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Abstract

As part of the general project of procedural semantics, nearly thirty years ago
van Benthem first proposed semantic automata as a computational model of
natural language quantification. While automata-theoretic characterization re-
sults have been obtained for monadic quantifiers, very little has been done to
investigate polyadic quantifiers from this perspective. Polyadic quantification in
natural language includes but is not limited to iteration, cumulation, resump-
tion, reciprocals, and branching. A natural extension of the semantic automata
model is to study the properties of automata recognizing polyadic quantifiers,
and the operations on simple automata corresponding to the lifts giving rise to
them.

The thesis gives automata constructions for iteration and cumulation and an-
swers (affirmatively) the open question of whether deterministic PDA are closed
under these operations. These efforts pave the way toward a novel understand-
ing of the closely related Frege boundary between reducible and “genuinely
polyadic” quantification (studied by van Benthem, Keenan, Dekker, and van
Eijck, among others) in automata-theoretic terms. An extension of semantic
automata for the polyadic lifts which are largely non-Fregean in this sense is
left for future work. Finally, the thesis concludes with discussion of the appli-
cations of our results and reflection on the importance of representations to the
further advancement of this paradigm.
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Chapter 1

Introduction

1.1 Motivations and Contributions

Nearly thirty years ago, van Benthem first introduced the notion of semantic
automata, uniting generalized quantifier (GQ) theory and formal language the-
ory in an elegant and powerful way. The basic idea is to use insights of GQ
theory to identify a natural language quantifier with an automaton that, in a
precise sense, recognizes the models in which it is true, letting us consider the
quantifier as a procedure for checking whether it holds. This marriage enables
the use of the Chomsky hierarchy as a measure of complexity of quantifiers,
which “turns out to make eminent sense, both in its coarse and fine structure”
[4]. Semantic automata have not only led to many observations interesting in
their own theoretical right, but also to myriad insights in cognitive modeling
and formal learning based on the idea of meaning as algorithm, as van Benthem
himself predicted:

. . .the procedural perspective may also be viewed as a way of
extending contemporary concerns in ‘computational linguistics’ to
the area of semantics as well. Complexity and computability, with
their background questions of recognition and learning, seem just as
relevant to semantic understanding as they do to syntactic parsing
[4].

A steady flow of research has been inspired by semantic automata in the follow-
ing decades, but almost no work has been done toward broadening the model
to address more than simple monadic quantifiers, though the definability of
polyadic quantification is much-studied. Szymanik [50] provides a computa-
tional complexity (Turing machine-based) perspective on polyadic quantifiers,
showing that some of those natural language constructions are polynomial-time
closed and others are NP-hard. Those results prompt the question: can we
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obtain stronger automata characterizations for some polyadic quantifiers? This
thesis is inspired by a very recent (2013) answer to that question by Steinert-
Threlkeld and Icard III [46], exploring semantic automata for iterated quanti-
fiers. They show regular and context-free quantifier languages are closed under
iteration; however, their proposed computational model is unnecessarily power-
ful.

Also in 2013, Kanazawa [27] answered an open question in [38] characterizing
the class of quantifiers recognized by deterministic pushdown automata by their
corresponding semilinear sets. As it turns out, it is rather difficult to form simple
natural language quantifiers that go beyond this characterization. Given this
new result, it is interesting to ask whether this natural subset of context-free
languages is closed under quantifier iteration.

Our first main contribution is a different construction of iteration automata
that is appropriately powerful, which was admittedly missing from the semantic
automata landscape thus far. Further, we extend iteration automata (both our
version and that presented in [46]) to accomodate any number of quantifiers.
Second, we prove that deterministic context-free languages are closed under
iteration. The thesis also includes constructions for cumulation automata (for
any number of regular quantifiers) and iterations in which one or more quantifier
is deterministic context-free but non-regular.

Iterated quantifiers are definable in terms of their monadic constituents and
constitute a sort of default for producing complex quantifiers. The Frege bound-
ary delineates just how much of polyadic quantification is attainable by multiple
iterations, and there are indeed many natural language quantifiers beyond the
boundary. Our final contribution is a first step toward establishing a correlate of
the Frege boundary within the Chomsky hierarchy using the semantic automata
framework.

We hope these contributions add momentum to the recent revival of interest
in semantic automata, spurring further research into automata for polyadic
quantifiers, and that the fruits of the algorithmic perspective on meaning may be
brought to bear on practical applications related to multiquantifier constructions
in natural language.

1.2 Themes

This thesis, and the idea of semantic automata in general, concerns topics in
a highly inter-disciplinary area, at once in the intersection of formal semantics,
computer science, and cognitive science, among other fields. As such there are
various interrelated themes that frame our discussion and show up at least im-
plicitly throughout the thesis. We think it useful to make the reader well aware
of a few of these recurring motifs from the outset: the notion in computational
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semantics of algorithmic meaning, considerations of complexity and determin-
ism in natural language, the division between production and recognition in
language understanding, compositionality, and the importance of representa-
tions.

1.2.1 Meaning as Algorithm

The idea of meaning as algorithm may be traced all the way back to Frege [16]
and his notion of Sinn: the meaning of an expression is the manner in which
its reference is determined. This notion lives on in computational semantics
in the idea that the meaning of an expression is an algorithm or procedure for
determining its extension in a model. This idea was first seriously formalized
in Tichy’s Intension in terms of Turing machines [55], an “attempt to base
semantics directly on the concept of sense.” Various possibilities for procedural
semantics are discussed by van Benthem in Towards a computational semantics
[5], including the semantic automata models for quantifiers that we further
develop in this thesis.1

One of the biggest motivations to develop procedural semantics is the possibility
of a psychologically plausible model of language. For example, Suppes claims:

The basic and fundamental psychological point is that, with rare
exception, in applying a predicate to an object or judging that a re-
lation holds between two or more objects, we do not consider prop-
erties or relations as sets. We do not even consider them as somehow
simply intensional properties, but we have procedures that compute
their values for the object in question [47].

In cognitive science, Marr [33] has famously proposed that information process-
ing systems, like the cognitive procedures employed in comprehending language,
must be understood at three levels:

• Computational Theory (Level 1): What is the goal, why is it appropriate,
and what is the logic of the strategy to carry it out?

• Representation and Algorithm (Level 2): How can the computational the-
ory be implemented? How are the input and output represented, and how
is one transformed into the other?

• Implementation (Level 3): How can the representation and algorithm be
realized in a physical system?

Marr further claims that the highest level, the computational level, tells us most
about the problem at hand, offering that “Trying to understand perception by
studying only neurons is like trying to understand bird flight by studying only
feathers.” We need first, for example, an understanding of aerodynamics to
understand why bird feathers are particularly good for flying. The nature of

1See [49] for a full run-through of the history of the algorithmic perspective on meaning.
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flight constrains the kind of mechanism that may implement flight, but plenty
of (in)animate things fly without feathers. The same goes for a cognitive task
like verifying the truth of a quantified sentence.

The approach in this thesis perhaps straddles the computational and algorith-
mic level. Complexity differences between automata classes are reflected in
measures of task difficulty, and even the more fine-grained structure of particu-
lar automata lead to accurate empirical hypotheses; however, we do not claim
that people actually implement the algorithm represented by a given automata.
Rather, semantic automata are idealized models of quantifier verification.2 Peo-
ple may guess, approximate, or use some other strategy that is dependent upon
the way the information is presented.

Steinert-Threlkeld puts it nicely:

In principle, they [semantic automata] allow for a separation be-
tween abstract control structure involved in quantifier verification
and innumerable other variables that the framework leaves under-
specified . . . This could be viewed as a modest distinction between
competence and performance for quantifier expressions [46].

. . .the standard model-theoretic semantics of quantification could
be seen as a potential computational, or level 1, theory. Semantic
automata offer more detail about processing, but. . .less than one
would expect by a full algorithmic story about processing (level 2),
which would include details about order, time, salience, etc. Thus,
we might see the semantic automata framework as aimed at level 1.5
explanation, in between levels 1 and 2, providing a potential bridge
between abstract model theory and concrete processing details [46].

We discuss the fruitfulness of the semantic automata model in various practical
applications in Section 9.1.

1.2.2 Determinism

If we pursue the paradigm of procedural semantics for its promise of the pos-
sibility of a cognitively tenable model of language processing, we might attend
to this goal from the get-go by not positing implausible models. Since we deal
with machine characterizations of procedures in this thesis, we may look to the
divide between determinism and non-determinism for at least one distinction
between the plausible and implausible3. Non-deterministic automata simply do
not provide realistic algorithmic models as they are not implementable. Even

2However, see [13] for the first step toward realistic semantic automata, using probabilistic
transitions to model verification error.

3Dealing with computational complexity, Szymanik [50] takes tractability as the natural
notion of plausibility–in particular, polynomial-time computability (see van Rooij [42] for
discussion of the P -cognition thesis).
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when a non-deterministic automata has an equivalent deterministic counter-
part, it is only the latter that is of practical interest to us, as a representation of
the computational steps one may really take. Based on this entirely innocuous
claim that people cannot utilize non-determinism, we only offer constructions
of deterministic semantic automata in this thesis.4

As we will see at the end of Section 3.3, this assumption of determinism is in-
credibly natural in this context: the basic building blocks of natural language
quantification are deterministic, and it takes a bit of effort to jump the hur-
dle into non-determinism. Still, squaring realistic assumptions about cognition
with the existence of (compound) natural language determiners whose semantic
automata models require non-determinism remains an interesting puzzle.

1.2.3 Production vs. Recognition

In formal language theory, every recognizing device has an equivalent generative
device. For every kind of automata, there is a corresponding type of grammar
such that each describes the same class of languages. The ability to translate
between the two paradigms is extremely useful: one representation may be
preferable in a context, or make it easier to obtain a particular result, or reveal
a new insight.

Positioning the previous discussion of meaning as algorithm, in particular the
meaning of quantifiers as automata, in the wider of context of formal language
theory, the meaning of a quantifier should somehow be partially or alternatively
constituted by a corresponding generative mechanism. These dual meanings are
attested by the approach in formal learning theory, which seeks to explain how
people gain semantic competence. Semantic competence consists in the ability
to verify the truth of a sentence (comprehension) but also in the ability to
produce correct utterances (production). These abilities align with automata
as testing or model-checking devices and grammars as description generating
devices.

In [18], Gierasimczuk calls attention to the issue that in using automata and
grammars for modeling learning, we cannot treat the corresponding abilities of
comprehension and production as equivalent. In short, production is harder for
people, and comprehension is somehow prior: “Generating is more complicated
than testing and the assumption of mutual reduciblity of these two competences
seems unrealistic.”

This is good news for us. In this thesis we are motivated by the possibility of
modeling lifts of simple quantifiers as operations on automata by giving con-
structions directly from minimal automata to minimal automata, without having

4Note that we are not making the radical claim that human cognition never involves
probabilistic procedures. See van Rooij [42] also for a discussion on the common confounding
of non-deterministic and probabilistic procedures.
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to translate to grammars. It may be easy to prove the existence of some au-
tomata by demonstrating the equivalent grammar, but this does not necessarily
provide insight into the procedure. If we take the algorithmic meaning paradigm
seriously and give due respect to the actual differences in generating and testing,
it is accurate and valuable to keep to one side of the conceptual line dividing
them.

While a proof by grammar and proof by automata indeed have the same force
qua proof, we often give both sides of the story in this thesis. Grammars can
sometimes seem more precise and guide the construction of automata with struc-
tural insight into the language (and, since the properties of these automata op-
erations are interesting in their own right–divorced from their natural language
applications–we are justified in taking advantage of the equivalence of grammars
and automata). Nonetheless, our automata constructions themselves stand on
their own.

1.2.4 Compositionality

A pervasive idea across many disciplines is the principle of compositionality:
the meaning of a compound expression is determined by the meanings of its
constitutent parts and their mode of combination. Two standard arguments
for the compositionality of natural language are that it explains (1) how people
can learn a language (a set of infinite meanings) while in fact internalizing only
finitely many basic meanings, and (2) how people successfully communicate us-
ing novel expressions.5 A comprehensive treatment of the history, justifications
for, objections to, and formalization of compositionality can be found in [25].
Janssen points to its prevalence across several contexts such as, of course, in
logic, in which “it is hardly ever discussed. . .and almost always adhered to” and
in formal semantics, e.g. “the fundamental principle of Montague grammar.”
The basic idea behind a formal analysis of compositionality is simple: if E is a
complex expressions built up from E1 and E2 (by some syntactic rule), then the
meaning M(E) of E is built up from M(E1) and M(E2) (by some semantic
rule).

Thus, in keeping with compositionality, we would like the semantic automata
giving the meaning of a polyadic quantifier to be built up from the semantic
automata giving the meaning of the simpler monadic quantifiers composing it.6

Moreover, the composition of those meanings should somehow reflect the way
the quantifiers are combined in language: the principle is a claim not only about
meaning, but about structure. Compare The dog bit the man and The man bit
the dog, sentences containing exactly the same parts with exactly the same

5Pagin [39] claims that these arguments fail on the grounds that those capacities do not
require compositionality, but rather computability, still ultimately concluding that compo-
sitionality simplifies linguistic calculations. This yields more evidence for the utility of a
computational perspective on natural language.
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meanings, but with very different overall meaning based on the way the parts
are combined.

Since this thesis continues in the tradition of procedural semantics, in particular
identifying quantifiers with automata, we must acknowledge that there will be
multiple ways to combine simple algorithms into equivalent complex algorithms,
in the sense that they produce the same outputs for all inputs.7 But algorithms
can be more or less similar, and there is no general definition of synonymy. This
is an interesting hurdle for the extension and application of semantic automata.
Is there one right model among the possibilities? If so, what are the criteria for
choosing?

1.2.5 Representation

Finally, we mention the importance of attention to representations in establish-
ing the difficulty of a language or problem. In his Computational Complexity:
A Conceptual Perspective, Goldreich emphasizes:

Indeed, the importance of representation is a central aspect of
Complexity Theory. In general, Complexity Theory is concerned
with problems for which the solutions are implicit in the prob-
lem’s statement (or rather in the instance). That is, the problem
(or rather its instance) contains all necessary information, and one
merely needs to process this information in order to supply the
answer. . .Thus, Complexity Theory clarifies a central issue regarding
representation, that is, the distinction between what is explicit and
what is implicit in a representation [22].

In this thesis we are not directly interested in the inherent time or space required
to decide a problem, but the issue of representation plays a similar role in any
theory of computation endeavor. Finding an appropriately powerful automaton
model for a quantifier, represented as a language of string encodings of models,
is another way of specifying the hardness of that quantifier. These encodings
indeed contain all the information relevant to deciding whether strings are in the
language of the quantifier, but some encodings make particular aspects of that
information more or less explicit than others. Which aspects are useful in this
decision process may vary with the type of quantifier. This theme becomes more
and more prominent throughout the thesis, playing a large role in Chapters 7
and 8, and is indeed the final thought we reflect on, in Section 9.2.2.

6Also see Chapter 9.2 for a discussion of Clark’s project in [10] showing how to construct
the monadic quantifiers definable in first-order logic via operations on regular languages.

7Also from Suppes: “It has been a familiar point in philosophy since the last century that
classes are abstractions of properties. The point relevant here is that properties stand in the
same relation to procedures that classes stand to properties. For example, the property of a
number being prime can be tested by quite different procedures and among this indefinitely
large number of procedures some will of course be much more efficient or faster than others”
[47].
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1.3 Overview

The thesis begins by providing the necessary exposition for understanding the
results in later chapters. Section 2.1 gives an overview of Generalized Quanti-
fier Theory; Section 2.2 gives an overview of Formal Language and Automata
Theory. (Readers familiar with these areas are invited to skip the prerequisite
chapter). Chapter 3 illustrates the synthesis of these two fields in the form of
semantic automata for monadic quantifiers and surveys the results so far ob-
tained. This overview provides justification for further exploration in the same
spirit into the realm of polyadic quantification and furnishes the reader with the
background to not only understand but appreciate the results in later chapters.

Chapter 4 provides an overview of the work by Steinert-Threlkeld and Icard III
in [46], establishing the necessary vocabulary for defining iteration automata
and providing new and more precise proofs of their results.

In Chapter 5 we give our construction for the iteration of two finite automata
corresponding to regular quantifiers and generalize this construction to handle
iterations of arbitrary numbers of finite automata, with proofs of the correct-
ness of the definitions in both cases. We also generalize the construction in [46],
with an interesting outcome. Chapter 7 does the same for cumulative quantifi-
cation, which is straightforwardly definable from iteration. Chapter 6 turns to
deterministic context-free quantifier languages, proving they are closed under
quantifier iteration and demonstrating a construction for the iteration of two
automata where at least one is a deterministic pushdown automata.

In Chapter 8 we discuss the much (though not so recently) studied Frege bound-
ary demarcating reducible and genuinely polyadic quantification, reformulating
some results in that realm in terms of languages in a step toward locating the
Frege boundary in the Chomsky hierarchy.

Section 9.1 gives additional motivation for this project and suggests its import
for modeling in cognitive science and for formal learning theory. Lastly, Section
9.2 comments on a project of Clark ([9], [8]) in a similar spirit and gestures
toward possible further extensions of the semantic automata model to capture
quantification on the far side of the Frege boundary.

Note. This thesis is largely concerned with iteration of quantifiers, and unfortu-
nately this may engender some confusion, as iteration already has a (different)
meaning in the realm of formal languages (the Kleene star, or concatenation
closure). The reader should take care to remember that when we use the term
iteration in this thesis, it almost invariably refers to the polyadic lift discussed
in Section 2.1 and the corresponding operation on languages and automata to
be defined. We may sometimes refer to our notion as quantifier iteration, but
in any case will not use iteration to refer to the Kleene star.
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Chapter 2

Prerequisites

2.1 Generalized Quantifier Theory

2.1.1 Properties of Simple Monadic Quantifiers

Our summary of generalized quantifier theory draws heavily on Peters and West-
erst̊ahl’s Quantifiers in Language and Logic [41]. A quick notational remark:
we use “ ∣ A ∣ ” for both the cardinality of A (as a set) and the length of A (as
a string), and thus “:” for set comprehension to enhance readability.

Generalized quantifier theory applied to natural language treats determiners
as relations between the denotations of other constituents of a sentence. For
example, every is the the inclusion relation: Every student wrote a thesis is
true just in case every individual in the set of students is also in the set of
thesis-writers. Counting quantifiers such as at least 3 put a restriction on the
cardinality of the intersection of two sets: At least 3 students received a mark
of 10 on their theses is true just in case the size of the intersection of the set of
students and the set of people receiving a 10 is at least three. For example, we
can write the meanings of the quantifiers in these examples as:

every = {(M,A,B) ∶ A ⊆ B}
at least three = {(M,A,B) ∶ ∣ A ∩B ∣≥ 3}

These are simple examples, but a quantifier may denote a relation between any
number of relations of any arity. Mostowski [37] first introduced the general
notion of a unary quantifier, binding a single variable in a formula similarly to
∀ and ∃ in standard logic. Lindström extended this to arbitrary types.

Definition 2.1.1. [32] A Lindström quantifier Q of type ⟨n1, . . . , nk⟩ is a class
of models M = (M,R1, . . . ,Rk) with the Ri ni-ary that is closed under isomor-
phism.
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This definition is the standard in logical settings, while the following appears
more often in formal semantics.

Definition 2.1.2. A generalized quantifier assigns a k-ary relation QM to every
set M such that if (R1, . . . ,Rk) ∈ QM then Ri is ni − ary and is closed under
bijections.

However, they are equivalent due to the following:

(M,R1, . . . ,Rk) ∈ Q⇔ QM(R1, . . . ,Rk)
We leave out the subscript and just write Q(R1, . . . ,Rk) or Q R1, . . .Rk omitting
parentheses.

If all the ni are 1, we say Q is monadic; otherwise it is polyadic. Typical natural
language determiners are type ⟨1,1⟩ relativizations of type ⟨1⟩ quantifiers.

Definition 2.1.3. If Q is of type ⟨n1, . . . , nk⟩, then Qrel has type ⟨1, n1, . . . , nk⟩
and is defined for A ⊆M and Ri ⊆Mni as:

(Qrel)M(A,R1, . . . ,Rk)⇔ QA(R ∩An1 , . . . ,R ∩Ank)
Again, we often omit the subscript. For instance, every is the relativization
of the familiar ∀ from predicate logic. ∀(B) says that all individuals in the
universe are in B. But ∀rel = every restricts the domain of ∀ to a new unary
relation (set of individuals) contained in M , allowing us to write every A B to
mean that the elements of A are also elements of B. In general we have:

(Qrel)M(A,B)⇔ QA(A ∩B)
Natural language determiners are generally taken to satisfy certain semantic
universals ([3]):

• Q of type ⟨1,1⟩ satisfies extensionality (EXT) if and only if for all A,B ⊆M
and M ⊆M ′:

QM(A,B)⇔ QM ′(A,B)
• Q of type ⟨1,1⟩ is conservative (CONS) if and only if for all M and A,B ⊆
M :

QM(A,B)⇔ QM(A,A ∩B)
• Q of type ⟨1,1⟩ satisfies isomorphism closure (ISOM)1 if and only if for

all A,B ⊆M and A′,B′ ⊆M ′, if (M,A,B) ≅ (M ′,A′,B′):
QM(A,B)⇔ QM ′(A′,B′)

EXT says that the domain can shrink or expand without affecting Q’s value so
long as A and B are untouched. CONS says that only the part of B that is
also in A (A ∩ B) is relevant to Q’s value (since Q restricts the domain to its
first argument). ISOM states a sort of topic-neutrality: the identities of the

1Note that isomorphism closure is part of our definition of generalized quantifier from the
outset.
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individuals are irrelevant, from which it follows that it is the cardinalities of the
sets, and not their particular members, which determine Q’s value.

Theorem 2.1.4. [41] A type ⟨1,1⟩ quantifier satisfies CONS and EXT if and
only if it is a relativization of a type ⟨1⟩ quantifier.

Natural language determiners are almost invariably type ⟨1,1⟩ relativizations.
From a given type ⟨1,1⟩ determiner, we can also recover a type ⟨1⟩ quantifier,
representing a noun phrase, by freezing the first argument2:

(QA)M(B)⇔ QM∪A(A,B)
For instance, we may write Every A is B as the type ⟨1,1⟩ determiner every
applied to (A,B) or equivalently as the type ⟨1⟩ noun phrase everyA applied to
(B), true if the set of every element of A (i.e., A itself) is contained in B.

Quantifiers additionally satisfying ISOM (called CE quantifiers) have an equiv-
alent representation as binary relations on numbers:

Definition 2.1.5. For Q a type ⟨1,1⟩ CE quantifier, define Qc by:

Qc(x, y)⇔ ∃M and A,B ⊆M s.t. ∣ A −B ∣= x, ∣ A ∩B ∣= y and QM(A,B)
Theorem 2.1.6. Let Q of type ⟨1,1⟩ be a CE-quantifier. Then for all M and
A,B ⊆M :

Q(A,B)⇔ Qc(∣ A −B ∣, ∣ A ∩B ∣)
Throughout this thesis, we will consider only quantifiers having these three
semantic properties, which are indeed nearly universal for natural language de-
terminers.3

Our earlier example determiners are given by the following binary relations:

everyc(x, y) ⇔ x = 0
at least threec(x, y) ⇔ y ≥ 3

Due to this equivalence with relations on natural numbers, CE quantifiers have
a nice geometric representation in the Tree of Numbers ([4]). We can identify
Q with the pattern in the Tree determined by which pairs (x, y) are in Qc. The
Tree also provides an easy characterization of many invariance properties of
simple quantifiers, a few of which we mention now.

We say Q is monotone increasing (decreasing) in its right argument, written
MON↑ (MON↓) if and only if for all M , A, and B ⊆ B′ (B′ ⊆ B), QM(A,B)
implies QM(A,B′). Left monotonicity, called persistence (anti-persistence and
written ↑MON (↓MON), is defined similarly with respect to taking subsets and

2The use of M ∪A makes this a global rather than local definition, but the difference does
not matter here (we will always have A ⊆M).

3This assumption puts aside, for example, proper names and, more controversially, only.
Only A’s are B’s depends also on B −A.
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(0,0)
(1,0)(0,1)

(2,0)(1,1)(0,2)
(3,0)(2,1)(1,2)(0,3)

(4,0)(3,1)(2,2)(1,3)(0,4)
(5,0)(4,1)(3,2)(2,3)(1,4)(0,5)

⋮

(a) every

(0,0)
(1,0)(0,1)

(2,0)(1,1)(0,2)
(3,0)(2,1)(1,2)(0,3)

(4,0)(3,1)(2,2)(1,3)(0,4)
(5,0)(4,1)(3,2)(2,3)(1,4)(0,5)

⋮

(b) at least three

Figure 2.1: Interpreting quantifiers on the Tree of Numbers

supersets of A.4 We say Q is (right) continuous if for all M , A, and B′ ⊆ B ⊆ B′′,
QM(A,B′) and QM(A,B′′) imply QM(A,B).
Every CE quantifier is the relativization Qrel of a type ⟨1⟩ quantifier Q. Right
montonicity behavior carries over from the monotonicity of Q. Persistence, or
monotonicity in the restricted (left) argument, of Qrel does not have such a clear
relation with Q until we consider its interpretation in the Tree of Numbers.

b
b

Figure 2.2: Right monotonicity and persistence

b

b

b b

Figure 2.3: Left and right continuity

Figures 2.2 and 2.3 illustrate what we can infer about the Tree pattern of a
quantifier possessing these properties. If Q is monotonic increasing in the right
argument, then if a pair (x, y) is in Qc, we know that every pair (x, y′) with
y′ > y is also in Qc. If Q is persistent and (x, y) is in Qc, then every pair in
the downward triangle spanned by (x, y) is also in Qc (for anti-persistence, it is
the upward triangle). Moving down a level in the Tree corresponds to adding
an individual to the domain; the downward triangle pattern it does not matter

4Often “monotone increasing (decreasing)” is assumed to refer to the right argument, and
simply “monotone” is used to indicate that a quantifier is either monotone increasing or
decreasing, as opposed to neither.
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whether the individual is added to A−B or A∩B. For right continuity, if (x, y)
and (x, y′), with y′ > y, are in Qc, then so is every pair in between. For left
continuity, every pair in the rectangle determined by any two points in Qc is
also in Qc.

2.1.2 Polyadic Lifts

Monadic quantifiers are sufficient to analyze simple sentences following the
schema Q1 A are B, as in Every Olympian is an athlete. However, natural
language is full of examples of polyadic quantification:

(1) Half the students passed every class.

(2) Three researchers published five papers in total.

(3) Not all twins are friends.

(4) Five hockey players punched each other.

(5) Some relative of each townsmen and some relative of each villager hate each
other.

We restrict the following definitions to the case that a polyadic lift is applied
to at most two simple monadic quantifiers, but they may all be defined for an
arbitrary number of quantifiers.

Sentence (1) is an example of iteration. Taking S as the set of students, C as
the set of classes, and P = {(s, c) ∶ s passed c}, we can give the truth conditions
of sentence (1) as:

(half ⋅ every)(S,C,P )⇔ half(S,{s ∶ every(C,Ps)})
where Ps is the set {c ∶ (s, c) ∈ P}. The iteration of half and every yields a new
quantifier half ⋅ every which takes two sets and a binary relation between them
as arguments.

Definition 2.1.7. Let Q1 and Q2 both be of type ⟨1,1⟩. Q1 ⋅ Q2 is the type
⟨1,1,2⟩ quantifier such that for all A,B ⊆M and R ⊆M2:

(Q1 ⋅Q2)(A,B,R)⇔ Q1(A,{a ∶ Q2(B,Ra)})
The iteration of three type ⟨1,1⟩ quantifiers creates a type ⟨1,1,1,3⟩ quantifier,
and so forth.5

Iterations inherit some nice properties from their components. Zuber [60] ob-
serves the following facts (where the relevant notions of monotonicity and con-
tinuity of Q1 ⋅ Q2 are obtained by adding or subtracting pairs in the relation
argument):

5We can equivalently treat the iteration of two quantifiers as a type ⟨2⟩ quantifier by
freezing the first two arguments: (QA

1 ⋅QB
2 )(R).
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• Q1 ⋅Q2 is monotone increasing if and only if Q1 and Q2 are both increasing
or both decreasing

• Q1 ⋅Q2 is monotone decreasing if and only if one of Q1 or Q2 is increasing
and the other decreasing

• Q1 ⋅Q2 is not monotonic if and only if one of Q1 or Q2 is not monotonic

• If Q1 ⋅Q2 is continuous, then Q1 and Q2 are continuous (if non-trivial)6

Sentence (2) is an example of cumulation, meaning that there are three re-
searchers such that all together, they published five papers. Each researcher in
the group worked on at least one paper, and each of the five papers was worked
on by at least one of the researchers. Compare this to the iterative reading
of this sentence, under which we expect each researcher published five papers
separately, requiring fifteen total papers.

We denote the cumulation of Q1 and Q2 by (Q1 ⋅Q2)cl and observe that it can
be defined in terms of iteration:

(Q1 ⋅Q2)cl(A,B,R)⇔ (Q1 ⋅ some)(A,B,R) ∧ (Q2 ⋅ some)(B,A,R−1)
This says there is a Q1-sized subset of A that participates in R and a Q2-sized
subset of B that participates in R−1.

Note that we obtain precisely the same truth conditions for a cumulative reading
whether the sentence is Three researchers published five papers or Five papers
were published by three researchers. This means cumulation is an independent
lift. Let lift be any operation taking two type ⟨1,1⟩ quantifiers and producing
a type ⟨1,1,2⟩ quantifier. Then lift is independent, corresponding to the order-
indifference of Q1 and Q2, if:

For all M and A,B ⊆M,R ⊆M2, lift(Q1,Q2)M ⇔ lift(Q2,Q1)M(B,A,R−1)
Iteration, on the other hand, is generally not order-indifferent. Compare Every
dog chased some cat and Some cat was chased by every dog. In the former,
every takes wide-scope, and the sentence may be true when every dog chases a
different cat.

Sentence (3) illustrates resumption. Resumption has the effect of lifting Q to
quantify over tuples instead of individuals. We define the resumption of Q, with
universe M and R1,R2 ⊆M2 by:

Resk(Q)M(R1,R2)⇔ Qk
M(R1,R2)

We can read the determiner in (3) as Res2(not all) ranging over pairs. Taking
twins and friends to denote subsets of M2 (sets of pairs), we have Res2(not
all)(twins, friends) if and only if twins − friends ≠ ∅.

Sentence (4) exemplifies reciprocal quantification. Reciprocal quantifiers say
there is a large-enough subset of a set whose members participate in a relation

6A quantifier is trivial if it is a universal or empty relation.
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with one another. Reciprocal quantifiers have many possible interpretations
varying in strength depending on the restrictions put on the relation. We can
think of the domain A with relation R as the nodes and edge relation of a
directed graph. Meanings depend on the following possible interpretations of
R:

• FUL: Every pair in A participates in R directly (the graph is complete).

• LIN: Every pair in A participates in R directly or indirectly (the graph is
connected).

• TOT: Every element in A participates in R directly with some element of
A (every node has an outgoing edge).

(a) TOT (weak) (b) LIN (intermediate) (c) FUL (strong)

Figure 2.4: Models for different interpretations of reciprocals

These interpretations correspond to the following truth conditions7 for the
strong, intermediate, and weak readings, depending on whether the relation
is FUL, LIN, or TOT, respectively (where ∣ A ∣ is at least 2 and Q is MON↑)
([11],[50]):

• RamS(Q)(A,R)⇔ ∃X ⊆ A[Q(A,X) ∧ ∀x, y ∈X(x ≠ y⇒ R(x, y))]
• RamI(Q)(A,R)⇔ ∃X ⊆ A[Q(A,X) ∧ ∀x, y ∈X(x ≠ y⇒ ∃ sequence

z1, . . . , zl ∈X ∶ (z1 = x ∧R(z1, z2) ∧⋯ ∧R(zl−1, zl) ∧ zl = y)]
• RamW(Q)[A,R]⇔ ∃X ⊆ A[Q(A,X) ∧ ∀x ∈X∃y ∈X(x ≠ y ∧R(x, y))]

We also have Ram∨
S(Q),Ram∨

I (Q), and Ram∨
W(Q) with R(x, y) replaced by

R(x, y) ∨R(y, x) in the above definitions (for these alternative readings, think
of an undirected graph). This yields at least six possible interpretations8, with
the strong meaning implying the intermediate meaning, and the intermediate
implying the weak.

To explain how the meaning of a given reciprocal quantifier is chosen from
this set of possibilities, Dalrymple et al. [11] propose the strongest meaning
hypothesis (SMH), a pragmatic principle predicting that a sentence has the

7“Ram” indicates that reciprocal quantifiers are Ramsey lifts. The Ramseyfication of Q
expresses that there is a Q-large subset whose members satisfy some formula.

8Dalrymple et al. [11] discuss many more potential readings; we present just these six, as
formulated in [50], for simplicity.
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logically strongest possible meaning allowed by the context. For example, the
meaning of Most of the children followed one another is underspecified, except
insofar as the strong meaning is ruled out since follow is an asymmetric relation.
Different contextual information may determine different meanings. In Most of
the children followed one another through the door, an alternative intermediate
interpretation is called for, but in Most of the children followed one another in a
circle, the regular intermediate interpretation is possible and logically stronger,
and thus is predicted by SMH. Suppose the sentence were Most of the children
followed one another around the museum in small groups: then it seems only
the alternative weak reading is available.

An interesting perspective on the meaning of reciprocals is provided by the
descriptive complexity results in [50]. Szymanik shows that the strong readings
of reciprocal sentences in which the quantifier is counting or proportional are
intractable (the problem of determining their truth in a model is NP-complete,
since the Ramseyification of Q can be used to define the clique problem, which is
famously NP-complete). He argues this entails that people will disprefer strong
readings in such cases in favor of tractable ones based on the P -cognition thesis.9

The variation in complexity of interpretations for reciprocals corroborates SMH
but also predicts people will shift to weaker readings though an intractable
strong meaning is consistent with the context. [43] presents empirical evidence
for this claim.10

Sentence (5) is Hintikka’s sentence, an example of Branching, or partially-
ordered, quantification. The idea is that some relative of each townsmen (∀x1∃y1)
and some relative of each villager (∀x2∃y2) are chosen independently, so the
truth conditions cannot be given by any first-order sentence since the quanti-
fiers would appear in some linear order, introducing scope dependencies. The
hallmarks of branching quantification are noun phrases joined by and and re-
lations that are in some sense reciprocal; however, the exact conditions are
contentious and it is even controversial whether any natural language sentences
really have branching meanings.11 In general, we define the branching of two
type ⟨1,1⟩ MON↑ quantifiers as:

Br2(Q1,Q2)(A,B,R)⇔
∃X ⊆ A∃Y ⊆ B(Q1(A,X) ∧Q2(B,Y ) ∧X × Y ) ⊆ R

Like cumulation, branching is an independent lift.

9See footnote 3, page 6 for a reference.
10The experiments confirm that intractable readings do exist in natural language, but that,

contrary to the Strong Meaning Hypothesis, people strongly disprefer intractable readings and
are more error-prone in those cases.

11See for example [19] in which Gierasimczuk and Szymanik challenge Hintikka’s thesis
(that branching quantifiers have no satisfactory linear representation) based on linguistic and
logical observations and propose an alternative reading.
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2.2 Formal Languages and Automata Theory

This exposition mostly follows Hopcroft and Ullman’s Introduction to Automata
Theory, Languages, and Computation [23], except for Section 2.2.3 which follows
Sipser’s Introduction to The Theory of Computation [44].

An alphabet Σ consists of a finite set of letters (symbols). A finite sequence of
letters is a word or string. We sometimes refer to a portion of a given word as
a subword. Σ∗ denotes the set of all words over Σ. A language L is some set of
strings contained in Σ∗. Its complement, written L and sometimes ¬L, is given
by Σ∗ −L (thus a language and its complement always share an alphabet).

2.2.1 Regular Languages and Finite Automata

Definition 2.2.1. A deterministic finite automaton (DFA) A is a five-tuple
(Q,Σ, δ, s, F ) where:

• Q is a finite set of states

• Σ is an input alphabet

• δ is a function from Q ×Σ to Q
• s, an element of Q, is the start state

• F , a subset of Q, is a set of final states

A DFA is often graphically represented as a set of nodes (the states of the
machine, with the start state indicated by an ingoing arrow with no source,
and the final states doubly circled) with labeled, directed edges between them
(representing the transition function). An edge from q to p labeled a means
that δ(q, a) = p. We can extend δ to be defined for entire strings in the obvious
way, setting δ(q,w) = δ(δ(q, a), v) where w = av and a is a single symbol of Σ.
The language of A is the set of strings w such that a run of A (a computation
beginning in s, reading w and transitioning according to δ) ends in a final state:

L(A) = {w ∶ δ(s,w) ∈ F}
A non-deterministic finite automaton (NFA) has a transition relation rather
than function, returning a set of states. The machine may have epsilon (ε)
moves that don’t consume any input symbol and more than one move per al-
phabet symbol in a single state. This reflects the idea that the NFA can non-
deterministically “guess” its next move and keep track of every state it might
be in. A string w is accepted in case there exists some run ending in a final
state, so the language definition for A an NFA becomes:

L(A) = {w ∶ δ(s,w) ∩ F ≠ ∅}
NFA and DFA are provably equivalent (for every NFA there is a DFA accepting
the same language), and we can obtain the latter from the former by following
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the subset construction. For an NFA A with states Q, its DFA A′ has P(Q) for
its set of states. Thus A′ may have 2∣Q∣-many states, an exponential increase,
though many of those states will be equivalent. For every DFA accepting a
language L there is a minimal DFA accepting L such that any equivalent DFA
has at least as many states.

Definition 2.2.2. Regular expressions are algebraic descriptions of sets of
strings. We say E is a regular expression over alphabet Σ if E is:

1. a ∈ Σ, ε, or ∅
2. E1 +E2, for E1 and E2 regular expressions

3. E1E2, for E1 and E2 regular expressions

4. E∗
1 , for E1 a regular expression

As with finite automata, we have the language of a regular expression, denoted
L(E). L(E1 +E2) is L(E1) ∪L(E2), L(E1E2) is L(E1)L(E2) (the concatena-
tion)12, and L(E∗

1 ) is L(E1)∗ (the Kleene star or concatenation closure).

Regular expressions and finite automata are equivalent ways of describing the
regular languages.

Theorem 2.2.3. [30] If L = L(A) for some DFA A, then there is a regular
expression E such that L = L(E). Finite automata and regular expressions
generate exactly the same languages (regular languages).

Now we record some useful closure results for regular languages. By Theorem
2.2.3, demonstrating these results by producing a regular expression or finite
automaton for the language are both acceptable, but sometimes one method is
simpler. We very briefly sketch how these results can be demonstrated by one or
the other approach. In the following results, let L1 and L2 be regular languages
generated by regular expressions E1 and E2 and recognized by DFA A1 and A2.

Theorem 2.2.4. [30, 2] Regular languages are closed under the Boolean oper-
ations of union, intersection, and complementation.

Proof.

• For union closure, connecting a new start state s′ to the start state s1 of
A1 and s2 of A2 by ε-transitions yields an NFA recognizing L1 ∪L2

• Intersection closure is shown by the product construction. Taking Q1 ×Q2

as the set of states, F1×F2 as the set of accepting states, and transitioning
from ⟨q, p⟩ to ⟨q′, p′⟩ on symbol x if δ1(q, x) = q′ and δ2(p, x) = p′ yields a
DFA that recognizes L1 ∩L2.

• For complementation closure, reversing the accepting and rejecting states
(F1 and Q1 − F1) of A1 yields a DFA recognizing L1.

12The concatenation of L1 and L2 is the set of strings uv where u ∈ L1 and v ∈ L2.
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It is easy to give a regular expression for the union: E1 +E2. For the other two,
it is necessary to first construct the automaton and then extract the regular
expression.

Theorem 2.2.5. [30] Regular languages are closed under concatenation.

Proof. Connecting final states of A1 to the start state of A2 by ε-transitions
yields an NFA recognizing L1L2. The corresponding regular expression is E1E2.

A substitution s on L with alphabet Σ is a mapping of each a ∈ Σ to a language
La. For w = a1⋯an ∈ L, s(w) is the language of the concatenation s(a1)⋯s(an).
Then s(L) is the union of s(w) for all w ∈ L.

Theorem 2.2.6. [2] Regular languages are closed under regular substitution.13

Proof. A proof by regular expression mimics the definition above: for L1 gen-
erated by E1 with alphabet Σ and a substitution s mapping each a ∈ Σ to a
language La generated by Ea, replace each a in E1 by Ea. This yields a regular
expression generating s(L).
The basic idea of the equivalent automaton construction is to replace every a-
transition in A by an ε-transition to a distinct copy of Aa, and for every final
state of Aa add an ε-transition to the target of the original a-transition.14

2.2.2 Context-free Languages and Pushdown Automata

Now we ascend the Chomsky hierarchy to context-free languages (CFLs), which
are strictly stronger than the class of regular languages (REG⊂CFL). Again we
have dual formalisms for generation and recognition mechanisms.

Definition 2.2.7. A pushdown automaton (PDA) M is given by a six-tuple
(Q,Σ,Γ, Z0, δ, s, F ) where

• Γ is a stack alphabet

• Z0 is a special symbol indicating the bottom of the stack

• δ is now a function from Q ×Σ × Γ to P(Q × Γ)
PDA extend the notion of NFA with a stack (the last-in-first-out data structure).
The input to δ is not only the current state and input symbol but also the top
of the stack, and the output of δ is not only a set of states but a set of pairs
containing a state and potentially some manipulation of the stack contents:
pushing a new symbol or popping the top symbol. If ⟨q, x,X,Y, p⟩ ∈ δ, meaning

13A substitution is regular if the substituted languages are regular.
14The interested reader can see Algorithm 4.2.7 of [36] for a complete description (indeed,

apparently the only automaton proof for regular substitution in the literature at all). The
work is a comprehensive dictionary of proof by automaton.
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δ(q, x,X) contains (p, Y ), we may write (q, xw,Xβ) ⊢ (p,w,Y β), where w is
the remainder of the input word, the instantaneous description of M describing

its step-by-step computatiosn. We write
∗⊢ for the transitive closure of ⊢.

A PDA may accept a string by final state or by empty stack. For the former
we write

L(M) = {w ∶ (s,w,Z0)
∗⊢ (q, ε, α)}

where q is some state in F and α is any string in Γ∗, meaning that starting in
s with empty stack and input w, after some number of steps M may end up in
q with α on the stack and having read all of w. For the latter we write

N(M) = {w ∶ (s,w,Z0)
∗⊢ (q, ε, ε)}

where q is any state at all. Since PDA allow non-determinism, these two accep-
tance conditions are equivalent.

PDA may also be represented graphically with nodes and labeled, directed edges
specifying the symbol read and any changes made to the stack. An edge from q
to p labeled x,X/Y means that in p, if the PDA is reading x and has X on top
of the stack, it may transition to p, replacing X by Y (i.e. ⟨q, x,X,Y, p⟩ ∈ δ).
Definition 2.2.8. A context-free grammar (CFG) G is given by the four-tuple
(T,V,P,S) where:

• T is a set of terminal symbols

• V is a set of variables

• P is a set of production rules of the formA→ α withA ∈ V and α ∈ (V ∪T )∗

• S is a start symbol

If there are multiple rules whose left-hand side is A we may combine them into
a single rule using “∣” equivalent to “+” for regular expressions, e.g.:

A→ α,A→ β, . . . ⇒ A→ α ∣ β ∣ ⋯

We write
∗Ð→ for the transitive closure of → The language of a CFG G is the set

of strings of terminals that can be derived from the start symbol:

L(G) = {w ∈ T ∗ ∶ S ∗Ð→ w}
Theorem 2.2.9. [15] Context-free grammars and pushdown automata are equiv-
alent: for every PDA M there is a CFG G such that L(G) = N(P ). Thus
defining a context-free language as the language of some CFG is commensurate
with defining it as the language of some PDA.

Theorem 2.2.10. [2] Context-free languages are closed under substitution
(with both regular and context-free languages).
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Proof. The proof idea is the same as with regular languages: given a context-free
language L with alphabet Σ and a substitution s mapping a ∈ Σ to a context-free
language La: take the CFG G generating L and replace each a (each terminal
in the production rules) with the start symbol Sa of Ga generating La. This
yields a CFG generating s(L). The equivalent PDA construction is also very
similar to the construction for finite automata.15

Theorem 2.2.11. Context-free languages are closed under concatenation.

Proof. Given G1 generating L1 and G2 generating L2, combining them with a
new start symbol S and rule S → S1S2 yields a CFG generating L1L2.

CFLs are also closed under union (just combine G1 and G2 with a rule S →
S1 ∣ S2), but are not closed under the remaining boolean operations of intersec-
tion and complementation (thus, sometimes performing these operations with
CFLs produces languages in yet stronger classes higher up the hierarchy with
context sensitivity, which we do not discuss further here). Suppose CFLs were
closed under intersection. Let L1 = {anbncm} and L2 = {ambncn}. These are
both context-free since in each only two numbers must be matched. But their
intersection L = {anbncn} is canonically non-context-free. Since closure under
complementation and union together yield intersection closure by De Morgan’s
laws, we know the former also cannot hold.

2.2.3 Deterministic Context-free Languages and Deter-
ministic Pushdown Automata

Finally we turn to deterministic context-free languages (DCFLs), a proper sub-
class of context-free languages. As usual there are production and verification
sides to the coin, but they are not entirely equal in this case.

Definition 2.2.12. A deterministic pushdown automaton (DPDA) M is given
by a six-tuple (Q,Σ,Γ, Z0, δ, s, F ) where:

• δ is a function from Q × Σ × Γ to (Q × Γ) ∪ {∅} such that the following
condition holds for every q ∈ Q, a ∈ Σ, and x ∈ Γ:

exactly one of δ(q, a, x), δ(q, a, ε), δ(q, ε, x) and δ(q, ε, ε) is non-empty.

This ensures that M always has exactly one move per configuration (is deter-
ministic).

As with nondeterministic PDA, there are two notions of acceptance defining the
language of a DPDA–by final state or by empty stack, which we again denote
by L(M) and N(M) respectively–and in this case they diverge. If M accepts
L by empty stack, we say L has the prefix property : if w ∈ L, then there is no v
such that wv ∈ L. In this case, we can construct M ′ accepting L by final state

15And can again be found (uniquely, as far as we know) in [36].

23



as follows: M ′ simulates M on w; if M reads all of w and empties its stack, M ′

transitions to a final state. To convert in the other direction, we force L to have
the prefix property by adding an endmarker to every string, forming L ⊣. If
L = L(M) for some M , then we can construct M ′ such that L ⊣= N(M ′) since
M ′ can recognize the end of the input string and empty its stack if M would
accept the non-endmarked string.

Theorem 2.2.13. [21] DCFLs are closed under complement. For every DPDA
M recognizing a language L, there is a DPDA M ′ recognizing ¬L.

The construction of M ′ from M is not as easy as complemention for DFA: we
cannot simply interchange final and rejecting states. Acceptance is defined as
entering a final state after reading the input, but a DPDA may enter both
final and non-final states after consuming the last input symbol (by making
ε-moves); in such a case, inverting final and non-final states still results in
acceptance. Briefly, the construction requires identifying the set of states that
always consume an input symbol (“reading states”). By restricting the final
states to this set, the DPDA can only change its accepting behavior if its actually
reading input. Interchanging final and rejecting states within the set of reading
states produces the complement automaton.

Deterministic context-free grammars are context-free grammars that have forced
handles, which will be made precise shortly.16 DCFGs are still generative de-
vices, but to see what makes them deterministic we must take the reverse per-
spective and consider their production rules as reduction rules. If u → v is a
step in a derivation expanding a variable in u, then we write v ↣ u and say v
reduces to u. If u↣ v where u = xhy and v = xTy, then this reduction step is the
reverse of the substitution T → h. We call h the handle of u. A grammar has
forced handles if and only if every reducing step u ↣ v is uniquely determined
by the prefix of u up to and including its handle.

Example 2.2.14. Consider the following deterministic grammar generating the
endmarked language same number of a’s and b’s17:

S → T ⊣
T → TaPb ∣ TbMa ∣ ε
P → PaPb ∣ ε
M → MbMa ∣ ε

and the following step in the reduction of a string in the language:

Ta

P

³¹¹¹¹·¹¹¹¹µ
PaPb b ⊣↣ TaPb ⊣

16Sipser defines a DCFG as a LR(0) grammar. A LR(k) grammar may be parsed from left
to right with a lookahead of k. We will soon see that every DPDA can be minimally modified
such that there is an equivalent DCFG. Since our approach in this thesis in a sense takes
automata as primitive, we do not properly introduce the notion of a LR(k) grammar, of which
DCFGs are a special case.

17The grammar shown is a correction from a list of errata in [44] at math.mit.edu/~sipser/
itoc-derrs3.1.html.
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This step is the reverse of using the production rule P → PaPb in the derivation
of the string. Thus P is a handle of TaPaPbb, and is indeed forced as there is
no other possible handle.

Now we explain the DK-test, a method to decide whether an arbitrary CFG is
deterministic.18 The automaton DK for a CFG G = (T,V,P,S) is a DFA that
simulates matching the handle of its input. For every rule B → u1u2 . . . uk there
are k + 1 dotted rules, one rule per way of placing a dot in the right-hand side
(for example, from A→ BC we obtain A→ .BC, A→ B.C and A→ BC.). To
construct the DK DFA, perform the following steps:

1. Put a dot at the initial point in all rules with S on the left-hand side and
place these dotted rules in DK’s start state.

2. If there are rules in the state where the dot is immediately followed by
a variable C, place dots at the initial points in all rules with C on the
left-hand side and add them to the state.

3. Repeat step (2) until no new dotted rules are obtained.

4. For any symbol c (terminal or variable) immediately following a dot, add
a c-transition to a state containing dotted rules obtained by shifting the
dot to immediately follow c in all the rules where the dot was before c.

5. Repeat steps (2) through (4) for all states until no new states are created.

The final states of DK are those that contain a completed rule (a rule ended
by a dot). Note that there may be cycles in DK, i.e. step (4) does not always
create a new state. The DK-test requires that every final state contains:

• exactly one completed rule,

• no rule where a terminal immediately follows the dot

For example, the DK automaton in Figure 2.5 shows that the grammar in
Example 2.2.14 passes the test. Observe that every final state contains exactly
one completed rule (having the dot at the end) and no other rule with a terminal
symbol (a or b) following a dot.

Theorem 2.2.15. [31] A context-free grammar G is deterministic if and only
if it passes the DK-test.

Theorem 2.2.16. [31] An endmarked language is generated by a DCFG if and
only if it is deterministic context-free.

The proof of this theorem consists in showing the following two lemmas. We
briefly explain the second for later reference.

Lemma 2.2.17. [31] Every DCFG has an equivalent DPDA.

18“DK” stands for Donald Knuth, who introduces LR(k) grammars in [31] and describes
the following test. We present the test for DCFG, but it can be adapted to LR(k) grammars:
“The essential reason behind this [is] that the possible configurations of a tree below its handle
may be represented by a regular (finite automaton) language.”
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S → .T ⊣
T → .T aPb
T → .T bMa
T → .

S → T. ⊣
T → T.aPb
T → T.bMa

S → T ⊣ .

T → Ta.Pb
P → .PaPb
P → .

T → Tb.Ma
M → .MbMa
M → .

T → TaP.b
P → P.aPb

P → Pa.Pb
P → .PaPb
P → .

P → PaP.b
P → P.aPb

P → PaPb.T → TaPb.

T → TbM.a
M → M.bMa

M → Mb.Ma
M → .MbMa
M → .

M → MbM.a
M → M.bMa

M → MbMa.T → TbMa.

T

⊣

b

a

M

P

a

b
b

a

P
a

M b

a

b

Figure 2.5: DK example for a grammar generating L = {w ⊣∶ #a(w) = #b(w)}

Lemma 2.2.18. [31] Every DPDA recognizing an endmarked language has an
equivalent DCFG.

Proof. The DPDA M = (Q,Σ,Γ, Z0, δ, q0, F ) is altered to empty its stack and
enter a new accept state qaccept if it would have accepted originally. This is where
the endmark assumption comes in: M needs an endmarker to recognize the end
of the input and implement this behavior. M is also modified to push or pop
a (possibly arbitrary) symbol at every step. The DCFG G with start symbol
Aqoqaccept is constructed with the following productions:

1-2. For p, q, r ∈ Q, u ∈ Γ and a, b ∈ Σ ∪ {ε}, if δ(r, a, ε) = (s, u) and δ(t, b, u) =
(q, ε), add Apq → ApraAstb

3 . For p ∈ Q, add App → ε

Each variable Apq derives all and only the strings on which M goes from p with
empty stack to q with empty stack. Finally, δ is extended with the variables of
G so that M can also read valid strings, and the determinancy of G is proven
using the DK-test and appeal to the determinancy of M .
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Chapter 3

Survey of Semantic
Automata for Monadic
Quantifiers

3.1 Models as Strings

Recall from Section 2.1.1 that if a quantifier Q satisfies CONS, EXT, and ISOM,
then it has an equivalent representation as a binary relation on natural numbers
Qc such that

Q(A,B)⇔ Qc(∣ A −B ∣, ∣ A ∩B ∣)
Since the truth of Q(A,B) depends only on the cardinalities of A and A∩B, we
can record all the information relevant to its evaluation as a string of 0’s and 1’s
with one symbol per element a in A: if a is in A∩B, record a 1, otherwise record
0 (a is in A −B). Formally, we can define the following translation function.

Definition 3.1.1. LetM = ⟨M,A,B⟩ be a model, a⃗ an enumeration of A, and
n =∣ A ∣. We define τ(a⃗,B) ∈ {0,1}n by

(τ(a⃗,B))i =
⎧⎪⎪⎨⎪⎪⎩

0 ai ∈ A −B
1 ai ∈ A ∩B

For example, applying τ to the model depcited in Figure 3.1, we take any enu-
merate a⃗ of A, record a 1 or 0 according to which case applies, and concatenate
the individual digits. Taking the natural enumeration (a1, a2, a3, a4, a5) yields
the string 00011, but any permutation of this string encodes the same informa-
tion, namely that 2 a′s are B, and 3 are not. Note that b1 and b2 are irrelevant,
as would be any individuals entirely outside of the sets A and B. That is, τ
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encodes all the information relevant to the CE quantifiers we are here interested
in.

a1

a2

a3

a4

a5

b1

b2

A B

Figure 3.1: Example model to illustrate τ

For a string s ∈ {0,1}∗ generated by τ(a⃗,B), let #0(s) denote the number of
0’s in s and #1(s) the number of 1’s. Then we have

(#0(s),#1(s)) ∈ Qc)⇔ (∣ A −B ∣, ∣ A ∩B ∣) ∈ Qc⇔ Q(A,B)
Since we have a correspondence between models and strings, we can take the
set of strings corresponding to the set of models where Q is true to constitute
the language of Q:

LQ = {s ∈ {0,1}∗ ∣ (#0(s),#1(s)) ∈ Qc}
For example:

Levery = {s ∈ {0,1}∗ ∶ #0(s) = 0}
Lat least three = {s ∈ {0,1}∗ ∶ #1(s) ≥ 3}
Lsome = {s ∈ {0,1}∗ ∶ #1(s) > 1}

It is clear by inspecting our example string s = 00011 that s /∈ Levery, s /∈
Lat least three, but s ∈ Lsome.

(M,A,B) ⊧ Q

Models Languages

w ∈ LQ

τ(a⃗,B) = w

Figure 3.2: Correspondence between models and strings (diagram from [9])
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3.2 Semantic Finite Automata

Note that all the results in this section concern quantifiers of type ⟨1,1⟩ (equiv-
alently, type ⟨1⟩), so we often omit the explicit type information.

We will see how semantic finite automata almost correspond to first-order (FO)
definable quantifiers. Definability in FO logic is captured by Ehrenfeucht-Fräıssé
(EF) games.1 A formula is FO definable on a finite model if there is an n
such that no two models that are indistinguishable up to n disagree on the
truth of the formula (and this may be demonstrated by players taking turns
choosing elements from the respective models). To begin, we formalize this idea
of indistinguishability, which means there is a partial isomorphism between the
two models. First, for two sets:

X ∼n Y if either ∣X ∣=∣ Y ∣= l < n or ∣X ∣, ∣ Y ∣≥ n
Then define (M,A,B) ∼n (M ′,A′,B′) if the relevant sets are ∼n (e.g. A − B
and A′ −B′, A∩B and A′ ∩B′,. . .). Now we state the general theorem, applied
to quantifiers.

Theorem 3.2.1. [4] On finite models, Q is FO definable if and only if for some
fixed n:

(M,A,B) ∼n (M ′,A′,B′) implies Q(A,B)⇔ Q(A′,B′)
We can interpret this characterization on the Tree of Numbers (recall from Sec-
tion 2.1.1), from which it will then be clear that the corresponding languages are
regular. For a quantifier Q with its representation in the Tree, after some finite
upper triangle the pattern of pairs in the extension is completely predictable.
This Fräıssé threshold occurs at level 2n, and the pattern has the following
properties:

• The point (n,n) determines the value of its downward triangle

• The points (n − k,n + k) determine the values of their leftward diagonals

• The points (n+k,n−k) determine the values of their rightward diagonals

To see why the Fräıssé threshold occurs at 2n, note the following:

• In every point (l,m) in the downward triangle generated by (n,n), k,m >
n, so the models corresponding to pairs in the triangle are ∼n to the model
corresponding to (n,n).

• In every point (l,m) in the leftward diagonal generated by a point (n −
k,n + k), k = n and m > n, so the models corresponding to pairs in the
diagonal are ∼n to the model corresponding to (n−k,n+k). (And clearly
the same holds for (n + k,n − k) to the right).

1See, e.g., [24] for further explanation EF games.
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(n, n)(n+k,n-k) (n-k,n+k)(2n, 0) (0, 2n)

Figure 3.3: Fräıssé Threshold at level 2n

Theorem 3.2.2. [4] The FO definable quantifiers are precisely those which can
be recognized by permutation-invariant acyclic finite state machines.

To see that this holds, it suffices to observe that the Tree patterns corresponding
to the languages of the automata are themselves regular. Since the upper trian-
gle possibly containing exceptions to the threshold pattern is finite, it is regular.
For the pattern below the threshold, note that a triangle under the point (i, j)
is described by at least i 0’s and at least j 1’s, and a leftward diagonal band
under (i, j) is described by at least i 0’s and exactly j 1’s (similarly for right
diagonal bands). These are all given by regular expressions2 (see Appendix A
for examples).

0

1 0,1

1

0 0,1

Figure 3.4: every and some

1 1 1 1

0 0 0 0 0, 1

Figure 3.5: at most three

Acyclic finite automata accept only a proper subset of the regular quantifier
languages. Define Dnxϕ if and only if the number of x satisfying ϕ is divisible
by n. These formulae define the “counting modulo” quantifiers: the familiar
even and odd, but also divisible by three, divisible by seven, etc. FO(Dω) is first-
order logic extended with Dn for all n ≥ 2. Mostowski showed that the class of

2Indeed, the Tree itself can be transformed into an automata recognizing the quantifier
whose pattern it holds. Take the nodes as the points of the upper triangle with 0-transitions
from every (i, j) to (i+1, j) and 1-transtions from (i, j) to (i, j+1). For points on the threshold
and to the left of (n,n), let them additionally loop on 0 and go to the right on 1 (opposite
for points to the left of (n,n)), and let (n,n) loop on both symbols [4].
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regular ⟨1,1⟩ quantifiers are exactly those definable in FO logic augmented with
divisiblity quantifiers.

Theorem 3.2.3. [38] Finite automata accept the class of all monadic quantifiers
definable in FO(Dω).

1

1
0 0

1

1

1

0

0

0

Figure 3.6: Parity quantifiers: even and divisible by 3

We can also use the notion of EF games to demonstrate that even is not FO defin-
able. This requires showing that for every n, there are (M,A,B) ∼n (M ′,A′,B′)
where even(A,B) but ¬even(A′,B′). But this is very easy: take two sufficiently
large models such that ∣ A ∩B ∣= m ≥ n and ∣ A′ ∩B′ ∣= m + 1. Then they are
∼n, but even must hold in one and not the other.

3.3 Semantic Pushdown Automata

To state results concerning PDA, we need to define a bit of terminology. Say a
subset of Nn is a linear set if it is of the form

L(c;{v1, . . . , vr}) = {c + k1v1 +⋯krvr ∶ ki ∈ N,1 ≤ i ≤ r}
where c, vi ∈ Nn. The vector c is the offset, and the vi are generators. A
semilinear set is a finite union of linear sets. Presburger arithmetic is the FO
theory of the natural numbers with addition only (not multiplication). Every
Presburger formula defines a set. If a set is Presburger-definable, we equivalently
say it is FO additively definable. The FO additively definable sets are exactly
the semilinear sets [20].

The Parikh image of a language L with alphabet Σ = {a1, . . . , an}, denoted
ψ(L), is the set of vectors:

{(#a1(w), . . . ,#an(w)) ∶ w ∈ L}
For example, the Parikh image of the language L1 = {0n1n ∶ n ≥ 0} is the set con-
taining (0,0), (1,1), (2,2), . . ., i.e. the semilinear set ψ(L1) = L((0,0);{(1,1)}).
The language L2 = {w ∈ {0,1}∗ ∶ #0(w) = #1(w)} has the same Parikh image
as L1. We say the two are Parikh equivalent.

31



Theorem 3.3.1. [40] For every context-free language L, ψ(L) is semilinear.

Theorem 3.3.2. [4] Every PDA-computable quantifier is FO additively defin-
able.

Given a quantifier Q that is PDA-computable, we know its language LQ is
context-free. Thus the Parikh image of LQ is semilinear, i.e. FO additively
definable. Parikh’s theorem does not convert in general: consider the semilinear
set L((0,0,0);{(1,1,1)}), which is the Parikh image of (for example) the non-
context-free language {w ∈ {0,1,2}∗ ∶ #0(w) = #1(w) = #2(w)}. However,
restricting to a binary alphabet (that is, type ⟨1,1⟩ quantifiers), we have also
the following result in the other direction:

Theorem 3.3.3. [4] Every FO additively definable binary quantifier is PDA-
computable.

It follows from this theorem that type ⟨1,1⟩ context-free languages are closed
under complement, union, and intersection. If L1 and L2 are such languages,
then they are FO additively definable. Since semilinear sets are closed under
these operations, there are formulas defining ¬L1, L1∪L2, and L1∩L2, i.e. they
are also context-free.

In [38], Mostowski gives a characterization of quantifiers accepted by DPDA by
empty stack; however, he defines somewhat idiosyncratic acceptance conditions
that do not align with the standard notion of empty stack acceptance (see
Section 2.2.2). He states that the DPDA M accepts a string if the computation
ends in a final state, and if additionally the stack is emtpy at the end, that M
accepts the string by empty stack. This has the odd consequence that regular
quantifiers are accepted by empty stack, entailing they have the prefix property,
which is not in general the case (see Section 2.2.3). Furthermore, no monadic
quantifier language has the prefix property (for any w in some LQ, there is always
an extension of w that is also in LQ). It appears that the intended notion should
allow the DPDA to transition from a configuration with empty stack (so the
language needn’t have the prefix property). Note that in the following results,
we refer to this alternative meaning of empty stack acceptance. This meaning
does indeed correspond to an interesting subclass of the DPDA-computable
quantifiers.

There is an intuitive way to think of these quantifiers Q that are computable by
DPDA that happen to have an empty stack when accepting w ∈ LQ, but may
also lead to empty stack configurations at some point mid-computation. The
strings w in their languages have the following property:

w = uv ∈ LQ and u ∈ LQ ⇒ v ∈ LQ

For example, consider the language of exactly half and the string w = 1011000011.
We can write w = uv where u = 101100 and v = 0011 are both in the language;
but also any v′ belonging to Q following u would be in the language.
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To prove his result, Mostowski defines an “almost-linear” set. First, for a, b, c, d ∈
N we define an (a, b, c, d) − linear quantifier Lin(a,b,c,d) = QR where R = {(x, y) ∶
∃z ∈ N s.t. (x, y) = (c, d) + z(a, b)}. Then Q is almost-linear if

Q = QR0 ∪ Lin(a,b,c1,d1) ∪⋯Lin(a,b,ck,dk)

where R0 is a finite relation. That is, the set defining Q is a finite union of linear
sets all with at most one, identical, non-trivial generator (a, b)–modulo a finite
number of exceptions (R0). The almost-linear quantifiers are the proportional
quantifiers exactly b/(a+b) (modulo the initial offset from (ci, di)).
Theorem 3.3.4. [38] The class of quantifiers recognized by DPDA by final
state and empty stack is the union of:

• regular quantifiers

• intersections of regular and almost-linear quantifiers

Mostowski also states the following facts about almost-linear sets:

• The complement of an almost-linear set is never almost-linear.

• Finite unions of almost-linear sets are almost-linear only if they have the
same ratio (generating vector).

• Intersection of almost-linear sets are either almost-linear or finite.

Thus the subclass of deterministic context-free quantifiers recognized by DPDA
by this modified notion of empty stack are not in general closed under any
Boolean operations.

Very recently, Kanazawa [27] answered the open question of how to characterize
quantifiers recognized by DPDA by arbitrary stack.

Theorem 3.3.5. [27] Q is recognized by DPDA if and only if there are k, l,m,n ∈
N such that ψ(LQ) is a finite union of linear sets each of which has one of the
following as its set of generators:

∅, {(k,0)}, {(0, l)}, {(m,n)}, {(k,0), (m,n)}

1, Z0/Z0

0, Z0/Z0

1,0/ε
0, ε/0

1, ε/1
0,1/ε

(a) most

1, Z0/Z0

0, Z0/Z0

1,0/ε

0,0/ε

1, ε/1 ε, ε/1

ε,Z0/Z0

0,1/ε 0, ε/0

(b) at least 1/3

Figure 3.7: Semantic DPDA examples [26]
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The class of quantifiers recognzied by DPDA by arbitrary stack expands the class
of proportional quantifiers defined by Mostowski with at least and at most as
well as some amount of Boolean combinations (but not arbitrary combinations).
Kanazawa provides examples showing that this class ranges from the mundane
to the complicated

at least 2/3 : L((0,3);{(0,1), (1,2)})

3 more than twice as many L((0,3);{(1,2)})
or less than twice as many : ∪L((1,0);{(1,0), (1,2)})

∪L((1,1);{(1,0), (1,2)})
However, the following is not DPDA-recognizable:

more than 1/3 : L((1,1);{(2,1), (1,2)})
and less than 2/3 ∪L((2,2);{(2,1), (1,2)})

because the generators are of the form {(m,n), (k, l)}. Kanazawa also gives the
analogous characterization for regular quantifiers.

Proposition 3.3.6. [27] Q is recognized by finite automaton if and only if there
are k, l ∈ N such that ψ(LQ) is a finite union of linear sets each of which has one
of the following as its set of generators:

∅, {(k,0)}, {(0, l)}, {(k,0), (0, l)}
The fact that none of the generating vectors can be of the form (m,n) (one of
the components is always a 0) corresponds to the fact that Qcxy (the binary re-
lation on N) for a regular quantifier Q is always defined by either a constraint on
one of x or y (exclusively) or independent constraints on both.3 Regular quan-
tifiers restrict the cardinality of one of their arguments; context-free quantifiers
compare the cardinalities of their arguments.

Lastly, Kanazawa shows the following:

Theorem 3.3.7. [27] NPDA-computable quantifiers are finite Boolean combi-
nations of DPDA-computable quantifiers.

Thus we have a formal statement of our earlier claim that natural language quan-
tification is in some way essentially deterministic. Every determiner requiring
non-determinism is in fact decomposable into simpler deterministic determiners.

3E.g. the independent constraints x > 2 and y = 5 defines a relation corresponding to a
regular quantifier, while the dependent constraint x = 3y defines a context-free relation.
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Chapter 4

A Summary and
Reformulation of Known
Results for Iteration
Automata

Shane Steinert-Threlkeld and Thomas Icard III made the first foray into se-
mantic automata for polyadic quantifiers with their paper “Iterating Semantic
Automata” in 2013 [46]. They show both that regular quantifier languages
(and thus the equivalent DFA) and context-free quantifier languages (and thus
the equivalent PDA) are closed under the iteration operation; however, their
constructions of the corresponding iterated automata are disconnected from
these results. These closure results of course indicate that for any two DFA-
recognizable quantifiers, there exists a DFA recognizing their iteration, and
likewise for two PDA-recognizable quantifiers. Their construction generates au-
tomata that have one more stack than necessary (a PDA for iterations of two
DFA and a two-stack PDA when one or more PDA is involved in the iteration).
Though these superfluous stacks are not used to their full potential, the models
are nonetheless too powerful. The authors are of course aware of this fact, but
unaware of the equally easy and algorithmic constructions for the minimally-
necessary powerful automata.

First we present a convention, established in [46], for translating models with
binary relations into strings. Then we reprove the results that regular and
context-free languages are closed under quantifier iteration in a cleaner fashion
that makes explicit the intuitions grounding their proofs. Finally, we summarize
their automata construction for later reference.
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4.1 Translating Models with Binary Relations
into Strings

In order to talk about the language accepted by an automaton for an iterated
quantifier, we need a way of translating models with relations into strings. For
now we assume the relation is binary and later generalize the translation and
construction in Section 5.2. The idea is simple: given a binary relation R with
domain A and range B, look in turn at every element a of A and record, for
each element b of B, whether or not a is in the relation R with b. To keep the
substrings generated by each a distinguishable, we introduce a new separator
symbol ⧈.

Example 4.1.1. A quick example will make the definition to follow more intu-
itive. Figure 4.1 depicts a model with sets A and B and a relation R between the
two. This could represent, for example, a set of aunts, a set of books, and the
information regarding which aunts read which books. To translate this model
into a string, we look at the elements of A in some order (the indices yield a
natural enumeration) and examine which elements of B they connect to: a1
R’s every element of B, so we write 111⧈; a2 R’s only the first element, so we
write 100⧈; a3 R’s the last two elements, so we write 011⧈. Concatenating these
three substrings yields 111 ⧈ 100 ⧈ 011⧈, which is the string representation of
the model.

a1

a2

a3

b1

b2

b3

A B
R

Figure 4.1: Example for Definition 4.1.2

Definition 4.1.2. Let M = ⟨M,A,B,R⟩ be a model, a⃗ and b⃗ enumerations of
A and B, and let n =∣ A ∣. Define a new translation function τ2 which takes two
sets and a binary relation as arguments:

τ2(a⃗, b⃗,R) = (τ(b⃗,Rai)⧈)i≤n
where Rai = {b ∈ B ∶ (ai, b) ∈ R} is the set of b in B in the relation R with
ai. That is, for each ai, τ computes a substring with a separator symbol ⧈
appended to the end, recording a 1 if bj is in Rai and a 0 otherwise. The final
string is the concatenation of all these substrings.

Now languages of iterated type ⟨1,1,2⟩ quantifiers are straightforward exten-
sions of languages in the monadic type ⟨1,1⟩ case. Recall that a quantifier Q1

is equivalently a binary relation Qc
1 between the number of 1’s and 0’s in the

strings of its language. For quantifiers of the form Q1 ⋅ Q2, we let subwords
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(sequences of 1’s and 0’s separated by ⧈’s) in the language of Q2 replace 1’s and
subwords in the complement of the language of Q2 replace 0’s as the units upon
which Qc

1 is defined. Whether or not a subword is in the language of Q2 is just
an instance of the simple monadic case.

To see that this is the correct intuition, recall the definition of binary iterations:

(Q1 ⋅Q2)(A,B,R)⇔ Q1(A,{a ∶ Q2(B,Ra)})
If we denote the set {a ∶ Q2(B,Ra)} by X, then a single a (yielding a 1 by τ)
is in A ∩ X if and only if Q2-many b are in B ∩ Ra (yielding a string in the
language of Q2 by τ). Thus we also have that a is in A −X (yielding a 0) if
and only if it’s not the case that Q2-many b are in B ∩Ra (yielding a string not
in the language of Q2–equivalently, a string in the complement). Since they are
equivalent, we write w /∈ LQ2 and w ∈ L¬Q2 interchangably throughout.

Definition 4.1.3. Let Q1 and Q2 be quantifiers of type ⟨1,1⟩. We define the
language of Q1 ⋅Q2 by

LQ1⋅Q2 = {w ∈ (wi⧈)∗ ∶ wi ∈ {0,1}∗ and
(∣ {wi ∶ wi /∈ LQ2} ∣, ∣ {wi ∶ wi ∈ LQ2} ∣) ∈ Q1

c}.

Example 4.1.4. The language of the iterated quantifier some ⋅ every still ulti-
mately reduces to a numerical constraint on the number of 1’s and 0’s in strings
of the language:

s ∈ Lsome⋅every ⇔ (∣ {wi ∶ wi /∈ Levery} ∣, ∣ {wi ∶ wi ∈ Levery} ∣) ∈ somec

⇔ ∣ {wi ∶ wi ∈ Levery} ∣> 0
⇔ ∣ {wi ∶ (#0(wi),#1(wi)) ∈ everyc} ∣> 0
⇔ ∣ {wi ∶ #0(wi) = 0} ∣> 0

By a similar derivation we get:

s ∈ Levery⋅some ⇔∣ {wi ∶ #1(wi) = 0} ∣= 0

The string from Example 4.1.1, 111 ⧈ 100 ⧈ 011⧈, is a member of both these
languages, indicating that the sentences Every A R some B and Some A R
every B are both true in the model depicted by Figure 4.1.

In the following sections we often speak of words in the language of Q2 without
explicitly stating whether we mean words in {0,1} or words ending in ⧈. When
considering these strings as input for iteration automata, we will make reference
to the well-formedness of a string. Call a string well-formed if it ends in ⧈. The
reader may wonder why we don’t define well-formedness in terms of individual
subwords. To explain this, we must point out that the language accepted by
an iteration automaton is in a sense bigger than the number of relations whose
translation it accepts. Observe:

• For a model M = (M,A,B,R) with n =∣ A ∣ and m =∣ B ∣, τ2 generates
strings of the form ((1 + 0)m⧈)n.
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• LQ1⋅Q2 contains strings of the form ((1 + 0)∗⧈)∗. This of course includes
every string with the appropriate constraints on 1’s and 0’s for fixed n
and m, but also every other string with the same restrictions but with
subwords of varying length (even of length zero).

In defining iteration automata, there is no way to enforce a rule that every
(m + 1)st symbol should be a ⧈ (at least, not without superfluous computing
power). Ultimately a subword is a subword because it ends in ⧈, and the only
way to ensure that a string consists of well-formed subwords is to require that
it end in ⧈.

Question 4.1.5. How much depends on the translation function? This defi-
nition of τ2 is the natural extension of τ , but the above-mentioned mismatch
between models with binary relations and iterated languages already suggests
a potential problem for evaluating polyadic lifts that depend on more than the
number of 1’s and 0’s in independent subwords. How complex are some lifts
given τ2, and how much less complex do they become when we add more dis-
criminatory power to τ2? We revisit these and related questions when we discuss
cumulation automata and the Frege boundary.

4.2 Explicit Proofs of Some Closure Results

Steinert-Threlkeld and Icard III argue the closure of regular and context-free
languages under quantifier iteration via arguments from regular expressions and
context-free grammars, respectively. Their intuitive justification does not out-
right mention the general closure of regular and context-free languages under
substitution; however, it is informative to deliberately state the fact that quanti-
fier iteration just is an instance of substitution, from which these closure results
follow straightforwardly. In our reformulations of their proofs, we define substi-
tutions directly on languages.

Theorem 4.2.1. Let LQ1 and LQ2 be languages of type ⟨1,1⟩ regular quantifiers
with alphabets Σ1 = Σ2 = {0,1}. LQ1⋅Q2 is a regular language.

Proof. Define a substitution s on LQ1 by the following:

• s(0) = L¬Q2⧈
• s(1) = LQ2⧈

Claim: s(LQ1) = LQ1⋅Q2

Proof: This is immediately clear from the substitution. For w = (wi⧈)∗, w ∈
LQ1⋅Q2 if and only if (∣ {wi ∶ wi ∈ L¬Q2} ∣, ∣ {wi ∶ wi ∈ LQ2} ∣) ∈ Qc

1, if and only if
w = s(w′) where (#0(w′),#1(w′)) ∈ Qc

1, if and only if w ∈ s(LQ1). ∎
Thus s is the appropriate substitution. Since regular languages are closed under
complement (Theorem 2.2.4), L¬Q2 is regular, and since regular languages are

38



closed under concatenation (Theorem 2.2.5), L(¬)Q2
⧈ is regular. Thus s de-

fines a regular substitution, so by regular substitution closure (Theorem 2.2.6),
s(LQ1) = LQ1⋅Q2 is a regular language.

Theorem 4.2.2. Let LQ1 and LQ2 be languages of type ⟨1,1⟩ context-free
quantifiers with alphabets Σ1 = Σ2 = {0,1}. LQ1⋅Q2 is a context-free language.

Proof. We use the same substitution s on LQ1 :

• s(0) = L¬Q2⧈
• s(1) = LQ2⧈

Claim: s(LQ1
) = LQ1⋅Q2

Proof: The argument in Claim 4.2 holds here. ∎
Since context-free quantifier languages are closed under complement (Theo-
rem 3.3.3), L¬Q2 is context-free, and since context-free languages are closed
under concatenation (Theorem 2.2.11), L(¬)Q2

is context-free. Thus s defines
a context-free substitution, so by context-free substitution closure (Theorem
2.2.10), s(LQ1) = LQ1⋅Q2 is a context-free language.

4.3 Summary of Work by Steinert-Threlkeld and
Icard III

There is great theoretical interest in identifying the least-powerful automata
recognizing iterated quantifiers. The duality between formal languages and au-
tomata is what makes the field useful and interesting in the first place. However,
automata are also interesting in that they often present an intuitive algorithm
for string membership, and this is one reason for investigating semantic au-
tomata in particular. The automata defined in [46], henceforth referred to as
“stack” versions and denoted by, for example, (Q1 ⋅ Q2)stack, yield genuinely
different algorithms than the minimal1 constructions we give in later sections.
Since we anticipate that the stack and minimal versions of iteration automata
likely share explanatory power with respect to describing the algorithms human
beings may actually perform in model-checking tasks2, it is useful to discuss
this work here for reference in the practical discussion later on.

Now we give a high-level description of the stack construction for iteration
automata. The construction takes two DFA, Q1 and Q2, as input (we assume
this for simplicity; [46] also only gestures at how to extend the formal definitions

1We must qualify the claim that the constructions given are minimal, since there is no such
notion for PDA.

2See for example [51] for a recent empirical comparison of the two and Section 9.1.1 for a
discussion.
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The basic idea is as follows: qI is a new start state. From qI , we have a ε
transition to the start state of Q2. When we take such a transition, a 1 or a
0 is pushed onto the stack according to whether or not the start state of Q2

is an accepting state. The role of sgn and p¨qc is to ensure that we switch the
original symbol pushed onto the stack by the i transition whenever we go from
an accepting to a non-accepting state or vice versa. In this way, we push exactly
one symbol on to the stack for each visit to Q2: a 1 if it ended in an accepting
state and a 0 if not. The � transitions from each state of Q2 to qI enable � to
function as a separating symbol. From qI , we can also take an ε-transition to
Qp

1; this pushdown reader will then process the stack generated by the visits to
Q2.

Example 2. In Figure 5 is a PDA for computing some ¨ every.

qI

0, 1{01, x{x

1, 0, x{x

ǫ, x{1x
�, x{x

�, x{x

ǫ, x{x ǫ, 1{ǫ
ǫ, 0{ǫ

Q2

Qp
1

Figure 5: A pushdown automaton for some A R every B.

Here, Qp
1 is the pushdown reader (see Definition 9) of some. Q2 is the trans-

formed copy of every. Note that we push a 1 onto the stack on the transition
from qI to the start state of every since q0 peveryq P F peveryq. Similarly, we pop
this 1 and push a 0 on the 0 transition since this goes from an accepting to
rejecting state of every.

Consider our earlier string

010 � 111�
which we know to be in Lsome¨every . When reading 010, this automaton will
push a 0 on to the stack, but will push a 1 on to the stack when it reads 111.
Thus, somep will accept the stack input and so the whole string will be accepted.

We record here a basic fact about iterated machines which follows straight-
forwardly from the definition, and which will be important shortly.

Fact 1. It pQ1,Q2q has 1` |Q pQ1q | ` |Q pQ2q | states.
While the informal description of It pQ1,Q2q and the example make it seem

plausible that this PDA accepts the right iterated language, we now make this
equivalence precise. First, we prepare a few preliminary results, for which a
basic definition of the notion of computation in a PDA is required.

16

Figure 4.2: (some ⋅ every)stack

for iterations involving one or more PDA). Q2 runs on every subword of the
input. If the computation ends in a final state, a 1 is on the stack, and otherwise
a 0 is on the stack. This is achieved by initially pushing a 1 (0) if the start
state of Q2 is an accepting (rejecting) state, and swapping the 1 for 0 (0 for 1)
whenever the automaton transitions from an accepting to a rejecting state (vice
versa). After reading the entire string, the automaton has recorded on its stack
how many subwords were and were not in the language of Q2. Recalling the
definition of iterated quantifier languages, if this sequence of 1’s and 0’s is in the
language of Q1, then the original string is in the language of Q1 ⋅ Q2. In order
to “read” the stack, the automaton transitions to a modified pushdown reader
QP

1 , which behaves exactly as Q1 by popping 1’s and 0’s from the stack as if it
were reading them from an input string. The iteration automaton (Q1 ⋅Q2)stack
accepts if and only if the pushdown reader is in a final state once the stack has
been “read” (emptied).

Let’s look at an example (see Figure 4.2). Recall again the sample string 111⧈
100 ⧈ 011⧈. Given this string, (some ⋅ every)stack first processes 111⧈ by non-
deterministically transitioning from qI to the start state of every, pushing a 1
onto the stack since this is also an accepting state. Since every loops in this
final state on 111, the automaton transitions back to qI on ⧈ with a 1 on its
stack. Now every processes 100. A 1 is again pushed to the stack, but replaced
by a 0 since every transitions to and remains in a rejecting state on this string,
so the stack contents are [01] when the automaton transitions back to qI . The
same happens on the final subword, resulting in the automaton being in qI with
stack contents [001] after seeing the whole string. Now the automaton non-
deterministically transitions to the pushdown reader someP , which loops in the
first state while popping the first two 0’s, but transitions to a final state popping
the 1. Thus the original string is accepted.

The non-determinism in this strategy involved turns out to be unavoidable given
the chosen string representation. A PDA is deterministic if every configuration
allows transition to at most one configuration. As it stands, the definition of
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iteration automaton in [46] has two ε-transitions, both ignoring the stack, from
qI . We could rectify this by letting the automaton consume the first symbol
of a subword when transitioning to Q2 from qI and adjust δ accordingly, but
their would still be a choice between ε and non-ε input in qI . The issue can
be completely avoided by both performing the just-mentioned amendment and
adding another symbol to the alphabet marking the end of the entire string
(which is not so terrible).

Fact 4.3.1. [46] (Q1 ⋅Q2)stack has 1+ ∣ Q1 ∣ + ∣ Q2 ∣ states.

This is easy to see, as the construction always consists in taking exactly one
copy each of Q1 and Q2 and linking them together with a new start state.
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Chapter 5

Extending Iteration
Automata

In this chapter we present our original constructions for the iteration of deter-
ministic finite automata. The first section handles automata for type ⟨1,1,2⟩
iterated regular quantifiers, starting with some intuitive motivation and expla-
nation for the definition we choose, then giving the exact construction with
some examples, and finally proving its correctness. The next section generalizes
this construction to type ⟨1,1, . . . , n⟩ iterated regular quantifiers. We establish
new vocabulary for translating n-ary relations and for the languages of such
quantifiers, give the construction with examples, and prove its correctness; all
of this extends naturally from the two-quantifier case. Lastly, we sketch how to
generalize the stack construction in [46] for regular iterated quantifiers.

5.1 Automata for Type ⟨1,1,2⟩ Regular Itera-
tions

5.1.1 The Construction

The juxtaposition of the proof given in [46] for the closure of regular languages
under quantifier iteration with the construction they ultimately give was largely
the inspiration for the algorithm we present in this section. We repeat their
definition of iterated regular expressions now:

Definition 5.1.1. Let E1 and E2 be regular expressions in {0,1}. Define
the iterated regular expression It(E1,E2) by E1[0/(Ec2⧈), 1/(E2⧈)], where Ec

denotes a regular expression for the complement of the language generated by
E.
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As we have previously seen, regular expressions and finite state automata gener-
ate exactly the same class of languages. The standard proof of one direction of
this result offers a method of generating the minimal DFA from the iterated reg-
ular expression, namely constructing a non-deterministic finite automata from
the expression and then going through the subset construction. However, we
want to give a construction based on the properties of the two iterated au-
tomata, similarly to Steinert-Threlkeld and Icard III. In [46], it is very clear
how (Q1 ⋅ Q2)stack is built from Q1 and Q2 themselves. Since we are interested
in semantic automata as potential models of real algorithms being used by peo-
ple, we should take the simple automata for monadic quantifiers as primitive
units of reasoning rather than regular expressions. That is, we should expect
that people are somehow piecing together two algorithms rather than directly
using the corresponding regular expressions. However, toward the goal of re-
flecting the compositionality of language (see Section 1.2.4), we should also take
the substitutional structure of iterated regular expressions as indicative of how
the meaning of iterated automata should be built from the meaning of their
component automata.

It is the existence of a construction directly from minimal DFA for monadic
quantifiers to minimal DFA for iterated quantifiers (with no intermediate trans-
lation through regular expressions and NFA) that Steinert-Threlkeld and Icard
III doubted when saying, “On the one hand, the PDA construction [stack ver-
sion] provides a general method for generating a machine for the iteration of
any two quantifiers. There appears to be no such analogously general mecha-
nism for generating minimal DFAs.” In this section we show there is such a
general mechanism, which is easy to use and depicts iterations in a much more
compositional manner.

The definitions of iterated regular expressions and languages of iterated quanti-
fiers already suggest how to go about constructing iterated automata from the
monadic building blocks. For the regular expression It(E1,E2), just replace
1’s in the first by an endmarked expression for the second, and 0’s in the first
by an endmarked expression for the complement of the second. For languages,
just replace 1’s in the first by entire words in the language of the second, and
0’s by entire words in the complement of the language of the second. To com-
plete the trinity, we must ask ourselves, what is the analogous notion in terms
of automata? Quite simply, 1-transitions of the first automaton should be re-
placed by accepting runs of the second automaton and 0-transitions replaced
by rejecting runs.1

Nonetheless, the computation performed by our iteration automata is still sim-
ilar to that performed by the stack version. Every subword is still processed
by Q2, but instead of “remembering” the outcome of all these subprocesses and

1Actually, the precise details of the construction to follow were extrapolated from the
results of automatically generating many different minimal iteration DFA using a program
called HaLeX, a Haskell implementation of regular expressions, finite automata, and common
related algorithms. See Appendix A for an overview of our use of HaLeX.
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finally running Q1 on the result, our automata involve a “real-time” update of
Q1 after each subrun of Q2. The main idea is to start with Q1 as the backbone
of Q1 ⋅Q2 and then replace each of its states with a copy of Q2. To make things
easier, imagine these copies are indexed by the state they replace. From here
on we refer to such copies by Qq

2 and refer to their components in the obvious
way (e.g. Qq2, s

q
2, δ

q
2, F

q
2 ). If some copy Qq

2 ends in a final state seeing some sub-
word, then the machine should behave as if Q1 had seen a 1. Suppose q would
transition to p on a 1. This means that every final state of Qq

2 should transition
to the start state of Qp

2 on ⧈ (as this marks the end of the subword). Similarly,
every rejecting state of Qq

2 should have a ⧈-transition to Qr
2, where r is the state

that q would transition to on a 0. Q1 ⋅Q2 has the same start and final states as
Q1.

Before giving the formal definition, let us dig a little deeper with an example.
Consider the automaton exactly three ⋅every depicted in Figure 5.2. The vestiges
of the original state-space of exactly three is clearly visible as the “spine” of the
automaton, enclosed in the darker dashed box, but the original states have been
replaced by copies of every, enclosed in the ligher dashed boxes. There are three
exceptions to this simple replacement scheme:

(i) Final states: Notice that the final state of exactly three remains externally
linked up with a copy of every. This is so that the automaton cannot
erroneously accept a word ending in 111, for example, which is not well-
formed.

(ii) Terminal states: Notice that the terminal state of exactly three doesn’t
seem to have been replaced at all. If the automaton reaches state q5, the
rest of the input is irrelevant. The automaton can only reject at this point,
hence the looping on every symbol.

(iii) Final, terminal states: The current example does not exhibit this ex-
ception, but when an automaton reaches a state that is both final and
terminal, it should accept irrespective of the remaining input so long as it
is well-formed. Such states q require at most one extra state p to go to in
which to loop on 0 and 1 and then return to q on ⧈. If q has a predecessor
state r with equivalent behavior, then the extra state is unnecessary (as q
may just go to r on 0 and 1).

As the state-space is given by the replacement scheme, and the 1 and 0-transitions
are given by the copies of Q2, all that remains is to specify the ⧈-transitions,
which are determined by the 1 and 0-transitions in the original Q1. Consider
the states q1 and q′1, together comprising Qq

2, replacing q in exactly three. Since
q1 is an accepting state in every, a subrun ending there is analogous to a 1.
Thus the ⧈-transition from q1 should mimic the 1-transition of q to q′, going to
the start state of the copy of Q2 replacing q′. Similarly, q′1 should mimic the
0-behavior of q, which is to loop, meaning q′1 should return to the start state of
the Q2 copy of which it is a member.

The final state q4 is not itself a member of any copy of Q2, but its ⧈ transitions
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q q′
1 1 1 1

0 0 0 0 0, 1

0

0, 1

1

Figure 5.1: exactly three and every

q1 q2 q3 q4 q5

q′1 q′′4 q′4

⧈ ⧈ ⧈ ⧈

⧈ ⧈ ⧈ ⧈ ⧈0 0 0 0
1

0

0, 1 0, 1 0, 1 0, 1 1

1 1 1 0, 1, ⧈

Q2

Q1

Figure 5.2: exactly three⋅every

are still decided by the start state of its associated copy of Q2. If ⧈ is seen in
such a state, this means the current subword was empty; this works because ε
is in the language of Q2 if and only if s2 is final, so s2 appropriately determines
⧈-behavior.

Definition 5.1.2. Previously we likened the state space of Q1 to the spine or
essential structure of Q1 ⋅ Q2. Here we make this idea precise by describing
a mapping between Q1 and a subspace of Q (the state-space of the iteration
automaton). Define a bijection f ∶ Q1 → Q by the following:

f(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qF q ∈ F1, non-terminal

sq2 q /∈ F1, non-terminal

qFT q ∈ F1, terminal

qT q /∈ F1, terminal

For example, if a state in Q has the subscript F , then the corresponding state
in Q1 must have been both final and non-terminal. Not every sq2 in Q is f(q)
for some q ∈ Q1, but if q ∈ Q1 is non-final and non-terminal, it will be merged
with the start state of its copy of Q2. This state mapping is mostly useful for
defining the transition function for iteration automata. Using this mapping to
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convert between q and f(q) and vice versa, we can be sensitive to the above-
mentioned exceptions in the replacement scheme while still using δ1 to define
δ. When the value of f for some q is clear, we may write it directly, e.g. “qFT ”
in lieu of “f(q),” and similarly for f−1. Sometimes we write, e.g., qT to mean
a specific state, and other times to mean the set of all states that are f(q) for
some non-final, terminal state q. The intention should be clear from the context.

Definition 5.1.3. Let Q1 = (Q1,Σ1, δ1, s1, F1) and Q2 = (Q2,Σ2, δ2, s2, F2) be
DFAs accepting the monadic quantifier languages LQ1 and LQ2 , respectively.
The iteration DFA Q1 ⋅Q2 is given by:

• Q: ⋃
q∈Q1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Qq2 ∪ {qF } q ∈ F1, non-terminal

Qq2 q /∈ F1, non-terminal

{eq, qFT } q ∈ F1, terminal

{qT } q /∈ F1, terminal

Here eq is the (potentially unnecessary) state added to make sure input
seen in qFT is well-formed.

• Σ = {0,1,⧈}
• Transition function:

– For p ∈ Qq2: δ(p, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δq2(p, x) x ∈ {0,1}
f(δ1(f−1(p),1)) x = ⧈, p ∈ F q2
f(δ1(f−1(p),0)) x = ⧈, p /∈ F q2

– For q ∈ {qF }: δ(q, x) = δq2(s
q
2, x)

– For q ∈ {qT }: δ(q, x) = q

– For q ∈ {qFT }: δ(q, x) =
⎧⎪⎪⎨⎪⎪⎩

eq x ∈ {0,1}
q x = ⧈

– For p ∈ {eq}: δ(p, x) =
⎧⎪⎪⎨⎪⎪⎩

eq x ∈ {0,1}
q x = ⧈

• s = f(s1)
• F = {f(q) ∣ q ∈ F1}

As remarked earlier, the eq may not be necessary, but whether they are needed is
easily seen after δ has been specified. Once the above construction is completed,
one must inspect the state p such that δ(p,⧈) = q, for each q in qFT . If p also
loops on 0 and 1, then eq can be removed, and δ amended such that q transitions
to p on ⧈.

The definition of Q makes obvious the following upper bound on the size of
iteration DFAs:
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Fact 5.1.4. The state space of Q1 ⋅Q2 is at most

∑
q∈Q1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣ Q2 ∣ +1 q ∈ F1, non-terminal

∣ Q2 ∣ q /∈ F1, non-terminal

2 q ∈ F1, terminal

1 q ∈ F1, non-terminal

This fact gives us the state complexity of iteration DFA, which is a worst-case
notion of state-space size2, and thus an upper bound.3 Since our definition uses
cases, it is generally tight for any language. Iteration DFA may have fewer states
if, as discussed above, extra states eq are not needed to ensure well-formedness
of the input (see Figure 5.3). Thus, the size of Q1 ⋅ Q2 is generally within
m =∣ {qFT } ∣ of this upper bound (and m is at most 1 for regular quantifiers4).
It is also possible for unforseen state equivalences to occur (see, for example,
Figure 5.4), but such minimizations are similarly restricted to “end behavior.”

q1 q2

1
⧈

0, 1

0, 1

0, ⧈ ⧈

(a) some ⋅ some

p1 p2

ep2

⧈

0 0, 1⧈ ⧈

0, 1

⧈1

0, 1

(b) some ⋅ every

Figure 5.3: In (a), the terminal final state q2 of the outer some can 0,1-transition to
the terminal state of the embedded some since that state is equivalent to the potential
eq2 . In (b), our definition correctly predicts the necessity of the additional ep2 .

2See [17] for an overview of the concept. “The state complexity of a regular language
L . . .is the number of states of its minimal DFA,” and “[t]he state complexity of an operation
(or operational state complexity) on regular languages is the worst-case complexity of a lan-
guage resulting from the operation, considered as a function of the state complexities of the
operands.”

3In [45] (2014), Steinert-Threlkeld also gives a definition (developed independently) of
iteration DFA for type ⟨1,1,2⟩ regular iterations (as opposed to the stack version (Q1 ⋅Q2)stack
explained earlier). His definition uses the cross-product of Q1 and Q2 for the state space with
an “unrolled” version of Q2 with an extra state if s2 is final. This leads to a state complexity
of ∣ Q1 ∣ ⋅ ∣ Q2 + 1 ∣. Using the function f to distinguish different cases in defining the state
space, we achieve a smaller state complexity that only reaches ∣ Q1 ∣ ⋅ ∣ Q2 + 1 ∣ in case Q1 is a
trivial language (having only final states).

4Note though that our definition, along with that of [45], is fully general, applicable to any
two binary regular languages.
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⧈

⧈

⧈
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1

0, 1

0, 1, ⧈

Figure 5.4: every⋅exactly three. The solid lines indicate the minimal DFA; the dashed
lines indicate the output of the construction, with a full copy of exactly three.

5.1.2 Proving Correctness

We now make explicit the correctness of the definition of iteration automata
by showing that the language accepted by the automaton constructed from
the automata for regular quantifiers Q1 and Q2 and the language LQ1⋅Q2 are
equivalent. To prove this, we first introduce a bit more helpful terminology and
a preliminary lemma. Define a function g ∶ {0,1}∗ → {0,1} by:

g(w) =
⎧⎪⎪⎨⎪⎪⎩

0 w /∈ LQ2

1 w ∈ LQ2

so g is the characteristic function of LQ2 , and let g′(w) = g(wi)i≤#⧈(w), where
w ∈ (wi⧈)∗. For example, letting Q2 = every, we can calculate g′(111 ⧈ 101⧈) =
g(111)g(101) = 10.

Using g and the f defined in Definition 5.1.2, in the following lemma we prove the
intuition grounding our construction in the first place: that transitions on words
in the language of Q2 and its complement in Q1 ⋅Q2 are somehow equivalent to
transitions on 1’s and 0’s in Q1. See Figure 5.5 for an illustration of this idea.
Given this correspondence, the desired result will be easy to see.

Lemma 5.1.5. For wi ∈ {0,1} and p = f(q) for some q ∈ Q1, δ(p,wi⧈) =
f(δ1(f−1(p), g(wi))). This means that the state Q1 ⋅Q2 reaches from p reading
wi⧈ is the result of applying f to the state that Q1 reaches from f−1(p) reading
g(wi).

Proof. There are four cases to consider, depending on what kind of state p is:

(i) sq2: Suppose wi ∈ LQ2 . Then δ(sq2,wi) = p where p ∈ F q2 , and δ(p,⧈) =
f(δ1(q,1)), which is precisely f(δq(f−1(sq2), g(wi))). The case for wi /∈ L2
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p f(q)

δ(p,wi⧈)

f−1(p)

f−1

q

δ1(f−1(p), g(wi)
f

Figure 5.5: Diagram for Lemma 5.1.5

is symmetric.

(ii) qF : Suppose wi ≠ ε, so wi = xw′
i where x ∈ {0,1}. Then δ(qF , x) ∈ Qq2, and

this collapses to case (i). Suppose wi = ε, and ε ∈ LQ2 , so g(wi) = 1. Then
δ(qF ,⧈) = δ(sq2,⧈) = f(δ1(q,1)), since sq2 ∈ F

q
2 (and similarly if ε /∈ LQ2).

(iii) qFT : Since q = f−1(qFT ) is terminal, δ1(q, g(wi)) = q. If wi = ε, then
δ(qFT ,⧈) = qFT = f(q). If not, then δ(qFT ,wi) = eq, and δ(eq,⧈) = qFT =
f(q).

(iv) qT : Again, q = f−1(qT ) is terminal, so δ1(q, g(wi)) = q, and δ(qT ,wi⧈) =
qT = f(q).

Theorem 5.1.6. The language accepted by Q1 ⋅Q2 is LQ1⋅Q2 .

Proof. It follows from Lemma 5.1.5 that if w is a string of the form (wi⧈)∗,
Q1 ⋅Q2 accepts w visiting a sequence of states ss12 q1⋯qn (with qi = f(q) for some
q ∈ Q1, and possibly repeating) if and only if Q1 accepts the string g′(w) visiting
the sequence of states s1f

−1(q1)⋯f−1(qn). That is, w ∈ L(Q1 ⋅Q2) if and only
if g′(w) ∈ LQ1 . But g′(w) ∈ LQ1 if and only if (#0(g(w)),#1(g(w))) ∈ Qc1, if
and only if, by definition, (∣ {wi ∶ wi /∈ LQ2} ∣, ∣ {wi ∶ wi ∈ LQ2} ∣) ∈ Qc

1, which is
the definition of membership for LQ1⋅Q2 .

5.2 Generalizing to Type ⟨1,1, . . . , n⟩ Regular It-
erations

5.2.1 Translating Models with n-ary Relations into Strings

So far we have only considered iterations of type ⟨1,1,2⟩, representing sentences
such as Five students passed every exam or No professors failed all the students.
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But natural language contains higher-order iterations as well. For example,
Some organization sent five representatives to every meeting can be treated as
the type ⟨1,1,1,3⟩ quantifier some⋅five⋅every applied to the ternary relation send.
Even higher order iterations occur, such as Two charities requested every person
donate exactly three things to every needy family, a type ⟨1,1,1,1,4⟩ iteration.
Certainly there is a limit to the number of embedded quantifiers people produce
and comprehend in natural language, but in principle iterations of any type
⟨1,1,1, . . . , n⟩, where the number of 1’s is n, are possible. In this section we
show how to generalize the above definitions and automata construction for
type ⟨1,1,2⟩ iterated quantifiers in a straight-forward, recursive fashion.

As with type ⟨1,1,2⟩ iterations, we first define the string translations of relations
of arbitrary arity, which will be the members of iterated quantifier languages
and automata input strings. As usual the idea is best introduced by an example.

Example 5.2.1. To transcribe the ternary relation depicted in Figure 5.6, we
look, for each (a, b) tuple, at every c and record whether c is in the relation R
with a and b, i.e. whether (a, b, c) is in R. The substrings generated by an (a, b)
pair are demarcated by ⧈, and the substrings consisting of the (a, b)-substrings
for a given a and every b are distinguished by some new symbol, say ⊠.

To be precise, we want to calculate:

τ3(a⃗, b⃗, c⃗,R) = (τ2(b⃗, c⃗,Rai)⊠)i≤∣A∣ = (((τ(c⃗,Raibj)⧈)j≤∣B∣)⊠)i≤∣A∣

which breaks down into the following steps:

i = 1 ((τ(c⃗,Ra1bj)⧈)j≤∣B∣)⊠
j = 1 τ(c⃗,Ra1b1)⧈⇒ Ra1b1 = {c1, c2}⇒ 110⧈
j = 2 τ(c⃗,Ra1b2)⧈⇒ Ra1b2 = {c1, c3}⇒ 101⧈
j = 3 τ(c⃗,Ra1b3)⧈⇒ Ra1b3 = ∅⇒ 000⧈⇒ concatenate and add ⊠

i = 2 ⇒ 100 ⧈ 000 ⧈ 101 ⧈ ⊠
i = 3 ⇒ 000 ⧈ 010 ⧈ 010 ⧈ ⊠
The concatenation of these strings for 1 ≤ i ≤ 3, 110 ⧈ 101 ⧈ 000 ⧈ ⊠100 ⧈ 000 ⧈
101 ⧈ ⊠000 ⧈ 010 ⧈ 010 ⧈ ⊠, encodes the relation.

Definition 5.2.2. Let M = (M,A1, . . . ,An,R) be a model with R an n-ary
relation consisting of tuples (a1, . . . , an) where each ai is from the set Ai. We
define the function τn for translating n-ary relations to strings by:

τn(a⃗1, . . . , a⃗n,R) = τn−1((a⃗2, . . . , a⃗n,Ra1i)⧈)i≤∣A1∣

and applying the definition until arriving at the base case yields:

τn(a⃗1, . . . , a⃗n,R) = (((τ(a⃗n,Ra1σ1 ,⋯,an−1σn−1 )⧈1)σn−1≤∣An−1∣⋯)⧈n−1)σ1≤∣A1∣

where Ra1⋯ak = {(ak+1, . . . , an) ∶ (a1, . . . , ak, ak+1, . . . , an) ∈ R}. The strings
generated are of the form (⋯(((0 + 1)∣An∣⧈1)∣An−1∣⧈2)⋯⧈n−1)∣A1∣. In general,
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Figure 5.6: Model with ternary relation

translating an n-ary relation requires n + 1 symbols: 0, 1, and n − 1 distinct
separator symbols.

Definition 5.2.3. Let Q1, . . . ,Qn+1 be type ⟨1,1⟩ quantifiers. Let w⧈n denote
strings of the form ((⋯((wi⧈1)∗⧈2)∗⋯)⧈n)∗, where wi ∈ {0,1}∗. Define the
language of the iterated quantifier Q1 ○ ⋯ ○Qn by:

LQ1○⋯○Qn = {w ∈ w⧈n ∶ (∣ {w⧈n−1 ∶ w⧈n−1 /∈ LQ2○⋯○Qn} ∣,
∣ {w⧈n−1 ∶ w⧈n−1 ∈ LQ2○⋯○Qn} ∣) ∈ Qc

1}
Example 5.2.4. Now we see the definition in action to derive the language of
every ⋅ two ⋅ some.

s ∈ Levery⋅two⋅some⇔(∣ {w⧈1 ∶ w⧈1 /∈ Ltwo⋅some} ∣, ∣ {w⧈1 ∶ w⧈1 ∈ Ltwo⋅some} ∣) ∈ everyc

⇔∣ {w⧈1 ∶ w⧈1 /∈ Ltwo⋅some} ∣= 0
⇔∣ {w⧈1 ∶ (∣ {wi ∶ wi /∈ Lsome} ∣, ∣ {wi ∶ wi ∈ Lsome} ∣) /∈ twoc} ∣= 0
⇔∣ {w⧈1 ∶∣ {wi ∶ wi ∈ Lsome} ∣< 2} ∣= 0
⇔∣ {w⧈1 ∶∣ {wi ∶ (#1(wi),#0(wi)) ∈ somec} ∣< 2} ∣= 0
⇔∣ {w⧈1

∶∣ {wi ∣ #1(wi) > 0} ∣< 2} ∣= 0

Recall the string from Example 5.2.1 and check that it is in this language: every
w⧈1 has at least two wi with #1(wi) greater than zero (so the number of w⧈1

with fewer than two wi with #1(wi) greater than zero is zero).

w⧈2

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
110 ⧈ 010 ⧈ 000⧈
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w⧈1

⊠ 100
´¸¶
w1

⧈ 000
´¸¶
w2

⧈ 101
´¸¶
w3

⧈ ⊠ 000 ⧈ 010 ⧈ 010 ⧈ ⊠

5.2.2 The Construction

For higher-level iterations, the well-formedness of input requirement calls for a
simplified state-replacement scheme, since it is no longer the case that a state q
may merge with the start symbol of an embedded copy of some Aqi . Recall that
in the ⟨1,1,2⟩ case, well-formedness effectively requires that the string end in
⧈1, since a string of 1’s and 0’s ended by a single ⧈1 is by default a well-formed
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string, even though most interesting models will have more than one element
in the domain of the relation. This condition still exists for proper translations
of n-ary relations: the string must at least end in ⧈n−1; but now there is much
more internal structure. An occurrence of ⧈i can never be followed by ⧈j where
j > i + 1 (similarly, 1’s and 0’s can only be followed by 1’s, 0’s, and ⧈1). Thus
only states representing the outermost quantifier may merge with the start state
of an embedded automaton (mergers can only occur in the first iteration). In
an automaton accepting ⧈1 strings, empty wi may only be followed by ⧈1, but
⧈1 is the only separator symbol anyway; however, an automaton accepting ⧈2

strings can only allow empty ⧈1 “words,” and must be able to distinguish the
rejecting situation that an empty wi is followed by ⧈2 instead of ⧈1.

For this reason, it is more natural to define higher-order iteration automata
Q ⋅ Q′ recursively where Q is (n − 1)-ary, rather than where Q′ is (n − 1)-ary,
even though iteration is associative. Proceeding from left to right, iterating with
additional automata adds additional layers of structure to the existing skeleton
of the automaton. Proceeding from right to left, an additional iteration erases
the basic structure of the existing automaton, and it is not straightforward to
define the minimal DFA when embedding the more complex automaton under
the monadic one.

Before giving a formal definition, we illustrate the idea with an example showing
the progressive construction of two ⋅ every⋅exactly three⋅every.

s q1 1

0 0 0,1

Figure 5.7: two

s q
⧈1 ⧈1

0 0

0,1 0,1

⧈1 ⧈1

0,1

⧈1

0,1

1 1

Q
[s]
2 Q

[q]
2

Figure 5.8: two ⋅ every

The jump from two (Figure 5.7) to two ⋅ every (Figure 5.8) follows precisely the
definition presented in the previous section. The two non-terminal, non-final

states of two, s and q, merge with their copies of every, Q
[s]
2 and Q

[q]
2 , and the

terminal final state of two is hooked up to a new state serving only to check
the well-formedness of the remaining input. Shaded states represent the state-
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space of the automaton from the previous iteration, constituting the spine of
the current iteration. The only difference is we now index embedded copies of
automata with a list of states, call it “H” for “history.”

To construct two ⋅ every⋅exactly three (Figure 5.9) we start with the state-space
of two ⋅ every (the six shaded states) and map every ⧈1 transition to a ⧈2 tran-
sition. Now we embed copies of exactly three in the existing copies of every. For
example, the start state of every, s, is hooked up to its embedded copy of exactly

three, Q
[s]
3 , according to the transitions of its start state p on 0’s, 1’s, and ⧈1.

This of course incidentally defines the same transitions for the start state of
two, which is identical to the start state of every (thus the size of the history
also remains the same, consisting only of s). The rejecting state of every is
terminal with respect to the subprocess it computes, so only needs to check the
well-formedness of the input seen up until the next ⧈2. The state we would add
to accomplish this is equivalent to the terminal state of exactly three. Lastly, the
final state which simply checks input must be modified to process a more com-
plicated structure. This modification is entirely systematic: since this subspace
is only checking the form of the input, we map ⧈1 to ⧈2 but also 0,1 (considered
here as ⧈0) to ⧈1; then add a state looping on ⧈0, and transitions from every
⧈i-looping state to the ⧈j-looping state on ⧈j , where j ≤ i+ 1. Notice there are
no transitions drawn for ⧈2 in the newly embedded states. A ⧈2 immediately
following a 1 or 0 would be ill-formed; an undrawn “dead” state is the target
of these implicit transitions. In general, in an iteration of n automata, Q1 will
have transitions defined for every separating symbol (of which there are n − 1),
and the ith-level embedded automata Qi will be defined for separating symbols
up to ⧈n−i+1.
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Figure 5.9: two ⋅ every⋅exactly three
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Figure 5.10: two ⋅ every⋅exactly three⋅every
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For the final step in the iteration (Figure 5.10) we again take the state-space
of two ⋅ every⋅exactly three, map ⧈1 to ⧈2 and ⧈2 to ⧈3, and create a copy of
every for every state in an embedded copy of exactly three. For example, p gets

Q
[sp]
4 and r gets Q

[r]
4 . The former requires both p and s in its history because

s’s transitions on 0,1, and ⧈1 depend on p’s transitions. Note that even though
p, r, and t are non-final states in exactly three, they do not merge with the
start states of automata embedded under them. This is the case for every step
of constructing an iteration automaton, except the initial step. Finally, three
more states are added to allow the cycles checking input to process strings with
an additional level of structure.

Definition 5.2.5. Let Q1, . . . ,Qn denote DFA recognizing regular quantifier
languages LQ1 , . . . ,LQn . If n = 2, construct Q1 ⋅ Q2 according to Definition
5.1.3. If n ≥ 3, construct Q′ ⋅ Qn = (Q,Σ, s, δ, F ) from Q′ = Q1 ⋅ . . . ⋅ Qn−1 =
(Q′1,Σ′, s′, δ′, F ′) and Qn = (Qn,Σn, sn, δn, Fn) as follows, where QH

i denotes a
copy of Q1 indexed to a list of states H = [h1, . . . , hm]:

• Q = Q′ ∪ ⋃
{QHn−1}

⋃
q∈QHn−1

⎧⎪⎪⎨⎪⎪⎩

Q
H+[q]
n q is non-terminal, q = sHn−1

Q
[q]
n q is non-terminal, q ≠ sHn−1

• Σ = Σ′ ∪ {⧈n−1}
• s = s′

• δ ∶
– δ′[⧈i/⧈i+1]

– q ∈ QH
n ,H = [. . . , p] ∶ δ(q, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ′(p,1) q /∈ FHn , x = ⧈1

δ′(p,0) q ∈ FHn , x = ⧈1

δn(q, x) x ∈ {0,1}

– p ∈H of QH
n : δ(p, x) = δ(sHn , x) for x ∈ {0,1,⧈1}

• F = F ′

The above handles the embedding of Qn; now we discuss how to make the
iteration automaton capable of correctly rejecting words that are not of the
form w⧈n−1.

For every distinct subset A of Q′ that collectively previously checked words for
the form w⧈i , A now consists of a ⧈j-looping state for 1 ≤ j ≤ i+1 (since we have
already mapped all ⧈j to ⧈j+1, and for states in A we consider 0,1 as ⧈0). Add
a new state s to A that loops on {0,1} = ⧈0. For every a ∈ A: if a loops on ⧈j ,
then add a ⧈k-transition from a to the ⧈k-looping state in A for 0 ≤ k ≤ j + 1.

For every terminal state q in every QH
n−1, add a state eq and transitions such

that q returns to itself reading words of the form w⧈1 (unless an equivalent state
exists).
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If n = 3 or there was no terminal, non-final state in Q1, add a dead state d
looping on every symbol in Σ and transitions to d for every transition undefined
to this point. Otherwise, such a d exists; add transitions to d for every undefined
transition.

Fact 5.2.6. Let Q′ = Q1 ○ ⋯ ○Qn−1, let Q′T denote the set of states in Q′ that
were terminal in their respective Qi, and let m denote the number of embedded
copies of Qn−1. The state complexity of Q = Q1 ○ ⋯ ○Qn is

∣ Q′ ∣ +
x

∑
i
∣ Qn−1 ∣ ⋅ ∣ Qn ∣ + ∣ Q′T ∣

The maximum number of states of Q is the size of Q′, plus the size of all the
embedded copies of Qn, plus the number of distinct input-checking subspaces
(which is at most the number of terminal states added along the way).

5.2.3 Proving Correctness

Now we prove the correctness of the general construction for iteration DFA
given in the preceding section. This proof largely has the same flavor as the
proof of correctness for the case with only two automata, but we modify those
notions for use in an inductive proof. Given an iteration DFA Q = Q′ ⋅Qn, where
Q′ = Q1 ○⋯ ○Qn−1, we again define a characteristic function for the language of
the right-most quantifier Qn and use this to prove a lemma relating transitions
in Q to transitions in Q′, from which the desired result will easily follow.

To prove this result inductively, we also require a modified definition of an
iterated language. First recall the definition of g ∶ {0,1}∗ → {0,1} given by:

g(wi) =
⎧⎪⎪⎨⎪⎪⎩

0 wi /∈ LQn

1 wi ∈ LQn

Now instead of using exactly the same g′ extending this to higher-type strings
as previously defined, we need a new function h ∶ w⧈n → w⧈n−1 that can acco-
modate strings with additional ⧈ symbols. Given a string w, calculate h(w)
by sequentially running through the entire string, applying g to subwords of 0’s
and 1’s, erasing ⧈1, changing ⧈i to ⧈i−1, and concatenating these results in the
same order. For example, for n = 3 and Q3 = some, we have:

h(01 ⧈1 11 ⧈1 ⧈211 ⧈1 00 ⧈1 ⧈2) = 11 ⧈1 10⧈1

Using h we obtain the following definition of iterated languages:

LQ1○⋯○Qn = {w ∶ w has the form w⧈n and h(w) ∈ LQ1○⋯○Qn−1}
Lemma 5.2.7. Let Q′ = Q1 ○ ⋯ ○Qn−1 and Q = Q′ ⋅Qn, where n ≥ 3. For every
q ∈ Q′, δ(q,w⧈1) = δ′(q, g(w)).

Proof. There are three main cases depending on the identity of q.

57



(i) q ∈ QHn−1
(a) q is terminal for Qn−1: Then we explicitly construct q’s transitions in

Q such that q returns to itself reading words of the form w⧈1 , so the
Lemma clearly holds.

(b) q is non-terminal for Qn−1: Then q is the most recent (or only) ad-

dition to H ′ for some QH′

n . Thus δ(q,wi⧈1) = δ(δ(sH
′

n ,wi) = p,⧈1) =
δ′(q, g(wi)), since p ∈ FH′

n ⇔ wi ∈ LQn . (Note that this holds even if
wi = ε).

(ii) q = sHi for i < n−1: Then q was added to H ′ for some QH′

i+1 and is thus in H ′

for some QH′′

n . So we have δ(q,wi⧈1) = δ(δ(sH
′′

n ,wi) = p,⧈1) = δ′(r, g(wi)),
since p ∈ FH′′

n ⇔ wi ∈ LQn . Though r ≠ q, r and q are both in H ′′, so
δ′(r, g(wi)) = δ′(q, g(wi)).

(iii) Otherwise: If q is any other state, its transitions on {0,1,⧈1} only serve to
check well-formedness of the string, and the Lemma holds by construction.

Theorem 5.2.8. Let Q = Q1 ○⋯○Qn be constructed from Q1, . . . ,Qn accepting
regular quantifier languages LQ1 , . . . ,LQn according to Definition 5.2.5. The
language of Q is LQ1○⋯○Qn .

Proof. Let Q′ = Q1 ○ ⋯ ○ Qn−1. Since we have that w ∈ LQ′⋅Qn if and only if
h(w) ∈ LQ′ (by definition) if and only if Q′ accepts h(w) (by hypothesis), we
only need to show that Q′ ⋅ Qn accepts w if and only if Q′ accepts h(w). This
is clear from the previous Lemma: Q transitions from a state q to a state p
reading some wi⧈1 if and only if Q′ does the same reading the symbol g(wi),
and Q transitions from q to p reading ⧈i (i ≥ 2) if and only if Q′ does the same
reading ⧈i−1 (by construction); but these modifications of the symbols read are
exactly the result of applying h.

5.3 Generalizing the Stack Construction for Reg-
ular Iterations

Steinert-Threlkeld and Icard III do not discuss how their stack construction
generalizes beyond automata for type ⟨1,1,2⟩ iterations. Recall that in the
simple case, the stack automaton runs through the entire input, converting each
subword of the form (0+1)∗⧈ into a 0 or 1 on the stack. The stack then has the
form of a word in the language of a type ⟨1,1⟩ quantifier. The generalization
of this strategy is to take input in the form of a word in the language of a type
⟨1,1, . . . , n⟩ quantifier (with n 1’s), i.e. some w⧈n−1 , and reduce it to a word
in the language of a type ⟨1,1, . . . , n − 1⟩ quantifier (with n − 1 1’s), i.e. some
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w⧈n−2 , on the stack, by turning the subwords wi into 1’s or 0’s based on the nth

quantifier.

This means that when more than two quantifiers are involved, two stacks are
necessary to implement this strategy. This means that, technically, these PDA
are Turing universal, though the use of the two stacks is actually extremely
restricted.5 The nth quantifier, last in the iteration but first in the computation,
reads the string of the form w⧈n−1 in the usual way, and computes a stack
containing some w⧈n−2 . Then the (n − 1)st quantifier reads this first stack and
computes some w⧈n−3 on the second stack. After this step, the first stack is
empty, so in the next round of word-reduction, the second stack is read while
the first stack is pushed.

It is quite interesting that, though DFA iteration automata somehow better
exemplify the compositional nature of language in their very structure, the stack
versions of iteration automata better exhibit quantifiers as relation reducers.6

In the simple case (QA
1 ,Q

B
2 )(R2), applying QB

2 to R2 yields a unary relation,
the set of a ∈ A such that QB

2 (Ra) is (the 0-ary relation) true. For the ternary
iteration (QA

1 ,Q
B
2 ,Q

C
3 )(R3), applying QC

3 to R3 yields a binary relation, the set
of (a, b) such that Q3 holds of Ra,b. In general, applying an m-ary quantifier to
an (m + n)-ary relation yields an n-ary relation.

We can now also compare the number of computational steps, measured as the
number of non-trivial symbols (those in {0,1}) that must be read, taken by
iteration DFAs and their stack versions.

Fact 5.3.1. The number of non-trivial computational steps taken by an itera-
tion DFA reading input w is #0,1(w).
Fact 5.3.2. The number of non-trivial computational steps taken by the stack
version of an iteration automaton reading input w is exactly ∣ w ∣.

Proof. Since #0,1(w) =∣ w ∣ −
n−1

∑
i=1

#⧈i(w), we need to account for the extra

#⧈i(w)-many steps taken by the stack version. The automaton repeatedly
reduces words from the form w⧈i to w⧈i−1 , so we have:

(⋯(((0 + 1)∣Ai∣⧈1)∣Ai−1∣⧈2)⋯⧈i−1)∣A1∣ ⇒ (⋯(((0 + 1)∣Ai−1∣⧈1)∣Ai−2∣⧈2)⋯⧈i−2)∣A1∣

The number of each symbol is shifted down by a factor of ∣ Ai ∣. Each w⧈i has
i

∏
j=1

∣ Aj ∣ 1’s or 0’s that must be read. Summing over all inputs the automaton

5A Universal Turing Machine (UTM) can simulate an arbitrary Turing machine.
6Note also that [46] suggests how to compute type ⟨1,1,2⟩ iterations involving at least one

PDA-computable quantifier, using a machine with two stacks. A generalization of PDA stack
automata would then require three stacks, at least on the face of it–since they could of course
be defined with just two or one, but not while so neatly exemplifying the iterated rewriting
of the stack into the translation of a relation of lower arity.
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must read (the initial string and all the stack rewrites), we have
n

∑
i=1

i

∏
j=1

∣ Aj ∣ 1’s

or 0’s read in total, which is exactly the length of the original input w (including
1’s,0’s, and every ⧈i).

Rather than a detailed definition, we give a high-level explanation of how to
generalize stack iteration automata (refer to Figure 5.11). The version given by
Steinert-Threlkeld and Icard III for type ⟨1,1,2⟩ iterations remains the base-
case of the construction. Given a stack iteration automaton recognizing some
type ⟨1,1, . . . , n−1⟩ quantifier (call this Qn−1

stack), we construct the stack iteration
automaton for a type ⟨1,1, . . . , n⟩ quantifier by adding a new start state sn−1
with ε transitions to Qn and the start state sn−2 of Qn−1

stack. Each Qi behaves
exactly as in the simple case, reading a word of type w⧈i−1 from one stack
(unless it is Qn, which reads the original input string), and writing a 1 or 0
to the other stack depending on whether individual subwords in (0 + 1)∗ are
in its language. Every time Qi transitions back to si−1 on ⧈1, there may be
some number of separating symbols still to be seen before the next subword
in (0 + 1)∗. Each si−1 has transition rules for rewriting the ⧈m on the input
stack as ⧈m−1 on the other stack, for 1 ≤ m ≤ i − 1. This is how words are
reduced at each step. Every starting state also has transitions to reverse the
input stack (since stacks are last-in-first-out data structures, the word written
in the previous computation is always backward). The machine must use the
non-deterministic transitions as intended–going to the Qi in the correct order
and fully reversing the stack before going to the next Qi−1–in order to accept a
string without hitting some undefined configuration along the way. This means
there exists an accepting computation for some input if and only if that string
is in the language, which is the acceptance condition for nondeterministic PDA.

Example 5.3.3. To get a feel for how stack iteration automata operate in
the general case, we give an overview of the steps taken in an example run of
(every ⋅ some ⋅ two ⋅ every)stack:

Input word:
111 ⧈1 111 ⧈1 111 ⧈1 ⧈2000 ⧈1 000 ⧈1 111 ⧈1 ⧈2⧈3

000 ⧈1 111 ⧈1 111 ⧈1 ⧈2000 ⧈1 111 ⧈1 111 ⧈1 ⧈2⧈3

Q4 = every turns words (0 + 1)3⧈1 into 1’s or 0’s on stack 2. s3 writes ⧈1 to
stack 2 reading ⧈2, and writes ⧈2 to stack 2 reading ⧈3:

stack 1 = [ ]
stack 2 =[111 ⧈1 001 ⧈1 ⧈2011 ⧈1 011 ⧈1 ⧈2]top

Before guessing to advance to s2, s3 reverses the contents of stack 2 by pushing
every symbol to stack 1:

stack 1 = top[111 ⧈1 001 ⧈1 ⧈2011 ⧈1 011 ⧈1 ⧈2]
stack 2 = [ ]

Q3 = two turns each word (0+1)3⧈1 in stack 1 into a 1 or 0 on stack 2. s2 reads
the ⧈2 on stack 1 and writes ⧈1 to stack 2. Again, s2 reverses the stack contents
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sn−1

sn−2

⋮ ⋮

s2

s1

ε

ε

ε

ε

Qn

Qn−1

Q3

Q2

QP
1

ε

ε

ε

ε

ε

⧈1

⧈1

⧈1

⧈1

reverse stack 2,
ε,⧈2/ε, ε,⧈1

reverse stack 2
,ε,⧈2/ε, ε/⧈1,
⋮
ε,⧈n−2/ε, ε/⧈n−3

reverse stack 2,
ε,⧈2/ε, ε/⧈1,
⋮
ε,⧈n−1/ε, ε/⧈n−2

Figure 5.11: Schema for generalizing stack iteration automata: Qn−1
stack
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once stack 1 is empty, making stack 2 the empty one, before moving to s1:

stack 1 = top[10 ⧈1 11⧈1]
stack 2 = [ ]

Then Q2 = some turns each word (0 + 1)2⧈1 in stack 1 into a 1 or 0 on stack 2:

stack 1 = [ ]
stack 2 = [11]top

Finally s1 transitions to QP1 = every, which reads the contents of stack 2 and
accepts. Since the input stack contains no ⧈’s, there is no need to reverse the
contents.

Fact 5.3.4. It is easily seen from the schema given in Figure 5.11 that the size

of the state space of Qn
stack is (

n

∑
i=1

∣ Qistack ∣ +1) − 1, or alternatively, ∣ Qn−1stack ∣ + ∣
Qn ∣ +1.

Summary and Open Questions

In this chapter we saw how to construct minimal iteration DFA from two or
more minimal DFA and observed that the sizes of the resulting state-spaces
are roughly multiplicative in the size of the input automata. We also saw that
the stack construction generalizes in a very interesting way. The size of these
stack automata is always only additive in the size of the input automata, yet it
is always the case that more computational steps must be taken compared to
a run of the minimal iteration DFA. These facts motivate questions regarding
which model of computation is preferable, which we revisit in Section 9.1.1. In
a more theoretical vein:

Question 5.3.5. To which other polyadic constructions can we extend the
semantic automata model?

Question 5.3.6. Are there possible semantic automata models of polyadic
quantifiers for which generalization is not so well-behaved? For example, is there
a lift for which a single application (resulting in a type ⟨1,1,2⟩ quantifier with a
⧈1 language) is computationally feasible, but n-many applications (resulting in
a type ⟨1,1, . . . , n⟩ quantifier with a ⧈n−1 language) crosses some computational
boundary?

Of course, if we allow two-stack machines as in generalized stack automata, we
could probably recognize any polyadic construction we wished. The interesting
question is: can this be done in a compositional way? In Chapter 7, we show
that modulo a strengthening of the translation function, we can construct sim-
ple automata to account for cumulation. Surely there is great opportunity for
further research into this question.
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Chapter 6

Closure of DCFLs Under
Iteration and Constructions
for Iteration DPDA

Having seen in Chapter 4 that regular and context-free quantifier languages are
closed under iteration, and given the recent result of Kanazawa, it is natural
and relevant to ask whether deterministic context-free quantifier languages are
closed under iteration. In this section we provide a proof answering this open
question in the affirmative.1 The result is not obvious since DCFLs do not enjoy
general substitution closure. With this fact established, we give constructions of
iteration DPDA for type ⟨1,1,2⟩ deterministic context-free iterated quantifiers
where at least one of the inputs is a DPDA. In addition to very general con-
siderations of the relevance of determinism to human cognition, there are other
good reasons to restrict our automata constructions to deterministic models of
computation (see Section 1.2.2).

6.1 Closure of DCFLs under Iteration

The proof proceeds by the following steps: given two DPDA recognizing type
⟨1,1⟩ quantifiers Q1 and Q2, we construct the equivalent grammars G1, G2, and
G2 and compose them in an iterated grammarG1⋅G2 in the obvious way, subbing
the the start symbols of the latter two for 1’s and 0’s in the first. Then we use
the DK-test2 to show that this iterated grammar is itself deterministic, from

1This closure result was obtained independently by Shane Steinert-Threlkeld and a proof
sketch appears in [45]. See a footnote in Section 6.2 for a remark on those results.

2See Section 2.2.3 for an explanation of the DK-test; the subject is treated in detail in
[44].
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which it follows that the language it generates (the language of the iteration of
the two original quantifiers) is deterministic context-free.

G2 and G2 must be such that, when we take the union of their components to
construct the iterated grammar, every string of the form (0 + 1)⧈ has a unique
reduction. To ensure this, we first prove the following lemma showing that we
can modify any DPDA so that it yields a DCFG for both its accepted language
and its complement.

Lemma 6.1.1. For every DPDA P recognizing some LQ that is the language
of a deterministic context-free type ⟨1,1⟩ quantifier Q, there is a DPDA P ′ with
the following properties:

1. P ′ has a single accept state qaccept such that (q0,w⧈, ε)
∗⊢ (qaccept, ε) if and

only if w ∈ LQ

2. P ′ has a state qreject such that (q0,w⧈, ε)
∗⊢ (qreject, ε) if and only if w ∈ L¬Q

3. P ′ exclusively pushes or pops a symbol on every transition

That is, given P recognizing the language of Q, we can construct another DPDA
that in a sense recognizes both Q and ¬Q by empty stack given an endmarker.

Proof. Follows from sequential modification according to Theorems 2.2.13 and
2.2.18 (see Figure 6.1 for an illustration of the final result). The first series of
modifications produces a set of reading states R and a new set of final states
F contained in R such that R − F is accepting for the complement of P . The
second series of modifications adds the new accept state qaccept and modifies the
transition function such that the automaton empties its stack and goes to qaccept
if it enters a state in F after reading ⧈, satisfying (1). We do the same for a new
state qreject and R − F , satisfying (2). Satisfying (3) requires expanding some
states, but does not affect the extension of R or F (or R − F ).

F

F

qaccept

qreject

R

Figure 6.1: End result of combining complementation and grammar construction
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Theorem 6.1.2. Deterministic context-free languages are closed under quan-
tifier iteration.3

Proof. Let LQ1 and LQ2 be the languages of type ⟨1,1⟩ deterministic context-free
quantifiers Q1 and Q2. Then there exists DPDA A1 and A2 recognizing these
languages. By Theorem 2.2.18 there is A′

1 recognizing {w⊠ ∶ w ∈ LQ1} such that
we may construct an equivalent DCFG G1 = (T1, V1, P1, S1). By Lemma 6.1.1,
there is A′

2 such that we may construct both the DCFG G2 = (T2, V2, P2, S2)
and G2 = (T2, V2, P2, S2), where S2 = q0qaccept and S2 = q0qreject (where q0 is
the start state of A′

2). Thus G2 generates {w⧈ ∶ w ∈ LQ2} and G2 generates
{w⧈ ∶ w ∈ L¬Q2}. G2 and G2 have exactly the same terminals, variables, and
productions since they are extracted from the same automaton; they differ only
on their start symbols.

Define the iterated grammar G1 ⋅G2 = (T1, V,P,S1) by:

• V = V1 ∪ V2 (where V1 and V2 are disjoint)

• P = P1[0/S2,1/S2] ∪ P2

The terminal symbols 1 and 0 in the production rules of G1 are replaced by S2

and S2 respectively. We may refer to P − P2 by P ′
1 for shorthand. Since the

above definition is the grammar counterpart of the language substitutions we
defined to prove regular and context-free closure in Section 4.2, it follows from
those arguments and the equivalence of end-marked DCFGs with DCFLs that
G1 ⋅G2 generates the language of Q1 ⋅ Q2, modulo an extra, distinct separator
symbol (⊠) at the end of the string.

Claim: G1 ⋅G2 is a DCFG.

Proof: We show G1 ⋅G2 satisfies the DK-test. Then it will follow from Theorem
2.2.15 that G1 ⋅G2 is deterministic.

Modify A′
1 and A′

2 by adding all the variables of G1 and G2 to their respective
alphabets, and setting δi(p, Vpq, ε) = (q, ε) (and every other transition involving
Vpq to ∅).4 Additionally, replace 1 and 0 transitions in A′

1 by S2 and S2. This
allows A′

1 and A′
2 to read valid strings generated by G1 (with P ′

1 for P1) and
(G2 ∪G2), respectively.

We recall the steps for creating grammar production rules for reference in the
proof:

1-2. For each p, q, r, s, t ∈ Q, u ∈ Γ, and a, b ∈ Σε, if δ(r, a, ε) = (s, u) and
δ(t, b, u) = (q, ε), put the rule Apq → ApraAstb in G.

3. For each p ∈ Q, put the rule App → ε in G.

3Note that, though we state this proof in terms of quantifier languages, it applies to the
“quantifier iteration” of any two binary DPDA-recognizable languages.

4Note that Aq0qaccept still refers to the start symbol of G2 (S2), and not the start symbol
of G1 ⋅G2 (in the proof, we will not need to refer to S1.)
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Construct the DFA DKG1⋅G2 . Suppose it enters a final state on input z. This
state contains at least one completed rule, R, having one of two forms:

1. Apq → ApraAstb.
2. App → .

We show the accept state must contain neither

a. another completed 1-2 or ε rule, nor

b. a dotted 1-2 rule with a terminal immediately following the dot

This yields four main cases:5

1a. R = Apq → ApraAstb.
I. R ∈ P2:

i. (∗) There is no other completed type 1-2 rule. For every other rule
R′ in this accept state, z ends with the symbols preceding the dot in
R′. If R and R′ agree on their right hand sides, they must agree on
their left hand sides, so R and R′ are the same.

ii. If there is a completed ε rule T = Axx → ., it derives from a type 1-2
rule T ′ = Awu → Awvc.Ayzd (where Ayz = Axx or leads to adding T )
with the dot before the second variable (before the second variable
since it could not have been added to the state, as R is complete;
before the second variable since it must necessitate adding T ).

A. (∗) T,T ′ /∈ P2 as this would entail a simultaneous pushing and
popping move in A′

2: by the definition of (1-2) rules, at the end
of R A′

2 popped a symbol, and before the second variable of T
(after the first terminal) A′

2 pushed a symbol. Recall that A′
2

was modified such that pushing and popping are always separate
moves.

B. Then suppose T,T ′ are from P ′
1. R and T must have both ap-

peared in the same predecessor state of this final state and ad-
vanced their right hand side by the same symbol, implying one
of the following holds:

• c = b = ε, so Awv = Ast, but V1 ∩ V2 = ∅
• b = ε, c = Ast = S2 = Aq0qaccept , but this means there is a tran-

sition out of qaccept in A′
2 (see the description of 1-2 rules: if

Aq0qaccept appears in the right hand side of a rule in P2, then
A′

2 has a transition for qaccept).

• c = ε, b = Awv, but b ∈ {0,1,⧈}
5We follow the outline of the proof of Theorem 2.2.15 in [44]; identical subcases are marked

by (∗). When some symbol may be either S2 or S2, we assume the former without loss of
generality.
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which in any case is a contradiction.

II. R ∈ P ′
1: This case is symmetric.

2a. R = App → .
I. R ∈ P2: We show there is no other ε rule (the possibility of a completed

1-2 rule is already handled by 1a.).

i. (∗) There is no rule T = Axx → . ∈ P2, since this would entail that
A′

2 may end up in both p and x in reading z.

ii. Suppose there is some such rule T from P ′
1. In order for R to be in the

same state as T , there must be some rule R′ ∈ P ′
1, Aqr → Aqs.S2Atub

(with the dot after the first variable, w.l.o.g.). This means T must
derive from some rule T ′ ∈ P ′

1 of the form Aqw → Aqs.Axxd, since
the dot must be preceded by Aqs and followed by a variable (either
equal to Axx, or requiring the addition of a rule whose right hand
side starts with Axx, or and so forth). But this means that both
δ1(s,1, ε) and δ1(s, ε, ε) are non-empty (recall, R′ ∈ P ′

1 means there
was R∗ = Aqr → Aqs1Atub in P1), meaning A′

1 is not a deterministic
PDA, which is a contradiction.

II. R ∈ P ′
1: This case is symmetric.

1b. R = Apq → ApraAstb.
I. R ∈ P2 ∶

i. (∗) Suppose there is a rule T ∈ P2 with a dot before a terminal. Then
A′

2 does not pop its stack after reading z; but from R we know that
it does.

ii. Suppose there is T ∈ P ′
1 with a dot before a terminal (which must

be ⊠). Let the dot be after the first variable w.l.o.g., so T = Awu →
Awv. ⊠ Axyd. From R we know DKG1⋅G2 just read b ∈ {0,1,⧈} or
Ast (b = ε). Since Awv cannot be a terminal, we have Awv = Ast, but
V1 ∩ V2 = ∅.

II. R ∈ P ′
1 ∶

i. (∗) There is no rule T ∈ P ′
1 with a dot before a terminal (see previous

item).

ii. Suppose there is such a T ∈ P2. From R we know that DKG1⋅G2

either just read b ∈ {S2,⊠} or Ast (b = ε). T can’t have been added
in this state (see argument in 1a.) and can’t contain Ast or ⊠, so
DKG1⋅G2 read S2 and T is a rule in P2 with a dot following S2 on its
right hand side; but this entails a transition in qaccept in A′

2.

2b. R = App → .
I. R ∈ P2:
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i. (∗) There is no dotted rule T ∈ P2 with a terminal following the dot.
Suppse there were: then z ends with some variable Ast, and after
reading z A′

2 is prepared to read a non-ε terminal a. R must derive
from some rule 1-2 rule R′ = Asr → Astc.Awud ∈ P2 with the dot
preceding the second variable (see 1a.). Since z ends in Ast, c must
be ε. Thus after reading z, A′

2 is also prepared to read an ε input in
addition to a ≠ ε, which contradicts its determinism.

ii. Suppose there is T ∈ P ′
1 with a terminal following the dot (which must

be ⊠). Let the dot come after the first variable w.l.o.g., so T = Awu →
Awv.⊠Axyd. R must derive from some R′ = Amn → Amla.Ankb ∈ P2

(where either Ank = App or Ank leads to adding R). This leads to a
contradiction as in case 1b.I(ii).

II. R ∈ P ′
1:

i. (∗) There is no dotted rule T ∈ P ′
1 with a terminal following the dot

(above item).

ii. Suppose there is some such T ∈ P2, either of the formAwu → Awv.cAxyd
or Awu → AwvcAxy.d (assume the former without loss of generality).
R must derive from some R′ = Amn → Amla.Ankb (where Ank = App
or leads to adding R) in P ′

1 with the dot preceding the second vari-
able, implying one of the following:

• a = Awv = S2, which means there is a transition out of qaccept in
A2.

• a = ε, so Aml = Awv, but V1 ∩ V2 = ∅
which in any case is a contradiction.

∎
Since G1 ⋅G2 is a DCFG, it follows from Theorem 2.2.17 that there is an equiv-
alent DPDA recognizing the same language.

6.2 Automata for Deterministic Context-Free It-
erations

Now we define semantic automata for type ⟨1,1,2⟩ deterministic context-free
iterations. Recall that we use the notation ⟨q, x,α, β, q′⟩ for δ(q, x,α) = (q′, β)
for (D)PDA. Similarly, if δ is the transition function of a DFA, we will write
⟨q, x, q′⟩ if δ(q, x) = q′.
Definition 6.2.1. Let Q1 = (Q1,Σ1,Γ1, δ1, s1, F1) be any DPDA recognizing a
deterministic context-free quantifier language LQ1 . Let Q2 = (Q2,Σ2,Γ2, δ2, s2,
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qaccept, qreject) be a DPDA modified according to Lemma 6.1.1 recognizing an end-
marked deterministic context-free quantifier language LQ2 . Define the iteration
DPDA Q1 ⋅Q2 by:

• Q = Q1 ∪Q2

• Σ = Σ1 ∪Σ2

• Γ = Γ1 ∪ Γ2 ∪Q1

•

δ = δ2 (1)
∪ {⟨q, ε, α, β, q′⟩ ∶ ⟨q, ε, α, β, q′⟩ ∈ δ1} (2)
∪ {⟨q, ε, α, qα, s2⟩ ∶ (q, x,α) ∈ dom(δ1) and x ∈ {0,1}} (3)
∪ {⟨qaccept, ε, qα, β, q

′⟩ ∶ ⟨q,1, α, β, q′⟩ ∈ δ1} (4)
∪ {⟨qreject, ε, qα, β, q′⟩ ∶ ⟨q,0, α, β, q′⟩ ∈ δ1} (5)

• s = s1
• F = F1

We take the states of Q1 and the states of Q2 and connect them in the following
way: for every transition in δ1 in which some state q reads a symbol, we replace
that transition with an ε transition to the start state of Q2 and push q to the
stack. Thus all subwords wi⧈ of the input are processed by Q2; in any case, Q2

empties its stack up to q and ends up in one of qaccept or qreject, and transitions
back into Q1–with the new state and new stack contents decided by q.6

Of course, natural language iterations often involve a mixture of regular and
context-free quantifiers:

(i) A third of the students answered every question correctly.

(ii) Fewer than five students attended more than half of the presentations.

Whether the DPDA-computable quantifier is outermost (as in (i)) or embedded
(as in (ii)), we can still utilize the stack to record the progress of the computation
(state of the outermost machine) before beginning a subcomputation with the
embedded machine, avoiding the need to create multiple copies of the latter. The
following two definitions make this precise; note the only significant departure
from Definition 6.2.1 is with respect to δ, and in any case the resulting iteration
automaton is a DPDA. For simplicity we do not pursue the “minimal” DPDA by
distinguishing between terminal and non-terminal states of the outer quantifier.
Note that since there is no state merging and the transitions from states in Q1

to states in Q2 are all ε transitions, the definition works for words of the form
(wi⧈)∗ even if some wi are ε.

6The proof sketch of DCFL iteration closure in [45] is by DPDA construction and indicates
that the construction proceeds similarly to the DFA case. Since simply complementing the
accepting states of a given DPDA may not result in the correct behavior (as it may continue
to transition between accepting and rejecting states after reading the input), the correctness
of our definitions in this section relies on the modifications described in Lemma 6.1.1. The
cases are not necessarily similar (that is, we can not necessarily use a single DPDA Q2 to
decide if w ∈ LQ2

or w ∈ L¬Q2
) without the kind of normal form for DPDA we describe here.

69



Definition 6.2.2. Let Q1 = (Q1,Σ1,Γ1, δ1, s1, F1) be a DPDA recognizing a
deterministic context-free quantifier language LQ1 and Q2 = (Q2,Σ2, δ2, s2, F2)
a DFA recognizing a regular quantifier language LQ2 . Define the DPDA Q1 ⋅Q2

by:

• Q = Q1 ∪Q2

• Σ = Σ1 ∪ {⧈}
• Γ = Γ1 ∪Q1

•

δ = {⟨q, x,α,α, q′⟩ ∶ ⟨q, x, q′⟩ ∈ δ2} (1’)
∪ {⟨q, ε, α, β, q′⟩ ∶ ⟨q, ε, α, β, q′⟩ ∈ δ1} (2’)
∪ {⟨q, ε, α, qα, s2⟩ ∶ (q, x,α) ∈ dom(δ1) and x ∈ {0,1}} (3’)
∪ {⟨p,⧈, qα, β, p′⟩ ∶ p ∈ F2 and ⟨q,1, α, β, p′⟩ ∈ δ1} (4’)
∪ {⟨p,⧈, qα, β, p′⟩ ∶ p /∈ F2 and ⟨q,0, α, β, p′⟩ ∈ δ1} (5’)

• s = s1
• F = F1

Definition 6.2.3. Let Q1 = (Q1,Σ1, δ1, s1, F1) be a DFA recognizing a regular
quantifier language LQ1 and Q2 = (Q2,Σ2, δ2, s2, qaccept, qreject) a DPDA modified
according to Lemma 6.1.1 recognizing an endmarked deterministic context-free
quantifier language LQ2 . Define the DPDA Q1 ⋅Q2 by:

• Q = Q1 ∪Q2

• Σ = Σ2

• Γ = Γ2 ∪Q1

•

δ = δ2 (1”)
∪ {⟨q, ε, ε, q, s2⟩ ∶ (q, x) ∈ dom(δ1)} (2”)
∪ {⟨qaccept, ε, q, ε, q

′⟩ ∶ ⟨q,1, q′⟩ ∈ δ1} (3”)
∪ {⟨qreject, ε, q, ε, q′⟩ ∶ ⟨q,0, q′⟩ ∈ δ1} (4”)

• s = s1
• F = F1

Since the DFA Q1 only has 0,1 transitions, there is no need for a corresponding
(2”) case.

Claim 6.2.4. Each automata Q1 ⋅ Q2 yielded by Definitions 6.2.1, 6.2.2 and
6.2.3 is deterministic.

Proof. First we show this holds when both Q1 and Q2 are DPDA. We show
there is only one move per configuration in δ by examining each part (1)-(5) of
the definition:

(1) δ2 has at most one move per configuration.

(2) δ1 has at most one move per configuration.
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(3) A transition of this type is added if q has 0,1 moves in δ1 with α on the
stack. This means q does not have an ε move with α on the stack in δ1 (or
a transition with both ε input and stack). Thus, replacing 0,1 with ε with
α on the stack leaves q with one choice in δ.

(4) In δ2, qaccept has no moves by construction, and δ1 is deterministic, so there
is exactly one move in δ for configuration (p, ε, qα).

(5) The same argument in (4) applies for qreject.

The same arguments suffice to see that the δ given by (1’)-(5’) and (1”)-(5”)
are deterministic, with the additional minor observations: for (1’), adding an
inert stack component does not affect choice; for (4’/5’), the states p ∈ Q2 have
no ⧈ transitions in δ2.

To see the correctness of these automata definitions, we again prove a lemma
relating transitions on ⧈-ended words in Q1 ⋅ Q2 to transitions on individual
symbols in Q1.

Lemma 6.2.5. Let g be the characteristic function of LQ2 . For wi ∈ {0,1}∗
and q ∈ Q1, δ(q,wi⧈, α) = δ1(q, g(wi), α).

Proof. There are three cases; one per definition.

(i) Let Q1,Q2 both be DPDA. Assume w.l.o.g. that q has 0,1-transitions in
δ1 (otherwise there is an ε-transition to some q′, in both δ1 and δ2, with
the same effect on the stack (2)). Then in δ, q has an ε-move to s2 with q
pushed to the stack (3). Since q is not in Γ2, this is effectively an empty
stack to δ2, so by (1) and Lemma 6.1.1 we have that δ(s2,wi⧈, qα) goes to
(qaccept, qα) if g(wi) = 1 or (qreject, qα) if g(wi) = 0. By (4) and (5), there
is an ε-move to δ1(q, g(wi), α).

(ii) Let Q1 be a DPDA and Q2 a DFA. Again assume w.l.o.g. that q has
0,1-moves (2’). By (3’), there is an ε-move to s2 with q pushed to the
stack. By (1’), δ(s2,wi, qα) = (p, qα) (as the stack is left untouched),
where p ∈ F2 if and only if g(wi) = 1. Finally, by (4’/5’), there is a ⧈-move
to δ1(q, g(wi), α).

(iii) Let Q1 be a DFA and Q2 a DPDA. In this case we take α = ε and show that
δ(q,wi⧈, ε) = (δ1(q, g(wi)), ε). By (3”), there is first an ε-move to s2 with q
pushed to the stack. As in case (i), Q2 goes from s2 with effectively empty
stack (q on top) to qaccept if g(wi) = 1 or qreject if g(wi) = 0 with effectively
empty stack (q on top). By (4”/5”), there is an ε-move to (δ1(q, g(wi)), ε).

Theorem 6.2.6. The language accepted by the DPDA Q1 ⋅ Q2, generated by
any of the three preceding definitions, is LQ1⋅Q2 .
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Proof. This follows from the preceding lemma and the argument for Theorem
5.1.6 for the two-DFA case.

We do not give a formal definition for reasons of space, but these constructions
can be generalized to iterations of an arbitrary number of DFA and DPDA by
(1) using ⧈i as an indicator for the ith embedded DPDA to empty its stack
and (2) expanding the stack alphabet with each new embedding to maintain a
history (as in Definition 5.2.5 for generalized iteration DFA).

Summary and Open Questions

In this chapter we saw a proof of the closure of deterministic context-free
languages under quantifier iteration and definitions for constructing iteration
DPDA when one or more of the quantifiers is DPDA-computable.

Are there other natural classes of quantifiers for which we can investigate iter-
ation closure? For instance:

Question 6.2.7. Are context-sensitive languages (for example, the same num-
ber of a’s,b’s, and c’s, which is type ⟨1,1,1⟩) closed under quantifier iteration?
The answer is not immediate; like DCFLs, context-sensitive languages are not
closed under substitution.

Mostowski [38] identifies a subset of quantifiers that are accepted by DPDA by
both final state and empty stack (recall: this means the DPDA is in a final state
and the stack is also empty; not the usual notion of empty stack). This class
more-or-less corresponds to exact proportional quantifiers (for example, exactly
1/3). Is this subset of DCFLs closed under quantifier iteration? This question
is actually easy to answer.

Fact 6.2.8. This natural proper subset of deterministic context-free quantifier
languages is not closed under iteration.

Proof. This follows immediately from almost-linear quantifiers lacking comple-
ment closure (indeed, the complement of an almost-linear quantifier is never
almost-linear).7

7See Section 3.3 for Mostowski’s results and the statement of this fact.
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Chapter 7

Cumulation Automata

[46] mentions in a footnote the possibility of defining cumulation automata
as the sequential composition of iteration automata. The contribution of this
chapter is to give precise definitions of automata both for type ⟨1,1,2⟩ regular
cumulations as well as for type ⟨1,1, . . . , n⟩ regular cumulations based on that
suggestion. This requires a modification of the translation function to record
both R and R−1, which turns out to substantially simplify the difficulty of
the language, indicating that the choice of model representation is an integral
factor of semantic automata complexity. Cumulation constitutes an interesting
extension of semantic automata because the quantifiers resulting from this lift
are irreducibly polyadic. They are somehow on or around the Frege boundary
since they are definable from iterations, but are not themselves iterations.

7.1 Automata for Type ⟨1,1,2⟩ Regular Cumu-
lations

Recall that the cumulation (Q1,Q2)cl(A,B,R) can be defined by

(Q1 ⋅ some)(A,B,R) ∧ (Q2 ⋅ some)(B,A,R−1)
Here we cannot interpret the “∧” as intersection, as we might in the case of the
language of “More than two and less than four.” The first iteration is evaluated
using a string generated by τ2 given R, and the other using R−1. To extend
the semantic automata model to cumulation, we need a way to combine DFAs
Q1 ⋅ some and Q2 ⋅ some into a single automaton that accepts a single input
combining the strings they should evaluate. What we need is the sequential
composition of these iteration automata, accepting concatenations of strings
from the two languages.
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Recall that the concatenation of L1 and L2 is L1L2 = {uv ∣ u ∈ L1, v ∈ L2}, and
regular languages are closed under concatenation (Theorem 2.2.5). Sequential
composition is the automata operation corresponding to concatenation, illus-
trated in Figure 7.1, consisting of connecting final states of N1 to the start state
of N2 by ε-transitions. 1.2 NONDETERMINISM 61

FIGURE 1.48

Construction of N to recognize A1 ◦A2

PROOF

Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1, and
N2 = (Q2,Σ, δ2, q2, F2) recognize A2.

Construct N = (Q,Σ, δ, q1, F2) to recognize A1 ◦A2.

1. Q = Q1 ∪Q2.
The states of N are all the states of N1 and N2.

2. The state q1 is the same as the start state of N1.

3. The accept states F2 are the same as the accept states of N2.

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =





δ1(q, a) q ∈ Q1 and q 6∈ F1

δ1(q, a) q ∈ F1 and a 6= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2.
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Figure 7.1: Sequential composition of automata ([44])

Definition 7.1.1. LetM = ⟨M,A,B,R⟩ be a model with a⃗ and b⃗ any enumer-
ations of A and B. Define the translation function τ cl2 which takes two sets and
a binary relation as arguments:

τ cl2 (a⃗, b⃗,R) = τ2(a⃗, b⃗,R) ⊠ τ2(b⃗, a⃗,R−1)
Definition 7.1.2. Let Q1 and Q2 be quantifiers of type ⟨1,1⟩. Define the
language (Q1,Q2)cl by:

L(Q1,Q2)cl
= {w1 ⊠w2 ∶ w1 ∈ LQ1⋅some,w2 ∈ LQ2⋅some}

By separating the words in LQ1⋅some and LQ2⋅some with a distinguished ⊠ symbol,
we avoid the problem of the automaton having to “guess” when it has seen the
end of the first word and the beginning of the second. Such non-determinism
is not really an issue since NFAs and DFAs both generate exactly the regular
languages; however, determinism is easily retained in this fashion. Moreover,
these separator symbols may be necessary for cumulation automata to mean
what we intend them to mean (see the discussion following Question 7.2.11 in
the summary).

Example 7.1.3. Consider the sentence Three cinephiles watched five movies,
on the reading that the three cinephiles, all together, watched a sum total of
five movies. To translate the model in Figure 7.2, we calculate τ cl2 (c⃗, m⃗,W ).
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τ2(c⃗, m⃗,W ) yields the string 11110 ⧈ 10100 ⧈ 00001⧈ and τ2(m⃗, c⃗,W −1) yields
the string 110 ⧈ 100 ⧈ 110 ⧈ 100 ⧈ 001⧈ (imagine looking at the mirror image of
the model). Concatenating these with ⊠ in the middle results in:

11110 ⧈ 10100 ⧈ 00001 ⧈ ⊠110 ⧈ 100 ⧈ 110 ⧈ 100 ⧈ 001⧈
Since the pre-⊠ portion of the string is in L3⋅some and the post-⊠ portion is in
L5⋅some, the whole string is in L(3,5)cl .

c1

c2

c3

m2

m1

m3

m4

m5

W

C M

Figure 7.2: Model for Example 7.1.3

Definition 7.1.4. Let Q1 and Q2 be DFAs accepting the monadic quantifier
languages LQ1 and LQ2 , respectively. Construct the iteration DFA Q1 ⋅ some
and Q2 ⋅ some. Denote these by A1 and A2, respectively. The cumulation DFA
(Q1,Q2)cl is given by:

• Q = QA1 ∪QA2

• Σ = ΣA1 ∪ {⊠}

• δ(q, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δA1(q, x) q ∈ QA1 , x ≠ ⊠
sA2 q ∈ FA1 , x = ⊠
δA2(q, x) q ∈ QA2 , x ≠ ⊠

• s = sA1

• F = FA2

Theorem 7.1.5. The language accepted by the DFA (Q1,Q2)cl is L(Q1,Q2)cl

Proof. Let A1 and A2 denote the DFA Q1 ⋅ some and Q2 ⋅ some.

(⊆) Suppose w ∈ L(Q1,Q2)cl
, so w = w1 ⊠w2 where w1 ∈ L(A1) and w2 ∈ L(A2).

By definition δ(s,w1) = f ∈ FA1 , δ(f,⊠) = sA2 , and δ(sA2 ,w2) = f ′ ∈ FA2 ,
so δ(s,w) ∈ F .

(⊇) Suppose δ(s,w) ∈ F . By construction, any path from s to f ∈ F consists of
sA1⋯fsA2⋯f ′ where f ∈ FA1 and f ′ ∈ FA2 . Clearly w must consist of some
string w1 ∈ L(A1), followed by ⊠, followed by some string w2 ∈ L(A2).
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Fact 7.1.6. The state complexity of cumulation is twice the state complexity of
iteration. More specifically, the size of (Q1,Q2)cl is at most the size of Q1 ⋅ some
plus the size of Q2 ⋅some. This upper bound is not reached in case both Q1 ⋅some
and Q2 ⋅ some have qT states. These can be merged since if either automaton
reaches a terminal non-final state, the cumulation automaton will not accept (a
terminal non-final state of either iteration automaton is of course also a terminal
non-final state of the whole cumulation automaton).

Theorem 7.1.7. Regular languages are closed under cumulation (using the
language definition developed for this chapter allowing inverse relations).

Proof. This result follows from the closure of regular languages under quantifier
iteration and concatenation.

Finally, we also sketch the corresponding result for deterministic context-free
languages. Since cumulation automata are essentially a simple sequential com-
position of iteration automata, this follows from the results of the previous
chapter, and it is clear that our definitions of cumulation DFA can easily be
extended to cumulation DPDA.

Theorem 7.1.8. Deterministic context-free languages are closed under cumu-
lation.

Proof. Let LQ1 and LQ1 be binary deterministic context-free languages rec-
ognized by Q1 and Q2. Since Lsome is regular, and thus a DCFL, by Theorem
6.1.2, LQ1⋅some and LQ2⋅some are also DCFL, and we can construct their automata
Q1 ⋅some and Q⋅some using Definition 6.2.2. DCFL are not in general closed un-
der concatenation; however, L(Q1,Q2)cl

is defined by concatenating LQ1⋅some and
LQ2⋅some with a distinguished symbol ⊠, it is clear that connecting Q1 ⋅ some and
Q2 ⋅ some with a ⊠ transition as in Definition 7.1.4 (and using ⊠ as a marker for
Q1 ⋅ some to empty its stack) yields a deterministic PDA recognizing the correct
language.

7.2 Generalizing to Type ⟨1,1, . . . , n⟩Regular Cu-
mulations

Just as with iterations in the previous chapter, we can define higher-type cu-
mulations from their components. Since cumulation is an independent lift, the
way we combine the constitutive parts is quite simple: given a cumulation of
quantifiers Q1 through Qn and a relation R on sets A1 through An, we conjoin
a series of independent requirements on each sequential pair. Basically, we can
determine the truth of the entire cumulation just by looking individually at the
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v1

v2

v3

d1

d2

d3

m2

m3

m4

m5

m1

Figure 7.3: Model for Example 7.2.2

relation between each “adjacent” set Ai and Ai+1. To formalize the notion of a
“part” of a relation, we define the following:

Definition 7.2.1. Let R be an n-ary relation on sets A1, . . . ,An.

R ↾Ai,Ai+1= {(ai, ai+1) ∶ ai ∈ Ai, ai+1 ∈ Ai+1,∃aj ∈ Aj s.t. (. . . , ai, ai+1, . . .) ∈ R}
Example 7.2.2. Consider the cumulative reading of the sentence Exactly three
veterinarians gave at most three dogs at least five milkbones, which we formal-
ize as (= 3,≤ 3,≥ 5)cl(V,D,M,G) (see Figure 7.3). This is true in a model if
exactly three veterinarians (V ), at most three dogs (D), and at least five milk-
bones (M) participate in the giving relation (G). We can break this down
into the requirements that (1) exactly three veterinarians and at most three
dogs are in the relation and (2) at most three dogs and at least five milkbones
are in the relation, meaning (= 3,≤ 3)cl(V,D,G↾V,D)∧ (≤ 3,≥ 5)cl(D,M,G↾D,M ).
Each conjunct further decomposes into independent iterations: (= 3 ⋅ some)
(V,D,G ↾V,D) ∧(≤ 3 ⋅ some) (D,M,G−1 ↾D,V ) ∧(≤ 3 ⋅ some) (D,M,G ↾D,M)
∧(≥ 5 ⋅ some)(M,D,G−1 ↾M,D). To evaluate these, we must look at four differ-
ent strings:

τ2(V,D,G ↾V,D) =110 ⧈ 100 ⧈ 010⧈
τ2(D,V,G−1 ↾D,V ) =110 ⧈ 101 ⧈ 000⧈
τ2(D,M,G ↾D,M) =11010 ⧈ 00101 ⧈ 00000⧈
τ2(M,D,G−1 ↾M,D)=100 ⧈ 100 ⧈ 010 ⧈ 100 ⧈ 010⧈

If each of these strings is accepted by its respective iteration automaton, then
the cumulation is true in the model. As in the ⟨1,1,2⟩ case, we combine the
strings generated from the same two sets by gluing them together with a ⊠
symbol, and then glue these together with a new ⊕ symbol.

Definition 7.2.3. Let M = ⟨M,A1, . . . ,An,R⟩ be a model with R an n-ary
relation consisting of tuples (a1, . . . , an) with each ai from Ai. Define the trans-
lation function τ cln :

τ cln (a⃗1, . . . , a⃗n,R) = τ cln−1(a⃗1, . . . , ⃗an−2,R)⊕ τ cl2 ( ⃗an−1, a⃗n,R ↾an−1,an)
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Again, separating the subwords of each cumulation language is an easy way to
preserve determinism. It is not absolutely necessary that we introduce a new
symbol (⊕), as it was in the ⟨1,1,2⟩ case (⊠). Rather, it helps to maintain a con-
ceptual distinction between the cumulations that combine to form L(Q1,...,Qn)cl

and the iterations that combine to form them.

With relations of arity three and higher, it is possible to have “overlap” in a
restricted part of the relation: for example, if R contains the triples (a1, b1, c1)
and (a2, b1, c1), then R ↾B,C in a way contains the pair (b1, c1) twice. However,
observe that when this part of the relation is eventually encoded into 0’s and
1’s by τ , we achieve the same result as if only one a were in the relation with b1
and c1. Furthermore, this is precisely the result we want to achieve. This may
seem odd, for two related potential reasons:

(i) In natural language, the most common constructions involving a ternary
relation use verbs such as give, send, etc., and this somehow enforces a
linguistic prejudice for having distinct elements in the third spot.

(ii) Perhaps it is not due to the specific verbs we are used to seeing in these con-
structions, but moreso a dispreference for reading a sentence as a higher-
arity cumulation in general. It would be interesting to see what kind of
readings people are willing to attribute to sentences containing ternary,
quaternary, etc., relations.

Definition 7.2.4. Let Q1, . . . ,Qn be type ⟨1,1⟩ quantifiers. Define the language
of (Q1, . . . ,Qn)cl by:

L(Q1,...,Qn)cl = {w1 ⊕⋯⊕wn ∶ wi ∈ L(Qi,Qi+1)cl}
Definition 7.2.5. Let Q1, . . . ,Qn be type ⟨1,1⟩ quantifiers. Define their type
⟨1,1, . . . , n⟩ cumulation by:

(Q1, . . . ,Qn)cl(A1, . . . ,An,R)⇔
n−1

⋀
i=1

(Q1,Qi+1)cl(Ai,Ai+1,R ↾Ai,Ai+1)

Definition 7.2.6. Let Q1 through Qn be DFAs accepting the monadic quantifier
languages LQ1 through LQn , respectively. Construct Ai+1i = (Qi,Qi+1)cl for 1 ≤
i ≤ n − 1. The cumulation DFA (Q1, . . . ,Qn)cl is given by:

• Q =
n−1

⋃
i=1
Qi+1i

• Σ = Σ2
1 ∪ {⊕}

• δ(q, x) =
⎧⎪⎪⎨⎪⎪⎩

δi+1i (q, x) q ∈ Qi+1i , x ≠ ⊕
si+1i q ∈ F ii−1, x = ⊕

• s = s21
• F = Fnn−1

Theorem 7.2.7. The language accepted by the DFA (Q1, . . . ,Qn)cl is L(Q1,...,Qn)cl .
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Proof. Let Ai+1i denote (Qi,Qi+1)cl.
(⊆) Suppose w ∈ L(Q1,...,Qn)cl . Then w = w1 ⊕⋯⊕wn with wi ∈ L(Ai+1i ). Thus

δ(si+1i ,wi) = f i+1i ∈ F i+1i for each i ≤ n − 1, and δ(f i+1i ,⊕) = si+2i+1 for each
i ≤ n − 2, so δ(s,w) ∈ F .

(⊇) Suppose δ(s,w) ∈ F . By construction, any path from s to some f ∈ F
consists of s21⋯f21 ⊕⋯⊕ snn−1⋯fnn−1, with each f i+1i ∈ F i+1i . Clearly w must
consist of Wi ∈ L(Ai+1i ) followed by ⊕ (with no ⊕ after wn).

Summary and Open Questions

In this chapter we saw how to construct automata recognizing the cumulation
of two or more regular quantifiers. We had to use a different definition for our
translation function, allowing both R and R−1. In Section 4.1 we asked how
adding power to the translation function changes the complexity of a polyadic
quantifier. The results of this chapter yield at least this much of an answer:
if we use τ cl2 (τ cln ) in lieu of τ2 (τn), cumulations of regular quantifiers are
DFA-computable. Defining this new τ cl2 is the natural definition to analyze the
cumulation (Q1 ⋅Q2)cl as the sequential composition of Q1 ⋅ some and Q2 ⋅ some,
since the latter must use the inverse relation.

Question 7.2.8. Are cumulations of regular quantifiers still DFA-computable
if we use the original τ2? This would require counting Q2-many 1’s in distinct
positions in subwords. Already for cumulation, the “easy” irreducible lift, we
encounter the need to identify symbols in different subwords, which does not
make sense if we cannot enforce a uniform length restriction on subwords.

Question 7.2.9. If cumulations of regular quantifiers are not DFA-computable
using τ2, how much more computing power is required? Can we adequately
count those 1’s with a stack, or are cumulations not even context-free?

More generally:

Question 7.2.10. What kind of automata are needed to analyze the polyadic
lifts we have yet to discuss in detail (resumptions, reciprocals, branching, etc.)?
Does extending τ2 go some distance toward reining them in?

We hope to shed some light on these questions in the next chapter.

Finally, on a more technical note:

Question 7.2.11. We introduced extra separator symbols in defining τ cl2 . Are
they strictly necessary to define cumulation DFA? Can we give a construction
from two or more minimal DFA to a minimal cumulation DFA without these
extra symbols? Would this change affect the cumulation closure of DCFLs?
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It’s not clear to us that such a general definition, in the spirit of the other con-
structions of this thesis, can be given. Definitively deciding that this is or is not
the case may be an interesting problem.1 However, cumulation automata with-
out transitions for separators indicating the difference between the translation
of R and the translation of R−1 do not really have the model-recognition power
that we desire. They would accept all the strings that are actually translations
of models in which the cumulation is true, but also possibly more: there would
be no way to enorce that a subword corresponding to part of R−1 cannot count
as a witness of Q1 ⋅some. This question of how tightly the language of a semantic
automata should correspond to all and only the models in which the quantifier
is true is also taken up again in the next chapter.

1If one did undertake such an endeavor, HaLeX, the tool discussed in Appendix A, would
likely be indispensable for generating a multitude of correct examples from which to generalize.
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Chapter 8

Toward A Novel
Characterization of the
Frege Boundary

In this chapter we propose that the main project of this thesis, extending the
semantic automata model, provides an interesting medium for reconsidering re-
sults about quantification concerning the Frege boundary. The Frege boundary
demarcates the line between reducible and irreducible polyadic quantifiers. His-
torically, the boundary bears the appellation of Frege because he introduced the
familiar notion of quantification to modern logic. He was the first to give any
satisfactory analysis of multiple quantification, by simply taking every instance
of multiple quantification to be an iteration. Van Benthem [6] calls this “solving
the problem by ignoring it,” since on this view we can give an account of any
polyadic quantifier in terms of simple monadic quantifiers. Thus these polyadic
quantifiers that can be analyzed as iterations of monadic quantifiers are deemed
reducible, or simply Fregean. Those that can be given no such analysis are
irreducible or non-Fregean, and may be considered genuinely polyadic.

Recall the overview of polyadic quantification in Section 2.1.2. Iterations repre-
sent a kind of default, the “bread and butter” of multiple quantification in nat-
ural language. In logical notation, (Q1 ⋅Q2)(A,B,R) is simply Q1aQ2bR(a, b).
It’s as “easy” as prefixing Q2 by Q1, and thus iteration is monadically defin-
able: this is the sense in which the lift is not taken to be genuinely polyadic.
The other lifts we looked at–cumulation, resumption, reciprocals, branching,
and let us now add constructions containing same and different, among others–
are generally not reducible to iterations. See Westerst̊ahl [56] for the results
that cumulation, resumption, and branching are only iterations for very simple
choices of monadic quantifiers, like some and every. For example, the cumula-
tion (Q1, . . . ,Qn)cl is an n-ary iteration if and only if, on every model where
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it is non-trivial, Q2 through Qn are all some. Consider (five, some)cl, true if
both five ⋅ some holds of R and some ⋅ some holds of R−1: the first conjunct
already implies the second. In general, if we write the truth conditions of an
irreducible polyadic quantifier in terms of the relation R, they somehow de-
pend on the set Ra for multiple a “at once,” not fitting the iteration definition
Q1(A,{a ∶ Q2(B,Ra)}).
Now that we may discuss polyadic quantification from an automata and formal
language perspective, we find there is actually an as-yet unanswered question
with respect to the well-studied Frege boundary, namely: where is the Frege
boundary located in the Chomsky hierarchy? In this chapter we take the first
steps toward locating the analog of this boundary for languages of genuinely
polyadic quantifiers.

Linking the Frege boundary to the Chomsky hierarchy, given the practical reper-
cussions of identifying the automata complexity of a natural language quantifier
(see Section 9.1), may further elucidate how we might interpret the original re-
sults. The boundary tells us whether some polyadic quantifier is essentially
monadic, but doesn’t have anything to say about how complex those constitu-
tents are, or how their complexity may contribute to that of the iteration1, but if
some irreducible quantifier language is particularly easy or particularly difficult
to recognize or learn (as demonstrated by its corresponding automata model),
we have independent reason to care that natural language contains genuinely
polyadic quantification.

First we present an overview of the evolution of Frege boundary characteri-
zations, alongside reformulations of those results in terms of the vocabulary
for polyadic quantifier languages that we have developed in this thesis. This
makes it possible to talk about the languages and automata of quantifiers as
themselves reducible or irreducible, and also reveals some assumptions and dif-
ficulties underlying the very project of extending the semantic automata model
to the polyadic realm. We motivate the claim that, under those assumptions, ir-
reducible languages are not context-free (a very conservative lower bound). We
discuss the difficulty of finding a general theorem characterizing such languages
that does not make so many assumptions, using our reformulations to discuss
the problems faced by such a search in precise language.

1Says van Benthem, “The central issue is whether or not certain polyadic patterns have a
natural decomposition into their unary components–and not so much whether they are first-
order definable. Indeed, not all Fregean iterations are first-order, nor all genuine polyadic
higher-order” [6].
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8.1 A Brief History of the Boundary and Refor-
mulation of Reducibility Results

To facilitate discussing the Chomsky analogue of the Frege boundary in a precise
way, we now translate the notions used in results about reducible quantifiers
into notions about languages. Study of the Frege boundary began around the
same time as that of semantic automata. The first characterization, from van
Benthem [6], appeals to the invariance properties of relations of which reducible
quantifiers hold. A characterization of a different flavor, based on the behavior of
a quantifier on relations that are cross-products, comes from Keenan [29].2 This
is generalized and given some intuitive oomph by Dekker [12], and generalized
yet further by van Eijck [14].3

Membership above the Frege boundary is determined by contrast with member-
ship below the boundary: a quantifier equivalent to one or more iterations of
simple quantifiers is Fregean, and everything else is irreducible. Thus we have
the following for the formal definition of reducibility:

Definition 8.1.1. ([29],[12]) For a quantifier Q of type ⟨2⟩, call Q reducible if
and only if there are type ⟨1⟩ quantifiers Q1 and Q2 such that Q = Q1 ⋅Q2. For
Q of type ⟨n⟩, call Q n-reducible if and only if there are type ⟨1⟩ quantifiers
Q1, . . . ,Qn such that Q = Q1 ○ ⋯ ○Qn.

We will define reducibility for languages as being equivalent to the right kind of
substitution. Recall (Section 5.2.1) that we say a string is of the form ⧈n if it
is in ((⋯(((0 + 1)∗⧈1)∗⧈2)∗⋯)⧈n)∗ . By extension, we say a language is of the
form ⧈n if all of its members are of the form ⧈n.

Definition 8.1.2. Say LQ of the form ⧈1 is reducible if LQ = s(LQ1) where
s(0) = ¬LQ2⧈1 and s(1) = LQ2⧈1, with LQ1 and LQ2 binary quantifier languages.
Say LQ of the form ⧈n−1 is n-reducible if LQ = s(LQ1○⋯○Qn−1) where s(0) =
¬LQn⧈1, s(1) = LQn⧈1, and s(⧈i) = ⧈i+1, with LQn a binary quantifier language
and LQ1○⋯○Qn−1 (n − 1)-reducible.

Steienert-Threlkeld [45] shows that for regular (deterministic context-free) LQ

of the form ⧈1, it is decidable whether the language is reducible to the iteration
of two binary regular (deterministic context-free) languages. He further conjec-
tures that this problem is undecidable if LQ is (non-deterministic) context-free,
since the positive results depends on the decidability of testing language equiv-
alence.4

2See also [28] for a kind of toolkit of theorems that are precursors to his more general
characterization.

3For this section we break with the variable-naming notation in the literature for read-
ability and consistency with the rest of the thesis. However, note that we do switch between
quantifiers of type ⟨2⟩ (or ⟨n⟩) and ⟨1,1,2⟩ (or ⟨1, . . . ,1, n⟩) in reformulating the results, but
recall that for CE quantifiers, we can convert from one to the other by relativization or freezing
(Section 2.1.1).

4We do not go into more detail since we are here interested in a different question: given
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We proceed chronologically, beginning with van Benthem’s characterization,
based on the properties of logicality and right-orientation:

Theorem 8.1.3. ([6]) On any finite universe, a binary quantifier Q is a right
complex (a Boolean combination of of iterations) if and only if it is both logical
and right-oriented.

A quantifier is logical if closed under permutations of individuals: R ∈ Q if and
only if π(R) ∈ Q. If S = π(R), we write S ≈ R and say Q is closed under ≈.
A quantifier is right-oriented if closed under ∼, where we write R ∼ S if for all
x, ∣ Rx ∣=∣ Sx ∣. This corresponds to preserving the entire arrow pattern of a
relation, and preserving the outgoing arrow pattern of a relation, respectively.5

a1

a2

a3

b1

b2

b3

R a1

a2

a3

b1

b2

b3

S

Figure 8.1: Illustration for Example 8.1.4

Example 8.1.4. See the relations depicted in Figure 8.1. Since ∣ Ra1 ∣=∣ Sa1 ∣,
∣ Ra2 ∣=∣ Sa2 ∣, and ∣ Ra3 ∣=∣ Sa3 ∣, we have R ∼ S. This means that if a binary
iteration (and more generally, a right complex) holds of R, it must also hold
of S (and vice versa). Observe that for instance the iterations every ⋅ some and
three⋅exactly one hold of both R and S, while every A R’s different B holds of
R but not S and every A R’s the same B holds of S but not R.

In order to state the invariance properties of logicality and right-orientation
in terms of languages, we must assume that subwords have the same length.
Hence we give a more restricted notion of quantifier language, which amounts
to requiring that every string is actually the translation of some model.

Definition 8.1.5. Let Q be a type ⟨1,1,2⟩ quantifier. Let Ln,m be the set of

strings τ2(a⃗, b⃗,R) for (A,B,R) ∈ Q such that n =∣ A ∣ and m =∣ B ∣. Then strings
of Ln,m are of the form (wi⧈)n with ∣ wi ∣=m for all i. The language of Q is:

L = ⋃Ln,m for n,m ∈ N ∪ {0}
Definition 8.1.6. Let w ∈ Ln,m for some n and m. Set w′ � w if there exists
π = πn ∪πm (where πn and πm are independent permutations on {1, . . . , n} and
{1, . . . ,m})6

that a language is not reducible, how hard is it?
5Throughout we assume permutations apply to the domain and range of the relation sepa-

rately, which we continue to denote with A and B, for ease of definition, but it’s not essential.
6The idea is that the domain and range of the translated relation do not change. For, e.g.,

reciprocals, which are defined on a single set, there should be a single permutation.
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such that for all wi:

wi[j] = w′
πn(i)

[πm(j)]
Say Ln,m is logical if closed under �, and L is logical if Ln,m is closed under
� for all n and m. Logicality for languages of polyadic quantifiers does not
quite amount to permutation closure, as it did in the monadic case. Instead,
entire ⧈-ended chunks may be moved around, and individual symbols within
each ⧈-ended chunk may be moved around (uniformly). Call the former an
outer permutation, corresponding to a shuffle of individuals in A, and the latter
an inner permutation, corresponding to a shuffle of individuals in B.

Definition 8.1.7. Let w ∈ Ln,m for some n and m. Set w′ ⌣ w if there exists
π ∶ {1, . . . , n} → {1, . . . , n} such that #1(w′

i) = #1(wπ(i)) and ∣ w′
i ∣= m for all

i ≤ n. Say Ln,m is right-oriented if closed under ⌣, and L is right-oriented if
Ln,m is closed under ⌣ for every n and m.

Example 8.1.8. The models in Figure 8.1 yield the strings w = 100⧈010⧈001⧈
and v = 100⧈100⧈100⧈ respectively. The string w is in L3,3 for the language of
three ⋅ exactly one (for instance). Since that is a logical quantifier, we know that,
for example, w′ = 010⧈ 001⧈ 100⧈ is also in L3,3 since each w′

i is obtained from
wi by the inner permutation π ∶ i→ (i mod 3)+1 with the identity mapping for
the outer permutation (for example). Thus w′ � w. Moreover, since three⋅exactly
one is reducible by definition, we know v is in L3,3 even though there are no
permutations by which v is obtained from w. L3,3 is closed under ⌣, and each
vi has the same number of 1’s as wi.

But now consider these same strings and the language of (three, same), which
is true of a model (A,B,R) if and only there are a1, a2, a3 and b such that
(a1, b), (a2, b), and (a3, b) are in R.7 This quantifier is still logical, and thus
does not distinguish between w and w′ (rejecting both), but it does distinguish
between w and v, hence lacking right-orientation, due to the requirement that
b be identical in the three witnesses.

Van Benthem’s theorem holds for local (on a particular finite universe) defin-
ability, but can be used to refute definability on any universe.8 We illustrate
the difference between unary compounds and iteration with an example from
Westerst̊ahl [56].

Example 8.1.9. Res2(at least n) is a right unary complex, but not an iteration,
for all n ≥ 2. This type ⟨2⟩ resumption expresses that a relation R contains at
least n pairs:

Res2(at least n)(R)⇔
7The exact semantics are debatable, but constructions containing same can take on a wide

variety of meanings while remaining irreducible.
8Thus this characterization cannot be used to show that a given resumptive quantifier or

constructions with the same number of are irreducible, since these are right-oriented, and
indeed definable on particular universes by enumerating the possibilities, while not being
generally expressible on arbitrary universes.
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⋁
1≤k≤n−1

((exactly k ⋅ some)(R)∧ ∣ R ∣≥ n) ∨ (at least n ⋅ some)(R)

If the second disjunct holds, then we know R has at least n pairs because there
are at least n different individuals in its domain. If the first disjunct holds,
then there are k < n different individuals in the domain of R, and some of them
must be in the relation with multiple individuals in the domain–so we must
write this disjunct as a unary complex. For each k, we simply enumerate the
possible iterations, which are all the partitions of n with k parts. Thus we
replace the first disjunct with (exactly k ⋅ some)∧ (ψ1 ∨⋯∨ψr) for each k, where
the ψi are the right complexes enumerating the possibilities. For example, for
n = 10 and k = 6, one of the partitions is 3+3+1+1+1+1, so one of the psi’s
will be (at least 2 ⋅ at least 3) (note that (at least 4 ⋅ at least 1) is implied by
(exactly 6 ⋅ some), so we don’t have to explicitly list that to know that R has at
least 10 pairs in this case).

Right-orientation implies logicality (if R ≈ S, then also R ∼ S, so if Q is closed
under ∼ it is also closed under ≈). We observe that the same holds for languages:
if w � w′, then of course w ⌣ w′, so if L is closed under ⌣ we can conclude it is
closed under �.

Indeed, it is easy to see that our definitions of invariance conditions on languages
fully capture the corresponding conditions on quantifiers.

Claim 8.1.10. Q is closed under ≈ (∼) if and only if its language L is closed
under � (⌣).

Proof. We show for w = τ2(a⃗, b⃗,R) and w′ = τ2(a⃗′, b⃗′,R′), (i) w � w′ ⇔ R ≈ R′

and (ii) w ⌣ w′⇔ R ∼ R′.

(i) Construct the permutation on A and B from the permutations on n and
m and vice versa using the indices from the enumerations a⃗ and b⃗.

(ii) This follows from the observation that by the definition of τ2 and τ ,
#1(wπ(i)) =∣ Rπ(ai) ∣=∣ R′

a′i
∣= #1(w′

i).

Note that cumulations are not right complexes. They are neither right-oriented,
nor left-oriented, but right-and-left oriented: Q has this property if R ∈ Q,
∣ Rx ∣=∣ Sx ∣, and ∣ yR ∣=∣ yS ∣ for all x, y, then S ∈ Q.9 Replacing right-orientation
by right-and-left orientation (left-orientation) in van Benthem’s theorem yields
reducibility to unary (left) complex.

Keenan provides a characterization that also applies to non-logical quantifiers
and relies on the interesting observation that if two reducible quantifiers behave

9
yR is the set of x such that (x, y) ∈ R, i.e. R−1y .
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the same on relations that are cross-products, they actually behave the same on
every relation (i.e. are equivalent).10

Theorem 8.1.11. (Type ⟨2⟩ Reducibility Equivalence, [29]) For reducible type
⟨2⟩ quantifiers Q and Q′, Q = Q′ if and only if for all subsets A,B of M , Q(A ×
B) = Q′(A ×B).
The following equivalent statement of the theorem provides a test for reducibil-
ity: if Q(A ×B) = Q′(A ×B) for all A,B ∈ P(M), and we know Q′ = Q1 ⋅ Q2,
then Q is reducible if and only if Q = Q1 ⋅Q2.

Dekker then generalizes this to quantifiers of arbitrary arity:

Theorem 8.1.12. (Type ⟨n⟩ Reducibility Equivalence, [12]) For type ⟨n⟩ quan-
tifiers Q and Q′ that are n-reducible, Q = Q′ if and only if for all subsets
A1, . . . ,An of M , Q(A1 ×⋯ ×An) = Q′(A1 ×⋯ ×An).
Again we can restate the theorem to conclude that if Q and Q′ have the same
behavior on cross-products and Q′ is reducible, then Q is reducible only if it
equals Q′. Dekker also defines Q to be invariant for sets in products if Q(A1 ×
⋯ × An) and Q(A′

1 × ⋯ × A′
n) imply Q(A1 × ⋯ × A′

i × ⋯ × An) and shows Q is
invariant for sets if and only if it is product equivalent to some Q′ = Q1○⋯○Qn.11

Furthermore, the proof actually constructs the Qi, widening the applicability of
the Keenan-style reducibility test by removing the problem that “maybe one has
not tried hard enough” to find the product-equivalent iteration for comparison.

Example 8.1.13. Consider the sentence Every professor wrote the same num-
ber of recommendation letters, formalized as (everyP ,same numberL)(W ). This
is product-equivalent to (everyP ⋅ everyL)(W ), since when W is a cross-product
relation, every p is always connected to every l, and thus incidentally every
p is connected to the same number of l. Since these quantifiers are not the
same (take a model in which every p is connected to the same number of l, but
∣Wp ∣<∣ L ∣), (every,same number) is not reducible to any two unary quantifiers.

Dekker nicely sums up what cross-product characterizations tell us about iter-
ations:

Not only is this a new and welcome generalization, it also gives
some insight into the intimate relation between (n)-reducible type
⟨n⟩ quantifiers and n-ary product relations. If type ⟨n⟩ quantifier
Fn is (n)-reducible. . .then Fn is satisfied by Q1 × ⋯ × Qn iff each
composing fi is satisfied by Qi [12].

Van Eijck’s work ([14]) introduces the notion of (m,n)-reducibility, making it
possible to say something about polyadic quantifiers of type ⟨m + n⟩ that are

10We will stick to van Benthem’s properties in the rest of this chapter, but we present the
history and reformulations of cross-product characterizations for completeness.

11We can not find a natural language example where this is useful, but it is needed to show
that the property of a relation being symmetric, which is product-equivalent to no iteration,
is not reducible. A ×A and B ×B are symmetric, but neither of A ×B nor B ×A is [12].
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not fully (m + n)-reducible.

Definition 8.1.14. Q of type ⟨m,n⟩ is (m,n)-reducible if there are Q1 and Q2

of types ⟨m⟩ and ⟨n⟩ such that Q = Q1 ⋅Q2.

Van Eijck also defines the corresponding notions of reducibility equivalence and
invariance for sets in products. The striking consequence of generalizing re-
ducibility is the existence of a diamond property and normal form for quanti-
fiers, meaning reducibility is confluent: if a quantifier reduces to two different
iterations, these reducts must have a common further decomposition. If Q of
type ⟨m + n⟩ reduces both to Q1 ⋅Q2 (of types ⟨m⟩ and ⟨n⟩) and to Q′

1 ⋅Q′
2 (of

types ⟨m′⟩ and ⟨m+n−m′⟩), then there exists Q3 (of type ⟨m′ −m⟩) such that
Q = Q1 ⋅Q3 ⋅Q′

2.

Q

Q1 ⋅Q2 Q′
1 ⋅Q′

2

Q1 ⋅Q3 ⋅Q′
2

Figure 8.2: Van Eijck’s Diamond Property

Example 8.1.15. Consider the sentence Every teacher assigned different stu-
dents different problems analyzed as the type ⟨3⟩ quantifier (everyT , differ-
entS ,differentP ) applied to the assign relation, and let 0 denote the unary
quantifier that is false of every set. By Dekker’s results we can see this is
not fully 3-reducible, since it is equivalent to every ⋅ 0 ⋅ 0 on cross-products (i.e.
it is true of no cross-product), but obviously is not generally equal to every ⋅0 ⋅0,
since we can construct non-cross-product relations on which it is true. However,
by van Eijck’s results we can also state a positive result, that it is in fact (1,2)-
reducible, equivalent to every⋅(different,different). Further, we know it cannot
also be (2,1)-reducible to some type ⟨2⟩ Q1 and type ⟨1⟩ Q2, or else by the
diamond property there would exist some type ⟨1⟩ Q3 making it 3-reducible to
every ⋅Q3 ⋅Q2, a contradiction.

To translate the characterizations based on cross-product behavior, define the
languages CROSS − PROD⧈n = {(⋯((1∗⧈)∗⧈2)∗⋯⧈n)∗}. For example, in the bi-
nary case we use CROSS − PROD⧈1 = {(1∗⧈1)∗} which is equivalent to every ⋅ every.
Then we can restate reducibility equivalence as:

Claim 8.1.16. Let L and L′ be the languages of type ⟨2⟩ quantifiers Q and
Q′, respectively, where it is known that Q = Q1 ⋅ Q2 is reducible. If L ∩
CROSS − PROD⧈1 = L′∩CROSS − PROD⧈1 , then if L′ ≠ L, Q′ is not reducible. In
general, for Q and Q′ of type ⟨n⟩ and Q (n)-reducible with L∩CROSS − PROD⧈n
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= L′ ∩ CROSS − PROD⧈n , Q′ is reducible if and only if L′ = L.

8.2 Genuinely Polyadic Quantifier Languages are
Not Context-Free

In trying to characterize the languages of non-Fregean quantifiers, it is almost
immediately clear that, at minimum, they cannot be context-free. For the lan-
guage of a non-Fregean quantifier to even make sense, two things must happen:
(1) the subwords must all have the same length, and (2) the indices of the sub-
words must be related. (2) demands that (1) be the case, but (1) on its own is
bad enough for context-freeness. A simple pumping lemma argument demon-
strates that no language with an arbitrary number of equal-length subwords is
context-free.

Fact 8.2.1. Let L be any language over Σ = {0,1,⧈} with the requirement that
for every w ∈ L, w has the form (wi⧈)∗ with wi ∈ {0,1}∗ and ∣ wi ∣=∣ wj ∣ for all
i, j. L is not context-free.

Proof. Assume L is context-free. Then by the pumping lemma for context-free
languages, there is a constant p such that for every w ∈ L, w can be written as
uvxyz where:

(i) ∣ vxy ∣≤ p
(ii) ∣ vy ∣≥ 1

(iii) uvjxyjz ∈ L for all j ≥ 0

Let w = ((0 + 1)pm⧈)n for any n ≥ 3 and pm ≥ p such that w ∈ L (in case L is
empty for some choices of superscripts). Then w = uvxyz where v and y can
be removed or repeated any number of times to result in another string in L..
Since n ≥ 3, the result of pumping w can only be another string in L if each of
v and y is ε or consists of exactly one or more entire subwords wi⧈ (if n were
1, the longer or shorter subword might be in L; if n were 2, x and y could be
on either side of the first ⧈ and again potentially result in another string of
L). But by (ii) at least one of them is not ε, and by (i) neither is long enough
to cover a whole subword. Thus pumping must result in at least one subword
that differs in length from the rest, so we have a contradiction, and L is not
context-free.

However, it is unclear exactly how this fact can or should be used to decide
the complexity of irreducible quantifier languages. We cannot otherwise make
adequate sense of their meaning, but on the other hand, we only ever wish to
evaluate strings having this property, for any kind of quantifier (that is, having
equal-length subwords is a necessary by-product of being a model translation
generated by τ2). The languages of iterations allow subwords of varying lengths
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because we can identify them with the languages of DFA and (D)PDA, which can
impose no such restriction. If we require that strings both satisfy the constraint
imposed by the quantifier and are actually proper translations of models, no
polyadic quantifier is context-free. For the sake of investigation and perhaps out
of fairness, we for the moment take this property as given and seek a different
method to show non-context-freeness.

One may object at this point that it makes perfect sense to relax the equal-
length assumption in defining right-orientation, which after all only depends on
the number of 1’s in subwords, and not where they occur; thus, “spill-over”
strings that don’t belong to any particular Ln,m but satisfy the binary relation
defining the quantifier are still meaningful in iterated languages, and right-
orientation implies logicality, so we should take the equal-length requirement on
irreducible languages at face-value and rest satisfied. There are two responses
to this objection. First, the problem with relaxing the length assumption is
that we lose the tidy correspondence with models. It is implicit that R and
S are defined on the same sets when we write ∣ Rx ∣=∣ Sx ∣ in the definition of
right-orientation of a quantifier. There is no possibility of reverse-engineering
a model from a string with unequal subwords. Second, and related to the first
response, sometimes these “spill-over” strings are meaningful when intuitively,
they should not be. Perhaps it is fine to have “extra” 0’s in subwords of strings
in Levery⋅some, but every symbol counts in subwords of strings in Levery⋅half–so
what do we make of those strings?

Moving onward, can we make anything of the requirement that the symbols of
subwords at the same indices can be taken to indicate the same elements of
B? How can we formalize the sense in which the indices must “match”? As
we saw in the previous section, a language’s depending on the actual indices
of the 1’s rather than their numerosity amounts to having logicality closure
while lacking right-orientation closure. Context-free languages can only enforce
dependencies between two parts of a string, and these dependencies must be
non-crossing–that is, they limit cross-serial dependency and allow unbounded
dependency only if nested. That is why, for example, {anbncmdm ∶ n,m > 0} and
{anbmcmdn ∶ n,m > 0} are CFLs but {anbncn ∶ n > 0} and {anbmcndm ∶ n,m > 0}
are not. Any kind of relation between indices of subwords requires an arbitrary
number of dependencies across arbitrarily many parts of the string, which are
moreover necessarily crossing. But do we really want to require that all the
symbols at index 1 are related, and all the symbols at index 2, and so forth, for
an unbounded number of symbols at an unbounded number of indices? Simply
put, that seems too hard. Moreover, reducible languages are also logical! Their
possessing the stronger property of right-orientation removes the need to enforce
logicality, and we don’t know that there is not some similarly stronger property
mitigating the requirement of logicality for irreducible languages. It is too simple
to say that the property of logicality results in such a severe restriction.

90



8.3 Approaching a General Theorem for a Lower
Limit

As we saw in Section 8.2, it is obvious that languages of non-Fregean quantifiers
are not context-free, but that this requires some assumptions which may be
unfair to make only of irreducible languages. We seek a theorem for a Chom-
sky hierarchy characterization that exhaustively covers all irreducible quanti-
fier languages without overstating those assumptions. Note that a case-by-case
analysis is all the more daunting, since there is great diversity in the kinds of
constructions leading to irreducible quantifiers (see e.g. Keenan’s [28] and [29]
for examples of the many variations).

Let’s observe just how difficult it is to state some of these irreducible quanti-
fier languages consisting of strings generated by τ2. In the following, let it be
assumed that all w are of the form (wi⧈)∗ with wi ∈ {0,1}∗ and ∣ wi ∣=∣ wj ∣,
define Iw = {1, . . . , ∣ wi ∣} (the set of indices of w’s subwords) and Iwj = {i ∈ Iw ∶
wj[i] = 1} (the set of indices at which wj has a 1).

• Cumulation: A string is in the language of the cumulation of Q1 and Q2

if it is in the language of Q1 ⋅ some and there are Q2-many 1’s in distinct
indices among the subwords.

L(Q1,Q2)cl
= {w ∶ w ∈ LQ1⋅some and (∣ Iw −⋃ Iwi ∣, ∣ ⋃ Iwi ∣) ∈ Qc

2}
• A same construction: for simplicity, with the meaning of only the same

one. A string is in the language of (Q, same) if there are Q-many subwords
that all have a single 1 and at the same index.

L(Q,same) = {w ∶ ∃i ∈ Iw s.t. (∣ {wj ∶ Iwj = i} ∣, ∣ {wj ∶ Iwj ≠ i} ∣) ∈ Qc}
• Strong reciprocal: A string is in the language of RamS(Q) if there is a Q-

large subset of indices such that every subword corresponding to an index
in the set has 1’s at all the other indices in the set.

LRamS(Q) = {w ∶ ∃IQ ⊆ Iw s.t. ∀i ∈ IQ, wi[IQ − i] = 1

and (∣ Iw − IQ ∣, ∣ IQ ∣) ∈ Qc}
The preceding definitions depend on the indices of the 1’s in each subword, and
thus on the identities of the b ∈ B they represent (in a relative sense: conditions
on indices in multiple subwords means that there are comparisons between b ∈ Ra
and b ∈ Ra′ for distinct a and a′).12 It’s clear that none of these languages are
PDA-computable: even if a PDA could use its stack to track the relevant index
information of one subword, it would have to pop its stack to compare against
indices of the next subword, thus “forgetting” the important information after
two subwords.

12Don’t be fooled by the language of cumulation: the ⋃ operation obscures the fact that it
is the cardinality of the set of distinct indices that determines language membership, and not
cardinality simpliciter.
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Now we state the conclusion of Fact 8.2.1–languages of irreducible quantifiers
are not context-free–in terms of the terminology introduced in Section 8.1 and
investigate whether this lends insight into the possibility of a formal proof that
takes equal-length subwords for granted and demonstrates non-context-freeness
by other means, based on the lack of anonymity of symbols of subwords (but
without outright requiring an arbitrary number of cross-serial dependencies).

To state this using the terminology created for van Benthem’s reducibility char-
acterization, we have to weaken the statement to apply to right complexes in-
stead of iterations. That is, if a (logical) type ⟨1,1,2⟩ quantifier Q is not a
Boolean combination of iterations, then it is not context-free. Equivalently, if
Q is context-free, then it is right-oriented, hence a right complex (possibly an
iteration). In terms of languages:

If LQ is closed under � and context-free, then LQ is also closed under ⌣.

Toward proving this, take an arbitrary irreducible quantifier language L over
{0,1,⧈}. L is closed under � by virtue of being a quantifier language. Suppose
there are n,m ∈ N ∪ {0} and w,w′ such that w ⌣ w′ (and w /� w′) but w ∈ Ln,m
while w′ /∈ Ln,m. So we have:

1. every v s.t. w � v is in Ln,m (thus, in L)

2. every v′ s.t. w′ � v′ is not in Ln,m (thus, not in L), or else w′ would be

3. and yet, w ⌣ w′

Can we show L is not context-free, based on these facts alone? We think it
is possible to prove in this manner: intuitively, there is no way to enforce the
invariance property of logicality in a context-free language unless it is in fact
just a side-effect of right-orientation. This is indeed the case for iterated lan-
guages: we may infer logicality from right-orientation. It’s not at all clear how
to enforce logicality as a stand-alone property of a language. Perhaps there is
also some simpler way of inferring logicality of irreducible languages–another
general invariance property similar to right-orientation for iterated languages,
or a more informative or otherwise more clever translation function.

One such potential general property relates to compositionality. Every polyadic
quantifier language seems to involve a “normal” quantifier that restricts the first
set in the argument.13 We witness this in the sample definitions we gave above
for cumulation, same, and strong reciprocal languages: the first quantifier in the
lift places some requirement on the number of ⧈-ended subwords that satisfy
some property. For iterations, that property is being in (or not in) the language

13Says Keenan, “One observation which may lead to a stronger constraint on the expressible
quantifiers of type ⟨1,1,2⟩ is the following: So far at least all the expressions (d, d′) which
induced quantifiers of that type are ones in which d is itself at least homophonous with a
standard quantifier. We may in these cases then think of d′ as denoting a function mapping
standard quantifiers (of type ⟨1,1⟩) to ones of type ⟨1,1,2⟩. Moreover the functions we need
here (so far at least) appear fairly highly constrained” [28].
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of the second quantifier, making the subwords independent of each other, and
allowing us to write the iterated language as a substitution.

Thus in a lift resulting in a type ⟨1,1,2⟩ quantifier, which we will write very
generally as (Q, F ) with language L, LQ seems to contribute the same meaning
(requiring a certain number of witnessing subwords, and in no particular order)
to L regardless of whether L is reducible or irreducible. LQ supplies that mean-
ing to an iterated language by being substituted into. Can LQ supply that same
meaning to an irreducible language without the result being a substitution? If
we knew that every polyadic quantifier language is essentially a substitution,
we might try to show non-context-freeness of non-Fregean languages by proving
that any logical context-free quantifier language over {0,1,⧈} is a substitution if
and only if it’s an iteration. In any case, the uniformity of the constraints placed
by LQ should be further explored as additional information from which to derive
a general theorem about the Chomsky complexity of irreducible languages.

Summary and Open Questions

In this chapter we reviewed how various characterizations of the Frege boundary
have built upon each other over the years, and how we can link the boundary
with the semantic automata paradigm by translating those results into state-
ments about languages. We argued that irreducible languages are at least non-
context-free, but that it is difficult to formally prove this claim without making
assumptions that might rightly be made of any polyadic quantifier language.
This chapter opens up many interesting questions to explore in future research.

Question 8.3.1. The Frege boundary is above context-freeness in the Chomsky
hierarchy, but where exactly is it?

Question 8.3.2. Reducibility to unary components and irreducibility are bi-
nary (yes or no) notions, but irreducible languages probably come in different
flavors of difficulty. How can we further stratify languages of irreducible polyadic
quantifiers in terms of the Chomsky hierarchy?

Maybe Chomsky hierarchy characterizations could be more easily obtained by
finding suitable automata models, as this is often somehow more intuitive, espe-
cially given that it’s not obvious how to go about finding non-iterated grammars
for polyadic quantifier languages. For example, a queue automaton (an automa-
ton with the functionality of a PDA, but with the first-in-last-out queue data
structure in lieu of the first-in-first-out stack data structure) seems an appro-
priate way to handle the cross-serial dependencies we encountered. But that
already yields far too much computing power: a queue automaton is Turing
universal!14

14That equivalence is a common introductory theory of computation exercise; see for exam-
ple Exercise 3.14 in [44].
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Question 8.3.3. The representation of a problem plays a crucial role in its
difficulty. How does representation, i.e. the translation function for models,
affect difficulty here?

For example, we saw in Chapter 7 that the cumulation of regular quantifiers
is DFA-computable given a strengthening of τ2 that allows translation of R−1.
Conversely, in this chapter we saw that restricting model representations with
τ2 makes the cumulation of two regular quantifiers not even context-free.15 Of
course, there is no mandate that we must use τ2. It makes sense that τ2 perfectly
captures the information relevant to recognizing an iteration–it is the natural
extension of τ , and iteration is the natural extension of monadic quantification.
Are there ways of representing models that are more appropriate to recognizing
irreducible quantifiers, corresponding to the use of R−1, R∗, or some entirely
different possibility? How would the languages of specific quantifiers be affected
by such extensions, and how would the Frege boundary move up or down the
Chomsky hierarchy as a result? We further consider the importance of these
questions in Section 9.2.2, where we suggest the centrality of representations to
continuing to extend the semantic automata model to other types of polyadic
quantification.

15That is, any fully general operation on DFA for regular quantifiers resulting in an au-
tomaton for their cumulation cannot yield a PDA; the introduction to this chapter shows that
some non-trivial but “easy” cumulations are in fact iterations.
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Chapter 9

Practical Relevance and
Future Work

9.1 Applications

9.1.1 Model Checking

Verification tasks have long been used in cognitive science in an attempt to
study the neural and psychological representations of generalized quantifiers.
Such tasks are basically model-checking: presented with a visual scene and a
quantified sentence describing it, people are asked to judge whether the sentence
is true of the scene. Controlling for features of the scene, scientists can study
how particular semantic features affect processing by measuring response time,
accuracy, and activation in particular brain regions among other things.

Verification Studies Using Monadic Semantic Automata

McMillan et al. [34] were the first to investigate the neural bases of generalized
quantifier comprehension by observing patterns of neuroanatomical recruitment
using BOLD fMRI while people assessed the truth-value of a quantified sentence
paired with a pictorial scene. McMillan et al. concluded that higher-order quan-
tifiers such as even and most recruit the prefrontal cortex, including executive
resources like working memory, while first-order quantifiers like some and at
least three do not, but that both recruit the right inferior parietal cortex (indi-
cating a numerosity component). They further claimed that this maps onto the
distinction between DFA and PDA, the former being memoryless while the lat-
ter possesses memory in the form of a stack. Their subsequent study [35] further
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supported that automata-based properties of quantifiers are related to the ac-
tual neural underpinnings of quantifier comprehension by studying people with
particular neurological diseases. They found that patients with FTD (fron-
totemporal demential) and AD (Alzheimer’s disease), which involve working
memory limitations, had a harder time understanding higher-order quantifiers,
while patients with CBD (corticobasal degeneration), which involves number
knowledge impairment, had more trouble than the other groups, for both kinds
of quantifiers.

Szymanik [48] points out that their interpretation of those results is not entirely
correct since, as we saw in Section 3.2, divisibility or parity quantifiers, while
not definable in first-order logic, are computable by (looping) finite automaton.
Thus parity and proportional quantifiers cannot be lumped together. Szymanik
and Zajenkowski [52] created studies to test whether there are interesting corre-
spondences between computational models and logical definability when all the
relevant distinctions are made. They compared the following three basic types
of quantifiers:

• FO-definable (Aristotelian and counting), computable by acyclic finite au-
tomata

• Parity (computable by finite automata with loops)

• Proportional (computable by PDA)1

Additionally, they chose a counting quantifier of “high-rank” (requiring counting
to at least seven or eight) based on the hypothesis that the number of states of
the automaton has a greater impact on resource recruitment than the existence
of loops. Fascinatingly, all the predictions based on structural dissimilarities in
the automata were actually attested in the response times of the verification
task. Proportional quantifiers required the longest time, followed by high-rank
cardinals, then parity, and finally Aristotelian. A subsequent study [53] also
demonstrated that proportional quantifiers place a higher demand on working
memory than parity quantifiers.

The qualitative difference between proportional and other quantifiers is further
corroborated by [57], finding that schizophrenic patients perform on par with
healthy subjects in verification tasks with the exception of proportional quan-
tifiers. This suggests the semantic automata model gives a partial explanation
of the combined working memory and language deficits observed in those with
schizophrenia. See also [58] and [59] for further research connecting the process-
ing of proportional quantifiers and working memory.

Next we move on to verification tasks involving multi-quantifier sentences and
whether semantic automata for polyadic quantifiers have similar predictive power.
But first, we list a few of the interesting open questions remaining concerning
the processing of simple quantifiers:

1In fact, every quantifier tested so far in this way has been DPDA-computable.
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Question 9.1.1. [52] found that, while high-rank cardinals were more difficult
than parity quantifiers, these two had the pairwise smallest difference among the
types of quantifiers tested. Could further studies decide conclusively whether
the number of states or the existence of loops has a greater effect on difficulty?
For example, it might be informative to study processing times for cardinal
quantifiers of even higher number, and parity quantifiers other than even and
odd.

Question 9.1.2. In light of Kanazawa’s recent characterization of nondeter-
ministic PDA (see Section 3.3), it would be interesting to compare processing
times for DPDA and NPDA-computable quantifiers (for instance, more than 1/3
versus more than 1/3 and less than 2/3 ). As it stands, it is unclear how to rec-
oncile the existence of semantic automata positing non-deterministic algorithms
with the deterministic nature of human cognition.

Predictions for Multi-quantifier Sentences Using Iterating Semantic
Automata

After the publishing of [46] proposing stack iteration automata (presented in
Chapter 4)–but before a general mechanism to generate iteration DFA was
known–Szymanik, Steinert-Threlkeld, Zajenkowski, and Icard III [51] took the
first steps toward answering whether iterated quantifiers actually utilize memory
as the stack construction predicts. In particular, they compared stack versions
of every ⋅ some and some ⋅ every with their minimal DFA versions, shown in Fig-
ure 9.1 (the only difference is that our depiction of every ⋅ some has a complete
transition function, so there is an “extra” dead state looping on every symbol).

⧈

1

1

⧈0

0,1 0

0, 1, ⧈

⧈

(a) every ⋅ some

⧈

0 0, 1⧈ ⧈

0, 1

⧈

1

0, 1

(b) some ⋅ every

Figure 9.1: Iteration DFA used in multi-quantifier verification study

They predicted that true instances of every ⋅ some would be harder than true
instances of some ⋅ every, since in the former case one must run through the
entire model to verify a sentence, and in the latter one need only find a single
witness. They further predicted that the opposite relationship would hold for
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false instances, since the negations of these iterations become some ⋅ none and
every⋅ not every, respectively.

Interestingly, their results were best explained by positing the stack model for
some ⋅ every and the DFA model for every ⋅ some. True instances of the latter
were indeed more difficult, but the expected relation for false instances was
not observed. Subjects took longer response time and were less accurate for
every. . .some sentences, while the study showed that only some. . .every sen-
tences engaged working memory. If their explanation is correct, it explains the
memory engagement observed for some. . .every sentences and suggests a strat-
egy resembling the DFA is less reliable than strategy resembling the PDA, which
is plausible.

It remains to be seen why these particular results were observed. Now that
a completely general method is known for constructing iteration DFA, more
empirical predictions comparing the stack and DFA versions may be made by
judiciously choosing from the whole gamut of regular iterations. Since differ-
ences were already observed when the iterated quantifiers were as simple as some
and every, we think there are likely interesting phenomena to observe by study-
ing (1) differences between combinations of different types of quantifiers and (2)
for a given type of combination, the difference between the two orderings.

Our initial suspicion was that the DFA model would be appropriate for most
simple applications, while a stack-like algorithm would be invoked for more
difficult sentences, under various possible interpretations of “difficulty.” We
might think that difficulty correlates with the number of states of the semantic
automata. Recalling that for Q1 ⋅ Q2 where ∣ Q1 ∣= m and ∣ Q2 ∣= n the stack
version has precisely m+n+ 1 states while the DFA version has on the order of
m ⋅ n states, the state-space of the latter becomes unwieldy when one or more
of the quantifiers is a high-rank cardinal. However, we also noted previously
that a computation of the stack version always takes more steps than its DFA
counterpart since it at least reads the entire input before processing its stack
contents. For this reason, we should expect a mechanism utilizing memory like
the stack version to take longer. This does not mesh with the conclusion of
[51]; however, studies may now be done with quantifiers with a wider range
of complexity (loops and state size) to see how response time and memory
recruitment vary. As Steinert-Threlkeld said in [46], “Indeed, a general notion
of complexity for automata in the context of language processing would be useful
in this context.”2

One potential issue with teasing apart the explanatory contributions of the
kind of iteration automata presented in this thesis and stack automata is that,
once iterations involve simple quantifiers that are already themselves DPDA-
computable, it is no longer a question of whether the proper model has a stack
or not (because even the version defined here must utilize a stack). There is

2Note that, for example, state-space is probably not a good metric for the complexity of
(Q1 ⋅Q2)stack, since there is no unique “minimal” PDA for a language.
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still a qualitative difference between DFA/DPDA iteration automata and stack
automata, which is more apparent if one considers the generalizations in Sections
5.2 and 5.3.

In [46], Steinert-Threlkeld comments on the finding that parity quantifiers,
which have both DFA and PDA representations,3 recruit working memory,
suggesting “This provides prima facie reason to believe that working mem-
ory will be recruited when processing sentences with multiple quantifiers each
computable by a DFA. This would show that the PDA [stack] representation
more closely resembles the actual processing mechanism.” We note this is not
necessarily the case. It could be that a good model is given by using the DPDA
representation of even in one of our definitions from Section 6.2 instead of using
either the DFA or DPDA representation of even in the stack model. Perhaps
eye-tracking studies could provide evidence for one or the other method when
memory-recruitment cannot be the distinguishing factor.

9.1.2 Formal Learning Theory

Formal learning theory studies, among other things, how people can come to as-
sociate meanings with words. In this domain quantifiers strongly contrast with
say, common nouns. We can imagine a young child learning the meaning of dog
through repeated association of actual dogs with utterances of dog (“semantic
bootstrapping”). It is unclear how the diverse situations across which a particu-
lar quantifier may be used in a sentence can contribute to learning its meaning.
The idea that quantifier comprehension involves knowing an algorithm to check
its proper application makes immense sense in this context.

Van Benthem already suggested the potential utility of the semantic automata
framework and Tree of Numbers for quantifier learning in [5]. In 1996, Clark [7]
demonstrated the learnability of FO-definable determiners due to the algorithm
L∗ proposed by Angluin in 1987, which allows for the learnability of any regular
set. The algorithm gives both positive and negative information, meaning the
procedure is controlled by a “minimally adequate teacher:” basically, the learner
is provided with counterexamples. The learner observes strings and builds an
“observation table” that can be transformed into the minimal finite automaton
accepting the language. L∗ is polynomially bounded in the number of states of
the minimal DFA and the size of the counterexamples provided by the teacher.

Noting that the set of FO quantifiers is indeed a “very proper” subset of the
regular languages, in [9] and [10] Clark gives a new proof of their learnability
that relies on the nice properties of these quantifiers. Input is in the form of a
sequence of pairs Det(A,B) and pairs (m,n) (points in the Tree of Numbers)
such that m =∣ A − B ∣ and n =∣ A ∩ B ∣, e.g. ⟨every(DOG,ANIMAL); (0,3)⟩.

3Of course, every DFA language is recognized by a DPDA that does not make use of its
stack; even can be recognized by a DPDA that tracks parity with a non-trivial use of its stack,
but only ever needs to store a single symbol.
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The output of the algorithm is the automata recognizing the language of Det:
“The learner converges (successfully learns) a quantifier denotation if she posits
an automaton that correctly accepts all and only the strings associated with
the quantifier’s set of points in the tree of numbers.” Since these quantifiers
are uniquely determined by the upper triangle above the Fräıssé threshold (see
Section 3.2), only a finite amount of input is required to distinguish Det from
the rest of the possible quantifiers. In fact, there are at most:

n

∑
j=0

j

∑
i=0

(j
i
), where n is the Fräıssé level

strings represented by the top triangle (we can simply enumerate them all);
since the positive instances are themselves distinguishing, there are even fewer
strings needed; if the learner knows the information is permutation-invariant,
there are fewer still. Moreover, there is an upper bound on the number of
potential automata4, and these may also be effectively enumerated (see Section
9.2.1) for remarks on this construction). Thus after a finite number of examples,
the learner will find the correct automaton.

Learnability of higher-order quantifiers is trickier, since there is not obviously
any finite part of the Tree of Numbers which is sufficient to tell them apart from
one another. Clark [10] does give the following formulation as a first step: the set
of higher-order determiners is learnable if they have finite Vapnik-Chervonenkis
dimension, meaning that there is a finite set of points in the Tree of Numbers
containing a data point for each determiner in the set that distinguishes it from
all the others (“shatters” the set of points).

Gierasimczuk [18] gives two criticisms of utilizing semantic automata in this
domain. One we have already mentioned in Section 1.2.3: these methods do
not distinguish between the capacity for comprehension and the capacity for
production. The former corresponds to model-checking: given M and φ, de-
cide whether M ⊧ φ; the latter corresponds to giving an adquate description
of a model: given M, produce φ such that M ⊧ φ [18]. These are equivalent
with respect to the descriptive power of the formalisms of grammars and au-
tomata, but research shows that verification is easier for people than generation.
The second has to do with inferential meaning, another prong of semantic com-
petence. Unlike referential meaning, which involves a procedure to decide or
directly verify the value of ϕ in any situation (like, e.g., a semantic automata),
inferential meaning draws on logical relationships among formula to determine
their truth value. If ψ ⇒ ϕ and we know ψ, we may conclude ϕ. The above
methods seem to lend no insight in this direction. Szymanik [49] discusses this
distinction with respect to complexity concerns: it may be that a sentence is
not directly verifiable because it is computationally intractable, yet we can infer
its truth indirectly from one or more tractable sentences.5

4The threshold is related to the pumping length of the language, which is the number of
states in the minimal automaton.

5Consider his example: If we know (1) most villagers are communists, (2) most townsmen
are capitalists, and (3) all communists and all capitalists hate each other (all of which are
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Some remaining open questions are:

Question 9.1.3. Can the learnability of higher-order, context-free quantifiers
be demonstrated? Is the problem easier if restricted to deterministic context-
free quantifiers?

Question 9.1.4. The learnability of regular iterated quantifiers follows from
L∗ as in [7], but is there also a Fräıssé-style argument demonstrating this?

Recall that that iterated languages take the form (wi⧈)∗. Using uniform strings
(with all the wi of the same length) is sufficient to tell them apart, so they could
be enumerated following a “zig-zag” pattern in the x − y plane where the point
(x, y) corresponds to strings of the language where #⧈(w) = x and ∣ wi ∣= y. And
as this thesis demonstrates, there is an effective procedure to build the minimal
DFA for an iterated quantifier. Is there a point (x, y) in this enumeration,
related to the Fräıssé thresholds for Q1 and Q2, such that once the learner has
seen that much (finite) input, she can identify the correct automaton?

9.2 Directions for Future Research

9.2.1 Generating FO Semantic Automata by Construction

In [9], Clark shows that the class of finite automata recognizing FO-definable
⟨1,1⟩ quantifiers can be constructed from a minimal set of acyclic finite au-
tomata. First he shows that the set of automata computing at least n for every n
is constructible. Let the “assembly” function6 @ take the minimal DFA M≥i and
M≥j computing at least i and at least j respectively, and return M≥i@M≥j = M≥i+j

computing at least i+j by (more-or-less) replacing the final state of the former
with the start state of the latter.

Then Mcard, the “basic cardinal automata” is the smallest set such that:

1. M≥1 ∈ Mcard

2. if M≥i,M≥j ∈ Mcard, then M≥i@M≥j ∈ Mcard

Closing Mcard under complement yields automata computing at most n (¬at least
n+1) for every n. At this point, the constructions have only produced minimal
DFA. Quantifiers exactly n and the other combinations of simple quantifiers
(i.e. Q1 and Q2, Q1 or Q2) are obtained by closing the set under union and
intersection. Finally, define the set BasicM = {⟨{M≥1,@⟩} ∪ {Mall}. Then MFO,

directly verifiable in polynomial time), we may infer that most villagers and most townsmen
hate each other, though directly verifying this conclusion, on its branching interpretation, is
an NP-complete problem. He proposes that NPTIME captures the indirect verifiability of
everyday language: given (or, non-deterministically guessing) some proofs or certificates of
the truth of a sentence (like (1)-(3) above), we can verify an intractable sentence in polynomial
time.

6We create a different symbol so as not to confuse notations.
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the set of automata computing FO-definable ⟨1,1⟩ quantifiers, is BasicM closed
under finite7 applications of @,¬,∪, and ∩.

He takes some pains to define the @ function instead of just taking the con-
catenation of M≥i and M≥j (which would be equivalent, but result in an NFA by
the standard sequential composition operation). In an earlier manuscript [8],
he gives similarly clever procedures for the intersection and union of two simple
automata M1 and M2, using the cross-product of their states. The procedure
for the intersection is the product construction, standard in the proof of inter-
section closure, requiring that the run of the input end in a state ⟨q, p⟩ where
q ∈ F1 and p ∈ F2. The procedure for union requires that the run end in a state
⟨q, p⟩ where either q ∈ F1 or p ∈ F2 (or both), rather than the construction often
cited in proofs of union closure resulting in an NFA.8

Of course, these still do not uniformly result in minimal DFA. The automa-
tons at least 3 and less than 4 have three and five states respectively, so their
conjunction and disjunction each have fifteen states using the product construc-
tion. But at least 3 and less than 4 is equivalent to exactly 3, which can be
computed by a five state DFA, and at least 3 or less than 4 can be computed by
the trivial one state DFA that accepts every word over {0,1}. In the spirit of
Clark’s use of @ for constructing Mcard, and in the spirit of this thesis, we think
it would be interesting to try to find similar methods for directly construct-
ing minimal DFA for boolean combinations of minimal DFA computing simple
monadic quantifiers. Moreover, success in that endeavour could more generally
be seen as finding the state complexity of operations on permutation-invariant
acyclic finite state automata.

Also in [8], Clark describes his query system SAM (Semantic Automata + Mod-
els), which is basically a Common Lisp implementation of model-checking for
first-order logic with DFA-computable quantifiers. The user can define a model
and then ask queries of the form, e.g., ((query ’((Q) A B)). The system would
then look at the extensions of A and B, compute a string of 0’s and 1’s using a
function bits (i.e. τ), construct Q (from the basic elements Mall and M≥1), and
run Q on the string.9

SAM can also handle embedded queries like (a), whose truth conditions are (b):

a. (scope (at-least 4) students read (at-least 1) books)

b. at least 4 ({x ∶ x is a student},

{y ∶ at least 1({z ∶ z is a book},{w ∶ y read w})})
Of course, such embedded queries are examples of iteration. The system first

7He only allows finite applications so that the results are actually finite automata; an
automata with infinite states, or a formula with infinitely many clauses, could define higher-
order quantifiers like most that have no Fraissé threshhold.

8See the proof of Theorem 2.2.4 for those constructions.
9The system also answers wh- questions, but we focus on queries of this familiar verification

form as the example.
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computes a set Y by running at least 1 on the string generated by comparing
the sets books and Rx for every x, and then runs at least 4 on the string gen-
erated by comparing the sets students and Y . Since the quantifiers work in
isolation, this is very much like using a stack iteration automaton. SAM could
be extended to implement actual semantic iteration automata with a function
to encode the model all at once and a function to compose automata according
to our definitions in Chapter 5.10 SAM could also be extended with semantic
automata for parity quantifiers by adding even to the set of basic elements and
creating a procedure similar to @ to generate divisible by n+1 from divisible by n
(from Figure 3.6 in Section 3.2, we can see this is as simple as inserting another
state in a single cycle). Implementing minimal constructions and iteration au-
tomata may even afford SAM’s computations some speed-up as queries grow
more and more complex, requiring more and more operations to generate the
desired automata from BasicM.

9.2.2 Further Extensions of Semantic Automata and the
Role of Representations

In this thesis we have given constructions for iteration and cumulation semantic
automata–based on a specific method of translating models with relations to
strings–but many types of polyadic quantification remain unaccounted for by
the semantic automata model. Resumption, reciprocals, branching, “same”
constructions, etc. could be investigated in the future. For quantifiers whose
evaluation requires more knowledge about the model, it could be helpful to
consider other possibilities for the translation function–perhaps yielding a kind
of parameterized Chomsky designation for quantifier languages.

For example, the language of a cumulation at least initially appears very difficult
to recognize if strings can only encode indirect information about the inverse
relation, but we saw that given some extra allowances, cumulations are DFA-
computable. Van Benthem addresses this concern, saying “an important issue
has been left implicit, viz. the representation of the data fed to the procedure
associated with a linguistic expression. There is a matter of ‘division of labour’
here, which can affect judgments of complexity” [5] and “final judgments of
complexity will then depend on a balance between these two components” [4].

How can we find and formulate new representations? The vanilla version of τ2
with only R directly encodes all the information relevant to an iteration, while
τ cl2 with both R and R−1 directly encodes all the information relevant to a cu-
mulation. The links between those two lifts and their appropriate τ ’s has to do
with their invariance properties: iteration is right oriented, while cumulation
is left-and-right oriented. Are there other such correspondences? For example,

10There is currently much work being done to integrate GQ theory into controlled languages
(unambiguous fragments of natural language that facilitate reasoning about and interacting
with databases)–though not explicitly using semantic automata like SAM. See Thorne [1] and
Badia [54] for work in this direction.
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the resumption of Q to k-tuples, Resk(Q), is invariant under permutations of
k-tuples–can we capture that property with some extension of τ2? Are there
other permutation-invariance properties of certain classes of irreducible quanti-
fiers that we can program into τ2 to more adequately represent models? What
other properties of non-Fregean quantifiers are there, in general, that we can ex-
ploit to make the information encoded by a language more accessible to simpler
automata?

Using a new translation function we successfully reined in cumulation: regular
and context-free languages are closed under the cumulation operation we defined
in Chapter 7.11 However, we think it is unlikely that finding similarly suitable
translation functions for other kinds of irreducible quantification will necessarily
have the same effect.12 Cumulation languages do not essentially rely on the re-
lations between symbols in separate subwords, unlike many other lifts, so even
with upgraded representations, recognizers of irreducible languages may still
need some means of counting indices. It seems like such a process is not aided
at all by a pushdown stack–intuitively some kind of back-and-forth functionality
is required. Anticipating this, we want to suggest a few potentially fruitful au-
tomata models for future consideration: perhaps two-way automata, multitape
and multihead automata, and automata with erasure, would give ways of “hav-
ing a finger on” more than one symbol at a time. For reciprocals and branching
quantifiers in particular it may be useful to look into graph automata, as their
interpretations are captured by graph properties.

12When a change of τ2 does bestow some automata operation representing a polyadic lift
with nice closure properties, we might say it was “on” the “Chomsky-Frege” boundary, simi-
larly to how cumulation is “on” the Frege boundary.
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[13] J. Dotlačil, J. Szymanik, and M. Zajenkowski. Probabilistic semantic au-
tomata in the verification of quantified statements. In Proceedings of the
36th Annual Conference of the Cognitive Science Society, 2014.

[14] Jan van Eijck. Normal forms for characteristic functions on n-ary relations.
Journal of Logic and Computation, 15(2):85–98, 2005.

[15] J. Evey. Application of pushdown store machines. In Proceedings of Fall
Joint Computer Conference, pages 215–227. AFIPS Press, 1963.
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Appendix A

Implementing Semantic
Automata in Haskell with
HaLeX

Since iteration automata are roughly multiplicative in the state-size of all the
component automata, they easily become large and unwieldy. And while the
general idea of their construction is simple and highly intuitive, certainty in
the details is inversely correlated with the arity of the iteration, i.e. size of
the automaton alphabet, i.e. number of transitions. Luckily there exists a
Haskell library called HaLeX for the manipulation of regular expressions and
finite automata which allowed checking for correctness when coming up with the
automata definitions in this thesis. Documentation and the downloadable files
are available at <http://www3.di.uminho.pt/~jas/Research/HaLeX/HaLeX.

html>. We briefly introduce the code and then show how it was utilized to build
iteration automata.

HaLeX defines a new data type Dfa with a constructor of the same name, clearly
mimicking the standard definition of finite automata as five-tuples, parameter-
ized with the type of the states (st) and the the type of the elements of the
alphabet (sy). This of course is sufficient to determine the type of every compo-
nent. We supply the types Int and Char for tese parameter values throughout.

data Dfa st sy = Dfa [sy]

[st]

st

[st]

(st -> sy -> st)

Representing a DFA in HaLeX is then just a matter of specifying all the compo-
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nents. For example, recall that the finite automaton some is a two-state machine
that enters its final state after reading 1. We can easily read this behavior off
of the definition below.

some :: Dfa Int Char

some = Dfa sigma states s final delta

where

sigma = "01"

states = [1,2]

s = 1

final = [2]

delta 1 ’0’ = 1

delta 1 ’1’ = 2

delta 2 _ = 2

To test whether some string is in the language that an automaton accepts,
we supply the function dfaaccept’ with the automaton and the string. This
function calls dfawalk, which recursively processes the string symbol by symbol,
updating the state of the automaton. If after processing the entire string the
automaton is in a final state, dfaaccept’ is true.

dfaaccept’ :: Eq st

=> Dfa st sy

-> [sy]

-> Bool

dfaaccept’ (Dfa v q s z delta) simb =

(dfawalk delta s simb) ‘elem‘ z

dfawalk :: (st -> sy -> st)

-> st

-> [sy]

-> st

dfawalk delta s [] = s

dfawalk delta s (x:xs) = dfawalk delta (delta s x) xs

HaLeX also lets us take advantage of the equivalency of regular expressions and
finite automata with the functionality to convert between the two via standard
algorithms.1 Composing a few given HaLeX functions yields a minimal DFA
with a readable transition function given a regular expression:

regExp2MinDfa expression =

beautifulDfaWithSyncSt $ minimizeDfa $ regExp2Dfa expression

1There appears to be an issue in a section of the given HaLeX code to deal with the
conversion from automata to regular expressions; this is inconvenient since we must define
expressions for complements by hand, but otherwise not a problem.
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To generate iteration automata from regular expressions, we need to substitute
expressions for symbols. Defining iterated expressions by hand is inefficient, so
we instead create functions that are pseudo-expressions, taking as input two
other expressions. These arguments could be the literals ‘0’ and ‘1’, yielding
an expression for a type ⟨1,1⟩ quantifier, or expressions for a type ⟨1,1, . . . , n⟩
quantifier and its complemenent, yielding an expression for a type ⟨1,1, . . . , n+1⟩
quantifier. For shorthand, we define a type synonym OpenRegExp for these
functions.

type OpenRegExp = RegExp Char -> RegExp Char -> RegExp Char

some’ :: OpenRegExp

some’ = \ a b -> Then (Star a) (Then b (Star (Or a b)))

no’ :: OpenRegExp

no’ = \ a b -> (Star a)

every’ :: OpenRegExp

every’ = \ a b -> (Star b)

notEvery’ :: OpenRegExp

notEvery’ = \ a b -> Then (Star b) (Then a (Star (Or a b)))

exactlyOne’ :: OpenRegExp

exactlyOne’ = \ a b -> Then (Star a) (Then b (Star a))

exactlyTwo’ :: OpenRegExp

exactlyTwo’ = \ a b -> Then (exactlyOne’ a b) (exactlyOne’ a b)

exactlyThree’ :: OpenRegExp

exactlyThree’ = \ a b -> Then (exactlyTwo’ a b) (exactlyOne’ a b)

two’ :: OpenRegExp

two’ = \ a b -> Then (some’ a b) (some’ a b)

three’ :: OpenRegExp

three’ = \ a b -> Then (two’ a b) (some’ a b)

four’ :: OpenRegExp

four’ = \ a b -> Then (three’ a b) (some’ a b)

atMostOne’ :: OpenRegExp

atMostOne’ = \ a b -> Or (no’ a b) (exactlyOne’ a b)

atMostTwo’ :: OpenRegExp
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atMostTwo’ = \ a b -> Or (atMostOne’ a b) (exactlyTwo’ a b)

The following functions implement the iteration of n OpenRegExp’s to form a
RegExp generating the language of a type ⟨1,1, . . . , n⟩ quantifier. We assume the
arguments to an initial call of one of these functions do not already contain any
literals, since the separator symbols must be distinct for each level (the empty
string may be in a sublanguage, meaning simply stacking the same separator
symbol is ambiguous). Implementing these iterations fully generally and recur-
sively would require taking care to make sure that a different separator symbol
is used in every recursive step. Since we are here concerned with iterations oc-
curring in natural language, hardcoding the first few levels is sufficient for our
purposes.2

iter1 :: OpenRegExp -> RegExp Char

iter1 = \ q -> q (Literal ’0’) (Literal ’1’)

iter2 :: OpenRegExp -> OpenRegExp -> OpenRegExp -> RegExp Char

iter2 = \q1 q2c q2 -> q1 (Then (iter1 q2c) (Literal ’a’))

(Then (iter1 q2) (Literal ’a’))

iter3 :: OpenRegExp -> OpenRegExp -> OpenRegExp -> OpenRegExp

-> OpenRegExp -> RegExp Char

iter3 = \q1 q2c q2 q3c q3 ->

q1 (Then (iter2 q2c q3c q3) (Literal ’b’))

(Then (iter2 q2 q3c q3) (Literal ’b’))

iter4 :: OpenRegExp -> OpenRegExp -> OpenRegExp -> OpenRegExp

-> OpenRegExp -> OpenRegExp -> OpenRegExp -> RegExp Char

iter4 = \q1 q2c q2 q3c q3 q4c q4 ->

q1 (Then (iter3 q2c q3c q3 q4c q4) (Literal ’e’))

(Then (iter3 q2 q3c q3 q4c q4) (Literal ’e’))

Then, for example, to create the iterated expression generating the language
of two ⋅ every⋅exactly three⋅every, we supply iter4 with the expressions for two,
every and its complement, exactly three and its complement, and again every and
its complement.

twoEveryExactlyThreeEvery’ =

iter4 two’ notEvery’ every’ exactlyThreeC’ exactlyThree’

notEvery’ every’

2But we could, for example, have a general function that takes a list of expressions and a
large-enough list of distinct characters. However, we only use these expressions to build the
automata, and already at five levels of iteration the subset construction takes prohibitively
long.

113


	Introduction
	Motivations and Contributions
	Themes
	Meaning as Algorithm
	Determinism
	Production vs. Recognition
	Compositionality
	Representation

	Overview

	Prerequisites
	Generalized Quantifier Theory
	Properties of Simple Monadic Quantifiers
	Polyadic Lifts

	Formal Languages and Automata Theory
	Regular Languages and Finite Automata
	Context-free Languages and Pushdown Automata
	Deterministic CFL and Deterministic PDA


	Survey of Semantic Automata for Monadic Quantifiers
	Models as Strings
	Semantic Finite Automata
	Semantic Pushdown Automata

	Known Results for Iteration Automata
	Translating Models with Binary Relations into Strings
	Explicit Proofs of Some Closure Results
	Summary of Work by Steinert-Threlkeld and Icard III

	Extending Iteration Automata
	Automata for Type "4360360 1,1,2"5365365  Regular Iterations
	The Construction
	Proving Correctness

	Generalizing to Type "4360360 1,1,…,n"5365365  Regular Iterations
	Translating Models with n-ary Relations into Strings
	The Construction
	Proving Correctness

	Generalizing the Stack Construction for Regular Iterations

	DCFL Iteration Closure and Iteration DPDA
	Closure of DCFLs under Iteration
	Automata for Deterministic Context-Free Iterations

	Cumulation Automata
	Automata for Type "4360360 1,1,2"5365365  Regular Cumulations
	Generalizing to Type "4360360 1,1,…,n"5365365  Regular Cumulations

	Toward A Novel Characterization of the Frege Boundary
	Overview and Reformulation of Reducibility Results
	Genuinely Polyadic Quantifier Languages are Not Context-Free
	Approaching a General Theorem for a Lower Limit

	Practical Relevance and Future Work
	Applications
	Model Checking
	Formal Learning Theory

	Directions for Future Research
	Generating FO Semantic Automata by Construction
	Further Extensions and the Role of Representations


	Implementing Semantic Automata in Haskell with HaLeX

