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Abstract

This thesis concerns a specific procedure for social choice of a group action un-
der uncertainty. It consists of three main parts. First we investigate formal
desiderata for the single agent case. Next the model’s position relative to vary-
ing disciplines is considered. Finally we provide an implementation of the full
multiagent model in the programming language Haskell.
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Chapter 1

Introduction

This thesis investigates a specific procedure for aggregating preferences over ac-
tions. In this model multiple agents, with differing beliefs and preferences, must
decide upon a single joint action to perform. The model itself was introduced
by Endriss (2013). It may been seen as coming from two sources: social choice
theory and decision theory under uncertainty. Both these have long, somewhat
intertwined histories. For general introductions to the former consult Gaertner
(2009) or Arrow et al. (2002). Concerning the latter: the type of decision theory
we are dealing with here has roots in work by Wald (1939) and Savage (1972).
However, a central characteristic of our approach is ordinality, thus the work
here is closer to the qualitative version of Dubois et al. (2003).

1.1 Motivation

Suppose there are a group of agents who must decide upon a joint action to
perform. Each agent has potentially different preferences and different beliefs.
What aspects should come into play in their decision making process?

This problem is encountered in a variety of domains. For instance, when
devising mechanisms for teams of autonomous software agents. In many such
cases we desire a formal procedure that deterministically determines the best
and worst actions to perform. In this thesis we consider one family of such
formal procedures. As such we focus on one particular representation of the
beliefs and preferences of each agent.

We here model preferences as weak orders over states and beliefs as strict
uncertainty sets, and consider deterministic methods that take these and return
a weak order over actions. Preferences and beliefs would more typically be
represented as utility functions and probability distributions. Our choices are
ordinal in comparison with these cardinal measures. The precise details of our
model are given in Section 1.3.

There are a number of reasons why an ordinal framework is interesting. It
may not be reasonable to expect all agents to provide a fully specified utility
function or probability distribution in all cases. There may also be doubts about
utilities and probabilities from a theoretical standpoint. For example, the intra-
and interpersonal comparisons afforded by explicit utilities may been seen as
unreasonably strong. There may be similar concerns about the interpersonal
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comparisons of probability distributions. Once it is decided that either prefer-
ences or beliefs should be represented ordinally, it is natural to treat the other
in a similar, compatible, manner. Finally, there is a simplicity and elegance to a
purely ordinal account, which may even translate practically into computational
efficiency.1

Our particular representation choices are hopefully justified throughout body
of the thesis. In particular, the use weak orders instead of linear orders is a topic
of Section 2.4.2. Though strict uncertainty is a very simple model, it is easily
extensible as we will see in Section 3.2.

We finish this subsection with some discussion about how uncertainty is
introduced into the model. This is achieved, in combination with uncertainty
sets, with a transition function: that is, a complete description of all the possible
outputs of each action. Such transition functions take the elevated position of
arguments in the procedure. Hopefully it will become clear how this works
in the course of the thesis; for now note that this means we only consider a
(potentially small) fixed set of actions at once. This is potentially very different
from traditional decision theory in the vein of Savage (1972). However, we tend
to compare actions in a pairwise manner regardless of what other actions are
possible, in line with consistent comparison of two arbitrary actions. Depending
upon your palate for symbols, the transition function is either notational burden
or notational clarification.

1.2 Notation and preliminary definitions

From some tastes our use of syntax may be slightly loose. Thus typical first-
order logical operators are used (anywhere) with their customary (semantic)
meanings: ¬,→,∧,∀, . . . Functions are written as f : X → Y , or with su-
perscripts as f : Y X . Their types are right associative: f : X → Y → Z is
f : X → (Y → Z). The equality symbol always refers to identity, however
the level of this identity may be determined by context. Often juxtaposition
is used for function application, in a left associative manner: thus fx = f(x)
and αgy = (α(g))(y). Set subscripts typically refer to vectors: XY = (Xy)y∈Y .
Vectors are also be indicated with overlines: x. Functions may be applied to
sets of arguments: for f : X → Y and A ⊆ X, let fA = {fx | x ∈ A}.
Similarly, for a collection F = fI of functions fi : X → Y , given x ∈ X we
have Fx = {fix | i ∈ I}. The inverse of f is f−1. Sets, and some other objects,
are typically referred to by capital italics: A,B,C, . . . Elements and counters are
typically referred to by lowercase italics: a, b, c, . . . Functions tend to be writ-
ten sans-serif: F, s, . . . Greek letters refer to actions: α, β, γ, . . . Calligraphic
and bold fonts are also employed, respectively for families of sets and specific
sets: S,Q, . . . ,S, . . . Blackboard fonts are reserved for their common mathemat-
ical usage: N for the natural numbers,. . .

Preliminary definitions

It is necessary to give some basic definitions concerning binary relations, as
there is sometimes inconsistency in terminology. This is especially true across
the different disciplines from which we draw.

1Though I make no grand claims about the speed of the implementation in Chapter 4.
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Definition 1.2.1 (Weak orders). A binary relation R ⊆ X×X is reflexive if for
all x ∈ X, xRx; antisymmetric if for all x, y ∈ X, xRy and yRx implies x = y;
transitive if for all x, y, z ∈ X, xRy and yRz implies xRz; and total if for
all x, y ∈ X, either xRy or yRx. A binary relation that is transitive and total
is a weak order. Note a weak order is also reflexive. A weak order that is
antisymmetric is further a linear order. The set of all weak orders over X is
wor(X); of all linear orders is lin(X).

Definition 1.2.2 (Weak orders). The inverse R−1 of a binary relation R is
such that xR−1y iff yRx. For binary relations R,D,�, . . . we will typically use
‘mirror images’ to represent inverses: R,E,≺, . . . . The complement Rc of a
binary relation R is such that xRcy iff ¬xRy. The strict component P of a
weak order R is the inverse of its complement. This will be called a strict order.

Proposition 1.2.3. There is a one-to-one correspondence between weak orders
and strict orders.

Definition 1.2.4 (Equivalence classes). A binary relation I is symmetric if
xIy implies yIx. The indifference component I of a weak order R is the largest
symmetric subset of R. This is also an equivalence relation: a reflexive, sym-
metric and transitive relation. For such an equivalence relation I ⊆ X ×X, the
equivalence sets are defined by 〈·〉I : X → 2X such that 〈x〉I = {y | xIy}. The
quotient set is X/I = {〈x〉 | x ∈ X}.

Definition 1.2.5 (Maximums and minimums). Let R be a weak order over X.
For Y ⊆ X, let maxR(Y ) = {x ∈ Y | ∀y ∈ Y, xRy}; maxR = maxR(X).
Similarly, let minR(Y ) = {x ∈ Y | ∀y ∈ Y, yRx}, minR = minR(X). We will
typically write max and min and let context determine R. This includes the
standard orderings over numbers.

1.3 The model

We now define the specifics of the model.

Definition 1.3.1 (The model). We have three primitive sets:

(i) individuals i, j, · · · ∈ J ,

(ii) actions α, β, · · · ∈ A, and

(iii) states a, b, p, q, · · · ∈ Q.

The belief set of an individual i ∈ J is a nonempty set of states:

Qi ∈ 2Q\{∅}

The preferences (over states) of an individual i ∈ J is a weak order over the
states:

Di ∈ wor(Q)

For the strict component of state preferences Bi is used. For the indifference
relation ,i is used.
A profile over beliefs assigns one belief set to each individual in J ; i.e. a vector:

(Qi)i∈J
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Similarly, a profile over preferences assigns preferences to each individual; i.e.
a vector (Di)i∈J . Profiles are similarly definable over any structure type.
A transition function assigns each action to a sub-function between the states;
it is some:

∆ ∈ A→ Q→ Q (note right associativity)

A transition function first takes an action as argument, then an input state.
It returns an output state. A setup is a tuple (∆,DJ , QJ). The full space of
setups is S := (QQ)A× (wor(Q))J × (2Q\{∅})J . For a subset of possible setups,
write S ⊆ S.
A rule takes a setup and returns a weak order over actions, i.e. it is a function:

F : (Q→ Q)A × wor(Q)
J × (2Q\{∅})J −→ wor(A)

For a single agent rule omit the “J”s above. Images of this function are termed
outcomes, written

< ∈ wor(A)

Such action preferences have strict component �, and indifference relation '.

Example 1.3.2 (A driving setup). Imogen and John are on a road trip together.
Unfortunately they have gotten lost. The road they are currently taking leads
them either to the beach or to the forest. John wants to go to the former and
Imogen to the latter. Imogen trusts her map reading skills and believes that
they are on the road to the beach. John stopped the car to ask for directions
and believes the report that they are heading to the forest. They see a turn-off,
which both believe must lead to the other destination: John thinks the beach, and
Imogen thinks the forest.

This may be modelled with primitive sets:

Q = {pbeach, qforest} A = {αstay, βchange} J = {iImogen, jJohn}

We drop the text subscripts now and give the belief sets and preferences for each
agent: for Imogen we have Qi = {p} and q Bi p, for John we have Qj = {q}
and p Bj q; and of a transition function ∆ defined (note juxtaposative function
application) by:

∆αp = p ∆αq = q
∆βp = q ∆βq = p

The full setup is then
(
∆, (Qi, Qj), (Di,Dj)

)
.

Note that in Example 1.3.2 both agents ‘should’ individually come to the same
conclusion about the best action, despite having different beliefs and preferences.

1.4 Overview of the thesis

The following chapter, Chapter 2, solely concerns the single-agent case, and will
be mostly formal in nature. This is followed by the less formal Chapter 3, in
which will discuss some relevant literature and attempt to place this particular
approach within. In Chapter 4 we initiate an analysis of the multiagent case,
implementing the model in Haskell. We then conclude the main body of the
thesis, summing up our results and giving suggestions for future directions.
Extra material that does not fit into the main flow is placed in one of two
appendices for the single and multiagent cases respectively.



Chapter 2

Single agent case

2.1 Introduction

In considering the single agent case we ignore the set of individuals I. Thus a
single agent rule refers to a function defined for some fixed Q and A. A family
of single agent rules refers to some description of multiple rules for varying Q
and A. Unless otherwise stated, for the rest of this chapter we will implicitly
be considering an arbitrary single agent rule F, for some fixed Q and A. The
symbols ∆, D, and Q0 will range respectively over transition functions (with
action and state arguments), weak orders (over the states), and belief sets (over
the states). Assume similar treatment of primed symbols, ∆′,D′, Q′0,∆

′′, . . . We
will make liberal use of these symbols to ‘define’ rules and axioms in a concise
manner. Of course, when doing so care must be taken to ensure such rules are
well-defined—as demonstrated by Example 2.3.9 below.

2.1.1 An Example of simple risk

The following example offers an agent a simple gamble.

Example 2.1.1 (Simple risk). John is enjoying a walk. However, he is in a
climate where there is always the possibility of rain. He must decide whether to
continue his walk, or to head for shelter. He would prefer to be in the sun if
possible, but he definitely doesn’t want to get wet.

We can model John’s choice as follows: Q = {poutside-sun, qinside, routside-rain},
A = {αrisk, βsafe}. For the setup, John has beliefs Q0 = {p, r} and preferences
p B q B r. Formally, we extrapolate outcomes for the state q to define the
transition function ∆:

∆αp = p ∆βp = q
∆αq = q ∆βq = q
∆αr = r ∆βr = q

The diagram of Figure 2.1 presents all necessary information clearly and con-
cisely.

Roughly, we may classify rules that advise performing β as ‘pessimistic’, while
rules that advise α are ‘optimistic’. We now define a single agent rule that takes
a middle route.



2.1 Introduction 11

Figure 2.1 A setup diagram showing a case of simple risk

p q r

p r

B B

α β αβ

outcome states (with preferences)

actions (as determined by ∆)

starting states (members of Q0)

Example 2.1.2 (‘Indifferentistic’ rule). We can assign a score to each state
using the preference ranking. Then for each action, sum the scores for each
possible output state—this part of the procedure uses the belief set and transition
function. Finally, rank the actions by the size of their summed scores. The
following formal method is a generalisation of Borda scoring (Fishburn and
Gehrlein, 1976).

Definition 2.1.3 (Simple count scoring). For a strict order P ⊂ X × X, the
simple count scoring is a function sP : X → N with:

sP (x) = | {y ∈ X | xPy} |

It may be necessary to clarify what set y is intended to range over, for which we
add an extra argument. In such cases we write, for s : X × 2X → N:

sP (x, Y ) = | {y ∈ Y | xPy |

The simple count function assigns increasing values to the different ‘levels’ of B.
Note we will also use the corresponding D here. As we have one-one correspon-
dence between strict orders and weak orders, we write sR for the same function.
Using this we can formally define a rule.

Rule 2.1.4 (Simple count rule). We define a rule F(∆,D, Q0) = < by:

α � β iff
∑
q∈Q0

sD(∆αq) >
∑
q∈Q0

sD(∆βq)

Applying the rule of Rule 2.1.4 to the setup of Example 2.1.1, each action
ends up with 2 points. Thus this rule pronounces indifference in cases of simple
risk.

2.1.2 Outline of the chapter

Next, Section 2.2 will look at the shape of single agent rules in more detail, draw-
ing some immediate consequences from our choice of model. After that we look
at importing traditional social choice theoretic axioms in Section 2.3, holding off
treating the particular family of symmetry axioms (and some extensions) until
Section 2.4. Our focus then turns towards investigating rules: output-based in
Section 2.5 and casewise-based in Section 2.6. We provide some characterisa-
tion results and discuss the compatibility of the two approaches. Section 2.7
concludes.
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2.2 Axioms I: the shape of the rule

The shape of our model immediately suggests various consequences and con-
siderations. In this section we explore some of these. Formal desiderata of the
procedure are termed axioms.

2.2.1 Unrestricted domain

As defined, single agent rules apply to all possible setups; to any member of S.
The size of this space directly depends on how many different instances of each
of the three coordinates are possible. Thus, multiplying the following three
values gives |S|.

1. The number of possible belief sets is straightforward: 2|Q| − 1.

2. The number of possible preferences is also solely dependent upon the car-
dinality of Q, but it does not have so simple a formulation. For a set
with n elements, the number of possible weak orders is the nth ordered
bell number—sequence A000670 in the On-Line Encyclopedia of Integers
(OEIS). ‘Small’ examples are given in Table 2.1.

Table 2.1: Number of distinct weak orders over sets of small cardinalities.

Set size 2 3 4 5 6 7 8 9
Number of weak orders 3 13 75 541 4683 47293 545835 7087261

3. There are |Q||Q||A| possible transition functions. Note this partially de-
pends upon |A|; we are not counting the number of possible actions.

The requirement that all possible inputs to a function are defined is often
termed “universality” or “unrestricted domain”. Though in one sense this is
implicit in the model as defined, it may be violated in spirit by modifying the
scope of subsequent axioms. That is, we may want the definitions and axioms
that follow not to apply across all possible setups, but only for some subset of
them.

Definition 2.2.1 (Subspace). A subspace of the set of all setups is simply a
subset S ⊆ S.

In specific cases such restrictions will be necessary (e.g. Definition 2.3.3 below).

2.2.2 Trivial cases

One consequence of having unrestricted domains is that there are some seem-
ingly trivial cases, where the output of a single agent rule seems obvious.

Axiom 2.2.2 (Single belief state determines action ranking). If only one input
state is thought possible, then the action ranking should mimic the ranking over
the states the actions go to from this input state. Formally, for F(∆,D, {q}) = <,
require:

α < β iff ∆αq D ∆βq

http://oeis.org/A000670
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Note that alongside the implicit unrestricted domain this implies a version of
non-imposition (see Appendix A.1). There are similar trivial cases involving
the preferences over states and the transition function.

Axiom 2.2.3 (Indifferent states implies indifferent actions). The trivial pref-
erence over states results in indifference between all actions. Formally and con-
versely, for F(∆,D, Q0) = <:

∃ α, β ∈ A, α � β → ∃ a, b ∈ Q, a B b

Axiom 2.2.4 (Indifference of indistinguishable actions). If two actions always
end up in indifferent states, the rule should be indifferent between the two.
Given α, β ∈ A, for an single agent rule with F(∆,D, Q0) = <:

(∀q ∈ Q0 , ∆αq , ∆βq) → α ' β

2.2.3 Irrelevance conditions

Under our initial interpretation, those states not in the uncertainty set are states
that are thought impossible, and should thus have no affect on the outcome.2

Here this is formalised in terms of the transition function.

Axiom 2.2.5 (Irrelevance of impossible states). If two transition functions act
the same on states that are considered possible, the outcome should be the same.
If for all actions α and all states p ∈ Q, if ∆αp = ∆′αp then:

F(∆,D, Q0) = F(∆′,D, Q0)

Axiom 2.2.5 is implicit in our drawing of setup diagrams, which do not even
show the output of actions from impossible states. We give axioms of this type
the general name irrelevance axioms. These proceed by delineating an ‘area’ of
setups which, when changed, does not affect the outcome.

Axiom 2.2.6 (Irrelevance of unreachable states). Preferences over states that
are not reachable from any believed state by any action are irrelevant to the
outcome. Formally, consider ∆AQ0—the set of possibly reachable states. If D
and D′ are such that for all p, q ∈ ∆AQ0, p D q iff p D′ q, require:

F(∆,D, Q0) = F(∆,D′, Q0)

2.3 Axioms II: treating states-as-voters

One possible ‘metaphor’ here is to treat states-as-voters. Each state in the belief
set can be thought of as a voter, whilst the actions become candidates. This
enables a partial return to the social choice framework.

Definition 2.3.1. For a given setup, for each q ∈ Q, the induced preference
(over actions) is a binary relation <q ∈ wor(A) with:

α <q β iff ∆αq D ∆βq

2We will consider a more nuanced view in Section 3.2.
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Different transition function and state preference combinations may induce the
same preferences over actions. We may want such setups to have the same
outcomes over F: see Section 2.6 and Axiom 2.6.4. If we also restrict attention
to setups with some fixed set of possible states, we complete the return to the
social choice theoretic framework.

Definition 2.3.2 (Voter subspace). A voter subspace, defined in terms of a
fixed belief set Q0 is a subset of all possible setups:

SQ0
= {(∆,D, Q0) | ∆ ∈ (QQ)A,D ∈ wor(Q)}

That is, if we consider the induced preference on a voter subspace, we effectively
consider all possible rankings by a set of voters, and how these can be aggre-
gated by some social aggregation procedure. Note the set of all voter subspaces
partitions the full space. The immediate question is how traditional axioms can
be defined across different voter subspaces.

In the rest of this section we look at various ways of importing social choice
theoretic axioms. This includes the classic axioms of Arrow (1963): Non-
dictatorship, Pareto, and Independence of irrelevant alternatives; as well as
various others.3

2.3.1 Favoured state

Treating states-as-voters, a ‘dictator’ becomes a state that is strongly favoured
over the others in some way.

Definition 2.3.3 (Favoured state). A state q is (strongly) favoured in some
subspace S if, for setup arguments (∆,D, Q0) ∈ S, its strict(/weak) induced
preferences over actions are copied in the outcome.

∆αq B ∆βq → α � β
(for strong, substitute D for B, and < for �)

Under Axiom 2.2.5, any favoured state must be a member of Q0. Thus a state
will typically only be favoured relative to a subset of a voter subspace. A non-
dictatorship condition ensures that some given subspaces of all setups do not
have a favoured state.

Axiom 2.3.4 (No favoured states). Let S be a collection of subsets of the full
space of setups. There are no favoured states over S if no state is favoured for
any element S ∈ S.

For a true parallel to non-dictatorship, we apply this to all non-trivial voter sub-
spaces, where trivial voter subspaces are those where Q0 is a singleton. Such
cases clearly correspond to the trivial case of a single voter; note also by Ax-
iom 2.2.2 such must have favoured states.

Axiom 2.3.5 (“No-dictator” analogue). Let S = {SQ0
| |Q0| > 1}. The “no-

dictator” analogue requires no favoured states over S.

3Some of which are relegated to the Appendix. Richelson (1977) provides a large list of
axioms concerning social choice functions.
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Proposition 2.3.6. If a subspace S has a favoured state then this is also
favoured in all S′ ⊆ S. Similarly, if there is no favoured state over two families
of subspaces S and S ′, then there is no favoured state over S ∪ S ′.
Proof. Straightforward.

2.3.2 Casewise dominance

‘Pareto’ dominance occurs when one option is better along all ‘dimensions’ than
another. Here, dimensions are possible states, and the relative merit of options—
that is, actions—is determined by the ranking of the output states. For example,
in cases like Figure 2.2, one action is clearly ‘better’ than another.

Figure 2.2 Setup diagram where one action is at least as good as another in
all possible states.

a b

c d e

B

α
β α β

α
β

Consider the model to the left. It seems
obvious that α is the best possible ac-
tion: for each possible input state do-
ing α results in an state that is at least
as good as, and in some cases better
than, doing β.

The following is equivalent to Definition 7 by Endriss (2013).

Definition 2.3.7 (Casewise dominance4). Given a setup, an action α casewise
dominates β if: if for every state q ∈ Q0 we have ∆αq D ∆βq, and for some
p ∈ Q0, ∆αp B ∆βp, then α � β.

Axiom 2.3.8 (Casewise dominance). If one action casewise dominates another,
it should be strictly preferred.

Though this is obviously a desirable condition, it cannot be deployed on its own
to define a rule.

Example 2.3.9 (Intransitivity paradox). Suppose we attempt to define a rule
F(∆,D, Q0) = < by α � β iff α casewise dominates β. It is easy, as in Fig-
ure 2.3, to create a setup with three actions but only one case of casewise dom-
inance. By casewise dominance and transitivity of indifference it follows that
one action should both be preferred to and indifferent to another: thus the rule
is not well-defined.

It is also fairly obvious that attempting to rank pairs of actions by counting how
many input states one performs better than another will lead to Condorcet style
problems. Regardless of these issues, casewise dominance is hence considered a
minimal requirement for an attractive rule.

Proposition 2.3.10. Casewise dominance is inherited by subspaces, and is
preserved under the union of subspaces.

Proof Sketch. Casewise dominance concerns itself with one setup at a time.

4It might be most accurate to term this strong casewise dominance, as we do not require
dominance in every case/state. But that extra “strong” is needless, as we do not consider
‘true’ casewise dominance.
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Figure 2.3 Setup with three actions and a single case of casewise dominance,
demonstrating the intransitivity of casewise non-dominance.

a b c

a c

B B

α β
γ

α β
γ

Here α casewise dominates β. However,
there are no other cases of casewise dom-
inance: β performs better than γ from a
and γ performs better than both α and β
from c.

2.3.3 Independence

Independence conditions may be viewed as a generalisation of the above irrele-
vance axioms. For independence conditions, two ‘areas’ are delineated. Changes
to area (i) are required to be irrelevant to the outcome restricted to area (ii).
We then say that the area (ii) is independent from area (i). For example, we
may feel that the relative ranking of two actions is independent of what the
transition function does to other actions. This may be phrased contrapositively
as: the outcome restricted to area (ii) only depends upon (the complement of)
area (i).

Axiom 2.3.11 (Weak pairwise transition independence). The relative ranking
of two actions only depends upon what these two actions output. Take a single
agent rule with F(∆,D, Q0) = < and F(∆′,D, Q0) = <′. For any pair of actions
α, β; if ∀q ∈ Q0, ∆αq = ∆′αq and ∆βq = ∆′βq then α < β ↔ α <′ β.

The choice of a pairwise—or binary—comparison here mirrors that of the Arro-
vian independence of irrelevant alternatives (hereafter Arrovian independence).5

However, in contrast to Arrow’s 1963 theorem, many rules satisfy Axioms 2.3.5,
2.3.8 and 2.3.11—i.e. non-dictatorship, casewise dominance and weak-pairwise-
transition independence. Indeed, the simple count of Rule 2.1.4 suffices.

This is because the Arrovian independence of irrelevant alternatives is ‘stronger’
than weak-pairwise-transition independence. Weak pairwise independence cor-
responds closer to independence of other alternatives if also the positions of
both alternatives are fixed. To give an example in the Arrovian framework, if
candidate α is ranked fifth and candidate β is ranked third by the first voter,
and second and third by the second voter, etc.; if we keep these ordinal positions
for each voter, then even if we change the other candidates positions the out-
come ranking between α and β should remain the same. For a closer analogue
to Arrovian independence, we want something more like:

the relative action ranking between two actions only depends upon
the relative ranking of the output states of these actions.

Axiom 2.3.12 (Strong independence). The relative ranking of two ac-
tions only depends upon the ranking between their outputs for each input.
For F(∆,D, Q0) = < and F(∆′,D′, Q0) = <′

5Further, extensions to the ternary, quaternary, etc. cases are shown to reduce to the binary
case by Blau (1971).
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∀q ∈ Q ( ∆αq D ∆βq ↔ ∆′αq D′ ∆′βq )

→ ( α < β ↔ α <′ β )

Proposition 2.3.13. Strong independence is inherited by subspaces of S. It is
not necessarily preserved by the union of such.

Proof. Strong independence involves the comparison of two setups. Clearly the
set of possible pairs over a subset is itself contained in the set of possible pairs
over the larger set. Thus if the axiom holds for all the pairs, it will hold for
the smaller set of pairs also. Also clearly the converse does not hold: in taking
the union of two different sets there are new pairs possible, for which the axiom
may fail.

Proposition 2.3.14 (Arrow). For Q > 1 and A > 3, no rule satisfies the non-
dictatorship analogue, casewise dominance and strong independence; Axioms
2.3.5, 2.3.8 and 2.3.12.

Proof Sketch. Take any (non-trivial) voter subspace (possible as Q > 1). The
result is a direct application of Arrow’s theorem, given the inheritance of the
conditions by Proposition 2.3.10 and Proposition 2.3.13 to the subspace.6

Though probably the most direct translation of Arrovian independence, strong
independence may be thought too strong for current purposes. For instance, it
implies that the two setups of Figure 2.4 must have the same outcome. What
may be wanted instead is something that ‘can tell’ when there is a ‘crossing’
between an output of α and an output of β, regardless of the inputs involved.

Figure 2.4 Two setups that are indistinguishable under strong independence.

a b c

a c

B B

α β β α

a b c

a b

B B

α
β β

α

This is a problem if you
want to rank α � β
for the left model and
β � α for the right.

Axiom 2.3.15 (Crossing independence). The relative ranking of two actions
only depends upon the ranking between each output and all the outputs for the
other action. Take a single agent rule with F(∆,D, Q0) = < and F(∆′,D′, Q0) = <′.
Require

∀p, q ∈ Q ( ∆αp D ∆βq ↔ ∆′αp D′ ∆′βq )

→ ( α < β ↔ α <′ β )

6Three elegant proofs of Arrow’s theorem are given by Geanakoplos (2005).
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Note this concerns changes to both the transition function and the preferences
over states. It is designed to be a minimal7 weakening of strong independence
that allows to distinguish the setups of Figure 2.4. It cannot distinguish the
crossing of outputs of a single action; the setups of Figure 2.5 must give the
same outcome under this axiom.

Figure 2.5 Two indistinguishable setups under crossing independence.
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We leave unfinished the question of to what extent the crossing independence is
compatible with casewise dominance, instead finishing this subsection with the
obvious generalisation of Proposition 2.3.13.

Proposition 2.3.16. All the independence axioms of this subsection are inher-
ited by subspaces, but not preserved by unions thereof.

2.3.4 Monotonicity and positive responsiveness

Suppose that two setups are identical except one action has one input that goes
to a better output, as in Figure 2.6.

Figure 2.6 Two setups involving an improvement to a single action.
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a b c
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α β αβ α
β
α

a b c
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α β
α

β α

β

Pessimists and optimists might
disagree about whether β is the
best action to perform in the
left model. But if it is thought
best, then it surely should also
be thought best in the right
model.

Axiom 2.3.17 (Monotonicity). Changing the transition function by making one
action have a better output should not decrease the position of this action in the
outcome. Take a single agent rule with f(∆,D, Q0) = < and f(∆′,D, Q0) = <′.
Require:

∀q ∈ Q0, ∆′αq D ∆αq
&

∃!q ∈ Q0, ∆′αq B ∆αq
&

∀β 6= α, ∀q ∈ Q0, ∆′βq = ∆βq → ( α < β → α <′ β )

7Arguments as to why such a minimal weakening is desirable will be given in Section 3.3.
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One may also think that improvements should break ties. Thus, if α and β are
thought indifferent in the left setup of Figure 2.6, β should be preferred to α
in the right setup. This gives a simple strengthening of monotonicity.

Axiom 2.3.18 (Strong positive responsiveness). As Axiom 2.3.17, and any
ties concerning the ‘improved’ action should be broken in its favour. Formally,
require:

∀q ∈ Q0, ∆′αq D ∆αq
&

∃!q ∈ Q0, ∆′αq B ∆αq
&

∀β 6= α, ∀q ∈ Q0, ∆′βq = ∆βq → ( α < β → α �′ β )

However, some improvements to actions may be thought irrelevant, as in Figure
2.7 . We may only want ties to be (forcibly) broken if the improvement ‘shifts
past’ an output of the tied action.

Figure 2.7 An example of a potentially irrelevant improvement to an action.
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Definition 2.3.19. For a state q ∈ Q and action γ let:8

b(q, γ) = |{p ∈ Q0 | ∆γp B q}| − |{p ∈ Q0 | q B ∆γp}|

In words, b counts how many outputs of the action γ are better and worse than
some state q.

For example, in Figure 2.6, the left setup has b(c, α) = 1 and b(b, α) = −1.
Whereas in Figure 2.7, the setups have b(c, α) = b(b, α) = 0. The relevant point
is that b and c are the outputs states by which the other action, β, improves.

Axiom 2.3.20 (Weak positive responsiveness). As Axiom 2.3.17 (monotonic-
ity), and if the improved output becomes ranked higher than the output of another
action, ties with this other action should be broken. Take a single agent rule with
f(∆,D, Q0) = < and f(∆′,D, Q0) = <′. Suppose for all actions γ and states
p, ∆γp = ∆′γp; except that for two actions α, β and a single state q ∈ Q0, for
which ∆αq 6= ∆′αq and we have:

b(∆′αq, β) < b(∆αq, β)

Then α < β implies α �′ β.

8 Note this is relative to a transition function and state preference: we should really write
b∆,D(·).
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This version arguably chimes better with Axiom 2.3.15 (crossing independence).

Proposition 2.3.21. Monotonicity type axioms are inherited by subspaces, but
not preserved by the union of subspaces.

Proof. As in the proof of Proposition 2.3.13.

2.4 Symmetry and beyond

Positive responsiveness is used by May (1952) to characterise the simple major-
ity rule in combination with another axiom: anonymity. This is an example of
a symmetry condition. Such symmetry conditions can usually be expressed in
terms of invariance of the outcome given some permutation. They are given dis-
tinctive names depending upon what the permutation acts upon: so anonymity
for individuals; neutrality for candidates.

2.4.1 Importing symmetry axioms

Continuing the states-as-voters interpretation, our first axiom here corresponds
to neutrality.

Axiom 2.4.1 (Action symmetry). Permuting the actions within a transition
function results in a similarly permuted outcome. Let σ : A → A be a permu-
tation on the actions. Take two transition functions such that the permutation
maps one to the other, i.e. ∆, ∆′ such that for all states q ∈ Q0:

∆(σα)q = ∆′αq

We then require, for F(∆,D, Q0) = < and F(∆′,D, Q0) = <′, for all pairs of
actions α, β:

α < β ↔ σα <′ σβ

Our next axiom corresponds to anonymity.

Axiom 2.4.2 (Transition-input symmetry). Permuting believed states in the
input of the transition function does not change the outcome. For a given setup,
let σ : Q0 → Q0 be a permutation. If for all actions α ∈ A and states q ∈ Q,
∆α(σq) = ∆′αq, then:

F(∆,D, Q0) = F(∆′,D, Q0)

The basic idea of Axiom 2.4.2 is demonstrated by Figure 2.8. The underlying
principle is that the label of the input state does not matter. This leads to a
natural extension of the anonymity-like axiom to include impossible states in
the permutation.

Axiom 2.4.3 (Belief-state symmetry). Permuting the states within the belief
set and in the input to the transition function does not change the outcome. Let
σ : Q→ Q be a permutation. Let Q′0 = σQ0. Let ∆′αq = ∆α(σq) for all actions
α and states q ∈ Q. Require:

F(∆,D, Q0) = F(∆′,D, Q′0)
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Figure 2.8 A visual example of permuting the inputs of a transition function.

a b

b c a

B

α, β α β α, β
Changing around the input
states at the bottom should
not affect the ranking α � β.

Alongside belief-state symmetry, we consider an extension of a voter subspaces—
recall SQ0 = {(∆,D, Q0) | arb. ∆,D}.

Definition 2.4.4 (Anonymous-voter subspace). An anonymous-voter subspace
is, for some integer n ≤ |Q|:

Sn =
⋃
{SQ0

| |Q0| = n}

In the above Axiom 2.4.3 we extended the scope of the permutation in two ways:
(first) the permutation itself was extended to range over the full set of states;
which allowed the permutation to be (second) non-trivially applied to belief sets
as well as the transition function. What about the most general scope, where
we apply the fully extended permutation throughout all of the setup?

Axiom 2.4.5 (Global-state symmetry). Permuting the states in the belief set,
preference relation and transition function with a uniform permutation should
not change the outcome.

However, note that creating an axiom by simply permuting all states is by no
means obviously sensible. Indeed, permuting the states in a preference relation
would likely change the outcome for any reasonable rule. In the neutrality of
traditional voting theory, permuting the candidates of the preferences is only
sensible alongside a parallel permutation of the outcome. In Axiom 2.4.1, this
is manifested as a permutation of both the transition function and the outcome.
In fact, Axiom 2.4.5 is reasonable, as it similarly contains two ‘cancelling’ per-
mutations: the preference permutation and the permutation of the output states
of the transition function.

We identify three underlying, basic, and somewhat reasonable targets for
permutations of states here. The first we have seen in Axiom 2.4.3: permute
states in the belief set. The second we have intimated in the above paragraph:
permute states in both the preference relation and the output of the transition
function.

Axiom 2.4.6 (Output-preference symmetry). Permuting states in the state
preference and output states does not change the outcome. Let σ : Q → Q be
any permutation. If for all pairs of states p, q and actions α we have:

σp D σq ↔ p D′ q and σ(∆αp) = ∆′αp

then we require:
F(∆,D, Q0) = F(∆′ D′, Q0)
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Figure 2.9 Two setups with permuted states in both preferences and output
of transition function.
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Permutation:

σa = c
σb = a
σc = b

See Figure 2.9 for a simple example.
The final basic symmetry is to permute the states of the input of an individual

action.

Axiom 2.4.7 (Action-input symmetry). For a given action, permuting its in-
puts does not change the outcome. Formally, for each action take a permuta-
tion σα : Q0 → Q0. Take ∆ and ∆′ such that for all actions α ∈ A and for all
states q ∈ Q0:

∆α(σαq) = ∆′αq

Require:
F(∆,D, Q0) = F(∆′,D, Q0)

According to Axiom 2.4.7 the setups in Figure 2.10 would have the same out-
comes.

Figure 2.10 Two setups with permuted inputs for individual actions.
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Permutations:
σαa = c σβa = a
σαb = b σβb = c
σαc = a σβc = b

At the most general level we could have a different permutation for each of these
basic levels: that gives |A|+ 2 possible axes of symmetry for states alone (recall
that for actions we also have Axiom 2.4.1). However, we can also combine these
to get weaker conditions. For example, in Axiom 2.4.7 we may require that
all the action-inputs undergo the same permutation; which basically amounts
to transition-input symmetry, Axiom 2.4.2. Note that Axioms 2.4.3, 2.4.6, and
(2.4.7 or 2.4.2) together imply Axiom 2.4.5, but that no implication holds (sim-
pliciter) in the other direction.

2.4.2 States vs. possible outputs

The rest of this section works towards justifying our choice of weak orders
rather than linear orders. The rest of this section works towards justifying this
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statement, with reference to a generalisation of the symmetry axioms.

The basic underlying rationale is that there is no restriction on the out-
put states of actions. One action can have the same output from different
input states, and two actions can have the same output from the same input, as
demonstrated in Figure 2.11. The states (over which preferences are expressed),

Figure 2.11 Examples of ‘indifferences’.
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The following applies to both
the left and right models:

∆αp , ∆βp , ∆αq

We must allow transition func-
tions as in the left setup; so why
not allow state preferences as in
the right setup?
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need to be separated from the possible outputs (those states mapped to by some
action from some possible state). For (i) not every state need be a possible
output and (ii) two distinct possible outputs may be the same state. By (ii) we
have cases of effective indifference between possible outputs. Arguably we are
only concerned with the preferences over the possible outputs—cf. Axiom 2.2.6
(irrelevance of unreachable states). But the symmetry axioms defined above
concern permutations of all the states. Roughly speaking: symmetry properties
concern automorphisms between structures; but we can preserve the structure
of preferences over possible outputs with less demanding transformations. Con-
tinuing the slightly rough language, we are here concerned with isomorphisms
between sets of possible outputs, or (strong) homomorphisms between sets of
states.

Reducing weak orders to linear orders

The idea is partially demonstrable by ‘reduction’ of setups involving weak orders
to ones solely involving linear orders. Or, in the opposite direction, we extend
a rule defined on linear preferences to be defined upon preferences over weak
orders. The procedure in short: take equivalence classes of states with respect
to the weak order; modify the setup accordingly, and apply the relevant linear
single agent rule.

Recall that an unrestricted domain is built into the framework: single agent
rules are automatically defined for all weak orders. However, we can restrict
attention to linear orders.

Definition 2.4.8 (Linear ordering subspace). The linear order subspace is the
subspace defined by:

Slin = { (∆,D, Q0) | D ∈ lin(Q) , arbitrary ∆, Q0}

Definition 2.4.9 (Extending rules on Linear orderings). Suppose we have a
‘rule’ G defined on (or satisfying axioms restricted to) Slin. We extend this
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to a full single agent rule F defined on the full space of setups. Take an ar-
bitrary setup (∆,D, Q0). We consider the quotient set Q/, (recall Defini-
tion 1.2.4). To this we add a set of (new) dummy states {p1, p2, . . . } = P

such that
∣∣∣P ∪Q/,∣∣∣ = |Q|. Thus we have a bijection h : P ∪ Q/, → Q (any

will do). On P ∪Q/, we define a linear order D′ by:

〈x〉 D′ 〈y〉 iff x D y
〈x〉 B′ pi for all x ∈ Q and for all pi ∈ P,
pi D′ pj iff i ≥ j

The transition function ∆′ is defined for actions α ∈ A and states q ∈ P ∪Q/,
as:

∆′αq = 〈∆α(hq)〉

The belief set becomes Q′0 = h−1Q0. The single agent rule F is then simply
defined as:

F(∆,D, Q0) = G(∆′,D′, Q′0)

Strengthening symmetry axioms

This reduction is captured by a strengthening of Axiom 2.4.6 (output-preference
symmetry) to the case of (strong) homomorphisms rather than that of auto-
morphisms, in combination with the other symmetry axioms of Section 2.4.1.
Roughly, if we think of the states as the elements of our model, and the sig-
nature as consisting of action-state pairs as terms and D as a binary relation
between these, we have an endomorphism between the states, with respect to
the possible outputs and preferences over these. The strengthened axiom is:

Axiom 2.4.10 (Invariance between ‘isomorphic’ possible outputs). Changing
states in such a manner as to preserve preference relations between possible
outputs does not affect the output. Suppose for all actions α, β ∈ A and states
q, r ∈ Q0 we have:

∆αq D ∆βr iff ∆′αq D′ ∆′βr

then:

F(∆,D, Q0) = F(∆′,D′, Q0)

This section treated output states as a possible item of analysis. In the next
section these become the focus for defining rules.

2.5 Output-based approach

Endriss (2013) distinguishes two general approaches to rules. We re-dub the first
of these the output-based approach.9 In contrast with the casewise-based ap-
proach, the output-based approach restricts attention to what states are achiev-
able by each action. An ad hoc characterisation is given in the Appendix as
Axiom A.1.4. We consider the simplest version first.

9Changed from “outcome-based” approach. We reserve “outcome” for the image of rules.
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2.5.1 Output sets

Definition 2.5.1 (Output sets). Given a transition function, belief set, and
action, the (possible) output set is the set of outputs that the action goes to
from the belief set, i.e.: ∆αQ0.

There is an extensive literature on methods for ranking sets of objects (Barbera
et al. (2004) provides a survey); methods which take a weak order over elements
and return a weak order over sets of elements. Any such method defines a rule,
whereby the actions (α, β, . . . ) are ordered according to how their corresponding
output sets (∆αQ0,∆βQ0, . . . ) are ranked according to the set ranking extended
from D.

Rule 2.5.2 (Set-based pessimistic). Compare the least preferred state in each
output set. Formally, α < β iff min(∆αQ0) D min(∆βQ0)

Rule 2.5.3 (Set-based optimistic). Compare the most preferred state in each
output set. Let α < β iff max(∆αQ0) D max(∆βQ0).

The above two rules may be extended and combined in various ways. The
following is due to Arlegi (2002).

Rule 2.5.4 (Set-based minmax).

Let α < β iff min(∆αQ0) B min(∆βQ0)
or

min(∆αQ0) = min(∆βQ0) and max(∆αQ0) D max(∆βQ0)

For maxmin, permute min and max in the above.

There is an immediate unsatisfactory property of using rankings of sets of ob-
jects: casewise dominance is violated (the output sets of Figure 2.2 provide a
demonstration). This problem is readily solvable by moving to consider multi-
sets: sets which allow multiple occurrences of the same element.10

2.5.2 Basic properties of multisets

Multisets are less seen in the wild than ordinary sets, and classifications by
hunters vary; so first some taxonomy.11

Definition 2.5.5 (Multisets). A multiset X over {1, 2, . . . , n} = Nn is:

X = {{(1, i1), (2, i2), . . . , (n, in)}}

where ix records how elements of type x there are. This is also expressible by a
multiplicity function:

µX : Nn → N with µX(x) = ix

The ‘cardinality’ of a multiset is the sum of these multiplicities:

|X| =
∑
x

µX(x)

10Endriss (2013) remains in the set-based paradigm and thus concludes that the output-
based approach is incompatible with the casewise-based. But cf. Proposition 2.6.8.

11For instance, one might want to distinguish between multiset union and addition, as in
for e.g. Girish and Sunil (2009).
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‘Membership’ occurs if the multiplicity is not zero:

x ∈ X ↔ µX(x) > 0

Multiset ‘union’ ] sums the multiplicities by element:

µX]Y (x) = µX(x) + µY (x)

The width of a multiset wd is the cardinality of its set of elements:

wd(X) = |{x | x ∈ X}|

The set of all (finite) multisets of Nn is denoted by Nn. The set of all finite
multisets of N is then N =

⋃
n∈NNn. Let:

Nn,k = {X ∈ Nn | |X| = k} N∗,k = {X ∈ N | |X| = k}

Proposition 2.5.6. The number of multisets of cardinality k with elements
taken from Nn is

|Nn,k| =
(
n+ k − 1

n

)
Proof Sketch. (Wikipedia) imagine a multiset as n dots split into k partitions.
It thus has k − 1 ‘dividers’, e.g.:

{{a, a, a, a, b, b, c, c, c, d}}
↓

•••• | •• | ••• | •

The total number of characters (dots and dividers) is k + n − 1. Thinking of
each position as a distinct object, the number of ways to place the dividers is
the same as the number of distinct subsets of cardinality k−1 from a set of size
k + n− 1.

2.5.3 Output multisets

Definition 2.5.7 (Multiset rules). Let |Q| = n. Suppose Rj,k is a weak order
over Nj,k, for each j, k ∈ {1, . . . , n}. We define a rule F(∆,D, Q0) = < as fol-
lows. Choose j = maxq∈Q sD(q,∆AQ0) (recall Definition 2.1.3). The counter j
thus refers to the number of distinct ‘levels’ of D. Choose k = |Q0|. For an
action α, define the output multiset Xα ∈ Nj,k as having multiplicity function:

µ(x) = | {q ∈ Q0 | sD(∆αq) = x} |

I.e., the output multiset counts how many different outputs there are at different
levels of the output states. Let α < β iff XαRj,kXβ.

Refer to Figure 2.12 for an example of output multisets.

Proposition 2.5.8 (Characterization of multiset rules). Any rule that satisfies
Axioms 2.3.11, 2.4.3, 2.4.7, 2.4.1 and 2.4.10—that is, weak-pairwise-transition
independence, belief-state symmetry, action-input symmetry, action symmetry
and invariance between isomorphic possible outputs—can be expressed as a mul-
tiset rule. Conversely, such a multiset rule satisfies these axioms.

https://en.wikipedia.org/w/index.php?title=Multiset&oldid=611715076#Counting_multisets
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Figure 2.12 Two output multisets.

p q r s t

p r t

B , B B

α β α β β α

For the setup to the left,

Xα = {{0, 2, 3}}

Xβ = {{2, 2, 2}}

Proof. This is mostly straightforward, if slightly tedious. First, we check that
any multiset rule satisfies these axioms. For weak-pairwise-transition indepen-
dence: the output sets of two actions are not affected by changing the transition
function on other actions. Similarly, for belief-state symmetry and action-input
symmetry the label of the input is completely irrelevant to the output set. Ac-
tion symmetry is also clearly satisfied. Finally, invariance between isomorphic
possible outputs precisely requires the reduction of output sets to the levels as
carried out in the rule. That is, if we preserve preference relations between
possible outputs, i will remain the same size and all the actions will have the
same output multisets.

For the other direction, suppose we have a rule F. Suppose we are in the
non-trivial case where we have at least two actions, A = {α∗, β∗, . . . }. We need
to define a ranking of multisets Rj,k for each j, k ∈ {1, . . . , n} that expresses F.
Take an arbitrary pair of multisets X,Y ∈ Nj,k. We will describe a paradigm
setup that determines the ranking between these multisets. List the elements
of X as x1, x2, . . . , xk with xi ≥ xi+1 and of Y as y1, . . . , yk with yi ≥ yi+1. List
the elements in Q (arbitrarily) as q1, . . . , qn. Set Q∗0 = {q1, . . . , qk}. Define D∗

as [qi D∗ qi+1 for all i] and [qi+1 D∗ qi iff i ≥ j]. Take transition function ∆∗

with, minimally:

∆∗α∗qi = xi and ∆∗β∗qi = yi for 1 ≤ i ≤ j
∆∗α∗qi = q1 and ∆∗β∗qi = q1 for i > j

Note α∗ and β∗ are fixed actions. For F (∆∗,D∗, Q∗0) = <∗, simply define
XRj,kY if and only if α∗ <∗ β∗.

It remains to check that this multiset rule accords to the original rule F. Take
an arbitrary setup F(∆,D, Q0, ) = < and arbitrary actions α, β such that α < β.
Now, consider the paradigm setup according to the two multisets Xα and Xβ .
We want to show that α∗ <∗ β∗. Firstly, by belief-state symmetry we can
permute the states from Q0 to Q∗0 (which may change ∆):

F(∆1,D, Q
∗
0) = F(∆,D, Q0)

Next, by action symmetry we permute the actions α and α∗, and β and β∗ to
get ∆2. Thus for F(∆1,D, Q∗0) = <1,F(∆2,D, Q∗0) = <2:

α∗ <2 β
∗ iff α <1 β

Similarly, by invariance between isomorphic possible outputs we can modify D
to D∗, at the same time making sure that ∆3 coincides with ∆∗ on Q\Q0, such
that:

F(∆3,D
∗, Q∗0) = F(∆2,D, Q

∗
0)



28 Single agent case

By action-input symmetry we can change ∆3 such that ∆4α
∗qi is increasing for

increasing i, and the same for β∗:

F(∆4,D
∗, Q∗0) = F(∆3,D

∗, Q∗0)

This then implies that ∆4α
∗q = ∆∗α∗q for all q ∈ Q, and the same for β∗. Thus,

finally, by weak-pairwise-transition independence: for F(∆4,D∗, Q∗0) = <4,

α∗ <∗ β∗ iff α∗ <4 β
∗

Note that we require multiple rankings of multisets along two dimensions. First,
concerning setups with different numbers of levels in their output, we have
different rankings for multisets of different maximal widths. Second, concerning
setups with different sized belief sets, we have different rankings for multisets
of different cardinalities.

An alternative definition could simply utilise a single ranking on all possible
multisets of cardinality ≤ |Q|. However, such rankings are less manageable.
They would exacerbate the intricacies involved in ranking multisets of objects.
For instance, taking a B b B c, we would have to be able to compare {{a, b, c}}
with {{a, b, b, c}} and {{a, c}}, etc. But such comparisons are unnecessary; we will
never need to compare multisets of different cardinalities here as Q0 determines
the size of the output set. A more manageable simplification would be to restrict
attention only along the cardinality dimension.

On the other hand, note multiset rules as defined above automatically define
a family of rules for arbitrary A. One method in line with the full definition is
to take a single ranking over Nn,n and use this to generate rankings over the
smaller cases.

Definition 2.5.9 (Generating sub-multiset rankings). For a multiset X ∈ N ,
an i-th level insertion adds one to all elements x ≥ i. Taking:

f(x) =

{
x if x < i
x+ 1 otherwise

the i-th level insertion is defined by the function L : Nn ×Nn → Nn+1:12

L(i,X) = {{f(x) | x ∈ X}}

Take a ranking Rj,k over Nj,k. A sub-i-level ranking is a ranking Rj−1,k defined
in terms of some i ≤ j such that:

XRj−1,kY iff L(i,X)Rj,kL(i, Y )

A sub-i-element ranking is a ranking Rj,k−1 defined in terms of some i ≤ j such
that:

XRj−1,kY iff X ] {{i}}Rj,kY ] {{i}}

A family of rankings is sub-level consistent if all rankings with fewer levels than
n are sub-i-levels for all i. Ditto sub-element consistent.

For the rest of this section our focus is typically on single multiset rankings over
sets Nj,k.

12Multiset comprehension works like set comprehension.
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2.5.4 Additively representable multiset rankings

One obvious method for defining multiset rankings is to assign utilities. The
following definition looks in the opposite direction.

Definition 2.5.10 (Conder et al. (2007)). An order Rj,k on Nj,k (or more
generally Nj) is additively representable if there is a ν : Nj → R≥0 such that

XRj,kY ↔
∑
x∈Nj

µX(x)ν(x) ≥
∑
x∈Nj

µY (x)ν(x)

If we replace “↔” with “→”, the order is almost additively representable.13

More generally, an order R on N is additively representable if there is
a ν : N→ R≥0 such that:

XRY ↔
∑
x∈N

µX(x)ν(x) ≥
∑
x∈N

µY (x)ν(x)

Note the definition above requires that utilities are not negative. This is a moot
point if we only compare multisets of the same cardinalities. This means any ν
that maps to negative numbers can be linearly shifted to an equivalent one that
does not; indeed further we can take minx ν(x) = 0.14

Definition 2.5.11. The paradigm additive representation rule is defined
in terms of some additively representable multiset ranking R|Q|,|Q|. For
each 1< j ≤ |Q| iteratively define Rj−1,|Q| as the sub-j-level ranking of Rj,|Q|.
For each 1 < k ≤ |Q| define Rj,k−1 as any sub-element ranking of Rj,k.

This definition is somewhat arbitrary, as the following proposition shows.

Proposition 2.5.12. Additively representable rules are sub-element consistent.
They are not sub-level consistent.

Proof Sketch. To see this, recall Rule 2.1.4, and compare it with:

Rule 2.5.13 (Multiset count rule). Take the ranking on each Nj,k as the addi-
tively representable ranking with ν(x) = x.

These rules produce different results, for example in Figure 2.12.

Proposition 2.5.14. All additively representable multiset rankings with at least
four different possible utilities are part of some rule that violates Axiom 2.3.15
(crossing independence).

Proof. Take arbitrary ν(a) > ν(b) > ν(c) > ν(d) ≥ 0. We can without loss
of generality take ν(d) = 0. Take two actions, α and β. We now consider
two transition functions where only the outputs of Figure 2.13 are possible.
That is, α can only ‘get’ to the top or bottom states, and β can only get to
the two middle states. In particular suppose first all the states in Q0, with
m = |Q0|, map by β to b. Suppose also n < m states have α mapping them
to a. According to Axiom 2.3.15 this is independent from a second transition

13Conder et al. (2007) goes on to discuss sufficient conditions for additive and almost addi-
tive representability. In general these are too strong for the analysis here.

14See Appendix A.2.
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Figure 2.13 A diagram showing the four possible outputs from two actions for
a specific type of transition function

a b c d

Q0

α β β α

function which changes all the states to map β to c. Thus, it suffices to show
there are n and m such that mν(c) < nν(a) < mν(b). First, choose m such that
m(ν(b)−ν(c)) > ν(a), possible by the Archimedean principle. We can then find
the necessary n.

Note the above proof might require very large |Q0|, and thus large |Q|. It sig-
nificance is that, in general, we cannot assume that an additively representable
rule will satisfy crossing independence. Other multiset rules are stronger in this
respect.

2.5.5 Vector representation

Definition 2.5.15. The vector representation of a multiset X ∈ Nn is:

X = (µ(n), µ(n− 1), . . . , µ(1))

Note this definition ‘puts the best elements first’. We now rank these vectors
lexicographically.

Definition 2.5.16 (Lexicographic orderings of multisets). Pessimistic: for two
vectors x = (x1x2 . . . xn) and y = (y1y2 . . . yn); x � y iff

for some i ∈ {1, . . . , n}, for all j with i < j ≤ n; xj = yj and xi < yi

Optimistic: x � y iff

for some i ∈ {1, . . . , n}, for all j < i; xj = yj and xi > yi

Proposition 2.5.17. The lexicographic pessimistic and optimistic multiset rank-
ings are both sub-level and sub-element consistent.

These ranking uncomplicatedly define a whole family of rules.

Rule 2.5.18 (Lexicographic multiset rules). The pessimistic family of rules
are those multiset rules with all rankings pessimistic multiset. The optimistic
family of rule are those multiset rules with all rankings optimistic multiset.

It is unsurprising that these are refinements of the set-based pessimistic and
optimistic rules.

Proposition 2.5.19. The rules of 2.5.18 satisfy crossing independence.

Corollary 2.5.20. The families of rules in 2.5.18 are not additively repre-
sentable.

We have already started discussing when multiset rules satisfy the axiom cross-
ing independence. We move on to consider more axioms.
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2.5.6 Sub-axiomatic approach

We could here attempt a full-blown axiomatic analysis of ranking multisets
of objects (cf. Barbera et al. (2004)). Less ambitiously, most of the following
conditions are reaped from our previous crop of axioms. Precisely, these are
requirements for multiset rankings which, if satisfied by each in family of multi-
set rankings, ensure any rule defined by this family will satisfy some previously
defined axiom. For readability, in this section we also use < to refer to multiset
rankings. For example:

Sub-axiom 2.5.21 (Multiset monotonicity). If x > y then:

X ] {{x}} < X ] {{y}}

This has as its obvious strengthening the following.

Sub-axiom 2.5.22 (Multiset positive responsiveness). If x > y then:

X ] {{x}} � X ] {{y}}

Note we do not have, and indeed cannot have, a similar translation that solely
ensures weak positive responsiveness.

Proposition 2.5.23. Any multiset rule that satisfies weak positive responsive-
ness must also satisfy strong positive responsiveness.

Proof Sketch. To see this, recall the example of Figure 2.7. This involved two
setups, for both of which a B b B c B d. In the left setup we get Xα = {{3, 0}}
and Xβ = {{1, 1}}. The right setup had X ′α = {{3, 0}} and X ′β = {{2, 1}}. The
‘purpose’ of weak positive responsiveness was to allow both Xβ and X ′β to be
indifferent to Xα = X ′α. But as we have to rank all multisets, this is impossible;
we must here prefer the latter to the former: we are forced into strong positive
responsiveness.

Sub-axiom 2.5.24 (Crossing independence). For two multisets represented as
vectors:

(. . . , xi, xi−1, 0, xi−3, . . . ) < (. . . , yi, yi−1, 0, yi−3, . . . ) iff

(. . . , xi, 0, xi−1, xi−3, . . . ) < (. . . , yi, 0, yi−1, yi−3, . . . )

and also

(. . . , xi, xi−1, xi−2, xi−3, . . . ) < (. . . , yi, 0, 0, yi−3, . . . ) iff

(. . . , xi, xi−1 + xi−2, 0, xi−3, . . . ) < (. . . , yi, 0, 0, yi−3, . . . )

The following axiom is different from the others of this section in that it is drawn
from external literature rather than an earlier axiom of this document.

Sub-axiom 2.5.25 (Independence of equal submultisets, Conder et al. (2007)).

X1 ] Y < X2 ] Y → ∀Z, X1 ] Z < X2 ] Z
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There are various other versions of this in the literature. This formulation is
chosen to allow comparisons of multisets of the same cardinality. As such, it
actually suggests a new independence axiom for the full framework.

Axiom 2.5.26 (Independence of states with identical outputs.). The outcome
over two actions should be independent of possible states in which these two
actions have indifferent outputs. Fix some q ∈ Q0 and actions α, β.15 Suppose
∆ = ∆′ on all arguments except for the pairs α, q and β, q; and suppose ∆αq ,
∆βq and ∆′αq , ∆′βq. Then F(∆,D, Q0) = F(∆′,D, Q0).

Proposition 2.5.27. A multiset rule satisfies independence of states with iden-
tical outputs iff it satisfies independence of equal sub-multisets.

What about casewise dominance? Given two multisets of outputs, the question
becomes whether it is possible for a transition function to have one action case-
wise dominating another. This can happen if one multiset contains more of a
highest level element than another, and for all the levels below this there are at
least more higher level elements in this set.

Definition 2.5.28. The cumulative vector representation of a multiset is:

X
∗

= ( µ(n) , µ(n) + µ(n− 1) , . . . ,

1∑
i=n

µ(n) )

Sub-axiom 2.5.29 (Casewise-dominance). If every coordinate of X
∗

is greater

than that of Y
∗
, and at least one is strictly greater, then X � Y .

Proposition 2.5.30. A multiset rule satisfies casewise dominance iff it also
satisfies positive responsiveness.

Proof. Replacing an element with a higher ranked one precisely corresponds to
adding one to each coordinate with index greater than the lower element up to
and including the coordinate with the index of the higher element.

The casewise dominance requirement imposes a lattice16 over the cumulative
vectors. For example, any ordering over N4,2 that is part of a family satisfying
casewise dominance will have to respect the lattice given in Figure 2.14. There
are many possibilities for refining such lattices into a weak order. Figure 2.15
shows three such weak orders—two of which refine Figure 2.14:

(a) the pessimistic lexicographic order,

(b) an order that violates crossing independence, and

(c) an arbitrary order that is not additively representable.

We now ask: are there any other interesting rankings which still satisfy crossing
independence?

15Note that the scope of this axiom is Q0 and not Q. See the end of Section 3.2.
16I.e. every two elements have a least join and most meet, for textbook treatment see e.g.

Burris and Sankappanavar (1981)
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Figure 2.14 The lattice imposed by casewise dominance on the ranking of
multisets of cardinality 2 with elements from a set of 4 elements. Juxtaposition
is here concatenation.

0002

0011

0101 0020

1001 0110

1010 0200

1100

2000

The multisets are represented in
(non-cumulative) vector form. Each
has 2 elements, n = 2 = |Q0|;
and there are 4 possible elements to
choose from, k = 4 = |Q|. The di-
agram gives a feeling for why case-
wise dominance is equivalent to pos-
itive responsiveness: each edge cor-
responds to replacing a single ele-
ment with its covering element.

2.5.7 Regularity of risk-aversion

There are many possible extensions of a casewise dominance lattice. In many
specific cases a choice can be made whether to be pessimistic, optimistic, or
‘indifferentistic’. This is true even if we add crossing independence as an axiom,
see Figure 2.15 (c). We now consider what happens if we require some limited
consistency in these choices.

Definition 2.5.31. Take a strict order P over a set including a and b. The
element a covers b:

a ·P b

if and only if aPb and there is no c such that aPcPb.

Sub-axiom 2.5.32 (Basic regularity). A multiset ranking is regular if it
is consistent in its dealings with elements that cover each other. For one
of ./ ∈ {�,≺,'}, for any elements a, b, c ∈ Q with a ·B b ·B c, and any multi-
set Y :

(Y ] {{a, c}}) ./ (Y ] {{b, b}})

Sub-axiom 2.5.33 (Basic indifferentism). Replacing one high element and one
low element with two elements that are directly in between the originals results
in a set that is indifferent to the first: i.e. basic regularity with ./ = '.

This condition is incompatible with crossing independence if |Q| > 3. This can
easily be seen by considering a fragment of the lattice of Figure 2.14, presented
in Figure 2.16.

Sub-axiom 2.5.34 (Basic pessimism). Replacing one high element and one
low element with two elements that are directly in between the originals results
in a set that is preferred to the first. Basic regularity with ./ = ≺.
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Figure 2.15 Three refinements of casewise dominance lattices of multiset rank-
ings. The underlying lattice in both (a) and (b) is obtained by ranking multisets
of cardinality two with elements from a set of cardinality four. The lattice in (c)
ranks multisets of cardinality three with elements from a set of cardinality three.

(a) The pessimistic lexicographical
ordering.

0002

0011

0101 0020

1001 0110

1010 0200

1100

2000

(b) An ordering violating crossing
independence.

0002

0011

0101 0020

1001 0110

1010 0200

1100

2000

'

≺ ≺

≺ ≺

(c) A non-additively representable
ordering.

003

012

102 021

111 030

201 120

210

300

'

The ordering of (b) can be obtained by
taking utilities 5, 3, 2 and 0. The prob-
lem with crossing independence comes
about at 1001: the three multisets to
1001’s right should have the same rel-
ative ranking with it. The applica-
tion of crossing independence is pos-
sible because of the two empty coordi-
nates in 1001.
For (c), additive representability
would require that the horizontal rela-
tions ‘go in the same direction’. This
would depend on whether sub-multiset
(101) gets ‘more score’ than (020).
But we can arbitrarily be indifferent,
pessimistic or optimistic for each of
these horizontal relations individually.
Note also any ordering imposed over
this lattice satisfies crossing indepen-
dence.
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Figure 2.16 Fragment of Figure 2.14.

./

0101 0020

1001 0110

1010 0200

≺
≺

'

'
≺

≺

The strict preferences on the left follow by case-
wise dominance. The indifferences follow by ba-
sic indifferentism. By crossing independence; all
of vectors highlighted to the right must be either
(i) strictly worse than, (ii) strictly better than,
or (iii) indifferent to the middle node highlighted
to the left. In case (i) the top indifference is vio-
lated, in (ii) the bottom indifference is violated,
and in (iii) both are violated.

Sub-axiom 2.5.35 (Basic optimism). Replacing one high element and one low
element with two elements that are directly in between the originals results in a
set that the first is preferred to. Basic regularity with ./ = �.

2.5.8 Characterisations

Both of the results presented in this subsection require small technical condi-
tions.

Theorem 2.5.36. The only multiset rules satisfying satisfying casewise domi-
nance, independence of equal sub-multisets, simple indifference and a technical
condition (∗) are expressible as the multiset count rule.

Proof. The technical condition (∗) is that we require that a ranking on Nj,2 for
j > 3 is any sub-element ranking of Nj,3. Without this, we cannot even ensure
1001 ' 0110, as an obvious (A.2) refinement of Figure 2.14 demonstrates.17

With (∗), we get the full result by Proposition 2.5.12.
It is straightforward to check that the rule satisfies the conditions.
For the proof of the other direction we write multisets as (non-cumulative)

vectors x, y, z; with coordinates for e.g. i, j, k, (i+ 1), · · · ∈ N. The simple count
score of a vector is simply the sum of its cumulative coordinates. Thus, the
theorem is equivalent to saying that any two vectors with the same such sum
are indifferent. Take a vector of the form 0x0, where 0 denotes any number of
0’s. We prove the claim by induction on the length of x. Precisely, the inductive
hypothesis (IH) is that for any two vectors with lengths of non-zero coordinates
≤ n, if they have the same cumulative score then they are indifferent. We ignore
surrounding 0’s when they do not figure in the following.

Base Case 1: n = 1: trivial.

Base Case 2: n = 2: also trivial; note any vector of length one cannot have
the same cumulative sum.

Base Case 3: n = 3: by repeated application of simple indifference (s.ind).

Inductive step: Claim: writing x = xyzwv with x, v > 0 and z possibly null:

xyzwv ' (x− 1)(y + 1)z(w + 1)(v − 1)

17As in Figure 2.14, juxtaposition is here concatenation.
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The result follows from the claim by the following reasoning. Firstly note
these two vectors clearly have the same cumulative sum. Thus given two
arbitrary vectors with the same cumulative sum, we can iterate the pro-
cedure for each until one of x − 1 or v − 1 is zero, and the result follows
by the induction hypothesis.

It remains to prove the claim. By the (∗) we only have to consider cases
where k > 2 in Nj,k.

Firstly, suppose z is null. By independence of equal sub-multisets, it
suffices to show that:

1x01 ' 0(1 + x)10

As k > 2, x = y + 1 for some y ≥ 0. By simple indifference:

1(y+1)01 ' 1y20 ' 0(y+2)10 = 0(1+x)10 as required.

Now, suppose z is of length > 0. As above, by independence of equal
sub-multisets it suffices to show:

10z01 ' 01z10

Write z as xw. By similar considerations to above, by the independence
of equal sub-multisets we can without loss of generality take x = y + 1:

10(y + 1)w01
s.ind' 02yw01

IH' 01(y + 1)w10

We have seen that crossing independence is incompatible with simple indiffer-
ence. Thus, if we want basic regularity alongside crossing independence, we
require either simple pessimism or simple optimism. Conversely, by adding
crossing independence to either of these conditions we almost completely force
the full pessimistic or optimistic lexicographic rule.

Theorem 2.5.37. The only multiset rankings satisfying casewise dominance,
crossing independence, basic regularity, and a technical condition (∗∗) are the
multiset pessimistic and optimistic rules. (For |Q| ≥ 4.)

Proof. We look at the pessimistic case—the optimistic case is symmetric. We
want to show j < i implies zjy � xiy. This can be shown for x of length 1 or
> 2, but not for length 2. The length 1 case follows immediately by casewise
dominance.
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Figure 2.17 Casewise dominance lattice for multisets of cardinality four over
a cardinality four set; bold arrows show the pessimistic ordering; examples of
the procedure of the proof of Theorem 2.5.37 are also demonstrated.
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0103 0022

1003 0112 0031
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1102 1021 0211 0130
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3100

4000
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(∗∗)
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Case: length > 2. Note this implies the length of the full vector is > 3. We
ignore y.

xi 4 k000i casewise dominance
≺ k010(i− 1) casewise dominance
≺ (k − 1)200(i− 1) basic pessimism

k000i ≺ (k − 1)110(i− 1) crossing independence
≺ (k − 2)300(i− 1) basic pessimism

k000i ≺ (k − 2)210(i− 1) crossing independence
... (iteration)

k000i ≺ 0(k + 1)0(i− 1)

k000i ≺ 0(k + 1)(i− 1) crossing independence
4 zj casewise dominance

(∗∗) To get the full result, we have to create another level. We want to be
able to ensure that xyzw ≺ 0(x + y + 1)(z − 1)w. However, we cannot even
get xyzw ≺ (x − 2)(y + 3)(z − 1)w if w does not contain a 0. Thus, for a
ranking on elements X ∈ Nj,k, we also consider the ranking on L(i − 2, X).18

Then, ignoring w, by crossing independence we get xyz0 ≺ 0(x+ y+ 1)(z− 1)0
iff 0xyz ≺ 00(x + y + 1)(z − 1), the latter of which is a ‘length 3’ case of the
above.

Hopefully the proof above intimates the strength of crossing independence in this
setting. Some examples of the procedure of the proof are given in Figure 2.17.
The implication of extremely strong pessimism (or optimism) was by no means
obvious: for instance, it means that (100,0,1) is considered worse than (0,101,0).
Without crossing independence this strong pessimism is not at all ensured by
basic pessimism.

2.6 Casewise-based approach

A seemingly diametrically opposed approach to output-based methods is to
consider each possible input on a casewise basis. What precisely this entails
will be explored in this chapter.

2.6.1 Basic reduction to voting

One way of viewing the casewise approach is as the culmination of the “states-as-
voters” metaphor. Recall Definition 2.3.1 (induced preferences), which declares
that α <q β if and only if ∆αq < ∆βq.

Rule 2.6.1. Let {GQ0
| Q0 ∈ 2Q\∅} be a family of aggregators with each

GQ0
: (wor(A))Q0 → wor(A). The induced rule is obtained by applying the in-

duced preferences over actions to the member of this family corresponding to the
Q0 of the setup.

18 From Definition 2.5.9. In fact, we can add the level in anywhere, then use crossing
independence.
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Proposition 2.6.2. A single agent rule satisfies strong independence only if it
is expressible as a induced rule. Conversely, if an aggregator is satisfies Arro-
vian independence, then it describes an induced-preference single agent rule that
satisfies strong independence (our Axiom 2.3.12).

However, the existence of non-independent (in the Arrovian sense) preference
aggregators means that strong independence is too strong for this approach. On
the other hand, crossing independence is too weak. Recall it is satisfied by the
pessimistic multiset rule.

Example 2.6.3. The pessimistic multiset rule is not inducible from any pref-
erence aggregator. This is obvious, see Figure 2.18.

Figure 2.18 Two setups that no induced rule can distinguish.
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Axiom 2.6.4 (Casewise independence). For any state, changing the output of
the transition function without crossing output states from this state does not
change the outcome. For each state q ∈ Q, for all actions α, β, suppose:

∆αq D ∆βq iff ∆′αq D ∆′βq

Require:
F(∆,D, Q0) = F(∆′,D, Q0)

This axiom is tailored to characterise the induced-preference rules, and hopefully
it is clear that this is the case. Note that we cannot represent output-based rules
in this manner.

Proposition 2.6.5. There are multiset rules that violate casewise indepen-
dence. Conversely, typically induced rules will not be expressible as multiset
rules.

Proof. For the first part refer again to Figure 2.18 as an obvious example that
the pessimistic multiset rule violates casewise independence. For the second,
see the right setup in Figure 2.19.

This is in line with Endriss (2013). We make some further observations about
the different situations that each approach seems to be able to deal with. In
the output-based approach, there are rules that prefer either a risky action that
might lead to a good output or a safe one that always leads to a mediocre
output. In contrast the casewise-based approach can tell ‘how often’ one action
will be better than another, which may not be detectable from the outputs. See
Figure 2.19. Still, although the casewise-based approach seems to able to detect
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Figure 2.19 Two setups demonstrating that different forms of risk are de-
tectable for the output approach and the casewise approach.
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this other form of risk, it is not truly able to quantify it. Roughly, sensible
induced rules are inherently risk-averse. It seems reasonable that one might
want to perform an action that is ‘less likely’ to be better than another, if those
cases where it is better are much better. To allow for such risk-loving behaviour
it seems we must go beyond the states-as-voters metaphor.

2.6.2 Casewise scoring functions

One verbal description of the casewise approach may be:

Look at each case in isolation. Develop some measure or structure
(e.g. induced preferences) over the actions for each of these cases.
Transform (e.g. aggregate) a ‘profile’ of these structures into a single
weak order over the actions.

The question we now ask is: how much information can we use for each “case”
without violating the spirit of the approach? In each case, obviously the state
itself is known, and so should the outputs of each action from that state.

Definition 2.6.6. Let a : (QQ)A → Q→ QA be defined as, for all ∆, q and α:

a∆qα = ∆αq

Then, given a setup (∆,D, Q0), the casewise transition information for each
state p ∈ Q0 is simply:

a∆p : A→ Q

If we are conservative, no information about which other states are believed
should be available, let alone the outputs from these other states. What about
the preferences over the states? Again, being conservative, we could restrict
this preference ranking to the possible outputs from the state in question. If we
do so, we effectively force the induced rules. However, if we are slightly more
liberal with our information, we might want to allow the full preference ranking
over states to be available. We now give a general procedure that utilises all of
this information.

Definition 2.6.7 (Full casewise-based approach). A case action scoring func-
tion is a function:

c : QA × wor(Q)×A→ R



2.7 Chapter summary 41

Take some family of aggregators for 1 ≤ i ≤ |Q|:

Hi : Ri → R

The casewise action score of α ∈ A is then d(α), where:19

d(α) = H|Q0|

(
(G (a∆p,D, α))p∈Q0

)
Finally, take some weak order R ∈ wor(R), and let α < β iff d(α)Rd(β). This
defines a full casewise rule.

Proposition 2.6.8. The full casewise rules subsume both the induced rules and
the output-based rules.

Proof Sketch. For induced rules this is obvious. For output-based: assign each
level in B a prime number. In any given case, score each action with the prime
number it outputs. For the aggregation, simply multiply. By prime factori-
sation we know the outputs from each action, and we can rank the multisets
accordingly.

For another simple, but more concrete example, it easy to represent the pes-
simistic multiset rule by a full casewise rule. Simply assign increasing scores
along with B, for the aggregation take the minimum, and use the natural order-
ing on R. However, full casewise rules go beyond both induced and output-based
rules.

Example 2.6.9 (Minimizing regret). Let the case score of an action be the
maximum number of levels between its output and the worst output of the case-
state. For the aggregation, take the maximum of these. Use the natural ordering
on R. This is a risk-loving rule, in that for the right setup of Figure 2.19 it
advises performing α.

We note, however, that this example is implicitly relying upon cardinal infor-
mation.

2.7 Chapter summary

In this chapter we have looked at a single agent model for ranking actions
under uncertainty. This started by looking at desirable axioms, some of which
were immediately suggested by the shape of the rule, others of which were
imported from social choice. Some of these appear to be novel, as we will
clarify in Chapter 3. One family of axioms we focused on were the symmetry
axioms. In strengthening one of these we intimated that we might as well allow
the indifferences of weak orders, rather than sticking to linear orders. This
axiom and others characterised our first approach to rules: the output based
approach. For this approach we further provided characterisations of concrete
rules. Finally, we looked at the casewise-based approach. We considered the
different circumstances a weak interpretation of this can deal with in comparison
to the output-based approach, and showed that a stronger interpretation means

19Note for full clarity we would have to subscript d(·), as it depends upon many factors.
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that this approach actually subsumes the output-based approach. Along the
way a number of interesting issues were raised.

So far as I am aware, restricting the domain on different subspaces for dif-
ferent axioms would be a novel generalisation of traditional voting theory. The
uncertainty set can also be utilised to draw parallels with traditional problems in
voting theory comparing profiles with different voters, such as cloning and con-
sistency (see Appendix A.1) requirements. Other connections with traditional
voting theory will be discussed in the next chapter.

We focused instead on the main two approaches to rules suggested by Endriss
(2013): the output-based and casewise-based approaches. The output-based
approach lead naturally to considerations on the rankings of multisets, upon
which I feel there is a lot more work to be done, in comparing across families
of multiset rankings, and further in simply defining rules. In particular, the
necessity for the very particular technical conditions in the characterisation
results needs to be investigated. Extending to the infinite case may provide
some ideas, and can be done for both and separately with the width and depth
of the multisets. Finally, as will be discussed more in the next chapter, I feel
there is much scope for discussion on rules which take a more nuanced route in
between severe pessimism and unrelenting optimism.

For the casewise-based approach, I briefly presented a new way of consid-
ering it that actually makes it a superset of the output-based approach. How
satisfying this version of the approach is is perhaps a matter of taste, but the
more powerful framework will allow for new descriptions of rules, some of which
may interestingly satisfy some of the axioms defined previously. Finally, note
that there are even more powerful approaches that take all of the information
in a setup into account, that it may well be worth attempting to harness.



Chapter 3

Positioning the model

This chapter tries to find a suitable position for the model. First we consider
traditional decision theory under uncertainty in Section 3.1. The model is in-
tended to be ordinal, so in Section 3.2 we move on to specifically qualitative
interpretations of this, which may be considered direct parallels to the single
agent case. There are also less direct parallels with social choice theory, specif-
ically when interpersonal comparisons are admitted, that will be explored in
Section 3.3. Connections will then be drawn out with ranking both sets (Sec-
tion 3.4) and multisets (Section 3.5) of objects. We look at some possibilities
for the full multiagent model in Section 3.6. We conclude with Section 3.7

3.1 Traditional decision theory under uncertainty

When deciding under uncertainty, a theory could either tell you what you should
do (prescriptive), or tell you what you will do (descriptive). Single agent rules
may be directly interpreted as the former. General prescriptive approaches
date back at least to Pascal’s wager, which determined that belief in God was
the correct bet. Another early problem, still disputed, is the St. Petersburg
Paradox. Descriptive accounts come more recently, following an article by Wald
(1939) that brings decision theory into the ‘modern’ era. This was continued
by Savage (1972), who takes an axiomatic approach rather different to ours.

Savagean Postulates

The aims of Savage’s The Foundations of Statistics (1972) are evidently going
to be more ambitious than ours. We start with a model, then consider sensible
axioms. A (loose) interpretation of Savage’s approach is rather: start with
axioms, then try to develop a model.20 His intention is to found statistics on
Bayesian ground—Savage et al. (1961) provides some exposition, without the
full detail of his (1972).

It is still worthwhile to consider what we will term the Savagean Postulates,
as they are so foundational for decision theory under uncertainty. Thus they
often form the comparison basis for the more qualitative approaches, especially

20Though it is perhaps unclear how much he necessarily imports through definitions and
the general setup of the framework. See the next Section 3.1.
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those which more directly relate to our case. The translation of the Savagean
Postulates into our framework is actually fairly straightforward: most of the
concepts and objects are similar. Where possible, we continue with our previous
notation and definitions rather than those of Savage; so we once again here have
a set of actions A = {α, β, . . . } and a set of states Q = {p, q, . . . }. In one sense,
the ‘target’ of the model is the same: a relation < ⊂ A×A, only, for Savage,
this is taken as given at the start of the process. A more concrete difference,
and one typical of decision theory in general, is that consequences are separate
from the input states. We will make a nod to this by denoting consequences as
c, d, . . . Note that in our model we can simulate this division by only allowing
certain states to be chosen in the possibility sets, and not allowing these sets to
be outputs. On the other hand, identifying states and consequences allows for
iterated runs of the model.

Savage defines events, which are somewhat analogous to our belief sets.

Definition 3.1.1. An event E is a subset of Q.

An event may be considered as a common property that elements of E have
that none of Q\E have.

An important object for our analysis is the transition function, which defines
what each action does. We went further than Endriss (2013) in our treatment of
this an explicit part of the model. Savage does not have an equivalent object. He
does, however, have notation that allows for arbitrary combinations of actions
via events:

Definition 3.1.2. Given two actions α and β, we have a new action αEβ such
that (αEβ)q = αq if q ∈ E, and βq otherwise.

This is very different from our treatment of finitely many fixed actions, with
outputs determined by a transition function. Without the transition function,
we denote the output of an action α in a state q simply by αq. Now we are in
a position to give all the Savagean postulates.

Definition 3.1.3. The Savage postulates (Pn) and definitions (Dn) (following
his numbering) in brief:

(P1) < is transitive and complete (cf. Definition 1.2.1).

(D1) α <E α′ iff for all β, αEβ < α′Eβ.

(D2) For an action α with ∀q ∈ Q, αq = c, write c.

(D3) An event E is null iff ∀α, β, α <E β.

(P2) All α, α′: α <E α′ or α′ <E α.

(P3) If c < d then for non-null E, cEα < dEα.

(D4) E w D iff for c < d, cEd < cDd.

(P4) All E,D, E w D or D w E.

(P5) Not all α, β, α < β.

(P6) For actions γ and α � β; there is a partition (Ei)
n
i=1 with α � γEiβ and

γEiα � β for each i.
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(P7) For α, β; if all p ∈ E, α �E (βp) then α <E β; conversely if all p ∈
E, (βp) �E α then β <E α.

In various circumstances (P1) could be relaxed, and we will note some
pertinent attempts to do so. The second postulate (P2) may seem innocuous,
but in combination with (D1) it forms what is called the sure thing principle,
which is by no means uncontroversial. We will look at this more in the subsection
below.

In considering (P3) we reiterate that Savage does not start with an underly-
ing ordering over the consequences. Thus it is somewhat forced to translate this
postulate. Nevertheless it may be translated as a weak triviality axiom, ensuring
that the non-null sets E contain states that are not considered impossible.

We cannot accommodate (P4)—a condition often explained in terms of
betting on an event’s occurrence—into our framework currently. Section 3.2
will consider its possible integration.

(P5) is a simple non-triviality requirement. Though (P6) is clearly more
complex, it is not easily applicable to our fixed, finite model.

The final postulate (P7) requires that it every consequence of an action is
better than the best consequence of another action, the first action must be
better than the other, and conversely that if an action’s consequences are better
than another action, the first is at least as good as the second. This amounts to
a very weak form of casewise dominance, so weak in fact that it will not figure
in the following.

After a fair amount of work, Savage obtains his full, celebrated result: there
must be a unique underlying probability distribution over the events and utility
function over the consequences. A more immediate consequence of (P1-7) is
that the set of states, and by extension, the set of actions, must be infinite—
contrary to our model. This is particularly due to (P6), which as with (P7)
will not be treated in the following. More importantly, we still have had no
explicit consideration of what the states, finite or infinite, actually are.

Criticism of Savage

Our reasons for not separating states and consequences are pragmatic: we follow
Endriss (2013); and there is no particular reason to separate, whilst there may
be a reason for not doing so as it may allow for iterated runs of the procedure21.
Still, it may be thought that identifying states and consequences makes ordinary
speech examples of the model slightly clunky, as may have been noted already in
Example 2.1.1. Yet much of this awkwardness is already present in the Savagean
framework, as the next examples somewhat illustrate.

A näıve interpretation of the sure thing principle is that, if one action always
results in a better outcome than another action, then that action should be pre-
ferred. However, supposing we want to maximise utility, this ordinary language
translation does not hold. Towards explicating this, Table 3.1 is taken from
Jeffrey’s 1982 article on the sure thing principle. Here, the best outcome for the
agent is that she buys and the Republican wins, giving utility 3. Everything
else equal, buying gets better results than not buying: so if she doesn’t buy and
the Republican wins, she gets the slightly worse payoff of 2. This suggests that
the dominant strategy should be to buy. However, it is more important (going

21Not that we consider iterated versions of the procedure here.
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Table 3.1: Actions may affect probabilities (e.u.: expected utility).

Outcomes: Republican wins Democrat wins e. u.

Actions:
Buy u = 3 p = 0.1 u = 1 p = 0.9 1.2
Don’t u = 2 p = 0.8 u = 0 p = 0.2 1.6

by pure utilities) to the agent that the Democrat does not win: this outcome
gives the lower utilities of 1 (if the agent buys) and 0 (if she doesn’t buy). The
crux of the issue is that the act of buying greatly increases the chance that the
Democrat will win from 0.2 to 0.9. This means that the seemingly dominant
action of buying has lower expected utility, 1.2 versus 1.6.

Of course, the formal statement of the sure thing principle does actually
imply that dominant actions have higher expected utility. The problem above is
simply not well formed with respect to the Savagean framework. Actions cannot
affect probabilities directly this framework. What this means is that we need to
‘translate’ the natural statement of the situation above. To that end, consider
the following description of four possible states, of varying awkwardness:

State 1. Republican wins (R)

State 2. Democrat wins (D)

State 3. Republican wins iff you Buy
(RB)

State 4. Democrat wins iff you buy
(DB)

(R) (DB)

(RB) (D)

Buy

Don’t

Buy

Don’t

p = 0.8

p = 0.2

p = 0.9

p = 0.1

Note there are multiple ways to assign probabilities in conformity with the values
of Table 3.1. One is with p(DB) = 0.8, p(R) = 0 and p(RB) = p(D) = 0.1.
Another is p(DB) = 0.7, p(R) = 0.1, p(RB) = 0 and p(D) = 0.2.

Jeffrey seems to argue that unless you have a problem with the unnatural-
ness of the transformation and underlying composite states, (P2), and Savage’s
account on the whole, is sound. Of the many examples he considers22 , partic-
ularly interesting with respect to our current work is Markowitz’s problem:

Imagine that today is your birthday; a friend presents you with a
choice among three lotteries. Lottery α consists of a barrel of 2000
tickets of which 2 are marked $1000 and the rest are blanks. Lottery
β consists of another barrel of 2000 tickets of which 20 are marked
$100 and the rest are blanks. Lottery γ consists of a barrel of 2000
tickets of which 1 is marked $1000 and 10 are marked $100. From the
chosen barrel one ticket will be drawn at random and you will win
the amount printed on the ticket. Which barrel would you choose?

The claim is that, if maximising expected utility, one should rank option γ in
between option α and β, as γ is an admixture of the two others. We now trans-

22 Most of the (voluminous) criticism of the sure thing principle seems not to immediately
apply to our qualitative approach. Thus we skip over Allais’ problem; and note Ellsberg’s
problem is far too steeped in probabilities.
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late the above “ebullient” statement of the problem (due originally to Alchian
(1953)) into the language of multiset rankings—of Definition 2.5.7 and Defini-
tion 2.5.15. Abstracting away from the distracting monetary values, it amounts
to a choice between three vectors:

Example 3.1.4 (Markowitz). Reduced to qualitative foundations: choose be-
tween the following three vectors:

Xα = (203) Xβ = (031) Xγ(112)

The above claim thus becomes Sub-axiom 2.5.32. Cf. also the question of ad-
ditive representability in Figure 2.15 (c). Contrary both to the claim and our
basic regularity axiom, we note that, under the ‘hardest’-nosed interpretation,
any shape of preferences over α, β and γ may well be possible: one may prefer
some risk to no risk, but also moderate risk to high risk; thus one may prefer
γ overall. For Jeffrey, being able to work these preferences as extra utilities
into the model means that you can prefer γ without violating (P2) and related
principles. For us, it would be interesting to consider the precise different forms
of possible uncertainty aversion. Some suggestions are found in Table 3.2.

Table 3.2: Possible considerations for different types of risk-aversion, possibly
resulting in different rankings even though naively they might be required to be
the same.

Description Näıvely identical rankings

When risk is doubled, tripled, etc.
(similar to Markowitz)

(202) ./ (121)
(121) ./ (040)
(202) ./ (040)

When there are different
underlying amounts of objects

(101) ./ (020)
(323) ./ (242)
(311) ./ (230)
(113) ./ (032)

When risk occurs at different levels (1101) ./ (1020)
(1011) ./ (0201)

When there are gaps between the
high and low elements

(11011) ./ (10201)
(11011) ./ (01210)
(10201) ./ (01210)

The argument that any problem with the sure thing principle can be removed by
a suitable translation—and thus that these problems really amount to problems
with the naturalness of the model—is persuasive. This leaves the issue of the
translation itself. Now, whilst unnaturalness of the model may well be a problem
for someone taking a descriptive stance, the model itself is our object of study.
Ultimately, we see no particular reason to reject (P2).

Unfortunately, none of the rules defined in Chapter 2 currently satisfy the
sure thing principle. A direct translation of (P2) into our framework yields a



48 Positioning the model

strengthened version of Axiom 2.5.26, applied to Q instead of Q0.23 This is
incompatible with Axiom 2.2.5. However, the next section will show that not
much rearrangement is required to find a place for (P2), and indeed for (P4),
within our model.

3.2 Qualitative decision theory

Though we eschew probability distributions, there is no particular reason not
to treat (P4) in an ordinal manner.

Definition 3.2.1. A likelihood ranking is a weak order w ⊆ 2Q × 2Q.

Theories that aim for such a weakening of the full the Savagean result may be
termed qualitative decision theories, though this term encompasses a variety of
other methods. Thus also falling under this general heading are the attempted
logical formalisation of Boutilier (1994); the use of sets of integers by Tan and
Pearl (1994) to describe rough probabilities or utilities; and yet further attempts
at founding the theory by Brafman and Tennenholtz (1996). However, these are
not reconcilable with the Savagean way of thinking.

Work with explicit consideration of the Savagean postulates was initiated
by Dubois and Prade (1995). Dubois et al. (1997) continue this, providing a
method for “lifting” preferences to events in the following manner:

Definition 3.2.2. The dominated states between two actions α, β are:

[α B β] = {q ∈ Q | αq B βq}

Taking dominated states as an event, they then define the likely dominance rule:

Definition 3.2.3. The likely dominance rule assigns the following ranking on
actions: α < β iff [α B β] w [β B α]

Let us consider some methods of deriving the ordering w from setups of our
framework. Firstly, suppose E w D iff |E ∩Q0| ≥ |D ∩Q0|. We note that then
the likely dominance rule becomes the failed rule attempted in Example 2.3.9.
Obviously, there are going to be problems here. The only suitable derived
ranking that will work with likely dominance is the following: E w D iff E ⊆ Q0.

Fargier and Perny (1999) introduce an axiom, qualitative independence, which
is identical to our strong independence. Though this gave us the impossibility
result of Proposition 2.3.14, recall that the Savagean method is partially going
in the opposite direction; looking to describe w. A preliminary result in the pa-
per shows that strong independence, alongside (P3), implies (P2) and (P4).
For one of the main conclusions, they slightly strengthened (P5) to (P5’) as
follows:

(P5’) There are three consequences c, d, e such that c � d � e.

The conclusion of the paper is then:

23This is given in the Appendix A.1. Note (P2) is indeed naturally cast as an indepen-
dence axiom, as evinced by work by Samet’s on The sure-thing principle and independence
of irrelevant knowledge.
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Theorem 3.2.4. Given (P1), (P3), (P5’) and strong independence, under
likely dominance we have for two actions

α � β ↔
{
∃q ∈ Q, αq B βq
∀q ∈ Q, βq B αq → (∃p ∈ S, {p} A {q} ∧ αp B βp)

This amounts to a partition of successive oligarchies. Here, likely dominance
proceeds as follows: when comparing two actions, we first check the outputs from
the first oligarchy. If one action is better in some of these outputs, and worse in
none, then this action is preferred. If one action is better in some but also worse
in some, the actions are indifferent. If all outputs are indifferent, we repeat the
procedure for the next oligarchy, according to w.

The comparison performed at each oligarchy above was extremely simplis-
tic, essentially amounting to a form of unanimity.24 However, without strong
independence such a comparison is not forced. We can weaken it to one of the
other forms of independence, and apply this approach to any of the rules of our
current model as follows: simply take Q0 as the first oligarchy and Q\Q0 as
the second, and final, oligarchy. As well as integrating a simple version of (P4)
into the model, this also means that (P2) can be satisfied. We can also easily
extend our model to allow more oligarchies.

Indeed, we may even be able to go beyond the successive oligarchy paradigm
with our weakening of strong independence. Dubois et al. (2002) choose to
relax (P1) in order to allow more interesting likelihood relations. But it is also
entirely possible that relaxing strong independence would also allow for different
likelihood relations; a possibility mentioned by both Dubois et al. (2002) and
Dubois et al. (2003). As the next section shows, strong independence effectively
marks a return to the Arrovian framework; whereas we arguably have more
information to work with.

3.3 Interpersonal comparisons of utility

Arrow’s framework is explicitly ordinal, but also explicitly disallows interper-
sonal comparisons. In this section we show allowing such comparisons is natural
for our model. Extensions of the Arrovian framework in this line have been for-
malised by Sen at least as far back as 1970.

We somewhat follow Roemer (1998) in the following exploration. Consider
the following two methods for measuring preferences over Q:

1. as a weak order: D ⊆ Q×Q.

2. as a utility function: u : Q→ R.

Let us consider the utility function as a vector in RQ. Clearly, a large set of
utility functions correspond to a single weak order. The full set can be obtained
by closing under coordinate-wise application of the set of strictly increasing
functions f : R→ R.25

24Note that even this simplistic rule is only possible because the equivalent of our casewise
dominance is not required.

25 A function f is strictly increasing if x > y implies f(x) > f(y).
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Example 3.3.1. Let Q = {p, q, r} and suppose p B q B r. One ‘representative’
utility function is u = (2, 1, 0). Via strictly increasing f(x) = x2 + 4, we see
u′ = (8, 5, 4) also represents the ordering.

Such an approach partitions the set of all utility functions into equivalence
classes, one for each weak order. In a certain sense, these sets of utility functions
represent an ordinal perspective.

Now, add a transition function ∆ and belief set Q0 and consider the induced
preferences over actions as in Definition 2.3.1: (<i)i∈Q0

. We represent this as a
vector of utility functions (ui)i∈Q0

defined for each i ∈ Q0 as

ui = (u(∆αi))α∈A

Example 3.3.2. Continuing Example 3.3.1, let also A = {α, β}, Q0 = {p, r}
and ∆ as in Figure 2.1. Taking again u = (2, 1, 0) we obtain up = (2, 1)
and ur = (0, 1). Applying f(x) = x2 + 4 to the utilities of the states we see
u′p = (8, 5) and u′r = (4, 5). Note under any such transformation of u to u′′

the second coordinate of u′′p and u′′r will always be the same, and that the first
coordinate cannot ‘cross’ this value.

Taking the ordinal perspective on preferences over states thus naturally leads to
allowing ‘intercase’ comparisons in the induced preferences over actions. Thus
reinforced, the induced preference approach gains the expressivity of the output-
based approach.26 In particular, note simply transposing these utility vectors
gets us the output multisets, regardless of the transformations the vectors have
undergone.

There is a lot of work questioning the admittance of interpersonal compar-
isons to the Arrovian framework: Bossert and Weymark (2004) provide a fairly
comprehensive survey of axioms and results, whilst d’Aspremont and Gevers
(2002) provide a critical review. What we have here is akin to a condition
called ordinal full comparability by Blackorby et al. (1984) and called invari-
ance with respect to commonly increasing transformations by d’Aspremont and
Gevers. We note that, insofar as it practically constitutes our basic approach,
we never defined an axiom that identifies this.27

The literature defines a large list of transformations for invariance conditions.
One far stronger version is invariance with respect to individually increasing
transformations. This corresponds to our casewise independence, and amounts
to a return to the Arrovian framework.28

It might be also hoped that an invariance condition would line up with the
intermediate crossing independence. However, this is difficult to translate, as
Example 3.3.3 shows. So far as I am aware, crossing independence is a novel
concept.

Example 3.3.3. Continuing Example 3.3.2, for crossing independence, we
would require u′′p = (8, 6) and u′′r = (5, 7) to be invariant. Further we could have
any values x > y, z > w in u′′p = (x, y) and u′′r (w, z). In terms of functions, for

26It falls somewhat short of the full casewise approach sketched in Section 2.6.2, however,
as it cannot detect levels without outputs in the ranking over states.

27We give the axiom in Appendix A.1. We also note despite the claim that this defines our
approach, we did define an early rule that violates it: Rule 2.1.4.

28 Though not an invariance condition, we also note that our weak-pairwise-transition in-
dependence corresponds to binary independence in d’Aspremont and Gevers (2002).
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a particular group of utility vectors, we can apply any increasing function that
is the identity on all coordinates except one, for all vectors.

The Arrovian framework, corresponding to casewise independence, is gen-
erally the most restrictive considered, thus has the smallest space for possible
rules. Earlier we noted that we wanted crossing independence in some way to
be a minimal strengthening of strong (and it turns out also casewise) indepen-
dence that allowed to distinguish when different actions crossed. This is because
such a minimal weakening allows for consideration of what extra rules it admits.
Though extended in other directions as well, typically invariance with respect to
commonly increasing transformations is seen as the next level of generality up
from invariance with respect to individually increasing transformations. Thus
crossing independence provides a novel intermediate position.

Admitting interpersonal comparisons is quite controversial: much effort is
expended, e.g. by d’Aspremont and Gevers (2002), to look for possible justi-
fications. Our model is the most natural application of the concepts involved
that I have seen. The interpersonal interpretation is quite different, there is
perhaps limited use in importing results or axioms. We are not interested in
issues of egality for individuals, but in risk ; in how risk averse or risk loving to
be. Though the literature we have discussed in this section is perhaps not so
relevant to this, we can draw from other sources.

3.4 Ranking sets of objects

Suggested by Endriss (2013), the original inspiration for the output-based ap-
proach above was from ranking sets of objects. Before focusing on the specific
issue of relative uncertainty aversion, let us consider the general setting, sur-
veyed by Barbera et al. (2004).29 This provides a first division between sets of
mutually exclusive alternatives and sets of joint alternatives. As we presume
that only one consequence is possible, we clearly take the first fork. A second
split then arises between opportunity and uncertainty sets: in the former, the
agent is offered a final choice of the element from the set of elements; in the
latter, chance picks the ultimate element. The former leads to many interesting
questions about the role of freedom of choice in determining how highly ranked
an opportunity set should be. There is a venerable tradition to this literature
going back to work by Koopmans (1964) and Kreps (1979), continued more
recently by Xu (2003). Also of note is work by Dutta and Sen (1996), which
considers correspondence results between ranking opportunity sets and Arrow’s
theorems. However, we are here interested in uncertainty sets.

Uncertainty aversion for sets of objects

In the setting of ranking uncertainty sets, Bossert et al. (2000) attempted early
axiomatisation of minmax and maxmin; and of lexicographic extensions of these;
with some clarifications by Arlegi (2002). Although these rules may be classi-
fied as initially optimistic or pessimistic, they are balanced in that the next
consideration is one of the opposite kind.

29 Going roughly in the opposite direction to ranking sets of objects is revealed preference
theory, which appears to be prior: see work by Sen (1971).
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Even more possibilities between pure pessimism and optimism are quantified
by Bossert and Slinko (2006). This starts with (a strengthened version of) a
result of the pioneering work by Kannai and Peleg (1984), that amounts to the
following:

The relative ranking of two sets should only depend upon the
minimum and maximum elements of those sets

(3.1)

Thus they focus on ranking pairs of elements. With a basic monotonicity or
dominance axiom, this results in an underlying lattice, as in for e.g. Figure 3.1.
In order to force a refinement of this lattice they introduce a new axiom, trans-

Figure 3.1 Lattice showing preferences on set pairs for sets with elements from
N4.
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The lattice to the left shows relations
between pairs of the highest and low-
est elements of sets that are forced by
intuitive dominance requirements. Cf.
Figure 2.14.

lation neutrality. This states (roughly) that increasing (or decreasing) both the
best and worst elements of two sets by one level should not change the rela-
tive ranking between the two sets. Though the number of possible rankings is
described utilising some elegant number theory involving Farey fractions, here
we will stick to the geometric interpretation. Thus, a ranking on the coordi-
nate pairs is determined by any negative gradient, g. Consider the line drawn
between two coordinates. If its gradient is positive, zero, or undefined, the re-
lation between the pairs is determined by the dominance requirement. If two
coordinates lie on the line of this slope, they are indifferent. If the line has a
smaller gradient than g (greater absolutely) then the pair with the larger high
element is preferred. If the line has a greater gradient than g (smaller abso-
lutely) then the pair with the larger low element is preferred. See Figure 3.2
for an example. Note all these rankings have uniform risk-aversion: classifying
these is seemingly a prior task to that of Table 3.2.

Figure 3.2 An almost completely pessimistic ordering of sets.
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The ordering to the left is ‘almost’
pessimistic in that it differs from the
purely pessimistic ordering by one rela-
tion: (4, 1) � (2, 2). It is characterised
by a slope of (say) −2/3.
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Bossert and Slinko (2006) consciously stick to the the set-based approach.
We next consider some previous work concerning ranking multisets of objects.

3.5 Ranking multisets of objects

Historically, orderings on multisets have been studied in computer science with
an aim towards proving program termination. The relevant condition, tameness,
ensures there are no infinitely decreasing chains of multisets. Such work by
Martin goes back at least to 1989, where multisets are ordered as positive cones.
We are, however, far more interested in the discrete cases. It appears that
much of the literature has a focus on additive representability and cancellation
conditions: early work concerning this was produced by Sertel and Slinko (2002)
and Conder et al. (2004), and continued by Conder et al. (2007).

In a slightly more general framework, an article by Slinko (2009) seems to be
amongst the most recent work. Its statement of three open problems concerning
the ranking of multisets perhaps indicates that there is still a lot of work to be
done before these objects are fully understood. We note that most of these
papers restricted to considering orderings on Nj,k for some j and k. It appears
that the added simplicity is a very desirable condition, and that attempting to
rank the full space of submultisets would have been a very difficult task indeed.

I have found no direct analogues to either Theorem 2.5.36 or Theorem 2.5.37
in the literature. However, a more thorough search should also include the field
of multiple criteria decision analysis, see for e.g. work by Weber (1987).

In a slightly different field, Pivato looks at extending incomplete preorders
to incomplete preorders over multisets, but with the framework of each member
of the multiset being the personal state of some individual.

The above sections have shown that there is still lot of work to be done in
mapping out the single agent case. As such, when moving to the multiagent
case it becomes hard to know in which direction to head.

3.6 The multiagent model

The issues of complexity only increase when it comes to the multiagent case.
Endriss provides a suggestion to reduce this complexity: aggregate the prefer-
ences and beliefs, then apply a single agent rule. We will investigate this and
similar approaches in the next chapter.

Here there are thus direct connections to the masses of work on aggregating
preferences, à la Arrow. There has also been much work that would suggest
many different methods for aggregating different beliefs (for example Dynamic
Epistemic Logic, as by van Ditmarsch et al. (2007), or in the theories of Spohn).
Also potentially applicable is the aggregation of different reference frames per-
formed in non-monotonic reasoning, see for example Doyle and Wellman (1991).

Other ways of aggregating beliefs could certainly involve work on judgement
aggregation, or rather aggregation of propositional attitudes, see for example
work Dietrich and List (2008). For judgement aggregation proper, List (2012)
provides a review.

As it is, the model provides an more expressive framework in which we can
couch other social choice theoretic problems, such as the Ostrogorski paradox
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(see Appendix B.3.1) and the paradox of multiple elections (e.g. Brams et al.
(1998)). Issues of manipulation would certainly be interesting to look at here
as well.

In a completely different direction, there are certainly possible connections
with cooperative game theory in the vein of Shapley. The idea of cooperation
is already implicit in the model, as we assume that the agents perform a single
joint action. Perhaps the simplest way to connect this to cooperative games is
to consider a special null action of which the interpretation is that no agreement
was reached. More complicated extensions are certainly possible: we may want
to allow for disjoint actions, but require that some actions require a minimal
amount of participants to perform. The agents will then have to decide whether
or not to form coalitions to perform these actions, even under uncertainty of
what the output of the action may be. The trade off between risk, direct gains
and beliefs/knowledge across different agents makes this approach particularly
interesting: one agent may always like an action, whilst the other thinks it risky
(either because of differences in beliefs or in preference structure), thus the first
promises to compensate the second in case of failure.

3.7 Chapter summary

In this chapter I considered antecedents and connections to the model. These
start with traditional decision theory, though later qualitative developments fit
closer to the intended direction of our study. Indeed, the analysis of the single
agent case above seems to provide a novel method in the field of qualitative
decision theory. This is partly due to the connection with social choice the-
ory, brought out particularly in the extended Arrovian framework that admits
interpersonal comparisons. Allowing interstate comparisons in the qualitative
framework certainly allows for more interesting oligarchy rules, and may even
allow for more interesting likelihood relations that go beyond these successive
oligarchies.

In the other direction, though both of the above areas of literature provide
insights for our model, they do not shed much light upon the interesting question
of relative risk-aversion. For our model, the simplest way to study risk aversion is
to look at different ways of ranking multisets. Work on ranking sets of objects
with this explicit aim has been carried out, but I have not been able to find
directly equivalent work in the literature on ranking multisets of objects: our
preferred expression of the possible outputs of actions. Our perspective perhaps
provides a novel way of forming questions about such rankings. Note we have
not even considered the possibility of different casewise forms of risk aversion
here.

Thus, there are still many interesting questions to be answered, and perhaps
even posed, for the single agent case. It is perhaps thus not surprising that its
extension, the multiagent case, is still in an exploratory state. We now move on
to this multiagent case in the next chapter.



Chapter 4

Multiagent case

4.1 Introduction

Introducing multiple agents adds yet more directions to a model which already
had lots of avenues for analysis. In this chapter we consider routes of back-
tracking to the single agent case. One way of doing so was suggested by Endriss
(2013): simply aggregate the preferences and beliefs, then apply the single agent
rule. Here we investigate this, and some similar methods for simplifying the
model, whilst giving an actual implementation.

Haskell

The programming language used is Haskell (Doets and van Eijck, 2004). This
is a functional language: programs are executed by evaluating expressions.
This may be contrasted with procedural languages such as Java or C. The
deterministic—and indeed functional—nature of rules makes them good candi-
dates for implementation with a functional language. Haskell allows us to split
up the procedures into well defined expressions, which we can then naturally
combine or compose. As well as implementations of the rules, we use Haskell
to generate raw test data—though we note our cultures are not as complex as
those of, say, Tideman and Plassmann (2012).

We write the code as per the literate style pioneered by Knuth (1984). This
means that code is interleaved with explanatory text. As an example, the
following function is part of the Agg/Gen.hs module.

Agg/Gen.hs

factorial :: (Integral n) => n -> n

factorial n = product [1..n]

The first line above is not strictly necessary: it explicitly gives the type of the
function, which the interpreter could infer. However, it is useful to write this
explicit declaration, as we can then see at a glance that factorial takes an
integral type and returns another integral type. We will tend to be verbose
in an attempt to aid comprehension. The second line gives what the function
does: here, it produces a list of numbers between 1 and the argument n, and then
multiplies them together with product. For the method used here to extract
this interleaved code, see Appendix B.1.

http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Functional_programming
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Once extracted, the code is split into four files: three modules and an inter-
face program. The first module Agg.hs contains basic definitions or declarations,
the second Agg/Rules.hs contains rules and and other procedures that work
on data, and the third Agg/Gen.hs concerns methods for generating test data.
The interface is contained in int.hs. For complete export lists for each module
see Appendix B.2.2.

Outline of the chapter

We first go over the full multiagent procedure and its constituent parts in the
immediately following section. The main body of this chapter concerns meth-
ods for splitting up and reducing the full case to smaller procedures. Thus,
Section 4.3 discuss aggregation of beliefs and preferences, Section 4.4 imple-
ments some of the single agent rules of Chapter 2, and Section 4.5 looks at
specific methods of combining these to create full multiagent rules. We explain
the methods used for generating test data in Section 4.6. Procedures for per-
forming analysis on this data, including comparisons of the full multiagent rules,
are given in Section 4.7. We close the chapter with a summary.

A large amount of code is relegated to Appendix B.2. This includes both
instructions for extracting (B.1) and utilising (B.2.1) all the code contained in
this file: multi.tex.

4.2 The multiagent procedure

Recall that a multiagent rule is a function that takes a setup and returns an
ordering over actions (Definition 1.3.1):

F :
(
QQ
)A × (wor(Q))

J ×
(
2Q\{∅}

)J → wor(A)

We now provide a synonym for referring to functions of such types. Note that
the following is declared with a pinch of currying :

Agg.hs

type Rule = TSQ

-> Profile (LOL' State)

-> Profile (BEL' State)

-> LOL' Action

The hope is that the fairly verbose style makes it clearer what each string in
the above refers to. We now give explicit declarations for each of the sub-types
above. First, BEL' represents sets of beliefs and State represents states, thus
BEL' State represents beliefs over states. In fact, such sets of beliefs over states
are simply implemented as lists of integers.

Agg.hs

type BEL' a = [a]

type State = Int

type BEL = [Int]

http://www.haskell.org/haskellwiki/index.php?title=GHC/Type_families
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As beliefs will are typically over states, we will typically use the synonym BEL

instead of BEL' Int.30

Occurring with two different arguments above, LOL' is an (unfortunate)
acronym for lists of lists. These are used to represent the preferences over
both states and Actions. If preferences were linear we could simply write them
as lists. However, as per Section 2.4.2, we work with weak orders. A weak
order is represented as a list of lists as follows: elements in the same sublist
are indifferent, and elements in earlier sublists are preferred to those in later
sublists. So in [[2],[0,3],[1]]: 2 is preferred to both 0 and 3, which are
themselves indifferent. All three are preferred to 1.

Agg.hs

type LOL' a = [[a]]

type Action = Int

type LOL = [[Int]]

As we represent Actions as integers as well as States, we will often use the
synonym LOL for preferences over both. Whenever we want to make it clear
that one or the other is the intended representation, we use either LOL' State

or LOL' Action as required.
Though only implicit in the Profile type above, agents are also to be

thought of as integers. A profile is a collection of homogeneous structures,
one for each of a group of individuals. We utilise the library implementation
of key-value mappings. Each agent corresponds to a key, and their beliefs or
preferences are the value associated with that key.

Agg.hs

type Profile a = M.Map Int a

That leaves TSQ. This represents the transition function, here written as a tran-
sition sequence. It implicitly relies upon the fact that actions and states are
represented as integers.

Agg.hs

type TSQ = [[Int]]

The idea is that the nth action is represented by the nth list. Within an action’s
sublist, the output of the action in state m is the value of the coordinate at this
position. As states, individuals and actions are all composed of integers there is
potential for confusion here: refer to Figure 4.1 for a diagrammatic example.

As well as causing potential confusion, the use of integers for states, actions
and agents implies that we here really consider families of functions that range
over different sized sets Q, J and A. We will at least try to keep the integers
that are considered at any one time as an initial segment of the natural numbers
(including zero). We now move on to consider our first family of rules, or to be
precise, family of families of rules.

Early aggregation

Endriss (2013) suggested a method for reducing multiagent models to a single
agent model. The basic idea is to aggregate the profiles of beliefs and preferences

30In general, we will add a “'” for container types, and omit the symbol when the usual
container (typically Int) is used.

http://www.haskell.org/ghc/docs/7.6-latest/html/libraries/containers-0.5.0.0/Data-Map-Lazy.html
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Figure 4.1 The transition function represented as a transition sequence—a list
of lists of integers—and corresponding diagram.

[[0, 1, 3, 1], [1, 2, 2, 2]]

0 1 2 3

0 1 2 3

0 0
0 0

1
1

1 1

In the diagram the starting
states run along the bottom.
Each starting state has two ac-
tions, 0 and 1, going out of it.
These actions lead to an out-
come state along the top of the
diagram.

first, then apply a single agent rule. An Aggregator takes a profile over a
structure and returns a single structure. Single agent rules are denoted SAR.

Agg.hs

type Aggregator a = Profile a -> a

type SAR = TSQ -> LOL' State -> BEL -> LOL' Action

Thus, a full multiagent rule is defined from two aggregators and a single agent
rule by earlyAgg.

Agg/Rules.hs

earlyAgg :: Aggregator LOL -> Aggregator BEL -> SAR -> Rule

earlyAgg prefAgg belAgg sar tsq prefProf belProf =

sar tsq (prefAgg prefProf) (belAgg belProf)

An early-aggregator thus takes three arguments: an aggregator of lists of lists,
an aggregator of beliefs, and a single agent rule. These then produce a full
multiagent rule with the composition as described above.

Note we have still not yet described any specific rule—as mentioned above,
early-aggregators are really a family of families. To remove one of these levels
we now define some single agent rules and aggregators.

4.3 Aggregators

Perhaps the simplest form of aggregation, applicable to profiles over any struc-
ture, is to simply return the first structure in the profile. This amounts to
making the first agent ‘dictator’.

Agg/Rules.hs

dictatorship :: Profile a -> a

dictatorship = (snd.M.findMin)

For more specific rules concerning beliefs and preferences we must consider what
it is that is being aggregated.
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Belief aggregation

We here review a number of possibilities for belief aggregation discussed by
Endriss (2013), under the heading of uncertainty resolution. A central notion
here is that of the support of a state. This is simply the number of individuals
who have the state in their belief set.

The support of a state may thus be thought of as the score of a state.
Generally, we represent scorings as mappings. We will write SCO’ a b when we
give some keys a numerical scores b, and SCO for when we give a set of integers
integer scores.

Agg.hs

type SCO' a b = M.Map a b

type SCO = M.Map Int Int

A profile of scorings can be aggregated by simply summing the utilities for
each key, as in sumUtility below.31 The function scoWinners will then return
those keys with maximal scores. Alternatively, scoBettAvg returns the keys
with better than average scores.32

Agg/Rules.hs

sumUtility :: (Ord a, Num b) => Aggregator (SCO' a b)

sumUtility = (M.unionsWith (+)).M.elems

scoWinners :: (Ord a, Num b, Ord b) => SCO' a b -> [a]

scoWinners sco = M.keys$M.filter (== maximum(M.elems sco)) sco

scoBettAvg :: (Ord a, Fractional b, Ord b) => SCO' a b -> [a]

scoBettAvg sco = M.keys$M.filter (> meanScore) sco

where meanScore = (M.foldr (+) 0 sco)

/ ((fromIntegral.M.size) sco)

We can now use these to help define belief aggregators. First, we work out
the support for each state, which is done in the function supportScore. We
can then apply the above functions, thus approval returns those states with
maximal support. Approval voting has a large place in the literature on voting
theory, see for e.g. work by Brams and Fishburn (2007). The alternative option,
meanBasedRule, returns any state that receives above an average amount of
support (Duddy and Piggins, 2013).

Agg/Rules.hs

supportScore :: (Ord a) => Profile (BEL' a) -> (SCO' a Int)

supportScore prof = sumUtility $

M.map (M.fromList.(flip zip) [1,1..]) prof

approval :: (Ord a) => Aggregator (BEL' a)

approval = scoWinners.supportScore

meanBasedRule :: (Ord a) => Aggregator (BEL' a)

meanBasedRule = scoBettAvg.M.map fromIntegral.supportScore

31 Note because we are using mappings we require that the keys are members of the Ord

class.
32 Note the different classes required for this: to calculate the mean we require a fractional

type. Thus we also have to escape integral types in scoBettAvg.
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Another procedure in the literature is even-and-equal cumulative voting (Alcalde-
Unzu and Vorsatz, 2009). This equally distributes an equal weight for each agent
amongst their chosen states, implemented here as evenCumScore. The next step
is to return the states with maximal cumulative scores, which is the aggrega-
tor evenCumWinners. We can immediately also combine this with scoBettAvg,
which gives us what appears to be an original, if not overly intuitive, aggregator,
evenCumAverage.

Agg/Rules.hs

evenCumScore :: (Ord a, Fractional b) => Profile (BEL' a) ->

(SCO' a b)

evenCumScore prof = sumUtility $ M.map (M.fromList.distWeight)

prof

where distWeight bels = zip bels $ repeat

(1/genericLength bels)

evenCumWinners :: (Ord a) => Aggregator (BEL' a)

evenCumWinners = scoWinners.evenCumScore

evenCumAverage :: (Ord a) => Aggregator (BEL' a)

evenCumAverage = scoBettAvg.evenCumScore

Axiomatizations of the unoriginal rules are given by Xu (2010). If the agents
have, and want to retain, knowledge, then we can only aggregate by intersection.

Agg/Rules.hs

intersectionRule :: (Eq a) => Aggregator (BEL' a)

intersectionRule prof = M.foldr (intersect) someElem prof

where someElem = snd (M.findMin prof)

Proposition 4.3.1. If the intersectionRule does not return an empty set,
then it coincides with both approval and evenCumWinners.

Proof. Obvious.

We list all the possibilities here in such a way that we can refer to them later
by strings. Note that the dictatorship aggregator can be unproblematically
included.

int.hs

belAggs :: [(String, Aggregator BEL)]

belAggs = [ ("approval", approval)

, ("meanBsdR", meanBasedRule)

, ("evnCumWn", evenCumWinners)

, ("evnCumAv", evenCumAverage)

, ("intersct", intersectionRule)

, ("dictator", dictatorship)

]

In the following we will particularly focus on approval voting, as does Endriss
(2013). However, we note Endriss gives reasons for preferring the:

� even-and-equal-cumulative aggregator, i.e. if we have reason to believe
that those who report small sets do so because they have more accurate
information; and the
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� mean-based aggregator, i.e. if we do not want to exclude too many possi-
bilities.

Preference Aggregation

Scorings can also be used for preference aggregation. Firstly, we need to trans-
late a list of lists to a scoring. The score-value of successive levels of the list of
lists is required as the first argument of lolToSCO.

Agg/Rules.hs

lolToSCO :: [Int] -> LOL -> SCO

lolToSCO vec lol = (M.fromList.concat.zipWith zip lol) repVec

where repVec = map repeat vec

Borda scoring is traditionally used for linear orders.33 A possible formulation
of this is that each element’s score is the number of elements it is strictly pre-
ferred to. This generalises directly to weak orders, giving us the bordaVector

below. Cf. Definition 2.1.3. Other scoring vectors are of course possible, and
perhaps even interesting. In the other direction—scoToLOL—there is only one
possibility: in the transformation from scorings to list of lists the cardinal in-
formation is simply lost. The borda aggregator is then just the composition of
these various translations with sumUtility.

Agg/Rules.hs

bordaVector :: LOL -> [Int]

bordaVector = tail.(scanr ((+).length) 0)

lolToBordaSCO :: LOL -> SCO

lolToBordaSCO xs = lolToSCO (bordaVector xs) xs

scoToLOL :: SCO -> LOL

scoToLOL sco | M.null sco = []

| otherwise =

let (maxs,xs) = M.partition

(== maximum(M.elems sco)) sco

in (M.keys maxs):(scoToLOL xs)

borda :: Aggregator LOL

borda = scoToLOL.sumUtility.(M.map lolToBordaSCO)

Borda is the typical non-Condorcet method (see Fishburn and Gehrlein (1976)).
Probably the simplest Condorcet (1785) method is Copeland (Henriet, 1985).
This is implemented as follows. First, for each individual create a ‘matrix’ with
a one in coordinates where the row index is preferred to the column index, a
zero when the indices are indifferent, and a minus one where the column index
is preferred to the row index. scoToMat creates a single such matrix (as a list of
lists) given a scoring. These matrices are then summed, so that the sign of each
coordinate shows whether the row is preferred to the column by a majority of
individuals. Apply signum to the coordinates of a particular row, then the sum
of these signs gives the score of the index of the row. These steps are achieved

33Borda scoring is named for the 18th century French mathematician, Borda (1781). A
more recent, social-choice-theoretic account of the Borda method is by Young (1974).

http://mathworld.wolfram.com/Sign.html
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by copelandSCO, which obtains the Copeland scores. Composing and returning
the data in a list of lists format is done by copeland.

Agg/Rules.hs

scoToMat :: SCO -> [[Int]]

scoToMat sco =

let scoresInPos = M.elems sco -- reduces to list

-- of scores

expand ys y = map (ordSign.(compare y))

ys

in map (expand scoresInPos) scoresInPos

where ordSign GT = 1 -- converts an ordering to

ordSign LT = (-1) -- a number, cf. "signum"

ordSign EQ = 0

copelandSCO :: Aggregator SCO

copelandSCO profile =

let sumMat = M.fold

(\sco mat -> zipWith ( zipWith (+))

mat

(scoToMat sco)

)

(repeat [0,0..]) -- the empty matrix

profile

in M.fromAscList $ zip [0..] $

map (foldl' (flip ((+).signum)) 0) sumMat

copeland :: Aggregator LOL

copeland = (scoToLOL.copelandSCO.(M.map lolToBordaSCO))

With the general dictatorship aggregator as well, we now have three aggregators
of lists of lists. We give these the following string identifiers:

int.hs

lolAggs :: [(String, Aggregator LOL)]

lolAggs = [ ("bord",borda)

, ("cope",copeland)

, ("dict",dictatorship)

]

4.4 Single agent rules

The single agent rules we implement are the output-based rules of Section 2.5.
As such, we need first to be able to get the outputs for each action.

Orderings: lifting to lists

The function posOutputs returns the output multisets, as a list of lists, for
each action, given a transition sequence and a belief set. See Figure 4.2 for a
demonstration. Specifically, each action is associated with an index, and the
outputs from that action are the elements of the list at that index.
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Figure 4.2 A diagram demonstrating the possible outputs obtained from a
transition function and belief set.

0 1 2 3

0 1 2 3

0 0
0 0

1
1

1 1

For a transition sequence &
belief set:

[[0, 1, 3, 1], [1, 2, 2, 2]] & [0, 2]

we have the following possible
outcomes:

[[0, 3], [1, 2]]

Agg/Rules.hs

posOutputs :: TSQ -> BEL -> [[Int]]

posOutputs (act:xs) bel = map (act!!) bel : posOutputs xs bel

posOutputs [] bel = []

We have already seen two representations of weak orders: as list of lists (LOL)
and scorings (SCO). For dealing with weak orders over lists, we introduce a
third representation: as functions. In a weak order there are three preference
possibilities between two elements: the first is preferred to the second (GT), the
second is preferred to the first (LT), or the two are indifferent (EQ). A function of
type ORD performs precisely this operation; it takes two elements as arguments,
and returns GT, EQ, or LT. Cf. the standard library function compare.

Agg.hs

type ORD' a = a -> a -> Ordering

type ORD = Int -> Int -> Ordering

It will also be useful be able to translate from a list of lists to an ordering,
lolToORD.

Agg/Rules.hs

lolToORD :: LOL -> ORD

lolToORD [] a b = EQ

lolToORD (xs:xss) a b| a`elem`xs && b`elem`xs = EQ

| a`elem`xs = GT

| b`elem`xs = LT

| otherwise = lolToORD xss a b

We now ‘lift’34 such an ordering over elements to an ordering over lists of el-
ements. The simplest way to do so is to apply the ordering lexicographically.
The function lexORD utilises the fact that Ordering is a monoid, with EQ as
the identity, and the binary operator <> returning the first argument on non-
identities. Note it only compares an initial segment of a longer list, a moot
point as we only compare lists of the same length per page 28.

Agg/Rules.hs

lexORD :: ORD -> ORD' [Int]

lexORD cmp (x:xs) (y:ys) = (x `cmp` y) <> (lexORD cmp xs ys)

lexORD cmp _ _ = EQ

34Note this is different to the “lifting” performed by Dubois et al. (1997) mentioned in
Section 3.2
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Strictly speaking this dictionary-style ordering is not applicable to multisets,
as multisets do not come with a lexicographic order. However we can easily
equip multisets with such. The two obvious versions relate to pessimism and
optimism. A pessimist sorts the elements so that the worst take precedence, an
optimist in the opposite manner (Cf. Definition 2.5.16).

Agg/Rules.hs

pesORD :: ORD -> ORD' [Int]

pesORD cmp xs ys = lexORD cmp (sortBy cmp xs) (sortBy cmp ys)

optORD :: ORD -> ORD' [Int]

optORD cmp xs ys = lexORD cmp (sortBy (flip cmp) xs)

(sortBy (flip cmp) ys)

We can also define lifted rankings that ignore the multiplicities of elements.
These may then be thought of as rankings of sets of objects. The following,
domORD, is one possibility, cf. Rule 2.5.4.

Agg/Rules.hs

domORD :: ORD -> ORD' [Int]

domORD cmp xs ys | minimumBy cmp xs == minimumBy cmp ys

= (maximumBy cmp xs)`cmp`(maximumBy cmp ys)

| otherwise

= (minimumBy cmp xs)`cmp`(minimumBy cmp ys)

Another general method for lifting rankings over states to rankings over multi-
sets is to use a scoring. This approach will be embedded into the last function
of this section.

Applying liftings to rules

In the opposite direction, we can ‘drop’ an ordering over values to apply to
the keys in a mapping. First we have a helper, indifBy, that asks whether
two elements belong to an equivalence class according to some ordering. The
‘drop’ itself is performed by mapToLOL. Note this also changes the type from an
ordering into a list of list.

Agg/Rules.hs

indifBy :: ORD' a -> a -> a -> Bool

indifBy cmp x y = x`cmp`y == EQ

mapToLOL :: ORD' a -> M.Map Int a -> LOL

mapToLOL cmp mapping

| M.null mapping = []

| otherwise =

let isBest = indifBy cmp

(maximumBy cmp (M.elems mapping))

(xs,ys) = M.partition isBest mapping

in (M.keys xs):(mapToLOL cmp ys)

Applying this to a lifted ordering over multisets and a mapping of possible
outputs gets us a single agent rule. We thus obtain either the pessimistic rule
using pesORD or the optimistic rule using optORD.
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Agg/Rules.hs

pesSAR :: TSQ -> LOL' State -> BEL -> LOL' Action

pesSAR tran lol bel = mapToLOL cmpLists $M.fromAscList$

zip [0..]$ posOutputs tran bel

where cmpLists = pesORD (lolToORD lol)

optSAR :: TSQ -> LOL' State -> BEL -> LOL' Action

optSAR tran lol = mapToLOL ord . M.fromAscList . zip [0..]

. posOutputs tran

where ord = optORD (lolToORD lol)

The final single agent rule of this section embeds a scoring approach to ranking
multisets. It amounts to Rule 2.5.13.

Agg/Rules.hs

indSAR :: TSQ -> LOL' State -> BEL -> LOL' Action

indSAR tran lol bel =

let sco = lolToSCO [0,-1..] lol -- nb score vector decreasing

listOutputs = posOutputs tran bel

listScores =

let outcomeScore = fromJust.(flip M.lookup) sco

in map (sum.map outcomeScore) listOutputs

in (scoToLOL.M.fromAscList) (zip [0..] listScores)

As has been discussed, pesSAR, optSAR and indSAR may be thought of as quali-
tative decision procedures for a single agent. We give them the following string
identifiers.

int.hs

sars :: [(String, SAR)]

sars = [ ("pes", pesSAR)

, ("opt", optSAR)

, ("ind", indSAR)

]

4.5 Different routes of aggregation

We now have aggregators and single agent rules. Accordingly, we are now able
to create our first reduction, by using one each of belAggs, lolAggs and sars

as arguments in earlyAgg. Indeed, earlRules lists all the possibilities, using a
helper chain.35

int.hs

chain :: [(String, (a->b))] -> [(String, a)] -> [(String, b)]

chain = liftM2 byCoord

where byCoord :: (String, (a->b)) ->

(String, a) -> (String, b)

byCoord (name1, func) (name2, arg)

= (name1++"_"++name2, func arg)

earlRules :: [(String, Rule)]

35 Strictly speaking we here only utilise the applicative property of lists, so liftA2 would
suffice. But we need to import Control.Monad anyway.
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earlRules = [("earl",earlyAgg)] `chain`

lolAggs `chain` belAggs `chain` sars

Altogether, earlRules contains 54 elements. Restricting attention to those with
approval as the belief aggregator brings that down to a more manageable 9.
Note it is now a simple matter to define new aggregators or single agent rules
and add them to the lists and thereby create new multiagent rules.

There is yet another method for creating new multiagent rules: changing the
order of the reduction. We have seen how to reduce a multiagent rule to a single
agent rule by aggregating the profiles first. We now look at other compositions
of aggregators and single agent rules that produce multiagent rules.

Late aggregation

One option is to perform a single agent rule for each agent first, then aggregate
the produced weak order over actions. The function lateAgg thus takes as
arguments a single agent rule and an aggregator of list of lists, and composes
them in this manner.

Agg/Rules.hs

lateAgg :: SAR -> Aggregator (LOL' Action) -> Rule

lateAgg sar agg tran pLOL pBEL = agg profActLOL

where profActLOL = M.intersectionWith (sar tran) pLOL pBEL

In fact, in the most general form, we could have a different single agent rule for
each individual. The implementation of this is included for completeness, we
will not consider it further.

Agg/Rules.hs

lateAgg' :: Profile SAR -> Aggregator (LOL' Action) -> Rule

lateAgg' pSAR agg tran pLOL pBEL =

let pSarLOL = M.intersectionWith ($tran) pSAR pLOL

pActLOL = M.intersectionWith ($) pSarLOL pBEL

in agg pActLOL

As with early aggregation, it is now easy to combine all the previously defined
aggregators and single agent rules to create a collection of late-aggregators.

int.hs

lateRules :: [(String, Rule)]

lateRules = [("late",lateAgg)] `chain` sars `chain` lolAggs

Non-equivalence of different routes

Proposition 4.5.1. There are early-aggregation rules that are not late-aggregation
rules, and vice versa.

Proof. There are two directions here. We first give a late-aggregation rule that
is not an early-aggregation rule. Precisely, it is the function

lateAgg pesSAR borda

identified by the string late pesSAR borda in the list lateRules. In particular,
let us consider the following arguments:
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int.hs

tsqT = [[0,1],[1,0]] :: TSQ

pLOLT = M.fromList [(0,[[0],[1]]),(1,[[0],[1]])] :: Profile LOL

pBELT = M.fromList [(0,[0]),(1,[0])] :: Profile BEL

We apply these in an interactive session (see Appendix B.2.1) with

lateAgg pesSAR borda tsqT pLOLT pBELT

which returns [[0],[1]]: thus here action 0 is preferred to action 1. What
does this mean for any early aggregation rule? If we assume that there is an
early-aggregator that gets the same output, we need three functions: a list of
lists aggregator G1, a belief aggregator G2, and a single agent rule H; whose
composition by early aggregation gets the same result. Thus, abusing different
forms of notation slightly, H(tsq2,G1(pLOL2),G2(pBEL2)) = [[0],[1]]. Fig-
ure 4.3 shows the route of both late- and early aggregation applied to these
arguments. Applying more arguments, and returning to previous notation, we

Figure 4.3 The early and late routes applied to a setup.

∆, ({p}, {p}), (p B q, p B q)

(α � β, α � β) ∆, P1, B1

α � β

pesSAR G1,G2
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borda H

∆:
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p q
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Above is the transition function ∆ that
corresponds to tsq1. Left is shown the
two routes for applying late- and early-
aggregation to a setup.

get the following requirements.

G1(p B q, p B q) = P1

G1(p B q, q B p) = P2

G1(q B p, q B p) = P3

G1(p , q, p , q) = P4

G2({p}, {p}) = B1

G2({p}, {q}) = B2

H(∆, P1, B1) = α � β∗
H(∆, P2, B1) = α ' β∗
H(∆, P3, B1) = β � α∗†
H(∆, P4, B1) = α ' β †
H(∆, P2, B2) = α � β ‡

H(∆, P4, B2) = α ' β ‡

By the ∗ equalities P1, P2, and P3 are distinct. Thus, as there are only three
possible weak orders over two states, by † P4 = P2. But by ‡ P4 6= P2, contra-
diction.

The method for giving an early-aggregation rule that is not a late-aggregation
rule is similar. We consider the rule named by earl dict approval pesSAR.
The transition function ∆ and two possible preference rankings, D,D′ are de-
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scribed in Figure 4.4. We obtain the following list of outcomes.

F1(∆,D, {c}) = P1

F1(∆,D, {b}) = P2

F1(∆,D, {a}) = P3

F1(∆,D′, {c}) = P4

F2(∆,D, {c}) = P ′1
F2(∆,D, {b}) = P ′2

G(P1, P
′
1) = α ' β∗

G(P2, P
′
1) = β � α∗†

G(P3, P
′
1) = α � β∗†

G(P4, P
′
1) = α ' β †

G(P1, P
′
2) = β � α ‡

G(P4, P
′
2) = α � β ‡

By the equations marked ∗ above we see that P1, P2 and P3 are distinct. Simi-
larly by †, P1, P2 and P3 are distinct. Finally by ‡ we see P1 6= P4. We require
four different rankings over the two actions: contradiction.

Figure 4.4 Transition function and two possible preferences over states.

a b c

a b c
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β
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α a D b D c

b D′ a D′ c

Further work would implement automated testing of whether it is possible to
define a given aggregator in terms of early or late aggregation.

Proposition 4.5.2. There are rules that are neither early- nor late-aggregation
rules.

Sketch proof. Here is a sketch of the required rule: first aggregate the individ-
uals’ beliefs. Then get the agents to perform a single agent rule on this group
belief. Finally, aggregate the produced action preferences. It is easy to find
setups which require too many distinct aggregations.

Further routes for multiagent rules

We now implement the route suggested at the end of the previous subsection
to define yet more multiagent rules out of single agent rules and aggregators.
This is implemented by earlBeliAgg': the name intimates the fact that here
we aggregate beliefs first.

Agg/Rules.hs

earlBeliAgg' :: Aggregator BEL -> Profile SAR

-> Aggregator (LOL' Action) -> Rule

earlBeliAgg' belAgg profSAR lolAgg tsq profLOL profBEL =

let newProf = M.intersectionWith (($).($tsq)) profSAR profLOL

newProf1 = M.map ($belAgg profBEL) newProf

in lolAgg newProf1

For simplicity, we will only consider uniform single agent rules.36

36An extension could let the agents themselves ‘decide’, or randomly pick a single agent
rule for each.
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Agg/Rules.hs

earlBeliAgg :: Aggregator BEL -> SAR

-> Aggregator (LOL' Action) -> Rule

earlBeliAgg belAgg sar lolAgg tsq profLOL profBEL =

(lolAgg . M.map (($belAgg profBEL).sar tsq)) profLOL

We sometimes all such routes belief-first-aggregators. For completeness we note
that we could also go in the opposite direction: preference-first-aggregation.

Agg/Rules.hs

earlPrefAgg :: Aggregator (LOL' State) -> SAR

-> Aggregator (LOL' Action) -> Rule

earlPrefAgg staAgg sar actAgg tsq pLOL =

actAgg . M.map (sar tsq (staAgg pLOL))

We now give string identifiers for both of these reductions:

int.hs

beliRules :: [(String, Rule)]

beliRules = [("beli",earlBeliAgg)] `chain`

belAggs `chain` sars `chain` lolAggs

prefRules :: [(String, Rule)]

prefRules = [("pref",earlPrefAgg)] `chain`

lolAggs `chain` sars `chain` lolAggs

The full list of multiagent rules is then:

int.hs

listRules :: [(String, Rule)]

listRules = earlRules ++ lateRules ++ beliRules ++ prefRules

Using length $ map fst listRules we see that we have, thus far, 144 dif-
ferent multiagent rules defined. We want some way to evaluate these different
rules, to see in what circumstances each may be applicable. A näıve expectation
would be that the early aggregation of beliefs should ‘perform well’ with totally
honest, mostly verdical agents. To test this, we need to be able to model agents
who are at least more often than not correct about the true state of the world.
We move on to generating such simple models.

4.6 Generating test data

In what follows we will mostly use uniform distributions, or, in the parlance
of social choice, impartial cultures. The general method for achieving this is
to first generate all the possibilities and store them in an array. The following
function then generates random indices for such an array and extracts the data
that these point to.

Agg/Gen.hs

rndsFromArr :: (Random i, A.Ix i) => A.Array i e -> StdGen -> [e]

rndsFromArr arr gen = map (arr A.!) (randomRs (A.bounds arr) gen)

http://www.haskell.org/ghc/docs/latest/html/libraries/array/Data-Array.html
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Generating preferences

We start by showing how to generate random lists of lists. First, it would be
nice to be able to count the number of possible weak orders. Recall Table 2.1;
a670 allows us to find out how many weak orders there are for much larger
values. It uses the “choose” function nCr. This formula is not trivial: it is taken
from a self published note by Kochanski (2007).

Agg/Gen.hs

nCr :: (Integral a, Show a) => a -> a -> a

nCr n r | n==r = 1

| n>r = div (f n val) (factorial (n-val))

where val = max r (abs (r-n))

f x y | x == y = 1

| otherwise = x * f (x-1) y

a670 :: Int -> Int

a670 0 = 1

a670 n = sum [(nCr n r) * (a670 r) | r <- [0..n-1]]

Because a670 grows as quickly as it does, generating all possible weak orders for
even relatively small numbers of alternatives is infeasible. Nevertheless, here is
the code that does so: given input n allLOLs creates all weak orders over the
set {0, . . . , n− 1}.

Agg/Gen.hs

allLOLs :: Int -> [[[Int]]]

allLOLs 0 = [[]]

allLOLs n = concatMap (allLOLs' (n-1)) (allLOLs (n-1))

where allLOLs' :: (Eq a) => a -> [[a]] -> [[[a]]]

allLOLs' x [] = [[[x]]]

allLOLs' x (xs:xss) = ([x]:(xs:xss))

: ((x:xs):xss)

: map (xs:) (allLOLs' x xss)

Finally, we store these lists of lists in an array and apply rndsFromArr.

Agg/Gen.hs

rndLOLs :: Int -> StdGen -> [LOL]

rndLOLs nStates = rndsFromArr arr

where arr = A.listArray (1,a670 nStates) (allLOLs nStates)

We here note that it would be a simple matter to prepend a filter to this list,
for e.g. to restrict to single peaked preferences. See Appendix B.2.6.

Generating transition sequences

As with preferences, the number of possible transition sequences increases ex-
ponentially. Using Control.Applicative, the function genActions generates
all possible actions for n states. Note there are nn such. We then generate
random such actions with rndActs. In order to turn this into a list of tran-
sition sequences, we could simply unConcat them. However, unConcatNub is
preferable in that it ensures that no transition sequence contains two identical
actions. Note this means that if the number of actions is greater than nn then
rndTSQs will hang.

http://www.nugae.com/mathematics/bin/ordering.pdf
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Applicative.html
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Agg/Gen.hs

genActions :: Int -> [[Int]]

genActions n = iterate (liftA2 (:) [0..n-1]) [[]] !! n

rndActs :: Int -> StdGen -> [[Int]]

rndActs nSt = rndsFromArr arr

where arr = A.listArray (1,nSt^nSt) (genActions nSt)

unConcat :: Int -> [a] -> [[a]]

unConcat n [] = []

unConcat n xs =

let (h,t) = splitAt n xs

in h:(unConcat n t)

unConcatNub :: (Eq a) => Int -> [a] -> [[a]]

unConcatNub n xs = unc [] n xs n

where unc hs 0 xs n = hs : (unConcatNub n xs)

unc hs i (x:xs) n | x`elem`hs = unc hs i xs n

| otherwise = unc (x:hs) (i-1) xs n

unc [] i [] n = []

unc hs i [] n = [hs]

rndTSQs :: Int -> Int -> StdGen -> [TSQ]

rndTSQs nStates nActs = unConcatNub nActs . rndActs nStates

Definition 4.6.1. A transition sequence is covering if from every input state
each output state is achievable by some action.

The following generates minimal covering transition sequences. In these there
are exactly as many states as actions.

Agg/Gen.hs

unConcatTranspose :: Int -> [[a]] -> [[[a]]]

unConcatTranspose n [] = []

unConcatTranspose n xs =

let (h,t) = splitAt n xs

in (transpose h):(unConcatTranspose n t)

rndCovTSQs :: Int -> StdGen -> [TSQ]

rndCovTSQs n = unConcatTranspose n. rndsFromArr perms

where perms = A.listArray (1,factorial n) (permutations [0..n-1])

Generating belief sets

As with lists of lists and transition sequences we could generate all the possi-
ble belief sets, allBELs below, then randomly choose one by its index. The
helper, allBELs', iteratively takes an element x from [0..n-1], and to each
constructed belief sets both prepends xs and returns the original set as well,
utilising the applicative property of lists. This obtains the result, only also
including the (unwanted) emptyset.

Agg/Gen.hs

allBELs' :: Int -> [BEL]

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Applicative.html
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allBELs' n = foldr (\new->(<*>) [(new:),id]) [[]] [0..n-1]

allBELs :: Int -> [BEL]

allBELs n = init $ allBELs' n

However we here want (slightly) more complexity than a uniform distribution
of belief sets. We want to model agents who can be more or less accurate, in
some way.

With that aim in mind, we now treat possible worlds as complete sets of
literals: equivalently, as a list of True and False values. Call these lists Boolean
descriptions. From such Boolean description, descToState returns a number
identifying the state.

Agg/Gen.hs

descToState :: [Bool] -> Int

descToState = foldl1 (+). zipWith (belT.(2^)) [0..]

where belT x False = x

belT _ True = 0

Thus, Boolean descriptions of length k will be identified with states in the list
[0..2^k-1]. As 0 is present in any list [0..n], it makes sense to use it to
represent the ‘actual’ world.

We model agents as ‘noisy’ observers of the propositions. For each proposi-
tion p, the agent can either

(i) believe p,

(ii) believe not p, or

(iii) believe p or not p.

Note an agent cannot believe neither a proposition nor its negation, as then they
will not think any world possible. The probability of these possibilities can be
assigned by w1 and w2 in the the interval [0, 1], with w1 > w2 and w1 + w2 ≤ 1,
where w1 is the probability that an agent is correct about a proposition, and w2 is
the probability that the agent is wrong about a proposition. Given these weights
and a random number x between 0 and 1, the function giveBool returns the
possibilities for a given proposition. The function rndBools generates a random
list of such possibilities.

Agg/Gen.hs

giveBool :: Float -> Float -> Float -> [Bool]

giveBool w1 w2 x | x < w1 = [True]

| x < w1+w2 = [False]

| otherwise = [True,False]

rndBools :: Float -> Float -> StdGen -> [[Bool]]

rndBools w1 w2 = map (giveBool w1 w2).randoms

From a list of possibilities for each proposition we can generate a list Boolean de-
scriptions with toDescs, which then correspond to the worlds believed possible.
The function rndBELs puts this all together to generate a list of belief sets, each
of was created with the same uniform probability of getting each proposition
correct.
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Agg/Gen.hs

toDescs :: [[a]] -> [[a]]

toDescs = foldr (liftA2 (:)) [[]]

rndBELs :: Int -> Float -> Float -> StdGen -> [BEL]

rndBELs nPrps w1 w2 = map (map descToState.toDescs).unConcat nPrps

. rndBools w1 w2

Actual utilised data

Though the details are relegated to Appendix B.2.3, using the above we can
clearly generate profiles for beliefs and preferences, and files containing multiple
instances of each.

4.7 Analysing multiset rules

Being able to generate some data, we would now like to be able to test it upon
our rules.

Decisiveness

A first test concerns how decisive a rule is, i.e. how often it returns a unique
best action. To this end, countDecisive takes a list of lists and returns a triple
with (i) the number of times there is a unique best action (ii) the mean size of
the most preferred set and (iii) the largest size of the most preferred set.

Agg/Rules.hs

sizeHead :: [[a]] -> Int

sizeHead = length.head

hasUniWin :: [[a]] -> Bool

hasUniWin = (1==).sizeHead

int.hs

countDecisive :: [LOL] -> (Int, Float, Int)

countDecisive xs = (count, mean, worst)

where count = (length.filter hasUniWin) xs

mean = (fromIntegral.sum.map sizeHead) xs

/ (fromIntegral.length) xs

worst = (maximum.map sizeHead) xs

I generated some test data for the earl bord approval pes rule applied to
various setups, of which some is presented in Tables 4.1 and 4.2.37

The results of the tables show first that generally increasing the amount of
propositions increases the chance of decisiveness. This is to be expected as it
increases the chance that particular actions will have different outputs, and thus
be more differentiable. Second, as agents get better at correctly determining
propositions, so the decisiveness decreases. This can be explained by the fact
that they are then more likely to have a smaller aggregated belief set by approval,

37This was done using the command line with ./int data1. See Appendices B.2.1 and
B.2.4 for details.
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Table 4.1: The number of decisive outcomes of earl bord approval pes out of 10000 setups
with 2 individuals and 2 actions.

Probability weights (0.2,0.1) (0.5,0.4) (0.5,0.1) (0.8,0.1)
# propositions 1 3 1 3 1 3 1 3

# decisive 5150 9527 4930 9211 4704 8989 4682 8635

Table 4.2: The number of decisive outcomes of earl bord approval pes out of 10000 setups

with probability weights (0.2,0.1) and 2 actions.

# propositions 1 1 1 2 2 2 3 3 3
# individuals 2 5 10 2 5 10 2 5 10

# decisive 5150 5651 5899 7811 7685 7486 9527 9235 8984

and thus there is less chance for different actions to be differentiated. Third,
and perhaps less obviously, that apart from the case of 1 proposition/2 states,
increasing the number of individuals decreases the decisiveness.

Taking what appears to be a typical setup, we now compare decisiveness
across different rules in Table 4.3. These results have perhaps too few data
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setup 1 7518 7450 6771 7200 7043 6410 7733 6735
setup 2 8049 8028 7492 8382 8341 7819 9076 6776
setup 3 8262 8483 8107 8894 8767 8413 9544 6711

setup 4 7341 7265 7029 7480 7459 6959 7170 6776
setup 5 8321 8291 8232 8351 8349 8268 9103 6755
setup 6 8541 8806 8797 8842 8780 8808 9634 6839

setup 7 9198 9174 7895 7937 8178 7971 8429 8079
setup 8 8986 9085 8135 8811 8814 8652 9337 8073
setup 9 8810 9124 8448 9125 9123 8973 9679 8044

setup 10 8480 8425 7876 8141 8180 8002 8159 7000
setup 11 8512 8769 8649 8807 8825 8717 9216 7006
setup 12 8582 9103 9074 9132 9084 9097 9606 6983

Table 4.3: The number of decisive outcomes for various rules out of 10000 setups of various
types. Setups 1-6 have 2 propositions; setups 7-12 have 3 propositions. All have covering
actions: that is, 4 for the first half and 8 for the second. Setups 1-3 and 7-9 have probability
weights (0.2,0.1). Setups 1,4,7,10 have 2 individuals; setups 2,5,8 and 11 have 5 individuals;
the rest have 10 individuals.

samples to be conclusive, but they strongly suggest, contra the 2 action case,
that more individuals produce more decisive rules with covering transition func-
tions. The fact that late ind dict does not show this is unsurprising as it
amounts to a single agent rule performed by the first agent. More explanation
would be required as to why we do not see this pattern in setups 7-9 for the
early-pessimistic aggregators. Another general rule seems to be that pessimistic
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aggregators are more decisive than their ind counterparts. There seem to be a
number of other possible patterns, but larger sets of setups would be required
to confirm these.

Note decisiveness does not imply that the rules are actually any good. We
move on to consider that question now.

Ideal preferences

As 0 is the ‘real’ world, the induced preferences with this as the sole mem-
ber of the belief set are, effectively, the ‘real’ preferences over actions. Thus
realActLOL takes a transition sequence and a preference ranking over states,
and returns a preference ranking over actions that corresponds to the ideal pref-
erence raking. Cf. Axiom 2.2.2. The same action is performed over profiles by
realActProf.

Agg/Rules.hs

realActLOL :: TSQ -> LOL -> LOL

realActLOL xs lol =

let (a0:acts) = transpose xs

in mapToLOL (lolToORD lol) $

M.fromList $ zip [0..] a0

realActProf :: TSQ -> Profile LOL -> Profile LOL

realActProf xs = M.map (realActLOL xs)

Regardless of whether or not there is a unique best action, we can compare sets
of actions using domORD.

Comparing rules

Thus, for each agent, we can compare the recommended actions of two different
rules by that agents ‘real’ ranking on actions.

Agg/Rules.hs

cmpRulesAt :: Rule -> Rule

-> TSQ -> Profile LOL -> Profile BEL

-> Profile Ordering

cmpRulesAt r1 r2 tsq pLOL pBEL =

let r1choice = last $ r1 tsq pLOL pBEL

r2choice = last $ r2 tsq pLOL pBEL

profORDs = M.map (domORD.lolToORD.realActLOL tsq) pLOL

in M.map (($r2choice).($r1choice)) profORDs

However, what we actually want later, is given a two lists of lists suggested by
two rules, and a profile of ‘true’ orderings, is to return a profile of comparisons.
Thus:

int.hs

cmpActProf :: LOL -> LOL -> Profile LOL -> Profile Ordering

cmpActProf lol1 lol2 pLOL = M.map (($head lol2).($head lol1)

.domORD.lolToORD)

pLOL
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Table 4.4: Table containing comparison data for the rules earl bord approval pes,
late pes bord, beli approval ind bord and pref bord ind bord for four different groups of
10000 setups. All the setups have four states and covering actions. The top half have weight
probabilities (0.2,0.1), the bottom (0.5,0.1). The left half have profiles with 2 individuals, the
right half with 5 individuals.

2 individuals 5 individuals
earl late beli pref earl late beli pref

(0
.2

,0
.1

) earl - 1477 820 600 - 2589 707 1634
late 1331 - 1129 861 2359 - 2213 1468
beli 587 1014 - 888 763 2492 - 1812
pref 1073 1493 1601 - 2014 2216 2258 -

(0
.5

,0
.1

) earl - 1569 436 752 - 3309 264 1881
late 865 - 895 748 1268 - 1244 1274
beli 271 1396 - 878 315 3265 - 1946
pref 645 1382 952 - 1073 2689 1169 -

We use this, and the function dataC from Appendix B.2.4, to generate Table 4.4.
Let us look at a concrete example of one of the values of the table. To create
this we generated 10,000 random setups, each with transition sequences with 4
(covering) actions, a profile of list of lists over 4 states, and a profile of belief
sets with 2 propositions which agents had a 0.2 probability of getting correct
and a 0.1 probability of getting wrong. Each of these profiles have 2 individu-
als. We then generate the ‘true’ preferences over states for each agent. These
preferences were then used to compare the suggested actions of the early- and
late-aggregation rules. Altogether, 4278 agents preferred the early rule and 4196
preferred the late rule. In terms of setups, in 1477 a majority preferred the early
rule, compared to 1331 where a majority preferred the late rule. In the table
we only show the latter values, as these never disagree with the relative ranking
of the brute number of agents.

Note that the case described above actually contained the most individual
preferences between the rules of any of the two agent cases. As overall we have
20,000 agents for each comparison, that means that in all cases at least half
of the agents were indifferent between the two rules according to our measure.
It may be desirable to design a finer-grained comparison: this endeavour is
initiated in Appendix B.2.5.

Because we do not seem to have many clear majorities here, we should per-
haps be wary about drawing too strong conclusions from the four different cases
of Table 4.4. However, some patterns can be observed, that can at least guide
further investigation. First, the preference-first-aggregator does surprisingly
well, performing better than the other aggregators in all case except two cases.
The mechanism as to how this happens deserves investigation and explanation,
particularly as our model only takes uniform cultures from the preferences. Our
simple model was designed in a manner that you would expect it to favour the
belief-first-aggregator, by allowing agents to correctly identify the correct world.
Although the belief-first-aggregator only performs average in comparison with
the other rules in general, we note some small improvements with an increase
in the number of individuals. This may be because more individuals are more
likely to pin down the correct world. Finally, we note that the late-aggregator
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performs consistently the worst according to our model.

4.8 Chapter summary

This chapter is an implementation of the multiagent case. We started by defining
data types and structures to enable this implementation in Section 4.2. Sec-
tion 4.3 then described some general aggregators and Section 4.4 some single
agent rules in an attempt to reduce the multiagent case to simpler procedures,
four routes of which were given in Section 4.5. We looked at some methods
for generating test data in Section 4.6, which was used to perform some initial
analysis in Section 4.7.

This has only scratched the surface: there are still a host of questions, both
following on from this implementation, and of a more theoretical nature, to be
considered. We must now leave these for future work.



Conclusion

In this thesis we have investigated a model whereby multiple agents have to
jointly decide upon an action to perform under uncertainty. After a brief intro-
duction, we moved straight on to an axiomatic analysis of the single agent case.
The axioms taken drew both from the shape of the model and social choice
theory, the latter by treating input states as voters. We particularly consid-
ered the family of symmetry axioms, and an extension that suggested the use
of weak orders is an entirely reasonable choice. This was also used is part to
characterise one of two approaches we considered: the output-based approach.
Within this approach we focused upon ranking multisets of objects, and gave
two characterisations of specific rules, both of which required small technical-
ities to fully be forced through. We then moved on to second, casewise-based
approach. We showed that there are (at least) two angles to this: one of which
as expected is incompatible with the output-based approach, able to discern dif-
ferent properties of setups; the other of which, perhaps unexpectedly, subsumes
the output-based approach.

The next chapter concerned our procedure’s home within the general liter-
ature. Here we firmly identified the single agent case as a procedure of decision
theory under uncertainty. We compared it to both the traditional model of Sav-
age and more closely related qualitative interpretations. Some potential weak-
nesses of the former were seen not to apply here, as they concerned the form
of the model qua model. In terms of the latter, we saw that our approach has
potential to bring new insight and potentially escape some impossibility results,
specifically by admitting inter‘case’ comparisons. These very intercase com-
parisons had connections drawn with interpersonal comparisons in economics
literature, though we argue that they are even more plausible here than in that
domain. Although many insights can be gained from the above literature, in or-
der to help with relative uncertainty aversion and actual qualitative procedures
for deciding between different forms of risk we looked at literature on ranking
sets of objects. In particular we feel that ranking multisets of objects is the
approach to be taking here.

Generally we saw connections to literature spanning economics, mathematics
and artificial intelligence. However, concerning the multiagent case, it was less
easy to find direct correlates or easily applicable related work. In the final
main chapter we thus proceeded with an implementation of the full multiagent
case, writing Haskell in a literate style. We now have this implementation: it
remains to fully test it, and to decide upon a path down which to go with the
full multiagent model.

That brings us up to here, the conclusion. Following this there are also
appendices containing more work, some of which is an initiation of work still
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to be done. Right now we consider some other specific directions that deserves
further exploration.

We have not found evidence of any version of crossing independence else-
where. This perhaps can be used in interpersonal comparisons as a step between
ordinal full comparability and ordinal non-comparability. Alternative, it might
find a place in allowing interesting likelihood relations in qualitative decision
theory.

Neither have we seen generalisation of symmetry conditions that we perform
before, an approach which may well deserve more attention. On a slightly
different topic, I would also like to pin down why exactly it is that the technical
conditions are required in our concrete characterisation results.

For another different topic, though also concerning the single agent case,
there is a whole lot more work to be done concerning risk aversion or risk love.
In a sense, these are difficult questions, seeing as we are in the ordinal framework.
Typically one does want some kind of cardinal information to make comparisons
of these kinds. Perhaps the question of how risk averse to be when considering
ordinal comparisons is not connected to any reality in particular. But perhaps
there is a middle ground to be etched out between the purely pessimistic or
optimistic modes of thinking of pure ordinality and the utility maximising over
probability distributions of cardinal information.

The multiagent case is yet more speculative at this stage. Ultimately, as
ever, there are more questions than answers.



Appendix A

Single agent case: extra
axioms and other miscellany

A.1 Extra axioms

There are a number of extra axioms that may be defined for the single agent
case. Some of these are adaptations of traditional axioms that were not relevant
to the main thrust of the work. Others differ only slightly from axioms that
were already defined.

Consistency

Consistency concerns two different groups of voters whose votes get the same
outcome.

Axiom A.1.1 (Disjoint uncertainty reinforcement). Two disjoint uncertainty
sets that ‘suggest’ the same action continue to do so when combined. Take a
single agent rule with

F(∆,D, Q0) = < and F(∆,D, Q′0) = <′ and F(∆,D, Q0∪Q′0) = <′′

If Q0 ∩ Q′0 = ∅ and for two actions α, β we have both α < β and α <′ β, then
we require α <′′ β.

The necessity of taking disjoint sets of states here is demonstrated by Figure A.1.

Non-imposition conditions

Axiom A.1.2 (Surjectivity). Every weak order over the actions is a possible
output of some profile. For every <∈ pre(A), there is a profile ∆,D, Q0 such
that

F(∆,D, Q0) = <

For a very weak version, we have:

Axiom A.1.3 (Weak non-imposition). Every strict ranking is possible for each
pair of actions. For every α, β ∈ A there is some profile that outputs α � β.
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Figure A.1 Example showing why simply taking the union of uncertainty sets
should not preserve identical outcomes.

a b

a, b, c, d e, f, g

B

α
β

α
β

Taking either {a, b, e, f, g} or {c, d, e, f, g} as
the uncertainty set, β näıvely seems to be
the better option, by simply counting out-
puts. However, if we take the union of these
(i.e. all the input states) α seems the better
option.

More interesting versions would require different versions of non-imposition for
specific subspaces of the full set of all possible setups.

Irrelevance of all but the output

Axiom A.1.4 (Irrelevance of all but the output). The outcome only depends
upon the output sets. Over all actions α, if ∆αQ = ∆′αQ then:

F(∆,D, Q0) = F(∆′,D, Q0)

The sure thing principle (P2)

Cf. Axiom 2.5.26.

Axiom A.1.5 ((P2) equivalent). The outcome over two actions should be in-
dependent of all states in which these two actions have indifferent outputs. Fix
some q ∈ Q and actions α, β. Suppose ∆ = ∆′ on all arguments except for
the pairs α, q and β, q; and suppose ∆αq , ∆βq and ∆′αq , ∆′βq. Then
F(∆,D, Q0) = F(∆′,D, Q0).

A characterising independence condition

An independence condition that arguably characterises our approach, in con-
nection with Section 3.3.

Axiom A.1.6 (Weak crossing independence). The relative ranking of two
actions only depends upon the ranking between each output and all the out-
puts for both actions. Take a single agent rule with F(∆,D, Q0) = < and
F(∆′,D′, Q0) = <′. Require

∀p, q ∈ Q (( ∆αp D ∆βq ↔ ∆′αp D′ ∆′βq )

∧ ( ∆αp D ∆βp ↔ ∆′αp D′ ∆′βp ))

→ ( α < β ↔ α <′ β )

Refining preferences

Axiom A.1.7 (Refinement of state preferences). Refining state preferences can-
not flip an outcome pair ranking. Take a s.a.r. with F(∆,D, Q0) = < and
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F(∆,D′, Q0) = <′, and suppose

∀p, q ∈ Q . p B q → p B′ q

Then for any actions α, β

α � β → α <′ β

This axiom is not obviously desirable. And it is even less clear how more radical
changes, those involving flipping states in a preference, should affect the outcome
of a rule. This is because the outcome should be heavily dependent upon the
interaction of state preferences with the transition function.

A.2 Miscellany

Small results and diagrams that did not fit into the main flow of the text.

Figure A.2 Figure concerning the proof of Theorem 2.5.36: an ordering that
satisfies casewise dominance, independence of equal sub-multisets and simple
indifference but that is not expressible as the multiset count rule.

0002
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0101 0020

1001 0110

1010 0200

1100

2000

'

'

No need for negative utilities

This concerns discussion following Definition 2.5.10. Taking two multisets both
of size n with total utilities:

u1 + u2 + · · ·+ un > u′1 + u′2 + · · ·+ u′n

obviously adding a value c = −minx ν(x) to each score will not change the
difference between these:

(u1 + c) + (u2 + c) + · · ·+ (un + c) = nc+ u1 + u2 + · · ·+ un

> (u′1 + c) + (u′2 + c) + · · ·+ (u′n + c)

Also this is clearly not necessarily the case if we have different cardinality mul-
tisets.
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Multiagent case: vim script
and other extra code

B.1 Vim script

Haskell, it is argued, is a good choice for implementing aggregation procedures.
No argumentation is necessary to defend the use of latex for typesetting. Be-
neath both of these, this is being typed in (g)Vim. As an editor Vim has a lot
of functionality. Specifically of interest here, it allows scripts to be written that
can perform the extraction of code into separate files, in the spirit of Knuth
(1984). To that end I have set up \t as a command to extract the code and
write it into correct folders.

The scripts that give this functionality can be sourced from this very .tex

file. They should work (at least) on Linux systems. Thus, assuming you have
the file multi.tex open in Vim, enter

:let a=tempname()|exe '/scriptStart/+6;/scriptEnd/w' a|exe 'so' a

to source the scripts. Note this will save a temporary file. To ease sourcing of
the extraction scripts, documentation is only included in the explicit code below
(if you are experiencing trailing character errors on a Linux system, try :set

fileformat=unix).

"----------------------------------------

"----------------------------------------

" Code extraction scripts for vim

"----------------------------------------

"----------------------------------------

"----------------------------------------

" The keymap for actually extracting the code

"----------------------------------------

nmap <silent> \t :echo 'working'<CR>

\ :silent call ExtractCode()<CR>:echo 'done'<CR>

"----------------------------------------

" Concatenates members of a list of lists

"----------------------------------------
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function! Concat(lols)

let newlist = []

for slist in a:lols

let newlist += slist

endfor

return newlist

endfunction

"----------------------------------------

" Helper: orders and arranges the code that

" is to be written into a single file

"----------------------------------------

function! TransLPs(lol)

call sort(a:lol)

call map(a:lol, 'v:val[1]')

return Concat(a:lol)

endfunction

"----------------------------------------

" The actual extraction procedure

"----------------------------------------

function! ExtractCode()

let a:oldReg = [getreg(), getregtype('"')] | " gets initial

let a:origCursor = getpos(".") | " position, to

let a:origdir = getcwd() | " be returned

| " to later

cd %:p:h | " makes sure we write to

| " the correct directory

let a:fileAndData = {} | " we use a dictionary

| " for filepath+contents

" searching through the file looking for code blocks

call cursor(1,1)

while search('\\be'.'gin{code}','W' ) &&

\ !search('NoCode'.'ExtractedAfter','nWb')

| " the search continues until the string

| " No Code Extracted After (without spaces)

| " or the end of the file

" looking for and getting the data within a block

" each block has a (perhaps already seen) filepath, an

" index for insertion order, and content

call search('}','W') | " the file path should be

call search('}','W') | " before the second '}',

execute 'normal yT{' | " and is yanked here

let a:filePath = getreg()

execute 'normal f}wyt}ww' | " yanks the index for

let a:inputInd = getreg() | " the input and stores

execute 'normal m`' | " content start marked...

call search('\\end{code}','W') | " moves to end of content

execute "normal y``" | " ...and now is yanked

let a:conts = split( getreg() ,"\n")

| " above splits the content lines into a list

" we append the new contents in the right place in the dictionary
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let a:fileAndData[a:filePath] =

\ extend( get(a:fileAndData,a:filePath,[])

\ , [[a:inputInd,a:conts]]

\ )

endwhile

" all the data is collected in the dictionary

" it remains to write it down

for [a:fname,a:fconts] in items(a:fileAndData)

call WriteWithParentsFile(TransLPs(a:fconts), a:fname)

endfor

" and finally clean up, returning as was...

call call(function('setreg'),['"'] + a:oldReg) |" register

call setpos('.',a:origCursor) |" cursor pos

exe "cd" a:origdir |" work dir.

endfunction

"----------------------------------------

" writes files into non-existing directories

"----------------------------------------

" this function, as writefile, takes a list of strings

" and a string as arguments

function! WriteWithParentsFile(fconts,fpath)

" get the path without the fname

let a:dirname = join(split(a:fpath, '/')[0:-2], '/')

try

call mkdir(a:dirname, 'p')

catch

endtry

call writefile(a:fconts,a:fpath)

endfunction

"---------------------------------------- scriptEnd

B.2 Extra Haskell code

B.2.1 Utilising the code

Once code is extracted, it can be compiled by entering ghc --make int into
the terminal. This is necessary to use the command line interface as below, but
not to access the functions interactively.

Using the command line interface

For the input/output procedures we create a simple command line interface, for
which we do require compiled code. This works by entering ./int [arguments]

in a terminal, which performs the string description of the first argument iden-
tified in dispatch, with any subsequent arguments.

int.hs

main = do
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args <- getArgs

if null args

then do

putStrLn "Need arguments"

else do

let (Just action) = lookup (head args) dispatch

action (tail args)

dispatch = [ ("returnTSQs",void.returnTSQs)

, ("returnLOLs",void.returnLOLs)

, ("returnBELs",void.returnBELs)

, ("returnTRUs",void.returnTRUs)

, ("returnRULs",void.returnRULs)

, ("returnCMPs",void.returnCMPs)

, ("data1",data1)

, ("data2",data2)

, ("data3",data3)

, ("data4",data4)

, ("data5",data5)

, ("data6",data6)

, ("data7",data7)

, ("dataD",dataD)

, ("dataD1",dataD1)

, ("dataD2",dataD2)

, ("dataD3",dataD3)

, ("dataC",dataC)

]

The strings starting with return require extra arguments as documented in
Appendix B.2.3 below. The datax arguments can be used on their own, e.g.
./int data1 will generate a list of data on decisiveness. These are documented
in Appendix B.2.4.

Accessing functions interactively

All of the functions defined above and below can be accessed interactively in the
following manner. Run GHCI by inputting ghci. You can now load the top level
functions for any of the files by typing, respectively: :l *Agg, :l *Agg.Rules,
:l *Agg.Gen or :l *int.

B.2.2 Module declarations

Haskell modules must start with a list of functions and other definitions that
are exported. Here are those for the base Agg.hs module.

Agg.hs

module Agg

( Profile (..)

, BEL , BEL' (..)

, LOL , LOL' (..)

, SCO , SCO' (..)

, ORD , ORD' (..)

, REL

, TSQ

, Aggregator (..)
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, Rule , SAR

, State , Action

)

where

We then give some library modules that it itself imports.

Agg.hs

import Data.List

import qualified Data.Set as S

import qualified Data.Map as M

The second module describes functions that actually do work on data.

Agg/Rules.hs

module Agg.Rules

( dictatorship

, approval, meanBasedRule, evenCumWinners, evenCumAverage

, intersectionRule

, borda, copeland

, lexORD, pesORD, optORD, domORD

, pesSAR, optSAR, indSAR

, earlyAgg, lateAgg, earlBeliAgg, earlPrefAgg

, realActProf

, cmpRulesAt

, hasUniWin, sizeHead

, lolToORD, lolToBordaSCO, scoToLOL

, posOutputs

)

where

import Agg

import Data.List

import Data.Maybe

import Data.Monoid

import qualified Data.Set as S

import qualified Data.Map as M

The final module generates data.

Agg/Gen.hs

module Agg.Gen

( rndLOLs, rndTSQs, rndCovTSQs, rndBELs

, a670

, genActions

, unConcat

)

where

import Agg

import System.Random

import Data.List

import Control.Applicative

import qualified Data.Map as M

import qualified Data.Array as A

Finally, we have the interface program. This will allow generating and writing
data to disk, and then manipulating and evaluating that data, at a terminal.

http://www.haskell.org/ghc/docs/7.6-latest/html/libraries/index.html
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int.hs

import Agg

import Agg.Rules

import Agg.Gen

import System.IO

import System.Environment

import System.Directory

import System.Random

import Control.Monad

import Data.List

import qualified Data.Map as M

import Data.Maybe

As has already been mentioned, this is not a module.

B.2.3 Folder structure for generated data

The idea here is to generate data dynamically as it is requested, with the ability
to read already created files. This is achieved within a certain folder structure.
All generated files are contained in a folder data. A subfolder indicates the
number of propositions. At this level we place transition sequences, as they
only depend upon the number of propositions and the number of actions, and we
will not separate further into subfolders by actions. Thus transition sequences
will be located in data/[nProps]/[nActions].tsq. If [nActions] is zero, the
transition sequence is intended to be covering, see Definition 4.6.1. The next
subfolder level indicates the number of individuals. Within this we keep profiles
of both list of lists and belief sets. The former are designed to possibly have
filters applied, so are written to:

data/[nProps]/[nInds]/[filter].lol

The latter are determined by a probability pair as per Section 4.6:

data/[nProps]/[nInds]/([wt1],[wt2]).bel

We also keep other files at this level, such as the outcomes of rules, as:

data/[nProps]/[nInds]/[tsqFname].[lolFname].[belFname].[rName].rul

Each of these files will possibly—indeed likely—contain multiple instances of
the data, each written on separate lines.

As we must deal with a lot of arguments, we fix the following order: number
to generate/return, number of states/propositions, number of actions, number
of individuals, probability weights, filter, random generator. All functions have
their arguments in this order, including those in Section 4.6 above.

Now we give the first example of generating/recovering data. Perhaps the
easiest to generate, certainly the shallowest in the folder structure, are the
transition sequences.

int.hs

ums :: (Show a) => [a] -> String -- this is useful

ums = unlines.map show
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genTSQs :: Int -> Int -> Int -> StdGen -> [TSQ]

genTSQs nToGen nPrps 0 = take nToGen . rndCovTSQs (2^nPrps)

genTSQs nToGen nPrps nActs = take nToGen

. rndTSQs (2^nPrps) nActs

returnTSQs :: [String] -> IO [TSQ]

returnTSQs [nToRet, nPrps, nActs] = do

let path = "data/"++nPrps++"/"++nActs++".tsq"

fileHere <- doesFileExist path

if fileHere

then do

conts <- fmap (map read.lines) (readFile path)

if length conts >= read nToRet

then return (take (read nToRet) conts)

else do

gen <- newStdGen

let nToGen = read nToRet - length conts

let newConts = genTSQs nToGen

(read nPrps)

(read nActs)

gen

appendFile path (ums newConts)

return (conts ++ newConts)

else do

createDirectoryIfMissing True ("data/"++nPrps)

gen <- newStdGen

let conts = genTSQs (read nToRet) (read nPrps)

(read nActs) gen

writeFile path (ums conts)

return conts

The next thing to generate is the preferences. For extendability, we include
a list of string identifiers of filters, now only containing the trivial filter. See
Appendix B.2.6 below.

int.hs

lolFilters :: [(String, LOL -> Bool)]

lolFilters = [("none", \a->True)

]

genLOLs :: Int -> Int -> Int -> String -> StdGen -> [Profile LOL]

genLOLs nToGen nPrps nInds filtS =

take nToGen.map (M.fromAscList.zip [0..])

.unConcat nInds.filter cond.rndLOLs (2^nPrps)

where cond = (fromJust.lookup filtS) lolFilters

returnLOLs :: [String] -> IO [Profile (LOL' State)]

returnLOLs [nToRet, nPrps, nInds, filt] = do

let path = "data/"++nPrps++"/"++nInds++"/"++filt++".lol"

fileHere <- doesFileExist path

if fileHere

then do

conts <- fmap (map read.lines) (readFile path)

if length conts >= read nToRet
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then return (take (read nToRet) conts)

else do

gen <- newStdGen

let nToGen = read nToRet - length conts

let newConts = genLOLs nToGen (read nPrps)

(read nInds) filt gen

appendFile path (ums newConts)

return (conts ++ newConts)

else do

createDirectoryIfMissing True

("data/"++nPrps++"/"++nInds)

gen <- newStdGen

let conts = genLOLs (read nToRet) (read nPrps)

(read nInds) filt gen

writeFile path (ums conts)

return conts

The final underlying data is belief profiles.

int.hs

genBELs :: Int -> Int -> Int -> (Float,Float) -> StdGen

-> [Profile BEL]

genBELs nToGen nPrps nInds (w1,w2) =

take nToGen.map (M.fromAscList.zip [0..])

.unConcat nInds.rndBELs nPrps w1 w2

returnBELs :: [String] -> IO [Profile BEL]

returnBELs [nToRet, nPrps, nInds, wtPair] = do

let path = "data/"++nPrps++"/"++nInds++"/"++wtPair++".bel"

fileHere <- doesFileExist path

if fileHere

then do

conts <- fmap (map read.lines) (readFile path)

if length conts >= read nToRet

then return (take (read nToRet) conts)

else do

gen <- newStdGen

let nToGen = read nToRet - length conts

let newConts = genBELs nToGen (read nPrps)

(read nInds) (read wtPair)

gen

appendFile path (ums newConts)

return (conts ++ newConts)

else do

createDirectoryIfMissing True

("data/"++nPrps++"/"++nInds)

gen <- newStdGen

let conts = genBELs (read nToRet) (read nPrps)

(read nInds) (read wtPair) gen

writeFile path (ums conts)

return conts

We use these in various ways. For instance, generating the ‘true’ preference
profiles over actions, taking 0 as the ‘real’ world, as per Section 4.6. Note here
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there is no possibility to simply append to the file: either it is large enough or
it gets completely rewritten.

int.hs

returnTRUs :: [String] -> IO [Profile (LOL' Action)]

returnTRUs [nToRet,nPrps,nActs,nInds,filt] = do

let path = "data/"++nPrps++"/"++nInds++"/"++

nActs++".tsq."++filt++".lol."++".tru"

fileHere <- doesFileExist path

if fileHere

then do

conts <- fmap (map read.lines) (readFile path)

if length conts >= read nToRet

then return (take (read nToRet) conts)

else do

tsqs <- returnTSQs [nToRet,nPrps,nActs]

lols <- returnLOLs [nToRet,nPrps,nInds,filt]

let newConts = zipWith realActProf tsqs lols

writeFile path (ums newConts)

return newConts

else do

tsqs <- returnTSQs [nToRet,nPrps,nActs]

lols <- returnLOLs [nToRet,nPrps,nInds,filt]

let newConts = zipWith realActProf tsqs lols

writeFile path (ums newConts)

return newConts

We also write the outcome of rules to files.

int.hs

returnRULs :: [String] -> IO [LOL' Action]

returnRULs [nToRet,nPrps,nActs,nInds,filt,wtP,rS] = do

let path = "data/"++nPrps++"/"++nInds++"/"++

nActs++".tsq."++filt++".lol."++wtP++".bel"

++rS++".rul"

fileHere <- doesFileExist path

if fileHere

then do

conts <- fmap (map read.lines) (readFile path)

if length conts >= read nToRet

then return (take (read nToRet) conts)

else do

tsqs <- returnTSQs [nToRet,nPrps,nActs]

lols <- returnLOLs [nToRet,nPrps,nInds,filt]

bels <- returnBELs [nToRet,nPrps,nInds,wtP]

let r = (fromJust.lookup rS) listRules

let newConts = zipWith3 r tsqs lols bels

writeFile path (ums newConts)

return newConts

else do

tsqs <- returnTSQs [nToRet,nPrps,nActs]

lols <- returnLOLs [nToRet,nPrps,nInds,filt]

bels <- returnBELs [nToRet,nPrps,nInds,wtP]

let r = (fromJust.lookup rS) listRules
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let newConts = zipWith3 r tsqs lols bels

writeFile path (ums newConts)

return newConts

Now we can combine truthful data with the outcomes of two rules to get com-
parison data.

int.hs

returnCMPs :: [String] -> IO [Profile Ordering]

returnCMPs [nRt,nPs,nAs,nIs,flt,wp,r1,r2] = do

let path = "data/"++nPs++"/"++nIs++"/"++

nAs++".tsq."++flt++".lol."++wp++".bel"

++r1++".rul"++r2++".rul.cmp"

fileHere <- doesFileExist path

if fileHere

then do

conts <- fmap (map read.lines) (readFile path)

if length conts >= read nRt

then return (take (read nRt) conts)

else do

tru <- returnTRUs [nRt,nPs,nAs,nIs,flt]

r1o <- returnRULs [nRt,nPs,nAs,nIs,flt,wp,r1]

r2o <- returnRULs [nRt,nPs,nAs,nIs,flt,wp,r2]

let newConts = zipWith3 cmpActProf r1o r2o tru

writeFile path (ums newConts)

return newConts

else do

tru <- returnTRUs [nRt,nPs,nAs,nIs,flt]

r1o <- returnRULs [nRt,nPs,nAs,nIs,flt,wp,r1]

r2o <- returnRULs [nRt,nPs,nAs,nIs,flt,wp,r2]

let cont = zipWith3 cmpActProf r1o r2o tru

writeFile path (ums cont)

return cont

Finally, what we want is to return the pairs as per countOrd.

int.hs

countPref :: Profile Ordering -> (Int,Int)

countPref = M.foldr h1 (0,0)

where h1 GT (x,y) = (x+1,y)

h1 LT (x,y) = (x,y+1)

h1 EQ (x,y) = (x,y)

addPair :: (Num a, Num b) => (a,b) -> (a,b) -> (a,b)

addPair (x,y) (z,w) = (x+z,y+w)

addMaj :: (Ord a,Num a) => (a,a) -> (a,a) -> (a,a)

addMaj (x,y) (z,w) | z > w = (x+1,y)

| w > z = (x,y+1)

| otherwise = (x,y)

countOrd :: [Profile Ordering] -> ((Int,Int),(Int,Int))

countOrd prf = let prs = map countPref prf

in (foldl1 addPair prs,foldl1 addMaj prs)
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showCmp :: [String] -> IO ((Int,Int),(Int,Int))

showCmp xs = do

ords <- returnCMPs xs

return (countOrd ords)

B.2.4 Specific test data

The first test we ran was that of the decisiveness of rules.

int.hs

tWts = ["(0.2,0.1)","(0.5,0.1)","(0.5,0.4)","(0.8,0.1)"]

tPrp = ["1","2","3"]

tAct = ["0","2"]

tInd = ["2","5","10"]

data1 :: [String] -> IO ()

data1 _ = do

writeFile "data/data1.txt" ""

forM_ ["earl_bord_approval_pes"] (\rul-> do

forM_ tPrp (\nP-> do

forM_ tAct (\nA-> do

forM_ tInd (\nI-> do

forM_ tWts (\wt-> do

outcomeList <- returnRULs ["10000",nP,nA,nI

,"none",wt,rul]

let result = countDecisive outcomeList

putStrLn $ nP++"-"++nA++"-"++nI++"-"++wt++"-"

++rul++": "++show result

appendFile "data/data1.txt" $ nP++" a "++nA

++" i "++nI++" "++wt++" "++

rul++" "++show result++"\n"

)

)

)

)

)

Having used this, the next test the decisiveness of a few different rules.

int.hs

data2 :: [String] -> IO ()

data2 _ = do

writeFile "data/data2.txt" ""

forM_ ["earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","2"

,"2","5","none"

,"(0.2,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ rul++": "++show result

appendFile "data/data2.txt" $ rul++" "++show result++"\n"

)
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data3 :: [String] -> IO ()

data3 _ = do

writeFile "data/data3.txt" ""

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","2"

,"0","5","none"

,"(0.2,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ rul++": "++show result

appendFile "data/data3.txt" $ rul++" "++show result++"\n"

)

data4 :: [String] -> IO ()

data4 _ = do

writeFile "data/data4.txt" ""

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","3"

,"0","2","none"

,"(0.5,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ rul++": "++show result

appendFile "data/data4.txt" $ rul++" "++show result++"\n"

)

data5 :: [String] -> IO ()

data5 _ = do

writeFile "data/data5.txt" ""

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","2"

,"0","10","none"

,"(0.8,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ rul++": "++show result

appendFile "data/data5.txt" $ rul++" "++show result++"\n"

)

data6 :: [String] -> IO ()

data6 _ = do

writeFile "data/data6.txt" ""

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"
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,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","2"

,"0","10","none"

,"(0.2,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ rul++": "++show result

appendFile "data/data6.txt" $ rul++" "++show result++"\n"

)

data7 :: [String] -> IO ()

data7 _ = do

writeFile "data/data7.txt" ""

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","2"

,"0","2","none"

,"(0.2,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ rul++": "++show result

appendFile "data/data7.txt" $ rul++" "++show result++"\n"

)

dataD :: [String] -> IO ()

dataD _ = do

writeFile "data/dataD.txt" ""

forM_ ["2","5","10"] (\nI-> do

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","2"

,"0","2","none"

,"(0.2,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ nI++"-"++rul++": "++show result

appendFile "data/dataD.txt" $ nI++" "++rul++" "

++show result++"\n"

)

)

dataD1 :: [String] -> IO ()

dataD1 _ = do

writeFile "data/dataD1.txt" ""

forM_ ["2","5","10"] (\nI-> do

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"
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] (\rul-> do

outcomeList <- returnRULs ["10000","2"

,"0",nI,"none"

,"(0.8,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ nI++"-"++rul++": "++show result

appendFile "data/dataD1.txt" $ nI++" "++rul++" "

++show result++"\n"

)

)

dataD2 :: [String] -> IO ()

dataD2 _ = do

writeFile "data/dataD2.txt" ""

forM_ ["2","5","10"] (\nI-> do

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","3"

,"0",nI,"none"

,"(0.2,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ nI++"-"++rul++": "++show result

appendFile "data/dataD2.txt" $ nI++" "++rul++" "

++show result++"\n"

)

)

dataD3 :: [String] -> IO ()

dataD3 _ = do

writeFile "data/dataD3.txt" ""

forM_ ["2","5","10"] (\nI-> do

forM_ ["earl_bord_approval_pes","earl_cope_approval_pes"

,"earl_bord_approval_ind","late_pes_bord"

,"late_ind_bord","beli_approval_ind_bord"

,"pref_bord_ind_bord","late_ind_dict"

] (\rul-> do

outcomeList <- returnRULs ["10000","3"

,"0",nI,"none"

,"(0.8,0.1)",rul]

let result = countDecisive outcomeList

putStrLn $ nI++"-"++rul++": "++show result

appendFile "data/dataD3.txt" $ nI++" "++rul++" "

++show result++"\n"

)

)

The above all concerned decisiveness. The following concern comparisons.
We first list the rules we will compare, then the pairs of such, then we do the
actual comparing in dataC.

int.hs

testRules = ["earl_bord_approval_ind","late_ind_bord"
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,"beli_approval_ind_bord"

,"pref_bord_ind_bord"]

dPairs :: [a] -> [(a,a)]

dPairs (x:[]) = []

dPairs (x:xs) = map (\a->(x,a)) xs ++ dPairs xs

dataC :: [String] -> IO ()

dataC _ = do

writeFile "data/dataC.txt" ""

forM_ ["2","5"] (\nI-> do

forM_ ["1","2"] (\nP-> do

forM_ ["(0.2,0.1)","(0.5,0.1)"] (\wt-> do

forM_ (dPairs testRules) (\(r1,r2)-> do

result <- showCmp ["10000",nP,"0",nI

,"none",wt,r1,r2]

putStrLn $ nP++"-"++nI++"-"++wt++

"-"++r1++"-"++r2++": "++show result

appendFile "data/dataC.txt" $ nP++" "

++nI++" "++wt++" "++r1++" "

++r2++" "++show result++"\n"

)

)

)

)

The following helps to filter out strings from a list in a file.

int.hs

filterFile :: [String] -> IO String

filterFile (path:xs) = do

fmap (unlines.filters xs.lines) (readFile path)

where filters (str:xs) list = filters xs

(filter (isInfixOf str) list)

filters [] list = list

ioShow :: IO String -> IO ()

ioShow iostr = do

str <- iostr

putStrLn str

B.2.5 The Kemeny distance

This section considers another way of comparing the outcomes of two actions.
Instead of simply comparing the top action suggested by two rules, we could
compare how close the full ranking is to what the actual ranking should be, for
each individual. One method for measuring the distance between rankings is
the Kemeny distance (1959) (cf. to the Kendall tau distance (1938)). This is
best implemented via relations.

Agg.hs

type REL = S.Set (Int,Int)
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To apply this fully we must first translate lists of lists to the relation data type.
The helper maxLOL finds the largest (numerically) state in a list of lists. We
assume that all numbers smaller than this are contained in the list of lists.

Agg/Rules.hs

ordToREL :: Int -> ORD -> REL

ordToREL n cmp =

let allPairs = S.fromAscList

[(x,y) | x<-[0..n], y<-[0..n]]

prefPair (x,y) = x`cmp`y /= LT

in S.filter prefPair allPairs

maxLOL :: LOL -> Int

maxLOL = foldl' (flip (max.maximum)) 0

lolToREL :: LOL -> REL

lolToREL xs = ordToREL (maxLOL xs) $ lolToORD xs

kemenyDistanceREL :: REL -> REL -> Int

kemenyDistanceREL r1 r2 = S.size (S.difference r1 r2) +

S.size (S.difference r1 r2)

kemenyDistance :: LOL -> LOL -> Int

kemenyDistance xs ys = kemenyDistanceREL (lolToREL xs)

(lolToREL ys)

B.2.6 Single peaked preferences

A property that rankings may or may not have is single-peakedness (see, for
example, work by Austen-Smith and Banks (2000)). The following defines a
function that discerns this property.

The function addIncrsing takes adjacent elements in a list, and inserts
them into some other set of pairs: it adds the increasing pairs of a list. Its
inverse is addDecrsing, which does the same, only with adjacent pairs taken as
decreasing. Utilising both these, peakREL creates a set of relations that describes
a peak, given the peak element and list. That is, it gives the required pairs for
a relation to have a specific peak. The function vallREL does the same but for
a valley.

Single peakedness is tested relative to some single dimension, i.e. some list in
[Int]. We have a given preferences, which we represent as a set of pairs, that we
want to test is single peaked. The peak is the most preferred element in this set.
We must check whether the given set of pairs is a superset of the peak relation
of peakREL created by the peak and the list. Conversely, for a single-plateau,
we require an empty intersection with the valREL function’s output.

Agg/Rules.hs

addIncrsing (x:y:ys) set = S.insert (x,y) $

addIncrsing (y:ys) set

addIncrsing _ set = set

addDecrsing :: [Int] -> REL -> REL

addDecrsing (x:y:ys) set = S.insert (y,x) $
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addDecrsing (y:ys) set

addDecrsing _ set = set

peakREL :: Int -> [Int] -> REL

peakREL p xs = let (ups,downs) = break (==p) xs

in addIncrsing ups

(addDecrsing downs S.empty)

vallREL :: Int -> [Int] -> REL

vallREL p xs = let (downs,ups) = break (==p) xs

in addIncrsing ups

(addDecrsing downs S.empty)

isSinglePeak :: [Int] -> LOL -> Bool

isSinglePeak xs lol

| hasUniWin lol = peakREL ((head.head) lol) xs

`S.isSubsetOf`

lolToREL lol

| otherwise = False

isSinglePlat :: [Int] -> LOL -> Bool

isSinglePlat xs lol

| hasUniWin lol =

let vals = vallREL ((head.head) lol)

xs

rels = lolToREL lol

in rels `S.intersection` vals

== S.empty

| otherwise = False

More generally, we may want to be able to filter preferences that are extensions
of some other ordering, extendsPref, or those that do not contain a specific
order pair, inadmissiblePair.

Agg/Rules.hs

-- [[Int]] may be "incomplete"

extendsPref lol cond = lolToREL cond `S.isSubsetOf`

lolToREL lol

inadmissiblePair :: LOL -> (Int,Int) -> Bool

inadmissiblePair lol pair = not $

S.member pair $ lolToREL lol

B.3 Miscellany

B.3.1 Ostrogorski paradox

The following statement of Ostrogorski’s paradox was given originally by Kelly
(1989). There are two candidates, α and β, and three political issues, p, q and
r on which the candidates have taken positions. There are five voters; each will
vote for the candidate with whom he agrees on more issues. The position and
preference data are given in Table B.1.
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Table B.1: Ostrogorski’s paradox.

Issue

p q r

Candidate
α for for for
β against against against
Voter #
1 for for against
2 for against for
3 against for for
4 against against against
5 against against against

We can model the issues as input states, the candidates as actions, and the
positions as output states, as in Figure B.1. The Ostrogorski paradox then
mirrors the choice between early- and late-aggregation.

Figure B.1 Ostrogorski’s paradox as a setup.

Transition function:

for p against p for p against p for p against p

p q r

α α αβ β β

Preferences: for example, voter one has preferences:

for p B against p for q B against q against r B for r

Note this is not a weak order.
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