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Abstract      Logic is not just about single-agent notions like reasoning, or zero-agent notions

like truth, but also about communication between two or more people. What we tell and ask each

other can be just as 'logical' as what we infer in Olympic solitude. We show how such interactive

phenomena can be studied systematically by merging epistemic and dynamic logic.

1 Logic in a social setting

1 . 1 Questions and answers 

Consider the simplest type of communication: a question–answer episode between

two agents. Here is a typical example. Being a Batavian soldier – a German tribe in

the Rhine delta of proverbial valour – I approach you in a busy Roman street, A.D.

160, intent on contacting my revered general Maximus, now a captive, and ask:

Q Is this the road to the Colosseum?

As a well-informed and helpful Roman citizen, you answer

A Yes.

This is the sort of thing that we all do competently millions of times in our lives.

There is nothing to it. But what is going on? I learn the fact that this is the road to

the Colosseum. But much more happens. By asking the question, I convey to you

that I do not know the answer, and also, that I think it possible that you do know.

This information flows before you have said anything at all. Then, by answering,

you do not just convey the topographical fact to me. You also bring it about that

you know that I know, I know that you know I know, etc. This knowledge up to

every finite depth of mutual reflection is called common knowledge. It involves a

mixture of factual information and iterated information about what others know.

These epistemic overtones concerning our mutual information are not mere side-

effects. They may steer further concrete actions. Some bystanders' knowing that I

know may lead them to rush off and warn the Emperor Commodus – my knowing

that they know I know may lead me to prevent them from doing just that. So
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epistemic overtones are ubiquitous and important, and we are good at computing

them! In particular, we are well-attuned to fine differences in group knowledge.

Everyone's knowing individually that your partner is unfaithful is unpleasant, but

shame explodes when you meet people and know they all know that they know.

This is just the tip of an iceberg. I have described one type of question, but there are

others. If you are my student, you would not assume that my classroom question

shows that I do not know the answer. It need not even convey that I think you

know, since my purpose may be to expose your ignorance. Such phenomena have

been studied from lots of angles. Philosophers of language have developed speech

act theory, linguists study the semantics of questions, computer scientists study

communication mechanisms, and game theorists have their signaling games. All

these perspectives are important – but there is also a foothold for logic. This paper

will try to show that communication is a typical arena for logical analysis. Logical

models help in raising and sometimes solving basic issues not recognized before.

1 . 2 The puzzle of the Muddy Children 

Subtleties of information flow are often high-lighted in puzzles, some with a long

history of appeal to broad audiences. A perennial example is Muddy Children:

 After playing outside, two of three children have mud on their foreheads. 

They all see the others, but not themselves, so they do not know their own 

status. Now their Father comes and says: “At least one of you is dirty”. 

He then asks: “Does anyone know if he is dirty?" The children answer 

truthfully. As this question–answer episode repeats, what will happen?

Nobody knows in the first round. But upon seeing this, the muddy children will

both know in the second round, as each of them can argue as follows.

“If I were clean, the one dirty child I see would have seen only

clean children around her, and so she would have known that

she was dirty at once. But she did not. So I must be dirty, too!”
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This is symmetric for both muddy children – so both know in the second round.

The third child knows it is clean one round later, after they have announced that.

The puzzle is easily generalized to other numbers of clean and dirty children. Many

variants are still emerging, as one can check by a simple Internet search.

Puzzles have a serious thrust, as they highlight subtle features of communication

beyond simple questions and answers. E.g., consider a putative Learning Principle

stating that what we hear in public becomes common knowledge. This holds for

announcing simple facts – such as the one in Tacitus that, long before international

UN peace-keepers, German imperial guards already policed the streets of Rome.

But the Principle is not valid in general! In the first round of Muddy Children, the

muddy ones both announced the true fact that they did not know their status. But

the result of that announcement was not that this ignorance became common

knowledge. The announcement rather produced its own falsity, since the muddy

children knew their status in the second round. Communicative acts involve timing

and information change, and these may change truth values in complex ways. As

we shall see, one of the virtues of logic is that it can help us keep all this straight. 

1 . 3 Logical models of public communication

A logical description of our question-answer episode is easy to give. First, we need

to picture the relevant information states, after that, we say how they are updated.

Answering a question  One initial information model for the group {Q, A}  of you

and me has two states with ‘φ’ ,‘¬ φ’ , with φ  "this is the road to the Colosseum".

We draw these states as points in a diagram. Also, we indicate agents' uncertainties

between states. The labeled line shows that Q cannot distinguish between the two:

     φ                                            Q  ¬φ

The black dot is an outside marker for the actual world where the agents live. There

are no uncertainty lines for A. This reflects the fact that the Roman local A knows if

this is the road to the Colosseum. But Q, though uninformed about the facts, sees

that A knows in each eventuality, and hence he knows that A knows. This

information about other's information is an excellent reason for asking a question.

Next, A's answer triggers an update of this information model. In this simple case,

A's answer eliminates the option not-φ, thereby changing the initial situation into
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the following one-point diagram:

     φ

This picture has only one possible state of the world, where the proposition

φ holds, and no uncertainty line for anyone. This indicates that φ is now common

knowledge between you and me. Cognoscenti will recognize where we are

heading. Information states are models for the modal logic S5 in its multi-agent

version, and communication consists in actions which change such models. In what

follows, we mean by 'knowledge' only: "according to the agent's information".

Muddy Children: the movie   Here is a video of information updates for Muddy

Children. States of the world assign D (dirty) or C (clean) to each child: 8 in total.

In any of these, a child has one uncertainty. It knows about the others’ faces, but

cannot distinguish the state from one where its own D/C value is different.

       

DDD

CDD DDC
DCD

CCD

CDC

DCC

CCC

1 3

22

2

2

3 1

1 3

13

*

Updates start with the Father's elimination of the world CCC:

DDD

CDD DDC
DCD

CCD

CDC

DCC

1 3

22

2

1 3

13

*

When no one knows his status, the bottom worlds disappear:

DDD

1     2        3

CDD DCD DDC  *

The final update is to

DDC  *
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1 . 4 General communication 

Update by elimination of worlds incompatible with a statement made publicly is a

simple mechanism. Human communication in general is very complex, including

many other propositional attitudes than knowledge, such as belief or doubt – and

logically more challenging phenomena than announcing the truth, such as hiding

and cheating. There are two main lines of research here. One is further in-depth

analysis of public communication, which turns out to be a quite subtle affair. This

will be the main topic of the present paper. The other direction is modeling more

complex communicative actions, such as giving answers to questions which others

do not hear, or which others overhear, etc. Natural language has a rich vocabulary

for all kinds of attitudes toward information, speech acts, secrets, and so on –

reflecting our natural proficiency with these. We will discuss more complex models

briefly later on. Actually, this might seem a hopeless enterprise, as our behaviour is

so diverse and open-ended. But fortunately, there exist simple realistic settings

highlighting key aspects, viz. games which will also be discussed toward the end.

Some crucial references for this research program are Fagin, Halpern, Moses &

Vardi 1995, Gerbrandy 1999, Baltag-Moss & Solecki 1998, and the extensive new

mathematical version 2002 of the latter basic reference. Also well-worth reading is

van Ditmarsch 2000, which contains a mathematical analysis of all the subtle

information passing moves in the well-known parlour game "Cluedo". The present

paper builds on these references and others, while also including a number of

results by the author over the past few years, mostly unpublished.

2 The basics of update logic

The logic of public information update can be assembled from existing systems. We

survey basic epistemic logic and dynamic logic, and then discuss their combination.

2 . 1 Epistemic logic

Language    Epistemic logic has an explicit notation talking about knowledge:

Kj φ  agent j knows that φ  

With such a symbolism, we can also analyse further patterns:



6

¬K j¬φ  (or <j>φ ) agent j considers it possible that φ 

Kj φ ∨  Kj ¬φ    agent j knows if φ 

Kj ¬ Ki φ j knows that i does not know that φ

E.g., in asking a 'normal' question, Q conveys he does not know if φ:

¬KQφ  &  ¬KQ¬φ

and also that he thinks that A might know:

<Q> (KAφ ∨ KA¬φ)

By answering affirmatively, A conveys that she knows that φ , but she also makes

Q know that φ etc., leading to common knowledge, which is written as follows:

C{Q, A}φ

Models    Models for this epistemic language are of the form

M  =  (S,  {~j | j∈G} , V)

with (a) S a set of worlds, (b) V a valuation function for proposition letters, and (c)

for each agent a∈G, an equivalence relation ~j relating worlds s to all worlds that j

cannot distinguish from it. These may be viewed as collective information states.

Semantics    Next, in these models, an agent a knows those propositions that

are true in all worlds she cannot distinguish from the current one. That is:

M, s |= Kj φ iff M, t |= φ     for all  t  s.t.  s ~j t

The related notation  ¬K j¬φ  or <j> φ works out to:

M, t |= <j> φ iff M, t |= φ     for some  t  s.t.  s ~j t

In addition, there are several useful operators of 'group knowledge':
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Universal knowledge  EGφ 

This is just the conjunction of all formulas Kjφ  for j∈G

Common knowledge  CGφ    

This says at s that φ is true in every state reachable from s through

some finite path of uncertainty links for any members of group G

Implicit knowledge IGφ  

This says that φ  is true in all states which are related to s

via the intersection of all uncertainty relations ~j  for j∈G

Logic      Information models validate an epistemic logic that can describe and

automate reasoning with knowledge and ignorance. Here are its major validities:

Kj(φ→ψ) → (Kjφ→Kjψ) Knowledge Distribution

Kjφ → φ Veridicality

Kjφ → KjKjφ Positive Introspection

¬Kjφ → Kj¬Kjφ Negative Introspection

The complete system is multi-S5, which serves in two different guises: describing

the agents' own explicit reasoning, and describing our reasoning as theorists about

them. And here are the required additional axioms for common knowledge:

 CG φ  ↔  φ & EG CG φ Equilibrium Axiom

(φ & CG (φ→EG φ))  → CG φ Induction Axiom

The complete logic is also decidable. This is the standard version of epistemic logic.

2 . 2 Dynamic logic

The usual logic of knowledge by itself can only describe static snapshots of a

communication sequence. Now, we must add actions.

Language The language has formulas F and program expressions P on a par:

F := propositional atoms  p, q, r, ... | ¬F | (F&F) | <P>F

P:= basic actions a, b, c, ... | (P;P) | (P∪P) | P* | (F)?
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Semantics  This formalism is interpreted over polymodal models

M  =  <S,  {Ra}a∈A, V>

which are viewed intuitively as process graphs with states and possible basic

transitions. The truth definition explains two notions in one recursion.

M, s |= φ  φ  is true at state s

M , s1, s2 |= π  the transition from s1 to s2 corresponds

to a successful execution for the program π

Here are the inductive clauses:

• M, s |= p iff s∈V(p)

M , s |= ¬ψ iff not   M, s |= ψ

M, s |= φ1 & φ2 iff M, s |= φ1  and  M, s |= φ2

M, s |= <π>φ iff for some s' with  M , s, s' |= π:  M , s' |= φ

• M, s1, s2  |= a iff (s1, s2)  ∈Ra

M, s1, s2  |= π1 ; π2 iff there exists s3 with  M, s1, s3  |= π1  

and M, s3, s2  |= π2

M , s1, s2  |= π1 ∪ π2 iff M , s1, s2  |= π1  or  M , s1, s2  |= π2

M , s1, s2  |= π* iff some finite sequence of  π–transitions   

in M connects s1 with  s2

M, s1, s2  |= (φ)? iff s1 = s2  and  M, s1 |= φ

Thus, formulas have the usual Boolean operators, while the existential modality 

<π>φ is a weakest precondition true at only those states where program π can be

performed to achieve the truth of φ. The program constructions are the usual regular

operations of relational composition, Boolean choice, Kleene iteration, and tests for

formulas. This system defines standard control operators on programs such as

IF ε THEN π1 ELSE π2 ((ε)? ; π1) ∪ ((¬ε)? ; π2) 

WHILE ε  DO π ((ε)? ; π)*  ; (¬ε)?
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Logic     Dynamic logic expresses all of modal logic plus regular relational set

algebra. Its complete set of validities is known (cf. Kozen, Harel & Tiuryn 2000):

• All principles of the minimal modal logic for all modalities [π]

• Computation rules for weakest preconditions:

<π1;π2>φ  ↔  <π1>< π2>φ

<π1∪π2>φ  ↔  <π1>φ ∨ <π2>φ

<φ?>ψ  ↔ φ &  ψ

<π*>φ  ↔  φ ∨ <π>< π*>φ

• Induction Axiom (φ &  [π*](φ → [π]φ))  →  [π*]φ

The system is also decidable. This property remains also with certain extensions of

the basic language, such as the program construction ∩    of intersection – which will

return below. Extended modal languages occur quite frequently in applications.

2 . 3 Dynamic epistemic logic

Analyzing communication requires a logic of knowledge in action, combining

epistemic logic and dynamic logic. This may be done in at least two ways.

Abstract DEL     One can join the languages of epistemic and dynamic logic, and

merge the signatures of their models. This yields abstract logics of knowledge and

action, cf. Moore 1985 on planning, van Benthem 2001A on imperfect information

games. The general logic is the union of epistemic multi-S5 and dynamic logic.

This is a good base for experimenting with further constraints. An example is

agents having perfect memory for what went on in the course of communication

(cf. Halpern & Vardi 1989). This amounts to an additional commutation axiom

Kj [a] φ →  [a]K j φ  

Abstract DEL may be the best setting for general studies of communication.

Concrete update logic    In Section 1, public announcement of a proposition

φ  changes the current epistemic model M, s, with actual world s, as follows:

eliminate all worlds which currently do not satisfy φ
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            from       φ       to           

                s      ¬φ                   s

                    

Thus, we work in a universe whose states are epistemic models – either all of them

or just some family – and basic actions are public announcements A! of assertions

A from the epistemic language. These actions are partial functions. If A is true, then

it can be truthfully announced with a unique update. From the standpoint of

dynamic logic, this is just one instance of abstract process models, with some

epistemic extras. The appropriate logic has combined dynamic-epistemic assertions

[A!] φ    “ after truthful announcement of A, φ  holds”

The logic of this system merges epistemic with dynamic logic, with some additions

reflecting particulars of our update universe. There is a complete and decidable

axiomatization (Plaza 1989, Gerbrandy 1999), with key axioms:

<A!>p ↔ A & p for atomic facts  p

<A!>¬ φ ↔ Α & ¬<A!> φ 

<A!> φ∨ψ ↔ <A!> φ ∨ <A!>ψ

<A!>K iφ ↔  A & Ki(A → <A!> φ)

Essentially, these compute preconditions <A!>φ  by relativizing the postcondition

φ  to A. The axioms can also be stated with the modal box, leading to versions like

[A!]K iφ ↔  A →  Ki(A → [A!] φ)

This axiom is like the above law for Perfect Recall. As for common knowledge, the

earlier epistemic language needs a little extension, with a binary version

CG(A, φ)  common knowledge of φ in the submodel defined by A

There is no definition for this in terms of just absolute common knowledge. Having

added this feature, we can state the remaining reduction principle

<A!> CGφ ↔  CG (A, <A!>φ)
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These two systems do not exhaust all ways of combining knowledge and action.

Van Benthem 1999A sketches a more thoroughly epistemized dynamic logic.

DEL with program constructions    Public announcement is just one basic

action. Conversation may involve more complex programming of what is said.

Saying one thing after another amounts to program composition, choosing one's

assertions involves choice, and Muddy Children even involved a guarded iteration:

WHILE 'you don't know your status' DO 'say so'.

The basic logic of public update with the first two constructions is like its version

with just basic announcements A!, because of the reduction axioms for composition

and choice in dynamic logic. But with possible iteration of announcements, the

system changes – and even loses its decidability (Baltag, Moss & Solecki 2002).

3 Basic theory of information models

Special model classes    Multi-S5 models can be quite complicated. But there

are some subclasses of special interest. For instance, Muddy Children started with a

full cube of 3-vectors, with accessibility given as the special equivalence relation

X ~j Y iff (X)j - (Y)j

Cube models are studied in algebraic logic (Marx & Venema 1997) for their

connections with assignment spaces over first-order models. But the subsequent

Muddy Children updates led to submodels of such cubes. These already attain full

epistemic generality (van Benthem 1996):

Theorem     Every multi-S5 model is representable as a submodel of a cube.

Other special model classes arise in the study of card games (van Ditmarsch 2000).

Bisimulation    Epistemic and dynamic logic are both standard modal logics  

(cf. Blackburn, de Rijke, & Venema 2001) with this structural model comparison:

Definition        A bisimulation between two models M , N is a binary relation ≡

between their states m, n such that, whenever m ≡  n, then (a) m, n satisfy the same

proposition letters, (b1) if m R m' , then there exists a world n'  with n R n'  and       

m' ≡  n' , (b2) the same ‘zigzag clause’ holds in the opposite direction.
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E.g., our question-answer example has a bisimulation with the following variant:

φ  *              *   φ
   Q          

      Q       ¬φ                Q  

¬ φ  A   ¬φ

In a natural sense, these are two representations of the same information state.

Bisimulation equivalence occurs naturally in update. Suppose that the current model

is like this, with the actual world indicated by the black dot:

P 2    ¬p

 1

p

Note that all three worlds satisfy different epistemic formulas. Now, despite her

uncertainty, 1 knows that p, and can say this – updating to the model

P

 1

p

But this con be contracted via a bisimulation to the one-point model

P

It is convenient to think of update steps with automatic bisimulation contractions.

Some basic results link bisimulation to truth of modal formulas. For convenience,

we restrict attention henceforth to finite models  – but this can be lifted.

Invariance and definability       Consider general models, or those of multi-S5.

Invariance        Lemma   The following are equivalent:

(a) M, s and N, t  are connected by a bisimulation

(b) M, s and N, t  satisfy the same modal formulas

Any model has a bisimilar unraveled tree model, but also a smallest bisimulation

contraction satisfying the same modal formulas. But there is another useful tool:
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State        Definition        Lemma   For each model M, s there is an epistemic formula

β  (involving common knowledge) such that the following are equivalent:

(a) N, t |= β

(b) N, t has a bisimulation ≡ with M, s such that s≡  t

Proof      This result is due to Alexandru Baltag (cf. Barwise & Moss 1997). The

version and proof given here are from van Benthem 1997, 1998. Consider any

finite multi-S5 model M, s. This falls into a number of maximal 'zones' consisting

of worlds that satisfy the same epistemic formulas in our language.

Claim        1    There exists a finite set of formulas φi (1≤i≤k) such that

(a) each world satisfies one of them, (b) no world satisfies two of

them (i.e., they define a partition of the model), and (c) if two worlds

satisfy the same formula φi, then they agree on all epistemic formulas.

To show this, take any world s, and find 'difference formulas δs, t between it and

any t which does not satisfy the same epistemic formulas, where s satisfies δs, t

while t does not. The conjunction of all δs, t is a formula φi  true only in s and the

worlds sharing its epistemic theory. We may assume the φi  also list all information

about the proposition letters true and false throughout their partition zone. We also

make a quick observation about uncertainty links between these zones:

# If any world satisfying φI  is ~a-linked to a world satisfying φi,

then all worlds satisfying φI  also satisfy <a>φi

Next take the following description βM, s of M, s:

(a)  all (negated) proposition letters true at s plus the unique φi  true at M, s

(b)  common knowledge for the whole group of

(b1) the disjunction of all φi

(b2) all negations of conjunctions φI & φj  (i≠j)

(b3) all implications φi → <a>φj for which situation  #  occurs

(b4) all implications φi → [a] ∨∨∨∨φj where the disjunction runs

over all situations listed in the previous clause.
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Claim        2    M, s |= βM, s

Claim        3    If N, t  |= βM, s, then there is a bisimulation between N, t and M, s

To prove Claim 3, let N , t be any model for βM , s. The φi partition N into disjoint

zones Zi of worlds satisfying these formulas. Now relate all worlds in such a zone

to all worlds that satisfy φi in the model M . In particular, t gets connected to s. We

must check that this connection is a bisimulation. The atomic clause is clear from an

earlier remark. But also, the zigzag clauses follow from the given description. (a)

Any ~a-successor step in M has been encoded in a formula φi → <a>φj which holds

everywhere in N , producing the required successor there. (b) Conversely, if there

is no ~a-successor in M, this shows up in the limitative formula φi → [a] ∨∨∨∨φ , which

also holds in N, so that there is no 'excess' successor there either.               n

The Invariance Lemma says bisimulation has the right fit with the modal language.

The State Definition Lemma says each semantic state can be characterized by one

epistemic formula. E.g., consider the two-world model for our question-answer

episode. Here is an epistemic formula which defines its φ-state up to bisimulation:

φ & C{Q, A} ((KAφ ∨ KA¬φ) & ¬K Qφ & ¬K Q¬φ)

This allows us to switch, in principle, between semantic accounts of information

states as models M , s and syntactic ones in terms of complete defining formulas.

There is more to this than just technicality. For instance, syntactic approaches have

been dominant in related areas like belief revision theory, where information states

are not models but syntactic theories. It would be good to systematically relate

syntactic and semantic approaches to update, but we shall stay semantic here.

Respectful and safe operations      The above also constrains epistemic update

operations O. These should respect bisimulation:

If M, s and N, t are bisimilar, so are their values O(M, s) and O(N, t)

Fact   Public update respects bisimulation.

Proof      Let ≡ be a bisimulation between M , s and N , t. Consider their submodels

M|φ, s,  N|φ, t  after public update with φ.  The restriction of ≡ to these is still a
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bisimulation. Here is the zigzag clause. Suppose some world w has an ~i-successor

v in M|φ, s. This same v is still available in the other model: it remained in M since

it satisfied φ. But then v also satisfied φ in N , t, because of the Invariance Lemma

for the bisimulation ≡  – and so it stayed in the updated model N|φ , t, too.          n

Many other proposed update operations respect bisimulations (cf. also Hollenberg

1998 on process algebra). Finally, bisimulation also works for dynamic logic – but

with a new twist (van Benthem 1996). Intertwined with invariance for formulas φ,

one must show that the zigzag clauses go through for all regular program

constructions: not just the atomic Ra, but each transition relation [[ π]] :

Fact   Let ≡ be a bisimulation between two models M, M ' , with  s ≡ s' .

(i)  s, s'  verify the same formulas of propositional dynamic logic

(ii) if s [[π]] M  t, then there exists t' with s' [[ π]] M ' t'  and s' ≡ t'

This observation motivates this notion of invariance for program operations

Definition    An operation O(R1, ..., Rn) on programs  is safe for bisimulation if,

whenever ≡ is a relation of bisimulation between two models for their transition

relations R1, ..., Rn, then it is also a bisimulation for O(R1, ..., Rn).

The core of the above program induction is that the three regular operations  ;  ∪  *    

of PDL are safe for bisimulation. By contrast, program intersection is not safe:

• 1 • 1

      a         b                 a           b

• 2 • 2.1 • 2.2

There is an obvious bisimulation with respect to a, b  –  but zigzag fails for Ra∩Rb.

After indulging in this technical extravaganza, it is time to return to communication.

In fact, the Muddy Children puzzle highlights a whole agenda of further questions.

We already noted how its specific model sequence is characteristic for the field.

But in addition, it raises many further central issues, such as

(a) the benefits of internal group communication

(b) the role of iterated assertion

(c) the interplay of update and inference in reasoning.
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We will look into these as we go. But we start with an issue which we already

noted: the putative 'learning principle' that was refuted by Muddy Children.

4 What do we learn from a statement?

Specifying speech acts    Update logic may be considered a sequel to dynamic

speech act theories, which originated in philosophy, and then partly migrated to

computer science (cf. Wooldridge 2002). Earlier accounts of speech acts often

consist in formal specifications of preconditions and postconditions of successful

assertions, questions, or commands. Some of these insights are quite valuable,

such as those concerning assertoric force of assertions. E.g., in what follows, we

will assume, in line with that tradition, that normal cooperative speakers may only

utter statements which they know to be true. Even so, what guarantees that the

specifications are correct? E.g., it has been said that answers to questions typically

produce common knowledge of the answer. But Muddy Children provided a

counter-example to this putative 'Learning Principle'. Logical tools help us get

clearer on pitfalls and solutions. The learning problem is a good example.

Persistence under update    Public announcement of atomic facts p makes

them common knowledge, and the same holds for other types of assertion. But, as

we noted in Section 1, not all updates with φ result in common knowledge of φ!    

A simple counter-example is this. In our question-answer case, let A say truly

p & ¬ KQp “p, but you don’t know it”

This very utterance removes Q’s lack of knowledge about the fact p, and thereby

makes its own assertion false! Ordinary terminology is misleading here:

learning that  φ  is ambiguous between: φ was the case, before

the announcement, and φ is the case – after the announcement.

The explanation is that statements may change truth value with update. For worlds

surviving in the smaller model, factual properties do not change, but epistemic

properties may. This raises a general logical issue of persistence under update:

Which forms of epistemic assertion remain true at a world

whenever other worlds are eliminated from the model?
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These are epistemic assertions which, when publicly announced to a group, will

always result in common knowledge. Examples are atomic facts p, and knowledge-

free assertions generally, knowledge assertions  Kip, ignorance assertions ¬K ip.

New kinds of preservation results     Here is a relevant result from modal

logic (cf. Andréka, van Benthem & Németi 1998):

Theorem     The epistemic formulas without common knowledge

that are preserved under submodels are precisely those definable

using literals p, ¬p,  conjunction,  disjunction, and Ki-operators.

Compare universal formulas in first-order logic, which are just those preserved

under submodels. The obvious conjecture for the epistemic language with common

knowledge would allow arbitrary C–operators as well.  But this result is still open,

as lifting first-order model theory to modal fixed-point languages seems non-trivial.

Open        Question    Which formulas of the full epistemic language with

common knowledge are preserved under submodels?

In any case, what we need is not really full preservation under submodels, but

rather preservation under ‘self-defined submodels’:

When we restrict a model to those of its worlds which satisfy φ,

then φ should hold throughout the remaining model,

or in terms of an elegant validity:  φ  → (φ)φ

Open        Question    Which epistemic formulas imply their self-relativization?

For that matter, which first-order formulas are preserved in this self-fulfilling

sense? Model-theoretic preservation questions of this special form seem new.

A non-issue?    Many people find this particular issue annoying. Non-persistence

seems a side-effect of infelicitous wording. E.g., when A said "p, but you don't

know it", she should just have said "p", keeping her mouth shut about my mental

state. Now, the Muddy Children example is not as blatant as this. And in any case,

dangers in timing aspects of what was true before and is true after an update are no

more exotic than the acknowledged danger in computer science of confusing states

of a process. Dynamic logics were developed precisely to keep track of that.
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Let's stop fencing: can we reword any message to make the non-persistence go

away? An epistemic assertion A defines a set of worlds in the current model M .

Can we always find an equivalent persistent definition? This would be easy if each

world has a simple unique factual description, like hands in card games. But even

without assuming thisthere is a method that works, at least locally:

Fact   In each model, every public announcement has a persistent equivalent.

Proof   Without loss of generality, assume we are working only with bisimulation-

contracted models which are also totally connected: no isolated components. Let w

be the current world in model M . Let j publicly announce A, updating to the

submodel M|A with domain A* = {s∈M  | M , s |= A}. If this is still M itself, then

the announcement "True" is adequate, and persistent. Now suppose A*  is not the

whole domain. Our persistent assertion consist of two disjuncts:

∆ ∨ Σ

First we make ∆. Using the proof of the State Definition Lemma of Section 3, this

is an epistemic definition for A*  in M formed by describing each world in it up to

bisimulation, and then taking the disjunction of these.

Now for Σ. Again using the mentioned proof, write a formula which describes M|A

up to bisimulation. For concreteness, this had a common knowledge operator over

a plain epistemic formula describing the pattern of states and links, true everywhere

in the model M|A. No specific world description is appended, however.

Next, ∆ ∨ Σ is common knowledge in M|A, because Σ is. But it also picks out the

right worlds in M . Clearly, any world in A*  satisfies its own disjunct of ∆ .

Conversely, suppose any world t in M satisfies ∆ ∨ Σ. If it satisfies some disjunct

of ∆, then it must then be in A*  by the bisimulation-minimality of the model.

Otherwise, M, t  satisfies Σ. But then by connectedness, every world in M satisfies

Σ , and in particular, given the construction of Σ , there must be a bisimulation

between M and M|A. But this contradicts the fact that the update was genuine.    n

Of course, this recipe for phrasing your assertions is ugly, and not recommended!

Moreover, it is local to one model, and does not work uniformly. Recall that,
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depending on group size, muddy children may have to repeat the same ignorance

statement any number of times before knowledge dawns. If there were one uniform

persistent equivalent for that statement, the latter's announcement would lead to

common knowledge after some fixed finite stage.

5 Internal communication in groups

The best we can     The muddy children might just tell each other what they see,

and common knowledge of their situation is reached at once. The same holds for

card players telling each other their hands. Of course, life is civilized precisely

because we do not 'tell it like it is'. Even so, there is an issue of principle what

agents in a group can achieve by maximal communication. Consider two epistemic

agents that find themselves in some collective information state M , at some actual

situation s. They can tell each other things they know, thereby cutting down the

model to smaller sizes. Suppose they wish to be maximally cooperative:

What is the best correct information they can give via successive updates

– and what does the resulting collective information state look like?

E.g., what is the best that can be achieved in the following model?

Q        A

    Q   A

      Q

Geometrical intuition suggests that this must be:

    Q   A

This is correct! First, any sequence of mutual updates in a finite model must

terminate in some minimal domain which can no longer be reduced. This is reached

when everything each agent knows is already common knowledge: i.e., it holds in

every world. But what is more, this minimal model is unique, and we may call it

the ‘communicative core’ of the initial model. Here is an explicit description,

proved in van Benthem 2000:



20

Theorem     Each model has a communicative core, viz. the set of worlds

that are reachable from the actual world via all uncertainty links.

Proof       For convenience, consider a model with two agents only. The case with

more than two agents is an easy generalization of the same technique.

First, agents can reach this special set of worlds as follows. Without loss of

generality, let all states t  in the model satisfy a unique defining formula δt as in

Section 3 – or obtained by an ad-hoc argument. Agent 1 now communicates all he

knows by stating the disjunction ∨∨∨∨δt  for all worlds t he considers indistinguishable

from the actual one. This initial move cuts the model down to the actual world plus

all its  ~1-alternatives. Now there is a small technicality. The resulting model need

no longer satisfy the above unique definability property. The update may have

removed worlds that distinguished between otherwise similar options. But this is

easy to remedy by taking the bisimulation contraction. Next, let 2 make a similar

strongest assertion available to her. This cuts the model down to those worlds that

are also ~2-accessible from the actual one. After that, everything any agent knows is

common knowledge, so further statements have no informative effect.

Next, suppose agents reach a state where further announcements have no effect.

Then the following implications hold for all φ: K1φ → C{1, 2}φ,  K2φ → C{1, 2}φ.

Again using defining formulas, this means 1, 2 have the same alternative worlds.

So, these form a subset of the above core. But in fact, all of it is preserved. An

agent can only make statements that hold in all of its worlds, as it is included in his

information set, Therefore, the whole core survives each episode of public update,

and by induction, it survives all of them.          n

A corollary of the preceding proof is this:

Fact   Agents need only 2 rounds of communication to get to the core.

In particular, there is no need for repetitions by agents. E.g., let 1 truly say A

(something he knows in the actual world), note the induced public update, and then

say  B (which he knows in the new state). Then he might just as well have asserted

A & (B)A straightaway: where (B)A is the relativization of B to A (cf. Section 6).

Incidentally, a two-step solution to the initial example of this section is the

following rather existentialist conversation:

Q sighs: "I don't know"
A sighs: "I don't know either"
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It does not matter if you forget  details, because it also works in the opposite order.

The communicative core is the actual world plus every world connected to it by the

intersection of all uncertainty relations. This is the range used in defining implicit

knowledge for a group of agents in Section 2.1. Thus, maximal communication

turns implicit knowledge of a group into common knowledge. As a slogan, this

makes sense, but there are subtleties. It may be implicit knowledge that none of us

know where the treasure is. But once the communicative core is all that is left, the

location of the treasure may be common knowledge. Compare the difference

between quantifier restriction and relativization. Implicit knowledge IGφ  looks only

at worlds in the communication core CC, but it then evaluates the formula φ from

each world there in the whole model. By contrast, internal evaluation in just the

core is like evaluating totally relativized statements (φ)CC in the model.

Another technicality is that the relevant intersection of relations, though keeping the

logic decidable, is no longer safe for bisimulation in the sense of Section 4. Adding

it to the language leads to a genuinely richer epistemic logic, for which some of the

earlier model theory would have to be redone.

Planning assertions    This section shows a shift in interest. Update logics can

be used to analyze given assertions, but they can also be used to plan assertions

meeting certain specifications. A more complex example is the following puzzle

from a mathematical Olympiad in Moscow (cf. van Ditmarsch 2002):

7 cards are distributed among A, B, C. A gets 3, B gets 3, C gets 1.

How should A, B communicate publicly, in hearing of 3 , so that

they find out the precise distribution of the cards while C does not?

There are solutions here – but their existence depends on the number of cards. This

question may be seen as a generalization of the preceding one. How can a subgroup

of all agents communicate maximally, while keeping the rest of the group as much

in the dark as possible? Normally, this calls for hiding, but it is interesting to see –

at least to politicians, or illicit lovers – that some of this can be achieved publicly.

This sort of planning problem is only beginning to be studied.

Here we just observe an analogy with computer science. The dynamic epistemic

logic of Section 2.3 is like program logics manipulating correctness assertions
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φ → [A!]  ψ if precondition φ holds, then saying A always

leads to a state where postcondition ψ holds.

Such triples may be looked at in different ways. Given an assertion, one can

analyze its preconditions and postconditions, as we did for questions and answers.

This is program analysis. Or, with precondition φ  and assertion A!, we can look

for their strongest postcondition ψ. perhaps, common knowledge of A. But there is

also program synthesis. Given a precondition φ and postcondition ψ, we can look

for an assertion A! guaranteeing the transition. Conversation planning is like this.

6 Public update as relativization

This technical intermezzo (van Benthem 1999B) joins forces with standard logic.

Semantic and syntactic relativization   Here is a simple fact. Announcing A

amounts to a logical operation of semantic relativization

from a model M, s to the definable submodel M|A, s.

This explains all behaviour so far – while raising new questions. For a start, in the

new model, we can again evaluate formulas that express knowledge and ignorance

of agents, in the standard format  M |A, s |= φ. In standard logic, this may also be

described via syntactic relativization of the formula φ by the update assertion A:

Relativization        Lemma   M|A, s |= φ iff M, s |= (φ)A

This says we can either evaluate our assertions in a relativized model, or

equivalently, their relativized versions in the original model. For convenience, we

will assume henceforth that relativization is defined so that (φ)A always implies φ.

For the basic epistemic language, this goes via the following recursion:

(p) A =  A & p

(¬φ) A =  A & ¬ (φ) A

(φ∨ψ) A = (φ) A ∨ (ψ) A

(Kiφ) A = A & Ki(A → (φ) A)
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In this definition, one immediately recognizes the above axioms for public update.

Whether this works entirely within the language of epistemic announcements

depends on its strength. E.g., relativization was less straightforward with common

knowledge, as no syntactic prefix 'A →... '  or 'A&…'   on absolute operators CG

does the job. But one can extend epistemic logic with a binary restricted common

knowledge operator. Actually, dynamic logic is better behaved in this respect.

Fact   Dynamic logic is closed under relativization.

Proof   In line with the usual syntax of the system, we need a double recursion over

formulas and programs. For formulas, the clauses are all as above, while we add

([π]φ)A =  [(π)A](φ) A

For programs, here are the recursive clauses that do the job:

(R ; S)A =  (R)A ; (S)A  

(R ∪ S)A =  (R)A ∪ (S)A  

((φ)?)A =  (A)? ; (φ)? ,

(π*) A =  ((A)? ; (π)A)*          n

Clearly, common knowledge CGφ may be viewed as a dynamic logic formula 

[(∪{i | i∈G})] φ

Therefore, we can get a natural relativization for epistemic logic by the above Fact,

by borrowing a little syntax from dynamic logic.

General logic of relativization   Stripped of its motivation, update logic is an

axiomatization of one model-theoretic operation, viz. relativization. There is nothing

specifically modal about this. One could ask for a complete logic of relativizations

(φ)A in first-order logic, as done for substitutions [t/x] φ in Marx & Venema 1997.

Open        Question          What is the complete logic of relativization in first-order logic?

At least we may observe that there is more than the axioms listed in Section 3.3. 

For instance, the following additional fact is easy to prove:
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Associativity       ((A)B) C  is logically equivalent to  A((B)C)

In our update logic, performing two relativizations corresponds to performing two

consecutive updates. Thus Associativity amounts to the validity of

[A! ; B!] φ  ↔  [([A!]B)!]  φ

Why was this not on the earlier list of the complete axiom system? The answer is a

subtlety. That axiom system does indeed derive every valid formula. But it does so

without being substitution-closed. In particular, the above basic axiom for atoms 

<A!>p ↔ A & p

fails for arbitrary formulas φ. Define the substitution core of update logic as those

schemata all of whose substitution instances are valid formulas. Associativity

belongs to it, but it is not derivable schematically from the earlier axiom system.

Open        Question    Axiomatize the substitution core of public update logic.

There are also interestingly invalid principles, witness the discussion of persistence

in Section 4. Announcing a true statement "p, but you don't know it" invalidates

itself. More technically, even when p & <1>¬p  holds, its self-relativization

(p & <1>¬p ) p & <1>¬p       =     p & <1>¬p  & <1>( p & <1>¬p &p)

is a contradiction. Thus some assertions are self-refuting when announced, and the

following pleasing principle is not part of a general logic of relativization:

φ → (φ)φ holds only for special assertions φ

We will look at some further issues in the logic of relativization in Section 7,

including iterated announcement and its connections with fixed-point operators.

Excursion: richer systems of update   In standard logic, relativization

often occurs together with other operations, such as translation of predicates – e.g.,

in the notion of relative interpretation of one theory into another. Likewise, the

above connection extends to more sophisticated forms of epistemic update (cf.

Section 9). For instance, when a group hears that a question is asked and

answered, but only a subgroup gets the precise answer, we must use a new

operation of arrow elimination, rather than world elimination. More precisely,
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all arrows are removed for all members of that subgroup between

those zones of the model that reflect different exhaustive answers.

Arrow elimination involves substitution of new accessibility relations for the current

ones. E.g., when the question “φ?” is asked and answered, the uncertainty relations

~i  for agents i in the informed subgroup are replaced by the union of relations  

(φ)? ; ~I ; (φ)? ∪  (¬φ)? ; ~i ; (¬φ)?  

But this is just translation of the old binary relation ~i  into a new definable one.

Next on this road, there are more complex ‘product updates’ – which correspond to

those interpretations between theories which involve construction of new definable

objects, like when we embed the rationals into the integers using ordered pairs.

Axioms for update logics will then still axiomatize parts of the meta-theory of such

general logical operations. Thus, progressively more complex notions of update

correspond to more sophisticated theory relations from standard logic.

Finally, relativization suggests a slightly different view of eliminative update. So

far, we discarded old information states. But now, we can keep the old information

state, and perform ‘virtual update’ via relativized assertions. Thus, the initial state

already contains all possible future communicative developments. Another take on

this at least keeps the old models around, doing updates with memory. There are

also independent reasons for maintaining some past history in our logic, having to

do with public updates which refer explicitly to the 'epistemic past', such as:

"what you said, I knew already".

See van Benthem 2002A, and also Section 9 below, for more concrete examples.

7 Repeated announcement  and limit behaviour

'Keep talking'   In the Muddy Children scenario, an assertion of ignorance was

repeated until it could no longer be made truly. In the given model, the statement

was self-defeating: when repeated iteratively, it reaches a stage where it is not true

anywhere. Of course, self-defeating ignorance statements lead to something good

for us, viz. knowledge. There is also a counterpart to this limit behaviour: iterated

announcement of self-fulfilling statements makes them common knowledge. This

happened in one step with factual assertions and others in Section 4. More subtle
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cases are discussed in van Benthem 2002B, viz. repeated joint assertions of

rationality by players in a strategic game, saying that one will only choose actions

that may be best possible responses to what the others do. These may decrease the

set of available strategy profiles until a 'best zone' is reached consisting of either a

Nash equilibrium, or at least some rationalizable profiles to be in.

Limits and fixed-points   Repeated announcement of rationality by two players

1, 2 has the following form, which we take for granted here without motivation:

JR: <1>B1 ∧ <2>B2

Where the proposition letter BI says that i 's action in the current world is a best

response for i to what the opponent is playing here. It can be shown that any finite

game matrix has entries (worlds in the corresponding epistemic model) in a loop

x1 |= B1 ~2 x2 |= B2 ~1 x3 |= B1 ~2 … ~1 x1 |= B1

Repeated announcement of joint rationality JR may keep removing worlds, as each

announcement may remove worlds satisfying a Bi on which one conjunct depended.

But clearly, whole loops of the kind described remain all the time, as they form a

kind of mutual protection society. Thus, we have a first

Fact   Strong Rationality is self-fulfilling on finite game matrix models.

The technical connection with fixed-points suggests extending basic update logic

with fixed-point operators. This is like extending modal or dynamic logic to the so-

called µ–calculus, whose syntax provides smallest fixed-point definitions of the

form µp•φ(p) and greatest ones of the form νp•φ(p).  Stirling 1999 has details on

the µ–calculus, Ebbinghaus & Flum 1995 on more general fixed-point logics.

We explore this a bit, as there are some tricky but nice issues involved (for details,

cf. the reference). For a start, we can prove this

Fact   The stable set of worlds reached via repeated announcement of JR

is defined inside the original full game model by the greatest

fixed-point formula  νp• (<E>(BE ∧ p) ∧ <A>(BA ∧ p))
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Iterated announcement in dynamic logic    In any model M , we can keep

announcing any formula φ, until we reach a fixed-point, perhaps the empty set:

#(φ, M )

E.g., self-fulfilling formulas φ  in M become common knowledge in #(φ, M):

φ → (CGφ)  #(φ, M)

What kind of fixed-point are we computing here? Technically #(φ, M) arises by

continued application of this function, taking intersections at limit ordinals:

F M,φ  (X)  =   {s ∈X  |  M|X, s |= φ}

with M|X the restriction of M to the set X

The map F is not monotone, and the usual theory of fixed-points does not apply.

The reason is the earlier fact that statements φ may change truth value when passing

from M to submodels M | X. In particular, we do not recompute stages inside one

unchanging model, as in the normal semantics of greatest fixed-point formulas   

νp• φ(p), but in ever smaller models, changing the range of the modal operators.

Thus we mix fixed-point computation with relativization (cf. Section 6). Despite

F's non-monotonicity, iterated announcement is a fixed-point procedure of sorts:

Fact   The iterated announcement limit is an inflationary fixed point.

Proof   Take any φ, and relativize it to a fresh proposition letter p, yielding

(φ)p

Here p need not occur positively (it becomes negative when relativizing positive

K–operators). Now the obvious epistemic Relativization Lemma says that

M, s |=(φ)p iff M/X, s |= φ

 Therefore, the above definition of F M,φ  (X)  as  {s ∈X  |  M|X, s |= φ}  equals 

{s ∈M  |  M, s |=(φ)p } ∩ X

This computes a greatest inflationary fixed-point (Ebbinghaus & Flum 1995).       n
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But then, why did iterated announcement of JR produce an ordinary greatest fixed-

point? The above update map F M,φ (X)  is monotone with special sorts of formulas:

Fact   F M,φ  (X)  is monotone for existential modal formulas.

The reason is that such formulas are preserved under model extensions, making

their F monotone for set inclusion: cf. the related preservation issues in Section 4.

Excursion: comparing update sequences   Update logic is subtle, even here.

What happens when we compare different repeated announcements of rationality

that players could make? Van Benthem 2002B considers a weaker assertion W R

which follows from JR. Does this guarantee that their limits are included:

#(SR, M )⊆  #(WR, M )?

The general answer is negative. Making weaker assertions repeatedly may lead to

incomparable results. An example are this formula φ  and its consequence ψ:

φ  =    p ∧  (<>¬p →  <>q)

ψ  =   φ  ∨  (¬p ∧ ¬q)

In the following epistemic model, the update sequence for φ stops in one step with

the world 1, whereas that for ψ runs as follows: {1, 2, 3}, {1, 2}, {2} .

1 2 3

        p,¬ q       ¬p, ¬q         ¬p, q

But sometimes, things work out.

Fact   If an existential φ implies ψ in M, then #(φ, M)⊆  #(ψ, M).

Proof       We always have the inclusion

Tα
φ (M)  ⊆  Tα

ψ (M)

The reason for this is the following implication:

if X⊆Y, then F M , φ  (X) ⊆ F M , ψ  (Y)
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For, if M |X, s |= φ and s∈X, then s∈Y and also M |Y, s |= φ – by the modal

existential form of φ. But then M|Y, s |= ψ, by our valid implication.          n

One more type of fixed point!    Iterated announcement can be described by

the finite iteration * of dynamic logic (cf. Section 2.2). This extension is studied in

Baltag–Solecki–Moss 2002, which shows that formulas of the form

<(A!) *>CGA

are not definable in the modal µ–calculus. Still, it is well-known that formulas

[(A!)*] φ

with program iteration of this sort are definable with greatest  fixed-point operators

νp• φ ∧ [A!]p

But these cannot be analyzed in the earlier style, as they involve relativizing p to A,

rather than the more tractable A to p, as in our analysis of repeated announcement.

8 Inference versus update

Dynamic inference   Standard epistemic logic describes inference in unchanging

information models. But the current literature also has a more lively notion

following the dynamics of update (cf. van Benthem 1996):

Conclusion φ follows dynamically from premises P1, ..., Pk if

after updating any information state with public announcements

 of the successive premises, all worlds in the end state satisfy φ.

In terms of dynamic-epistemic logic, the following implication must be valid:

[P1! ; … ; Pk!] CGφ 

This notion behaves differently from standard logic in its premise management:

Order of presentation matters

Conclusions from A, B need not be the same as from B, A:

witness ¬Kp , p (consistent)  versus p, ¬Kp (inconsistent)
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Multiplicity of occurrence matters

¬Kp&p  has different update effects from (¬Kp & p) & (¬Kp & p)

Adding premises can disturb conclusions

¬Kp implies ¬Kp – but ¬Kp, p does not imply ¬Kp.

By contrast, the structural rules of classical logic say precisely that order,

multiplicity, and overkill does not matter. Nevertheless, there is a description.

Structural rules and representation     Van Benthem 2001C provides three

modified structural rules that are valid for dynamic inference as defined above:

Left Monotonicity X  ⇒ A  implies  B, X ⇒ A

Cautious Monotonicity  X ⇒ A  and X, Y ⇒ B imply X, A, Y ⇒ B

Left Cut X ⇒ A  and X, A, Y ⇒ B imply X, Y ⇒ B

Moreover, the following completeness result holds:

Theorem     The structural properties of dynamic inference are characterized 

completely by Left Monotonicity, Cautious Monotonicity, and Left Cut.

The core of the proof is a representation argument showing that any abstract finite

tree model for modal logic can be represented up to bisimulation in the form:

Worlds w go to a family of epistemic models Mw

Basic actions a go to suitable epistemic announcements (φa)!

This suggests that public update is a quite general process, which can encode

arbitrary processes in the form of 'conversation games'.

Inference versus update  Here is amore general moral. Logic has two different

inferential processes. The first is ordinary inference, related to implications Α→Β.

This stays inside one fixed model. The second process is a model-jumping

inference under relativization, related to the earlier formulas [Α!]Β . Both seem

interesting. Even so, one empirical issue remains. The muddy children deduced  a

solution: they did not draw update diagrams. What is going on inside our heads?



31

9 The wider world

As stated in Section 1, update analysis has two main directions: increased coverage

by means of new models and mechanisms, and increased in-depth understanding of

the logics that we already have. This paper has concentrated on the latter, hoping to

show the interest of logical issues in communication. In this Section, the reader gets

a lightning tour of what she has missed.

Keeping track of past assertions  Some puzzles involve reference to past

states, with people saying things like "What you said did not surprise me"

(McCarthy 2002). This says that they knew at the previous state, calling for a

further update there. To accomplish this, we need to maintain a stack of past

updates, instead of just performing them and trashing previous stages. In the limit,

as also mentioned earlier, this richer framework might also include protocol

information about the sort of communication that we are in.

Privacy and hiding  The next stage of complexity beyond public communication

involves hiding information, either willfully, or through partial observation. Here is

about the simplest example, first stated in the glossy brochure Spinoza 1998:

We have both just drawn a closed envelope. It is common knowledge between us that one

envelope holds an invitation to a lecture on logic, the other to a wild night out in

Amsterdam. We are both ignorant of the fate in store for us! Now I open my envelope,

and read the contents, without showing them to you. Yours remains closed. Which

information has passed exactly because of my action? I certainly know now which fate is

in store for me. But you have also learnt something, viz. that I know – though not what I

know. Likewise, I did not just learn what is in my envelope. I also learnt something

about you, viz. that you know that I know. The latter fact has even become common

knowledge between us. And so on. What is a general principle behind this?

The initial information state is a familiar one of collective ignorance:

        me     
    L N    

       you

The intuitive update just removes my uncertainty link – while both worlds remain

available, as they are needed to model your continued ignorance of the base fact:
    

    L        you Ν           
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Such updates occur in card games, when players publicly show cards to some

others, but not to all. But card updates can also blow up the size of a model.

Suppose I opened my envelope, but you cannot tell if I read the card in it or not.

Let us say that in fact, I did look. In that case, the intuitive update is to the model

       me     
    L N        

      you

you  you

  L       you N

The road to this broader kind of update leads via Gerbrandy 1999, Baltag, Moss &

Solecki 1999, van Ditmarsch 2000. The general idea is this.

Complex communication involves two ingredients: a current information model M ,

and another epistemic model A of possible physical actions, which agents may not

be able to distinguish. Moreover, these actions come with preconditions on their

successful execution. E.g., truthful public announcement A! can only happen in

worlds where A holds. General update takes a product of the two models, giving a

new information model M x A whose states (s, a) record new actions taken at s,

provided the preconditions of a is satisfied in M , s. This may transform the old

model M drastically. The basic epistemic stipulation is this. Uncertainty among new

states can only come from existing uncertainty via indistinguishable actions: 

(s, a)  ~i (t, b)      iff    both  s ~i  t   and  a ~i b

In the first card example, the actions were "read lecture", "read night out". Taking

preconditions into account and computing the new uncertainties gives the correct

(L, read lecture)       you       (N, read night out)

The second example involved a third action "do nothing" with precondition True,

which I can distinguish from the first two, but you cannot. Product update delivers

a model with four worlds (L, read L). (L, do nothing), (N, read N), (N, do

nothing)  – with agents' uncertainties precisely as shown above.

Clearly, truth values can change drastically in product update. Dynamic-epistemic

logic now gets very exciting, involving combining epistemic formulas true in M

and epistemic information about A expressed in a suitable language. Many of the

concerns for public update in this paper will return in more sophisticated versions.
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General communication     General tools like this can chart many varieties of

communication, and their broad patterns. For instance, there are natural thresholds.

One leads from partial information inherent in a game or a communicative

convention to that generated by people's limitations, such as bounded memory or

limited attention span. Another, perhaps more exciting, crosses from mere partial

information to misleading, lying and cheating. In principle, product update also

describes the latter, but there is a lot of fine-structure to be understood. A final

broad challenge are hiding mechanisms, such as security protocols on the Internet.

Games and social software  Again, there is not just analysis, but also

synthesis. Communication involves planning what we say, for a purpose. The

proper broader setting for this are games, which involve preferences and strategies

(cf. Baltag 2001, van Benthem 1999–2002). This is one instance of what has been

called 'social software' recently: the design of mechanisms satisfying epistemic

specifications such as who gets to know what (cf. Parikh 2002, Pauly 2001).

Communication channels   After all these sweeping vistas, we come down to

earth with a simple example, again based on a puzzle. The 1998 'National Science

Quiz' of the Dutch national research agency NWO had the following question:

Six people each know a secret. In one telephone call, two of them can 

share all secrets they have. What is the minimal number of calls they

have to make to ensure that all secrets become known to everyone?

The answers offered were: 7, 8, 9. The correct one turns out to 8. For N people,

2N-4 calls turns out to be optimal, a result which is not deep but difficult to prove.

The best algorithm notes that four people can share all their secrets in four steps:

1 calls 2, 3 calls 4, 1 calls 3, 2 calls 4.

So, single out any four people in the total group.

First let the other N-4 call one of them, then let the four people share

all they have, then let the N-4 people call back to their informant.

The total number of calls will be 2N-4. Now, this clearly raises a general question.

What happens to update logic when we make a further semantic parameter explicit,

viz. the communication network? Our running example of public announcement

presupposed some public broadcast system. The gossip puzzle assumes two-by-
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two telephone connections without conference calls. We can look for results linking

up desired outcomes with properties of the network. E.g., it is easy to show that

Universal knowledge of secrets can be achieved if and only if the network is

connected: every two people must be connectible by some sequence of calls.

But there are many other intriguing phenomena. Suppose three generals with armies

on different hilltops are planning a joint attack on the adversary in the plain below.

They have completely reliable two-way telephone lines. One of them possesses

some piece of information p which has to become common knowledge among them

in order to execute a successful coordinated attack. Can they achieve this common

knowledge of p? The answer is that it depends on the scenario.

If the generals only communicate secrets, even including information about all calls

they made, then common knowledge is unattainable, just as in the more familiar

two-generals problem with unreliable communication. Informally, there is always

someone who is not sure that the last communication took place. More precisely,

product update allowing for this uncertainty will leave at least one agent uncertainty

chain from the actual world to a ¬p–world, preventing common knowledge. But

what about general A phoning general B, sharing the information, and telling him

that he will call C, tell him about this whole conversation, including the promise to

call him? This is like mediators going back and forth between estranged parties.

Can this produce common knowledge? Again, it depends on whether agents are

sure that promises are carried out. If they are, then a scenario arises with actions

and observations where product update will indeed deliver common knowledge.

We leave matters at this informal state here. Our aim in this excursion has merely

been to show that update logic fits naturally with other aspects of communication,

such as the availablitiy and reliability of channels.

1 0 Logic and communication

Traditionally, logic is about reasoning. If I want to find out something, I sit back in

my chair, close my eyes, and think. Of course, I might also just go out, and ask

someone, but this seems like cheating. At the University of Groningen, we once

did a seminar reading Newton's two great works: Principia Mathematica, and the

Optics. The first was fine: pure deduction, and facts only admitted when they do

not spoil the show. But the Optics was a shock, for being so terribly unprincipled!
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Its essential axioms even include some brute facts, for which you have to go out on

a sunny day, and see what light does on when falling on prisms or films. For

Newton, what we can observe is as hard a fact as what we can deduce. The same is

true for ordinary life: questions to nature, or other knowledgeable sources such as

people, provide hard information. And the general point of this paper is that logic

has a lot to say about this, too. One can see this as an extension of the agenda, and

it certainly is. But eventually, it may also have repercussions for the original

heartland. Say, what would be the crucial desirable meta-properties of first-order

logic when we add the analysis of communication as one of its core tasks?

I will not elaborate on this, as this paper has already taken up too much of the

reader's time. And in any case, now that I know the road to the Colosseum, it is

time for me to go. As a former member of the guard, I have some duties to fulfil,

even though the script of the movie does not promise a happy ending.
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