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Abstract. We present a (sound and complete) tableau calculus for Quantified
Hybrid Logic (QHL). QHL is an extension of orthodox quantified modal logic:

as well as the usudall and & modalities it contains names for (and variables
over) states, operatofs; for asserting that a formula holds at a named state, and

a binder| that binds a variable to the current state. The first-order component
contains equality and rigid and non-rigid designators. As far as we are aware,
ours is the first tableau system fQH L.

Completeness is established via a variant of the standard translation to first-order
logic. More concretely, a valid) HL-sentence is translated into a valid first-order
sentence in the correspondence language. As it is valid, there exists a first-order
tableau proof for it. This tableau proof is then converted infa/4l. tableau proof

for the original sentence. In this way we recycle a well-known result (complete-
ness of first-order logic) instead of a well-known proof.

The tableau calculus is highly flexible. We only present it for the constant domain
semantics, but slight changes render it complete for varying, expanding or con-
tracting domains. Moreover, completeness with respect to specific frame classes
can be obtained simply by adding extra rules or axioms (this can be done for every
first-order definable class of frames which is closed under and reflects generated
subframes).

1 Introduction

Hybrid logic is an extension of modal logic in which it is possible to name states and
to assert that a formula is true at a named state. Hybrid logic uses three fundamental
tools to do this: nominals, satisfaction operators, and thander. Nominals are special
propositional symbols that are true at precisely one state in any model: nominals ‘name’
the unique state they are true at. A satisfaction operator has thedgnvheres is a
nominal. A formula of the forn,¢ asserts thab is true at the state named by the
nominal s. Finally, a formula of the form|s.¢ binds all occurrences of the nominal

s in ¢ to the current state of evaluation — that is, it makes name for the current
state. (Actually, so that we don't have to worry about accidental binding in the course
of tableau proofs, we shall distinguish between ordinary nominals, which cannot be
bound, and ‘state variables’ which are essentially bindable nominals.)
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Hybrid logic has a lengthy history (see the web pagew.hylo.net  for further
information), and over the years it has become clear that adding the hybrid apparatus of
nominals (and state variables), satisfaction operators| amdhodal logic often results
in systems with better logical properties than the original. But most previous work on
hybrid logic has examined the effects of hybridizimgpositionalmodal logics. What
aboutquantified(first-order) hybrid logic?

In fact, strong evidence already exists that quantified hybrid loQiE L) is also
better behaved logically than orthodox quantified modal logic. In [2], the only recent
paper devoted to the topic, it is shown that a very general interpolation theorem holds in
QHL (as is well known interpolation almost never holds in orthodox quantified modal
logic [3]). The purpose of the present paper is to show thAY. is well behaved in
another respect: just as in the propositional case, it is possible to define simple and
intuitive tableau systems. We shall present a tableau syster@fdr which handles
equality, and rigid and non-rigid designators.

Our method for proving completeness is very simple and inspired by Jerry Selig-
man’s paper [10]. Instead of redoing a proof we use existing results. Correspondence
theory and its notion of a standard translatfor(-) places the model theory of (propo-
sitional and first-order) modal logic firmly into first-order logic [12, 13]. Our plan is the
following. We prove completeness for our tableaux calculus by taking a @rofofr
ST¢ in a proven complete first-order calculus, and transféimto a proofP’ for ¢ in
our calculus. The tableaux system we use is by Fitting, in particular the one presented
in [4]. This strategy works in hybrid logic because it has an equivalent expression for
every subformula which might occur in a first-order proof of a translated formula.

Outline of paper. The paper starts with a definition of first-order hybrid logic. Then
we present the tableau system in three natural parts. The forth section is devoted to
completeness issues. Again we split them up into three natural parts. This section ends
with a very general completeness result. Finally we draw conclusions.

2 Quantified Hybrid Logic

We first define the syntax dpHL. We have a sdiOM of nominals, a sé¥VAR of state
variables, a setVAR of first-order variables, a sS€ON of first-order constants, a s&t

of unary function symbols, and predicates of any arity (note that predicates of nullary
arity are simply propositional variables). Tkermsof the language are the constants
from CON, the first-order variables frofiVAR and the terms generated by the rule

if ¢ € ICands € NOM U SVAR, then@Q,q is a term.

(For readers familiar with propositional hybrid logic, this notation may come as a sur-
prise: we are combining a satisfaction operator with a term to make a new term. But as
the semantics defined below will show, overloading@haotation in this way is quite
natural:@,q will be the value of the non-rigid termpat the world named by.)

The atomic formulasare all symbols ilNOM andSVAR together with the usual
first-order atomic formulas generated from the predicate symbols and equality using
the termsComplex formulasre generated from these according to the rules

G| oA [dVY [ ¢ — ¢ [Txg | Vag | O [0 | Qg | lw.g.



Herez € FVAR, w € SVAR andn € NOM U SVAR.
These formulas are interpreted in first-order modal models with constant domains.
A QHL model is a structuréW, R, D, I,,om, Iv ) wew Such that

— (W, R) is a modal frame;

— I,om is a function assigning membersiaf to nominals;

— for everyw € W, (D, I,,) is an ordinary first-order model such that
o I,(c) =TI, (c), forallw,w’ € W and constants;
e [,(q) € D, for g a unary function symbol;
e I, (P) C*D,for P ak-ary predicate symbol.

To interpret formulas with free variables we use special two-sorted assignmefRfsLA
assignments a functiong from SVAR U FVAR to W U D which sends state variables
to members oW’ and first-order variables to elements Bf Given a model and an
assignmeny, the interpretation of termis denoted by, is defined as

z  =g(x) for z a variable

¢ =1Iy(e) for c a constant and some € W
_ I, (q) if nanominal .

Q,q = { Iim()  if nastate Variablefor q a unary function symbol

Formulas are now interpreted as usual. Wifhwe denote the assignment which is just
like g except thayy(z) = d. M, g,s - ¢ means thats holds in modebnt at states
under the assignment The inductive definition is

M, g,sl- Pt,... tn) = {t1,... 1) € I4(P)

SUI,g,sH—ti:tj <:>t_1:£j

M, g,slF-n <~ Iom(n) = s, forn a nominal

M, g,slFw < g(w) = s, for w a state variable

M, qg,s k- — M. g,s,} ¢

M, g,slFp A <~ M, g,slFpandM,g,s -y

M, g,slFodVY — M, g,sl-porM,g,sl-

M, g,slFop — <~ M,g,slF ¢impliesd, g,s -

M, g,s Ik Jzp = M, g5, sl ¢, forsomed € D

M, g,s Ik Vrop = M, g5, sl ¢, foralld e D

M, g,s ko <~ M, g,tIF ¢ for somet € W such thatRst
M, g,s - 0O¢ <~ M, g,tIF¢forallt € W such thatRst
M, g,slFQ,¢ <~ M, g, Iom(n) Ik ¢ for n. a nominal
M, g,s - Qe <~ M, g,9(w) Ik ¢ for w a state variable
M, g,slF |w.¢ —= M, gY, sl ¢.

3 The tableau calculus

The tableau system can be divided into three natural pi¢&gshe propositional rules,
the & andO rules and the rules fa®; (B) the rule for|; (C) the rules for (first-order)
guantification and equality. The blocks of rules taken separately form a complete cal-
culus for the appropriate reducts. In particular:



1. A is complete for the propositional modal language expanded with nominals and
@. (We name this systefi £(@); in the literature it is often called tHgasic hybrid
language)

2. A UB is complete forH£(@, | ), the expansion of{£(@) with state variables and
the | binder;

3. AuBuUC s complete forQHL.

Some terminology. As usual, a tableau brancklasedif it contains ¢ and —¢,
whereg is a formula. A tableau is closed if each branch is closed. A braratoisically
closed if it closes on an atom and its negation (#&bleau) proofof a hybrid sentence
¢ is a closed tableau beginning witfd, ¢, wheres is a nominal not occurring iep.

3.1 Tableau forHL(@)

A key feature of our tableau is that all modal formulas occurring in a proof are grounded
to a named world by their label. (This same feature also occurs in labelled tableau for
propositional modal logic [8, 7].)

Grounding to a named state is implemented in our system by ensuring that all for-
mulas occurring in proofs are of the forfm,¢ or -Q.¢ for s a nhominal. Thus the
propositional rules become

Conjunctive rules

Qs(pNn)  —Qs(pVe) Q¢ — ¢)
@s¢ _‘@s¢ @5¢
@J/) _‘@sw _‘@sw

Disjunctive rules
Q, (¢ V 'l/)) —Q, (¢ A l/)) @S(¢ - 7/})
@s¢ | @sw _‘@s¢ | ﬁ@ﬂb _‘@s¢ | @31/)

Negation rules
_|@S_|¢ @S_‘QS
Q¢ Q¢
To these we add rules for diamond and box. In the diamond rules nominal which
does not occur on the branch.

Diamond rules
@s<>¢ _‘@SDQS
Q@ Ot Q@ Ot
Q¢ -Q;¢
Box rules
@,0¢, @Ot ~Q,O¢, QO
Q¢ —@Q

Finally the rules for@. There are two rewrite rules to delete nestingsiofNext, as

@, really means that and¢ are equal, there are rules to handle equality. These three
rules are direct analogues of the reflexivity and replacement rules in Fitting’s first-order
tableau system [4]. As we will use them often, we gave them separate names.



@ rules
Q@,Q;¢p ~Q@Q,Q;¢ [so0nthe branchl Qt Qg Q,t @,Cs
Q0 Q0 Q.s Rl 7@, MM @ s

[Bridge]

The following rules can be derive(% [Sym] @Sé@iftrﬁrans] @Séiﬁt@ [Nom~—1]
Example Below we give a tableau proof faop A ¢—p) — (O(¢ — n) — <O—q).
Heren is a nominal ang, ¢ are propositional variables. The formula expresses that if
a state has two successors, then if it has at most;@uecessor, it has at least oneg
successor. Note that this is not expressible in ordinary modal logic. In ordinary modal
logic we cannot put an upper bound on the number of successors.

—Q(Op A C—p — (O(g — n) — 4q))
@s(op/\ <>_‘p)
-Q4(0(g — n) — Oq)
Q,Cp

Q,O-p

Qs0O(g — n)

—@Q,O—q

Q,Ot

9. @tp

10. @, Or

11. @,—p

12. Q;(q¢ — n)

PO NSOk L=

13.1 _‘@tq 14. @tn
13.2 =@;—q |15. @Q,.(¢ — n)
13.3 Q,q

16.1 =Q,q |17.Q,n

16.2 =@, —q [18. Q,,r

16.3 @Q,.q 19. Q;r
20. Q,.p
21. =@,p

In this, 2 and 3 are from 1 by a conjunctive rule; 4,5,6,7 are from 2 and 3 by
conjunctive rules; 8,9,10,11 are from 4 and 5 by diamond rules; 12 is from 6
and 8 by box; 13.1 and 14 are from 12 by a disjunctive rule; 13.2 is from 7 and
8 by box; 13.3 is from 13.2 by a negation rule. The branch closes on 13.3 and
13.1.

15 is from 6 and 10 by box; 16.1 and 17 are from 15 by a disjunctive rule;

16.2is from 10 and 7 by box; 16.3 is from 16.2 by a negation rule. The branch
closes on 16.1 and 16.3.

18 is from 17 by the derived Sym rule; 19 is from 18 and 14 by the derived

Trans rule; 20 is from 19 and 9 by the Nom rule; 21 is from 11 by a negation

rule. The final branch closes on 20 and 21.



3.2 Tableau forHL(], @)

To obtain a complete tableau system for the expansioH £fQ) with variables over
states and the binder we only need to add the following two rewrite rules to the rules
for HL(@):

Downarrow rules
Qg lw.¢ -Q, |w.¢

Qsols/w]  —Qs¢[s/w]

Here[s/w] means substitute for all free occurrences af in ¢. Because is always a
nominal, whence cannot be quantified over, we do not have to worry about accidental
bindings. As an example the reader can try to prove the validitie®w — (p — Op)
and|w.0Cw — ($Op — p).

3.3 Tableau for QHL

A complete tableau system for quantified hybrid logic consists oflig], @) system,

plus the (adjusted) rules for the quantifiers and equality from Fitting’s system (see [4])
for first-order logic with equality, plus two rules relating equalities across worlds. In the
existential rulesg is a parameter which is new to the branch. As parameters are never
quantified over, the substitutida/ x| is free for the formula)(z). In the universal rules,

t is any grounded term on the branch (thus either a first-order constant, a parameter or
a grounded definite description). A grounded definite description is adgfgfor n a
nominal and; a non-rigid designator frorC.

Existential rules
Qg Izd(r) ~QVre(x)
@s¢(c) _‘@x“(b(c)

Universal rules
QVro(r) ~QJre(x)
Qs0(t)  ~Qp(t)

Besides Fitting’s [4] Reflexivity Ref) and ReplacemeniRR) rules, there are three
extra rules for equality. The first (callddD) states that ifo andm denote the same
state, them,,q and@,,, ¢ denote the same individual. The second and third (both called
@=) embody that equality is a rigid predicate: if two terms are the same in one world,
they are the same in every world. Because these two rules peel the l&agdifigm
equalities, reflexivity and replacement can be kept in the old format. In the Replacement
rule, ¢[u] denotesp(t) with some of the occurrences ofeplaced byt.

QHL Equality rules
t=u, ¢(t) @nm @n(tl = tj) . _'@n(ti = tj) _




Example. The most interesting examples deal with equality and rigid and non-rigid
designators. Consider the sentef@@goline is Miss AmericaWhen formalising this let

¢ be a rigid designator denoting Caroline apd non-rigid designator denoting Miss
America. Then|z.(c = @,q) meangCaroline is the present Miss Ameridais true in

a statew if I,,(c) = I,,(¢q). This formula has the following relation with tti¢operator:

(1) #* (lwe=Quq) — Olw.c=Q,q
(2) ': (lw-c = @wQ) - lw-DC = @wq~

A falsifying model for the sentence in (1) is given by two worldandm, with Rnm,

and adomaida, b} with the interpretatiord,,(¢) = I,(c) = I,(¢) = aandl,,(q) = b.
Then (1) fails at worldn. When downarrow has wide scope in the consequent, the
formula becomes true. Here is the tableau proof:

2@, ((Jw.e = Qpq) — |w.O(c = Q,q))
L@, lw.c = Q,q

. —@Q, w.0(c = Qyuq)

. @n(c = @nQ)

.—@,0(c = Q,q)

@, om

. Q@ (e =Qpq)

. C= @nq

. (e = @,9).

© 00 DU W

In this, 2 and 3 are from 1 by a conjunctive rule; 4 and 5 are from
2 and 3 by a downarrow rule, respectively; 6 and 7 are from 5 by a
diamond rule; 8 and 9 are from 4 and 7 by an @= rule, respectively.

4 Soundness and Completeness

The argument to establish soundness follows the familiar pattern: show that satisfia-
bility is preserved by each tableau rule application. This is easy to check and left to
the reader. Completeness will be established using the standard translation and a com-
plete first-order inference system. We use the system that is closest to the one presented
here: the tableau calculus for first-order logic with equality from Fitting [4] with the
reflexivity and replacement rules (restricted to atoms). The main line of the argument is
the following. We need to establish that every valid/L sentence has @HL tableau
proof. The standard translation preserves validity, thUgra. sentences is valid if
and only if the first-order senten&d ¢ is valid. For validST¢, there exists a closed
first-order tableau prool” starting with—S7'¢. Our task is to transform this closed
first-order proofT" starting with—ST¢ into a closedQHL tableau proofl” starting
with —¢.

Most of the work concerns the modalities and theperator, because with these
the standard translation creates the largest change in syntactic structure. For this reason
we present the completeness proof for the simplest IbgigQ) separately. After that,
the rest will be easy.



Before we can continue we have to settle two things. We change Fitting’s first-order
tableau rules a little bit in order to better cope with translations of modal formulas.
Besides that we have to use a modified translation. We start with the former.

In order to save on inductive proofs and definitions, we assume from now on that
the QHL language contains as primitive logical operators only, O, Q,, |w. andvv.
Clearly this is without loss of generality because the other operators can be defined in
terms of these.

4.1 Tableau rules for relativized quantifiers

The translation of a box modality yields a relativized universal formula of the form
Va(A(z) — C(x)), with A(z) an atom. For these relativized universals, a more effi-
cient tableau rule exists than the combination of universal-andile together. In fact

it is nothing but Modes Ponens. Foa closed term,

Modes Ponens (MP)
A(t), Va(A(z) — ¢(x)) A(t), ~3z(A(z) A ¢(x))
(1) ~é(t)

We change Fitting’s calculus such that on universals relativized by an atom the normal

universal rules cannot be applied, but MP can. This is easily seen to be complete (cf.,
also [11]). We can make a further reduction in complexity in the case the antecedent is
an equality. Then the statement just expresses a substitution. We also add the following
rules to Fitting’s calculus and make the proviso that universal and existential rules are

never applied to quantified sentences relativized by an equality.

Substitution Rules
Ve(r =t — ¢(x)) Jx(z=tAd(x)) Va(z =t — ¢(z)) "Fz(x=1tAo(x))
(1) (t) —o(t) —o(t)

4.2 Translation using predicate abstraction

Unfortunately, the standard translation does not square well with the intention to change
one proof into another because it does not preserve syntactic structure. Because we
want to transform a proof for the translationginto a proof forg, we need to translate
backwards as well. Itis crucial that applying the backwards translation to the translation
of ¢ yields¢ again. This is simply not obtainable by the standard translation or obvious
variants.

An example might explain why not. We can re@d(p A ¢) as saying that state
has the property A ¢q. As we want to translate proposition letters to one place predi-
cates, in first-order logic we can only say then thaas property p and has property
q. This is of course logically equivalent, but syntactically different. We would like to
have machinery which can turn formulas into predicates, so that we can speak about
the property p andq”. The lambda calculus provides precisely thidz.(Pz A Qx))
denotes the property of beifgand@. The formula(Az.(Pz A Qx))(s) serves then as
an excellent proxy fo@(p A q).



We work in first-order logic with predicate abstraction restricted to variables ranging
over individuals. Thus we only add a piece of syntactic sugar. The expressive power of
the language remains the same, it is just first-order logic. For a thorough introduction
to real predicate abstraction in modal logic we refer to [6].

Supposep is a first-order formula and a first-order variable. Thef\z.¢) is a
predicate abstract. Its free variable occurrences are the free variable occurrences of
¢ except forz. Predicate abstracts behave as unary predicate symbols; new atomic
formulas from predicate abstragtsz.¢) can be made by the rule

if ¢ is aterm, thefAz.¢)(t) is a formula.

Examples aré\z.Px)(t) and(Azx.Pz A Qz)(s). The new formulas get their meaning
by performings-reduction:

the 8-reduction of(\x.¢) (t) is @[t/ x].

The meaning of\x.¢)(t) is simply the meaning ab[t/z]. This shows that the expres-
sive power remains the same. Our convention is thatéxpressions, thetakes wide
scope, thugz.¢ A ¥) = (Ax.(d A ).

In order to handle predicate abstracts in tableau proofs, we need only add two very
simple rules to Fitting’s system. The rules just implem@meduction. Here they are

Abstract rules
(Az.9)(t)  —(Az.9)(t)
o[t/] —¢[t/x]

Fitting’s tableau system with the two abstract rules added is a complete inference system
for the expansion of first-order logic with abstraction with variables ranging over
individuals [5].

We are ready to define the new standard translaiibfor the propositional hybrid
language, together with its inver8& —. In a certain sense, this translation can be traced
back to the paper [9] in which McCarthy and Hayes introduce the situation calculus.
AT, (¢) and AT (¢) are defined in the same way but wittandy interchanged, e.g.,

AT, (p) := PyandAT,(0¢) := (A\y.Vz(Ryx — AT,(4)))(y).

= Px
= z=n

= (\emAT,(9)) ()

=

8

8
S

B N N N

Hﬂ’ﬂéﬂ'ﬂﬂ

SEETEE
;@;\_/

(ONAY) = (Aw. ATy (¢) N AT (¥))(2)
«(00) = (QaVy(Rzy — AT, (¢)))(z)
(@) = </\xVx(9:—n—>AT () (2)
AT, (Px) =P
ATI( n) =n
AT () (2)) = AT (9)
AT (g A () = AT (¢) A AT (1)
AT (e o(iay = 9)(@) = AT, (0
T (vl = n — 6))(#) = @,AT (@)



The following properties oAT and AT~ hold, for everyH (@) formula,

(3) AT.(¢)is always a formula of the for\z.¢))(x) or Pz orz = n.
(4) AT, (AT .(¢)) = ¢, and similarly when is replaced by.
5) ¢ is HLQ) valid iff AT, (¢) is first-order valid.

(3) follows from the definition. (4) is proved by induction on the complexity of the
HL(@) formula. (5) isimmediate by performingreduction and the well-known result
on the standard translation.

4.3 Completeness foH L(@Q)

Theorem 1. TheH /(@) tableau calculus is complete.

We now specify an algorithm for turning a closed Fitting tableau for the formdla(¢)[c/x]
(wherec is a parameter) into a closéd/(@) tableau for@.¢. Some terminology will
be useful. A literal is a grounded formula of the form

P(t) | t=u| Rtu| (\x.¢)(t) | (Ay.¢)(t), or its negation.

Define the following translatiofy)* from positive literals td+ (@) sentences

P(t)* = Qp
(t=u)" := Qu
(Rtu)* = @, Qu
((Az.9) ()" = QAT ((Az.¢)(x))
((Ay-9)(1))" == @ AT ((Ay.¢)(y))-

For negative literal$—¢), we set(—¢)* = —¢*.

We recapitulateAT translates a hybrid formula into a first-order formula atiti~
translates them backwards. The translaiion translates literals occurring in a first-
order tableau proof into hybrid formulas. Note that these literals may contain parameters
introduced in the proof. The crucial connection between the forward and backward
translations is that they preserve syntactic structurepfar hybrid formula and a
nominal or parameter,

(6) (AT (o)[t/z])" = Qip and(—AT 2 ()[t/x])" = ~Qs.
Property (6) follows immediately from the definition 6§* and (4).

We are ready to specify the algorithm. L'Bbe a closed Fitting tableau for the formula
AT, (¢)[c/z]. Without loss of generality we may assume tfiais atomically closed.
Let 7" simply beT with all literals replaced by theif)* translation and all other for-
mulas removed.

Claim T’ isHL(@) tableau proof fogp.

We first observe thal” starts with—@.¢. This is becausd starts with the literal
—AT . (¢)[c/x] whosex translation is-Q.¢ by (6).



First-order proof Correspondirg £(Q) proof
t =u, P(t) fR Quu, Q;p N
t=u,v=t eR Qpu, @Q,t Nom—1
To=u ™ “au ftemd
t = u, URt °R @tU, @vot Brid

vRu [RR] @,Ou [Bridge].

Table 1. Corresponding replacement proofs

Secondly, every branch h’ closes. This is becauge branches close on literals,
which we all move over t@”, keeping the negation signs in place. We now showihat
is a correctH{ (@) tableau, i.e. that every formula in 7" is derived from—@.¢ by a
finite number ofH £(@) rule applications. We prove by induction on the structure of the
literals that for all literald, I’ in T', for all literals!y, I, produced froni, I’ by applying
rules, the literalg;, I3 can be obtained frorit, I’* by applying a (derived) rule if".

There is only one zero premise rule. Ref can introduce litéralg in T, which can
be matched by the hybrid Ref rule producifig= ¢t)* = Q;t.

On literals which are nak-formulas we can only perform Replacement, which we
handle later. Every literal ifi" which is aX-formula has the formiAz. AT, (v))(t), for
z eitherz or y, andy anHL(@) formula. Its(-)* translation isQ,« by (6). This gives
us with the cases presented in Table 2. This table is read as follows. On the left are
first-order proofs with annotations indicating which rule is applied on what to obtain
the result. On the right are tH& (@) proofs which derive the¢-)* translated results
from the(-)* translated premises, again annotated.

We assumed Replacement only works on positive literals. The possible instantia-
tions of literals in whicht is replaced are

t =wv,v =t,vRt,tRv, P(t) and(\z.¢)(t).

In Table 1 the application of the replacement rule is given on the left while the corre-
spondingH£(@) proof on the(-)* images of the formulas is on the right. As the cases
for P(t), t = v, tRv and(\z.¢)(t) are all by applications of Nom, we only show the
case forP(t).

We considered all possible applications of all rules on all possible literals. Thus
is aHL(Q) tableau.

4.4 Completeness fotHL(|, @)
Theorem 2. The tableau system f(£(], @) is complete.



Case FO tableau HL(@) tableau

=, pos(1) (Az.= AT+ ())(t) (1) Q=9

(2) ~AT . (9)[t/] 1, A (2) ~Q;¢ (1), Neg
—neg|((1) ~(Az.~AT.(4))(t) (1) -@¢—¢

(2) AT (9)[t/] (1), =A

(3) AT (¢)[t/x] 2, |(2) Qo (1), Neg
A pos|((1) (Az. AT« (¢) N AT (¥))(1) (1) @:(p A Y)

(2 AT (P)[t/x] N AT (P)[t/x] (1), A

(3) AT (9)[t/x] (2),Con |(2) @i (1), Con

(4) AT4(y)[t/a] (2), Con |(3) @) (1), Con
Aneg((1) ~(Az. AT (¢) N AT=())(2) (1) ~Qi(d A DY)

() ~[AT=(9)[t/x] N AT=(P)[t/2]] (1), -A

(3) ~AT.(9)[t/a] | ~AT+(¥)[t/z] (2), Dis  |(2) ~@ié | ~@u), (L), Dis

@ pos(1l) AzVz(z =n — AT=(¢)))(¥) 1) @.Q,¢

@) Vz(z =n — AT(9)) (1), A

(3) AT (¢)[n/a) (2),Sub |(2) @6 ) @
@ ned(1) ~(AzVz(z =n — AT.(9)))(t) 1) -Q.Q,¢

(2) Vz(z =n — AT.(¢)) (1), =

(3) ~AT..(6)[n/x] (2),Sub |(2) ~@0 1), @
O pos|(1) (Az.Vy(Rzy — ATy(9)))(t) (1) @:0¢

(2) Rtn (2) @in

(3) Yy(Rty — AT, (6)) (1), A

(4) AT, (#)ln/y] (2), (3) MPI(3) @, 6 (1.(2),0
0 neg|(1) ~(a-Vy(Ray — AT, (6)) (1) (1) ~@,0¢

(2) ~(Vy(Rty — AT, ()) (1), A

(3) Rtc (2),Exi |(2) @;<c 1),

(4) ~ATy(¢)[c/y] (2),Exi |(3) ~Q.9 @.<

Table 2. Corresponding proof rules

With all the groundwork done, the proof is very easy. We have to extend the transla-
tion to incorporate the variables and downarrow formulas. We assume #maty are
new variables. The translation and its inverse for the state variables and downarrow is
simply

AT (w) == z=w
AT, (x =w) := w
AT, (lw.¢) = (AzNVw(w =z — AT ,(¢)))(z)

AT, (M Yw(w =2 — ¢))(z)) = |w. AT, (¢).

In a straightforward way, the properties (3)—(6) still hold. Then the completeness proof
amounts to showing that Fitting’s rules applied to translations of downarrow formulas
can be transformed to applications of the downarrow rules. On these translations only
substitutions can be applied. This case is similar to the @ case, so we do not spell it out.



4.5 Completeness folQHL
Theorem 3. The tableau system f@pHL is complete.

Again the proof is simple after we made the needed straightforward adjustments. The
translation and its inverse for the fUJHL language is obtained by adding the following
rules to the ones already existing:

AT, (P(ty, ... 1)) == P'(x,t1,... 1y
AT, (Vvg) = (AxVvAT . (¢))(x)

ATZ(P'(2,t1, .. 1)) == P(ti,... 1)
AT, (AeYvg)(x)) = YwAT, (¢)

The translatior(-)* is extended for the new literals as follows:

P/(S,tl,... ,tk)* = @Sp(tl,... ,tn)
(ti = tj)* = ti = tj.

We don't translate th&)HL terms@,q but just pretend they are first-order tergi(s).
Again, properties (3)—(6) still hold. (The first-order tableau calculus has to respect the
two sorts of course. For exampléz P’ (s, x) does not yield the not correctly typed
P’(s, s) by universal instantiation.) The atomic hybrid formula= ¢; is translated

as (\z.t; = t;)(z). This is done to have a syntactic analoguedft; = ¢;). In a
first-order proof5-reduction can be applied tox.t; = t;)(s) or its negation, yielding

t; = t; and—t; = t;, respectively. This proof step corresponds to an application of one
of the@ = rules on theg-)* translations in &) HL tableau.

Itis immediate that the quantifier rules can be mimicke@iL tableaux (provided
they respect the sorts).

For the application of replacement, there are now teeimg for ¢ a non-rigid des-
ignator andn a nominal. The replacement rule in a first-order proof can then with the
premisen = m replaceQ, q by @,, ¢ in any atom. But» = m back-translates t@,,m
and from that th&) HL equality rule DD yield€2,,qg = @,,,q. Now replacement i) HL
with this premise on the translated atom yields the translated resuilt.

Thus all first-order rules have a correspond®f L analogue and we are done.

4.6 Completeness for specific frame classes

We only considered the (quantified) hybrid logic of the class of all frames. Here we
establish completeness for every elementary first-order definable class of frames which
is closed under and reflects generated subframes. A class of frames is closed under
generated subframes if all generated subframes of its members are in the class. A class
reflects generated subframes if whene¥és in the class and is a generated subframe

of F’, then alsaF’ is in the class. Note that this implies that the class is closed under



disjoint unions. Closure under and reflection of generated subframes is a requirement
which reflects the local evaluation of modal formutas.
We recall from [1], that every such elementary class of frames is definable by a first-
order sentencey~(y), in which~(y) is equivalent to a pure hybrid £(@, | ) sentence
~' (i.e., without propositional variables nor nominals). A§" preserves meaning we
may without loss of generality assume théy) = AT, ().
Let such a clas& be defined by/y~(y). Then aQHL sentence is valid onK iff
Yyy(y) — AT (¢)[c/x] for c a new parameter is first-order valid. In that case, there is
a first-order tableau proof starting with

L Vyy(y)
2. 2 AT, (p)c/x].

Whence the proof will develop almost as fdiT',.(¢)[c/xz] except that for any state
parameter or nominal v(s) may be introduced on the branch. This insight leads to the
following rule to be added to th@ HL tableau system:

—— for s on the branch
Q'

Now every time ay(s) is added to the branch in the first-order proof, we apply the new
rule ons in the QHL proof. Because of the assumption on the formypfranslating
~(s) by (-)* yields@,~'. Thus we have shown

Theorem 4. Let~ a pure nominal free hybrid sentence which axiomatises the class of
framesK. Then adding the above rule to tlig{L tableau calculus yields completeness
for the quantified hybrid logic of the class of frani€s

! Added in proof. Balder ten Cate together with the first author of the present paper (from now
on referred to as BC) have proposed a proof systenif6f@) which is complete for frame
classes defined by formulas of the fovte3y¢(z, i), in which ¢ is anH L(@) formula starting
with @,,, and the quantifiers bind all nominaisandy occurring in¢. A natural example is
Vzi1x2233yYQy, (A, Oz A @y, Ozz — Q,, Oy A @y, Oy) defining the class of confluent
frames.

BC claim that adding the rule (*) below to thé£(@) tableaux calculus given here is com-
plete for the class of frames defined ¥y35¢(Z, 7). This result is most easily proved using
the developed theory of translations, as follows: Assurte£4@) formula is valid on the
class of frames defined byz3g¢(z, ). ThenVzIGAT ., (¢p(Z,7)) — AT ()[c/z] for
c a new parameter is FO valid. Thus there is a first-order tableau proof of it starting with
VZAGAT ., (¢(Z,7)), " AT (¢)[c/x]. Our goal is to turn this tableau into &\(@) tableau
as before. The only new thing we have to mimic is an application of universal instantiation
followed by existential elimination tvzZ35AT ., (¢(Z,¥)). This is exactly what rule (*) of
BC is doing.

(x)¢(5,t) for s nominals on the branch and alhominals new to the branch.

Analogous to the proof in this subsection, completeness now follows.



5 Conclusions

The positive effects of hybridization in propositional logic extend well to the first-order
case. In fact, one could argue that the need for hybridization is felt much stronger in
first-order modal logic. The field is plagued with failures of desirable properties, and
consequently more difficult and obscure than its propositional counterpart. Here we
have presented an extremely general completeness theorem (Theorem 4) covering vir-
tually all modally interesting elementary frame classes. In a companion paper we have
shown that the calculus can be used to construct interpolants. Interpolation is one of the
properties which fail in many quantified modal logics. This theorem also extends to all
frame classes from Theorem 4. These very general results indicate that the additions to
the syntax are natural and extremely useful.

The paper contained two important ideas. First and foremost is the proof method for
showing completeness. An almost standard translation was used in a non-trivial way to
transfer a first-order result into the modal setting. In the hybrid language, this was par-
ticularly easy, as it contains such first-order proof-elements as parameters. In orthodox
modal logic, too many completeness proofs are repeated with only tiny changes. Maybe
hybridization is needed to change modal logic into a field in which standard results are
recycled instead of proofs. It's worth the price.

The second idea is our treatment of definite descriptiondMiles American QHL
it is not possible to write intensional terms as in Montague’s IL. The hidden variables
in intensional terms cause many technical problems and make IL mathematically com-
plicated. The use of @ to ground non-rigid designators to states is a simple remedy.
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