and so the sequence s, t, t, u fits the action of 
P, A, Q, whence u C u by the second premise. ! 
 
 
2 AN ABSTRACT COMPLETENESS THEOREM 
 
The above structural rules are characteristic for dynamic inference with partial update 
functions. The proper setting for this is the following representation result. Take any set Prop 
of propositions, seen as abstract objects – with a binary relation ⇒  between finite sequences of 
propositions and propositions – again written with finite sequents:  
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Theorem The following are equivalent for any structure (Prop, ⇒ ) : 
 (a) ⇒ satisfies {Left-Monotonicity, Left-Cut, Cautious Monotonicity},  viewed as abstract 

conditions on relations of type sequence-to-object, 
 (b) there is a transition model (S, {TA| A∈ Prop}) with partial maps TA whose relation of 

dynamic inference as defined above coincides with the given relation ⇒  among the 
abstract propositions A. 

 
Proof  The direction from (b) to (a) is the preceding Fact. Now from (a) to (b). For any given 
abstract structure (Prop, ⇒ ), we define a transition model M as follows. States are finite 
sequences X, Y, … of propositions. For each proposition A, we then define the following partial 
function over these states: 
 
 TA = {(X, X) | X ⇒ A} ∪  { (X,< X, A>) | not X ⇒ A}  
 
We must check that the following equivalence holds: 
 
 M |= P1, …, Pk ⇒  C iff P1, …, Pk ⇒  C is true in (Prop, ⇒ ) 
 
'If'. Suppose that s1 Tp1 s2 … Tpk sk . By the definition of the transformations TA, each step in 
this sequence of states either adds a proposition at the end, or 'pauses'. Here is a typical 
illustration of what may happen: 
 
 X Tp1 <X, P1>    (not X ⇒  P1)  
 <X, P1> Tp2 <X, P1>   (<X, P1> ⇒  P2)  
 <X, P1> Tp3 <X, P1, P3>   (not <X, P1> ⇒  P3)    
 
We must show that the final state <X, P1, P3> is a fixed point for TC : i.e., 
 
 <X, P1, P3> ⇒  C  
 

First we have (in this particular case) that <P1, P2, P3> ⇒  C in Prop, and hence by Left-
Monotonicity in that structure also  
 

 <X, P1, P2, P3> ⇒  C:  
 

Then following the above three transition steps, we can suppress one proposition thanks to the 
truth of <X, P1> ⇒  P2, by using Left-Cut: 
 

 <X, P1, P3> ⇒  C 
 

This argument is really completely general. 'Pauses' involve valid sequents that can be used to 
cut out items in the left sequence P1, …, Pk at the right places.  
 

'Only if'. This direction essentially involves the remaining structural rule. Again, one example 
demonstrates the general procedure. Suppose <P1, P2, P3> dynamically imply C in the above 
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transition structure M. Start with the empty sequence – . We choose three particular transitions 
for the premises. If – ⇒ P1 in Prop, our first transition is –, – ; otherwise, we go to an extended 
sequence <P1>; etc. Suppose that, for our three propositions, this yields the following sequence 
of transformations: 
 

 –, <P1>  <P1>, <P1> (where P1 ⇒  P2!) <P1>, <P1, P3> 
 

Now by the assumption of this case, the final state is a fixed point for TC, i.e.,  
 

 P1, P3 ⇒  C   is true in Prop 
 

But then by the fact that P1 ⇒  P2 plus Cautious Monotonicity:  
 

 P1, P2, P3 ⇒  C   is true in Prop 
 

Again the general trick is clear. We can insert propositions wherever required. ! 
 

This representation also yields a completeness theorem for sequents interpreted as above on 
models M. For this purpose, we need to define valid consequence among sequents on transition 
models, for which we introduce a new arrow: 
 

 "from set of sequents Σ to sequent σ"   Σ ! σ 
 

Definition  We have valid consequence between a set Σ and a sequent σ if σ is true in all 
transition models where all sequents from Σ are true.  

 

Here is the more general thrust of the preceding theorem. 
 

Corollary A sequent σ is a valid consequence of a set of sequents Σ iff σ is derivable from 
sequents in Σ using the three mentioned structural rules.  

 

Proof From right to left, this follows from the soundness of the structural rules. Going from 
left to right requires a small modification of the above construction. Suppose that σ is not 
derivable from the set Σ. Take the structure (Prop, ⇒)  with the relation ⇒  holding only for  
 
 sequents derivable from the set Σ  using the three given structural rules.  
 
Now represent this structure just as above. The result is a transition model M where all 
sequents in Σ are true, while σ is false. ! 
 
There are also other notions of dynamic inference, placing other requirements on the update 
action associated with the conclusion. Analogous abstract characterizations for their structural 
properties may be found in van Benthem (1996).  
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3 CONCRETE MODELS: PUBLIC UPDATE IN EPISTEMIC LOGIC 
 
Epistemic logic and information models   
 
One of the most concrete update systems has public announcements transforming multi-S5 
models for epistemic logic. Here is an illustration. Two players draw from a set of red and 
white cards. Each can see the colour of their own card, the other cannot. Also, it is known that 
no two white cards have been drawn. Here is the epistemic model, which may be viewed as an 
information state for the group {1, 2}. Its three 'worlds' are tuples like rw, standing for the 
physical situation in which "1 has a red card, and 2 has a white one". The bold-face tuple rr 
represents what actually happened, as seen by an outside observer: both players drew a red 
card. 
 
  rr  rw 
     1 

    2 

   
  wr 
 
The indexed lines give the usual uncertainty equivalence relations for the two agents. E.g., 
player 1 cannot distinguish the situations rr and rw. This model M interprets epistemic 
assertions in an obvious language with atomic propositions  
 
 cj  agent j has color c  
 
and the usual operators  
 
 Kiφ   agent i knows that φ   
 <i>φ   agent i holds it possible that φ  
 
interpreted as universal and existential modalities, respectively. Thus, for instance, 
 
 M, rw |= K2 (red1 & white2)  
 M, rr |= ¬K1 red2 
 
Public update by world elimination  
 
Now consider communication between players. Note that 1 does not know the color of the 
other person's card. But this ignorance itself is something she can usefully report (short of 
broadcasting her own card colour):  
 
 "I don't know if 2 has the red card"  
 



6       Meaning: the Dynamic Turn 
 
She knows this, so it is a fair statement. This provides information, as this assertion is false in 
the bottommost world wr. Hence the corresponding public update eliminates this bottom world, 
and we get an update to the following new epistemic model: 
 
       from rr  rw  to  rr  rw 
      1        1 
      

    2 

   
   wr 

 
Interestingly, thanks to this communication of ignorance, 2 now knows the real situation, as 
there are no uncertainty lines for him leading out of rr. Hence he can now state "I have the red 
card', leading to a further update eliminating the world rw: 
 
       from rr  rw  to  rr 
     1 

 
The final model is a information state where the group {1, 2} has achieved common knowledge 
of the facts, in the technical sense of epistemic logic. (They might just have told each other 
their cards – but our example illustrates the more interesting forms of communication in 
general.) In this setting, states of a communication process are epistemic models (M, s) for the 
relevant language, with s the actual world. These models are described by the usual multi-S5 
epistemic logic, serving as an account of ordinary truth at successive snap-shots of the update 
process.  
 
Dynamic epistemic logic  
 
But our example also showed how communication itself changes models through the use of 
public announcements A! of assertions A from the epistemic language, viewed as actions in 
their own right. These actions are partial functions, defined only when the assertion is true in 
the actual world:  
 
 A! is defined in (M, s) only when M, s |= A. In that case,  
 the result is the model (M|A, s) resulting from (M, s) by  
 throwing out all worlds of M where A does not hold: 
 
 from    to 
   s         s         
   A     
        ¬A 
 
 
To account for dynamic inference, then, we need a dynamic logic with modalities  
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 [A!]φ , <A!>φ 
 
of the usual kind. E.g., the existential one can be interpreted as follows: 
  
 (M, s) |= <A!>φ    iff    M, s |=A & (M|A, s) |= φ   
  
A complete logic for this system is known. We state its key axioms here just for the sake of 
concreteness. These basically show how to 'precompute' effects of updates: 
 
 <A!>p ↔  p     basic facts are unaffected by update 
 <A!>¬φ ↔ Α & ¬<A!>φ   updates are partial functions 
 <A!>φ∨ ψ ↔ <A!>φ ∨ <A!>ψ  general modal distribution  
 <A!>Kaφ  ↔ A & Ka(A → <A!>φ) update through relativization, 1 
 <A!>CGφ ↔ A & CG(A, <A!>φ)  update through relativization, 2 
 
The right-hand side of the last clause refers to an appropriate syntactic relativization of the 
operator CG of common knowledge for the group G to the formula A. An alternative version of 
the system has a universal modality [A!]φ   stating that φ  holds in the new information model 
updated with A whenever that update is defined (i.e., if A is true). Axioms for this are obvious 
modifications.  
 
Finally, to be precise, we still need a further stipulation. What is the family of all relevant 
information models? We can take a global perspective here, working with  
 
 the Supermodel MM consisting of all epistemic models.  
 
Then, e.g., the above semantic clause should really read: 
 
 MM,, (M, s) |= <A!>φ    iff  MM,, (M, s) |=A & MM,, (M|A, s) |= φ   
 
Another option is to restrict the family of all relevant models to 'small corners' of the 
Supermodel. This approach is natural in modeling games, and other more restricted 
communicative settings. In that case, all updates will be considered only in so far as they exist 
within some special family MM of models. Actual games even have context-dependent 
restrictions on which updates are possible at which players' turns – but this would take us too 
far afield here. (Cf. van Benthem (2000).) 
 
 
4 REPRESENTATION WITH CONCRETE UPDATES 
 
Dynamic inference in communication  
 
Epistemic update logic supports the same notion of dynamic inference that we developed 
earlier in our general abstract setting. Dynamic propositions are public announcements A! of 
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epistemic logic formulas A. Again, the preceding choice of settings then returns. Dynamic 
validity, i.e., truth of a sequent  
 
 P1, …, Pk ⇒ φ  
 
in the Supermodel says that, starting with any epistemic model whatsoever, successive 
announcements of the premises result in a model where announcement of φ effects no change: 
i.e., φ was already true everywhere even before it was announced. This amounts to validity of 
the following dynamic formula, which says that the conclusion becomes common knowledge: 
 
 [P1!]…[Pk!]CGφ 
 
But we can also relativize these notions to any smaller family MM of epistemic models.  
 
This concrete update system shows the same general phenomena we saw in Sections 1, 2. The 
three valid structural rules remain valid. More surprisingly, non-validities also show up in this 
special arena.  
 
Fact All classical structural rules fail for dynamic update inference. 
 
Proof  Here are some examples. (a) Permutation fails as announcements in the order <>p!; 
¬p! can be consistent, whereas ¬p!; <>p! is inconsistent: it cannot be announced truthfully. 
We can cast this in terms of assertions in the dynamic language: 
 
 [¬p!][<>p!] CG q is true at every model for any q, as there is no successful  
 update sequence at all, but [<>p!][¬p!] CG q fails at some (M, s) for q≠p 
 
(b) Likewise, Contraction fails as (<>p!; ¬p!) ; (<>p!; ¬p!) is inconsistent, whereas a single 
occurrence (<>p!; ¬p!) is not. The dynamic version is similar to the preceding. (c) The Cut 
Rule fails in the form: "if P ⇒ A and Q, A ⇒ C, then Q, P ⇒  C". Counter-example: P = ¬p!, A 
= ¬<>p, Q = <>p!, and C =⊥  – or in dynamic terms:  
 
 [¬p!]CG ¬<>p and [<>p!][¬<>p!] CG q are true everywhere,  
 whereas [<>p!][¬p!] CG q is false at some epistemic models. 
 
(d) Finally, Reflexivity fails as public announcement A! need not always make the announced 
assertion A true. For instance, announcing  
 
 (p & <you>¬p)!   (" p holds, but you don't know it")  
 
to someone makes p true in the whole new model, so everyone now knows it – and hence the 
conjunct <you>¬p becomes false by the very update. This failure is one instance of the 
'Learning Problem' for updates. This is the question which assertions once announced become 
automatically common knowledge, and which do not. ! 
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The definition of validity  
 
The preceding Fact suggests a notion of valid inference via epistemic substitutions. Take any 
structural inference involving abstract propositions: 
  
 "from set of sequents Σ  to sequent σ "   Σ ! σ 
 
This has substitution instances with epistemic announcements replacing the abstract 
propositions, and sequents P ⇒ φ then turning into dynamic formulas of the above form 
[P1!]…[Pk!]CGφ . Now, each such assertion is true or false in the Supermodel MM of all 
epistemic models. But then, so are Horn implications of the form 
  
 conjunction of instances for Σ  →  instance for σ     
 # 
 
reflecting these structural inferences. We call a structural inference update-valid if all its 
substitution instances are true implications of this sort. For an illustration, see our counter-
examples for the classical structural rules. In their most obvious sense, these refer to the 
Supermodel, given the earlier substitutions of concrete updates.  
 
This notion of validity might depend on the universe of available models. In a stricter variant of 
update validity, the implication # must hold in all families MM of epistemic models, small or 
large. Whenever MM makes all premise assertions true (insofar as it contains their relevant 
update sequences), it must do the same for the conclusion. 
 
Fact A sequent inference Σ ! σ  is update-valid in the Supermodel iff it is update-valid in 

arbitrary families of epistemic models. 
 

We could prove this result separately, but it will fall out of the following analysis.  
 
Public update is complete for dynamic inference 
 
Now we will show that the earlier abstract axiomatization of dynamic inference still works in 
this more concrete setting of one specific form of information update. 
 
Theorem The update-valid structural inferences Σ ! σ are precisely those whose conclusions 

σ are derivable from their premise sets Σ by the rules of Left-Monotonicity, Left-Cut, and 
Cautious Monotonicity.  

 
Proof Soundness in the Supermodel, or indeed any family of epistemic models, is immediate 
from soundness of these structural rules over all abstract transition models. We must now 
consider completeness. If an inference Σ ! σ is not derivable by our structural rules, then the 
construction in Section 2 creates an update model in which the conclusion σ = P1, …, Pk ⇒ C 
fails, while all premise sequents are globally true. Without loss of generality, we can restrict 
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attention to the finite linear submodel consisting of the states involved in refuting the 
conclusion. This is a linear sequence 
 
 s1 Tp1 s2 … Tpk sk+1, but not sk+1 C sk+1 
 
In addition to the transformations mentioned here between these states, there may be others – in 
particular, fixed points for conclusions of true sequents in the premise set. Now, the point is 
that such an abstract transition model can be represented faithfully inside the Supermodel MM, 
given a suitable map of abstract states s to concrete epistemic models (M, t), and of abstract 
transformations Tp to public announcements of specific epistemic formulas. The construction is 
best seen in a concrete case.  
 
A worked-out example 
 
Consider the following diagram for an abstract transition model: 
 
 1          A    2         B      3       ∆ 
 
       B                       A             A   
 
First consider a multi-S5 model M∆∆∆∆ with worlds 1, 2, 3 for each point in the diagram, plus one 
actual world s that will remain constant throughout. Next, take four proposition letters p1, p2, p3 
and ps uniquely true at their corresponding worlds: 
 
            ps              p1  
 
  ps   ps 

 
Remark  More precisely, one should use Boolean combinations of proposition letters, 

stipulating that they form a partition of the set of worlds in the usual manner.  
 
Now, the model M∆∆∆∆  can be described globally by means of one epistemic formula δM : 
 
 <>p1 & <>p2 & <> p3 & <> ps & [](p1 ∨  p2 ∨ p3 ∨ ps) 
 
This formula holds only in M∆ and all models bisimilar to it. Now the idea is that B is going to 
update models, starting from this one, in a way mimicking its action in the given diagram ∆∆∆∆. 
This will be as a public announcement of a disjunction of separate formulas, one for each B-
arrow shown. For a start, in the initial model B has a fixed point. We write the following 
conjunction  
 
 B1 (<>p1 & <>p2 & <> p3 & <> ps & [](p1 ∨  p2 ∨ p3 ∨ ps)) & ( p1 ∨  p2 ∨ p3 ∨ ps) 
  
This has a global conjunct to the left which is only true in the initial model, and a local 
conjunct to the right picking out specific worlds inside that model. Therefore, in any family of 
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epistemic models, and even in the full Supermodel, an announcement B1! only leads to an 
update on the given model M∆ and its bisimulation invariants, not even on any of its submodels 
(as it fails there) – and it holds for all worlds, changing nothing. Next, we assume that the first 
A has already reduced the model to the subdomain {s, 2, 3}, and then, B has to properly change 
the model to the universe {s, 3}. This is done via a disjunct whose global conjunct can only be 
true for worlds in the new {s, 2, 3}–model, and whose specific conjunct picks out the right 
worlds: 
 
 B2 (<>p2 & <> p3 & <> ps & []( p2 ∨ p3∨ ps)) & ( p3∨ ps) 
 
There are no further B-arrows in the diagram, so we say  
 
 B is the disjunction B1∨ B2  
 
Likewise, we define A as the disjunction A1∨ A2∨ A3 with 
 
 A1 (<>p1 & <>p2 & <>p3 & <>ps & [](p1 ∨  p2 ∨ p3 ∨ ps)) & (p2 ∨ p3 ∨ ps) 
 A2 (<>p2 & <>p3 & <>ps & [](p2 ∨ p3 ∨ ps)) & (p2 ∨ p3 ∨ ps) 
 A3 (<>p3 & <>ps & [](p3 ∨ ps)) & (p3 ∨ ps) 
 
Given this construction, it is easy to show the following: 
 

The public announcements A! and B! produce an update pattern in the Supermodel MM of all 
epistemic models, starting from the model M∆, which is exactly like the given transition 
diagram ∆ ∆ ∆ ∆ .  
 

The reason is that, given the above epistemic substitutions, the relevant sequents true in the 
diagram are true in the Supermodel, while the conclusion sequent fails there. 
 
The general reasoning 
 
Now let us state more generally what is happening here. We want to show that  
 
 If a sequent inference Σ ! σ is not derivable by our structural rules,  
 then it has some false substitution instance in the Supermodel. 
 
First, by our abstract completeness theorem, the non-derivability implies the existence of a 
transition model ∆∆∆∆ where Σ holds, while σ fails. The above construction then provides 
epistemic formulas φa for each relevant atomic action a in ∆∆∆∆. Replacing all these actions in our 
sequents by their epistemic counterparts in an obvious manner, and passing to the 
corresponding dynamic formulas as earlier in this Section, we get  
 
 sub(Σ), sub(σ). 
 
Claim  sub(σ) fails in the Supermodel. 
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To see this, note that, starting from the epistemic model (M∆∆∆∆, s), announcements of the 
epistemic formulas φa produce an isomorphic copy of ∆ ∆ ∆ ∆ itself – where σ failed. 
 
Claim  sub(Σ) holds in the Supermodel. 
 
This time, we must show that, starting at any (M, s) in the Supermodel, a sequence of 
successive updates for the premises of any of the sequents in sub(Σ) ends in a fixed point for its 
final assertion. Now, the formulas φa defined above can only hold at S5-models that are 
bisimilar to rooted submodels of M∆∆∆∆, at exactly those stages where a could be performed. (The 
only possible variation is trivial: they might have more copies of the same world around.) In 
other words, performing the announcements from the premise sequence produces a sequence of 
models which is still essentially an update sequence inside M∆∆∆∆, and hence its final state will be 
a fixed-point for the conclusion, because all sequents of Σ were true in ∆∆∆∆, and hence also in M∆∆∆∆.  
 
We will analyze this still informal argument more formally in the next section. In its general 
version, it matches evaluation of arbitrary modal formulas in abstract models with evaluation of 
suitably translated formulas in correlated epistemic update models. 
 
Summarizing, any abstract situation making all sequents in Σ true but the conclusion sequent 
σ false, can be reproduced exactly with epistemic update in the Supermodel through a choice of 
suitable substitution instances. The general construction uses exactly the above tricks, with 
descriptive δ–formulas codifying the stages, and disjunctions of proposition letters cutting 
down the model at that stage.  ! 
 
As a corollary, we get the earlier statement that update validity of sequent inferences in the 
Supermodel and validity over arbitrary families of epistemic models coincide. 
 
Proof By general soundness, if a sequent inference is refuted in some family of epistemic 
models, it is not derivable from the given three structural rules. Therefore, it must have a 
counterexample in the Supermodel by the above argument. ! 
 
Our result shows how curious phenomena may happen with public announcement: 
 

Every abstract transition diagram satisfying the three structural conditions of Left-
Monotonicity, Left-Cut, and Cautious Monotonicity can be mimicked with concrete 
updates.  
 

These diagrams can be extremely diverse, and hence so can phenomena occurring with public 
update. In particular, as in the above key illustration, dynamic propositions may be dormant at 
some stages of a communication process, ruling out nothing at all – and then become active 
again, following the action of other dynamic propositions. 
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5 MODAL LOGIC OF INFERENCE 
 
Modal logics of abstract updates  
 
Structural rules are very simple properties of a notion of consequence. There is also a richer 
modal logic describing such properties. The language has modalities <a>, [a] for basic update 
actions a, interpreted again as partial functions over arbitrary models, plus a 'loop modality' (a) 
saying the following: 
 
 M, s |= (a)φ iff s Ra s & M, s |=φ 
 
This seems the minimum required for formalizing the dynamic inference of Section 1. This 
modal language is decidable with a finite model property, and a simple complete 
axiomatization (van Benthem (1996, Chapter 7)). Its key loop axioms are these: 
 
 (a)φ  ↔   (a)Τ & φ 
 (a)T → ([a]φ  ↔ φ) 
 
This allows us to read dynamic sequents P1, …, Pk ⇒  C as modal formulas  
 
 [P1]...[ Pk](C)T  
 
Fact In their modal versions, the structural rules of dynamic inference are valid
 consequences from premises true in a whole model to their conclusions. 
 
Proof We outline the relevant observations. 
(a)  Left-Monotonicity   from [P](C)T to [A][P](C)T 
 is an instance of the modal Necessitation Rule 
(b)  Left-Cut    from [P](A)T and [P][A][ Q](C)T to [P][ Q](C)T 
 is a modalized consequence of the loop axiom ((A)T & [A]φ) → φ  
(c) Cautious Monotonicity  from [P](A)T and [P][ Q](C)T to [P][A][ Q](C)T 
 is a modalized consequence of the loop axiom ((A)T & φ)  →  [Α]φ  
! 
 
But it is easy to see that this richer language can also express properties of a notion of 
consequence that go beyond mere structural rules, such as more existential modal formats like 
([P]<Q>φ & [Q]<R>ψ)  → [P]<Q>(φ &<R>ψ)). And therefore, it is an interesting candidate 
for a richer, though still abstract theory of dynamic inference.  
 
This modal language expresses local properties, true at specific states of a model. But sequent 
validity in our original sense involves global truth of the modal formulas for the premises 
throughout a model. We can view this as a case of so-called 'global consequence' for modal 
logic. Another option is to enrich the modal language with a universal modality Uφ stating that 
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φ is true at every world in the current model. Then, we can express our sequent inferences by 
prefixing the premise formulas with U.  
 
Formal definitions again  
 
Again, there is a notion of substitution instance for modal formulas of the local language in the 
earlier epistemic update calculus. Call such a formula φ update-valid if  
 

every formula of epistemic update logic resulting from φ  by uniformly replacing all 
proposition letters p with standard epistemic formulas, and all atomic actions a with 
concrete public update actions A! for epistemic models.  

 
As before, the latter system completely determines our new abstract update logic. 
 
Public update is also complete for modal update validity  
 
Here is the relevant result. 
 
Theorem The update-valid modal formulas are axiomatized precisely by the general 

minimal modal logic of <a> and (a) for partial functions a. 
 
Proof By the finite model property for the modal language with loops, one only needs to 
consider finite models, and indeed, finite unraveled trees. Now, we extend the concrete 
representation of Section 4. Any modal tree model with labeled actions gives rise to a finite 
family of epistemic models, with its proposition letters encoded by epistemic S5 formulas, and 
its basic actions a mimicked by update actions A!.  
 
Again, we start with an example. The tricks employed earlier work just as well for tree models 
as for 'lines'. Let the abstract model look like this: 
 
      1 
    a            b       c            b 
 
   2    5 
       b           c      a 
 
  3  4          a  6 
 
Again, one creates a corresponding epistemic model, with universe {s, 1, 2, 3, 4, 5, 6}. As 
before, the world s is thrown in to make sure some 'actual world' persists through the update 
sequence. Substitution formulas arise as follows. E.g., one codes the action of the given atomic 
action b via public announcement of the disjunction of  
 
 (i) the descriptive δ–formula for the whole model & the disjunction (ps ∨  p2 ∨ p3∨ p4),  
 (ii) the δ–formula of the model with domain {s, 2, 3, 4} & ( ps∨ p3),  
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 (iii) the δ–formula of the domain {s, 5, 6} & ( ps∨ p5 ∨ p6) 
 
Proposition letters may be coded even more simply by using the disjunction of the descriptive 
formulas for the submodels corresponding to the nodes where they hold. 
 
Now for formalities. Consider any abstract tree model ∆∆∆∆ for our poly-modal language. As 
before, without loss of generality, we may assume there are unique proposition letters true at 
each world. Next, any node x generates a subtree in the usual way, for which we define an 
epistemic S5-model M∆∆∆∆,x as in the above, whose domain is x's subtree plus a fixed world s. 
Moreover, every S5-model M has an obvious 'descriptive formula' δ(M) true only in M and its 
bisimulation invariants (being just versions of M with perhaps duplications of worlds). Now we 
are in a position to define the required translations for proposition letters and atomic actions: 
 
 upd(p) is the disjunction of all formulas δ (M∆∆∆∆,x) for all x such that ∆∆∆∆, x |= p 

 upd(a) is the disjunction of all formulas δ (M∆∆∆∆,x) & (∨ {pz | z in M∆∆∆∆,y)   
        for all x, y such that Ra

∆∆∆∆    x, y 
 
These two translations evidently lift to take arbitrary modal formulas φ to obvious counterparts 
upd(φ ) in the dynamic-epistemic language of updates. Here is our claim, with MM again the 
Supermodel consisting of all epistemic models: 
 
Fact For all modal formulas φ, ∆∆∆∆, x |= φ iff MM, (M∆∆∆∆,x, s) |= upd(φ ) 
 
The proof is by induction. (a) For proposition letters p, note that M∆∆∆∆, x validates upd(p) if and 
only if it satisfies some formula δ (M∆∆∆∆,y) with ∆∆∆∆, y |= p, and these formulas determine their 
'source' uniquely. (b) The case of Boolean operations is automatic. (c) For modalities <a>, we 
follow the construction of the formulas upd(a). E.g., if ∆∆∆∆, x |= <a>φ, then there is a y with 
Ra

∆∆∆∆    x, y and ∆∆∆∆, y |= φ. By the inductive hypothesis, (M∆∆∆∆,y, s) |= upd(φ ). Now, announcing the 
true disjunction upd(a) at the model (M∆∆∆∆,x, s) will only 'trigger' its unique disjunct with the right 
prefix δ (M∆∆∆∆,x), and the worlds remaining after the update are precisely those in M∆∆∆∆,y. (Here we 
use the fact that all atomic actions are partial functions.) For the converse, assume that MM, 

(M∆∆∆∆,x, s) |= <upd(a)!> upd(φ). Then one of the formulas δ (M∆∆∆∆,x) & (∨ {pz | z in M∆∆∆∆,y) from 
upd(a) holds in (M∆∆∆∆,x, s). This can only be the one for x itself, and therefore the update takes us 
to a model M∆∆∆∆,y whose root node y could be reached in ∆  ∆  ∆  ∆  from x via some a-arrow. The rest 
follows by the inductive hypothesis. (d) Finally, the argument for the loop modality is 
essentially the same to the preceding one.  
 
This shows that satisfiable modal formulas have true substitution instances with epistemic 
update in the Supermodel MM. The converse is much simpler. MM may itself be seen as a modal 
model. To go from this class to a set, observe that any satisfiable modal formula at some 
'world' (M, s) can also be satisfied in the set consisting of (M, s) and all its submodels, since 
only these can be reached via update actions.  ■  
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As we observed earlier, however, sequent inference is not purely local. It involved global truth 
of premise formulas at all worlds in the Supermodel. The reason why the earlier result worked 
is that the modal formulas occurring behind that universal modality were very special, namely 
universal statements of the form [a1]...[ak](b). It is not hard to see that the above construction 
will show that formulas of this form true throughout the model ∆∆∆∆. will also be true globally in 
the Supermodel.  
 
Can we be more ambitious than this, and prove the above theorem for the extended modal 
language with the universal modality? The answer is negative. The Supermodel satisfies modal 
laws which do not hold in general. Here is one example, reflecting the fact that there are 
'endpoints', viz. epistemic models containing just one world: 
 
 ¬(U(φ → <A!>¬φ) & U(¬φ → <A!>φ)) holds in MM, for all φ, A 
 
But the poly-modal formula U(p → <a>¬p) & U (¬p → <a>p) is satisfiable in  
 
         a 
 p             ¬p 
         a 
 
What would be the complete poly-modal theory of the Supermodel in this sense? 
 
 
6 DISCUSSION 
 
Our representation results show that concrete update systems can be complete for structural 
theories of abstract logical dynamics. This means, in particular, that all dynamic behaviour that 
can occur in general transition models will already show with plain public update over 
epistemic models.  
 
Conversely, we can also look at the above as a new type of technical result in modal logic, viz. 
axiomatizing part of the meta-theory of certain operations on models. In our case, A! is a 
natural operation of relativization of models to A–definable submodels.  
 
The above representation of abstract transition models requires only single-agent epistemic 
models. This may have to do with the above trick of defining all needed worlds by unique new 
proposition letters. If we fix some finite number of these in advance, say just {p, q}, then many-
agent epistemic models with updates involving genuine stackings of K–operators for different 
agents may become indispensable. Related to this is an issue of complexity. Our method is a 
sort of reduction of satisfiability for the minimal modal logic (whose complexity is PSPACE-
complete) to that for a dynamic update version of S5, which latter system is only NP-complete. 
But no miracle has happened here. We will get a blow up in the proposition letters needed to 
encode the worlds, and also, the complexity of the epistemic update system is most probably 
higher than that of S5 itself (though this question is still open). 
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Next, the Supermodel of all epistemic models is an unrealistic update universe. One often 
knows beforehand that only certain announcements can be made – as in games of information. 
Then the appropriate structures are much more like the above local update models, viewed as 
trees of epistemic models, related by only some out of all possible update actions. In that case, 
some of the earlier principles of update logic must be modified. In particular, we no longer 
have a valid update law like p→<p!>T. Even though the atomic fact p is true now, <p!>T may 
fail in case there is no admissible announcement of this fact in our local update model. 
 
Finally, the dynamic update logic with assertions [A!]φ   in Section 3 is itself a sort of 
structural calculus for logical dynamics. Why be even more general than that? What we have 
tried to find in this paper is a workable level of abstraction just above this, by dropping specific 
information about the atomic actions of public announcement – without going stratospheric in 
still more general mathematical approaches. 
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