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Abstract

Compositional distributional models of meaning were introduced by Coecke et al. (2010, 2013) with
the aim of reconciling the theory of distributional meaning in terms of vector space semantics with
the theory of compositional interpretation as one finds it in typelogical grammars. The particular
typelogical formalisms employed by Coecke et al. (pregroup grammars, Lambek calculus) have a
recognizing capacity equivalent to context-free grammars. It is well known, however, that natural
languages exhibit patterns that require expressivity beyond context-free (Huybregts, 1984; Shieber,
1987). The aim of this thesis, then, is to investigate extensions of compositional distributional
models of meaning that result from using typelogical grammars with enhanced expressivity. To this
end, we give a categorical characterization of the Lambek-Grishin Calculus (see Moortgat (2007,
2009) and references there) and its constituting subsystems in terms of linear distributive categories
borrowing a categorification technique from Lambek (1968). We develop a language to reason
graphically about morphism structure and equality in terms of string diagrams. Finally, we show
that finite-dimensional vector spaces are also an instance of linear distributive categories, which
creates the possibility of extended compositional distributional models of meaning.
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Introduction

The analysis of natural language can be subdivided in several parts: that of the analysis of patterns,
which we call syntax, and the analysis of meaning association, which we call semantics. Beyond
syntax and semantics proper, there is the realm of pragmatics, the analysis of meaning in context
rather than a conventional, static meaning. For the purpose of this study, syntax and semantics
are already enough of a challenge. Form and meaning should not be considered in isolation; it is
a common understanding that these two aspects of natural language are highly interdependent.
Providing the link between syntax and semantics is providing the syntax-semantics interface, a
method describing how the process of putting together syntactic patterns provides information as
to how the meaning of these patterns should be assembled. A crucial, desirable feature of the
interface between form and meaning is compositionality, which roughly states that

The meaning of a complex expression is given by the meaning of its constituent expressions and
the way in which they are combined.

The categorial approach to grammatical analysis is based on the idea that linguistic expressions
are assigned types; the logic for the grammatical type system then determines what the syntactically
well-formed combinations of expressions are. The syntax-semantics interface is modelled along the
lines of the Curry-Howard correspondence. Orinigally developed in the context of intuitionistic logic,
the CH correspondence allows one to associate logical derivations with terms of the lambda calculus,
hence the slogan ‘proofs as programs’. In the application to grammars, the terms associated with
a derivation serve as ‘semantic recipes’ prescribing how the meaning of a complex expression is to
be computed out of the meaning of its constituent parts. A standard way of setting up semantic
models for typelogical grammars is to adopt the set-theoretic view of Montague Grammar (after
(Montague, 1970b,a)): one assumes a fixed domain of entities and of truth-values on which one
then defines set-theoretical constructions that give the desired meanings of complex expressions via
compositionality. The problem with this approach is that the set-theoretic interpretation of the
basic expressions (words) is predefined.

A seemingly opposite approach to semantics is that of distributional semantics, which is based
on the principle that “You shall know a word by the company it keeps” (Firth, 1957): one extracts,
from a large corpus, co-occurrence counts for words and so builds vectors that represent the mean-
ing of words. In this way, the similarity of words can be measured through an appropriate inner
product. Distributional semantics avoids the key problem of Montagovian semantics that there be
predefined meanings associated to basic expressions, reinstating the empirical nature of linguistic
meaning. However, compositionality is now not guaranteed: there is no automatic way of defining
how the semantics of basic expressions should be combined to form the meaning of larger, more
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complicated expressions.

A first question that arises then, is how to combine typelogical grammar with its nice mathemat-
ical properties with the distributional view on lexical semantics. That such a combination is indeed
possible is show by recent research of Coecke et al who rely on the similar mathematical structure
of pregroups (a particular typelogical grammar) and finite dimensional vector spaces (Coecke et al.,
2010) or on the similar mathematical structure of Lambek monoids and finite dimensional vector
spaces (Coecke et al., 2013). Such similar structure implicitly relies on an extension of the Curry-
Howard correspondence, initiated by Lambek and Scott in their book (Lambek and Scott, 1988),
on which we will elaborate below.

Combining a substructural logic such as the Lambek Calculus with vector space semantics gives
models that we will call basic compositional distributional models of meaning. Basic, because they
rely on the Lambek Calculus, the typical “logic of grammatical composition”. We shall consider
deploying this very logic a weakness of the model, for the reason that the patterns that we are able
to describe with this logic do not encompass all possible patterns present in natural language. It has
indeed been argued that the context-free languages, the class of patterns describable by context-free
grammars as well as Lambek grammars, lack the necessary expressivity (Huybregts, 1984; Shieber,
1987). We therefore raise the following problem, which will be the central theme in this study: how
can we extend compositional distributional models of meaning in such a way that we can describe
patterns beyond context-freeness and associate meaning to them?

Our approach in this thesis will then be to consider extensions of the Lambek Calculus that have
the proper expressivity, including at least the mildly context-sensitive languages (Joshi et al., 1990).
The sought extensions should exhibit a mathematical structure similar to that of finite dimensional
vector spaces, making it possible to define extended compositional distributional models of meaning.
Before outlining the structure of this thesis, we give some context to place the problem in its proper
setting.

Compositionality and Type-Logical Grammar

The intuitive view of compositionality that we gave at the beginning of this section assumes that
(a) the meaning of the basic lexical expressions is given and that (b) the meaning of non-basic
expressions can be systematically obtained from “the way in which they are combined” syntactically.
This intuitive view is made more precise in (Hendriks, 2001), elaborating on (Montague, 1970b). In
short, Syntax and Semantics are modelled as multisorted algebras, and compositional interpretation
takes the form of a homomorphism. i.e. a mapping from source (syntax) to target (semantics) that
respects the sorts and the operations. In a picture:

Source

〈 (As)s∈S , F 〉

Target

〈 (Bt)t∈T , G 〉

h

h(f(a1, . . . , an)) = g(h(a1), . . . , h(an))

6



where g is the semantic operation at the target end corresponding to the syntactic operation f .
The benefit of compositionality is immediate: only the semantics of basic expressions is needed

to obtain the semantics for larger, complex expressions. This implies that one only needs a finite
specification of a dictionary in order to generate an infinite amount of linguistic structures together
with the corresponding interpretations.

Typelogical grammar precisely assumes compositionality as being a homomorphism from the
derivational term algebra to semantics, having a logical system as the grammatical framework, on
which one can easily graft a semantics that follows the structure of the complex expressions in the
language. The problem then resides in lexical semantics: how does one attribute a meaning to single
words? A standard tool, initiated by Montague in the ’70s (Montague, 1970b), is to employ a set-
theoretic lexical semantics, in which one assumes a domain of entities and a domain of truth-values
on which relations are defined. The meaning of the word man in this setting would be precisely the
set of entities that are men, or equivalently, the characteristic function that maps all men to truth
value 1 and all other entities to truth value 0; the meaning of the word the in combinatin with a
noun is a function that picks out the unique individual that has the property denoted by the noun
if there is such a unique individual, and nothing otherwise.

Non-local composition is a pervasive feature of language. Typical examples include non-periphal
extraction and crossing dependencies. The former is exemplified by a expression such as “the book
that John found in the library”. The relative pronoun “that” in this case has to establish a semantic
dependency with the direct object of “found”, but this direct object is hidden within the relative
clause, and inaccessible for external inspection. An example of crossing dependencies in Dutch is
“(Ik weet) dat Jan Marie de kinderen zag leren zwemmen” (I know that John saw Mary teaching
the kids how to swim). In this case the semantic dependencies can be represented by the following
picture

hij denkt dat Jan Marie de kinderen wil leren zwemmen

which is a typical example of a pattern unrecognizable by context-free grammar, the copy language
w2.

There have been several proposals to deal with non-local composition, all trying to find the
proper balance between computational complexity and expressivity. Examples are Tree Adjoin-
ing Grammars (Joshi, 1985), Multiple Context-Free Grammars (Seki et al., 1991) and Minimalist
Grammars (Stabler, 2011). These are examples of proposals that aim to describe the Mildly Context-
Sensitive Languages. On the side of typelogical grammar there have been several developments since
the ’80s, all extending the Lambek Calculus in some way (see (Moortgat, 2011) for an overview).
Here we find multimodal systems (Moortgat, 1996), Displacement Calculus (Morrill et al., 2011),
Combinatory Categorial Grammar (Steedman, 2000) and the Lambek-Grishin Calculus (Moortgat,
2009). Although the Lambek Calculus itself has a nice categorical characterization, the categorical
structure of these extensions is not very well understood. The aim then, is to find a nice categorical
description of at least one of these extensions. We will focus on the Lambek-Grishin Calculus, a
symmetric extension of the Lambek Calculus. The benefit of focusing on this system is that it also
has a nice categorical interpretation in terms of linear distributive bi-clopen categories, a concept

7



related to but in key aspects different from that of Cockett and Seely (1997b). We will define linear
distributive bi-clopen categories in the second part of the thesis.

A Classic: the CHL Correspondence

As said above, the Curry-Howard correspondence1 states an isomorphim between proofs in intu-
itionistic propositional logic and terms of the simply typed lambda calculus. The following table
gives an impression of how the different concepts of logic relate to the different concepts in lambda
calculus:

Logic Lambda Calculus
formula type
proof program

normalization β-reduction

As was shown by Lambek and Scott (1988), this correspondence can be elevated to the level
of categories, and hence it goes by the name Curry-Howard-Lambek (CHL) correspondence. It
establishes an equivalence of categories2 between cartesian closed categories and typed lambda
calculi with products. The great benefit of applying such a correspondence to other kinds of
categories is that other kinds of logics can be seen to (categorically) be “essentially the same as”
their associated category, meaning that we can also broaden our options for a syntax-semantics
interface that incorporates compositionality via homomorphic passages from the type logic to the
associated semantic category. The CHL correspondence is nicely shown in the following picture:

Categories

Logic λ-calculus

The corresponding table of concepts is shown below:

1Extensively reviewed by Sørensen and Urzyczyin (2006)
2This is a loose version of an isomorphism to be defined in Chapter 1.
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Logic Category Theory Lambda Calculi
formula object type
proof morphism program

equivalence of proofs morphism equality equivalence of programs

The Lambek Calculus is a substructural logic that is both linear and ordered : it lacks the rules of
weakening, contraction and exchange and splits implication into a left and right implication (thereby
respecting the order of composition). So, what then are the ingredients for a CHL correspondence
for the Lambek Calculus and its relatives? Because of its linearity and ordering, it is immediate the
corresponding lambda calculus and type of category must accomodate this. Although we will not
touch the first part of the correspondence (simply because it is not immediately relevant), Wansing
has developed a lambda calculus that correspond to the Lambek Calculus (Wansing, 1992). On the
categorical side we will show in this study that various kinds of closed categories will be suitable
for interpreting the different incarnations of the Lambek Calculus.

The implications of the CHL correspondence are that one can, instead of interpreting a logic
in its corresponding lambda calculus, use any kind of mathematical structure that is an instance
of the corresponding category. We will see that this makes it possible to interpret a typelogical
system such as the Lambek-Grishin Calculus in finite dimensional vector spaces, thus realizing an
extended compositional distributional model of meaning.

Graphical Reasoning in Logic and Categories

With the introduction of linear logic (Girard, 1987) came the introduction of proof nets. Proof nets
are graphical representations of sequent proofs that remove spurious ambiguity: going from sequent
systems to natural deduction requires a many-to-one mapping that thus identifies a great deal of
sequent proofs. Proof nets avoid this by implicitly representing several sequent proofs by the same
net. Proof nets for the Lambek Calculus have been studied intensively (Roorda, 1991; Moot, 2002)
and consequently, proof nets have been developed for the multimodal Lambek Calculus (Moot and
Puite, 2002) and for the Lambek-Grishin Calculus (Moortgat and Moot, 2012).

On the side of categories, several graphical representations have been examined under the name
of string diagrams. Here, the morphisms of the category in question can be represented graphically
and one defines the appropriate equations on diagrams in order to have a coherent (i.e. sound
and complete) language to reason graphically instead of chaining equations. A nice introduction to
graphical reasoning in categories is (Selinger, 2011).

Obviously, considering the CHL correspondence, there is a close connection between proof nets
and string diagrams, as research has shown (Straßburger and Lamarche, 2004; Blute et al., 1996).
Given that one enforces the proper equations on proof nets, it can be shown that they will form the
morphisms of the free category in question. For instance, the proof nets for multiplicative linear
logic with units generate the free *-autonomous category (Straßburger and Lamarche, 2004). In
this thesis we discuss graphical calculi for various kinds of closed categories. We first review the
graphical calculus developed for monoidal closed categories by Baez and Stay (2011). Our new
contribution will be to consider non-associative systems, which allow us to represent information
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not just as strings but as binary trees. As a consequence, we need a whole new concept of graphical
language, which we fully develop for these closed categories.

Recap: Problem Statement in Context

To summarize, the problem we have raised is as follows: because the existing compositional distri-
butional models of meaning are to weak in terms of their capabilities to analyze natural language
patterns, there is a need for extended compositional distributional models of meaning. Having the
Curry-Howard-Lambek correspondence as our guiding light, we find that to develop such models
we require the following: we should find a suitable extension of the Lambek Calculus, powerful
enough to describe the mildly context-sensitive languages and exhibiting a categorical structure
that is interpretable in finite dimensional vector spaces. Next to these objectives, we want to de-
velop graphical languages for the categorical structures we find, and explore a bit the semantics of
the basic and the extended models.

What This Thesis is Not About

This thesis introduces a new framework for compositional distributional models of meaning. An
important aspect of these models is their empirical nature; this thesis prepares the way for empirical
validation of more refined compositional distributional meaning models. Actually carrying out
experiments to validate the power of these models in for instance sense disambiguation and sentence
similarity would be a thesis subject of its own: one might fix a grammar and then extract from a
corpus the vector space semantics and see how the extended models behave with respect to the basic
models. However, this still has the problem of having to predefine the lexical type declarations.
Thus, it would be better to also extract the grammar (categorially: the lexicon) out of the corpus
via grammar induction. Doing grammar induction will obviously also show the difference between
different syntactic backbones used. To perform multiple experiments with different set-ups would
take quite some time, and we therefore leave it to future work. We will also point this out in our
conclusion section.

Overview of Type-Logics

This thesis discusses many different type logics and we clarify the relationships between these
systems in a picture. The variants of the basic Lambek Calculus are the non-associative Lambek
Calculus NL, its associative variant L and the variants obtained by adding units to either of
the former systems, giving the unitary non-associative Lambek Calculus UNL and the unitary
associative Lambek Calculus UL. These four systems give rise to a diamond indicating the relation
between them; the connectives of these systems are such that we can split the systems into left and
right variants, indicated by superscripting an l or r. The following diagram summarizes all this:

10



.

. . .

. . . .

. . .

.

NLr

LrUNLr

ULr

NL

LUNL

UL

NLl

LlUNLl

ULl

where the dashed lines indicate isomorphisms between systems. The dual Grishin systems are
obtained by replacing the L by a G and give rise to a similar diagram.

Finally, one obtains the Lambek-Grishin system by merging the systems NL and NG and
adding interaction postulates 3 between the two systems:

NL NG

LG

LGIV

where the arrows indicate that each system is a part of the system it is pointing to. Of the systems
NL and L (and their unital variants) it is known that they are complete with respect to (unital)
residuated groupoids and (unital) residuated semigroups respectively (see Buszkowski (1986)). For
an overview of algebraic semantics for substructural logics in general, see the book by Galatos
et al. (2007). We will show in this thesis that the logics under discussion all correspond to certain
categorical notions to be defined in the first chapter of each part. Just as the system MLL of
multiplicative linear logic with units corresponds to *-autonomous categories (Blute and Scott,

3The particular interaction postulates we will consider are the type IV interactions amongst a range of possible
postulates formulated by Grishin (1983)
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2004) and intuitionistic propositional logic corresponds to cartesian closed categories (Lambek and
Scott, 1988), we establish correspondences according to the following tables:

NL(l/r) left/right/bi-closed tensor categories ((L/R/B)CCst)
UNL(l/r) left/right/bi-closed unitary tensor categories (U(L/R/B)CCst)

L(l/r) left/right/bi-closed associative tensor categories (A(L/R/B)CCst)
UL(l/r) left/right/bi-closed monoidal categories (M(L/R/B)CCst)

NG(l/r) left/right/bi-open tensor categories ((L/R/B)OCst)
UNG(l/r) left/right/bi-open unitary tensor categories (U(L/R/B)OCst)

G(l/r) left/right/bi-open associative tensor categories (A(L/R/B)OCst)
UG(l/r) left/right/bi-open monoidal categories (M(L/R/B)OCst)

Finally the last table shows the correspondences for the Lambek-Grishin system:

LG∅ bi-clopen tensor categories (BCOCst)
LGIV linear distributive tensor categories (LDTCst)

Contributions and Structure of the Thesis

In this thesis, we develop a uniform framework for doing compositional distributional semantics
guided by the work of Coecke et al. (Coecke et al., 2010, 2013). More specifically, in part I we
review and expand where necessary the theory of basic categorical compositional distributional
models of meaning by the following chapters:

Chapter 1 We introduce basic category theory and categories with additional structure.

Chapter 2 We introduce graphical languages for categories with additional structure. The first
contribution is the development of a coherent graphical language for non-associative systems.

Chapter 3 We introduce Lambek’s Syntactic Calculus and present its “categorification”.

Chapter 4 We review finite-dimensional vector spaces as a system of doing distributional
semantics and show how a compositional distributional model of meaning could be obtained.

Part II of the thesis tries to replicate the structure of part I while giving an extension of the
basic model. Thus, we extend the theory of categorical foundations for compositional distributional
models of meaning within the following chapters:
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Chapter 5 We introduce co-closed (or open) categories and non-associative linearly
distributive categories, the latter in line with the development of the Lambek-Grishin Calculus.

Chapter 6 We associate a graphical language with linearly distributive categories and prove
a coherence theorem for it, our other novel contribution to the theory of string diagrams.

Chapter 7 We review the Lambek-Grishin Calculus and investigate its categorical structure.

Chapter 8 We investigate how the categorified Lambek-Grishin Calculus can be interpreted
in finite-dimensional vector space semantics.

13



Part I

Basic Compositional Distributional
Models of Meaning
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Chapter 1

Categories

In this chapter, we review basic category theory and various kinds of closed categories and their
functors. The very basics of category theory are outlined, following the definitions from Blute and
Scott (2004) and Awodey (2006). Then we move on to define closed tensor categories and monoidal
closed categories, the latter following the definition of Selinger (2011). Finally we define functors
with structure and discuss the symmetry between left and right closed categories.
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A category essentially is an abstraction over mathematical structures: it contains objects and
arrows between objects, the latter of which can be composed to construct new arrows. Additionally
some evident axioms need to be satisfied: there must be identity arrows for every object and
composition of arrows should be associative. From this concept of category, one can go on to define
arrows between categories, these are called functors. Then one will want to define arrows between
functors, to be called natural transformations. The nice thing about the theory of categories is
that we can view functors as arrows between categories, but also as the arrows of a category that
has categories as objects, or we may even think of them as objects of a category, the arrows now
being the natural transformations. These shifts in viewpoint are characteristic (and may lead to
confusion) for category theory. Some additional concepts include that of adjunction, which will
be a key concept in the rest of this thesis, and the concept of monads, which we use to illustrate
the categorical structure of the type logics we will consider. We will start out with the very basic
concepts and work our way through categories with extra structure.

1.1 The Basics

The most basic definition in category theory consists of that of category:

Definition 1.1. A category C consists of:

• A collection of objects Ob(C), denoted by A,B etc.,

• A collection of morphisms Ar(C), denoted by f, g etc.,

• Mappings dom, cod : Ar(C) → Ob(C) assigning to each morphism its domain and codomain
respectively. We write f : A→ B for a morphism f with dom(f) = A and cod(f) = B.

• Identity arrows, i.e. for every object A there is an arrow idA : A→ A,

• Composition of arrows, i.e. for every morphisms f : A → B and g : B → C there is a
composite morphism g ◦ f : A→ C.

These data must satisfy the following equations:

h ◦ (g ◦ f) = (h ◦ g) ◦ f for f : A→ B, g : B → C, h : C → D,
f ◦ idA = f = idB ◦ f for f : A→ B.

We define, for a category C and two objects A,B in Ob(C), the Hom-set of A and B as
HomC(A,B) := {f ∈ Ar(C) | f : A→ B}.

For any f : A→ B in C, we say that f is an isomorphism when there exists a two-sided inverse,
i.e. a g : B → A such that g ◦ f = idA and f ◦ g = idB .

We will introduce the notion of opposite or dual category as a preliminary for duality:

Definition 1.2 (Dual Category). Given a category C, its dual category Cop is given by considering
the following construction:

• The objects Ob(Cop) are precisely Ob(C),

• The morphisms Ar(Cop) are precisely Ar(C),

• The mappings dom and cod are interchanged (source becomes target and vice versa),
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• Composition is reversed, i.e. g ◦ f becomes f ◦ g.

A lot of examples of categories involve certain mathematical structures and homomorphisms
between these structures. One could also think of a category as a structure, and define the structure
homomorphisms categorically. These are called functors:

Definition 1.3. A (covariant) functor F : C → D is a mapping that assigns to each object A
in Ob(C) an object F (A) in Ob(D) and to each morphism f : A → B in Ar(C) a morphism
F (f) : F (A)→ F (B) in Ar(D) such that the following hold:

1. F (g ◦ f) = F (g) ◦ F (f),

2. F (idA) = idF (A).

Besides a regular functor (the lifting of an direction preserving homomorphism), there are also
direction reversing homomorphisms in category theory, called contravariant functors:

Definition 1.4. A contravariant functor F : C → D is a mapping that assigns to each object
A in Ob(C) an object F (A) in Ob(D) and to each morphism f : A → B in Ar(C) a morphism
F (f) : F (B)→ F (A) in Ar(D) such that the following hold:

1. F (g ◦ f) = F (f) ◦ F (g),

2. F (idA) = idF (A).

Since we have introduced the notion of dual category, we note here that a contravariant functor
F : C→ D is the same as a covariant functor F : Cop → D.

Similarly to the case of morphisms, there are identity functors and there exists associative
composition of functors. So, it makes sense to define isomorphisms of categories: we say that
F : C → D is an isomorphism of categories if there exists a functor G : D → C such that
G ◦ F = IdC and F ◦G = IdD.

Finally, we wish to reserve a special place for bifunctors, functors that take two arguments. We
denote such a functor by F : C ×D → E where C ×D is the product category, the category that
has pairs of objects as objects and pairs of morphisms as morphisms. As a consequence, we express
the functorial restrictions (or bifunctoriality) as the following two restrictions:

• Identities should be preserved, so F (id(A,B)) = idF (A,B),

• Composition should be preserved, so F ((k, h) ◦ (g, f)) = F (k, h) ◦ F (g, f).

Next are the “arrows between functors”, or natural transformations:

Definition 1.5. For two functors F,G : C → D, a natural transformation θ : F → G is a family
of morphisms θA : F (A) → G(A) (one for every A in Ob(C)) such that for any f : A → B the
equation θB ◦ F (f) = G(f) ◦ θA holds, i.e. the following diagram commutes:

F (A) G(A)

F (B) G(B)

θA

F (f) G(f)

θB
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For functors F,G : C→ D, a natural transformation θ : F → G is a natural isomorphism if for
every A in Ob(C) we have that θA : F (A)→ G(A) is an isomorphism. We write F ∼= G to say that
F is naturally isomorphic to G.

Because many categories are not necessarily isomorphic, but rather isomorphic up to natural
isomorphism, we need to define the concept of an equivalence of categories:

An equivalence of categories consists of a functor F : C → D and a functor G : D → C such
that G ◦ F ∼= IdC and F ◦G ∼= IdD. We denote the equivalence of categories by C ∼= D.

We now turn to the most important categorical concept for our purposes and perhaps the most
important concept in basic category theory: the concept of adjunction. Adjunction covers Galois
connections in order theory, but it also captures the behaviour of the universal quantifier versus
that of the existential quantifier in first-order logic (Awodey, 2006, Section 9.5). We will proceed to
give three equivalent definitions of adjunction, however we will mostly use the Hom-set definition:

Definition 1.6 (Hom-set Adjunction). Given two categories C and D, an adjunction between two
functors F : C → D and G : D → C consists of a natural isomorphism ϕ : HomD(FA,B) ∼=
HomC(A,GB).

The other definitions are given in terms of the unit or co-unit of the adjunction together with
a universal mapping property:

Definition 1.7 (Unit Adjunction). Given two categories C and D, an adjunction between two
functors F : C → D and G : D → C consists of a natural transformation η : IdC → G ◦ F such
that for any object A in C and B in D and any morphism f : A → G(B), there exists a unique
g : F (A)→ B such that f = G(g) ◦ ηA.

Definition 1.8 (Co-Unit Adjunction). Given two categories C and D, an adjunction between two
functors F : C → D and G : D → C consists of a natural transformation ε : F ◦ G → IdD such
that for any object A in C and B in D and any morphism g : F (A) → B there exists a unique
f : A→ G(B) such that g = εB ◦ F (f).

See (Awodey, 2006, Chapter 9) for a proof that these definitions are in fact equivalent.
The concept of a monad, also called a triple or standard construction, might be seen as the

generalization of the concept of a closure operator in order theory:

Definition 1.9. A monad on a category C is a triple (T, η, µ) where T : C→ C is an endofunctor
and η : IdC → T and µ : T ◦ T → T are natural transformations such that the following diagrams
commute for every object A:

T (T (T (A))) T (T (A))

T (T (A)) T (A)

T (µA)

µT (A) µA

µA

T (A) T (T (A))

T (A)

T (ηA)

idT (A)
µA

T (A) T (T (A))

T (A)

ηT (A)

idT (A)
µA
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The striking thing about mondads is that two adjoint functors always define a monad! Note that
in the following proposition we use the notation GεF : this is the natural transformation defined
for A in Ob(C) as G(εF (A)).

Proposition 1.1. Given two functors F : C → D and G : D → C that are adjoint, the triple
(G ◦ F, η,GεF ) where η is the unit of the adjunction and ε is the co-unit of the adjunction is a
monad.

Next to considering closure operators and monads as their generalization, we want to note that
the dual notion, that of an interior operator, is generalized by the dual notion of a comonad :

Definition 1.10. A comonad on a category C is a triple (S, ϑ, υ) where T : C → C is an endo-
functor and ϑ : S → IdC and υ : T → T ◦ T are natural transformations such that the following
diagrams commute for every object B:

S(S(S(B))) S(S(B))

S(S(B)) S(B)
υB

υBϑS(B)

S(ϑB)

S(B) S(S(B))

S(B)

S(ϑB)

idS(B)
υB

S(B) S(S(B))

S(B)

ϑS(B)

idS(B)
υB

We then get that the reversed composition F ◦ G for adjoint functors F and G gives rise to a
comonad:

Proposition 1.2. Given two functors F : C → D and G : D → C that are adjoint, the triple
(F ◦ G, ε, FηG), where η is the unit of the adjunction and ε is the co-unit of the adjunction, is a
comonad.

In the next section, we will look at categories with additional structure.

1.2 Monoidal and Closed Categories

A standard concept of a category with extra structure is that of a monoidal category : a category
that exhibits the structure of a monoid. However, for our purposes we need to simplify this definition
as we want to consider categories with extra structure but without associativity or units. To this
end we define tensor categories1 as categories that have a “tensor” without extra coherence axioms
whatsoever:

Definition 1.11. A tensor category is a category C equipped with a bifunctor ⊗ : C×C→ C.

1The term tensor category seems to be used to refer to a monoidal category. Despite the confusion, we found it
the most logical way to refer to a category that has a “tensor”.
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We can then go on to add associativity or units, giving us the following definitions:

Definition 1.12. An associative tensor category (or non-unitary monoidal category) is a tensor
category (C,⊗) equipped with an isomorphism natural in A,B,C specified by αA,B,C : (A⊗B)⊗
C → A⊗ (B ⊗ C) where the following diagram commutes:

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

αA,B⊗C,D

idA ⊗ αB,C,DαA,B,C ⊗ idD

αA⊗B,C,D αA,B,C⊗D

Definition 1.13. A unitary tensor category (or non-associative monoidal category) is a tensor
category (C,⊗) with a distinguished unit object I and natural isomorphisms specified by λA :
I ⊗A→ A and ρA : A⊗ I → A.

Definition 1.14. A monoidal category (or associative unitary tensor category) is an associative
unitary tensor category (C,⊗, α, I, λ, ρ) where the following diagram commutes:

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA ⊗ idB idA ⊗ λB

We have now sketched one dimension in our landscape of categories: adding a tensor and then
picking a unit object or associativity as extra features to ultimately obtain a monoidal category.
There are also monoidal categories where the tensor behaves as a commutative product:

Definition 1.15. A symmetric monoidal category is a monoidal category (C,⊗, α, I, λ, ρ) equipped
with natural isomorphisms specified by cA,B : A⊗B → B ⊗A such that cB,A ◦ cA,B = idA⊗B and
such that the following diagrams commute:

(B ⊗A)⊗ C B ⊗ (A⊗ C)

(A⊗B)⊗ C B ⊗ (C ⊗A)

A⊗ (B ⊗ C) (B ⊗ C)⊗A

αB,A,C

idB ⊗ cA,CcA,B ⊗ idC

αA,B,C
cA,B⊗C

αB,C,A
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A⊗ I I ⊗A

A

cA,I

ρA λA

We now want to define the closure of our categories. This is achieved by adding bifunctors that
are left/right adjoint to the tensor:

Definition 1.16. A left closed tensor category is a tensor category (C,⊗) equipped with a bifunctor
⇒: Cop×C→ C (i.e. contravariant in its first argument, covariant in its second argument) together
with natural isomorphism specified by βA,B,C : HomC(A⊗B,C)→ HomC(B,A⇒ C).

Definition 1.17. A right closed tensor category is tensor category (C,⊗) equipped with a bifunctor
⇐: C×Cop → C together with a natural isomorphism specified by γA,B,C : HomC(A⊗B,C)→
HomC(A,C ⇐ B).

Definition 1.18. A bi-closed tensor category is a tensor category (C,⊗) that is both left and right
closed.

Left closed, right closed, and bi-closed associative tensor/monoidal categories are defined anal-
ogously. Note, however, that a symmetric monoidal category is by definition bi-closed when it is
either left or right closed. For example, suppose we have a left closed symmetric monoidal category
(C,⊗, α, I, λ, ρ, c,⇒, β). Define B ⇐ A := A ⇒ B and γ := f 7→ β(f ◦ c). It is easy to show that
this defines a right closed structure on C.

We have already noted that adjoints give rise to monads and comonads. However, there are
another two monads that arise in bi-closed categories:

Let (C,⊗,⇒, β,⇐, γ) be a bi-closed category. Define, for any object D in Ob(C) the functor
D ⇐ ( ⇒ D) (resp. (D ⇐ )⇒ D ) that sends objects A to D ⇐ (A⇒ D) ( (D ⇐ A)⇒ D) and
sends maps f : A→ B to idD ⇐ (f ⇒ idD) ( (idD ⇐ f)⇒ idD ).

Now define the natural transformations η : IdC → D ⇐ ( ⇒ D) by ηA := γ(β−1(idA⇒D)) and
µ : D ⇐ ((D ⇐ ( ⇒ D)) ⇒ D) by µA := idD ⇐ (β(γ−1(idD⇐(idA⇒D)))) (and similarly for the
functor (D ⇐ )⇒ D.

Proposition 1.3. The triple (D ⇐ ( ⇒ D), η, µ) defines a monad on C.

Proof. For the square diagram we have

(idD ⇐ (β(γ−1(idD⇐(A⇒D))))) ◦ (idD ⇐ ((idD ⇐ (β(γ−1(idD⇐(A⇒D)))))⇒ idD))
= idD ⇐ ((idD ⇐ (β(γ−1(idD⇐(A⇒D)))))⇒ idD ◦ β(γ−1(idD⇐(A⇒D))))
= idD ⇐ ((idD ⇐ (β(γ−1(idD⇐(A⇒D)))))⇒ idD ◦ β(γ−1(idD⇐(A⇒D))) ◦ idA⇒D)
= idD ⇐ (β(idD ◦ γ−1(idD⇐(A⇒D)) ◦ ((idD ⇐ (β(γ−1(idD⇐(A⇒D))))⊕ idA⇒D)))
= idD ⇐ (β(γ−1((idD ⇐ (idA⇒D)) ◦ idD⇐(A⇒D) ◦ (idD ⇐ (β(γ−1(idD⇐(A⇒D))))))))
= idD ⇐ (β(γ−1(idD⇐(A⇒D) ◦ idD⇐(A⇒D) ◦ (idD ⇐ (β(γ−1(idD⇐(A⇒D))))))))
= idD ⇐ (β(γ−1((idD ⇐ (β(γ−1(idD⇐(A⇒D))))) ◦ idD⇐((D⇐(A⇒D))⇒D) ◦ idD⇐((D⇐(A⇒D))⇒D))))
= idD ⇐ (β(idD ◦ γ−1(idD⇐((D⇐(A⇒D))⇒D)) ◦ (idD⇐((D⇐(A⇒D))⇒D) ⊗ β(γ−1(idD⇐(A⇒D))))))
= idD ⇐ ((idD⇐((D⇐(A⇒D))⇒D) ⇒ idD) ◦ β(γ−1(idD⇐((D⇐(A⇒D))⇒D))) ◦ β(γ−1(idD⇐(A⇒D))))
= idD ⇐ (id(D⇐((D⇐(A⇒D))⇒D))⇒D ◦ β(γ−1(idD⇐((D⇐(A⇒D))⇒D))) ◦ β(γ−1(idD⇐(A⇒D))))
= idD ⇐ (β(γ−1(idD⇐((D⇐(A⇒D))⇒D))) ◦ β(γ−1(idD⇐(A⇒D))))
= (idD ⇐ (β(γ−1(idD⇐(A⇒D)))) ◦ (idD ⇐ (β(γ−1(idD⇐((D⇐(A⇒D))⇒D)))))
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For the first triangle diagram, we have

(idD ⇐ (β(γ−1(idD⇐(A⇒D))))) ◦ (idD ⇐ ((γ(β−1(idA⇒D)))⇒ idD))
= idD ⇐ (((γ(β−1(idA⇒D)))⇒ idD) ◦ β(γ−1(idD⇐(A⇒D)))) bifunctoriality of ⇐
= idD ⇐ (((γ(β−1(idA⇒D)))⇒ idD) ◦ β(γ−1(idD⇐(A⇒D))) ◦ idA⇒D) identity axiom
= idD ⇐ (β(idD ◦ γ−1(idD⇐(A⇒D)) ◦ (γ(β−1(idA⇒D))⊕ idA⇒D))) naturality of β
= idD ⇐ (β(γ−1((idD ⇐ idA⇒D) ◦ idD⇐(A⇒D) ◦ γ(β−1(idA⇒D))))) naturality of γ−1

= idD ⇐ (β(γ−1(idD⇐(A⇒D) ◦ idD⇐(A⇒D) ◦ γ(β−1(idA⇒D))))) bifunctoriality of ⇐
= idD ⇐ (β(γ−1(γ(β−1idA⇒D)))) identity axiom twice
= idD ⇐ idA⇒D iso property of β and γ
= idD⇐(A⇒D) bifunctoriality of ⇐

Finally, for the second triangle diagram, we have

(idD ⇐ (β(γ−1(idD⇐(A⇒D))))) ◦ γ(β−1(id(D⇐(A⇒D))⇒D))
= (idD ⇐ (β(γ−1(idD⇐(A⇒D))))) ◦ γ(β−1(id(D⇐(A⇒D))⇒D)) ◦ idD⇐(A⇒D) identity axiom
= γ(idD ◦ β−1(id(D⇐(A⇒D))⇒D)) ◦ (idD⇐(A⇒D) ⊗ β(γ−1(idD⇐(A⇒D)))) naturality of γ
= γ(β−1((idD⇐(A⇒D) ⇒ idD) ◦ id(D⇐(A⇒D))⇒D ◦ β(γ−1(idD⇐(A⇒D))))) naturality of β−1

= γ(β−1(id(D⇐(A⇒D))⇒D ◦ id(D⇐(A⇒D))⇒D ◦ β(γ−1(idD⇐(A⇒D))))) bifunctoriality of ⇒
= γ(β−1(β(γ−1idD⇐(A⇒D)))) identity axiom twice
= idD⇐(A⇒D) iso property of β and γ

Next to the closed categories we have already considered, there are special cases of a monoidal
closed category, where each object has a left/right dual object. When the underlying category is
non-symmetric, such a category is called autonomous or rigid but in the presence of symmetry
these categories are called compact closed :

Definition 1.19. An autonomous category is a monoidal category (C,⊗, α, I, λ, ρ) such that for
every object A in Ob(C) there exist objects Al and Ar (called left and right adjoints) and for every
A there exist morphisms

ηl : I → A⊗Al εl : Al ⊗A→ I ηr : I → Ar ⊗A εr : A⊗Ar → I

Such that the following diagrams commute:
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(A⊗Al)⊗A A⊗ (Al ⊗A)

I ⊗A A⊗ I

A A

α
A,Al,A

idA ⊗ εlηl ⊗ idA

ρAλ−1
A

idA

Al ⊗ (A⊗Al) (Al ⊗A)⊗Al

Al ⊗ I I ⊗Al

Al Al

α−1

Al,A,Al

εl ⊗ id
Alid

Al ⊗ ηl

λAρ−1

Al

id
Al

A⊗ (Ar ⊗A) (A⊗Ar)⊗A

A⊗ I I ⊗A

A A

α−1
A,Ar,A

εr ⊗ idAidA ⊗ ηr

λAρ−1
A

idA

(Ar ⊗A)⊗Ar Ar ⊗ (A⊗Ar)

I ⊗Ar Ar ⊗ I

Ar Ar

αAr,A,Ar

idAr ⊗ εrηr ⊗ idAr

ρArλ−1
Ar

idAr

Autonomous categories as defined above should actually be called bi-autonomous categories as
they contain both left and right dual objects. It is of course obvious how left/right autonomous
categories should be defined. In the case that the monoidal category is also symmetric, the left and
right dual objects collapse into one dual object (up to isomorphism) and we speak of a compact
closed category.

An interesting property of autonomous and compact closed categories is that they form bi-closed
categories by setting A ⇒ B := Al ⊗ B and B ⇐ A := B ⊗ Ar, giving rise to the following two
propositions:

Proposition 1.4. Every bi-autonomous category is a bi-closed tensor category.

Proposition 1.5. Every compact closed category is a bi-closed symmetric monoidal category.

In the following section, we consider functors with structure for use between the various kinds
of categories we have considered so far.

1.3 Monoidal and Closed Functors

Definition 1.20. For (C,⊗) and (D, •) tensor categories, a tensor functor is a functor F : C→ D
such that there exists a natural transformation specified by ϕA,B : FA • FB → F (A⊗B).

Definition 1.21. For (C,⊗, α) and (D, •, α′), an associative tensor functor is a tensor functor
where the natural transformation specified by ϕA,B : FA•FB → F (A⊗B) satisfies the commuting
of the following diagram:
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(FA • FB) • FC FA • (FB • FC)

F (A⊗B) • FC FA • F (B ⊗ C)

F ((A⊗B)⊗ C) F (A⊗ (B ⊗ C))

α′FA,FB,FC

ϕA,B • idFC idFA • ϕB,C

ϕA⊗B,C ϕA,B⊗C

FαA,B,C

Definition 1.22. For (C,⊗, α, I, λ, ρ) and (D, •, α′, 1, λ′, ρ′) monoidal categories, a monoidal func-
tor is an associative tensor functor F : C→ D with associated natural transformation specified by
ϕA,B : FA • FB → F (A⊗ B) and there exists a morphism ψ : 1 → FI such that additionally the
following diagrams commute:

FA • FI F (A⊗ I)

FA • 1 FA

ϕA,I

FρAidFA • ψ

ρ′FA

FI • FB F (I ⊗B)

1 • FB FB

ϕI,B

FλBψ • idFB

λ′FB

Definition 1.23. For (C,⊗,⇒, β) and (D, •,(, β′) left closed tensor categories, a left closed
tensor functor is a tensor functor F with associated natural transformation specified by ϕA,B :
FA • FB → F (A ⊗ B) such that there additionally exists a natural transformation specified by
χA,B : F (A⇒ B)→ FA( FB such that for every f : A⊗B → C in C, we have that the following
diagram commutes:

FB F (A⇒ C)

FA( FC

F (β(f))

β′(F (f) ◦ ϕA,B) χA,C

Definition 1.24. For (C,⊗,⇐, γ) and (D, •, (, γ′) right closed tensor categories, a right closed
tensor functor is a tensor functor F with associated natural transformation specified by ϕA,B :
FA • FB → F (A ⊗ B) such that there additionally exists a natural transformation specified by
ξA,B : F (B ⇐ A)→ FB (FA such that for every f : A⊗B → C in C, we have that the following
diagram commutes:

FA F (C ⇐ B)

FC (FB

F (γ′(f))

γ′(F (f) ◦ ϕA,B) ξB,C
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Definition 1.25. For (C,⊗,⇒,⇐, β, γ) and (D, •,(, (, β′, γ′) bi-closed tensor categories, a bi-
closed tensor functor is a left and right closed tensor functor F .

In the final section of this chapter, we review the symmetry exhibited between left and right
closed categories.

1.4 Symmetry

There is an obvious symmetry between a left and right closed category, whether it be a tensor
category or a monoidal one. The symmetry involves swapping the ⇒ and ⇐ functors. So, let
(C,⊗,⇒, β) be a left closed tensor category and let (D,⊗,⇐, γ) be a right closed tensor category
such that C and D have the same objects. Define the following functor S : C→ D:

S(A) = A
S(A⊗B) = S(B)⊗ S(A)
S(A⇒ B) = S(B)⇐ S(A)
S(idA) = idS(A)

S(g ◦ f) = S(g) ◦ S(f)
S(f ⊗ g) = S(g)⊗ S(f)
S(f ⇒ g) = S(g)⇐ S(f)
S(β(f)) = γ(S(f))

To show that this is in fact an isomorphism of categories, define the following functor S′ : D→ C:

S′(A) = A
S′(A⊗B) = S′(B)⊗ S′(A)
S′(B ⇐ A) = S′(A)⇒ S′(B)
S′(idA) = idS′(A)

S′(g ◦ f) = S′(g) ◦ S′(f)
S′(f ⊗ g) = S′(g)⊗ S′(f)
S′(g ⇐ f) = S′(f)⇒ S′(g)
S′(γ(f)) = β(S′(f))

It is an easy exercise to check that S ◦ S′ = IdD and S′ ◦ S = IdC.

It is immediate that we can extend the symmetry functors S, S′ between left and right closed
categories to an endofunctor on bi-closed categories.
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Chapter 2

Graphical Languages

In this chapter, we will look at graphical languages: languages that we can use to reason graphically
about morphism equality in categories with a certain structure. We will look at the connection
between proof nets and graphical languages, and define a graphical language for closed tensor
categories. We will then devote attention to proving coherence (i.e. soundness and completeness) for
this graphical language by means of a freeness theorem. We conclude with some critical suggestions
about the relation between graphical languages with and without associativity.
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2.1 Graphical Languages: an Introduction

Reasoning about morphism equality in categories usually proceeds by drawing commutative dia-
grams or explicitly writing down chains of equations. The problem with the latter form is imme-
diate: it is very tedious to write down and to check whether each step is correct. One problem
with commutative diagrams is that they only reflect the typing of morphisms, i.e. their domain
and codomain. Nothing is said about the structure of the morphisms. So, we may very well ask
ourselves how can we represent (the structure of) morphisms and their equations graphically?

The short answer is: just define a graphical language for the category you like! The sad news
is that one will want to show coherence, i.e. soundness and completeness of the graphical language
with respect to the category it is stated for. This is usually quite hard, as it requires a considerable
amount of topology.

Nevertheless, graphical languages have already been developed for monoidal categories (Joyal
and Street, 1991a) and various kinds of monoidal categories with additional structure (Joyal and
Street, 1991b), together with coherence proofs. For monoidal closed categories, there is a graphical
language (Baez and Stay, 2011), but coherence has not been proven for it (John Baez, personal
communication). A nice survey of the various graphical languages is due to Selinger (Selinger,
2011).

We will review the existing graphical languages for monoidal categories and their extension to
monoidal closed categories. Then will ask ourselves what happens when we drop associativity and
the units and get to the point where we want a graphical language for closed tensor categories. We
provide an answer in terms of proof nets and show coherence for a graphical language of proof nets
for bi-closed tensor categories.

2.2 Graphical Languages for Monoidal Categories

We start out by representing objects in a category as labelled wires and morphisms as boxes (with
their name on it) that have an incoming and an outgoing wire (resp. the domain and codomain).
The identity morphism is then visualized as an ongoing wire without a box in between. Composition
is defined as juxtaposing two diagrams. All this is summarized in the following figure:

Object Morphism Identity Composition
A f : A→ B idA : A→ A g ◦ f

A f

A

B

A

f

g

A

B

C

The categorical axioms are then automatically present: the identity axiom is fulfilled as we may
choose how long we make the wires, associativity of composition is fullfilled as the juxtaposition of
diagrams does not distinguish between what was glued together first and what was glued together
second.
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2.2.1 Going Monoidal

The next step is to consider the tensor product of monoidal categories: we can draw objects A⊗B
simply by drawing them next to each other. The unit object is represent by the empty wire, and
the tensor product of morphisms is represented by drawing the morphisms next to each other. This
is all in the next figure:

Tensor Product Unit object Morphism Tensor Product
A⊗B I f : A1 ⊗ ...⊗An → B1 ⊗ ...⊗Bm f ⊗ g

A B

...

f

...

A1 An

B1 Bm
f g

A

C

B

D

Associativity of the tensor is now automatically satisfied. Also, the unit laws are immediately
satisfied as we don’t bother to draw the units. In fact, we get the following coherence theorem for
this graphical language:

Theorem 2.1 ((Selinger, 2011),Thm. 1.3,(Joyal and Street, 1991a), Thm. 1.2). A well-formed
equation between morphisms in a monoidal category follows from the axioms if and only if it holds,
up to planar isotopy, in the corresponding graphical language.

For a detailed exposition of the proof, see Joyal and Street’s original paper (Joyal and Street,
1991a). For a somewhat clearer but less detailed exposition, see the survey paper of Selinger (2011).

2.2.2 Closing the Category

We will now consider the graphical language for monoidal closed categories proposed by Baez and
Stay (2011). To realize the extension of graphical languages for monoidal categories to those that
have internal homs, one needs a graphical representation of objects A⇒ B and B ⇐ A. Intuitively,
one might want to draw the object A⇒ B as an arrow going up next to an arrow going down, as
in

=A⇒ B A B

However, as Baez and Stay note, in the general case where the monoidal closed category is not
compact, arrows pointing up are not allowed. To resolve this issue but still maintain the intuitive
idea of an arrow going upwards, one draws a clasp connecting the upwards pointed arrow to the
downward pointed arrow. So for bi-closed monoidal categories, we extend the graphical language
for monoidal categories with the constructs of Figure 2.1.

Now we only need to describe the effect of β and γ on morphisms graphically. The effect of β
and β−1 is shown in Figure 2.2, the graphical representation of the action of γ and γ−1 is completely
symmetrical.
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A⇒ B B ⇐ A

A B B A

Figure 2.1: Language Constructs for Closedness in Monoidal Categories

f −→
β

f

A B

C

B

A C

f

−→
β−1

f

B

C
A

A

B

C

Figure 2.2: Currying and Uncurrying in Monoidal Closed Categories

Note that we have actually bent around arrows in order to keep morphisms going down. As
in the general (the non-compact) case this is not allowed, we draw a box around the “illegal”
constructs.

2.2.3 A Problem With the Clasp Language

Unfortunately, there is no coherence proof for the clasp language of Baez and Stay. At least the
original authors have not tried to prove coherence for it (John Baez, pers. comm.). So in this
subsection we will discuss some issues regarding the clasp language.

Firstly, we may well ask ourselves how to represent the effect of the ⇒ functor on two maps.
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Given morphisms f : C → A and g : B → D represented by

f

C

A

g

B

D

it makes sense to define f ⇒ g as follows:

f g

B

D
C

C

A

A

Adopting this graphical representation, consider the fact that idA ⇒ idB = idA⇒B should be
satisfied. This would mean that we should be able to derive

B

D

C

C

A

A

= A B

But the only way to do this is to require the graphical yanking equations

= =

Now consider the fact that β and γ should be natural isomorphisms: this means that the
effect of consecutively currying and uncurrying some morphism should return something that is
derivationally equal to the original morphims. But the currying and uncurrying of a morphism
f : A⊗B → C looks as follows:
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f −→
β

f −→
β−1

f

A B

C

B

A C

A

B

C

And again, the only way to make β an isomorphism is to require graphical yanking, in which
case we would get

f

= f

A

B

C

A B

C

Fortunately, one can actually allow yanking when one allows it only inside a box. This means
effectively that inside a box the situation is compact, while outside a box it is purely monoidal.
It should however be noted that when boxes are drawn every time there is an arrow bent around,
allowing yanking only within a box basically amounts to global yanking. So it might be interesting
to see a definitive proof of why this does not pose a problem.

Finally, there is a problem with the concept of clasps. Consider the co-evaluation morphism
co-ev : B → A ⇒ (A ⊗ B). Given that A ⇒ (A ⊗ B) is not the same as (A ⇒ A) ⊗ B, the only
means to represent co-evaluation would be to explicitly merge B and C, as in the following picture:
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B

B

A⊗B
A

Clearly, there are some problems with the clasp language as we have considered it. Either cer-
tain constructs should be made explicit to be able to have a coherent graphical language based on
clasps, or it should not be attempted to recover a coherent language from the clasp diagrams.

In the next section we will develop a graphical language for closed tensor categories and prove
coherence for it.

2.3 Graphical Languages for Closed Tensor Categories

In this section, we develop a graphical language for closed tensor categories. That is, categories
that do have a tensor and left and right internal homs but for which the tensor lacks associativity.
We will see in the next chapter that these categories correspond to non-associative Lambek Calculi.
We will start out with a brief review of proof nets for the latter calculi and then go on to define
proof net categories and state a freeness theorem about them, providing coherence for our graphical
language.

2.3.1 Proof Nets versus Graphical Languages

Proof nets were originally devised by Girard (1987) as a system that enables one to visualize
proofs in a succinct way: proofs that are syntactically different but are more or less the same are
associated with the same proof net. After its introduction, proof nets for different types of logics
have been extensively studied and in particular proof net systems have been developed for the
different incarnations of Lambek’s syntactic calculus and its extensions (Roorda, 1991; Moot, 2002;
Moot and Puite, 2002; Moortgat and Moot, 2012). These proof nets are developed more or less
along the same lines: firstly, one should define the notion of a proof structure, a graph made up
from certain links, both tensor and par links. Next is the definition of correctness criteria: criteria
that may be used to establish which proof structures will correspond to sequent proofs and which
will not correspond to a sequent proof. The proof structures satisfying the correctness criteria are
called proof nets. The original correctness criterium of Girard for proof structures of linear logic
was the notion of a long-trip criterion, stating that a proof structure is a proof net if one is able to
produce a certain traversal of the proof structure. For the multiplicative fragment of linear logic,
the correctness criteria are stated statically : one should consider all switchings of par links, and for
each possible switching, the resulting structure should be acyclic and connected.
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The key difference between proof nets and graphical languages is that the former are based
on sequent systems, and as such facilitate multiple “inputs” whereas morphisms in a category
only have one input (i.e. the domain). So even though we take inspiration from proof nets in
the development of our graphical language (we will define links, proof structures and correctness
criteria) the graphical language is still very different from the proof net representation. Another
difference is that proof nets can be used to give a graphical proof of cut elimination, as is done by
Moot (2002, Section 4.4) for the case of multiplicative linear logic.

We will develop our proof net language taking inspiration from the work of Blute et al. (1996);
Cockett and Seely (1997a) and we will prove coherence according to the method outlined in Selinger
(2011).

2.3.2 Signatures, Interpretations and Free Categories

Definition 2.1. A bi-closed tensor signature Σ = (Σ0,Σ1, dom, cod) consists of:

• a set Σ0 of object variables,

• a set Σ1 of morphism variables,

• two maps dom, cod : Σ1 → CT (Σ0).

where CT (Σ0) is the free (⊗,⇒,⇐)-algebra generated by Σ0.

Definition 2.2. Given a bi-closed tensor signature Σ and a closed tensor category C, an interpre-
tation i : Σ→ C consists of:

• an object map i0 : Σ0 → Ob(C) such that

i0(A⊗B) = i0(A)⊗ i0(B)
i0(A⇒ B) = i0(A)⇒ i0(B)
i0(B ⇐ A) = i0(B)⇐ i0(A),

• for every f ∈ Σ1 a morphism i1(f) : i0(dom(f))→ i0(cod(f)).

Definition 2.3. A bi-closed tensor category C is a free bi-closed tensor category over a bi-closed
tensor signature Σ if there is an interpretation i : Σ → C such that for any bi-closed tensor
category D and bi-closed tensor interpretation j : Σ→ D, there is a unique bi-closed tensor functor
F : C→ D such that j = F ◦ i.

We will develop a graphical language as a proof net category. Showing that for any bi-closed
tensor category, the associated proof net category is the free one means that all equations in the
category hold if and only if they hold in the graphical language and as such, coherence will have
been proven.

2.3.3 Sequent Calculus Categorified

The coherence proof we aim to prove is based on a translation of proof nets (to be defined subse-
quently) into sequent proofs, which in turn are translated into categorical morphisms. Thus, we
must define the sequent calculus (and an equivalence relation on sequent proofs that we will use).
The following definitions are borrowed from (Bastenhof, 2013):
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Definition 2.4 (Formulae). Given a set of atomic formulae At, the set of formulae is defined as
follows:

A,B := p | A⊗B | A\B | B/A for p ∈ At.

Next to defining formulae are structures, which will be used on the left-hand side of the turnstile
in sequent proofs:

Definition 2.5 (Structures). Structures are defined over formulas using a binary merger:

Γ,∆ := A | (Γ •∆)

To ease our reading of the sequent calculus rules, we define contexts, which are structures with
a unique hole in them, where we in turn can place structures in:

Definition 2.6 (Contexts). A context is a structure with a unique occurrence of a hole []:

Γ[],∆[] := [] | (Γ[] •∆) | (Γ •∆[])

We write Γ[∆] for replacing the hole [] in Γ by ∆.
We are now ready to define the rules of the sequent calculus for the system NL:

Definition 2.7 (Sequent Calculus). The sequent calculus presentation of NL is as follows:

A ` A Id
∆ ` B Γ[B] ` A

Γ[∆] ` A Cut

Γ[A •B] ` C
Γ[A⊗B] ` C ⊗L

Γ ` A ∆ ` B
Γ •∆ ` A⊗B ⊗R

∆ ` B Γ[A] ` C
Γ[∆ •B\A] ` C

\L B • Γ ` A
Γ ` B\A

\R

∆ ` B Γ[A] ` C
Γ[A/B •∆] ` C

/L Γ •B ` A
Γ ` A/B

/R

In order to “categorify” the sequent calculus, we define an equivalence relation on proofs. For
this purpose, note that we can write down proofs as bracketed strings instead of drawing a whole
proof tree. This is done by writing down the rule’s name and, in brackets the proofs that the rule
acts upon, in the order they are listed in sequent rule. For instance, ⊗L(⊗R(Id(A), Id(B))) is a
proof of A⊗ B ` A⊗ B. We denote by Di (for i ∈ N) arbitrary proofs where we use the notation
LHS(Di) = Γ and RHS(Di) = A to denote the components of the sequent that Di is a proof of.

Our equivalence relation follows identity unfolding and cut-elimination:

Definition 2.8. We define the following equivalence relation on sequent proofs:

• Identity unfolding, by which we mean

⊗L(⊗R(Id(A), Id(B))) ≡ Id(A⊗B)
\R(\L(Id(A), Id(B))) ≡ Id(A\B)
/R(/L(Id(A), Id(B))) ≡ Id(B/A)
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• Cut-elimination base case, by which we mean

Cut(D1, Id(A)) ≡ D1

Cut(Id(B), D1) ≡ D1

• Principal cut-elimination, by which we mean

Cut(⊗R(D1, D2),⊗L(D3)) ≡ Cut(D2, Cut(D1, D3))
Cut(⊗R(D1, D2),⊗L(D3)) ≡ Cut(D1, Cut(D2, D3))
Cut(\R(D1), \L(D2, D3)) ≡ Cut(Cut(D2, D1), D3)
Cut(\R(D1), \L(D2, D3)) ≡ Cut(D2, Cut(D1, D3))
Cut(/R(D1), /L(D2, D3)) ≡ Cut(Cut(D2, D1), D3)
Cut(/R(D1), /L(D2, D3)) ≡ Cut(D2, Cut(D1, D3))

• Permutative cut-elimination, by which we mean

Cut(⊗L(D1), D2) ≡ ⊗L(Cut(D1, D2))

Cut(\L(D1, D2), D3) ≡ \L(D1, Cut(D2, D3))

Cut(/L(D1, D2), D3) ≡ /L(D1, Cut(D2, D3))

Cut(D1,⊗L(D2)) ≡ ⊗L(Cut(D1, D2))

Cut(D1, \R(D2)) ≡ \R(Cut(D1, D2))

Cut(D1, /R(D2)) ≡ /R(Cut(D1, D2))

Cut(D1,⊗R(D2, D3)) ≡ ⊗R(D2, Cut(D1, D3))
when RHS(D1) = C and LHS(D3) = Γ′[C]

Cut(D1,⊗R(D2, D3)) ≡ ⊗R(Cut(D1, D2), D3)
when RHS(D1) = C and LHS(D2) = Γ[C]

Cut(D1, \L(D2, D3)) ≡ \L(D2, Cut(D1, D3))
when RHS(D1) = C and LHS(D3) = Γ[C][A]

Cut(D1, \L(D2, D3)) ≡ \L(Cut(D1, D2), D3)
when RHS(D1) = C and LHS(D2) = Γ′[C]

Cut(D1, /L(D2, D3)) ≡ /L(D2, Cut(D1, D3))
when RHS(D1) = C and LHS(D3) = Γ[C][A]

Cut(D1, /L(D2, D3)) ≡ /L(Cut(D1, D2), D3)
when RHS(D1) = C and LHS(D2) = Γ′[C]
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2.3.4 Proof Nets Defined

We will now define proof nets that we will prove to correspond to bi-closed tensor categories in the
sense that well-formed equations between morphisms in a bi-closed tensor category hold if and only
if they hold in their graphical language. The idea is that we can build up arbitrary proof structures
(possible proof nets) by gluing together links and that some correctness criteria define a subclass
of proof nets. We define some critical equations on proof structures that will give us the right tool
to reason about bi-closed tensor categories graphically.

We start out with a formal definition of links, the basic building blocks of proof structures.
Links come in two flavors: as tensor links, and as cotensor links1:

Definition 2.9. A labelled link is a tuple (t, i, o) where t is the type of the link, either tensor or
cotensor, i is a list of input formulas of the link and o is the list of output formulas of the link.

The links for our graphical language include a tensor and cotensor link for each connective in
the formula language: one link for construction and one link for destruction. We can visualize
these links as little graphs that a node containing the connective under consideration and which
is drawn either white or gray depending on the type of the link. The input and output formulas
are then drawn as ingoing and outgoing wires, respectively. It might be clear that a constructive
⊗-link binds two formulas A and B together into the formula A⊗B whereas the destructive ⊗-link
splits the two formulas. Following this analogy, it is not hard to imagine that the links will look as
follows:

⊗

A⊗B

A B

⊗
A B

A⊗B

⇒
A⇒ B

A B

⇒
A B

A⇒ B

⇐
B ⇐ A

B A

⇐
B A

B ⇐ A

We want to build larger graphs out of these links, but must take care here: the resulting graph
should have one unique input and one unique output, remniscent of the fact that morphisms always
have one object as their domain and one object as their codomain. Moreover, the graph should
be connected and well-typed : is should not be possible to combine two formulas A and B to form

1The terms tensor and cotensor are not intended to refer to any categorical notion; rather, they are intended as a
reminiscent of the distinction between tensor and par links in proof nets for linear logic. The distinction, of course,
also has a practical function when defining correctness criteria.
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A ⊗ B and then decompose it as if it were another formula (for instance A ⇒ B). The following
definition takes care of these prerequisites:

Definition 2.10. A proof structure is a connected graph made by the given links such that every
output wire is the input wire to another link and vice versa except for a unique input wire and a
unique output wire.

Because not every proof structure will correspond to an existing morphism, we need to distin-
guish in the class of proof structures those that will translate nicely use correctness criteria. Firstly,
in order to be a proof net, the proof structure should be planar. Secondly, the input and output
wires must be edges of the unique external face of the proof structure. Finally, the proof structure
must satisfy operator balance and the return cycle requirement. All of these definitions follow below:

Definition 2.11 (Planarity). A proof structure satisfies the planary constraint if it contains no
crossing wires.

Definition 2.12 (External Face Requirement). A planar proof structure satisfies the external face
requirement if the unique input wire and and output wire are in the unique external face of the
graph.

Definition 2.13 (Operator Balance). A proof structure satisfies operator balance if every (undi-
rected) cycle contains an equal number of tensor and cotensor nodes.

Definition 2.14 (Return Cycle Requirement). A proof structure satisfies the return cycle require-
ment if the following three properties hold:

1. For every ⇒ cotensor node, there is a directed path from the node through its left output,
returning at the node,

2. For every ⇐ cotensor node, there is a directed path from the node through its right output,
returning at the node,

3. For every ⊗ cotensor node, there is no directed path from the node through one of its outputs
returning at the node.

We can now simply define proof nets as follows:

Definition 2.15 (Proof Nets). A proof structure is a proof net iff it satisfies the planarity con-
straint, the external face requirement, operator balance and the return cycle requirement.

Our next goal is to show that we can also define proof nets inductively. We start with an
inductive definition and proceed by showing that it in fact defines the whole class of proof nets. We
use the notation N∗ for a net that should be drawn upside-down, i.e. mirrored vertically along an
imaginary axis.

Definition 2.16 (Proof Nets Inductively). The class of proof nets is defined inductively as follows:

• Identity. The identity proof net for arbitrary A is given by

A
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• Composition. Given two proof nets

N1

A

B

and N2

B

C

the following is a proof net:

N1

N2

A

B

C

• Monotonicity. Given two proof nets

N1

A

C

and N2

B

D

the following are proof nets:

⊗

N1 N2

⊗

A⊗B

A B

C D

C ⊗D

⇒

N∗1 N2

⇒

C ⇒ B

C B

A D

A⇒ D

⇐

N1 N∗2

⇐

A⇐ D

A D

C B

C ⇐ B

• Generalized Left Application. Given two proof nets

N1

A

C

and N2

B

C ⇒ D
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the following is a proof net:

⊗

N1 N2

⇒

A⊗B

A B

C C ⇒ D

D

• Generalized Right Application. Given two proof nets

N1

A

D ⇐ C

and N2

B

C

the following is a proof net:

⊗

N1 N2

⇐

A⊗B

A B

D ⇐ C C

D

• Generalized Left Co-Application. Given two proof nets

N1

C

A

and N2

A⊗B

D

the following is a proof net:
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⊗

N∗1 N2

⇒

BA

A⊗B

C D

C ⇒ D

• Generalized Right Co-Application. Given two proof nets

N1

A⊗B

C

and N2

D

B

the following is a proof net:

⊗

N1 N∗2

⇐

A

A⊗B

B

C D

C ⇐ D

• Generalized Left Lifting. Given two proof nets

N1

B

C

and N2

D

A⇒ B

the following is a proof net:
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A⇒ B

⇒

N1 N∗2

⇐

A

B

C D

C ⇐ D

• Generalized Right Lifting. Given two proof nets

N1

D

A⇐ B

and N2

A

C

the following is a proof net:

A⇐ B

⇐

N∗1 N2

⇒

B

A

CD

D ⇒ C

• Nothing else is a proof net.

Now we want to show that our inductive definition is correct, i.e. it defines precisely those proof
structures that are proof nets. Before we prove this theorem, we need to show some additional
properties of proof nets.

Property 2.1. Every proof structure has an equal number of tensor and cotensor nodes.

Proof. By definition, every proof structure has a unique input and a unique output. By well-
formedness, an output of a link cannot be an input to the same link. Now, as each tensor node has 2
inputs and 1 output, and each cotensor node has 1 input and 2 outputs, this means that the in degree
(i.e. the number of unconnected inputs) for a proof structure with n tensor nodes and m cotensor
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nodes is 2n+m−(2m+n−1) = n−m+1 while the out degree is n+2m−(m+2n−1) = m−n+1.
Now suppose that n 6= m. Then either the in or the out degree is 0 or less, which is impossible by
the assumption that there is one unique input and one unique output. Hence, n = m.

Property 2.2. Every connected, well-typed graph made up from the given links has a directed path
from any input to any output.

Proof. By induction on the number of nodes in a graph. The base case of zero nodes is trivial as
the graph must consist of a single wire. For the inductive case, suppose that each graph with n
nodes has a directed path from any input to any output, and consider a proof structure with n+ 1
nodes. Now consider any input wire and any output wire. By connectedness, the input wire must
enter some node. As every node has at least one output, consider the outputs of the node. If one
of the outputs is the selected output wire, we are done. Otherwise proceed by considering one of
the output wires of the node and proceed using the induction hypothesis.

Property 2.3 (Locality). For any proof net, each of its subgraphs with a unique in- and output,
all correctness criteria hold, i.e. each of these subgraphs are proof nets as well.

Proof. Obviously, every subgraph of a proof net with a unique in- and output is a proof structure.
It is also immediate that planarity and operator balance hold locally, since a violation of these in
the subgraph would mean a violation in the whole graph. A similar reasoning holds for the return
cycle requirement. Hence, we may conclude that the subgraph must be a proof net.

Theorem 2.2. A proof structure is a proof net if and only if it is generated by the inductive
definition of proof nets.

Proof. The converse is easily shown by inspecting the generating rules and seeing that they preserve
operator balance and the return cycle requirement. For the left to right direction, things are more
difficult. We proceed by induction on the number of nodes. As proof nets have an equal number
of tensor and cotensor nodes, we will try to show that we can take off one tensor and one cotensor
node at a time to proceed with the induction hypothesis. The base case is trivial, as it can only be
a proof net consisting of a single wire, which is also the base case of the inductive definition.
For the inductive case, suppose that any proof net with up to n nodes can be inductively generated,
and consider a proof net N with n+ 2 nodes. First of all, because of the external face requirement,
we can always identify a top node and a bottom node as outermost nodes of the proof net. Secondly
we note that a proof net cannot have as top node (i.e. the node with the unique loose input wire)
the following two links:

⇒
A B

A⇒ B

⇐
B A

B ⇐ A

This is because the left (resp. right) output wire cannot possibly give a directed path to the
(loose) input, hence the return cycle requirement is violated. For the same reason, a proof net
cannot have as a bottom node (i.e. the node with the unique loose output wire) the following link:
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⊗

A⊗B

A B

This is because, by property 2.2, there will always be a path from the outputs of this link, back
to the node, and hence the return cycle requirement will be violated.

We will now proceed by case distinction considering different cases where N starts with a certain
link and ends with a certain link (although there are a lot of cases to go through, we will treat them
systematically):

1. The case where N starts with a cotensor node and ends with a tensor node: so N is of one of
the following forms:

⊗

N ′

⊗

A⊗B

C ⊗D

⊗

N ′

⇒

A⊗B

C ⇒ D

⊗

N ′

⇐

A⊗B

D ⇐ C

In this case, we claim that N is either composite or actually of the form

⊗

N1 N2

⊗

A⊗B

A B

C D

C ⊗D

⊗

N1 N2

⇒

A⊗B

A B

C

D

C ⇒ D

⊗

N1 N2

⇐

A⊗B

A B

D

C
D ⇐ C

where N1 and N2 are proof nets.
Now we know that N must be either such that there is a splitting wire, i.e. a wire where we
can split N into two subgraphs by only splitting at that wire. In this case, we have by locality
that the top and bottom parts must be proof nets, and moreover, as they both contain at
least 1 node, they at least contain 2 nodes, meaning that both parts cannot contain more
than n nodes. Thus, we can apply the induction hypothesis and use the composition case of
the inductive definition of proof nets.
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Now suppose that N does not contain a splitting wire. We show disjointness of the left
and right part of the proof net by contradiction. Suppose the left and right part are indeed
connected, butmnot in a way such that the whole proof net N is of a composite form. Suppose
that there is a connection from left to right. This means that in the right part, there must be
one tensor node extra and in the left part, there must be a cotensor node extra (simply because
of the number of in- and outputs in the left and right part). However, by connectedness, the
tensor and cotensor nodes are both connected to each other as well as connected to the top
(cotensor) node, which induces a cycle without operator balance. Hence, we have arrived at
a contradiction.

2. The cases where N starts with a cotensor node and ends with a cotensor node. These are the
following (note that the left (resp. right) output of the ⇒ (resp. ⇐) node cannot be the end
of the graph as that would violate the return cycle requirement):

⊗

N ′

⇒

A⊗B

C ⇒ D

⊗

N ′

⇐

A⊗B

D ⇐ C

Again, we know that these proof nets either contain a splitting wire, and hence they are of a
composite form, in which case we can apply the induction hypothesis, or they do not contain
a splitting wire. In the latter case we know that there must be at least two tensor nodes in
N ′, and asthe graph is not of a composite form, we must have either that (i) the left and
right part are disjoint or (ii) the left and right part are not disjoint. Case (i) is not possible
as this would mean (in the left graph) that there are two inputs and no output, which is not
possible. So we must consider case (ii). But in this case, by connectedness and the fact there
must be two tensor nodes, there must be a cycle with two tensor nodes and one cotensor
node, which violates operator balance. Hence, these graphs can only be proof nets by virtue
of composition, which is present in the inductive definition.

3. The cases where N starts with a tensor node and ends in a tensor node. These are the
following cases (note that the cases where the left input of the starting ⊗ node are the unique
loose input are symmetric and are thus treated analogously. Similar for the cases where the
left (resp. right) input of a ⇒ (resp. ⇐) node is the unique loose input):
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⊗

N ′

⊗

B

C ⊗D

⊗

N ′

⇒

B

D

⊗

N ′

⇐

B

D

⇒

N ′

⊗

A⇒ B

C ⊗D

⇒

N ′

⇒

A⇒ B

D

⇒

N ′

⇐

A⇒ B

D

⇐

N ′

⊗

B ⇐ A

C ⊗D

⇐

N ′

⇒

B ⇐ A

D

⇐

N ′

⇐

B ⇐ A

D

Again, we claim that these structures can only be proof nets by virtue of composition: the
left and right side cannot be disjoint, because then one of the parts has two outputs and no
input, which is not possible. So the left and right side must be connected. As there should
be at least two cotensor nodes in N ′ and as these must be connected, we get that there must
be a cycle violating operator balance.

4. Finally, we have the cases where N starts with a tensor node and ends with a cotensor node.
These are the following (note that we have ommitted, for the sake of space, some symmetric
cases here):
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⊗

N ′

⇒

B

C ⇒ D

⇒

N ′

⇒

A⇒ B

C ⇒ D

⇒

N ′

⇐

A

D ⇐ C

⊗

N ′

⇐

B

D ⇐ C

⇒

N ′

⇐

A⇒ B

D ⇐ C

⇒

N ′

⇐

A

C ⇒ D

Again, the case of composition is handled by the inductive definition. We claim that the bottom
three nets cannot in fact be proof nets if they are not composite. For each of these diagrams it holds
that there must be at least one tensor node on one side, and one cotensor node on the other side,
and these sides must then be connected. But this induces a cycle that does not satisfy operator
balance. Hence, we have contradicted the assumption that these are proof nets.
We claim that the top three nets are of the form

⊗

N∗1 N2

⇒

BA

A⊗B

C D

C ⇒ D

⇒

N∗1 N2

⇒

A⇒ B

A B

C D

C ⇒ D

A⇒ B

⇒

N1 N∗2

⇐

A

B

D C

D ⇐ C

Again, all we need to do is show disjointness of the left and right parts. We proceed again by
contradiction. But the assumption the left and right part are indeed connected means admitting
that there must be a cycle violating operator balance. Hence, the left and right part are disjoint,
and as they each have one input and one output, they have an equal number of tensor and cotensor
nodes. Furthermore, as the correctness criteria also apply locally, we may conclude that N1 and N2
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are proof nets. Applying the induction hypothesis on these nets, and given that these constructions
are cases in the inductive definition, we are done.

Now that we have a correct inductive definition of proof nets, it’s time to define equality on
them.

2.3.5 Equations on Proof Nets

We will define an equivalence relation on proof nets, that will allow for a categorical interpretation
of the equivalence classes of nets. In addition to the standard requirement of reflexivity, transitivity,
and symmetry, we require the following equations:

⊗

⊗

A B =

A⊗B

A⊗B

A⊗B

⊗

A⊗B

⊗

=

A B

A B

A B

⇒

⇒

A B =

A⇒ B

A⇒ B

A⇒ B

⇒

A⇒ B

⇒

=

A B

A B

A B

⇐

⇐

B A =

B ⇐ A

B ⇐ A

B ⇐ A

⇐

B ⇐ A

⇐

=

B A

B A

B A
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N∗ = N N = N∗

= =

It is interesting to note that we can now simplify our inductive definition of proof nets, rem-
iniscent of Došen’s axiomatization of the non-associative Lambek Calculus (Došen, 1988). We
will indeed show that one can do with only the first four generating rules of proof nets, namely
composition and the three monotonicity rules. We will then need to add four base cases, namely
(non-generalized) application and co-application nets. What we get is the following lemma:

Lemma 2.1. Given the proof net equations, all proof nets can be generated by the identity net,
non-generalized application and co-application, composition and monotonicity.

Proof. We only need to show that we can derive generalized application, generalized co-application
and generalized lifting. We will only consider the left version of these rules, the right variant
being symmetric. Generalized left application is obtained by composing ⊗ monotonicity and non-
generalized application:

⊗

N1 N2

⊗

⊗

⇒

A⊗B

A B

C C ⇒ D

C ⊗ (C ⇒ D)

C C ⇒ D

C
D

which clearly is equal to generalized left application. We can obtain generalized left co-application
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by a similar process, namely by composing non-generalized left co-application with⇒ monotonicity.
This gives us the following net:

⊗

⇒

⇒

N∗1 N∗2

⇒

B
A

A A⊗B

A⇒ (A⊗B)

A A⊗B

C D

C ⇒ D

which is equal to generalized left co-application. Finally we need to show that we can derive
generalized left lifting. This is somewhat more complex, but amounts to composing non-generalized
right co-application with ⇐ monotonicity applied to the identity net of D and the composition of
⊗ monotonicity on N2 and non-generalized left application. In other words, we get the following
net:
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⊗

⇐

⇐

⊗

A N2

⊗

⊗

⇒

N1

⇐

A
D

A⊗D D

(A⊗D)⇐ D

D

D

D

A⇒ B

A⊗ (A⇒ B)

A

A

A⇒ B

B

C

C ⇐ D

and by eliminating the appropriate nodes, one can see that this net equals generalized left lifting.

Although the Došen axiomatization for proof nets is considerably more simple, we keep the
original sequent calculus presentation of NL because it allows for a translation into sequent proofs
by the link, i.e. we can define the translation in terms of nodes of a proof net instead of just mapping
the basic application and co-application nets to the application and co-application rules.

2.3.6 Sequentialization

We will now make the connection between proof nets and sequent proofs explicit, by a process called
sequentialization, i.e. a translation from proof nets into sequent proofs. We present a translation
and show that every proof net translates properly into a sequent proof of a sequent of the form
A ` B. The translation is given in Figure 2.3.

An important lemma we want to prove is that every proof net translates to a valid sequent
proof. This is called the sequentialization lemma:

Lemma 2.2. Every proof net sequentializes.
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A  A ` A : Id(A)

A

A

⊗
A B

A⊗B
 A •B ` A⊗B : ⊗R(Id(A), Id(B))

A B

A⊗B

⊗

Γ[A •B] ` C : D1

A⊗B

A B

C

 Γ[A⊗B] ` C : ⊗L(D1)

A⊗B

C

⇒
A⇒ B

A B
 

A •A\B ` B : \L(Id(A), Id(B))A

A A⇒ B

B

A • Γ ` B : D1

⇒

A Γ

B

A⇒ B

A

 Γ ` A\B : \R(D1)

Γ

A⇒ B

⇐
B ⇐ A

B A
 

B/A •A ` B : /L(Id(A), Id(B))

B ⇐ A A

B

A

Γ •A ` B : D1

⇐

Γ A

B

B ⇐ A

A

 Γ ` B/A : /R(D1)

Γ

B ⇐ A

∆ ` B : D1

Γ[B] ` A : D2

∆

B

A

 Γ[∆] ` A : Cut(D1, D2)

∆

A

Figure 2.3: Sequentialization for proof nets
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Proof. By induction on proof nets. For the base case, the identity proof net obviously sequentializes
to the identity proof. For the inductive cases we have the following:

• Suppose N1 and N2 sequentialize to A ` B : D1 and B ` C : D2, respectively. Composition
sequentializes by a cut, giving A ` C : Cut(D1, D2).

• Suppose N1 and N2 sequentialize to A ` C : D1 and B ` D : D2, respectively. Then the
new ⊗ proof net sequentializes as follows: The bottom sequentializes to C • D ` C ⊗ D :
⊗R(Id(C), Id(D)) and we can choose to either cut in D1 first and then D2 or the other way
around, giving respectively

Cut(D2, Cut(D1,⊗R(Id(C), Id(D))))

or
Cut(D1, Cut(D2,⊗R(Id(C), Id(D))))

. Finally, the top has one sequent proof below it and the whole sequentializes to either

A⊗B ` C ⊗D : ⊗L(Cut(D2, Cut(D1,⊗R(Id(C), Id(D)))))

or
A⊗B ` C ⊗D : ⊗L(Cut(D1, Cut(D2,⊗(Id(C), Id(D)))))

. The new⇒ proof net sequentializes as follows: the top sequentializes by itself into C•C\B `
B : \L(Id(C), Id(B)) whereafter N∗1 can be mirrored again into N1. Then we get a choice to
first cut D1 with the top and then with D2 or the other way around, leaving us with either

A • C\B ` D : Cut(Cut(D1, \L(Id(C), Id(B))), D2)

or
A • C\B ` D : Cut(D1, Cut(\L(Id(C), Id(B)), D2))

. Finally, the bottom can sequentialize the whole to either

C\B ` A\D : \R(Cut(Cut(D1, \L(Id(C), Id(B))), D2))

or
C\B ` A\D : \R(Cut(D1, Cut(\L(Id(C), Id(B)), D2)))

. The new ⇐ proof net sequentializes in a similar way to either

A/D ` C/B : /R(Cut(Cut(D2, /L(Id(D), Id(A)), D1))

or
A/D ` C/B : /R(Cut(D2, Cut(/L(Id(D), Id(A)), D1)))

.

• Suppose N1 and N2 sequentialize to A ` C : D1 and B ` C\D : D2, respectively. Then the
new ⊗,⇒ proof net sequentializes as follows: the bottom sequentializes to C • C\D ` D :
\L(Id(C), Id(D)) whereafter we can again choose to cut in either D1 first and then D2 or the
other way around, leaving us with either

A •B ` D : Cut(D2, Cut(D1, \L(Id(C), Id(D))))
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or
A •B ` D : Cut(D1, Cut(D2, \L(Id(C), Id(D))))

. Then, the top part sequentializes the whole into either

A⊗B ` D : ⊗L(Cut(D2, Cut(D1, \L(Id(C), Id(D)))))

or
A⊗B ` D : ⊗L(Cut(D1, Cut(D2, \L(Id(C), Id(D)))))

.

• The case of the new ⊗,⇐ proof net is similar to the previous item.

• Suppose N1 and N2 sequentialize to C ` A : D1 and A⊗B ` D : D2, respectively. Then the
new ⊗,⇒ proof net sequentializes as follows: The top part with the ⊗ node sequentializes to
A • B ` A ⊗ B : ⊗R(Id(A), Id(B)), whereafter N∗1 can get mirrored again into N1, and we
choose to cut either to get

C •B ` D : Cut(Cut(D1,⊗R(Id(A), Id(B))), D2)

or
C •B ` D : Cut(D1, Cut(⊗R(Id(A), Id(B)), D2))

. Then, the bottom part sequentializes the whole into either

B ` C\D : \R(Cut(Cut(D1,⊗R(Id(A), Id(B))), D2))

or
B ` C\D : \R(Cut(D1, Cut(⊗R(Id(A), Id(B)), D2)))

.

• The case of the new ⊗,⇐ proof net is similar to the previous item.

• Suppose N1 and N2 sequentialize to B ` C : D1 and D ` A\B : D2, respectively. Then the
new⇒,⇐ proof net sequentializes as follows: The top part with the⇒ node sequentializes to
A • A\B ` B : \L(Id(A), Id(B)) whereafter the incoming A wire can be straightened by the
left snake equation, and N∗2 can be mirrored into N2. Then we choose which cut to perform
first, resulting in either

A •D ` C : Cut(Cut(D2, \L(Id(A), Id(B))), D1)

or
A •D ` C : Cut(D2, Cut(\L(Id(A), Id(B)), D1))

. Then, the bottom part sequentializes with the whole into either

A ` C/D : /R(Cut(Cut(D2, \L(Id(A), Id(B))), D1))

or
A ` C/D : /R(Cut(D2, Cut(\L(Id(A), Id(B)), D1)))

.

53



• The case of the new ⇐,⇒ proof net is similar to the previous item.

To show that this is in fact a deterministic translation, we prove the following lemma:

Lemma 2.3. For any two proof nets that are equal, their sequentializations are equivalent.

Proof. We first show that the sequentialization translation can be made deterministic by showing
that the possible choice results for each net are equivalent and thus can be solved by stating that
the net is sent to an equivalence class of sequent proofs. We then proceed by showing that all the
equations on proof nets effectively are translated into the same equivalence class.
To show that the sequentialization translation can be made deterministic, observe (for instance)
that for nets N1 and N2 that sequentialize to A ` C : D1 and B ` D : D2 respectively, we have
that

⊗L(Cut(D2, Cut(D1,⊗R(Id(C), Id(D))))) ≡
⊗L(Cut(D2,⊗R(Cut(D1, Id(C)), Id(D)))) ≡

⊗L(Cut(D2,⊗R(D1, Id(D)))) ≡
⊗L(⊗R(D1, Cut(D2, Id(D)))) ≡

⊗L(⊗R(D1, D2)) ≡
⊗L(⊗R(Cut(D1, Id(C)), D2)) ≡
⊗L(Cut(D1,⊗R(Id(C), D2)) ≡

⊗L(Cut(D1,⊗R(Id(C), Cut(D2, Id(D))))) ≡
⊗L(Cut(D1, Cut(D2,⊗R(Id(C), Id(D))))).

This process is similar for all other items in the translation, and we thus invite the reader to do
the relevant computations. To see that all equations on proof nets are translated into the same
equivalence class, then, we observe that

⊗

⊗

A B

A⊗B

A⊗B

sequentializes to A⊗B ` A⊗B : ⊗L(⊗R(Id(A), Id(B))), but we have that

⊗L(⊗R(Id(A), Id(B))) ≡ Id(A⊗B)

, which in turn is the sequentialization of

A⊗B
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This process is similar for the identity cut equations for ⇒ and ⇐. We now consider the general
cut equations, and observe that in

N1

⊗

⊗

A •B ` C : D2

D

A⊗B

C

we can sequentialize the cotensor node for ⊗ away, giving ⊗L(D2) whereas the tensor node for ⊗
sequentializes to ⊗R(Id(A), Id(B)). We can then perform a cut to get

Cut(⊗R(Id(A), Id(B)),⊗L(D2)

which is equivalent to
Cut(Id(A), Cut(Id(B), D2))

which is equivalent to D2 again, but now we are left with

N1

A •B ` C : D2

D

A B

C

so we are done. The cases for ⇒ and ⇐ are similarly treated. We just need to mention here that
the final four equations, the two about bending around maps and the snake equations are really
just for bookkeeping, i.e. making sure that everything works out well.

Now that we have established a deterministic, equality-preserving translation from proof nets
to sequent proofs, we want to compose this translation with one that maps sequent proofs to
morphisms in a bi-closed tensor category. This is done in the next section.
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2.3.7 From Sequent Proofs to Categorical Morphisms

We now want to translate sequent proofs that are proofs of sequents of the form A ` B (as
every sequentialization results in this form) into categorical morphisms. To this end, we define a
translation from sequent rules into morphisms. But first, we need some additional notions, as in
general, sequents may not have a single formula in the left-hand side. Hence, we define the formula
interpretation of structures:

Definition 2.17 (Formula Interpretation). A structure converts to a formula, denoted Γ◦ as follows:

• A◦ = A,

• (Γ •∆)◦ = Γ◦ ⊗∆◦.

We will now show that for every sequent proof Γ ` A : D1 in NL over some set At of atomic
formulae, there is a translation T (D1) : Γ◦ → A in the bi-closed tensor category given by the free
set of objects over At. But before we define the translation, we need an additional lemma:

Lemma 2.4. For every context Γ[] and morphism f : ∆◦ → A there is a morphism op(f) : Γ[∆]◦ →
Γ[A]◦.

Proof. By induction on Γ[]. The base case is [], and we define op(f) = f there. In the inductive
case (Γ′[] •∆′), suppose that there is op′(f) : Γ′[∆] → Γ′[A]. Then define op(f) = op′(f) ⊗ id∆′◦ .
Similarly for the case (Γ′ •∆′[]).

We can now define the translation T , it is given in Figure 2.4.
As we will want to define a full translation from proof nets to categorical morphisms, we will

want to show that the equivalence classes of sequent proofs are sent to identical morphisms. In
other words, we need to show the following:

Lemma 2.5. Every equivalence between sequent proofs D1 ≡ D2 becomes equality of morphisms
T (D1) = T (D2).

Proof. We need to show this case by case on the equivalence relation on sequent proofs. We illustrate
each of the cases by a table showing the equivalent proofs and their translations.
For the case of identity unfolding we have

⊗L(⊗R(Id(A), Id(B))) Id(A⊗B)

idA ⊗ idB idA⊗B

\R(\L(Id(A), Id(B))) Id(A\B)

idA ⇒ idB idA⇒B

/R(/L(Id(A), Id(B))) Id(B/A)

idB ⇐ idA idB⇐A

where it is clear that the equivalences become correct equations under translation. For the base
case of cut-elimination we have

Cut(D1, Id(B)) D1

idB ◦ T (D1) T (D1)

Cut(Id(A), D1) D1

T (D1) ◦ op(idA) T (D1)
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A ` A Id  idA : A→ A

∆ ` B Γ[B] ` A
Γ[∆] ` A Cut 

f : ∆◦ → B g : Γ[B]◦ → A

g ◦ op(f) : Γ[∆]◦ → A

Γ[A •B] ` C
Γ[A⊗B] ` C ⊗L  

f : Γ[A •B]◦ → C

f : Γ[A •B]◦ → C

Γ ` A ∆ ` B
Γ •∆ ` A⊗B ⊗R  

f : Γ◦ → A g : ∆◦ → B

f ⊗ g : (Γ •∆)◦ → A⊗B

∆ ` B Γ[A] ` C
Γ[∆ •B\A] ` C

\L  
f : ∆◦ → B g : Γ[A]◦ → C

g ◦ op(C−1(f ⇒ idA))

B • Γ ` A
Γ ` B\A

\R  
f : (B • Γ)◦ → A

Cf : Γ◦ → B ⇒ A

∆ ` B Γ[A] ` C
Γ[A/B •∆] ` C

/L  
f : ∆◦ → B g : Γ[A]◦ → C

g ◦ op(B−1(idA ⇐ f))

Γ •B → A
Γ ` A/B

/R  
f : (Γ •B)◦ → A

Bf : Γ◦ → A⇐ B

Figure 2.4: From Sequent Proofs to Categorical Morphisms

where it is quite obvious that the equivalences becomes correct equations under translation, as op
will only insert identity morphisms.
For the case of principal cut-elimination we have
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Cut(⊗R(D1, D2),⊗L(D3)) Cut(D2, Cut(D1, D3))

T (D3) ◦ op1(T (D1)⊗ T (D2)) T (D3) ◦ op2(T (D1)) ◦ op3(T (D2))

Cut(⊗R(D1, D2),⊗L(D3)) Cut(D1, Cut(D2, D3))

T (D3) ◦ op4(T (D1)⊗ T (D2)) T (D3) ◦ op5(T (D2)) ◦ op6(T (D1))

Cut(\R(D1), \L(D2, D3)) Cut(Cut(D2, D1), D3)

T (D3) ◦ op7(β−1(T (D2)⇒ idA)) ◦ op8(β(T (D1))) T (D3) ◦ op9(T (D1) ◦ op10(T (D2)))

Cut(\R(D1), \L(D2, D3)) Cut(D2, Cut(D1, D3))

T (D3) ◦ op11(β−1(T (D2)⇒ idA)) ◦ op12(β(T (D1))) T (D3) ◦ op13(T (D1)) ◦ op14(T (D2))

Cut(/R(D1), /L(D2, D3)) Cut(Cut(D2, D1), D3)

T (D3) ◦ op15(γ−1(idA ⇐ T (D2))) ◦ op16(γ(T (D1))) T (D3) ◦ op17(T (D1) ◦ op18(T (D2)))

Cut(/R(D1), /L(D2, D3)) Cut(D2, Cut(D1, D3))

T (D3) ◦ op19(γ−1(idA ⇐ T (D2))) ◦ op20(γ(T (D1))) T (D3) ◦ op21(T (D1)) ◦ op22(T (D2))

where we need to ensure that the translations are actually equal. But observe (for ⊗) that

op1(T (D1)⊗ T (D2)) =
op1((T (D1) ◦ idΓ′◦)⊗ (idB ◦ T (D2))) =
op1((T (D1)⊗ idB) ◦ (idΓ′◦ ⊗ T (D2))) =
op1(T (D1)⊗ idB) ◦ op1(idΓ′◦ ⊗ T (D2)) =

op2(T (D1)) ◦ op3(T (D2))

and that

op4(T (D1)⊗ T (D2)) =
op4((idA ◦ T (D1))⊗ (T (D2) ◦ id∆◦)) =
op4((idA ⊗ T (D2)) ◦ (T (D1)⊗ id∆◦)) =
op4(idA ⊗ T (D2)) ◦ op4(T (D1)⊗ id∆◦) =

op5(T (D2)) ◦ op6(T (D1)).

For ⇒ (the case of ⇐ is symmetric) we observe that

op7(β−1(T (D2)⇒ idA)) ◦ op8(β(T (D1))) =
op7(β−1(T (D2)⇒ idA)) ◦ op7(id∆◦ ⊗ β(T (D1))) =
op7(β−1(T (D2)⇒ idA) ◦ (id∆◦ ⊗ β(T (D1)))) =

op7(idA ◦ β−1(T (D2)⇒ idA) ◦ (id∆◦ ⊗ β(T (D1)))) =
op7(β−1((id∆◦ ⇒ idA) ◦ (T (D2)⇒ idA) ◦ β(T (D1)))) =

op7(β−1((T (D2)⇒ idA) ◦ β(T (D1)) ◦ idΓ′◦)) =
op7(β−1(β(idA ◦ T (D1) ◦ (T (D2)⊗ idΓ′◦)))) =

op7(T (D1) ◦ (T (D2)⊗ idΓ′◦)) =
op9(T (D1) ◦ (T (D2)⊗ idΓ′◦)) =
op9(T (D1) ◦ op10(T (D2)) =

and that
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op11(β−1(T (D2)⇒ idA)) ◦ op12(β(T (D1))) =
op11(β−1(T (D2)⇒ idA)) ◦ op11(id∆◦ ⊗ β(T (D1))) =
op11(β−1(T (D2)⇒ idA) ◦ (id∆◦ ⊗ β(T (D1)))) =

op11(idA ◦ β−1(T (D2)⇒ idA) ◦ (id∆◦ ⊗ β(T (D1)))) =
op11(β−1((id∆◦ ⇒ idA) ◦ (T (D2)⇒ idA) ◦ β(T (D1)))) =

op11(β−1((T (D2)⇒ idA) ◦ β(T (D1)) ◦ idΓ′◦)) =
op11(β−1(β(idA ◦ T (D1) ◦ (T (D2)⊗ idΓ′◦)))) =

op11(T (D1) ◦ (T (D2)⊗ idΓ′◦)) =
op13(T (D1) ◦ (T (D2)⊗ idΓ′◦)) =

op13(T (D1)) ◦ op13(T (D2)⊗ idΓ′◦) =
op13(T (D1)) ◦ op14(T (D2)).

We proceed with the table for permutative cut-elimination, it is as follows:

59



Cut(⊗L(D1), D2) ⊗L(Cut(D1, D2))

T (D2) ◦ op1(T (D1)) T (D2) ◦ op1(T (D1))

Cut(\L(D1, D2), D3) \L(D1, Cut(D2, D3))

T (D3) ◦ op2(T (D2) ◦ op3(β−1(T (D1)⇒ idA))) T (D3) ◦ op4(T (D2)) ◦ op5(β−1(T (D1)⇒ idA))

Cut(/L(D1, D2), D3) /L(D1, Cut(D2, D3))

T (D3) ◦ op6(T (D2) ◦ op7(γ−1(idA ⇐ T (D1)))) T (D3) ◦ op8(T (D2)) ◦ op9(γ−1(idA ⇐ T (D1)))

Cut(D1,⊗L(D2)) ⊗L(Cut(D1, D2))

T (D2) ◦ op10(T (D1)) T (D2) ◦ op10(T (D1))

Cut(D1, \R(D2)) \R(Cut(D1, D2))

β(T (D2)) ◦ op11(T (D1)) β(T (D2) ◦ op12(T (D1)))

Cut(D1, /R(D2)) /R(Cut(D1, D2))

γ(T (D2)) ◦ op13(T (D1)) γ(T (D2) ◦ op14(T (D1)))

Cut(D1,⊗R(D2, D3)) ⊗R(D2, Cut(D1, D3))

(T (D2)⊗ T (D3)) ◦ op15(T (D1)) T (D2)⊗ (T (D3) ◦ op16(T (D1)))

Cut(D1,⊗R(D2, D3)) ⊗R(Cut(D1, D2), D3)

(T (D2)⊗ T (D3)) ◦ op17(T (D1)) (T (D2) ◦ op18(T (D1)))⊗ T (D3)

Cut(D1, \L(D2, D3)) \L(D2, Cut(D1, D3))

T (D3) ◦ op19(β−1(T (D2)⇒ idA)) ◦ op20(T (D1)) T (D3) ◦ op21(T (D1)) ◦ op22(β−1(T (D2)⇒ idA))

Cut(D1, \L(D2, D3)) \L(Cut(D1, D2), D3)

T (D3) ◦ op23(β−1(T (D2)⇒ idA)) ◦ op24(T (D1)) T (D3) ◦ op25(β−1((T (D2) ◦ op26(T (D1)))⇒ idA))

Cut(D1, /L(D2, D3)) /L(D2, Cut(D1, D3))

T (D3) ◦ op27(γ−1(idA ⇐ T (D2))) ◦ op28(T (D1)) T (D3) ◦ op29(T (D1)) ◦ op30(γ−1(idA ⇐ T (D2)))

Cut(D1, /L(D2, D3)) /L(Cut(D1, D2), D3)

T (D3) ◦ op31(γ−1(idA ⇐ T (D2))) ◦ op32(T (D1)) T (D3) ◦ op33(γ−1(idA ⇐ (T (D2) ◦ op34(T (D1))))

Now we only need to show that the effect of the different incarnations of op is essentially the same
on the left and right hand side. We only need to show the cases of ⊗ rules and of \ rules as the
ones for / are symmetric.
So for ⊗ we note that

(T (D2)⊗ T (D3)) ◦ op15(T (D1)) =
(T (D2)⊗ T (D3)) ◦ (idΓ◦ ⊗ op16(T (D1))) =
(T (D2) ◦ idΓ◦)⊗ (T (D3) ◦ op16(T (D1))) =

T (D2)⊗ (T (D3) ◦ op16(T (D1)))
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and that

(T (D2)⊗ T (D3)) ◦ op17(T (D1)) =
(T (D2)⊗ T (D3)) ◦ (op18(T (D1))⊗ id∆◦) =
(T (D2) ◦ op18(T (D1)))⊗ (T (D3) ◦ id∆◦) =

(T (D2) ◦ op18(T (D1)))⊗ T (D3).

For \ we have somewhat more cases to consider. Firstly, we observe that

T (D3) ◦ op2(T (D2) ◦ op3(β−1(T (D1)⇒ idA))) =
T (D3) ◦ op2(T (D2)) ◦ op2(op3(β−1(T (D1)⇒ idA))) =

T (D3) ◦ op4(T (D2)) ◦ op5(β−1(T (D1)⇒ idA))

Secondly, we simply note that by op12(f) = idB ⊗ op11(f) we have that

β(T (D2)) ◦ op11(T (D1)) =
β(T (D2) ◦ (idB ⊗ op11(T (D1)))) =

β(T (D2) ◦ op12(T (D1))).

Then we continue by observing (for the last two cases) that op19(f) ◦ op20(g) can be replaced by
op21(g) ◦ op22(f) as the contexts the operators act upon are separate (i.e. the different operators
enforce the domains and codomains of f and g to be of a certain kind, such that the order of
applying these contexts does not matter).
For the very last case we need to consider we observe (by op23 = op25 and op24(f) = op23(op26(f)⊗
idB⇒A)) that

T (D3) ◦ op23(β−1(T (D2)⇒ idA)) ◦ op24(T (D1)) =
T (D3) ◦ op23(β−1(T (D2)⇒ idA)) ◦ op23(op26(T (D1))⊗ idB⇒A) =
T (D3) ◦ op23(β−1(T (D2)⇒ idA) ◦ (op26(T (D1))⊗ idB⇒A)) =

T (D3) ◦ op25(idA ◦ β−1(T (D2)⇒ idA) ◦ (op26(T (D1))⊗ idB⇒A)) =
T (D3) ◦ op25(β−1((T (D2) ◦ op26(T (D1)))⇒ idA)).

2.3.8 The Category of Proof Nets and Freeness

Now we have reached the high point of this chapter: we will show that proof nets define a bi-closed
tensor category relative to a bi-closed tensor signature and show that it is a free bi-closed tensor
category. Then, coherence follows by the definition of the free category. Recall the definition of a
signature, and the inductive definition of proof nets. We define the category of proof nets over a
signature Σ as follows:

Definition 2.18. Let Σ = (Σ0,Σ1, dom, cod) be a bi-closed tensor signature. The category of proof
nets over Σ, denoted PN(Σ), is defined as follows:

• Ob(PN(Σ)) = Σ0,

• For every A in Σ0, we define the identity morphism as

A
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• For every f in Σ1 with dom(f) = A and cod(f) = B, we define the corresponding morphism
as

f

A

B

• We define composition of morphisms as vertical gluing, i.e. for morphisms

N1

A

B

and N2

B

C

the following is their composition N2 ◦N1:

N1

N2

A

B

C

• For two morphisms

N1

A

C

and N2

B

D

We define N1 ⊗N2, N1 ⇒ N2 and N1 ⇐ N2 as follows:

⊗

N1 N2

⊗

A⊗B

A B

C D

C ⊗D

⇒

N∗1 N2

⇒

C ⇒ B

C B

A D

A⇒ D

⇐

N1 N∗2

⇐

A⇐ D

A D

C B

C ⇐ B
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• Given a morphism

N1

A⊗B

C

we define β(N1) as

⊗

N1

⇒

B

BA

A⊗B

C

A

A⇒ C

• Given a morphism

N1

B

A⇒ C

we define β−1(N1) as
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⊗

f

⇒

A⊗B

B

A

A⇒ C

A C

C

• We define γ and γ−1 similarly to β and β−1 but with the images mirrored horizontally.

• All the equations for proof nets hold.

It is now a pleasant exercise to show that PN(Σ) is a bi-closed tensor category:

Proposition 2.1. For any bi-closed tensor signature Σ, PN(Σ) is a bi-closed tensor category.

Proof. The basic categorical axioms are trivially satisfied: the associativity of gluing gives asso-
ciativity of composition, and for any morphism N1 : A → B we have that idB ◦ N1 is the result
of gluing an extra piece of wire on the bottom and N1 ◦ idA is the result of gluing an extra piece
of wire on the top, which is just the same as the original morphism. idA ⊗ idB = idA⊗B is also
trivially satisfied by the identy cut equation for ⊗ (similarly for ⇒ and ⇐. Bifunctioriality of ⊗, is
also satisfied because (k ⊗ h) ◦ (g ⊗ f) = (k ◦ g)⊗ (h ◦ f) translates to
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⊗

g f

⊗

E ⊗B

⊗

k h

⊗

=

⊗

g f

k h

⊗

D ⊗A

D A

E B

E B

F C

F ⊗ C

D ⊗A

D A

E B

F C

F ⊗ C

which definitely is a valid equation by virtue of the general cut equation. Bifunctoriality of ⇒ and
⇐ follows similarly. Isomorphicity of β and γ is easily verified using the snake equations. Finally,
we need to show naturality of β and γ. We show the naturality of β as naturality for γ follows
similarly. For (g ⇒ k) ◦ ((β(f)) ◦ h) we have
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h

⊗

f

⇒

⇒

g∗ k

⇒

B

B′

B′
A′

A′ ⊗B′

C

A′

A′ C

A′ ⇒ C

CA′

C ′A

A⇒ C ′

=

h

⊗

f

g∗ k

⇒

B

B′

B′
A′

A′ ⊗B′

C

A′

C

A C ′

A⇒ C ′

whereas for β(k ◦ (f ◦ (g ⊗ h))) we have
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⊗

⊗

g h

⊗

f

k

⇒

B

BA

A⊗B

A B

A′ B′

A′ ⊗B′

C

A

C ′A

A⇒ C ′

=

g h

⊗

f

k

⇒

B

B′A′

A′ ⊗B′

C

A

C ′A

A⇒ C ′

and these nets are obviously equal, given that we can bend around g to g∗ and vice versa.

Not only is PN(Σ) a bi-closed tensor category, it is moreover the free one over Σ:

Theorem 2.3. PN(Σ) is the free bi-closed tensor category over Σ.

Proof. We need to give an interpretation i : Σ → PN(Σ) and for any bi-closed tensor category D
and bi-closed tensor interpretation j : Σ→ D give a unique bi-closed tensor functor F : PN(Σ)→ D
such that j = F ◦ i. Take i = 〈i0, i1〉 where

• i0 is the identity on Σ0,

• i1 sends f : A→ B in Σ1 to

f

A

B
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Now let D be any bi-closed tensor category and let j : Σ → D be an arbitrary interpretation. We
define F : PN(Σ)→ D as follows:

• On objects, we define F (A) = j0(A).

• On morphisms, we take F (N : A→ B) = ĵ1 ◦ T ◦ S where

– S is the sequentialization translation that sends

f

A

B

to

A ` B : f

A

B

– T is the sequent proof translation into categorical morphisms that sends

A ` B : f

A

B

to

f : A→ B

– ĵ1 sends all f : A→ B in Σ1 to j1(f) and acts as the identity on everything else.

We now need to show that F is a bi-closed tensor functor, that j = F ◦ i and that F is unique.
To see that F is a functor, observe that

A

sequentializes to A ` A : Id(A) which then translates into idA (and then is preserved by ĵ1), and
next observe that
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N1

N2

A

B

C

sequentializes to A ` C : Cut(D1, D2) which then translates into ĵ1(g ◦f) = ĵ1(g)◦ ĵ1(f) given that
D1 is given by f and D2 is given by g.
To see that this functor is a bi-closed tensor functor, simply take ϕA,B = idA⊗B , χA,B = idA⇒B ,
ξA,B = idB⇐A to see that F is in fact a strict bi-closed tensor functor! To see that j = F ◦ i, note
that on objects we have F = j0 and i = id so we get j0 = j0 ◦ id. On morphism variables, we have
F = ĵ1 ◦ T ◦ S, so we need to show j1 = ĵ1 ◦ T ◦ S ◦ i1. So, consider any f : A→ B in Σ1. We have
that i1 sends f to

f

A

B

which is mapped by S to A ` B : f , which then is mapped by T simply to f : A→ B, where finally,
ĵ1 sends this to j1(f) : j0(A)→ j0(B).
Now we need to show that F is unique. So, let G : PN(Σ)→ D be a bi-closed tensor functor such
that j = G ◦ i. As i0 = id, we must have on objects that G = j0. On morphism variables, note that
T ◦ S is inverse to i1 such that we get

G = G ◦ i1 ◦ T ◦ S = F ◦ i1 ◦ T ◦ S = F

2.3.9 Illustration

We can now illustrate the use of our graphical language by stating Proposition 1.3 graphically.
For instance, for the second triangle diagram, we get the graphical representation of (idD ⇐
(β(γ−1(idD⇐(A⇒D))))) ◦ γ(β−1(id(D⇐(A⇒D))⇒D)) and its reduction to idD⇐(A⇒D), which is
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⊗ ⊗

⇒

D
⇐

(A
⇒
D

)
D

⇐ ⇐

⇒

⇐

⊗ ⊗

⇐

D
⇐

(A
⇒
D

)

(D
⇐

(A
⇒
D

))
⇒
D

D
⇐

((
D
⇐

(A
⇒
D

))
⇒
D

)

(D
⇐

(A
⇒
D

))
⇒
D

D

D
⇐

(A
⇒
D

)

D
A
⇒
D

A
⇒
D

D
⇐

(A
⇒
D

)

⇒

⇒

⇐

⇐

D
⇐

(A
⇒
D

)

D

(D
⇐

(A
⇒
D

))
⇒
D

D
⇐

(A
⇒
D

)

D

A
⇒
D

D
⇐

(A
⇒
D

)
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⇒

⇒

⇐

⇐

D ⇐ (A⇒ D)

D ⇐ (A ⇒ D)

D

D

D ⇐ (A⇒ D)

A⇒ D

⇐

⇐

D ⇐ (A⇒ D)

D

D ⇐ (A⇒ D)

A⇒ D

⇐

⇐

D A⇒ D

D ⇐ (A⇒ D)

D ⇐ (A⇒ D)

D ⇐ (A⇒ D)

2.4 Discussion

For the final section of this chapter, we would like to take up a discussion about the relation between
string diagrams for non-associative and associative categories. But first we will discuss a possible
concern about the developed proof net language.

The following question might be raised about the proof net language developed above: given the
presence of global graphical yanking in the language, how can one ensure that the proof nets do not
reduce to the compact case? We wish to show, however, that this is not the case. The intuition is
that graphical yanking is necessary in our graphical language only to ensure coherence but has no
special meaning; it is merely a syntactic construct used to make the proof nets themselves prettier
and easier to interpret.

Because of the way we choose to draw our nets, specifically monotonicity nets for ⇒ and ⇐ we
choose to let information flow upwards within a diagram. Because of this property and the way we
defined sequentialization, in some cases snake patterns occur (for instance in the cases where one
wants to verify that β and γ are isomorphisms). Thus, we require graphical yanking to ensure that
our graphical language is sound and complete.

Because yanking in the graphical language for compact closed categories corresponds to the
yanking equations of those categories, it is of course a bit strange that we require them here, while
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the corresponding category is by no means a compact one. But keep in mind that we are considering
non-associative systems here: compact closed categories are by definition monoidal and thus have
associative structure, meaning that the yanking equations make sense as they require use of the
associativity morphisms. But when we drop associativity, the yanking equations do not make sense
anymore, and hence graphical yanking would have any special meaning to it. We illustrate this
with the case of pregroups, which are instantiations of non-commutative compact closed categories,
or autonomous categories. A pregroup is an ordered monoid where each element a has left and
right adjoints al and ar such that

al · a ≤ 1 ≤ a · al
a · ar ≤ 1 ≤ ar · a

and now yanking follows because of the following chain:

a ≤ 1 · a ≤ (a · al) · a = a · (al · a) ≤ a · 1 ≤ a

But this only follows by virtue of a pregroup having associative structure. If one were to define
non-associative autonomous categories one could not admit the yanking equations and therefore
graphical yanking is not the same there as it is in regular autonomous categories.

We will now turn our attention to the relation between graphical languages for the non-
associative and the associative setting. Obviously, every non-associative tensor category can be
embedded in an associative tensor category, whether it be closed or not. So we may ask ourselves
how this would go in the setting of string diagrams. We will first consider the translation of proof
nets for non-closed tensor categories into string diagrams for associative tensor categories, and then
conclude with some remarks on the possibility of translating proof nets for bi-closed tensor cate-
gories into the clasp diagrams of Baez and Stay (2011).

The developed proof net calculus for bi-closed tensor categories can be reduced to a coherent
one for non-associative tensor categories by getting rid of the ⇒ and ⇐ links and dropping the
graphical yanking equations. In this case, all proof nets and their subgraphs will be drawn such
that all information flows downward. More precisely, the inductive definition for these nets contains
only of the identity proof net, composition, and monotonicity for ⊗. It then becomes clear how
we would translate proof nets to string diagrams for associative tensor categories in the following
translation:
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(...(A1 ⊗A2)⊗ ...⊗An)  ...A1 An

N1

N2

A

B

C

 

T (N1)

T (N2)

T (A)

T (B)

T (C)

⊗

N1 N2

⊗

A⊗B

A B

C D

C ⊗D

 T (N1) T (N2)

T (A)

T (C)

T (B)

T (D)

When we turn our attention to bi-closed tensor categories, however, things become more com-
plicated. Considering the Došen axiomatization, we would need to extend the previous translation
with the translation of monotonicity for ⇒ and ⇐ and we would need to give translations for ap-
plication and co-application. The translations for monotonicity would not be that complicated if
one were to admit graphical yanking in the clasp diagrams (note that we only give the translation
for ⇒ as the one for ⇐ is symmetric):

⇒

N∗1 N2

⇒

A⇒ B

A B

C D

C ⇒ D

 T (N1) T (N2)

T (B)

T (D)
T (A)

T (A)

T (C)

T (C)

But as noted in the section on the clasp diagrams, we would be in trouble when A is of the form
E ⊗ F . This problem arises again when we consider translating co-application, as it would need to
translate to co-evaluation, where we have the same problem of a clasp having to attach to either
one of the wires of A⊗B.
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In conclusion, there is more work to be done in order to consider the clasp diagrams as a coherent
graphical language for monoidal bi-closed categories. This is the reason why translating our proof
nets into clasp diagrams does not work smoothly. Another aspect that deserves attention is the
precise relationship between the graphical calculus we have developed in this chapter and the proof
nets developed by Moot and Puite (2002).

In the next chapter we shall consider “categorifying” the different incarnations of the Lambek
Calculus.
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Chapter 3

Syntax

In this chapter we consider the different incarnations of the Lambek Calculus: the non-associative
Lambek Calculus NL, the associative Lambek Calculus L, and the variants with units UNL and
UL. Guideluines are given to turn each of the calculi into a category, after which we show that
the resulting categories each take their place in the Curry-Howard-Lambek correspondence. We
conclude with the definitions of categorial and categorical grammars as a means of incorporating
these type logics in a compositional distributional model of meaning.
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Lambek’s syntactic calculus, which we denote by L, was a system introduced in (Lambek, 1958)
in order to distinguish, not just in formal languages but also in natural language, sentences from
non-sentences. Three years later, Lambek published an article (Lambek, 1961) in which he dropped
the associativity rules, resulting in the non-associative Lambek Calculus, here denoted NL. We fur-
thermore distinguish between the systems UL and UNL, where a unit object is added. All these
systems are substructural logics, systems that are obtained by dropping some of the structural rules
of classical logic, such as weakening, contraction and exchange.

We present these systems as deductive systems, a term coming from Lambek (1988) as a method
of presenting these logics in a form particularly suitable for a categorical interpretation. We will
proceed as follows: first we define several variants of the Lambek Calculus, and secondly we will
show what is needed to turn each of these calculi into a category. Finally, we turn our attention
to the Curry-Howard-Lambek correspondence applied to these categorical Lambek Calculi, and
close the chapter with the definition of grammars based on Lambek Calculi, giving a system for
characterizing sets of sentences.

3.1 Lambek Calculi, Categorically

We start out by devoting our attention to the different types of Lambek Calculi available, and the
restrictions one must add to “categorify” these calculi.

3.1.1 A Landscape of Calculi

The basis of any deductive system are formulas, which we will call types. These are generated by a
set of basic types and a set of connectives. The regular Lambek Calculus deploys a tensor connective
⊗ and left and right implications \ and /:

Let T be a set of basic types. Let C ⊆ {⊗, \, /}. Then the set of free types F (T,C) of T over
C is the smallest set satisfying the following:

1. T ⊆ F (T,C),

2. If A,B ∈ F (T,C) then A ∗B ∈ F (T,C) for ∗ ∈ C.

From any set of types, one may define a deductive system in the style of Lambek (1988):

Definition 3.1. A deductive system over T consists of types and arrows and domain/codomain
mappings from arrows to types to indicate that a given arrow f is a proof of cod(f) from dom(f).
We simply write f : A→ B for f a proof of B from A. Moreover we have the following requirements:

1. For every type A ∈ T , there is given an identity arrow 1A : A→ A,

2. For every two proofs f : A→ B and g : B → C there is a composite proof g ◦ f : A→ C.

This scheme is nicely depicted as the following inference system:

1A : A→ A
Ax

f : A→ B g : B → C

g ◦ f : A→ C
T
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From now on, we represent any extension of a deductive system directly as a system of inference.
We then want to encode the behaviour of the different Lambek connectives in separate deductive
systems. Hence, we consider subsets {⊗, \}, {⊗, /}, and {⊗, \, /} when defining left, right and
regular Lambek Calculi:

Definition 3.2. The (non-associative,non-unitary) left Lambek Calculus NLl over T is given by
its types being the elements of F (T, {⊗, \}) and the proofs generated by the following inference
system:

1A : A→ A
Ax

f : A→ B g : B → C

g ◦ f : A→ C
T

f : A⊗B → C

Cf : B → A\C R2
g : B → A\C

C−1g : A⊗B → C
R2′

f : A→ C g : B → D

f ⊗ g : A⊗B → C ⊗D M⊗
f : A→ C g : B → D

f\g : C\B → A\D
M\

Definition 3.3. The (non-associative, non-unitary) right Lambek Calculus NLr over T is given by
its types being the elements of F (T, {⊗, /}) and the proofs are generated by the following inference
system:

1A : A→ A
Ax

f : A→ B g : B → C

g ◦ f : A→ C
T

f : A⊗B → C

Bf : A→ C/B
R1

g : A→ C/B

B−1g : A⊗B → C
R1′

f : A→ C g : B → D

f ⊗ g : A⊗B → C ⊗D M⊗
f : A→ C g : B → D

g/f : B/C → D/A
M/

We now want to define the non-associative, non-unitary Lambek Calculus NL. One might expect
it is obtained by merging NLl and NLr. However, the monotonicity rules become derived rules of
inference in the full system, so we have the following:

Definition 3.4. The (non-associative, non-unitary) Lambek Calculus NL over T is given by the
types in F (T, {⊗, \, /}) and the proofs generated by the following (labelled) inference system:

1A : A→ A
Ax

f : A→ B g : B → C

g ◦ f : A→ C
T

f : A⊗B → C

Bf : A→ C/B
R1

f : A⊗B → C

Cf : B → A\C R2

g : A→ C/B

B−1g : A⊗B → C
R1′

g : B → A\C
C−1g : A⊗B → C

R2′

It can easily be shown that this system gives us the following derived rules of inference, the
monotonicity rules:
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f : A→ C g : B → D

f ⊗ g : A⊗B → C ⊗D M⊗

f : A→ C g : B → D

g/f : B/C → D/A
M/

f : A→ C g : B → D

f\g : C\B → A\D
M\

where we have that

f ⊗ g := B−1((BC−1 ((C1C⊗D) ◦ g)) ◦ f)
g/f := B(g ◦ (C−1((CB−1 1B\C) ◦ f)))
f\g := C(g ◦ (B−1((BC−1 1C\B) ◦ f)))

We furthermore have the following proofs, usually called application and co-application:

C−11A\B : A⊗ (A\B)→ B C1A⊗B : B → A\(A⊗B)
B−11B/A : (B/A)⊗A→ B B1B⊗A : B → (B ⊗A)/A

The nice thing about deductive systems is that one can add extra properties, simply as rules
of inference. For example, to obtain the associative variants of the calculi discussed, one adds to a
system of choice the following additional rules for every type A,B,C of the system under discussion:

aA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)
Ass

a−1
A,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C

Ass′

The resulting systems are denoted Ll, Lr and simply L, respectively. To obtain the unitary variant
of the associative Lambek Calculi, one simply adds a distinguished unit type I to T and the following
additional axioms for every type A:

lA : I ⊗A→ A
L

l−1
A : A→ I ⊗A

L′

rA : A⊗ I → A
R

r−1
A : A→ A⊗ I

R′

The resulting systems are denoted ULl, ULr and UL, respectively.

3.1.2 Going Categorical

To obtain a category for each of the Lambek Calculi noted, we need to define an appropriate
equivalence relation on proofs in such calculi. We define an equivalence relation≡ on proofs. Clearly,
we require ≡ to be reflexive, symmetric and transitive. Furthermore, we require the following
additional equivalences:

1. Substitution properties: If f ≡ g then ∗f ≡ ∗g where ∗ ∈ {B,B−1,C,C−1}, and if f ≡ g and
k ≡ h then k ◦ f = h ◦ g. A resulting property is that if f ≡ g and k ≡ h then f ∗ k ≡ g ∗ h
where ∗ ∈ {⊗, /, \}.
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2. Categorical axioms: this amounts to f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h and f ◦ 1A ≡ f ≡ 1B ◦ f where
f : A→ B.

3. Residuation is isomorphic: this amounts to ∗−1 ∗ f ≡ f , ∗ ∗−1 g ≡ g for ∗ ∈ {B,C}.

4. Bifunctoriality of ⊗, /, \. One can easily show that 1A ∗ 1B ≡ 1A∗B where ∗ ∈ {⊗, /, \} but
the following equivalences are defined:

(f ⊗ g) ◦ (k ⊗ h) ≡ (f ◦ k)⊗ (g ◦ h)
(f/g) ◦ (k/h) ≡ (f ◦ k)/(h ◦ g)
(f\g) ◦ (k\h) ≡ (k ◦ f)\(g ◦ h)

5. Naturality of residuation. This means that for f : A′ ⊗B′ → C and g : A→ A′, h : B → B′,
k : C → C ′, we have that

(k/h) ◦ ((Bf) ◦ g) ≡ B(k ◦ (f ◦ (g ⊗ h))) and
(g\k) ◦ ((Cf) ◦ h) ≡ C(k ◦ (f ◦ (g ⊗ h))).

6. For L(l/r), one adds the following requirements:

(a) Associativity is isomorphic, i.e. a−1
A,B,C ◦ aA,B,C ≡ 1A⊗(B⊗C) and aA,B,C ◦ a−1

A,B,C ≡
1(A⊗B)⊗C for every A,B,C,

(b) Associativity is natural, i.e. (f ⊗ (g ⊗ h)) ◦ aA,B,C ≡ aA′,B′,C′ ◦ ((f ⊗ g) ⊗ h) for
f : A→ A′,g : B → B′, h : C → C ′.

7. For UL(l/r), one adds the following requirements:

(a) Unit deletion is isomorphic, i.e. l−1
A ◦ lA ≡ 1I⊗A, lA ◦ l−1

A ≡ 1A, r−1
A ◦ rA ≡ 1A⊗I and

rA ◦ r−1
A ≡ 1A for every A,

(b) Unit deletion is natural, i.e. for every f : A → A′ we have that f ◦ lA ≡ lA′ ◦ (1I ⊗ f)
and f ◦ rA ≡ rA′ ◦ (f ⊗ 1I).

Now one can show easily that any Lambek Calculi forms a certain kind of closed category if
we take its objects to be the freely generated types and its morphisms to be equivalence classes of
proofs. For instance, we get the following proposition:

Proposition 3.1. Let C(NL) denote the non-associative Lambek Calculus over a set of basic types
T together with the equivalence relation defined above. Then C(NL) is a bi-closed tensor category.

Similarly, C(NLl) forms a left closed tensor category, C(NLr) forms a right closed category, and
once we add associativity and a unit, we obtain a left/right/bi-closed monoidal category. In the next
section, we will consider categories having as objects these calculi, and consider the equivalences
that come out.
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3.2 Symmetry and Equivalence

In this section, we show several equivalence results — i.e. equivalences of categories — between
Categorical Lambek Calculi.

Consider two unitary Lambek Calculi ULT and ULT ′ . We define a translation of calculi as a
map t that sends T to F (T ′, {⊗, /, \}) and sends proofs to proofs such that the following holds:

• t strictly preserves the type operations, i.e. t(1) = 1, t(A ⊗ B) = t(A) ⊗ t(B), t(A\B) =
t(A)\t(B), t(B/A) = t(B)/t(A),

• t preserves the structural axioms, i.e. t(a
(−1)
A,B,C) = a

(−1)
t(A),t(B),t(C), t(l

(−1)
A ) = l

(−1)
t(A) , t(r

(−1)
A ) =

r
(−1)
t(A) .

• t preserves the equivalence relation on proofs, i.e. if f ≡ g in ULT then t(f) ≡ t(g) in ULT ′ .

It is not hard to determine that we can form a category, henceforth denoted by cUL, by taking as
objects unitary Lambek Calculi and as morphisms translations between such calculi. Let MBCCst

denote the category consisting of monoidal bi-closed categories as objects and strict monoidal
bi-closed functors as morphisms. As every (categorified) unitary Lambek Calculus is already a
monoidal bi-closed category and as every translation is a strict monoidal bi-closed functor, we take
one part of the equivalence to be the identity functor Id. We continue to define the unitary Lambek
Calculus generated by a monoidal bi-closed category. So, the unitary Lambek Calculus generated
by a monoidal bi-closed category C is precisely ULOb(C). That is,

• The set of types is precisely Ob(C) where ⊗ is interpreted as ⊗, ⇒ is interpreted as \ and ⇐
is interpreted as /,

• Supposing that the set of types are obtained from Ob(C) by some map i, morphisms in C are
mapped to proofs by a map j in the following manner:

1. j(αA,B,C) = ai(A),i(B),i(C),

2. j(λA) = li(A),

3. j(ρA) = ri(A),

4. j(β(f)) = Cj(f),

5. j(γ(g)) = Bj(g),

6. j(idA) = 1i(A)

7. Whenever there is an additional map f : A→ B in C, there is a proof f : i(A)→ i(B).

8. j(g ◦ f) = j(g) ◦ j(f)

It is not hard to see that equality of morphisms in C becomes equivalence of proofs in ULOb(C).
For instance, as we have idA ◦ f = f in C, we have j(idA ◦ f) = 1i(A) ◦ j(f) ≡ j(f).

Now, let F : C → D be a strict monoidal bi-closed functor between two monoidal bi-closed cate-
gories. Then we straightforwardly define the translation t between mathbfULOb(C) and ULOb(D) to
be F . As F is strict, it preserves the type operations on the nose, as well as the structural axioms and
the equivalence relation on proofs. One can apply the correspondence to cNL(l/r), cL(l/r), cUL(l/r)

so given that we have the following denotations for categories of left/right/bi-closed tensor/monoidal
categories with corresponding strict functors
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• (A/M)LCCst denotes left closed (associative tensor/monoidal) categories and strict left
closed functors,

• (A/M)RCCst denotes right closed (associative tensor/monoidal) categories and strict right
closed functors,

• (A/M)BCCst denotes bi-closed (associative tensor/monoidal) categories and strict bi-closed
functors.

we get the following propositions:

Proposition 3.2. cNL(l/r) ∼= (L/R/B)CCst.

Proposition 3.3. cL(l/r) ∼= A(L/R/B)CCst.

Proposition 3.4. cUL(l/r) ∼= M(L/R/B)CCst.

So we see that various kinds of deductive systems are closely related to categories via an appro-
priate notion of proof equivalence. In the next section we will employ Lambek Calculi in order to
construct typelogical grammars.

3.3 Grammars

In this section we define Lambek grammars as a tool for characterizing sets of strings or — in other
words — distinguishing between sentences and non-sentences. We will then use these grammars in
the next chapter when we formally define compositional distributional meaning models.

3.3.1 Categorial Grammar

The intuition behind a typelogical or categorial grammar is that we associate types with words and
use a logic, in this case a Lambek Calculus, govern the principles by which certain words may be
grammatically composed to form larger expressions. The basis of such a grammar is the dictionary
associating types with words:

Definition 3.5. Let Σ be an alphabet, i.e. a finite, non-empty set of basic words, and let L be
a Lambek Calculus of choice (with or without associativity and units) having as its set of types
F (T,C). Then a dictionary over Σ and L is a relation δ ⊆ Σ× F (T,C).

The ultimate goal of a Lambek Grammar is to distinguish between what are grammatical se-
quences of words, and what are not. Hence, one must have a goal type in order to distinguish what
kind of proofs in the logic will give a grammatical sentence and what kind of proofs will not. The
definition of a Lambek Grammar is thus as follows:

Definition 3.6. A Lambek Grammar over a Lambek Calculus L is a triple (Σ, δ, S) where

• Σ is an alphabet,

• δ is a dictionary over Σ and L,

• S ∈ F (T,C) is a distinguished goal type.
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Grammaticality then comes out of these grammars nearly automatically: a sequence of words
is a sentence when its corresponding sequence of types can be used to derive the goal type:

Definition 3.7. Let (Σ, δ, S) be a Lambek Grammar over L. A sequence of words w1 · ... ·wn ∈W+

is a sentence if and only if there exists a sequence W1⊗ ...⊗Wn (where each Wi ∈ δ(wi)) such that
there exists a proof in L of W1 ⊗ ...⊗Wn → S.

Because we are in general interested in the kind of patterns that are recognizable by grammars,
we define the language of a grammar and the class of languages generated by a calculus:

Definition 3.8. Let G = (Σ, δ, S) be a Lambek Grammar over L. The language of G, denoted
L(G), is defined as the set of all sentences w ∈W+.

Definition 3.9. Let L be a Lambek Calculus of choice. The class of languages generated by L,
denoted L(L), is defined as the class of languages generated by any Lambek Grammar over L.

It turns out that the generative capacity of any Lambek Calculus, i.e. the kind of patterns that
are recognizable, coincide with the well-known class of context-free languages. For the original,
associative system L, these results come from Pentus (1993). For the non-associative variant NL,
the result was obtained by Kandulski (1988). The versions with units were seen to correspond to
context-free grammar by Bulińska (2009). So, we get the following theorem:

Theorem 3.1. The class of languages generated by any Lambek Calculus L coincides with the
context-free languages.

It is now interesting to see how categorial grammar can be “lifted” to become categorical gram-
mar.

3.3.2 Categorical Grammar

Given the equivalence between categorical Lambek Calculi and closed categories, it is easy to define
categorical grammar: just take the definitions of categorial grammar and replace the calculus L
by its categorified version C(L). The test for sentencehood then boils down to checking whether
Hom(W1 ⊗ ...⊗Wn, S) 6= ∅.

Obviously, the generative capacity for these categorical grammars will be the same as for cate-
gorial grammar because we have only identified proofs in the process of categorification, hence the
accepted strings for a Lambek Grammar and its categorical variant will be the same.

However, these categorical versions of Lambek Grammars will be of importance once we define
compositional distributional models of meaning, in the next chapter.
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Chapter 4

Semantics

In this chapter, we define basic compositional distributional models of meaning. We will first devote
attention to a simplified, non-intentional version of Montague semantics and show how these are
subsumed by vector space models of meaning. We continue to show that finite-dimensional vector
spaces are instantiations of compact closed categories, in turn a special case of monoidal bi-closed
categories. We then define semantic interpretations and compositional distributional models of
meaning based on the different Lambek Calculi considered so far. We then give directions on how
one can induce such models from large data.
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Categorial grammar automatically comes equipped, via the Curry-Howard isomorphism, with
a syntax-semantics interface that maps proofs in a Lambek Grammar to programs in the simply
typed lambda calculus. The idea is that the dictionary of a Lambek Grammar is extended to
include for every word a semantic function that adheres to the type of the word under the semantic
interpretation of types. The given mapping ensures compositionality of the semantics in question,
but requires a predefined semantic lexicon. Here we will lift compositionality to the categorical
level by relying on a functorial passage from the category of syntax to the category of semantics
instead.

4.1 From Montague Semantics to Vector Space Semantics

4.1.1 Montague-style models

We start out with the definition of semantic models as a means to interpret Lambek Grammars:

Definition 4.1. A semantic model is a structure M = 〈De, Dt〉 where De is a finite set, a domain
of entities, and where Dt is a finite set of truth-values.

From these very basic data, one can construct properties and relations over entities (e.g. the
love relation, the property of being a man) or even relations between entities and truth-values. All
these properties and relations are represented by characteristic functions, i.e. functions fA such
that fA(x) = 1 iff x ∈ A. We denote the domain of functions by Dab := DDa

b , inserting brackets
to disambiguate. For instance, a relation R ⊆ De ×De (imagine the relation ’x loves y’ here) for a
domain De = {j,m, b} where we have that R = {(j,m), (j, b), (m, b), (b,m)} can be represented by
the function fR in Deet, where fR(x, y) = 1 iff (x, y) ∈ R (poor John!).

As a concrete example, we give a toy grammar for a few sentences in english and a corresponding
semantic model. So, consider the following toy grammar:

john : np
mary : np
loves : (np\s)/np

where we can show that sentences like john loves mary, john loves john etc. are grammatical.
Now consider the semantic model M = 〈{j,m}, {0, 1}〉. We can now consider the following (typed)
homomorphism from syntactic to semantic types and from words to semantic functions obeying the
assigned types:

h(np) = De

h(s) = Dt

h(a\b) = Dh(a)h(b)

h(b/a) = Dh(a)h(b)

and

h(john) = j
h(mary) = m
h(loves) = f

where f is the characteristic function of {(j,m), (j, j)}.
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We can now see that the semantics for john loves mary is f(m)(j) = 1, indicating truth of the
sentence, whereas mary loves john results in f(j)(m) = 0 (poor John!).

One can immediately observe that using these semantic models for a semantics leads to a
fundamental problem: one needs to predefine the meaning of every word, something that is really
not very desirable when it comes to practical applications. We will see that it is more desirable to
switch to vector space semantics, giving a means of extracting word meaning out of a corpus and a
means to measure the similarity of linguistic expressions.

4.1.2 Vector Space Semantics

Vector space semantics associates to words a vector instead of a semantic function. The nice thing
about this kind of semantics is that the vectors in the dictionary can be obtained from a corpus in
the form of co-occurrence counts, stating how often a word co-occurs with any other word in the
corpus. In order to build compositional distributional models of meaning, we must first show that
finite-dimensional vector spaces form an interpretable category for Lambek Grammars:

Proposition 4.1. The category FVect of finite-dimensional vector spaces over R together with the
tensor product ⊗, is a compact closed category.

Proof. For every two vector spaces A,B there exists a tensor space A⊗B, and for every two linear

maps f : A→ C, g : B → D, we construct their tensor product by f⊗g := −→a ⊗
−→
b 7→ f(−→a )⊗g(

−→
b ).

We have bifunctoriality by

(idA ⊗ idB)(−→a ⊗
−→
b ) ((k ⊗ h) ◦ (g ⊗ f))(−→a ⊗

−→
b )

= idA(−→a )⊗ idB(
−→
b ) = (k ⊗ h)((g ⊗ f)(−→a ⊗

−→
b ))

= −→a ⊗
−→
b = (k ⊗ h)(g(−→a )⊗ f(

−→
b ))

= idA⊗B(−→a ⊗
−→
b ) = k(g(−→a ))⊗ h(f(

−→
b ))

= (k ◦ g)(−→a )⊗ (h ◦ f)(
−→
b )

= ((k ◦ g)⊗ (h ◦ f))(−→a ⊗
−→
b )

We define the unit to be R and go on to define the following (natural) isomorphisms:

αA,B,C := (−→a ⊗
−→
b )⊗−→c 7→ −→a ⊗ (

−→
b ⊗−→c )

λA := r ⊗−→a 7→ r−→a
ρA := −→a ⊗ r 7→ r−→a

cA,B := −→a ⊗
−→
b 7→

−→
b ⊗−→a

And coherence for a symmetric monoidal category follows easily.

Now define the dual of an object to be the dual vector space, i.e. Al = Ar = A∗. Since we
consider finite-dimensional vector spaces, we have that A ∼= A∗ by sending the basis of A to the
dual basis of A∗. Lastly, we can define an inner product on finite-dimensional vector spaces over
R. So we define the following closure maps:

η∗ := 1 7→
∑
i

−→v i ⊗−→v i ε∗ := −→v i ⊗−→v j 7→ 〈−→v i | −→v j〉
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where n is the dimension of V and {vi}ni=1 is a basis for V .
Coherence follows easily.

Corollary 4.1. The category FVect of finite-dimensional vector spaces over R together with the
tensor product ⊗, is a monoidal bi-closed category.

We will explicitly state the definitions of β and γ in this category. We have that both β and γ
are defined in terms of the co-evaluation map given by the map η∗, so we get

β(f) :=
−→
b 7→

∑
i

−→ai ⊗ f(−→ai ⊗
−→
b )

γ(f) := −→a 7→
∑
i

f(−→a ⊗
−→
bi )⊗

−→
bi

We have that β−1 and γ−1 are defined in terms of the evaluation map given by ε∗, so we get

β−1(g) := −→a ⊗
−→
b 7→

∑
ij

wij〈−→a |
−→
a′i 〉−→cj where g(

−→
b ) =

∑
ij wij

−→
a′i ⊗

−→cj

γ−1(g) := −→a ⊗
−→
b 7→

∑
ij

−→ci 〈
−→
b′j |
−→
b 〉wij where g(−→a ) =

∑
ij wij

−→ci ⊗
−→
b′j

In fact, finite-dimensional vector spaces are stronger than semantic models in the sense that
every semantic model can be modeled using vector spaces: the following definition gives the vector
representation of a semantic model, indicating that every semantic model can be represented within
vector space semantics with preservation of truth and falsity.

Definition 4.2. Let M = 〈De, Dt〉 be a semantic model. The vector space representation of M is
as follows:

• The vector space VDe
is spanned by the basis vectors −→x for x ∈ De,

• The vector space VDt
is spanned by one basis vector

−→
1 ,

• Any function space DAB is represented by VDA
⇒ VDB

.

More specifically, any semantic function f ∈ DAB on a semantic modelM can now be interpreted
in the vector representation of M as the following linear map V (f) ∈ VDA

⇒ VDB
: for any basis

vector −→x ∈ VDA
, we have that V (f)(−→x ) = −→y where −→y is the vector representation of y ∈ DB .

A special case is when DB = Dt, in which case 0 is interpreted as
−→
0 and 1 is interpreted as the

unique basic vector
−→
1 ∈ VDt

.

4.2 Interpreting Lambek Calculi

To interpret a Lambek grammar into a suitable semantics, we must first define what a suitable
semantic model is. In principle, we want this to be realized by any monoidal bi-closed category, but
we need something to map the words in the grammar in question to. Hence, we define a semantic
signature over a bi-closed category:

86



Definition 4.3. A semantic signature over a bi-closed category C is a triple M = (C, τ, S) where:

• C is a finite set of constants,

• τ : C → Ob(C) is a map that assigns an object in C to every constant,

• S is a distinguished goal type in Ob(C).

Now that we have defined semantic signatures, we can define a semantic interpretation over
Lambek grammars:

Definition 4.4. Let G = (Σ, δ, S) be a (categorical) Lambek Grammar over C(NLT ) and let
M = (C, τ, S′) be a semantic signature over a bi-closed category C. A semantic interpretation is a
bi-closed functor F : C(NLT )→ C together with a map I : Σ→ C such that

F (S) = S′

F (δ(w)) = τ(I(w)) for all w ∈ Σ

i.e. the word interpretation map I respects types.

Note that, in order to define the meaning of a sentence, we require the constants of a semantic
signature to be actual inhabitants of the objects of the category the signature is defined over. So,
given this assumption, we can define the meaning of a sentence as follows:

Definition 4.5. Given G = (Σ, δ, S) a Lambek Grammar over C(NLT ), M = (C, τ, S′) a semantic
signature over C such that the elements of C are actual inhabitants of the objects of C, and
a semantic interpretation 〈F, I〉, the meaning of a string w = w1...wn ∈ Σ+ is defined iff w is
a sentence of G. If it is defined, the meaning of w is F (p)(I(w1) ⊗ ... ⊗ I(wn)) where p is the
grammatical proof of δ(w1)⊗ ...⊗ δ(wn)→ S.

We are now ready to define the basic compositional distributional model of meaning as it is
employed in (Coecke et al., 2013) 1

Definition 4.6. A categorical compositional distributional model of meaning is a triple (G,M, 〈F, I〉)
where G is a Lambek grammar, M is a semantic signature and 〈F, I〉 is a semantic interpretation
over G and M .

4.3 An Example CCDMM

To illustrate our definitions, we give a simple truth-theoretic instantiation of a categorical compo-
sitional distributional model in terms of vector space semantics.

Consider the following Lambek grammar G:

john : np
mary : np
loves : (np\s)/np
the : np/n
unicorn : n

1Actually, the model of Coecke et al. is based on Lambek monoids, which enjoy antisymmetry.
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A witness for the sentencehood of John loves the unicorn is C−1C−1B−1((CB−1 (1(np\s)/np))/
1n).

Now we define the following semantic signature: C is the category of finite dimensional vector

spaces freely generated over the vector spaces N and S, where N is spanned by
−→
j ,−→m,−→u1,

−→u2 and S

is spanned by just one vector
−→
1 . We define C := {−→j ,−→m,−→u1,

−→u2,
−→
1 , f, g, h}, where f is the vector

representation of the characteristic function of {(j, u1), (j, u2)}, that is,

f ∼=
−→
j ⊗−→1 ⊗−→u1 +

−→
j ⊗−→1 ⊗−→u2 +

∑
−→x ,−→y ∈{ni}i

−→x ⊗−→0 ⊗−→y where (x, y) /∈ {(j, u1), (j, u2)}

and g is the map from N ⊗S to N that returns −→x only if the right value in the vector in N ⊗S
is exactly

−→
1 and corresponds to −→x and returns

−→
0 otherwise, that is,

g ∼= −→u1 ⊗ (−→u1 ⊗
−→
1 +−→u2 ⊗

−→
0 +
−→
j ⊗−→0 +−→m ⊗−→0 )

+−→u2 ⊗ (−→u1 ⊗
−→
0 +−→u2 ⊗

−→
1 +
−→
j ⊗−→0 +−→m ⊗−→0 )

+
−→
j ⊗ (−→u1 ⊗

−→
0 +−→u2 ⊗

−→
0 +
−→
j ⊗−→1 +−→m ⊗−→0 )

+−→m ⊗ (−→u1 ⊗
−→
0 +−→u2 ⊗

−→
0 +
−→
j ⊗−→0 +−→m ⊗−→1 )

+
−→
0 ⊗ other combinations in N ⊗ S.

and finally, h is the vector
−→
j ⊗−→0 +−→m ⊗−→0 +−→u1 ⊗

−→
1 +−→u2 ⊗

−→
1 in N ⊗ S.

Finally, we define the following semantic interpretation to complete our model: F is the straight-
forward strict bi-closed functor

F (np) = N
F (n) = N ⊗ S
F (s) = S
F (A⊗B) = F (A)⊗ F (B)
F (A\B) = F (A)⇒ F (B)
F (B/A) = F (B)⇐ F (A)

and I, the interpretation map, is defined as follows:

I(john) =
−→
j

I(mary) = −→m
I(loves) = f
I(the) = g
I(unicorn) = h

We now have a complete compositional distributional model of meaning. The meaning of John
loves the unicorn, for instance, becomes the application of F ([C−1 C−1 B−1((CB−1 (1(np\s)/np))/

1n)]) to
−→
j ⊗ f ⊗ g ⊗ h. This is

β−1β−1γ−1((βγ−1(id(N⊗S)⊗N ))⇐ idN⊗S)(
−→
j ⊗ f ⊗ g ⊗ h) =∑

ik

〈f | (−→ni ⊗
−→
1 )⊗−→nk〉〈gr | h〉〈−→nk | gl〉〈

−→
j | −→ni〉

−→
1
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As 〈−→j | −→ni〉 is 1 when −→ni =
−→
j and 0 otherwise, we can infer that in the expression, we only

need to cover the cases where −→ni =
−→
j . But then we can infer from the definition of f that −→nk can

be instantiated by −→u1 and −→u2. This leads us to infer that gl can only be instantiated with −→u1 or −→u2,
leading to consider only those right hand parts for g when taking the inner product with h. But
as these never agree with h, we still end up with an inner product of 0. Hence, the whole result

will be
−→
0 , representing the value false. This, however, is as predicted since the can only refer to a

specific unicorn when there is in fact exactly one unicorn.
Of course, in practice one will want to extract the meaning of basic words from a sufficiently

large corpus. We will not concentrate on actually doing this, but rather give directions on how one
would go about this in the next section.

4.4 Obtaining CCDMMs

How are compositional distributional models of meaning set up? Obviously, one want to avoid the
problem of having to predefine the semantic lexicon. But for the same reason, we do not want to
have to predefine grammars as well. So, obtaining a compositional distributional model becomes
the task of (a) inducing a grammar from a corpus and (b) inducing a semantics from a corpus.

Addressing part (b) first, one of the motivations of choosing vector space semantics over mon-
tague semantics is exactly the idea that vector spaces lend themselves perfectly to distributional
models, in which co-occurrence vectors/matrices are extracted from big data to obtain a meaning
for individual words. So, the semantics can be obtained from an unannotated corpus.

The question remains how grammars are obtained from big data; this is the problem of grammar
induction. This can be done either from semantic data, as is done by Delpeuch (2014), but induc-
ing grammars from semantic data is already NP-complete for systems based on compact closed
categories. Another way of grammar induction is to obtain grammars from a set of structured
sentences, as is done by Bonato and Retoré (2001); Kanazawa (1996).
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Part II

Extended Compositional
Distributional Models of Meaning
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Chapter 5

Categories Revisited

In this chapter, we continue our categorical exploration and delve into new concepts, largely ob-
tained by duality. We consider the dual notions of the various kinds of closed categories defined
in Chapter 1, giving rise to co-closed or open categories. We continue to explore the implications
of merging closed and open categories and adding linear distributivities to categories with a tensor
and cotensor. We will observe the new forms of symmetry obtained from the consideration of open
categories.
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5.1 Open Categories

We have already encountered the notion of duality in Chapter 1 where we defined the opposite
category and turned monads into comonads. Here we will apply duality to the various kinds of
closed categories considered in the first chapter. We saw that for C to be a left closed tensor
category, the functor A ⊗ determined by left tensoring by a fixed object A must have a right
adjoint A⇒ determined by applying the internal hom with a fixed object A. This gives a natural
isomorphism between HomC(A⊗B,C) and HomC(B,A⇒ C) natural in A, B and C. Dualizing
this notion, we get that a category C is right co-closed when it has a bifunctor ⊕ : C × C → C
together with a bifunctor �:: C ×Cop → C such that the functor ⊕ A has as a left adjoint the
functor � A, inducing an isomorphism between Hom(C,B ⊕ A) and HomC(C � A,B) natural
in A, B and C. So, in summary, we get the following notions for free:

Definition 5.1. A right open tensor category is a tensor category (C,⊕) equipped with a bifunctor
�: C→ Cop → C together with a natural isomorphism specified by σA,B,C : HomC(C,B ⊕A)→
HomC(C � A,B).

Definition 5.2. A left open tensor category is a tensor category (C,⊕) equipped with a bifunctor
�: Cop ×C→ C together with a natural isomorphism specified by ωA,B,C : HomC(C,B ⊕A)→
HomC(B � C,A).

Definition 5.3. A bi-open tensor category is a tensor category (C,⊕) that is both left and right
open.

Following the same pattern as in Chapter 1, we can analogously define associative and unitary
open tensor categories and monoidal open categories, to get another hierarchy of categories with
additional structure. Finally, we consider merging closed and open categories to get what we like
to call clopen categories:

Definition 5.4. A bi-clopen (bi-)tensor category is a double tensor category (C,⊗,⊕) that is
bi-closed with respect to ⊗ and bi-open with respect to ⊕.

We may now ask ourselves what happens when we dualize the notion of an autonomous category.
The following proposition states that nothing happens!

Proposition 5.1. Autonomous categories are self-dual, i.e. every co-autonomous category is an
autonomous category.

Proof. Dualizing the notion of an autonomous category gives us the following maps:

co-ηl : A⊗Al → I co-εl : I → Al ⊗A
co-ηr : Ar ⊗A→ I co-εr : I → A⊗Ar

together with the four yanking diagrams but with the arrows reversed. Now set Al := Ar and
Ar := Al and

ηl := co-εr

εl := co-ηl

ηr := co-εl

εr := co-ηl
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It is immediate that the dual diagrams now form exactly the defining diagrams of an autonomous
category.

As autonomous categories are self-dual, so are their symmetric variants compact closed cat-
egories. We can thus consider autonomous and compact closed categories as instantiations of
bi-clopen categories where the two tensors are identified:

Corollary 5.1. Every autonomous category is a bi-clopen category.

We will now consider another symmetry that is obtained by considering the relation between
left closed and right open (and similarly, right closed and left open) categories.

5.2 Another Symmetry

As we have obtained the definitions of left and right open categories from duality, it is obvious there
is a covariant isomorphism of categories between any left open and right open category sharing the
same set of basic objects. However, we note here that there is also a contravariant isomorphism of
categories between left closed and right open categories on the one hand, and between right closed
and left open categories on the other hand:

Let (C,⊗,⇒, β) be a left closed tensor category and let (D,⊕,�, σ) be a right open category.
Define the following (contravariant) functor F : C→ D:

F (A) = A
F (A⊗B) = F (B)⊕ F (A)
F (A⇒ B) = F (B)� F (A)
F (idA) = idF (A)

F (g ◦ f) = F (f) ◦ F (g)
F (f ⊗ g) = F (g)⊕ F (f)
F (f ⇒ g) = F (g)� F (f)
F (β(f)) = σ(F (f))

Next, define the following functor G : D→ C:

G(A) = A
G(B ⊕A) = G(A)⊗G(B)
G(B � A) = G(A)⇒ G(B)
G(idA) = idG(A)

G(g ◦ f) = G(f) ◦G(g)
G(g ⊕ f) = G(f)⊗ F (g)
G(g � f) = G(f)⇒ G(g)
G(σ(f)) = β(G(f))

Proposition 5.2. The functors F,G establish an isomorphism of categories between C and D.

In a similar fashion, one can construct an isomorphism between right closed and left open
tensor categories. Obviously, these results extend to the monoidal case. Moreover, one can merge
these symmetries to obtain a contravariant automorphism on bi-clopen categories, to get another
automorphism providing a symmetry on bi-clopen categories. As there is in general no relation
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between the two tensors of a bi-clopen category, we will consider adding distributivities that relate
the two “families”. Anticipating on the next chapter, we require that these distributivities respect
resources, and thus we consider linear distributivities.

5.3 Linearly Distributive Categories

In this section we consider linear distributive categories by enriching bi-clopen categories with in-
teraction transformations. As the logics we consider are designed for linguistic analysis, we wish
to add distributivities that respect resources, i.e. they should not copy or delete any informa-
tion, but rather restructure the given information in a way that does not induce associativity or
commutativity. We borrow the term linear distributivities from the work of Cockett et al. (Cock-
ett and Seely, 1997b; Blute et al., 1996; Cockett and Seely, 1997a) but we do intend to refer to
a slightly different notion here: indeed, linear distributivities in the sense of Cockett and Seely
refers to natural transformations relating two tensors in categories providing a characterization for
linear logic. They consider transformations of the form δLL : A ⊗ (B ⊕ C) → (A ⊗ B) ⊕ C and
δRR : (B ⊕ C)⊗ A → B ⊕ (C ⊗ A) which induce, in the case of a symmetric tensor, the permuting
distributivities δLR : A ⊗ (B ⊕ C) → B ⊕ (A ⊗ C) and δRL : (B ⊕ C) ⊗ A → (B ⊗ A) ⊕ C. We
deviate from their definitions for the purpose of characterizating the Lambek-Grishin Calculus with
type IV interactions (to be defined in Chapter 7); the distributivities used there have shown to
have linguistic application by the modelling of adjunction in Tree Adjoining Grammar (see (Moot,
2007)). Rather than directly relating the two tensors ⊗ and ⊕, we rely on interaction between
the primary tensor ⊗ and the two opening bifunctors � and � (we shall see later on that this
induces also a relation between the secondary tensor ⊕ and the primary closing bifunctors ⇒ and
⇐). For the case of a bi-clopen tensor category, these natural transformations need not satisfy any
coherence axioms, hence the definition becomes as follows:

Definition 5.5. A linearly distributive tensor category is a bi-closed, bi-open tensor category
(C,⊗,⊕,⇒,⇐,�,�, β, γ, σ, ω) together with natural transformations specified by

δL : (A� B)⊗ C → A� (B ⊗ C)
δR : C ⊗ (B � A)→ (C ⊗B)� A
κL : C ⊗ (A� B)→ A� (C ⊗B)
κR : (B � A)⊗ C → (B ⊗ C)� A

Things change when the base category is monoidal, and additional coherence axioms must be
stated:

Definition 5.6. A linearly distributive monoidal category is a bi-clopen monoidal category (C,⊗,⊕, I, J, α⊗, λ⊗, ρ⊗, α⊕, λ⊕, ρ⊕,⇒
,⇐, β, γ,�,�, σ, ω) together with natural transformations specified by

δL : (A� B)⊗ C → A� (B ⊗ C)
δR : C ⊗ (B � A)→ (C ⊗B)� A
κL : C ⊗ (A� B)→ A� (C ⊗B)
κR : (B � A)⊗ C → (B ⊗ C)� A

satisfying additionally the following equations:

• Unit and distribution:
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ρ⊗ = (id� ρ⊗) ◦ δL
λ⊗ = (λ⊗ � id) ◦ δR
λ⊗ = (id� λ⊗) ◦ κL
ρ⊗ = (ρ⊗ � id) ◦ κR

• Associativity and distribution:

δL ◦ α⊗ = (id� α⊗) ◦ δL ◦ (δL ⊗ id)
δR ◦ α−1

⊗ = (α−1
⊗ � id) ◦ δR ◦ (id⊗ δR)

(id� α⊗) ◦ κL = κL ◦ (id⊗ κL) ◦ α⊗
(α−1
⊗ � id) ◦ κR = κR ◦ (κR ⊗ id) ◦ α−1

⊗

• Distribution and distribution:

κL ◦ (id⊗ δL) ◦ α⊗ = (id� α⊗) ◦ δL ◦ (κL ⊗ id)
κR ◦ (δR ⊗ id) ◦ α−1

⊗ = (α−1
⊗ � id) ◦ δR ◦ (id⊗ κR)

The obvious question is whether the symmetries on a bi-clopen tensor category are preserved in
the presence of linear distributivities. The answer is confirmative, as we will show next.

5.3.1 Symmetry Preserved

We already noted that there are two symmetries in a bi-clopen tensor category: one in the form
of a covariant functor establishing a symmetry between left and right, and one in the form of a
contravariant functor establishing a symmetry between left/right and closed/open. What happens
when we try to apply these symmetries in the context of linear distributivities? We will show that
by a suitable choice of mapping the distributivities, these symmetries are preserved.

Consider the left/right symmetry which maps objects as follows:

S(A) = A
S(A⊗B) = S(B)⊗ S(A)
S(A⇒ B) = S(B)⇐ S(A)
S(B ⇐ A) = S(A)⇒ S(B)
S(B ⊕A) = S(A)⊕ S(B)
S(A� B) = S(B)� S(A)
S(B � A) = S(A)� S(B)

The easiest way to extend this symmetry to the linear distributive case is to simply map δL to
δR and κL to κR and back. We then get the following proposition:

Proposition 5.3. The endofunctor S is involutive.

Now consider the left/right and closed/open symmetry, which maps objects as follows:

T (A) = A
T (A⊗B) = T (B)⊕ T (A)
T (A⇒ B) = T (B)� T (A)
T (B ⇐ A) = T (A)� T (B)
T (B ⊕A) = T (A)⊗ T (B)
T (A� B) = T (B)⇐ T (A)
T (B � A) = T (A)⇒ T (B)
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We now face the issue that, for instance, T (δL) should have as input the object A ⇒ (B ⊕ C)
and as output (A ⇒ B) ⊕ C. To see that this poses no problem at all, we define T on the linear
distributivities as follows:

T (δL) = ω−1(γ(ω(γ−1(id(C⊕B)⇐A)) ◦ δL))
T (δR) = σ−1(β(σ(β−1(idA⇒(B⊕C))) ◦ δR))
T (κL) = σ−1(γ(σ(γ−1(id(B⊕C)⇐A)) ◦ κR))
T (κR) = ω−1(β(ω(β−1(idA⇒(C⊕B))) ◦ κL))

To ensure that T is involutive, we need to show that T (T (f)) = f for f ∈ {δL, δR, κL, κR}.
Since the cases for δR and κR are similar to their left variants by the first symmetry, we only show
the cases for δL and κL. The first case is proven by naturality and isomorphicity of γ, ω and δL:

T (T (δL)) =
T (ω−1(γ(ω(γ−1(id(C⊕B)⇐A)) ◦ δL))) =

γ−1(ω(ω−1(γ(ω(γ−1(id(C⊕B)⇐A)) ◦ δL)) ◦ γ(ω−1(idA�(B⊗C))))) =
γ−1(ω(ω−1(γ(ω(γ−1(id(C⊕B)⇐A)) ◦ δL) ◦ idC � γ(ω−1(idA�(B⊗C)))))) =

γ−1(γ(ω(γ−1(id(C⊕B)⇐A)) ◦ δL) ◦ idC � γ(ω−1(idA�(B⊗C)))) =
γ−1(γ(ω(γ−1(id(C⊕B)⇐A)) ◦ δL ◦ (idC � γ(ω−1(idA�(B⊗C))))⊗ idA)) =
ω(γ−1(id(C⊕B)⇐A)) ◦ δL ◦ ((idC � (γ(ω−1(idA�(B⊗C)))))⊗ idA) =
ω(γ−1(id(C⊕B)⇐A)) ◦ (idC � (γ(ω−1(idA�(B⊗C)))⊗ idA)) ◦ δL =

ω(γ1(id(C⊕B)⇐A) ◦ (γ(ω−1(idA�(B⊗C)))⊗ idA)) ◦ δL =
ω(γ−1(γ(ω(idA�(B⊗C))))) ◦ δL =

δL.

The proof of the second case involves naturality and isomorphicity of β and ω and naturality of
κL:

T (T (κL)) =
T (σ−1(γ(σ(γ−1(id(B⊕C)⇐A)) ◦ κR))) =

β−1(ω(ω−1(β(ω(β−1(idA⇒(C⊕B))) ◦ κL)) ◦ β(ω−1(idA�(C⊗B))))) =
β−1(ω(ω−1(β(ω(β−1(idA⇒(C⊕B))) ◦ κL) ◦ (idC � β(ω−1(idA�(C⊗B))))))) =

β−1(β(ω(β−1(idA⇒(C⊕B))) ◦ κL) ◦ (idC � β(ω−1(idA�(C⊗B))))) =
β−1(β(ω(β−1(idA⇒(C⊕B))) ◦ κL ◦ (idA ⊗ (idC � β(ω−1(idA�(C⊗B))))))) =

ω(β−1(idA⇒(C⊕B))) ◦ κL ◦ (idA ⊗ (idC � β(ω−1(idA�(C⊗B))))) =
ω(β−1(idA⇒(C⊕B))) ◦ (idC � (idA ⊗ β(ω−1(idA�(C⊗B))))) ◦ κL =

ω(β−1(idA⇒(C⊕B)) ◦ (idA ⊗ β(ω−1(idA�(C⊗B))))) ◦ κL =
ω(β−1(β(ω−1(idA�(C⊕B))))) ◦ κL =

κL.

By the symmetry established by the functor S, the remaining cases are covered, so we get the
following result:

Proposition 5.4. The endofunctor T is involutive.

Now that we have established the categorical definitions needed for characterizing the intended
extensions of the Lambek Calculus, we will consider dualizing the graphical language we have
developed in Chapter 2.
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Chapter 6

Graphical Languages, Again

In this chapter, we review graphical languages for open tensor categories, and linearly distributive
categories.
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6.1 Graphical Languages Dualized?

As we have reviewed in the previous chapter, there is a certain symmetry between closed and open
categories. We will want to exploit this duality at the level of graphical languages, in order to
automatically obtain graphical languages for open tensor categories. This graphical duality also
means that we get coherence for free. After exploring the novel graphical language, which we will
refer to as dual proof nets, we consider merging the graphical languages and investigate coherence
for this new language. A final step is to include linear distributivities to the graphical language and
assert its coherence.

6.2 Graphical Languages for Open Tensor Categories

We wish to develop a graphical language for bi-open tensor categories, but we wish to avoid the
tedious work of Chapter 2. Our way out then resides in duality: given that bi-open tensor categories
are dual to bi-closed tensor categories, we may exploit these symmetries at the graphical level. We
will start out by dualizing the sequent calculus for NL to obtain a sequent calculus called NG (we
will see in the next chapter why we chose a G abbreviating Grishin). We then develop a method
of dualizing proof nets into dual proof nets, and go on to define these and their equations. Finally,
we provide a dual sequentialization and give a method of obtaining morphisms in a bi-open tensor
category from the dual sequent calculus.

6.2.1 A Dual Sequent Calculus

As we want to employ the dual of the sequent calculus defined in Chapter 2, we simply transfer
contexts to the right of the turnstile and exchange premisses. We then get the following dual
definition of formulae:

Definition 6.1 (Formulae). Given a set of atomic formulae At, the set of dual formulae is defined
as follows:

A,B := p | B ⊕A | B �A | A;B for p ∈ At.

Given that we can express contexts now with the same binary merger as in the calculus for NL,
we can skip immediately to the definition of a dual sequent calculus:

Definition 6.2 (Dual Sequent Calculus). The sequent calculus presentation of NG is as follows:

A ` A Id
A ` Γ[B] B ` ∆

A ` Γ[∆]
Cut

C ` Γ[B •A]

C ` Γ[B ⊕A]
⊕R B ` ∆ A ` Γ

B ⊕A ` ∆ • Γ
⊕L

C ` Γ[A] B ` ∆

C ` Γ[A�B •∆]
�R A ` Γ •B

A�B ` Γ
�L

C ` Γ[A] B ` ∆

C ` Γ[∆ •B ;A]
;R A ` B • Γ

B ;A ` Γ
;L
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We can then dualize the equivalence relation on sequent proofs by adopting a similar notation
for proofs:

Definition 6.3. We define the following equivalence relation on proofs in NG:

• Identity unfolding, meaning

⊕R(⊕L(Id(B), Id(A))) ≡ Id(B ⊕A)
�L(�R(Id(B), Id(A))) ≡ Id(B �A)
;L(;R(Id(B), Id(A))) ≡ Id(A;B)

• Cut-elimination base case, meaning

Cut(Id(A), D1) ≡ D1

Cut(D1, Id(B)) ≡ D1

• Principal cut-elimination, meaning

Cut(⊕R(D3),⊕L(D2, D1)) ≡ Cut(Cut(D3, D1), D2)
Cut(⊕R(D3),⊕L(D2, D1)) ≡ Cut(Cut(D3, D2), D1)
Cut(�R(D3, D2),�L(D1)) ≡ Cut(D3, Cut(D1, D2))
Cut(�R(D3, D2),�L(D1)) ≡ Cut(Cut(D3, D1), D2)
Cut(;R(D3, D2),;L(D1)) ≡ Cut(D3, Cut(D1, D2))
Cut(;R(D3, D2),;L(D1)) ≡ Cut(Cut(D3, D1), D2)

• Permutative cut-elimination, meaning

Cut(D2,⊕R(D1)) ≡ ⊕R(Cut(D2, D1))

Cut(D3,�R(D2, D1)) ≡ �R(Cut(D3, D2), D1)

Cut(⊕R(D2), D1) ≡ ⊕R(Cut(D2, D1))

Cut(�L(D2), D1) ≡ �L(Cut(D2, D1))

Cut(;L(D2), D1) ≡ ;L(Cut(D2, D1))

Cut(⊕L(D3, D2), D1) ≡ ⊕L(Cut(D3, D1), D2)
when LHS(D1) = C and RHS(D3) = Γ′[C]

Cut(⊕L(D3, D2), D1) ≡ ⊕L(D3, Cut(D2, D1))
when LHS(D1) = C and RHS(D2) = Γ[C]

Cut(�R(D3, D2), D1) ≡ �R(Cut(D3, D1), D2)
when LHS(D1) = C and RHS(D3) = Γ[C][A]

Cut(�R(D3, D2), D1) ≡ �R(D3, Cut(D2, D1))
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when LHS(D1) = C and RHS(D2) = Γ′[C]

Cut(;R(D3, D2), D1) ≡ ;R(Cut(D3, D1), D2)
when LHS(D1) = C and RHS(D3) = Γ[C][A]

Cut(;R(D3, D2), D1) ≡ ;R(D3, Cut(D2, D1))
when LHS(D1) = C and RHS(D2) = Γ′[C]

6.2.2 Dual Proof Nets

According to the observed symmetry between closed and open categories, the ⊗ connective is
linked to the ⊕ connective, while the ⇒ is turned around and linked to the � connective, and
symmetrically we have that ⇐ is linked to �. We say that this is the symmetric image of the
connectives. A proof net for a bi-closed tensor category is turned into a proof net for a bi-open
tensor category in four steps (which may be applied interchangeably): 1) flip the net vertically, 2)
flip the net horizontally, 3) reverse the direction of the arrows and finally 4) replace each connective
by its symmetric image. We then obtain new links for proof nets for a bi-open tensor category by
applying this symmetry:
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⊗

A⊗B

A B

! ⊕
A B

A⊕B

⊗
A B

A⊗B

! ⊕

A⊕B

A B

⇒
A⇒ B

A B

! �
B A

B � A

⇒
A B

A⇒ B

! �

B � A

B A

⇐
B ⇐ A

B A

! �
A B

A� B

⇐
B A

B ⇐ A

! �

A� B

A B

Given that we may apply this graphical symmetry also to the inductive definition of proof
nets, we can immediately state the following inductive definition of dual proof nets (based on the
simplified došen axiomatization):

Definition 6.4. The class of dual proof nets is defined inductively as follows:

• Identity. The identity dual proof net for arbitrary A is given by
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A

• Dual Left Application. The following is a dual proof net:

�

⊕

A B

A� B B

(A� B)⊕B

• Dual Right Application The following is a dual proof net:

�

⊕

BA

A A� B

A⊕ (A� B)

• Dual Left Co-Application. The following is a dual proof net:

�

⊕

(B ⊕A)� A

B ⊕A A

B A

• Dual Right Co-Application. The following is a dual proof net:
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�

⊕

A� (A⊕B)

A⊕B

A

A

B

• Composition. Given two dual proof nets

N1

A

B

and N2

B

C

the following is a dual proof net:

N1

N2

A

B

C

• Monotonicity. Given two dual proof nets

N1

A

C

and N2

B

D

the following are dual proof nets:
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⊕

N1 N2

⊕

A⊕B

A B

C D

C ⊕D

�

N1 N∗2

�

A� D

A D

C B

C � B

�

N∗1 N2

�

C � B

C B

A D

A� D

• Nothing else is a dual proof net.

6.2.3 Dual Equations

To obtain the dual equations for our dual proof nets, we simply apply the bi-closed to bi-open tensor
category symmetry to our normal equations from Chapter 2. We then get the following equations
on dual proof nets (next to reflexivity, transitivity and symmetry):
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⊕

⊕

B A =

B ⊕A

B ⊕A

B ⊕A

⊕

B ⊕A

⊕

=

B A

B A

B A

�

�

B A =

B � A

B � A

B � A

�

B � A

�

=

B A

B A

B A

�

�

A B =

A� B

A� B

A� B

�

A� B

�

=

A B

A B

A B

N∗ = N N = N∗
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= =

6.2.4 Sequentialization

The process of sequentialization for dual proof nets is obviously similar to that for proof nets. The
sequentialization process is indicated in Figure 6.1. We get the following lemmas for free:

Lemma 6.1. Every dual proof net sequentializes.

Lemma 6.2. Any two equal dual proof nets have equivalent sequentializations.

6.2.5 Obtaining Categorical Morphisms

Translating from sequent proofs to categorical morphisms in a bi-open tensor category now becomes
almost trivial in the light of duality. The formula interpretation of sequents is already defined, and
we just note the following lemma:

Lemma 6.3. For every context Γ[] and morphism f : A→ ∆◦ there is a morphism op(f) : Γ[A]◦ →
Γ[∆]◦.

In Figure 6.2 the translation is given. From it, we immediately get the following lemma:

Lemma 6.4. Every equivalence between dual sequent proofs D1 ≡ D2 becomes equality of mor-
phisms T (D1) = T (D2).

6.2.6 The Category of Dual Proof Nets

Like in chapter 2, we are now ready to define and state a freeness theorem about the category of
dual proof nets.

Definition 6.5. Let Σ = (Σ0,Σ1, dom, cod) be a bi-open tensor signature. We define the category
of dual proof nets over Σ, denoted DPN(Σ), as follows:

• Ob(PN(Σ)) = Σ0,

• For every A in Σ0, we define the identity morphism as

A

• For every f in Σ1 with dom(f) = A and cod(f) = B, we define the corresponding morphism
as
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A  A ` A : Id(A)

A

A

⊕

A⊕B

A B
 B ⊕A ` B •A : ⊕L(Id(B), Id(A))

B ⊕A

B A

C ` Γ[B •A] : D1

⊕

C

B ⊕A

B A  C ` Γ[B ⊕A] : ⊕R(D1)

C

B ⊕A

�
B A

B � A

 
B ` B �A •A : �R(Id(B), Id(A))

B

B � A A

A

�

B ` Γ •A : D1

B � A

B

Γ A
A

 B �A ` Γ : �L(D1)

B � A

Γ

�
A B

A� B

 
B ` A •A;B : ;R(Id(B), Id(A))

B

A A� B

A

�

B ` A • Γ : D1

A� B

B

A Γ
A

 A;B ` Γ : ;L(D1)

A� B

Γ

A ` Γ[B] : D2

B ` ∆ : D1

A

B

∆

 A ` Γ[∆] : Cut(D2, D1)

A

∆

Figure 6.1: Sequentialization for dual proof nets
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A ` A Id  idA : A→ A

A ` Γ[B] B ` ∆

A ` Γ[∆]
Cut 

f : A→ Γ[B]◦ g : B → ∆◦

op(g) ◦ f : A→ Γ[∆]◦

C ` Γ[B •A]

C ` Γ[B ⊕A]
⊕R  

f : C → Γ[B •A]◦

f : C → Γ[B •A]◦

B ` ∆ A ` Γ
B ⊕A ` ∆ • Γ

⊕L  
f : B → ∆ g : A→ Γ

f ⊕ g : B ⊕A→ (∆ • Γ)◦

C ` Γ[A] B ` ∆

C ` Γ[A�B •∆]
�R 

f : C → Γ[A]◦ g : B → ∆◦

op(σ−1(idA � g)) ◦ f : C → Γ[A� B •∆]◦

A ` Γ •B
A�B ` Γ

�L  
f : A→ (Γ •B)◦)

σ(f) : A� B → Γ◦

C ` Γ[A] B ` ∆

C ` Γ[∆ •B ;A]
;R 

f : C → Γ[A]◦ g : B → ∆◦

op(ω−1(g � idA)) ◦ f : C → Γ[∆ •B � A]◦

A ` B • Γ
B ;A ` Γ

;L  
f : A→ (B • Γ)◦

ω(f) : B � A→ Γ

Figure 6.2: From Dual Sequent Proofs to Categorical Morphisms

f

A

B

• We define composition of morphisms as vertical gluing, i.e. for morphisms

N1

A

B

and N2

B

C

the following is their composition N2 ◦N1:

108



N1

N2

A

B

C

• For two morphisms

N1

A

C

and N2

B

D

we define N1 ⊕N2, N1 � N2 and N1 � N2 as follows:

⊕

N1 N2

⊕

A⊕B

A B

C D

C ⊕D

�

N1 N∗2

�

A� D

A D

C B

C � B

�

N∗1 N2

�

C � B

C B

A D

A� D

• Given a morphism

N

C

B ⊕A

we define σ(N) as

109



�

N

⊕

C � A

C

B ⊕A

B A

A

• Given a morphism

N

C � A

B

we define σ−1(N) as follows:

�

N

⊕

C

C � A

B

A

A

B ⊕A

• We define ω and ω−1 similarly to σ and σ−1 but with the images mirrored horizontally,

• All the equations for dual proof nets hold.

We leave it to the reader to verify the following proposition:

Proposition 6.1. For any bi-open tensor signature Σ, DPN(Σ) is a bi-open tensor category.

We moreover get a freeness theorem for free:

Theorem 6.1. For any bi-open tensor signature Σ, DPN(Σ) is the free bi-open tensor category
over Σ.
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6.3 Proof Nets and Dual Proof Nets Combined

We now want to explore the possibily of proof nets for bi-clopen tensor categories. But, as there is
no interaction between the ⊗,⇒,⇐ functors and the ⊕,�,� functors, we can simply merge the
definitions of proof nets and dual proof nets and get the following correction criteria:

Definition 6.6 (Planarity). A proof structure is planar when it contains no crossing links.

Definition 6.7 (External Face Requirement). A planar proof structure satisfies the external face
requirement if its unique input and output wires are on the external face of the graph.

Definition 6.8 (Operator Balance). A proof structure satisfies operator balance if and only if
every cycle contains an equal number of ⊗,⇒,⇐ tensor and cotensor nodes and an equal number
of ⊕,�,� tensor and cotensor nodes.

Definition 6.9 (Return Cycle Requirement). A proof structure satisfies the return cycle require-
ment precisely when all of the following requirements are met:

1. For every ⇒ cotensor node, there is a directed path from the node through its left output,
returning at the node,

2. For every ⇐ cotensor node, there is a directed path from the node through its right output,
returning at the node,

3. For every ⊗ cotensor node, there is no directed path from the node through one of its outputs
returning at the node,

4. For every � cotensor node, there is a directed path from the node through its left output,
returning at the node,

5. For every � cotensor node, there is a directed path from the node through its right output,
returning at the node,

6. For every ⊕ cotensor node, there is no directed path from the node through its only output,
returning at the node.

Definition 6.10 (Bi-Proof Net). A proof structure is a bi-proof net iff it satisfies planarity, operator
balance and the return cycle requirement.

We can now simply state that there is an inductive definition of bi-proof nets, it is namely the
merging of Definitions 2.16 and 6.4.

A sequent calculus for bi-clopen tensor categories would be the sequent calculus given in chapter
2 combined with the sequent calculus given in this chapter. We then get sequentialization and the
freeness theorem for the category of bi-proof nets for free. Things become somewhat more opaque,
however, when we start thinking about incorporating linear distributive laws, as the next section
shows.
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6.4 Graphical Languages for Linearly Distributive Categories

Up to this point, we have not really seen any new ideas in the landscape of graphical languages.
But it’s time to consider linear distributive laws and how these should affect our notion of bi-proof
nets.
We have decided to keep the proof net calculus as modular as possible. Hence, we introduce a new
proof net for every linear distributive law. Strictly speaking, these nets are not proof nets because
they violate operator balance and additionally may violate planarity. Therefore, we should give
them a special treatment when considering sequentialization.

Definition 6.11. The class of linear distributive proof nets is generated inductively as:

• All bi-proof nets are linear distributive proof nets,

• The following are linear distributive proof nets:

⊗

� C

A ⊗

�

(A� B)⊗ C

A� B

B

B ⊗ C

A� (B ⊗ C)

⊗

C �

⊗ A

�

C ⊗ (B � A)

B � A

B

C ⊗B

(C ⊗B)� A

⊗

�

⊗

�

C ⊗ (A� B)

A� B

C A

B

A A

C ⊗B

A� (C ⊗B)

⊗

�

⊗

�

(B � A)⊗ C

B � A

A C

B

C A

B ⊗ C

(B ⊗ C)� A
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In order to be able to interpret these new nets, we add the following axioms to the sequent
calculus for bi-proof nets:

(A;B)⊗ C ` A; (B ⊗ C)
D1

C ⊗ (B �A) ` (C ⊗B)�A D2

C ⊗ (A;B) ` A; (C ⊗B)
D3

(B �A)⊗ C ` (B ⊗ C)�A D4

We simply extend our sequentialization by the following rules:

⊗

� C

A ⊗

�

(A� B)⊗ C

A� B

B

B ⊗ C

A� (B ⊗ C)

 (A;B)⊗ C ` A; (B ⊗ C)
D1

⊗

C �

⊗ A

�

C ⊗ (B � A)

B � A

B

C ⊗B

(C ⊗B)� A

 C ⊗ (B �A) ` (C ⊗B)�A D2
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⊗

�

⊗

�

C ⊗ (A� B)

A� B

C A

B

A A

C ⊗B

A� (C ⊗B)

 C ⊗ (A;B) ` A; (C ⊗B)
D3

⊗

�

⊗

�

(B � A)⊗ C

B � A

A C

B

C A

B ⊗ C

(B ⊗ C)� A

 (B �A)⊗ C ` (B ⊗ C)�A D4

We then simply send the four distributive sequent axioms to the four distributive laws in the
linear distributive laws, via the following map:

(A;B)⊗ C ` A; (B ⊗ C)
D1  δL : (A� B)⊗ C → A� (B ⊗ C)

C ⊗ (B �A) ` (C ⊗B)�A D2  δR : C ⊗ (B � A)→ (C ⊗B)� A

C ⊗ (A;B) ` A; (C ⊗B)
D3  κL : C ⊗ (A� B)→ A� (C ⊗B)

(B �A)⊗ C ` (B ⊗ C)�A D4  κR : (B � A)⊗ C → (B ⊗ C)� A)

Given a bi-clopen tensor signature Σ we claim that LDPN(Σ), the system obtained by merging
PN(Σ) and DPN(Σ) and adding the four linear distributive nets, is in fact a linear distributive
category:

Proposition 6.2. For any bi-clopen tensor signature Σ, LDPN(Σ) is a linear distributive category.

Proof. We only need to check naturality of the distributivity nets, i.e. that the following equations
hold graphically:
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(g � (h⊗ k)) ◦ δL = δL ◦ ((g � h)⊗ k)
(g � (k ⊗ h)) ◦ κL = κL ◦ (k ⊗ (g � h))
((k ⊗ h)� g) ◦ δR = δR ◦ (k ⊗ (h� g))
((h⊗ k)� g) ◦ κR = κR ◦ ((h� g)⊗ k)

for g : A→ A′, h : B → B′ and k : C → C ′.

Since the latter two equations are symmetric to the first two, we will only illustrate the first two
equations. For the first equation, we note that the graphical representations of (g � (h⊗ k)) ◦ δL
and δL ◦ ((g � h)⊗ k) are as follows:

⊗

� C

A′ ⊗

�

�

⊗

g∗ h k

⊗

�

(A′ � B)⊗ C

A′ � B

B

B ⊗ C

A′ � (B ⊗ C)

B ⊗ C

B C

B′ C ′

B′ ⊗ C ′
A

A′

A� (B′ ⊗ C ′)

⊗

�

g∗ h k

�

⊗

⊗

� C ′

A ⊗

�

(A′ � B)⊗ C

A′ � B
C

B

B′A

A′

A� B′
C ′

(A� B′)⊗ C ′

A� B′

B′

B′ ⊗ C ′

A� (B′ ⊗ C ′)

And it is not very hard to see that both nets are equal to the following net:
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⊗

�

g∗ h k

⊗

�

(A′ � B)⊗ C

A′ � B
C

B

B′ C ′

B′ ⊗ C ′
A

A′

A� (B′ ⊗ C ′)

For the second equation, we draw the graphical representations of (g � (k ⊗ h)) ◦ κL and
κL ◦ (k ⊗ (g � h)):
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⊗

�

⊗

�

�

⊗

g∗ k h

⊗

�

C ⊗ (A′ � B)

A′ � B

C A′

B

A′ A′

C ⊗B

A′ � (C ⊗B)

C ⊗B

C B

C ′ B′

C ′ ⊗B′
A

A′

A� (C ′ ⊗B′)

⊗

�

k g∗ h

�

⊗

⊗

�

⊗

�

C ⊗ (A′ � B)

C
A′ � B

C ′

B

B′A

A′

A� B′

C ′ ⊗ (A� B′)

A� B′

C ′ A

B′

A A

C ′ ⊗B′

A� (C ′ ⊗B′)

These nets reduce respectively to the following:
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⊗

�

g∗ k h

⊗

�

C ⊗ (A′ � B)

A′ � B

C A′
B

C ′ B′

C ′ ⊗B′
A

A� (C ′ ⊗B′)

⊗

�

k g∗ h

⊗

�

C ⊗ (A′ � B)

C
A′ � B

A′ B

C ′
B′

C ′ ⊗B′

A

A� (C ′ ⊗B′)

By sliding the g∗ and k over the crossing, we get that these nets are equal.

We then get the following freeness theorem:

Theorem 6.2. For any linear distributive signature Σ, LDPN(Σ) is the free linear distributive
category over Σ.
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Chapter 7

A New Syntax

In this chapter, we consider dual variants of the Lambek Calculi, which we will call Grishin Cal-
culi. Combining the two variants gives the Lambek-Grishin Calculus, earlier explored in (Moortgat,
2009). We will again depict these logics as deductive systems in order to allow a natural categorifi-
cation of the systems considered. We will then see that this categorical interpretation gives rise to
new equivalences of categories.

7.1 Grishin and Lambek-Grishin Calculi, Categorically

Grishin Calculi are obtained by dualizing the patterns in Lambek Calculi. Instead of residuation
laws that, for instance, turn a proof f : A ⊗ B → C into a proof Cf : B → A\C, one considers
dual residuation laws that would turn a proof of f : C → B ⊗ A into a proof I f : C � A → B.
Hence, we consider the sets of free types generated by the dual connectives ⊕, � and ;, so in the
following definitions, T is a subset of {⊕,�,;}.

Definition 7.1. The (non-associative, non-unitary) right Grishin Calculus NGr over T is given
by the types in F (T, {⊕,�}) and the proofs generated by the following deductive system:

1A : A→ A
Ax

f : A→ B g : B → C

g ◦ f : A→ C
T

f : C → B ⊕A
I f : C �A→ B

CR2
g : C �A→ B

I−1 g : C → B ⊕A CR2′

f : A→ C g : B → D

f ⊕ g : A⊕B → C ⊕D M⊕
f : A→ C g : B → D

f � g : A�D → C �B M�

Definition 7.2. The (non-associative, non-unitary) left Grishin Calculus NGl is given by the types
in F (T, {⊕,;}) and the proofs generated by the following deductive system:
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1A : A→ A
Ax

f : A→ B g : B → C

g ◦ f : A→ C
T

f : C → B ⊕A
J f : B ; C → A

CR1
g : B ; C → A

J−1 g : C → B ⊕A CR1′

f : A→ C g : B → D

f ⊕ g : A⊕B → C ⊕D M⊕
f : A→ C g : B → D

g ; f : D ;A→ B ; C
M;

Again, we can derive monotonicity when merging the � and ; connectives:

Definition 7.3. The (non-associative, non-unitary) Grishin Calculus NG over is given by the
types in F (T, {⊕,�,;}) and the proofs generated by the following deductive system:

1A : A→ A
Ax

f : A→ B g : B → C

g ◦ f : A→ C
T

f : C → B ⊕A
J f : B ; C → A

CR1
f : C → B ⊕A
I f : C �A→ B

CR2

g : B ; C → A

J−1 g : C → B ⊕A CR1′
g : C �A→ B

I−1 g : C → B ⊕A CR2′

Now we define

f ⊕ g :=J−1 (g ◦ (JI−1 (f ◦ (I 1A⊕B))))
f � g :=I ((J−1 (g ◦ (JI−1 1C�B))) ◦ f)
g ; f :=J ((I−1 (g ◦ (IJ−1 1B;C))) ◦ f)

And we obtain monotonicity rules as derived rules of inference:

f : A→ C g : B → D

f ⊕ g : A⊗B → C ⊗D M⊕

f : A→ C g : B → D

f � g : A�D → C �B M�

f : A→ C g : B → D

g ; f : D ;A→ B ; C
M;

Again, we might add associativity and a unit object. This amounts to adding the following
rules:

⊕aA,B,C : (A⊕B)⊕ C → A⊕ (B ⊕ C)
Ass⊕

⊕a
−1
A,B,C : A⊕ (B ⊕ C)→ (A⊕B)⊕ C

Ass′⊕

and/or adding a unit object J to the set of basic types T and consequently adding the following
inference rules:
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⊕lA : J ⊕A→ A
L⊕

⊕l
−1
A : A→ J ⊕A

L′⊕

⊕rA : A⊕ J → A
R⊕

⊕r
−1
A : A→ A⊕ J

R′⊕

We now want to explore the possibility of merging the Lambek Calculus and the Grishin Cal-
culus. This is called the Lambek-Grishin Calculus and was already explored in (Moortgat, 2009).

Definition 7.4. The (non-associative, non-unitary) Lambek-Grishin Calculus LG∅ is given by the
types in F (T, {⊗, \, /,�,;}) and the proofs generated by the following deductive system:

1A : A→ A
Ax

f : A→ B g : B → C

g ◦ f : A→ C
T

f : A⊗B → C

Bf : A→ C/B
R1

f : A⊗B → C

Cf : B → A\C R2

g : A→ C/B

B−1g : A⊗B → C
R1′

g : B → A\C
C−1g : A⊗B → C

R2′

f : C → B ⊕A
J f : B ; C → A

CR1
f : C → B ⊕A
I f : C �A→ B

CR2

g : B ; C → A

J−1 g : C → B ⊕A CR1′
g : C �A→ B

I−1 g : C → B ⊕A CR2′

Again, the monotonicity rules are derived using exactly the same recipes as before. Also, one
could add associativity for either of the ⊗,⊕ connectives, or add a unit object together with the
appropriate deduction rules.

We will now consider extending LG∅ with so-called weak distributivity laws. However, a note
of caution is in its place here: for linguistics purposes, one might not want to admit associativity of
either the ⊗ of the ⊕ connective. Furthermore, commutativity is definitely an undesirable property.
We will consider the following laws, henceforth referred to as type IV interactions:

δ; : (A;B)⊗ C → A; (B ⊗ C) δ� : C ⊗ (B �A)→ (C ⊗B)�A
κ; : C ⊗ (A;B)→ A; (C ⊗B) κ� : (B �A)⊗ C → (B ⊗ C)�A

as well as their converses, i.e.

δ′; : A; (B ⊗ C)→ (A;B)⊗ C δ′� : (C ⊗B)�A→ C ⊗ (B �A)
κ′; : A; (C ⊗B)→ C ⊗ (A;B) κ′� : (B ⊗ C)�A→ (B �A)⊗ C

However, as we will show, adding all eight laws leads to undesirable properties: near-associativity
and near-commutativity are present for the individual ⊗ and ⊕ connectives when all laws are
present. A few cases for ⊕ are shown in Figure 7.1.
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All in all, we get the following derivable two-way inference rules (see also (Bastenhof, 2013)):

(A⊗B)⊗ C → D ⊕ E
A⊗ (B ⊗ C)→ D ⊕ E

(A⊗B)⊗ C → D ⊕ E
(A⊗ C)⊗B → D ⊕ E

A⊗ (B ⊗ C)→ D ⊕ E
B ⊗ (A⊗ C)→ D ⊕ E

A⊗B → (C ⊕D)⊕ E
A⊗B → C ⊕ (D ⊕ E)

A⊗B → (C ⊕D)⊕ E
A⊗B → (C ⊕ E)⊕D

A⊗B → C ⊕ (D ⊕ E)

A⊗B → D ⊕ (C ⊕ E)

7.1.1 Categorification

The process of categorification for Grishin Calculi is completely analogous to that of Lambek Calculi.
Thus, we construct an equivalence relation using the following equivalences:

1. Substitution properties: If f ≡ g then ∗f ≡ ∗g where ∗ ∈ {J,J−1,I,I−1}, and if f ≡ g and
k ≡ h then k ◦ f = h ◦ g. A resulting property is that if f ≡ g and k ≡ h then f ∗ k ≡ g ∗ h
where ∗ ∈ {⊕,;,�}.

2. Categorical axioms: this amounts to f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h and f ◦ 1A ≡ f ≡ 1B ◦ f where
f : A→ B.

3. Coresiduation is isomorphic: this amounts to ∗−1 ∗ f ≡ f , ∗ ∗−1 g ≡ g for ∗ ∈ {J,I}.

4. Bifunctoriality of ⊕,;,�. One can easily show that 1A ∗ 1B ≡ 1A∗B where ∗ ∈ {⊕,;,�} but
the following equivalences are defined:

(f ⊕ g) ◦ (k ⊕ h) ≡ (f ◦ k)⊕ (g ◦ h)
(h; k) ◦ (g ; f) ≡ (g ◦ h) ; (k ◦ f)
(h� k) ◦ (g � f) ≡ (h ◦ g)� (f ◦ k)

5. Naturality of coresiduation. This means that for f : C → B′⊕A′ and g : A′ → A, h : B′ → B,
k : C ′ → C, we have that

(g ◦ (J f)) ◦ (h; k) ≡J (((h⊕ g) ◦ f) ◦ k) and
(h ◦ (I f)) ◦ (k � g) ≡I (((h⊕ g) ◦ f) ◦ k).

6. For G(l/r), one adds the following requirements:

(a) Associativity is isomorphic, i.e. ⊕a
−1
A,B,C◦ ⊕aA,B,C ≡ 1A⊕(B⊕C) and ⊕aA,B,C◦ ⊕a−1

A,B,C ≡
1(A⊕B)⊕C for every A,B,C,

(b) Associativity is natural, i.e. (f ⊕ (g ⊕ h)) ◦ ⊕aA,B,C ≡ ⊕aA′,B′,C′ ◦ ((f ⊕ g) ⊕ h) for
f : A→ A′,g : B → B′, h : C → C ′.

7. For UG(l/r), one adds the following requirements:

(a) Unit deletion is isomorphic, i.e. ⊕l
−1
A ◦ ⊕lA ≡ 1J⊕A, ⊕lA◦ ⊕l−1

A ≡ 1A, ⊕r
−1
A ◦ ⊕rA ≡ 1A⊕J

and ⊕rA ◦ ⊕r−1
A ≡ 1A for every A,

(b) Unit deletion is natural, i.e. for every f : A→ A′ we have that f ◦ ⊕lA ≡ ⊕lA′ ◦ (1J ⊕f)
and f ◦ ⊕rA ≡ ⊕rA′ ◦ (f ⊕ 1J).
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To obtain the categorification of LG∅, one simply merges the equivalence relations defined for
NL and NG. When one adds weak distributive laws, one must ensure that these are natural, hence
for type IV distributivities one adds

(g ; (h⊗ k)) ◦ δ; ≡ δ; ◦ ((g ; h)⊗ k)
(g ; (k ⊗ h)) ◦ κ; ≡ κ; ◦ (k ⊗ (g ; h))
((k ⊗ h)� g) ◦ δ� ≡ δ� ◦ (k ⊗ (h� g))
((h⊗ k)� g) ◦ κ� ≡ κ� ◦ ((h� g)⊗ k)

The resulting category, definitely a linear distributive category, is denoted cLGIV .

7.2 Another Equivalence

It is not hard to define translations of Grishin Calculi, whether they are associative or not, and
whether they are unitary or not. By duality, we thus get the following propositions:

Proposition 7.1. cNG(l/r) ∼= (L/R/B)OCst.

Proposition 7.2. cG(l/r) ∼= A(L/R/B)OCst.

Proposition 7.3. cUG(l/r) ∼= M(L/R/B)OCst.

We are now in a position to show another equivalence result, namely between the category of
Lambek-Grishin Calculi with type IV interactions and the category of linear distributive categories.
To this end, we define translations of Lambek-Grishin Calculi as follows:

Given two Lambek-Grishin Calculi LGIV
T and LGIV

T ′ , a translation is a map t that sends T to
F (T ′, {⊗, /, \,⊕,;,�}) and sends proofs to proofs such that the following holds:

• t strictly preserves the type operations, i.e. t(A ⊗ B) = t(A) ⊗ t(B), t(B/A) = t(B)/t(A),
t(A\B) = t(A)\t(B), t(B⊕A) = t(B)⊕ t(A), t(A;B) = t(A); t(B), t(B�A) = t(B)� t(A),

• t preserves the structural axioms, i.e. t(δ;) = δ;, t(δ�) = δ�, t(κ;) = κ;, t(κ�) = κ�,

• t preserves the equivalence relation on proofs, i.e. if f ≡ g in LGIV
T then t(f) ≡ t(g) in LGIV

T ′ .

Like in Chapter 3, we can form a category by considering all Lambek-Grishin Calculi with
type IV distributivities as objects and translations between them as morphisms. We will de-
note this category by cLGIV . As the objects of this category are all linear distributive tensor
categories and the translations are (strict) linear distributive functors, we already have one di-
rection of the Curry-Howard-Lambek correspondence for Lambek-Grishin systems and linear dis-
tributive tensor categories. Given such a linear distributive tensor category (C,⊗,⊕,⇒,⇐,�,�
, β, γ, σ, ω, δL, δR, κL, κR) we can easily generate a Lambek-Grishin system as the system LGIV

Ob(C).
That is,

• The set of types T is precisely Ob(C) under the following object-to-type interpretation:
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i(A) = A
i(A⊗B) = i(A)⊗ i(B)
i(A⇒ B) = i(A)\i(B)
i(B ⇐ A) = i(B)/i(A)
i(B ⊕A) = i(B)⊕ i(A)
i(B � A) = i(B)� i(A)
i(A� B) = i(A) ; i(B)

• Morphisms of C are mapped to proofs by the following interpretation:

j(idA) = 1i(A)

j(g ◦ f) = j(g) ◦ j(f)
j(f ⊗ g) = j(f)⊗ j(g)
j(f ⇒ g) = j(f)\j(g)
j(g ⇐ f) = j(g)/j(f)
j(g ⊕ f) = j(g)⊕ j(f)
j(g � f) = j(g)� j(f)
j(f � g) = j(f) ; j(g)
j(β(f)) = C(j(f))
j(γ(f)) = B(j(f))
j(σ(g)) = I (j(g))
j(ω(g)) = J (j(g))
j(δL) = δ;

j(δR) = δ�

j(κL) = κ;

j(κR) = κ�

and for any additional map f : A→ B in C, there is a proof j(f) : j(A)→ j(B).

Let LDTCst denote the category of linear distributive tensor categories with strict linear dis-
tributive tensor functors as morphisms. Now, given that any translation between two Lambek-
Grishin systems is a strict functor, and for any strict functor F : C→ D where C and D are linear
distributive tensor categories, there is the obvious translation F ′ between the associated Lambek-
Grishin systems LGIV

C and LGIV
D , which acts precisely like F but under the interpretation of C

and D into deductive systems, we get the following proposition:

Proposition 7.4. cLGIV ∼= LDTCst.

7.3 Grammars

In this section, we define Grishin and Lambek-Grishin grammars and note some results on generative
capacity of such systems.

Definition 7.5. Given an alphabet Σ and a Grishin calculus G of choice (with or without associa-
tivity and/or units) where F (T,C) is the set of types of G, a dictionary is a relation δ ⊆ Σ×F (T,C).

Definition 7.6 (Grishin Grammar). A Grishin grammar over a Grishin calculus G is a triple
(Σ, δ, S) where
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• Σ is an alphabet,

• δ is a dictionary over Σ and G,

• S ∈ F (T,C) is a distinguished start symbol.

Definition 7.7. Given a Grishin grammar (Σ, δ, S) over G, a sequence of words w1 · ... · wn ∈ Σ+

is a sentence if and only if there exists a sequence W1⊕ ...⊕Wn (where each Wi ∈ δ(wi)) such that
there is a proof in the system G of S →W1 ⊕ ...⊕Wn.

Definition 7.8. Given a Grishin grammar G = (Σ, δ, S) over G, the language of G is defined as

(G) = {w ∈ Σ+ | w is a sentence of G}.

Definition 7.9. The class of languages generated by a Grishin Calculus G is defined as the class
containing all languages generated by some Grishin Grammar over G.

We then get the following theorem by symmetry:

Theorem 7.1. The class of languages generated by any Grishin grammar G coincides with the
context-free languages.

Sketch. Given that the class of languages generated by any Lambek grammar L coincides with
the context-free languages, consider such a Lambek grammar L = (Σ, δ, S). Applying the arrow-
preserving left/right symmetry and then the arrow-reversing dualizing symmetry to the types in
δ and to S, we get that exactly the same language will be generated by the resulting Grishin
grammar.

Only the definition of sentencehood will be different when considering Lambek-Grishin systems.
The other definitions can be obtained by replacing the Grishin calculi G by the Lambek-Grishin
calculi LG(IV ):

Definition 7.10. Given a Lambek-Grishin grammar (Σ, δ, S) over LG(IV ), a sequence of words
w1 · ... · wn ∈ Σ+ is a sentence if and only if there exists a sequence W1 ⊗ ... ⊗Wn (where each
Wi ∈ δ(wi)) such that there is a proof in the system LG(IV ) of W1 ⊗ ...⊗Wn → S.

Note that we could have also required the type sequence to be of the form W1 ⊕ ... ⊕Wn and
then requiring that there be a proof of S →W1 ⊕ ...⊕Wn. We chose the former option, however.

As to generative capacity, it turns out that the Lambek-Grishin base logic (that is, the system
without interactions) has the same recognizable class of languages as the Lambek Calculus or
Grishin Calculus. This might be not so obvious, but becomes clear when one considers that there is
no way to relate the Lambek connectives with the Grishin connectives, and hence a base Lambek-
Grishin Calculus may at most recognize the union of two context-free languages, but the latter class
is closed under union. So, we have the following theorem due to Bastenhof (2010):

Theorem 7.2. The class of languages generated by any Lambek-Grishin calculus LG coincides with
the context-free languages.

Considering the Lambek-Grishin Calculus enriched with interaction postulates, we get that the
recognizing capacity of the corresponding grammars exceeds that of the context-free languages. It
was already shown by Moot (2007) that Tree Adjoining Grammars, which recognize mildly context-
sensitive languages, can be modelled by the interaction maps. However, the generative capacity of
the Lambek-Grishin system was two years later shown to even exceed the class of Tree Adjoining
Languages by Melissen (2011):
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Theorem 7.3. The class of languages generated by any Lambek-Grishin calculus with distributivi-
ties LGIV properly includes the class of Tree Adjoining Languages.

Now that we have explored the symmetric extension of the Lambek Calculus and have seen how
it is categorically characterized, we will show in the next chapter how to embed these type logics
in extended compositional distributional models of meaning.
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Chapter 8

Semantics

In this chapter, we elaborate on the possibility of connecting Lambek-Grishin grammars to finite-
dimensional vector spaces. As we have seen in the previous chapter, a Lambek-Grishin calculus
with type IV interactions forms a linearly distributive tensor category. To interpret such a calculus,
thus requires a semantic category that is at least a linearly distributive tensor category, possibly
with some additional structure. We will show that finite-dimensional vector spaces exactly have
these desired properties.
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8.1 Vector Spaces as a Linearly Distributive Category

We have already seen how vector space semantics can be used to interpret derivation in a Lambek
grammar, as finite-dimensional vector spaces with the tensor product form a bi-closed monoidal
category (since they are compact closed). However, because of the self-duality of compact closed
categories, it follows that FVect is automatically a bi-clopen tensor category where the two tensors
coincide. Because the tensor is symmetric, the linear distributivities now can be defined in terms
of the associativity and symmetry maps. Specifically, we have that the β and γ maps (and their
inverses) of FVect are given by

β(f) :=
−→
b 7→

∑
i

−→ai ⊗ f(−→ai ⊗
−→
b )

γ(f) := −→a 7→
∑
i

f(−→a ⊗
−→
bi )⊗

−→
bi

β−1(g) := −→a ⊗
−→
b 7→

∑
ij

wij〈−→a |
−→
a′i 〉−→cj where g(

−→
b ) =

∑
ij wij

−→
a′i ⊗

−→cj

γ−1(g) := −→a ⊗
−→
b 7→

∑
ij

−→ci 〈
−→
b′j |
−→
b 〉wij where g(−→a ) =

∑
ij wij

−→ci ⊗
−→
b′j

whereas the σ and ω maps and their inverses are given by

σ(f) := −→c ⊗−→a 7→
∑
ij

−→
bi 〈
−→
a′j |−→a 〉wij where f(−→c ) =

∑
ij wij

−→
bi ⊗

−→
a′j

ω(f) :=
−→
b ⊗−→c 7→

∑
ij

wij〈
−→
b |
−→
b′i 〉−→aj where f(−→c ) =

∑
ij wij

−→
b′i ⊗

−→aj

σ−1(g) := −→c 7→
∑
i

g(−→c ⊗−→ai )⊗−→ai

ω−1(g) := −→c 7→
∑
i

−→
bi ⊗ g(

−→
bi ⊗−→c )

and the linear distributivities are defined as follows:

δL := α
δR := α−1

κL := α ◦ (cC,A ⊗ idB) ◦ α−1

κR := α−1 ◦ (idB ⊗ cA,C) ◦ α

We then get the following proposition:

Proposition 8.1. The category FVect of finite-dimensional vector spaces together with the tensor
product ⊗, forms a linearly distributive monoidal category.

Proof. We have already seen that FVect is a bi-clopen monoidal category by virtue of compact
closure. We then only need to check that the additional coherence maps for the linear distributivities
are satisfied, but these are routine checks of which we will show a few:

• The first coherence map for unit and distribution states that ρA⊗B = (idA⊗ρB)◦αA,B,I . But

given a vector −→a ⊗
−→
b ⊗ r we have that applying ρA⊗B results in r(−→a ⊗

−→
b ) whereas applying

(idA ⊗ ρB) ◦ αA,B,I gives −→a ⊗ r
−→
b but these are the same.
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• The first coherence map for associativity and distribution states that αA,B,(C⊗D)◦α(A⊗B),C,D =
(idA ⊗ αB,C,D) ◦ αA,(B⊗C),D ◦ (αA,B,C ⊗ idD) but the effect of applying the left map to

((−→a ⊗
−→
b )−→c )

−→
d is −→a ⊗ (

−→
b ⊗ (−→c ⊗

−→
d )) which is equal to the effect of the right map.

• The first coherence map for distribution and distribution states that αA,C,(B⊗D) ◦ (cC,A ⊗
idB⊗D)◦α−1

C,A,(B⊗D) ◦ (idC ⊗αA,B,D)◦αC,(A⊗B),D = (idA⊗αC,B,D)◦αA,(C⊗B),D ◦ ((αA,C,B ◦
(cC,A ⊗ idB) ◦ α−1

C,A,B)⊗ idD) but the effect of applying the left map to (−→c ⊗ (−→a ⊗
−→
b ))⊗

−→
d

is −→a ⊗ (−→c ⊗ (
−→
b ⊗
−→
d )) which is also obtained when applying the right map.

Now that we have established that FVect is a linear distributive monoidal category, we have
ensured that grammars based on the Lambek-Grishin Calculus with type IV interactions are inter-
pretable in finite-dimensional vector spaces and thus we are ready to define extended compositional
distributional models of meaning, which we will do in the next section.

8.2 Interpreting the Lambek-Grishin Calculus

To begin with, we define a semantic signature and interpretation for a Lambek-Grishin grammar
completely analogous to the case of Lambek grammars.

Definition 8.1. A semantic signature over a linearly distributive category C is a triple M =
(C, τ, S) where:

• C is a finite set of constants,

• τ : C → Ob(C) is a map that assigns an object in C to every constant,

• S is a distinguished goal type in Ob(C).

Definition 8.2. Let G = (Σ, δ, S) be a (categorical) Lambek-Grishin Grammar over C(LGIVT ) and
let M = (C, τ, S′) be a semantic signature over a linearly distributive category C. A semantic
interpretation is a linearly distributive functor F : C(LGIVT )→ C together with a map I : Σ→ C
such that

F (S) = S′

F (δ(w)) = τ(I(w)) for all w ∈ Σ

Definition 8.3. An extended categorical compositional distributional model of meaning is a cat-
egorical Lambek-Grishin grammar G over C(LGIVT ) together with a semantic signature M over C
and a semantic interpretation 〈F, I〉.

It should be clear that here we opt for a direct translation of Lambek-Grishin derivations into
proofs in a linear distributive category. Again, we demand our semantic signatures to be defined
over categories that have sets as objects, so that one can actually compute a meaning:

Definition 8.4. Given G = (Σ, δ, S) a Lambek-Grishin Grammar over C(LGIVT ), M = (C, τ, S′)
a semantic signature over C such that the elements of C are actual inhabitants of the objects of
C, and a semantic interpretation 〈F, I〉, the meaning of a string w = w1...wn ∈ Σ+ is defined iff
w is a sentence of G. If it is defined, the meaning of w is F (p)(I(w1)⊗ ...⊗ I(wn)) where p is the
grammatical proof of δ(w1)⊗ ...⊗ δ(wn)→ S.
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The definition of an extended compositional distributional model of meaning is then analogous
to the case of the Lambek systems:

Definition 8.5. An extended categorical compositional distributional model of meaning is a triple
(G,M, 〈F, I〉) where G is a Lambek-Grishin grammar, M is a semantic signature and 〈F, I〉 is a
semantic interpretation over G and M .

8.3 A Collapsed Semantics

One might now wonder what the effect is of using the Lambek-Grishin Calculus as a syntactic
backbone when we use the same vector spaces as a semantics; the collapse of tensor and co-tensor
and their four implications make that the structural morphisms of the semantics are identical to
those in the base models. Why should we get better results?

Well, one should consider that when using the models, the syntactic derivations are used in
order to compute meaning. Since the extended models block global associativity but do allow for
linear distributivities, the way meaning is computed is, although still by simple application, much
more fine grained. That is, even though global commutativity and associativity are present in finite
dimensional vector spaces, they are only used when the syntax specifies it.
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Conclusion & Future Directions

In this final chapter, we will summarize our findings and elaborate on possible directions for future
research.

Contributions

This thesis is an attempt at providing a framework for compositional distributional semantics based
on the different variants of the Lambek Calculus (part I) and the extension of the non-associative
Lambek Calculus NL to the Lambek-Grishin Calculus with type IV interactions (part II). Each
part has a similar structure. Each first chapter has introduced the relevant categorical concepts
one needs in order to situate the relevant type logics with respect to the Curry-Howard-Lambek
correspondence. Each second chapter then develops the method of reasoning about morphism
structure and equality in terms of string diagrams which are based on proof nets but deviate from
the latter in that they require another way of defining equality between nets. Each third and fourth
chapter then closes the parts by introducing the type logics and their categorical characterization
and showing how each logic can interpreted in the category of finite-dimensional vector spaces, thus
forming the basis of defining categorical compositional distributional models of meaning.

Future Research

There are obvious limitations to this study: first of all, the proposed framework ought to be
empirically evaluated to see whether the adoption of Lambek-Grishin grammars indeed gives a
more accurate semantics. Secondly, the Lambek-Grishin Calculus is not the only type logic around;
one could choose from a wide range of extensions of the Lambek Calculus and see whether these
give rise to structured categories interpretable in vector space semantics.

Evaluation

For the purpose of practically applying compositional distributional models of meaning, these mod-
els should be empirically evaluated against a large corpus. As we already noted in chapter 4, this
also raises the issue of integrating grammar induction in the process of empirical evaluation of the
models. Taking a truly empirical stand, evaluation should consist of both inducing grammars and
extracting co-occurrence vectors from a realistic corpus. Although grammar extraction for Dutch
and French has been done for certain type logical grammars Moot (2010a,b), the task of grammar
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induction has not been performed for Lambek-Grishin grammars. However, one could take an ex-
isting, fixed grammar and use that to perform evaluation tasks such as sense disambiguation (in a
similar fashion to what is done by Coecke et al. (2013)) or sentence similarity judgements.

Different Type-Logics

As we saw in the Introduction, the Lambek-Grishin Calculus is but one of the type logics designed
to overcome the limitations of the Lambek Calculus. We have chosen to investigate the categorical
aspects of this calculus as it was expected to have an intuitive interpretation in terms of symmetry
and linear distributivities. Some notable other candidates for discussion are Combinatory Categorial
Grammar, Multimodal Categorial Grammar, and the Displacement Calculus.

Multimodal Categorial Grammar enriches the base Lambek system with unary modalities that
allow structural control : type-assignments with these modalities license or block the applicabil-
ity of certain structural rules in the derivation process. The modalities of Multimodal Categorial
Grammar come in residuated pairs, which then give rise to adjoint functors in the correspond-
ing categorical languages. It would certainly be an interesting line of research to see how these
multimodal systems can be interpreted in finite-dimensional vector spaces.

The Displacement Calculus extends the Lambek Calculus with wrapping operations for handling
discontinuous dependencies. Whereas the Lambek calculus can be seen as the logic of strings
composed by concatenation, Displacement Calculus adds facilities for dealing with split strings:
expressions consisting of detached parts. On the type level, in addition to the Lambek operations,
one has an extra residuated triple for the wrapping operations and a special constant, the separator,
serving as a placeholder to mark the target sites for the intercalation of expressions. Further
research would be needed to properly understand the categorical properties of this system, but an
idea would be to introduce displacement categories, where a special object acts as a placeholder for
other objects.
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