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Abstract

It is becoming increasingly clear that computing systems should not be viewed
as isolated machines performing sequential steps, but instead as cooperating
collections of such machines. The work of Milner and others shows that ’classi-
cal’ models of computation (such as the λ-calculus) are encompassed by suitable
distributed models of computation. However, while by now (sequential) com-
putability is quite a rigid mathematical notion with many fruitful interpreta-
tions, an equivalent formal treatment of distributed computation, which would
be universally accepted as being canonical, seems to be missing.

The goal of this thesis is not to resolve this problem, but rather to revisit the
design choices of formal systems modelling distributed systems in attempt to
evaluate their suitability for providing a formals basis for distributed program-
ming languages. Our intention is to have a minimal process calculus which
would be amenable to static analysis. More precisely, we wish to harmonize
the assumptions of π-calculus with a linear typing discipline for process calculi
called Session Types.

We begin by discussing and comparing various process calculi, both in purely
theoretical and in pragmatic terms. In doing so, we discover an interesting
misalignment between some folklore interpretations of results in the literature
on process calculi, which stems from a lack of sufficient criteria for relating
process languages.

The comparison leads us to a restricted subset of π-calculus which we call πdist,
reminiscent of Merro and Sangiorgi’s Lπ-calculus [MS04] in terms of semantics
and of Fournet and Gonthier’s Join-calculus [FG00] in spirit. We describe the
reduction and transition semantics of this calculus, develop some of its theory
and discuss its relative expressiveness. In particular, we show that πdist is more
distributable than the asynchronous π-calculus.

We then describe a minimal programming language, TinyPi, in order to abstract
away from the syntax of π-calculus and more faithfully expresses the intended
semantics of πdist. With the aim of providing formal guarantees about πdist pro-
grams, we investigate the application of Session Types. In particular, we show
that the type system πDILL of Caires and Pfenning’s [CP10] – with some small
modifications – can be used to type process communication under asynchronous
FIFO semantics, while preserving full type safety.
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1 Introduction and background

1.1 Motivation

We will not keep it a secret that, at least in some respects, this thesis is an
attempt to synchronise aspects of process calculi and type theory research with
their applications. In particular, we hope that this work can serve as an inspi-
ration to reconsider some traditional approaches in implementing and verifying
programming languages designed for distributed communication and concur-
rency.

It is at least slightly surprising that more than 20 years after the introduction
of π-calculus by Milner, Parrow, and Walker [MPW92] (and almost 40 years
after the introduction of its predecessor CCS [Mil80]), which has seen extensive
developments of its theory and had quite a few experimental implementations,
there are almost no languages adopted by the industry based primarily on some
process calculus1. Although this is not a very long timespan, it is still in con-
trast with the adoption of other parts of Milner’s work, such as his work on
the ML programming language, which spawned entire families of well-adopted
programming languages.

Why is this so? On a very high level it can be argued that problems related to
concurrency and distribution were not as ubiquitous before the appearance of
the internet, many-core processors and mobile devices. This means that both
the motivation and intuition for concurrency-first based design of programming
languages was missing.

However, another possible issue is that the majority of the process calculi build
upon synchronous communication primitives2. For instance, Milner’s basic idea
was that “communication is interaction” and he often used a phone conversa-
tion as typical example of synchronous communication. It is unlikely that this
idea would have appealed to someone who has ever participated in an online
voice-chat over a slow internet connection – the illusion of synchronous or “live”
communication is shattered as soon as there is any jitter. As we will argue
throughout this thesis, this implies a rather unnatural interpretation of com-
munication and, worse, makes it hard to provide a concrete implementation for
such primitives.

It is thus our duty to at least attempt to fix this. Therefore, in the first part
of the thesis we try to embrace asynchrony and examine what implications
asynchrony has to various aspects of π-calculus. Most of our observations are
not novel in any way, however we attempt to give a fresh view of the features of

1There are two exceptions which come very close though. The first is the Erlang program-
ming language [Arm07] which, although not modelled after, comes very close to the Actor
model and has processes as the minimal building blocks. The second is the Go programming
language [GPT07], which, while not being process-centric, implements the π-calculus with
mixed choice. However, the first is not based on any formal process calculus, while the second
merely contains extensive features of π-calculus, but is not designed from the ground-up as an
implementation of it. In particular, it is based on a shared memory model. Both situations
imply that static analysis is very complicated for these languages.

2In fact, a purely asynchronous variant of π-calculus was only formulated in the 90’s
[Bou92][HT91].
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π-calculus in terms of their feasibility for a fully distributed implementation. As
we later argue, this at least partially coincides with the degree of distributability
of a process calculus.

A similar issue due to the synchronous foundations re-appears when we investi-
gate options for achieving provable safety guarantees of distributed programs (in
languages based on process calculi). A state of the art technique for achieving
this is equipping process calculi with so-called Session Type systems. In here
we discover an interesting phenomena: although Session Type systems were ini-
tially applied to synchronous calculi, there appears to be a trend in shifting to
calculi where communication is asynchronous, but preserves message order. It is
a tempting challenge to align and exploit this observation by identifying a suit-
able flavour of π-calculus and endowing it with an appropriate kind of Session
Type system, which is what we do in the second part of the thesis.

1.2 Basic notions of concurrency and distribution

Before we proceed with any technical considerations, it is good to fix terminology
to avoid unnecessary confusion about the subject matter. For this purpose, we
recall some standard notions from distributed systems theory.

1.2.1 Asynchrony and causality

Informally, synchrony vs. asynchrony refers to the distinction of two actions
happening instantaneously and with some (finite) delay. In practice, this usu-
ally means “within a negligible time-frame” and “with an observable delay”
respectively.

In the setting of concurrency theory and communicating systems we are usually
concerned with the asynchrony (or synchrony) of message delivery. In fact,
one can describe the degree of (a)synchrony of a message passing system, by
considering the possible observations (regarding message input or output) that
can be made. For the sake of providing a more formal description, we assume a
system of named processes which communicate via message-passing over some
abstract communication medium. Moreover, a partial ordering (“global time”)
of events is assumed and for simplicity we assume that in the following text all
input actions, or receives, happen within a single process. Usually, 4 degrees of
asynchrony are identified, which form the following (strict) hierarchy3:

Asynchronous A system is said to be (fully) asynchronous if there are no
constraints on message delivery (except that message input and output
should respect the arrow of time). Most importantly, the event of message
reception can happen at any later point in time than the output event.

FIFO-order FIFO stands for First-In First-Out and is used to denote the fact
that, within a channel, messages between two processes are received in the
same order they were output. It is implicitly assumed that there is some

3This hierarchy and its properties are excellently described in the paper “Synchronous,
Asynchronous, and Causally Ordered Communication” [CMT96] to which we refer the reader
to for examples and additional details.
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kind of communication buffer, or more specifically a queue, in-between the
processes, which preserves the message order.

Causally-ordered Communication is said to be causally-ordered when the
order of message inputs (within a single process) always respects the order
of outputs (of potentially more than one process) with respect to the global
time. This can be understood as a strengthening of FIFO-ordering, where
we generalise the preservation of the order of outputs of a single process to
preservation of outputs among all processes. In practice this means that
even if two completely unrelated processes send messages to the same
process, the order of inputs must preserve the ordering of these output
actions according to the global time.

Synchronous From [Bou87]:

A system has synchronous communications if no message [. . . ]
can be sent along a channel before the receiver is ready to receive
[. . . ] on the channel. For an external observer, the transmission
then looks instantaneous and atomic. Sending and receiving a
message correspond in fact to the same event.

(Emphasis added.)

In other words, communication can be said to be synchronous if no other
action can happen (strictly) in-between the input and output of a message.

When described in this way, it is clear that asynchronous communication is
the least constrained type and therefore represents the largest class of com-
munication systems, while synchronous communication is on the opposite end
of the spectrum. On the other hand, synchronous communication provides
the strongest guarantees about message delivery and is therefore intuitively the
most powerful framework (in terms of absolute expressiveness). In fact, as we
will later discuss, synchronous process calculi with certain features are strictly
separated from asynchronous calculi. In particular, this means that certain com-
munication protocols which can be expressed in synchronous calculi, cannot be
expressed in asynchronous ones.

The natural question here, which we will examine in further sections more con-
cretely in the context of π-calculus, is: when formally modelling distributed
systems, what degree of asynchrony should be assumed? Clearly, very often the
answer depends on the problem domain, however it is is still a pressing question
if we are interested in some foundational theory of communication.

Process algebraists tend to choose one of the two extremes: fully synchronous
or fully asynchronous communication, with a visible preference for the former
option. Undoubtedly, these are sane options. However, in distributed systems
research, a preference for the latter can be observed, mostly because it reflects
usual constraints occurring in applications. Nevertheless, it can also be observed
that, if stronger delivery guarantees are needed, quite often FIFO delivery is
assumed.

The author of this thesis believes that FIFO-ordered communication is a very
‘optimal’ assumption in terms of balance between the added strength to the
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formal framework and its applicability. Philosophical arguments aside, FIFO-
ordered communication can be identified as an upper-bound on the guarantees
which can be provided in a distributed setting, without requiring global coordi-
nation.

Intuitively, fully asynchronous message delivery can be interpreted as “commu-
nication via bags”: the messages output by one process are put in a bag and
later retrieved from the bag by another process. The order in which the mes-
sages are fetched from the bag is therefore completely undetermined and there is
no need for some global entity to maintain some invariants about how multiple
processes interact with the bag4. This interpretation is well-known to process
algebraists and can be formally shown to be precise [BPV08].

Similarly, FIFO-ordered communication can be interpreted as communication
via queues or via belts: a sent message is queued up and can only be retrieved
after all the messages in front of it are processed. As long as messages from
one queue are retrieved by a single process, there is also no need for processes
to coordinate when communicating. Note that, once again, the queue does not
have to exist as some centralised component in the system (which would defeat
the claim that this type of communication does not require coordination): it
is sufficient that, for example, the sender tags the messages with: 1) his own
(unique) name and; 2) a sequence number. In that case, the receiver can simply
buffer the messages locally so that they are processed in their output sequence
order.

Note that there is no such mechanism for causally-ordered delivery: since pro-
cesses execute at independent paces and by assumption share no state (including
separate processor clocks), given two messages sent by two different processes,
there is no way to determine which of them sent the message first without either:
a) them communicating with each other to resolve the ambiguity or; b) sending
itself relying on some coordinator that determines which of the processes is the
first to send the message.

Given these observations, it is then not surprising at all that the most popu-
lar network transport protocol – TCP [Ste93] – provides exactly FIFO-ordered
delivery guarantees. Moreover, the universal presence of TCP in computer net-
working settings implies that theoretical work assuming FIFO delivery is very
easy to implement in a wide range of practical environments.

Curiously, FIFO-ordered delivery has been examined very little in the setting of
process calculi, mostly because it has been argued that FIFO communication can
be simulated via intermediate queue processes. However, in many ways this is an
overly simplistic view that fails to harvest the benefits of such assumptions. In
particular, later we will show that “naively” adding FIFO-ordering to π-calculus
results in quite an unpleasant formal system. We therefore think that an in-
depth analysis of the theory of process calculi communicating using explicitly
FIFO-ordered mediums could be very fruitful.

4If the word ’bag’ implies central coordination to you, you can replace it with the word
’ether’.
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1.3 Process calculi

We now take a look at the formal approaches to modelling communication and
distributed process systems. Many formalisms have been proposed for this task:
Petri nets [Pet62], Kahn process networks [Kah74], trace theory [Maz86] and
communicating finite-state machines [BZ83] to name a few of the most well-
known ones. All of these formalisms have been studied extensively and all of
them were successfully applied in solving real-world problems.

There is one more branch which stands out for its enormous success in compu-
tational contexts and applications – process calculi or process algebras. Process
calculi form a diverse family of formalisms, which share in common an algebraic
formulation that permits equational reasoning. Moreover, most of the process
calculi aim to describe fully concurrent models of computation and therefore
operate by means of message passing on names or channels, which are the only
shared ‘component’ between processes.

The most well known process calculi are Hoare’s Communicating Sequential Pro-
cesses (CSP, [Hoa78]), Bergstra and Klop’s Algebra of Communicating Processes
(ACP, [BK84]) and Milner’s Calculus of Communicating Systems (CCS, [Mil80]),
which was later developed into the π-calculus [Mil99]. The developments of
these calculi were greatly influenced by each other, however they did not con-
verge into some unified framework. In fact, attempts to precisely describe the
relative expressiveness of these calculi continue up to this day and different
process algebraists have different opinions ([Par14], [Gor10], [GGS13], [Gla12],
[Pal03], [Par08], [Pet12]) about it.

The word calculus in both CCS and π-calculus reflects Milner’s foundational
aspirations while developing these theories:

This is why we call it a “calculus”. We dare to use this word by
analogy with Leibniz’s differential calculus; the latter — incompa-
rably greater — is based upon continuous mathematics, while the
π-calculus is based upon algebra and logic; but the goal in each case
is analysis, in one case of physical systems and in the other case of
informatic systems.

Moreover, we found that the π-calculus may be significant in a way
which we did not fully expect. We are very familiar with basic mod-
els of computation; for example, most scientists have heard of Alan
Turing’s famous “Turing Machine”, a very simple device on which
anything that’s computable can be computed. Is there such a basic
model for all discrete interactive behaviour? We don’t yet know how
to pose this question precisely, but we think of the π-calculus as a
tentative step towards such a model.

(From Speech by Robin Milner on receiving an Honorary Degree from the Uni-
versity of Bologna [Mil97]).

Milner was inspired5 by the Actor model [Agh86] to come up with a formal
5From his Turing Award Lecture [Mil93, p. 86]:

Now, the pure λ-calculus is built with just two kinds of thing: terms and vari-
ables. Can we achieve the same economy for a process calculus? Carl Hewitt,
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language which would be to concurrent computation what λ-calculus is to se-
quential computation. This culminated in the formulation of the π-calculus,
where all the syntactic levels of CCS were collapsed into a single notion of a
name. Names therefore denote the communication locations (or channels), form
the objects of the content being communicated and determine the control flow of
processes, which allows for a very uniform treatment of processes in the language
of π-calculus.

Most importantly, the fact that distinguishes π-calculus from other process cal-
culi (and, in fact, most of the previously mentioned formalisms) is the abil-
ity to directly express mobility by allowing to pass around and communicate
over the transmitted names. This is a crucial feature of π-calculus which gives
it enormous expressive power and which is essential for modelling distributed
computing systems with varying topologies and varying local knowledge. More
over, name passing, when combined with name restriction, is also a convenient
means of achieving process abstraction.

The author of this thesis shares Milner’s appreciation of the λ-calculus and
interests in foundational aspects of communication. Moreover, the mobility
feature of π-calculus is essential for describing many fundamental concepts of
distributed systems theory, such as problems of consensus and leader-election.
Finally, π-calculus has quite recently re-appeared in the setting of programming
language theory, as the target of Session Typing systems. Due to these reasons,
π-calculus is a natural fit for our needs and will be the language of our choice
for the rest of this thesis.

1.4 Quick introduction to the π-calculus

In this section we briefly review the main concepts of π-calculus.

Similarly to how the essence of λ-calculus can be said to reside within substitu-
tion, which manifests itself via the β-reduction rule

(λx.M)N β−−−→M{N/x}

at the heart of the π-calculus is the interaction or synchronisation reduction
rule

x〈y〉.P | x(z).Q −−−→ P | Q{y/z}

which exhibits a form of substitution, except that now variables are replaced
only by names, instead of arbitrary terms.

This rule is understood to mean that two processes running in parallel (’|’ is the
parallel composition operator) interact, or synchronise, if one of them offers an
output capability (denoted by ’x〈y〉’), while the other offers an input capability
(denoted by ’x(z)’) on the same name x. Given such a match of capabilities,
the name y can be communicated from one process to the other, by replacing

with his Actors model, responded to this challenge long ago; he declared that a
value, an operator on values, and a process should all be the same kind of thing:
an actor. This goal impressed me, [..]
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Figure 1 Syntax of π-calculus
Names

N = {a, b, . . . , x, y, . . .}

Prefixes
π, α, β ::= x〈y〉 output

| x(y) input
| τ internal action

Process syntax

P,Q,R ::= (νx)P name restriction
| π.P prefixing
| P +Q choice
| P | Q parallel composition
| end empty process
| !P replication

the bound occurrences (of the name z) in the receiving process. The operator
’.’ denotes prefixing or sequencing.

The intuition behind the interaction rule is that in order to communicate, two
parallel processes have to first synchronise, at which stage an instantaneous
information exchange is performed. Moreover, since this is the only rule which
performs substitution, it is ‘responsible’ for all of the computational content of
π-calculus as well. To paraphrase Milner: interaction is computation, and vice
versa.

Another crucial concept of the π-calculus is name or scope restriction, repre-
sented by the operator ν. The notation (νy)P implies that the name y is a fresh
(or a new) name in the process P . Read differently, the free name y in P be-
comes restricted in (νy)P . The freshness or restriction implies that the name y
is no longer available for any interaction, that is, for any composition Q | (νy)P ,
no communication can happen via the name y. This is also called hiding in π-
calculus and is used to achieve a form of abstraction by hiding communication
internal to some process. As an example, in

P | (νx)(x〈y〉.Q1 | x(y).Q2 | c(z).Q3)

the communication over x is internal to the restricted scope, however P might
still be able to communicate over the channel c.

We briefly recall the syntax and reduction semantics of the monadic π-calculus
with choice. Our presentation is standard and mostly based on the one in [SW01],
but to keep the thesis self-contained we explicitly state the definitions we will
use throughout it. Figure 1 presents the syntax of π-calculus. We let N de-
note an infinite set of names, which we will also call channels interchange-
ably. The operators (νy)P and x(y).P are both binding occurrences of y in
P . Throughout the thesis we assume Barendregt’s variable convention [Bar85,
Definition 2.1.13]: bound variables are assumed to always be distinct from
free variables and binders never bind already bound variables in scope. We
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Figure 2 Structural rules of π-calculus
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
end | P ≡ P

P +Q ≡ Q+ P

P + (Q+R) ≡ (P +Q) +R

end + P ≡ P

(νc)(P | Q) ≡ (νc)P | Q, c 6∈ fn(Q)
(νc)(P +Q) ≡ (νc)P +Q, c 6∈ fn(Q)

(νc)(νc′)P ≡ (νc′)(νc)P
(νc)end ≡ end

!P ≡ P | !P

Figure 3 Reduction semantics of π-calculus

(c〈d〉.P + P ′) | (c(x).Q+Q′) −−−→ P | Q{d/x} [Comm]
τ.P +Q −−−→ P [Tau]
P −−−→ P ′ implies (νc)P −−−→ (νc)P ′ [Scop]
P −−−→ P ′ implies P | Q −−−→ P ′ | Q [Par]

P ≡ P ′, Q ≡ Q′ and P ′ −−−→ Q′ implies P −−−→ Q [Str]

often omit the termination continuation end and assume the following oper-
ator precedence in ascending order: ’|’, ’ν’, ’+’, ’!’ and ’.’. In particular,
(νx)!π.P +Q | R = (νx)(!(π.P ) +Q) | R.

π-calculus processes are considered modulo renaming (α-conversion) and the
(smallest) congruence relation generated by the structural rules listed in Fig-
ure 2. The structural rules guarantee that ≡ is closed under commutative
monoid laws for both parallel composition (|) and sum (+), with end as unit.
Figure 3 presents the reduction semantics of π-calculus.

A useful fact is the following:

Definition 1.4.1 (Standard form [Mil99, Def.. 9.12]). A process P is said to
be in standard form if

P = (ν~n)(P1 | P2 | · · · | Pn | !R1 | · · · | !Rm)

where each Pi is a non-empty sum and all Rk’s are in standard form already.

Proposition 1.4.1 (Existence of standard form [Mil99, Prop. 9.13]). For every
process P , there exists a process P ′ in standard form, such that P ≡ P ′.

The reduction relation −−−→ is defined as the smallest relation on process terms
generated from the rules in Figure 3. Throughout the thesis we will use juxtapo-
sition of relations to denote their composition, for example P −−−→≡ P ′ means
that there exists a process Q, such that P −−−→ Q and Q ≡ P ′. Moreover, we
will use the notation PR to denote that there exists some P ′ such that PRP ′.
For example, P −−−→ means that P reduces.

Reduction rules only describe the transitions of closed terms. In order to con-
sider the transitions of open terms in arbitrary contexts, π-calculus is equipped
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with a labelled transition system (Figure 4). We re-use the prefix names for
transition labels, which are described by the following grammar:

α ::= x〈y〉 | x(y) – free input/output
α′ ::= (νy)x〈y〉 – bound output

| α
µ ::= α′ | τ – action

Moreover, α and α are assumed to denote arbitrary input and output labels
respectively. To avoid any confusion, following [SW01], we define functions
related to names of actions and prefixes:

Definition 1.4.2 (Name terminology).

subj(x〈y〉) = subj(x(y)) = x – subject
subj((νx)α) = subj(α)

obj(x〈y〉) = obj(x(y)) = y – object
obj((νx)α) = obj(α)

fn(τ) = ∅ – free names
fn(α) = {subj(α), obj(α)}

fn((νx)α) = fn(α) \ {x}

bn(τ) = bn(α) = ∅ – bound names
bn((νx)α) = fn(α) ∩ {x}

names(µ) = bn(µ) ∪ fn(µ) – names

We use the so-called early formulation of the LTS. Since we consider processes
modulo structural congruence, we include the rule Cong. This allows us to con-
sider derivations modulo structural congruence and avoid duplicate symmetric
left-right rules for Sum, Par, Open and Close.

We recall an important fact about the LTS from [SW01], which says that the
reduction relation coincides with the τ -transitions of the LTS:

Lemma 1.4.1 (Harmony lemma [SW01, Lemma 1.4.15]).

1. Q ≡ P µ−−−−→ P ′ implies Q µ−−−−→ Q′ ≡ P ′

2. P −−−→ P ′ iff P
τ−−−−→ Q ≡ P ′

The main reason for introducing an LTS is because it permits reasoning about
the behaviour of open process terms in different contexts. In particular, it
enables the definitions of behavioural process equivalences that allow to compare
and relate processes in terms of their observable behaviour.

Below we represent a few standard equivalences and related notions which will
be used throughout this thesis. We refer the reader to [SW01][ACS96][FG05]
for extended definitions and in-depth discussions.

Definition 1.4.3 (One-hole context). A process term C with a single occur-
rence of end replaced by a hole, (denoted by [·]) is called a context and is denoted
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Figure 4 LTS of π-calculus

x〈y〉.P x〈y〉−−−→ P
(Out)

x(z).P x(y)−−−→ P{y/z}
(Inp)

τ.P
τ−−−→ P

(Tau)
P

µ−−−→ P ′

P +Q
µ−−−→ P ′ +Q

(Sum)

P
µ−−−→ P ′ bn(µ) ∩ fn(Q) = ∅
P | Q µ−−−→ P ′ | Q

(Par)

P
x〈y〉−−−→ P ′ Q

x(y)−−−→ Q′

P | Q τ−−−→ P ′ | Q′
(Comm)

P
x〈y〉−−−→ P ′ y 6= x

(νy)P (νy)x〈y〉−−−→ P ′
(Open)

P
(νz)x〈z〉−−−→ P ′ Q

x(z)−−−→ Q′ z 6∈ fn(Q)
P | Q τ−−−→ νz(P ′ | Q′)

(Close)

P
µ−−−→ P ′ z 6∈ names(µ)
(νz)P µ−−−→ (νz)P ′

(Res)

P ≡ P ′ P
µ−−−→ Q Q ≡ Q′

P ′
µ−−−→ Q′

(Cong)
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by C[·]. Contexts can be applied (notation C[A]) to other contexts and process
terms, which results in the hole being replaced by the subject and produces new
contexts or terms.

For example, from (νy)(x〈y〉.end | end) we can obtain the contexts C[·] =
(νy)(x〈y〉.[·] | end) and C ′[·] = (νy)(x〈y〉.end | [·]). They can then be composed
via application, e.g. C[C ′[P ]] = (νy)(x〈y〉.(νy)(x〈y〉.end | P ) | end).

Definition 1.4.4 (Strong bisimilarity). Strong bisimilarity is the largest sym-
metric relation, ∼, such that whenever P ∼ Q, then P

µ−−−→ P ′ implies
Q

µ−−−→ Q′ and P ′ ∼ Q′.

Definition 1.4.5 (Strong barbed bisimilarity). Strong barbed bisimilarity is
the largest symmetric relation, •∼, such that whenever P •∼ Q, then

1. If P α1−−−→ then Q α2−−−→ where subj(α1) = subj(α2).

2. P −−−→ P ′ implies Q −−−→ Q′ and P ′ •∼ Q′.

Definition 1.4.6 (Strong barbed equivalences). Two processes P , Q are strong
barbed equivalent, P ' Q, if P | R •∼ Q | R for all R.

Definition 1.4.7 (Strong barbed congruence). Two processes P , Q are strong
barbed congruent, P 'c Q, if for all contexts C, C[P ] •∼ C[Q].

The term strong in the above definitions refers to the fact that they are based
on one-step transitions. That is, if we consider the above definitions as bisim-
ulation games, then the defender has to reach a matching state via a single
transition.

However, as reductions or τ -transitions are considered to be internal or hidden,
it makes sense to ignore them and allow the defender to perform extra internal
reductions. This leads to the notions of weak transitions and weak bisimilari-
ties.

Definition 1.4.8 (Weak reduction and weak transition). Define the

Weak reduction relation ===⇒ as the reflexive transitive closure of the re-
duction relation −−−→, i.e.

===⇒ = −−−→∗

Weak transition relation µ===⇒ as
µ===⇒ = ===⇒ µ−−−→===⇒

Using these relations, we can define the respective weak versions of the equiva-
lences above, denoted by ≈, •≈ and ∼= and ∼=c, where in the bisimulation game
the defender can respond using weak transitions rather than strong ones. We
only present weak bisimilarity as an example:

Definition 1.4.9 (Weak bisimilarity). Weak bisimilarity is the largest symmet-
ric relation, ≈, such that whenever P ≈ Q, then P µ−−−→ P ′ implies Q µ===⇒ Q′

and P ′ ≈ Q′.
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For example, the processes P = x〈y〉 and Q = (νz)(z〈o〉 | z(u).x〈y〉) are weakly
barbed congruent, but not even strongly bisimilar.

1.5 The many faces of π-calculus

We now attempt to dissect π-calculus into its core building blocks in order to,
first of all, gain a deeper understanding of their significance, but also to follow
our wish to identify a minimal sub-calculus with sufficient expressive power.
Most of the observations in this section are not novel in any way and only
summarise a vast collection of different approaches at comparing variants of the
π-calculus.

As already hinted at previously, a fascinating fact about the π-calculus is the
power of its name restriction operator. In particular, it permits a very powerful
form of abstraction, which allows to encode or simulate many of the stronger
π-calculus primitives inside its weaker sub-calculi. To continue our parallel with
λ-calculus, one can compare this situation with, for example, including boolean
conditionals and natural numbers as primitive constructs versus simulating them
via their Church-encodings.

The variant of π-calculus described in the previous section is known in the
literature as π-calculus with (free) choice, which we will denote as πfc. Below
we present a few of the most well known sub-calculi of πfc, together with some
extensions. We now give their brief descriptions and later discuss the relations
between them in the next section.

The (guarded) mixed-choice πmc-calculus

The (guarded) mixed-choice calculus is obtained from πfc by requiring all sum-
mands in process sums to be guarded (i.e. prefixed) by an input or output action.
This introduces a single syntactic restriction that P = P1 + P2 implies P ≡
α.P + β.Q, where α, β are either input or output prefixes. In particular, τ
prefixing and unprefixed summands are disallowed. The word mixed refers to
the fact that both input and output prefixes can appear as part of the same
sum.

Guardedness is an important notion in process algebras and becomes particu-
larly important when considering recursive processes. In short, making every
summand guarded ensures that branch choices are always observable. In many
settings, this greatly simplifies provability of termination and progress by re-
ducing these issues to productivity of the terms.

The separate-choice πsc-calculus

The separate-choice calculus is a restriction of πmc where all prefixes in a sum
must be of the same kind, i.e. every sum consists of either only input-guarded
or only output-guarded summands.

The input-guarded choice πic-calculus

πic is a sub-calculus of πsc in which only input-guarded sums are permit-
ted.

The choice-free πnc-calculus
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πnc is the sub-calculus of πic which contains no sum operation at all.

The asynchronous πa-calculus

The asynchronous πa calculus deserves a slightly more elaborate description,
because although it is a very straightforwardly defined sub-calculus of πnc, its
overall flavour and theory is very different from the synchronous variants of
π-calculus.

Viewed as a message-passing system, the π-calculus is a model of synchronous
communication. This can be seen from the reduction rules, in particular the
rule [Comm] implies that sending and receiving is an instantaneous operation,
which means message delivery is synchronous according to the classification
in subsubsection 1.2.1.

One way to simulate asynchrony in π-calculus is to perform communication
between processes via intermediate buffers. In the case where a channel is only
shared between two processes, one can split the channel into two input and
output channels and represent the (asynchronous) buffer as a replicated process
which forwards messages from the output part to the input part. Then the
usual instantaneous communication happens in multiple steps:

xo〈y〉.P | xi(z).Q | !xo(z).xi〈z〉 −−−→ P | xi(z).Q | !xo(z).xi〈z〉 | xi〈y〉
−−−→ P | Q{y/z} | !xo(z).xi〈z〉

Note that after the first reduction, P could, for example, output another mes-
sage y′ on the channel xo and it could be received by Q before the name y,
because interaction with any of them would be possible. This shows that such
an encoding simulates asynchronous message delivery according to the specifi-
cation in subsubsection 1.2.1.

This example provides a hint on how to obtain a sub-calculus of πnc, such that
all communication is asynchronous. In fact, buffers are not even needed: due
to the uniform nature of π-calculus, messages-in-transit can be represented as
“atomic” processes which need to be interacted with themselves, such as xi〈y〉
in the above example. It was first observed by Honda and Tokoro that it is
sufficient to forbid output prefixing in order to obtain a fully asynchronous
subcalculus of πnc [HT91]. Namely, in πa instead of output prefixing, we only
have output actions x〈y〉.

Surprisingly, this simple restriction is sufficient to model asynchronous com-
munication, without making any further changes to the reduction or transition
semantics. However, the behavioural flavour of πa is very different from the
synchronous variants. First of all, output guarded sums no longer exist because
output prefixing is not available and, in fact, only input-guarded sums are con-
sidered justifiable in πa. In fact, πa is normally presented as a sub-calculus of
πnc, i.e. without any sums at all. We postpone the discussion of sums in the
context of πa until later.

One source of differences in the theory of πa is that the processes equivalences
used for synchronous π-calculus calculi are not suitable for πa. Instead, a “nat-
ural” process equivalence is considered to be induced by the following bisimilar-
ity.
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Definition 1.5.1 (Weak asynchronous bisimilarity). Weak asynchronous bisim-
ilarity is the largest symmetric relation, ≈a, such that whenever P ≈a Q, then
P

µ−−−→ P ′ implies either:

1. Q µ===⇒ Q′ and P ′ ≈a Q′

2. If µ = x(y), then Q ===⇒ Q′ and P ′ ≈a Q′ | x〈y〉

and the following barbed version:

Definition 1.5.2 (Weak asynchronous barbed bisimilarity). Weak asynchronous
barbed bisimilarity is the largest symmetric relation, •≈a, such that whenever
P
•
≈a Q, then

1. If P α1−−−→ then Q α2===⇒, such that subj(α1) = subj(α2).

2. P −−−→ P ′ implies Q ===⇒ Q′ and P ′ •≈a Q′.

Analogously, asynchronous variants of barbed equivalence and barbed congru-
ence are defined.

These behavioural equivalences capture the intuition that, in asynchronous con-
texts, it is not possible to observe inputs because they happen independently
from message output. In particular, the following is a characterising equivalence
of πa:

ε(a) := a(x).a〈x〉 ∼=c
a end (1.5.1)

An important consequence of this equivalence is that it permits to introduce the
’retransmission’ processes ε(a) into any context without affecting the observable
behaviour or process terms, i.e.

ε(a) | P ∼=c
a end | P ≡ P

This leads to powerful process constructions, such as as an “equator” process
(due to Honda and Yoshida [HY95]), defined as:

Eq(a, b) := !a(x).b〈x〉 | !b(x).a〈x〉

Equator processes can be introduced into arbitrary contexts to simulate the
effect of name substitution. It can be shown (see [Mer99] for details) that the
following equivalence holds:

Eq(a, b) | P ∼=c
a P{b/a}

The localised Lπ-calculus

The localised Lπ-calculus is usually considered as a sub-calculus of πa, though
its restriction is orthogonal to the other ones. In Lπ, only the output capability
of names is allowed to be transmitted. This can be realised either with the help
of a type system, or by syntactically disallowing x to appear as an input subject
in the continuation P of the process a(x).P . The idea is that names represent
channels which have a location and therefore can only be read by the process
which controls it. These kind of situations often arise in real distributed systems,
which is why Lπ is mostly considered as an asynchronous sub-calculus.
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The internal mobility Iπ-calculus

Similarly to the local channel restriction of Lπ, the internal mobility calculus
Iπ permits only the output of fresh names, that is, all output prefixes are now
of the form (νy)(x〈y〉.P | Q). This implies that output-guarded choice is im-
possible and that each name has a single destination: once sent, it cannot be
retransmitted to another location. In Iπ, each transmitted channel is shared
between at most two locations.

As we will see later, this calculus re-appears naturally in some typed set-
tings.

The localised, internal mobility LπI-calculus

This calculus was considered by Merro [MS04]. It combines the two previously
described restrictions, which ensures that every channel is known to exactly two
locations and that only one of them is allowed to use it for input. This is useful
when one wants to describe disconnected topologies with explicit addresses,
because it disallows to treat channels as globally shared resources.

These restrictions shrink the set of behaviours of individual processes by reduc-
ing the amount of contextual information needed to consider. This allows for
more localised reasoning about process terms, making this set of restrictions
appealing when considering typed variants of π-calculus.

Polyadic π-calculus

The polyadic π-calculus extends the monadic π-calculus with polyadic input and
output actions. That is, output and input now permits the communication of a
vector of names ~d = d1, d2, . . . , dn.

x〈~d〉.P | x(~y).Q −−−→ P | Q{d1/y1, d2/y2, . . .}

In a synchronous setting the polyadic π-calculus can be encoded by simply
transmitting each of the names in sequence over a private channel.

1.6 Relative expressiveness of π-calculi: a quest for or-
der

We only considered various purely syntactic restrictions of π-calculus, however
we are already in a situation where the variety of options becomes frightening.
Syntactically, they can be considered as a sequence of sub-calculi:

LπI ⊂ {Lπ, πI} ⊂ πa ⊂ πnc ⊂ πic ⊂ πsc ⊂ πmc ⊂ πfc

Nevertheless, this does not immediately imply anything about either the relative
expressive power of these languages or their suitability for modelling different
distributed systems. For example, as we already discussed, the theory of πa is
quite different from calculi further to the right.

Moreover, we have presented the sub-calculi as incremental restrictions, however
many of the restrictions (e.g. asynchrony, locality, mixed-choice) can instead
be considered as orthogonal conditions. Considering their combinations would
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then lead to many more new variants. It is therefore a natural question of both
mathematical and practical significance on how these flavours of π-calculus are
related, and in particular, whether we can establish a precise classification of
these calculi, preferably of a hierarchical or lattice-like order.

A natural way to relate a collection of formal systems is to compare their ex-
pressive power. As we went from πfc to LπI, we have (gradually) removed two
sources of expressiveness: choice and synchronisation (i.e. output prefixing). Is
it possible to restore them?

1.6.1 Restoring synchronisation

It is well known both in distributed systems and in process calculus research
communities that synchronous communication can be restored via so-called
asynchronous rendezvous or handshake protocol. Let x〈〈y〉〉 and x((y)) denote
some unspecified encodings of synchronous input and output prefixes in the set-
ting of πa. There are at least two standard encodings for these operators.

The first is due to Boudol:

Example 1.6.1 (Boudol-style encoding of synchronisation [Bou92]).

c〈〈d〉〉.P := (νr)(c〈r〉 | r(v).(v〈d〉 | P )) (1.6.1)
c((y)).Q := c(r).(νv)(r〈v〉 | v(y).Q) (1.6.2)

The second is even simpler and is due to Honda and Tokoro:

Example 1.6.2 (Honda-Tokoro-style encoding of synchronisation [HT91]).

c〈〈d〉〉.P := c(r).(r〈d〉 | P ) (1.6.3)
c((y)).Q := (νr)(c〈r〉 | r(y).Q) (1.6.4)

where it is assumed that the extra names introduced in the encodings (r and
v) are temporary and are therefore not free in P . Both of these encodings can
be extended to achieve an encoding of πnc into πa. Namely, we can define a
translation function J·K : πnc → πa, which is homomorphic on all operators
except for input and output prefixes, where it is defined as

Jx(y).P K = x((y)).JP K

It is easy to verify that the composition x〈〈d〉〉.P | x((y)).Q will reduce similarly
to the standard synchronous [Comm] reduction. For example, assuming the
encoding in in Example 1.6.2, we get that

x〈〈d〉〉.P | x((y)).Q = x(c).(c〈d〉 | P ) | (νr)(x〈r〉 | r(y).Q)
τ−−−→ (νr)(r〈d〉 | P | r(y).Q)

By the assumption that r 6∈ fn(P )
≡ (νr)(r〈d〉 | r(y).Q) | P
τ−−−→ P | Q{d/y}

which clearly simulates the [Comm] reduction. The encoding works because
the handshake protocol happens over a fresh channel r, which means it is not
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observable by any context. The only observable actions are the initial input and
output transitions:

x(c).(c〈d〉 | P ) x(r)−−−→ r〈d〉 | P and (νr)x〈r〉.(r(d).P )(νr)x〈r〉−−−→ (r(d).P )

This showcases the usage of scope restriction to achieve process abstraction: the
actions introduced by the encoding are internal and are therefore not exposed
in any context. Finally, we note that both of these encodings work equally well
in the Lπ and Iπ calculi6, and hence even in the LπI calculus.

1.6.2 Restoring (input-guarded) choice

Input-guarded choice can also be restored as shown by Nestmann and Pierce [NP00].
The idea is to run the possible choice branches in parallel and simulate a trans-
action protocol to achieve mutual exclusion. We present the encoding of the
binary case, but it can easily be generalised to n-ary choice:

Example 1.6.3 (Input-guarded choice encoding).

Jc1(x).P1 + c2(x).P2K := (νl)(l〈True〉 |
c1(x).l(b).( if b then JP1K else c1〈x〉 | l〈False〉) |
c2(x).l(b).( if b then JP2K else c2〈x〉 | l〈False〉)
)

In the above example the syntax of π-calculus is extended with booleans and
conditionals, however they can also be encoded in πa and are used only to
simplify the presentation. Note that this encoding does not rely on output-
prefixing and is also valid Lπ. However, it is not valid in Iπ, because the
re-transmitted name x in ci〈x〉 is not fresh.

The correctness of the encoding can be sketched by analysing three possible
cases:

1. There exists only a message output on the channel c1, in which case the
parallel component prefixed by c1(x) is evaluated, which simply leads to
the execution of the choice branch P1.

2. Symmetrically for the case of a message only on the channel c2.

3. If the context contains messages for both channels c1 and c2, the two
parallel components (which encode the two choice branches), can simulta-
neously receive the messages on both channels, however they will have to
compete for the single message True output initially on the “lock channel”
l. Eventually, one of the branches wins and proceeds with its continua-
tion, while also informing the other branch via the lock channel that it
has failed to acquire the lock, which forces the branch to retransmit the
message it held.

The crucial property of πa that this encoding relies on is the congruence in
Equation 1.5.1. In particular, the branch which fails to acquire the lock will

6Though in the Iπ calculus we only consider the transmission of fresh names
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contain a subsequence of this sort

ci(x).(· · · ).ci〈x〉

which by the aforementioned congruence has no overall effect. Intuitively, πa
allows to rollback any input action simply by retransmitting messages, which
is impossible with synchronous interaction, because the sender immediately ob-
serves the input transition of the receiving process.

Having restored both output-prefixing and input-guarded choice, can we com-
bine them to recover stronger variants of choice? Before we can answer this
question, we need to commit to more formal criteria required for an encod-
ing.

1.6.3 Relative expressiveness and good encodings

When speaking about encodings between process calculi, we implicitly assume
that they are in some sense reasonable. The exact definition of this criterion
very much depends on the motives for considering the relationships between the
process calculi in question.

We can identify at least two cases for such comparisons. Firstly, one might be
interested in applying results proved for one calculus in another, and therefore
wants to transfer or compare their (equational) theories. Secondly, one could be
considering implementability of some features and therefore wants to examine
their relative expressiveness based on some operational criteria. Naturally, the
optimal situation is where an encoding achieves a relative expressiveness result
while preserving the equational theory of the source calculus. Moreover, in order
to classify all the process calculi, a definite set of criteria should be set to verify
the validity of encodings.

Despite the fact that this problem is widely discussed in the literature, no univer-
sally agreed-on measure for what constitutes an acceptable encoding of process
calculi exists.

Historically the most commonly considered requirement is the so-called full
abstraction:

Definition 1.6.1 (Full abstraction). An encoding J·K : S → T from a source
process calculus S to a target process calculus T is said to be fully abstract
with respect to a source and a target behavioural equivalence, �S and �T
respectively, if

P �S Q iff JP K �T JQK

The if part can be understood as a soundness requirement (often called adequacy
in π-calculus literature), while the other direction as a completeness one.

Assuming that the equivalences are in fact congruences, we can view the full
abstraction condition from a purely algebraic perspective: a fully abstract en-
coding is simply a map between two quotient algebras. It is then immediately
clear that this is not a sufficient general condition, because the map can still be
completely arbitrary.
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In fact, in recent years the requirement of fully abstract encodings has been put
into question by several authors. Parrow [Par14], Gorla and Nestmann [GN14]
have argued extensively that full abstraction, considered in isolation, can be
both too strong and too weak and is therefore not a compulsory requirement
for encodings.

As a motivating (non-)example, consider the simple case of comparing the rela-
tive expressiveness of πa and πnc. In Example 1.6.1 and Example 1.6.2 we have
presented what would seem like a reasonable encodings of πnc into πa. How-
ever, full abstraction fails for both of these encodings under most combinations
of behavioural equivalences which could be considered adequate.

To see this, let ψ = x〈y〉, then P = ψ.ψ is equivalent to Q = ψ | ψ under any
behavioural equivalence which ignores causality (this includes all the ones we
have defined so far). However, their encodings, JP K and JQK, into πa are not
behaviourally equivalent under any acceptable relation which is closed under
parallel contexts (so not even necessarily a congruence). This can be seen by
considering the context C = [·] | x(z). C[JP K] then has a τ -transition into a
stuck process

C[JP K] = x〈〈y〉〉.x〈〈y〉〉 | x(z)
τ−−−→ (νc)(c(r).(r〈y〉 | x〈〈y〉〉) | end{y/z})
≡ (νc)(c(r).(r〈y〉 | x〈〈y〉〉))
6 µ−−−→

while C[JQK] could still perform transitions in the other parallel component.

This failure is due to the fact that the term x(z) is not a result of a translation
of any πnc term. While this is not automatically a problem (for example the
term ε(x) is also not a translation of any term, but cannot have any effect
due to the conruence in Equation 1.5.1), the term x(z) is said to “not follow the
protocol” of the encoding, because after intercepting the private channel, it does
not use it in the way the encoding intended. In other words, the embedding
induces a “synchronous” sub-algebra of πa, which is not fully compatible with
the asynchronous contexts of πa. Therefore, the encoding can only be shown
sound, but not complete.

Due to similar reasons, the identity embedding of πa into πnc defined by a
homomorphic extension of

Jx〈y〉K = x〈y〉.end

is also not fully abstract under most natural equivalence choices. This can be
seen by observing that ε(a) ∼=c

a end, but Jε(a)K = ε(a) 6∼ end.

The above examples are classified as “false negatives” in [GN14]. Full abstrac-
tion can also produce “false positives”. For example, while the encoding of
input-guarded choice in [NP00] is shown to be fully abstract under natural
equivalences, it is considered unsatisfactory, because the protocol put forward
in the encoding introduces divergence.

Obviously, these examples do not imply that the encodings are “incorrect” or
that full abstraction is not a useful notion. In the “false negative” examples,
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the lack of completeness implies that we cannot transfer the equational theory
(induced by the source equivalence) of the source calculus to its embedding. On
the other hand, the “false positive” example shows that a complete encoding
can be misleading, because it might be exploiting some unjustifiable behaviours,
such as infinite reductions.

In an attempt to resolve this situation, a set of criteria for what constitutes a
“good” encoding for comparing relative expressiveness was set forth by Gorla [Gor10].

Gorla replaces the full abstraction condition, which is also often called obser-
vational correspondence, with a different requirement of operational correspon-
dence:

Definition 1.6.2 (Operational correspondence). Let J·K : S → T be an encod-
ing between two process calculi. We say that J·K is operationally corresponding
if the following two conditions hold:

Operational completeness: for all P ∈ S,
P ===⇒ P ′ implies JP K ===⇒�T JP ′K

Operational soundness: for all JSK ===⇒ T , there exists an S′, such that
S ===⇒ S′ and T ===⇒�T JS′K.

On the other hand, Gorla introduces additional restrictions, which were previ-
ously either assumed implicitly or ignored, which attempt to formally capture
the intuitive notion of a reasonable encoding. We will list only one of them
which will be relevant for us later:

Definition 1.6.3 (Compositionality). Let J·K : S → T be an encoding between
two process calculi. We say that J·K is (weakly) compositional, if for every k-ary
operator op of S and for every subset of names N , there exists a k-hole context
CNop, such that for all S1, . . . , Sk, with fn(S1) ∪ . . . fn(Sk) = N , it holds that

Jop(S1, . . . , Sk)K = CNop(JS1K, . . . , JSkK)

Since their proposal, Gorla’s criteria have been well-received by process alge-
braists and are being incorporated into many recent works. Gorla’s criteria are
further abstracted and slightly relaxed by Van Glabbeek in [Gla12], arguing
that they rule out some completely reasonable encodings and are slightly too
specific. As it is noted in [Gla12], it remains open whether, in general, one
set of criteria is preferable to the other. For an excellent survey on possible
choices of criteria for “good” encodings we refer the reader to Kirstin Peters’
PhD thesis [Pet12].

Throughout the rest of the thesis we will embrace Gorla’s criteria and refer to
encodings satisfying it as “good”.

1.6.4 Wrapping it up

We can now go back to comparing the expressiveness of π-calculi described
previously.
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The encodings presented previously can all be shown to satisfy Gorla’s criteria
and can therefore be considered good encodings representing the relative expres-
siveness. In particular, it is indeed possible to combine them to show that πa
is as expressive as πic. In fact, Nestmann [Nes00] showed that separate-choice
can also be reasonably encoded in πa while preserving soundness.

However, Gorla’s criteria still do not provide us with a definite measure of
expressiveness. In particular, it can be shown that there exists a “good” encod-
ing from πmc to πsc ([Nes00]), which would contradict Palamidessi’s celebrated
separation result in [Pal03], which claims that no reasonable encoding of mixed-
choice into πsc exists.

This disagreement is due to the fact that Palamidessi requires the parallel
composition operator to be encoded homomorphically, a condition also known
as strong compositionality, whereas Gorla only requires weak compositionally.
Gorla observes that while under many types of process equivalences the strong
compositionally requirement is not required for proving separation results, it is
indeed a necessity7 when considering various weak behavioural equivalences [Gor10,
Section 5.1.3].

Although strong compositionally has been argued by Van Glabbeek [Gla12] and
others to be an extreme restriction, we consider it to be a much better alternative
to weak compositionally, especially when discussing distributed implementations
of π-calculi. In later sections (subsection 2.3), we will discuss one more criterion
for encodings – preservation of distributability – which can be seen as a middle-
ground between strong and weak compositionality and has the benefit of not
being a (purely) syntactic criterion.

The choice between weak and strong compositionality thus determines whether
the hierarchy of expressiveness collapses from πmc to πa or whether we have a
separation result, where πmc is strictly more powerful than πsc, which is equally
expressive to πa.

It is informative to look at Palamidessi’s proof to understand why, when consid-
ering applications in distributed systems programming, the separation is quite
natural.

The separation proof is based on the observation that mixed choice allows
two identical processes to atomically agree on a conditional branch. This
can be exploited to directly solve a form of distributed consensus – a noto-
riously hard problem in general. In the terminology of Palamidessi, mixed
choice allows to “break symmetries”. In particular, if we consider a process
Pxy = x().z〈x〉+ y〈〉 and its α-equivalent “mirror” Pyx := Pxy{y/x, x/y}, then
the composition

Pxy | Pyx
can be seen as an execution of a leader-election protocol, where both processes
Pxy, Pyx are trying to propose “their” channel (x and y respectively) to some
external entity z. The parallel composition can transition into either z〈y〉 | end
or end | z〈x〉, which can be seen as x or y being chosen as the leader.

7Alternatively, Gorla shows that one can consider a less general and slightly ad-hoc form
of operational correspondence, however this sacrifices the generality of the criteria.
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Separate choice does not possess such capabilities. Consider for example

x〈〉+ y〈〉 | x() + y()

While there is still agreement on both sides whether to choose the channel x
or y, the processes are already asymmetric, which can be understood as some a
priori (shared) knowledge. This idea was originally developed in the setting of
CSP by Bougé in [Bou88] and is the precursor of Palamidessi’s result.

2 (In search of) a distributable π-calculus

In the previous section we discussed some general properties and relative ex-
pressiveness results of the π-calculus. We now assume a much more focused
view and attempt to identify a (minimal) sub-calculus, which could be used
as a formal basis for a distributed programming language for distributed pro-
gramming. In doing so, we re-discover another relevant criterion for comparing
π-calculi.

As we saw earlier, the various π-calculi form a rich, but complicated family of
process calculi. When considering applications, it is clearly beneficial to pick
the smallest or minimal language from an expressiveness class that satisfies the
application needs. In the context of programming languages, this means that
we can keep the amount of built-in or primitive constructions minimal and treat
the encodings of features of the extended calculi (from the same expressiveness
class) as regular programs. This not only eases implementation, but, more
importantly, it reduces the amount of effort needed in order to perform formal
verification and static analysis of programs.

However, as we saw in subsubsection 1.6.4, there is no universal measure of ex-
pressiveness for π-calculi, therefore it is hard to pin-point the ideal sub-calculus
for any given setting without assuming some subjective measure. Our subjective
measure will be the feasibility of a fully distributed implementation of the cal-
culus in question. In this respect our concerns will, in many ways, coincide with
those of Fournet and Gonthier in their work on the Join-calculus [FG00] and,
to a lesser extent, to Merro and Sangiorgi’s work on the (L)πI calculus [Mer00]
and Pierce’s work on the Pict programming language [PT00].

2.1 Revisiting the building blocks

In this subsection we describe our choices on the semantics of the core compos-
ite parts which make up a process calculus. Additionally, we identify further
conditions which we argue are necessary for an implementation to be realizable
in a fully distributed manner.

While these options can be viewed and considered in isolation, it is exactly the
interplay between them that allows us to combine them in a coherent way. In
particular, our intuition for what constitutes implementable features is based
on the idea that parallel sub-terms of π-calculus should not share any common
state or knowledge. This implies that interaction can be implemented as a pure
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message passing system and no coordination is needed to execute processes in
parallel. These goals subsume the ideas of localised channels, appearing in the
Join-calculus and Lπ, and πI.

2.1.1 Overall model: synchrony versus asynchrony

The decision whether to assume a synchronous or asynchronous model of in-
teraction requires almost no thought in our setting. We have seen that the
asynchronous π-calculus is sufficiently expressive to encode all reasonable prim-
itives of the extended calculi. In particular, features not expressible in πa are
also not feasible in a practical implementation.

More concretely, π-calculus with asynchronous communication can be imple-
mented very straightforwardly by realizing output actions as concrete messages
being transfered between processes. This is not the case with synchronous com-
munication. In fact, one can analyse the situation from a distributed knowledge
(see [HM00]) perspective for better insight. In the synchronous case, interac-
tion achieves, atomically, common knowledge between two processes. From the
reduction x〈y〉.P | x(z).Q −−−→ P | Q{y/z} = Q′ we can deduce that

• φ0 := "Q′ knows y"
• φ1 := "P knows that φ0"
• φ2 := "Q′ knows that φ1"
• φ3 := "P knows that φ2"
• . . .

by virtue of synchronisation. However, the asynchronous encoding of syn-
chronous interaction represents only the first two of iterations of φi. Recall
the reduction from earlier:

P | Q = x〈〈d〉〉.P ′ | x((y)).Q′ = x(c).(c〈d〉 | P ′) | (νr)(x〈r〉 | r(y).Q′)
−−−→ (νr)(r〈d〉 | r(y).Q′) | P ′
−−−→ P ′ | Q′{d/y}

After the first reduction we only have that ψ0 := "P knows r" holds, however
it does not hold that ψ1 := "Q knows that ψ0", because we assume that inputs
are not observable in an asynchronous setting. After the second reduction, by
receiving on r, Q learns ψ0 and d. However, once again P ′ does not know ψ1 and
"Q knows d", it can only postulate that "Q will know d" by assuming eventual
message delivery. We can see from this example that in order to achieve an
identical level knowledge in the asynchronous case, we would have to iterate the
synchronisation encoding indefinitely – an impossible feat.

This is in tune with results from distributed systems research. In particular, the
well-known Two Generals Problem [Gra78, p. 465] can be reformulated to say
that it is impossible to achieve common knowledge in finite time in the presence
of arbitrary message delivery delays.

In fact, these considerations imply it is only reasonable to speak about reliable
implementations of such “full” synchronisation primitives in localised settings,
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where an arbiter can coordinate two otherwise independent processes. Such set-
tings include shared-memory or shared-processor models, where two concurrent
processes can synchronise via a shared resource.

As a side remark, it is interesting to note that these differences are not apparent
when we consider properties of π-calculi using standard tools. It would be there-
fore an interesting direction for future work to examine properties of π-calculi
and their encodings from the perspective of distributed (epistemic) knowledge.
For example, Palamidessi’s separation result discussed previously also originates
from considerations about distributed consensus.

2.1.2 Message delivery semantics

In subsubsection 1.2.1 we discussed that the choice between synchronous and
asynchronous message delivery is not binary, but actually a range of options.
Moreover, we observed that one of these options – FIFO-ordered delivery – can
be seen as optimal in terms of balance between strength and realizability.

However, neither FIFO-ordered, nor causally-ordered delivery resurfaced in our
earlier discussion of relative expressiveness of π-calculi. One could infer that
the collapse from πsc to πa (subsubsection 1.6.4) implies that the intermediate
degrees of asynchrony are expressible in πa and therefore, do not need to be
considered.

The actual situation is quite different. In fact, we are not aware of any “good”
encodings of FIFO-ordered communication in the π-calculus. In particular, all
of the potential encodings are not compositional.

It is not clear how to even express the condition of FIFO-ordered delivery in
the π-calculus. This is mainly due to the fact every π-calculus process is (po-
tentially) a composition of other parallel processes and therefore it is not pos-
sible to infer, by design, what are its sequential execution steps. As noted
in [PSN11], there are two ways in which causal dependencies are introduced
in the π-calculus: nesting of prefixes and nesting of scope restriction operators.
We have seen examples of using such dependencies in encodings (Example 1.6.1,
Example 1.6.2, Example 1.6.3).

We would wish to formally define when a encoding can be said to preserve FIFO-
ordered communication semantics, however as discussed in [PSN11, Sec. 2.4], it
is not clear how this can be done in general way. We therefore, unfortunately,
have to rely on intuition.

As usual, FIFO-delivery can be simulated by intermediate buffer processes, how-
ever this is not acceptable for our purposes. For the simplified case where each
channel is only shared between two processes, a “continuation-passing style”
encoding into the polyadic variant of πa is proposed in [DeY+12]:

Example 2.1.1 (FIFO-order encoding for binary communications).

Jc〈x〉.P K = (νc′)(c〈x, c′〉 | JP{c′/c}K)
Jc(y).P K = c(y, c′).JP{c′/c}K
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Each output action also transmits a fresh continuation channel, which is used
both by the sender and by the receiver in their respective continuations. This
ensures that the receiver can only receive messages in a fixed order by accessing
their continuations. We note that this encoding fails in the presence of self-
communication, for example in the encoding of

Jc〈x〉.c(y)K = (νc′)(c〈x, c′〉 | c′(y, c′′))

the output is offered for channel c, while the continuation expects input on
c′.

It is possible to extend this encoding to at least handle multiple senders, by
using the following modified encoding of input:

Jc(y).P K = c(y, c′).(!c(x, k).c′〈x, k〉 | JP{c′/c}K)

Here, a forwarding process is inserted, which “remembers” the original channel
name and forwards messages from it to the latest continuation. Note that this
encoding can also accommodate self-communication.

Even ignoring the fact that both of these encodings are not compositional, they
are still quite unsatisfactory: the first encoding is overly restrictive, while the
second encoding introduces a new replicated process for each message received,
which hints at severe engineering headaches.

All of these complications leave us with no option, but to work with a formula-
tion of π-calculus which assumes FIFO-buffered communication as primitive. As
noted before, the implementation of FIFO-buffered delivery poses few problems
in practice. Additionally, we will see later that FIFO-buffered semantics are very
natural for applying Session Type systems. Some implications of this choice will
be discussed after we present FIFO-buffered semantics in later sections.

2.1.3 Channel locality and ownership

Perhaps the main source of issues when considering the π-calculus as a dis-
tributed pure message-passing system is its treatment of names. Although we
often refer to π-calculus names as channels, it can be argued that considering
π-calculus names as channels quickly leads to confusion.

The main problem is that, intuitively, we might understand a channel as some
kind of connection between two locations, however this interpretation is not
valid for the π-calculus. This situation is observed by Lévy ([Lév97]):

As a general observation, it is very difficult to implement in a dis-
tributed fashion languages based on CCS or the pi-calculus, even
in their asynchronous versions. The main obstacle is that a channel
resides in the ether, and therefore is not located. If a message is sent
to an unlocated port, one comes very quickly to solve a distributed
consensus for nearly every communication, since two receptors on a
same channel have to agree in order to take the value and thus to
prevent the other from getting the same message.
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The consensus problem Lévy refers is that given a term such as

P | Q | Z = c(x).P ′ | c(y).Q′ | c〈z〉

and assuming all 3 parallel sub-terms exist as processes in different locations, in
order to route the output action either to P or Q, there must exist either a buffer
shared by P and Q or an intermediate coordinating process, or alternatively P
and Q must directly coordinate to decide which is allowed to consumed the
message.

Several approaches are known in the literature for resolving this problem. Per-
haps the most impressive attempt is Fournet and Gonthier’s Join-calculus, which
can be obtained as “an ‘extended subset’ of the asynchronous π-calculus by
amalgamating the three operators for input, restriction, and replication into a
single operator, called definition, but with the additional capability to describe
the atomic joint reception of values from two different channels.” ([Nes98]).
Since the reduction semantics of Join-calculus is quite different from that of
π-calculus, the discussion of it is outside of our scope. However, we note that
names in the join-calculus have two unique properties:

Locality Names have a ‘fixed location’ associated to them.

Uniformity Input names are unique and replicated. Message reception is de-
terministic and is more similar to function application.

The Lπ calculus also deals with channel locality problems. As mentioned in the
introduction, Lπ prohibits received names to appear as input subjects in the
continuation. This can be interpreted as a model where names can be treated
as shared entities locally, but not remotely. For example, in the term

(νc)(P | Q | R) | Z := (νc)(c(x).P ′ | c(y).Q′ | z〈c〉) | z(a).a〈1〉.Z ′

Z can receive the channel c, but it can only use it for output, therefore the
channel remains local to the sub-term (νc)(P | Q | R). However, the sub-terms
P and Q are permitted to concurrently read from the channel because it is local
to both of them and can be assumed to be shared. This term would also be
valid in LπI.

Nevertheless, we believe this restriction is still not sufficient, because it implies
a non-uniform treatment of processes: the implementation must distinguish
between local and non-local communication. Modern distributed systems using
computers with many-core architectures exhibit self-similarity, in the sense that
local computation, all the way down to the hardware layer, is becoming more
and more similar to the message-passing based ‘remote’ distributed computation
happening over the network [Bau+09]. Therefore it does not seem beneficial to
distinguish between local and non-local computation as it can only impede the
capabilities for process mobility.

Instead, we propose to abolish the idea that two parallel entities can perform
reception on the same name. We call this condition full ownership, implying
that channels are always owned by a particular process. This idea has been
previously considered (with very similar motivation) by Amadio in his work on
the π1 calculus [Ama00]:
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[. . . ] we assume that every channel name is associated with a unique
process which receives messages addressed to that name (communi-
cation becomes point-to-point). To emphasize the unicity of the
receptor, we will refer to the calculus as the π1-calculus. We note
that asynchronous point-to-point communication does not require
synchronizations between possibly distant processes and therefore it
makes minimal assumptions on the capabilities of the distributed
system.

Amadio uses a linear typing discipline to enforce the ‘unicity’ of input prefixing,
however he additionally requires that input is persistent. In particular, simple
terms such as c(x).end are not considered well-typed. The type system also does
not impose the locality principle of Lπ, so a received name name can still be
used for input.

We take a different approach and extend the output-capability constraint of Lπ
with another syntactic restriction:

Definition 2.1.1 (Full ownership restriction). For any name c, and any process
P such that P = (ν~n)(P1 | . . . | Pn), c appears as a (free) input subject in at
most one parallel-component Pi.

This restriction can be formulated syntactically only because of the presence of
the Lπ restriction, which prevents aliasing problems. We will elaborate on this
when we formally define all the constraints.

It is not clear whether this restriction reduces the expressive power of Lπ. It is
known that Lπ can be encoded into the similarly restricted calculus π1 [Ama00],
so we have reason to believe that expressiveness is not lost.

More importantly, we sketch encodings which show that there exist “reasonable”
encodings of primitives, which are normally expressed using concurrent input
from a shared channel. For example, we can show that the encoding of input-
guarded choice (Example 1.6.3) can be modified to not rely on reading from a
shared channel:

Example 2.1.2 (Encoding of input-guarded choice for owned channels). The
modification replaces the shared ‘lock channel’, with a process that provides a
‘lock service’:

LockService(l) := l(r).(r〈True〉 | l(r′).r′〈False〉)
ReadLock(l, b) := (νv)(l〈v〉 | v(b))

Jc1(x).P1 + c2(x).P2K := (νl)(LockService(l) |
c1(x).ReadLock(l, b).(if b then JP1K else c1〈x〉) |
c2(x).ReadLock(l, b).(if b then JP2K else c2〈x〉)
)

In the n-ary case the lock service should continue outputting False on every
received channel.

Another important example is encoding internal or non-deterministic choice,
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which, without is usually expressed as

P uQ := τ.P + τ.Q ≈ (νi)(i〈1〉 | i().P | i().Q)

but is illegal under the full ownership restrictions. However, we can easily
modify it to avoid reading on a shared channel by introducing a degree of indi-
rection:

Example 2.1.3 (Encoding of non-deterministic choice for owned channels).

P uQ := (νc, l, r)(c〈l〉 | c〈r〉 | l().P | r().Q | c(z).z〈1〉)

This encoding works because it is not determined which of the channels, l or r,
will reach c first.

We therefore believe that the locality and full ownership conditions are not
overly restrictive and keep our calculus sufficiently expressive. In addition
to simplified implementation, we note that these restrictions also eliminate a
large class of hazardous behaviours, such as accidental aliasing or deadlocks
which most commonly occur when there are multiple consumers of a shared
resource.

2.1.4 Choice

We have seen that all the reasonable flavours of choice can be encoded into πa
and that these encodings are also compatible with locality and full ownership
restrictions.

Unfortunately, the encoding of input-guarded choice (Example 1.6.3) is not com-
patible with FIFO-ordered message delivery. This can be seen by considering
the following process

l〈a〉 | r〈b1〉.r〈b2〉 | Jl(x).r(y1).r(y2) + r(x).P2K

It is possible that, at first messages a and b1 are communicated over channels
l and r and, furthermore, the branch for channel l is chosen. This means that
the message b1 received on the other branch has to be re-transmitted, i.e. the
process above reduces to

r〈b2〉 | r(y1).r(y2) | r〈b1〉

and it is now clearly possible that the messages bi are received out of or-
der.

On the other hand, assuming locality and full ownership, the above situation
can never occur (using the encoding in Example 2.1.2), because in the encoded
process the name r would appear in two parallel components. However, this
then implies that all of the process sums are “trivial” in the sense that they
need to completely split up the owned channels.

We therefore choose to re-introduce input guarded choice as a primitive. The
full ownership restriction naturally extends to input-guarded sums. Moreover,
mostly as a convenience and a matter of hygiene, we require that channel names
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appearing as subjects of the input guards are distinct, so as to separate internal
choice from external.

Including input-guarded choice as a primitive is justified from the implemen-
tation point of view, because the full-ownership restriction implies that all the
channels appearing as subjects of the input-guards are indeed local to the pro-
cess. Since they are local, the process can inspect the respective channel buffers
and receive from one as soon as it finds a non-empty one. In fact, because we
do not assume causally-ordered delivery, it can even perform the inspection in a
straightforward round-robin manner without violating message delivery seman-
tics or even fairness assumptions.

We do not consider stronger kinds of choice, because, like many things we have
ruled out already, they are not realisable in a distributed setting without per-
forming consensus or introducing mediators. In fact, at this point we can claim
that, if there were a realizable encoding of, for example, separate choice, then
it should be expressible under the given constraints we have identified.

2.1.5 Summary

We have identified the following set of constraints and features which we believe
could form a basis for a fully distributable flavour of π-calculus:

• Asynchronous communication over FIFO buffered channels. Asynchronous
in this case means that output is non-blocking.

• Localised channels, permitting to only send the output capability of a
name, in the style of Lπ-calculus.

• Full ownership which further restricts the above to disallow an input prefix
to simultaneously appear in two (possibly) parallel processes.

• Input-guarded choice as an explicit primitive to allow more convenient
forms of control flow.

• Disjoint sums, to eliminate non-deterministic choice from sums and thus
simplify reduction analysis.

In the next section, we will materialize these choices in the form of a (severely
restricted) π-calculus, which we call πdist.

We should also mention that we have chosen to exclude process replication,
mostly to simplify the presentation, but also because in future work it would be
more interesting to examine the addition of explicit (co-)recursion.

2.2 πdist, formally

We now present the πdist calculus formally.
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2.2.1 Base syntax and its restrictions

The syntax of πdist is essentially the same as of the synchronous π-calculus
with input-guarded choice, πic, except that we exclude replication. The struc-
tural congruence rules also remain exactly the same as in Figure 2, except that
some of them no longer apply because they concern non-existent terms (e.g. the
congruence for replication).

One can split the syntax of πdist into two layers: the base ’user’ syntax and the
runtime syntax which extends the base syntax with channel queue processes. We
postpone the definition of the runtime syntax until the next subsection.

Definition 2.2.1 ((User) syntax of πdist). The πdist user syntax is defined by
the following grammar

P,Q,R ::= (νc)P name restriction
| c〈n〉.P output
|

n∑
i=1

ci(n).Pi (disjoint) input-guarded choice

| P | Q parallel composition
| end empty process

with the following (syntactic) restrictions:

(Local channels) For every term c(n).P , the (free) name n does not appear as
an input subject in P .

(Full ownership) For any term P = (P1 | P2 | . . . Pk), and any (free) name n, n
appears as input subject in at most one parallel component Pi.

(Disjoint sums) All channel names ci are distinct in input-guarded choice ex-
pressions

∑
i ci(xi).Pi.

We additionally define the regular input prefix as a one element sum

c(d).P :=
1∑
i=1

c(d).P

and retain the use of (+) for an associative commutative binary operator for
sums, i.e.

c1(d1).P1 + c2(d2).P2 :=
2∑
i=1

ci(di).Pi

A couple of remarks should be made about this definition.

First of all, note that if we ignored the extra syntactic restrictions and re-used
the standard reduction semantics of π-calculus, we would just get πic.

Secondly, it is not immediately obvious that the syntactic restrictions faithfully
implement the intended constraints described in subsubsection 2.1.5. In par-
ticular, it is not obvious that these restrictions can be (reasonably) expressed
using syntactic means. The reason the syntactic restrictions work is because the
combination of the rules avoids potential aliasing problems. More concretely, re-
duction will not result in violations of the syntactic restrictions. This is achieved
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by the (Local channels) rule, which ensures that no channel aliases are used for
input. Moreover, it is precisely because of this rule that the (Full ownership) and
(Disjoint sums) restrictions can be formulated using syntactic means.

As a counter example, if the (Local channels) rule was not present, we could
form the term

x(y).(a(z) | y(z)) x(a)−−−→ (a(z) | a(z))

which renders the (Full ownership) rule useless.

Similarly,
x(y).(a(z) + y(z)) x(a)−−−→ (a(z) + a(z))

shows that without the (Local channels) rule, the (Disjoint sums) restriction is
also meaningless.

Note that these restrictions do not prevent self-communication, i.e. performing
both input and output on the same channel. This is both not desired and
impossible to enforce syntactically. For example:

x(y).y〈z〉 x(x)−−−→ x〈z〉

2.2.2 Semantics and FIFO-buffered communication

The user syntax presented above enforces all the restrictions we described in sub-
section 2.1 except for the asynchronous FIFO buffered channel semantics. In
fact, as already remarked in the previous section, equipping the syntax with
standard π-calculus reduction rules would result in a restricted variant of πic,
which is a synchronous calculus. This is due to the presence of output-prefixing.

There are at least two possible ways to establish FIFO ordering.

One is to extend the process terms (and syntax) with special buffer processes,
which act as mediators between channel output and input and modify the re-
duction rules to ensure communication always happens via the buffer processes.
This is very much in the spirit of the classical encodings of asynchronous com-
munication into π-calculus. Multiple variations of such representations exist in
the literature (see [BPV08][DeY+12][HYC08]).

Another approach is to keep the usual syntax of the synchronous π-calculus,
but parameterise all reduction and transitions over a “global” channel buffer
context, which tracks the contents of channel buffers. This approach is taken
in [Den+13].

There are certain trade-offs between the two approaches. The benefit of the first
approach is that channel queue processes appear at the object level and therefore
one can use the standard π-calculus tools and techniques to reason about the
process terms. However, it can be rather inconvenient because process terms
are no longer freely generated and one needs to take care to distinguish between
terms which contains queues and those which are “plain”. This implies that, for
example, achieving relative expressiveness results is quite complicated, because
one needs to partition the process terms into certain classes.
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On the other hand, a parameterised representation of buffers such as in [Den+13]
suffers from the problem that all of the derivations and reductions become con-
textual. Moreover, there are problems with scope restriction rules, as noted
in [Den+13, p. 9], where it is resorted to ad-hoc scope “extension” rules. While
it might be possible to apply the technique of tracking name usage via a context
as it is done in the LTS described in [Sew00], this still means that one needs to
consider a context of channel buffers which is “global” and thus makes it harder
to reason about scope restriction in the natural way. Nevertheless, it could be
argued that this approach is cleaner, because it clearly separates the represen-
tation of process structure and operational semantics. In particular, processes
are freely generated.

Observe that the syntactic restrictions of πdist already imply that πdist pro-
cesses are not freely generated. Moreover, we believe that the benefits of having
channel queues at the object level outweighs the burden of treating them with
some extra special care. Additionally, this avoids parameterisation of the tran-
sition system and therefore we choose the first approach to make πdist channels
FIFO-buffered.

We extend the base syntax of πdist (Definition 2.2.1) with explicit channel queue
processes.

Definition 2.2.2 (Channel queue process syntax and related notions). A chan-
nel queue for the channel c, with a message buffer (i.e. vector of names) ~d is
denoted by c:[~d].

We use [ ] to represent the empty buffer (i.e. an empty queue), [m,~d] to represent
a buffer with the name m at the beginning (i.e. m will be next element to be
dequeued from the queue) and [~d,m] to represent a buffer where m was the last
enqueued element.

Moreover, we extend the definition of free and bound names in Definition 1.4.2
to include the channel queue processes. All names in buffers are considered free,
including the channel name, therefore:

names(c:[~d]) = fn(c:[~d]) = {c} ∪ {d1, . . . , dn} bn(c:[~d]) = ∅

We note that ν binds queue names as usual, so in x:[] | (νy)y:[~d], x is a free
name, but y is not.

Finally, to maintain the intended FIFO semantics and ensure that for each
channel there is at most one channel queue process, we impose the restriction
that a queue process for the channel c can appear at most once within a term
and either as a parallel sub-term or when it is empty and is guarded by a scope
restriction for the name c. That means that a queue can only occur in two kinds
of process terms: P | c:[~d] or C[(νc)(P | c:[])] for some context C.

For example, this is not a legal term: c:[] | c:[]. Neither is α.(c:[~d] | P ).

The last restriction might seem rather complicated and ad-hoc, but the intuition
behind it is simple: we wish to introduce process queues (only) in tandem with
name restriction, because we will interpret name restriction as channel creation.
The situation will become more clear in later sections, but for now observe that
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Figure 5 Reduction rules of πdist

c〈d〉.P | c:[~m] −−−→ P | c:[~m, d] [Send]
n∑
i=1

ci(x).Pi | ck:[d, ~m] −−−→ Pk{d/x} | ck:[~m], 1 ≤ k ≤ n [Recv]

P −−−→ P ′ implies (νc)P −−−→ (νc)P ′ [Scop]
P −−−→ P ′ implies P | Q −−−→ P ′ | Q [Par]

P ≡ P ′, Q ≡ Q′ and P ′ −−−→ Q′ implies P −−−→ Q [Str]

terms such as
x(y).(x:[] | P )

have no reasonable interpretation, because the queue for the name x appears
after the name is used as a prefix subject.

Finally, while we wish to be able to discuss ’open’ terms, we intend to only
introduce queues in tandem with name restriction, i.e. as closed terms:

(νc)(P | c:[])

Therefore a queue can never be guarded by input or output prefixes, even when it
appears as a parallel sub-term. This would be an illegal term: x(y).(c:[] | P ).

These restrictions might seem rather cumbersome, but they are straightforward
to apply in practice and will be abstracted away once we introduce a small
programming language which decodes to the πdist syntax.

These definitions will be useful later:

Definition 2.2.3 (Queue-open and queue-closed terms). We say that a process
term P is c-closed if c ∈ fn(P ) and there exists a channel queue c as a parallel
component of P , i.e. P ≡ (ν~s)(P1 | · · · | Pn | c:[~d]). (Note that c ∈ fn(P ) implies
c 6∈ ~n.) Otherwise, if c ∈ fn(P ), but the latter condition fails, then we say that
P is c-open.

We use the general term queue-open and queue-closed if want to speak about
closure with respect to an arbitrary queue.

Definition 2.2.4 (Owned channels/names). For a process P , we defined the
set of its owned channels (or names), owned-n(P ), as all the input-prefix subject
names which are free in P .

For example, owned-n(c1(x).(νc)(c2(y).m〈r〉 | c(z))) = {c1, c2}

2.2.3 Reduction semantics

The reduction semantics of πdist are given in Figure 5. They differ from the
usual πfc rules (Figure 3) only in that the rule [Tau] is removed and the rule
[Comm] is replaced by two rules [Send] and [Recv], which now mediate the
communication via a buffer. Note that it is implicitly assumed that this buffer
always exists in parallel to the sending process and that there is always a unique
buffer process per name. This means that the application of [Send] is always
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possible on an output-prefixed term. Moreover, this ensures the FIFO ordering
semantics, as the buffer causes multiple outputs from a single process to be
serialised.

2.2.4 Structural congruence

We also have to extend the structural congruences of πfc (Figure 2) by the
following rule in order to enable channel “garbage collection”:

(νc)c:[] ≡ end

This is a standard technique for ensuring that we can throw out terms which can
no longer be used (see e.g. the added structural rules for discarding unused condi-
tional branches when encoding booleans in [NP00, A.1]). As an example of how
this works, consider this reduction (here we assume c 6∈ fn(P ) ∪ fn(Q)):

(νc)(c〈d〉.P | c(m).Q | c:[]) −−−→ (νc)(P | c(m).Q | c:[m])
−−−→ (νc)(P | (Q{m/x} | c:[])
≡ P | (νc)(Q{m/x} | c:[])
≡ P | Q{m/x} | (νc)c:[]
≡ P | Q{m/x} | end
≡ P | Q{m/x}

After the channel c is used to send the message from P to Q, it is no longer
used in either of the processes and hence its queue can also be discarded. Note
that while we could also add another structural rule which would discard bound
queues that are not empty, this would potentially hide the fact that some pro-
cesses are sending messages which are never being received, so we do not incor-
porate such a rule.

In [BPV08], another structural rule of the form P ≡ P | c:[] is added. The rule
is said to “only apply” when P does not already contain some queue. We do
not use this rule as it implies that we either permit duplicate channel buffers
(which then violates FIFO semantics) or ≡ is no longer a congruence, both of
which are unacceptable. As a counterexample, let P = c〈z〉 and Q = c(z), then
P ≡ P | c:[] =: P ′ and Q ≡ Q | c:[] =: Q′, however P | Q 6≡ P ′ | Q′.

What can be added is the congruence

(νc)P ≡ (νc)(P | c:[])

This ensures that as long as we are working with closed terms it is guaranteed
that there is a unique channel queue associated with every channel name. In-
tuitively it can be understood as saying: whenever you create a new channel
name, also create its associated queue. As mentioned earlier, our intention is to
introduce queues only in tandem with name restriction. We therefore incorpo-
rate this rule as part of the congruence rules for πdist. Later, we will show that
it fits in well with the reduction and transitions semantics of πdist.

It should be noted that it can only be applied when P is a c-open term, because
otherwise we get an invalid term. For example, this is not allowed: (νc)(P |
c:[]) 6≡ (νc)(P | c:[] | c:[]).

We summarise these considerations with the following definition
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Definition 2.2.5 (Structural rules of πdist). The structural rules of πdist con-
sist of the standard structural rules of π-calculus (Figure 2), except for replica-
tion (there is no replication in πdist) and with the addition of the following two
rules:

(νc)(c:[]) ≡ end
(νc)P ≡ (νc)(P | c:[])

2.2.5 Actions and transition rules

In order to properly treat buffers and obtain the LTS for πdist, we have to
slightly modify and extend the LTS and actions of πfc. As already discussed
in the previous subsection, there are different ways to formulate FIFO-buffered
communication. Here, we take a different approach from both [Den+13] and [BPV08].
The reason for doing so, is because we want to be able to discuss the translations
of both queue-open and queue-closed (to be defined) terms and relate those of
the former and those of the latter. For this reason, we explicitly label buffer
actions and take care to maintain harmony with the reduction semantics.

Definition 2.2.6 (πdist actions). We extend the set of actions with

µ′ := µ | α′b

which are used to denote buffer actions. The free and bound name functions
are defined identically as in the case of unannotated, or raw, actions. Addi-
tionally, we use the notation µA, µB , . . . to denote possibly-annotated actions,
i.e. A,B, . . . can be either ’blank’ or b. It is implicitly assumed that the anno-
tated action µA is not τ . Finally, we reserve the usage of µ for raw actions.

Figure 6 presents the LTS for πdist. The rules are almost the same as the ones
for πf , except that we now also have to account for the buffers. The rules OutQ,
InpQ describe the channel queue behaviour. Moreover, we extend the rule Open
to account for buffer actions and we impose additional side conditions to the
Close and Comm rules to ensure that communication always happens via a buffer
(i.e. we prevent processes communicating directly), respecting FIFO semantics.
We also replace the simple input rule Inp with input-guarded choice.

Finally, we split the Par into 3 separate rules, which might look quite intimidat-
ing and therefore require some explanation. First of all, observe that removing
the extra side-conditions and collapsing the different rules into one, would pro-
duce the original Par rule. These additional constraints are there in order to
prevent nonsensical transitions, based on whether a channel queue related to
the current action is present in the derived process.

More concretely, for each input or output subject name a appearing in a process
term P , it can either be open or closed with respect to the channel queue of
a. We want to be able to consider terms open and closed with respect to the
queues-involved. In fact, using this formulation we are able to consider actions
of queues in isolation and both when they close a channel-owning process and
a process which produces output into that channel.

As an example, the application of Par should not be allowed, when one process
performs a raw action, while there is a queue which closes it under that action
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Figure 6 Transition rules of πdist

x〈y〉.P x〈y〉−−−→ P
(Out)

1 ≤ k ≤ n
n∑
i=1

ci(x).Pi
ck(z)−−−→ Pk{z/x}

(Inp)

c:[~d] c(m)b

−−−→ c:[~d,m]
(InpQ)

c:[m,~d] c〈m〉b−−−→ c:[~d]
(OutQ)

P
µ−−−→ P ′ bn(µ) ∩ fn(Q) = ∅ Q is subj(µ)-open

P | Q µ−−−→ P ′ | Q
(Par-Raw)

P
x(y)b

−−−→ P ′

P | Q x(y)b

−−−→ P ′ | Q
(Par-BufInp)

P
µb

−−−→ P ′

µb is an output action bn(µ) ∩ fn(Q) = ∅ subj(µ) 6∈ owned-n(Q)

P | Q µb

−−−→ P ′ | Q
(Par-BufOut)

P
x〈y〉A−−−→ P ′ y 6= x

(νy)P(νy)x〈y〉A−−−→ P ′
(Open)

P
(νz)x〈z〉A−−−→ P ′ Q

x(z)B

−−−→ Q′ z 6∈ fn(Q) A 6= B

P | Q τ−−−→ νz(P ′ | Q′)
(Close)

P
x〈y〉A−−−→ P ′ Q

x(y)B

−−−→ Q′ A 6= B

P | Q τ−−−→ P ′ | Q′
(Comm)

P
µ′−−−→ P ′ z 6∈ names(µ′)

(νz)P µ′−−−→ (νz)P ′
(Res)

P ≡ P ′ P
µ′−−−→ Q Q ≡ Q′

P ′
µ′−−−→ Q′

(Cong)
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in parallel. In theory, we could ignore this side-condition, however this would
permit ’trash’ processes which exhibit ’unrealisable’ transitions. Consider the
transition

x(y).P x(z)−−−→ P{z/y} =: P ′

If we had the usual Par rule, we could apply it to obtain

x(y).P x(z)−−−→ P ′

x(y).P | x:[] x(z)−−−→ P ′ | x:[]
(? Par)

However, there is no valid πdist context in which this transition could lead to
a reduction, because it would require a dual queue action (and there can be
no duplicate queues for the same channel). The problem here is that a raw
action on channel x, which should – when “closed up” by the x queue – induce
a communication between the x-open process and the queue for x resulting in
a τ -transition, “escapes” the queue closure. The situation is identical for raw
output, as captured by the Par-Raw rule.

The situation is slightly different with buffer-actions. This is due to the fact that
there can be only one channel queue and a single consumer for it, but there can
be many producers. Therefore we don’t need to imply any side-conditions on
Par-BufInp, because a channel queue input action can commute past whatever
it is enclosing. For example, the following transition derivation is valid:

(Par-BufInp)
x:[] x(y)b

−−−→ x:[y]

x〈z〉.P | x:[] x(y)b

−−−→ x〈y〉.P | x:[y]
x〈y〉.Q x〈y〉−−−→ Q

x〈z〉.P | x:[] | x〈y〉.Q τ−−−→ x〈y〉.P | x:[y] | Q
(Comm)

However, the situation is different for buffer-output, consider

x:[y,~d] x〈y〉b−−−→ x:[~d]

x(y).P | x:[y,~d] x〈y〉b−−−→ x(y).P | x:[~d]
(? Par)

Again this transition cannot be matched by a dual action, because it requires a
parallel process that performs input on x, which is not allowed in πdist.

To build up our intuition about πdist, we now prove a couple of propositions
which characterise the transitions of πdist processes.

Proposition 2.2.1 (Raw-action induced normal forms). For all P ∈ πdist:

1. If α = x〈y〉 or α = x(y) then P
α−−−−→ P ′ implies that P is x-open

and there exist Q, R and ~n, such that: P ≡ (ν~n)(α.Q + (
∑
i Si) | R),

P ′ ≡ (ν~n)(Q | R), where ~n ∩ names(α) = ∅.

2. Moreover, if α is an input action, then also subj(α) 6∈ owned-n(R) and
subj(α) ∈ owned-n(R).

3. Similarly, if we consider α = (νy)x〈y〉, then the previous result holds,
except that the restriction for ~n is flipped and becomes y ∈ ~n.
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Proof.

1. By induction on the derivations.

By case analysis of the LTS rules, P α−−−→ P ′ implies that the derivation
for this transition begins with either Out or Inp. WLOG, assume that α is
an output action and that the base case is an application of Out to achieve
O + (

∑
i Si)

α−−−→ O′. The base case satisfies the criteria.

Now, assume we have a derivation such that the conclusion is P α−−−→ P ′

and the induction hypothesis holds.

Again by case analysis, only the following rules can use the premise to
create a new process with the same transition: Par-Raw, Res and Cong.

If the rule is Par-Raw, then the side-condition implies that Q is subj(α)-
open and therefore P | Q is subj(α)-open as well and the shape matches.

The other two rules also do not affect the shape and or queue-openness,
therefore by induction we are done.

2. Immediate from the previous part by the full-ownership restriction.

3. Again by induction on the derivations. We can consider the same deriva-
tions as in the first part, except that now they will contain also contain
an application of Open. The Open rule does not change structure and so
the result follows.

Proposition 2.2.2 (Buffer-action induced normal forms). For all P ∈ πdist:

1. If α = x〈y〉b or α = x(y)b then P α−−−−→ P ′ implies that P is x-closed and
for some R and buffer contents ~d, ~d′:

P ≡ (ν~n)(x:[~d] | R)

P ′ ≡ (ν~n)(x:[~d′] | R)

where ~n ∩ names(α) = ∅.

Moreover, if α = x〈y〉b, then ~d = [y, ~d′] and x 6∈ owned-n(R).

Otherwise, if α = x(y)b is an input action, then ~d′ = [~d, y].

2. Similarly, if we consider α = (νy)x〈y〉b, then the previous result holds,
except that the restriction for ~n is flipped and becomes y ∈ ~n.

Proof. Similarly to the previous proposition.

Proposition 2.2.3 (Buffer transitions). For all P ∈ πdist:

1. P x(y)b

−−−−→ iff P is x-closed. (That is: an x-closed process is always input
enabled on x).

2. P is x-closed does not imply P x〈y〉b−−−−→.
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Proof. 1. Directly follows from the definition of channel queue transitions.

2. If the queue for x is empty, then it simply cannot make any transitions.

2.2.6 Harmony of the LTS

At the very least, an LTS should be in agreement with the reduction semantics
and structural properties of a process calculus.

Lemma 2.2.1 (Harmony of πdist LTS). The LTS of πdist satisfies the condi-
tions in Lemma 1.4.1.

Proof. Congruences. Since we include the Cong rule in our LTS, the ≡-parts
of the proof are achieved for free. However, it is good to check whether the
congruences are still in tune with the LTS.

If we excluded the Cong rule and instead used double left-right rules for the
Par-*, Close and Comm rules, we would only have to worry about the non-
standard structural rules (νc)c:[] ≡ end and (νc)P ≡ (νc)(P | c:[])

For the first congruence, both end and (νc)c:[] are unable to perform any tran-
sitions (and therefore affect reductions), so we only need to consider processes
which transition or reduce to them. However, this means we only need to con-
sider the second part of the lemma, and we also get the congruence part for free
by the [Str] reduction rule.

The situation is different with the second congruence. Consider

(νc)c〈y〉.P ≡ (νc)(c〈y〉.P | c:[]) τ−−−→ (νc)(P | c:[y])

however (νc)(c〈y〉.P ) is not able to make any transition at all, failing the har-
mony rule. We therefore would need to extend the LTS with a rule such as

(νc)(P | c:[]) τ−−−→ P ′

(νc)P τ−−−→ P ′
(ν-queue-contract)

Note that we only need cater for the τ -transitions, because the congruence only
affects actions related to c and those are hidden by the name restriction. Since
(νc)(P | c:[]) can perform at least the reductions of (νc)P , with the above
rule added all the τ -transitions of the two congruent terms coincide and hence
congruence problems are resolved.

Reductions.

The more important part of the lemma is showing that τ -actions coincide pre-
cisely with reduction steps (second clause of the lemma). This ensures that our
LTS is modelling the same reductions we have specified in the reduction rules.

The proof is done by tedious case analysis of the reduction and transition rules,
so we only sketch the main clauses.
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The if part: First of all, the [Send] and [Recv] reduction rules are faithfully
represented by the derivation

c〈m〉.P c〈m〉−−−→ P
(Out)

c:[~d] c(m)b

−−−→ c:[~d,m]
(InpQ)

c〈m〉.P | c:[~d] τ−−−→ P | c:[~d,m]
(Comm)

and

Q+ c(x).P c(m)−−−→ P{m/x}
(Inp)

c:[m,~d] c〈m〉b−−−→ c:[~d]
(OutQ)

Q+ c(x).P | c:[m,~d] τ−−−→ P{m/x} | c:[~d]
(Comm)

respectively.

The only if part: There are only two rules from which a τ -action transition can
appear: Comm and Close. For Comm, it is easy to see that the only possible
instantiation of it is a derivation which has one of the two shapes above (in the
proof of the if part). This is a consequence of lemmas 2.2.1 and 2.2.2.

The case of Close is a little bit more tricky, but if we examine the LTS rules, we
notice that even though the action labels are duplicated into raw and buffered,
the open and closure rules and the restriction on Par-BufOut is exactly the same
as in the standard LTS formulation for π-calculus and therefore the semantics of
“hiding” is unchanged. The only thing which is different is that the application
of Open and Close rules now happens two times, instead of one (as in the classical
π-calculus). This is because the channel queue processes are internalised and
at first the scope is extended to the buffer and only later to the receiver. As an
example, consider

x〈y〉.P x〈y〉−−−→ P

(νy)x〈y〉.P (νy)x〈y〉−−−→ P
(Open)

x:[] x(y)b

−−−→ x:[y]
(InpQ)

(νy)x〈y〉.P | x:[] τ−−−→ (νy)(P | x:[y])
(Close)

and then

(Open)
(P | x:[y]) x〈y〉b

−−−→ (P | x:[])

(νy)(P | x:[y])(νy)x〈y〉b

−−−→ P | x:[]
x(z).Q x(y)−−−→ Q{y/z}

(Inp)

(νy)(P | x:[y]) | x(z).Q τ−−−→ (νy)(P | x:[] | Q{y/z})
(Close)

So we have that

(νy)x〈y〉.P | x:[] | x(z).Q τ−−−→ (νy)(P | x:[y]) | x(z).Q τ−−−→ (νy)(P | x:[] | Q{y/z})

as expected.
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2.2.7 Incomplete and complete terms

The main reason for introducing the annotated buffer actions is because we
want to be able to abstract out away the buffer, which can often be seen just
as a communication medium, and only consider the communication content.
In particular, we wish to discuss the connection between buffer and non-buffer
actions of processes.

Proposition 2.2.4. For all πdist processes P , it does not hold that both P
α−−−−→

and P αb

−−−−→, where α = µ \ {τ}.

Proof. Since P αB

−−−→, subj(α) ∈ fn(P ), but then P is either queue-closed or
queue-open and therefore by Proposition 2.2.1 and Proposition 2.2.2 the result
follows.

Proposition 2.2.5 (Queue extraction and queue closure). For every x-open
process P and every reduction sequence P

α1===⇒ α2===⇒ · · · αn===⇒ P ′, where
subj(αi) = x, there exist queue processes Q = x:[~d] and Q′ = x:[~d′], such that
P | Q ===⇒ P ′ | Q′.

Proof. Let (βi) be the subsequence of input actions of (αi). Respectively, let
(γi) be the subsequence of output actions. Then define

~d := obj(β1), obj(β2), . . . , obj(βk)

and
~d′ := obj(γ1), obj(γ2), . . . , obj(γm)

The proof follows.

Note however that this proof relies on early transition semantics and results in
a very non-optimal queue.

For example, for the process x〈y〉.x(y) it will infer the queues ~d = ~d′ = [y].
However, an empty buffer would have sufficed.

2.3 On distributability and the expressive power of πdist

We now shortly return to comparing π-calculi. We have already remarked on
some aspects of the relative expressiveness of πdist as compared to other π-
calculi, in particular that the expressiveness of πdist is at most that of (L)πa.
However, we now argue that the full ownership restriction separates πdist from
Lπa in terms of the degree of distributability.

Informally, the distributability of a calculus represents the degree up to which
process terms can be executed independently. Distributability arises quite nat-
urally when considering semantically defined (weaker) alternatives of the strong
compositionality requirement. As already noted, forcing encodings to translate
the parallel operator homomorphically can be seen as too harsh. For example,
the following (weakly) compositional encoding would be invalid:

JP | QK = (νx, y)(x〈〉 | y〈〉 | x().JQK | y().JP K)
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Nevertheless, it can be argued that the context introduced is completely local
and that it does not impede possibilities for parallel execution. On the other
hand, there are clearly bad weakly compositional translations of the parallel op-
erator (for example those that introduce ‘broker’ processes), which sequentialise
the execution of the parallel components by introducing extra causal relation-
ships.

As a middle ground between the two extremes, Peters, Nestmann, and Goltz
formally define the notion of distributability and require encodings to preserve
the degree of distributability. In [PNG13] they attempt to compare join-calculus
with π-calculi, therefore define distributability in a very general way. However,
as noted in [PNG13], in the context of a replication-free π-calculus, distributabil-
ity can be state in a much simpler way:

Definition 2.3.1 (Distributability). A (replication-free) process P is distributable
into P1, . . . , Pn if P ≡ (ν~n)(P1 | . . . | Pn) where each Pi 6≡ end.

For example, given P = x〈y〉 and Q = x(y), the term (P | P | Q) can be
distributed into the following process groups (up to re-ordering):
{(P | P ), Q}, {P, (P | Q)}, {P, P,Q}

We can now define what it means for an encoding to preserve distributabil-
ity.

Definition 2.3.2 (Preservation of Distributability). An encoding J·K : S → T
preserves distributability if for all source processes S ∈ S which are distributable
into S1, . . . , Sn ∈ S, there exist T1, . . . , Tn ∈ T , such that they are distributable
in JSK and Ti � JSiK for all i, where � is (at least) a success-sensitive (weak)
reduction bisimulation.

Here success-sensitivity means, informally, that the bisimulation relates only
‘successful reductions’ of subprocesses, i.e. a terminating subprocess is never
related to a diverging one. Preservation of distributability usually does not
make sense for encodings which are not “good”. In particular, operational cor-
respondence is required, otherwise the comparison of reductions of the source
and target calculi is not very meaningful. Moreover, the equivalence � has to be
weak, otherwise the translation cannot introduce any extra reductions, therefore
rendering the whole notion useless.

We can now sketch a proof that πdist is separated from πa in terms of dis-
tributability. Note that we present this only as an informal proof, because
proper comparison of πa and πdist is quite delicate due to the differences in the
formulations of the their respective LTS. We assume existence of an appropri-
ate formulation of weak barbed bisimilarity for πdist, which we denote as •≈d,
although for the sake of the proof we can pretend this is the usual weak barbed
bisimilarity.

Proposition 2.3.1. There is no (good) distributability preserving encoding of
πa into πdist.

Proof. Sketch: Let J·K be a good encoding of πa into πdist. Consider the πa
term S = c(x) | c(x).
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By definition of distributability preservation, we have that JSK ≡ (ν~n)(T1 | T2)
for some Ti, such that Jc(x)K •≈d Ti. Then by the definition of weak barbed
bisimilarity, this then implies that both of the Ti are able to perform input
actions on c, which implies that c must appear as an input subject in both T1
and T2. Since this is not allowed in πdist by the full ownership restriction, we
arrive at a contradiction.

As distributability is weaker than strong compositionality, we have the following
obvious corollary:

Corollary 2.3.1. There is no “good” and strongly compositional encoding of
πa into πdist.

We note that the above separation result could be strengthened by using a
reduction bisimulation instead of barbed bisimilarity. This would slightly com-
plicate the proof because we would have to pick a more complicated source term
than S which would actually reduce by performing two parallel reductions on
the shared channel. Intuitively it is easy to see why the proof would still work:
while in πa it is possible to perform a sequence of parallel input actions on shared
names, any translation of it in πa would have to introduce a degree of indirection
(cf. Example 2.1.3), which serialises access to the shared channels.

The concept of distributability and distributability preservation has surfaced
in π-calculus literature only recently ([PN12], [PNG13]). It is a particularly
interesting notion for at least two reasons. First of all, it abstractly addresses an
important practical concern. Namely, it can be used as a measure to determine
whether a particular feature of a process calculi can be implemented inside
another calculus, without sacrificing its potential for parallelism. Secondly – and
perhaps even more importantly – distributability provides process algebraists
with a good criterion for improving the taxonomy of process calculi.

In particular, in [PNG13], Peters, Nestmann, and Goltz present a novel separa-
tion result between πmc, πa and Join-calculus. The separation result strengthens
the separation of πmc and πsc proved in [Pal03] by showing that it holds un-
der weaker conditions (specifically, preservation of distributability instead of
strong compositionality). More interestingly, the separation of πa and Join-
calculus materialises the intuition that join-calculus describes processes which
use localised channels and therefore can be executed in a fully distributed envi-
ronment, unlike processes in πa.

3 Programming with πdist

In the previous sections, we have identified a very restrictive subset of π-calculus.
Moreover, we have compared its relative expressiveness both in terms of its
ability to simulate the usual primitives which come with the asynchronous π-
calculus and its degree of distributability. In both cases the results seem to
align with our goals to have a minimal process calculus which is sufficiently
expressive, but does not constrain distributability.
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By design, πdist eliminates some types hazardous behaviour, such as race-
conditions and deadlocks induced by concurrent reads on a single channel. Nev-
ertheless, processes in πdist can still easily exhibit unanticipated non-determinism
(Example 2.1.3) or otherwise go wrong due to incompatible communication pro-
tocols.

We would like to free the programmer who is using πdist from such headaches
by allowing him to write distributed programs which are safe by construction.
To achieve this goal, in this section we attempt to apply the so-called Session
Typing discipline to πdist in order to restore. To paraphrase the iconic words
of Milner, we want “well-typed programs” to “not go wrong”.

3.1 A tiny distributed programming language

Although the type system we will be describing later directly assigns types to
πdist processes, we now make a slight detour and introduce a toy language
unimaginatively called TinyPi.

There are two reasons for doing this.

The first reason is that the alternative syntax of TinyPi seems to us slightly
more ‘natural’. The syntactic restrictions of πdist can lead to confusion when
considering πdist process terms in the syntax of π-calculus.

The second reason is that the new syntax emphasizes channel-ownership and
makes the sequential fragments (i.e. isolated processes) ‘surface’ from πdist
terms. This view also reveals how the language can be implemented in a straight-
forward way as a message passing system.

The syntax of TinyPi is given in Figure 7. We will treat πdist as the ‘assembly’
language of TinyPi and provide translational semantics to TinyPi by a decoding
of its syntax into the syntax of πdist.

3.1.1 Translation of TinyPi to πdist

The translation from TinyPi to πdist is relatively straightforward.

Definition 3.1.1 (Translation from TinyPi to πdist). We define the translation
function

J · K : TinyPi→ πdist
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Figure 7 Syntax of TinyPi

〈proc〉 ::= 〈cont-proc〉 ‘,’ 〈proc〉 (continuation)
| ‘recv’ 〈rec-binder〉* (input clauses)
| ‘fresh’ 〈chan〉 ‘in’ 〈proc〉 (fresh name generation)
| ‘(’〈proc〉‘)’ (grouping)
| ‘END’ (unit process)

〈cont-proc〉 ::= 〈chan〉 ‘!’ 〈var〉 (output)
| 〈chan〉 ‘<- spawn’ 〈proc-spec〉 (child creation)

〈proc-spec〉 ::= 〈chan〉 ‘>-’ 〈proc〉 (process specification)

〈rec-binder〉 ::= ‘|’ 〈chan〉‘(’〈var〉‘) ->’ 〈proc〉

〈chan〉 ::= 〈var〉

〈var〉 ::= 〈letter〉 [ 〈letter〉 | 〈number〉 ]*

〈letter〉 ::= ‘a’ | ‘b’ | . . .

〈number〉 ::= ‘1’ | ‘2’ | . . .

Notes:
• – fresh c in P

– recv | k(d) -> P
– c <- spawn Q, P
– d >- P

are all binding occurrences of c and d in P.
• We additionally define c ? \d -> P as a shorthand for

recv | c(d) -> P.
• We often omit the continuation END.
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by the following rules:

Jc >- PKn = JPKnc := JPK{n/c}
Jn <- spawn Q, PK = (νn)(JQKn | JPK), where

fn(JQKn) ⊆ {n} and n 6∈ owned-n(JPK)
Jc ! d, PK = c〈d〉.JPK

Jrecv bindersK =
∑

b∈binders
JbK

Jfresh c in PK = (νc)(JPK | c:[]) ≡ (νc)JPK
J| c(d) -> PK = c(d).JPK

JENDK = end

We consider as valid TinyPi terms only those expressions which translate to
valid πdist terms, i.e. the domain of the function J · K.

The first two rules are the most important ones. The spawn operation is a
combination of parallel composition and new channel creation. As input, it
takes a process specification c >- P, which defines a process P, that is abstracted
over its address c. In πdist, an address is a channel owned by P , i.e. a name on
which the continuation P can perform input actions. Observe that since (νc)P ≡
(νc)(P | c:[]), a channel buffer process is also ‘automatically created’.

The idea behind the spawn operator is that, in practice, every new (parallel)
processes has to have some place of origin, therefore we represent this explicitly
by a parent process spawning a child process. The side-condition on free names
implies that the only name (and in fact, the only ‘thing’) which is shared between
the parent and the spawned process is the address of the child process, which
gets bound to the variable n in n <- spawn Q. Note that the only activity the
child is able to perform initially is receiving on its address, because it does not
know of anything else.8

We observe that these additional restrictions were not present in πdist, but
they do not affect overall expressiveness. We introduced them to keep the
presentation as simple as possible and also to show how we can model processes
which share the absolute minimum of information.

Additionally, we note that this formulation ‘stratifies’ the process expressions,
i.e. we can now extrapolate sequential execution stories from TinyPi programs.
To explain this more concretely, in πdist, from the expression

PQ = (νc)(c〈x〉.P | c(y).Q)

we infer that the two processes co-exist in parallel due the presence of the parallel
composition operator and only after inspecting their prefixes, we can deduce
that there is a causal dependency between them. Namely, the LHS process
will have to first execute the output action and only then the RHS process can
transition with the receive. In the syntax of TinyPi, the same expression would
look like:

8Technically, it can also send messages to itself, but that is not very useful.
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pq = c <- spawn (c’ >-
c’ ? \y -> Q’

),
c ! x,
P

In fact, assuming JPK = P and JQKcc′ = Q, it’s translation JpqK would produce
exactly the πdist process above:

JpqK = (νc)(Jc ! x, PK | Jc’ >- c’ ? \y -> QKc)
= (νc)(c〈x〉.JPK | Jc’ ? \y -> QKcc′)
= (νc)(c〈x〉.JPK | (c′(y).JQK){c/c′})
= (νc)(c〈x〉.JPK | c(y).JQKcc′)
= (νc)(c〈x〉.P | c(y).Q)
= PQ

We (subjectively) believe that the TinyPi syntax is more intuitive in this exam-
ple, because its reading implies that in order to perform output on some name,
one has to explicitly postulate existence of a process which would receive on
it. Additionally, it becomes straightforward to infer which names are owned by
which processes.

Despite this ‘stratification’, the syntax of TinyPi reflects some of the structure
of πdist operators (Figure 2), as witnessed by the following proposition.

Proposition 3.1.1 (Preservation of structural congruences). For brevity we
define two syntactic macros:

spwnP := a <- spawn P
spwnQ := b <- spawn Q

We have that

JspwnP, spwnQK ≡ JspwnQ, spwnPK
JspwnP, x <- spawn (y >- END)K ≡ JspwnPK

Jfresh c in ENDK ≡ JENDK
Jfresh x in fresh y in PK ≡ Jfresh y in fresh x in PK
Jfresh x in fresh y in PK ≡ Jfresh y in fresh x in PK

It should be mentioned that in the above proposition there are no equivalents
of parallel composition associativity and scope extrusion rules in Figure 2. The
latter one becomes redundant, because the spawned children do not share any
names. The former does not hold in πdist, because channels are scoped differ-
ently, but this can be fixed by explicitly passing them from the parents.

3.1.2 A distributed "Hello, world!" program

Perhaps due to the constant struggle of taming computers and teaching them to
understand humans better, it is a tradition, when presenting new programming
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languages, to provide an example program which, when executed, greets the
user by displaying the phrase "Hello, world!" on the screen.

As our first example, we will also consider greetings, though we will not interfere
with the computer and will make two processes greet each other, instead of
talking to us.

Below we present a short program. We laxly extend the syntax with process def-
initions, and, in addition to names, allow text strings to be transmitted.

Listing 1: "Hello, relative!"
1 childP = me >-
2 me ? \ parent ->
3 parent ! "Hello , parent !",
4 me ? \ greeting -> END
5
6 parentP = me >-
7 child <- spawn childP ,
8 child ! me ,
9 child ! "Hello , child !",

10 me ? \ greeting -> END
11
12 mainP = p <- spawn parentP , END

The process mainP is the top-level process. It spawns the parentP process, which
in addition spawns the child. Afterwards, it sends to the child his own name,
after which they exchange greetings and terminate. To verify this program
works as expected, we translate it into a πdist process. To save space we denote
the greeting strings as hiP and hiC.

JchildPKc = Jme >- ...Kcme
= c(parent).J parent ! hiP,

me ? \greeting -> ENDKcme
= c(parent). parent〈hiP〉.

Jme ? \greeting -> ENDKcme
= c(parent). parent〈hiP〉.

c(greeting).end
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(Note: below we use placeholders P1, P2, P3 for continuations to save space.)

JparentPKp = Jchild <- spawn childP, P1Kpme
= (νchild)(JchildPKchild | Jchild ! me, P2Kpme)
= (νchild)( JchildPKchild |

child〈p〉.Jchild ! hiC, P3Kpme)
= (νchild)( JchildPKchild |

child〈p〉. child〈hiC〉.
Jme ? \greeting -> ENDKpme)

= (νchild)( JchildPKchild |
child〈p〉. child〈hiC〉.

p(greeting).end)

Finally, we compose the two process specifications.

JmainK = Jp <- swawn parentP, ENDK
= (νp)(JparentPKp | JENDK)
= (νp)(JparentPKp | end)
≡ (νp)JparentPKp

We now inline the definition from above, but rename child to c, the two bound
greeting occurances to g1 and g2, and parent to x, to save space and to avoid
name capture.

= (νp)(νc)( JchildPKc |
c〈p〉.c〈hiC〉.p(g1).end)

= (νp)(νc)( c(x).x〈hiP〉.c(g2).end |
c〈p〉.c〈hiC〉.p(g1).end)

It is easy to see that this communication protocol is safe, in the sense that no
matter what reduction path it takes, it will always reduce to end and not endure
any type-mismatches between the messages transmitted.

Observe that the protocol safety relies critically on FIFO-ordered message de-
livery semantics. In particular, if we consider the same protocol under syn-
chronous communication semantics (by removing the buffers), then the process
would deadlock after a single reduction, because both the child and the parent
would be trying to perform output. Under fully asynchronous semantics (by
converting every output prefixed process α.P into (α | P )), there is a possibility
for a race-condition, because the parent’s greeting could arrive before his chan-
nel. This would result in a type mismatch, since the child would attempt to
receive on the greeting, instead of the parents address.

Nevertheless, we can still write many programs in TinyPi which exhibit unde-
sirable behaviour. For example, the very simple program

prog = p <- spawn (x >- x ? \y -> END)
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which translates to
JprogK = (νp)p(y)

can never perform any transitions and therefore should probably be rejected as
invalid by a decent compiler.

To eliminate such problems, we will equip πdist with a type system, and as valid
TinyPi programs consider only those programs which translate into well-typed
πdist terms.

3.2 Typing πdist

Type systems are one of the standard means of ensuring safety of programming
languages. They are a particularly appealing tool because of their natural con-
nection to logic, known as the Curry–de Bruijn–Howard correspondence.

In the world of sequential computations, which is formally captured by the
λ-calculus, the concept of typability is very well understood. Naively, types
can be interpreted as sets and programs as mappings between them. However,
more interestingly, an intuitionistic reading of types allows to interpret them as
propositions in intuitionistic logic. Well-typed programs then become witnesses,
or constructive proofs, of these propositions.

When we equip a programming language with a type system, we have to show
that it is sound with respect to the reduction semantics of programs. This is
usually split up into two properties: progress and preservation. Preservation
ensures that the typing of programs is invariant under reduction, while progress
ensures that well-typed programs never get ‘stuck’ or exhibit undefined be-
haviour. In the presence of these two properties, we say that the type system
guarantees type-safety of programs.

However, what does it mean to type a process calculus? In particular, how do
we assign types to process terms, what is their denotational meaning and how
do we interpret type-safety for (a programming language based on) a process
calculus?

It is clear that the previous models of type theories (of sequential computation)
no longer work. In particular, given a π-calculus process, it does not seem rea-
sonable to interpret it as a mapping between two types or sets. In fact, it is fair
to say that at the current moment there is no universally agreed interpretation
of typability in the setting of process calculi.

However, numerous different type systems have been proposed and at least two
major ‘themes’ can be identified.

The first one can be traced back to the earliest developments of the π-calculus
(for an overview, see [KPT99]) and is what we shall coin the linear theme. In
this theme, various linear type systems were proposed, where the word ‘linear’ is
a reference to Girard’s Linear Logic [Gir87]. These type systems aim to express
the usage of channels by treating them as ‘limited resources’. A reference to a
linear channel usually means that a process must use the channel name for a
single input or output operation.
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The second and quite recent theme is of the so-called Session Type systems.
Many structurally quite different typing disciplines are referred to as being
Session Type systems, however a common feature is that they split up com-
munication between processes into units of interaction called sessions. Sessions
are expressed as types which are assigned to channels and denote the flow of
information happening through them.

We will consider a particular incarnation of the Session Typing discipline de-
veloped by Toninho, Caires, and Pfenning, which can be seen as a successful
combination of the two themes above.

3.2.1 A Session Type system: πMILL

The spread of distributed systems has also increased the need for a more formal
treatment of communication and therefore Session Types have been a very active
research topic in recent years ([Bet+08], [Pad12], [CP10], [GH05]).

One outcome of this research direction is the discovery of another beautiful con-
nection between logic and type theory in the style of Curry–de Bruijn–Howard.
In particular, [CPT13] and [Wad12] show that there is a correspondence between
propositions in Girard’s Linear Logic and (binary) Session Types. Toninho,
Caires, and Pfenning formulate a correspondence between Dual Intuitionistic
Linear Logic (DILL) and Session Types, while Wadler provides an alternative
formulation connecting Classical Linear Logic and Session Types.

In the rest of this thesis, we will follow the former formulation of the corre-
spondence. We choose this particular formulation over the one proposed by
Wadler, because it has been developed much more broadly and also because we
believe that an intuitionistic treatment reflects the computational ‘content’ of
the correspondence in a better way.

The correspondence is displayed via a type system for the synchronous π-
calculus with binary choice, called πDILL. The most pleasing property of πDILL
is that it provides full type-safety in the style of Milner. Subject reduction (or
preservation) in this case implies session fidelity: processes follow the commu-
nication protocol described by their type. Similarly, progress implies deadlock-
freedom. Combined with linearity, the safety conditions also ensure global live-
ness or progress, which is not guaranteed by most of the other session type
systems that only guarantee liveness within a single session.

To simplify the presentation, we will consider a reduced version of the type sys-
tem πDILL, which we shall coin πMILL. πMILL will correspond to the fragment
of linear logic known as Multiplicative Intuitionistic Linear Logic (MILL). We
obtain πMILL by removing replication and choice from the π-calculus (which
corresponds to removing exponentials and the additive connectives from the
linear logic). This also means we no longer need to keep track of two contexts
in the type judgements.

Figure 8 contains type judgement rules of πMILL. We note that since this is a
linear type system, weakening and contraction are not permitted, otherwise the
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Figure 8 The type system πMILL

∆ ` P :: T
∆, y : 1 ` P :: T

(1L)
` end :: x : 1

(1R)

∆ ` P :: x : A ∆′, x : A ` Q :: z : C
∆,∆′ ` νx(P | Q) :: z : C

(Cut)

∆ ` P :: y : A ∆′, x : B ` Q :: T
∆,∆′, x : A( B ` (νy)x〈y〉.(P | Q) :: T

((L)

∆, y : A ` P :: x : B
∆ ` x(y).P :: x : A( B

((R)
∆, y : A, x : B ` P :: T

∆, x : A⊗B ` x(y).P :: T
(⊗L)

∆ ` P :: y : A ∆′ ` Q :: x : B
∆,∆′ ` (νy)x〈y〉.(P | Q) :: x : A⊗B

(⊗R)

treatment is standard. The general form of the type judgements is

x1 : A1, x2 : A2, . . . , xn : An ` P :: y : B

which says that the process P can offer the service (of type) B over the channel y,
by using the services A1, . . . , An offered over the channels x1, . . . , xn respectively.
Since this is a linear type system, it is implied that the process must fully use
the services. The right rules correspond to process formation, while the left
rules describe service usage. Linear implication (() is used to denote input,
while multiplicative conjunction (⊗) is used to denote output. For example, the
type

x : (1 ( 1)⊗ 1

says that the channel x offers a single output capability of another channel of
type 1 ( 1, which offers an input of a channel of unit type (i.e. a channel which
offers no capabilities). We note that 1 is the only base type and therefore we
consider only the communication of channel names. However, it is trivial to
extend the type system with other kinds of ‘persistent’ primitive types, such as
booleans or integers by interpreting them as exponential types.

Cut reduction (rule Cut) is interpreted as communication: it says that a process
P offering a service A over a channel x, can be composed with another process
using that service to provide a new service. Observe that the process contexts
are disjoint, which ensures that there are no causal dependencies between the
resources used by two processes.

Finally, observe that by erasing the process terms (‘P ::’) and channel names
(‘x :’) from the typing judgements, we would get the usual formulation of
MILL.
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3.2.2 Recycling: safety (almost) for free

To keep things simple and aligned with the presented πMILL type system, we
will consider a reduced version of πdist with input-guarded choice removed and
replaced by regular input prefixing, which we will call π−dist.

It would be preferable to not have to reinvent the wheel and just ‘directly’ apply
the type system πMILL (or in fact, πDILL) to π−dist. However, this is not possible
because πMILL types synchronous terms, while our calculus is asynchronous
(more precisely, FIFO-ordered).

In the paper titled “Cut Reduction in Linear Logic as Asynchronous Session-
Typed Communication” ([DeY+12]), a very interesting approach to typing com-
munication over FIFO-buffered channels is proposed. First of all, an alternative
– asynchronous – process term assignment to the types of πDILL is described,
which allows to type processes in the (dyadic) asynchronous π-calculus.9 (We
will denote the type system obtained by this assignment as πDILLa.) After-
wards, the encoding from Example 2.1.1 is used to type communication under
FIFO-buffered semantics, by encoding FIFO-buffered channels into πa and then
applying the type system πDILLa.

Following this approach would indeed provide us with a type-system for π−dist al-
most for ‘free’. However, this approach is slightly unsatisfactory due to multiple
reasons.

First of all, since the encoding in Example 2.1.1 is not compositional, the rela-
tionship between the source terms and the encoded terms can quickly become
quite confusing. Moreover, a clear connection between the transition graph
of the original and encoded processes is lost due to the relabeling of chan-
nels.

Secondly, this approach makes it impossible, or at least very inconvenient, to
consider extensions to the type system. In particular, since the encoding forces
process to only exhibit binary communication, we cannot expect to extend the
type system to allow for more complex communication patterns.

However, a careful analysis of the derivation of the system πDILLa in [DeY+12]
reveals another possibility. While attempting to retrofit the type system πDILL
with an asynchronous process assignment, the authors of [DeY+12] face two
problems when they try to naively switch from synchronous to asynchronous
output.

The first (obvious) problem is that two previously sequential outputs can now
be received out of order, therefore violating, for example, the type assignment
A( B ( C, which implies that the name of type B should be input after the
name of type A.

The second problem is that a process might now accidentally receive its own out-
put. In particular, consider the well-typed process (here we extend the message

9Since πa is a sub-calculus of πnc, in theory πDILL could already implicitly be used to
type asynchronous communication, however the synchronous process assignment relies on
the presence of output-prefixing and therefore the class of well-typed asynchronous protocols
would be very small.
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types with primitive integers and booleans for clarity):

(νc)(P | Q) = (νc)(c〈42〉.c(y) | c(x).c〈True〉)

and its naive asynchronous translation

(νc)(c〈42〉 | c(y) | c(x).c〈True〉)

Its clear that in the first case, the process always safely reduces to end, however
in the translated version its possible that the process P now performs self-
communication and receives the value 42 that it itself sent, violating the protocol
and leaving the process Q stuck.

Not at all by accident, both of the situations can never arise in πdist. In partic-
ular, the first problem is alleviated because channels in πdist are FIFO-buffered,
while the second problem cannot occur at all, because of the full ownership re-
striction. In particular, is it not possible that there are two parallel processes
which both use a single channel for sending and receiving. This gives us a hint
for another adaptation of πDILL.

As mentioned previously, the ‘user’ syntax of πdist is identical to the syntax
of the synchronous calculus πic, except for the additional syntactic restrictions.
This means that, in some cases, we can ‘pretend’ that πdist processes commu-
nicate using synchronous channels. In particular, we will denote Sπdist to be
the process calculus obtained by applying the syntactic restrictions of πdist to
the calculus πic. This allows for an alternative – synchronous – reading of πdist.
Analogously, we define Sπ−dist as a synchronous interpretation of π−dist.

We are interested in such a reading because, for certain kinds of protocols, we
are morally allowed to ignore the existence of channel buffers and consider pro-
cess reductions ‘modulo buffer actions’. This is the case when the presence of
intermediate buffers does not impact the flow of information or the fully-reduced
states of processes. In fact, our next claim is that, under the additional syntactic
restrictions of πdist, well-typed πMILL processes communicate using precisely
such protocols. This means we can pretend that the user syntax of π−dist repre-
sents a synchronous process calculus and type-check its processes using πMILL,
but execute the well-typed processes using FIFO-buffered communication se-
mantics! This might sound a bit confusing, but will hopefully become more
clear along the way as we state and prove this fact formally.

Before continuing further, we summarise our inventory of π-calculi:
• Sπdist is πic with the additional syntactic restrictions of πdist, i.e. ‘syn-
chronous’ πdist.

• π−dist is πdist without choice.
• Sπ−dist is Sπdist without choice, i.e. ‘synchronous’ π−dist, i.e. πnc with the
additional syntactic restrictions of πdist.

• πMILL, when referred to as process calculus, is the sub-calculus of well-
typed processes of πnc.

• Sπ−distMILL is the sub-calculus of Sπ−dist of well-typed processes.
• π−distMILL is the sub-calculus of π−dist of well-typed processes.
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When we mention well-typed processes we assume that they are typed using
some type system, which we will define later.

At this point we only know that πMILL ensures type-safety of πnc processes.
Next, we will show that a small modification of πMILL also ensures type-safety
for the calculus Sπ−distMILL. Finally, with a little trick and some work we will
show how to type-check π−dist processes.

3.2.3 πMILL Processes Need Not (Always) Be Synchronous

In this section, our goal is to prove the main result of this thesis.

We wish to show that, by applying the additional restrictions of πdist to the
process calculus of (well-typed) πMILL processes, we obtain a sub-calculus with
processes which can be safely executed under both synchronous and FIFO-
buffered communication semantics.

The particularly appealing outcome of this fact is that processes can execute
communication protocols with a much greater degree of independence, which
both improves the performance of such protocols and allows to execute them in
distributed settings.

We first of all have to determine whether πMILL provides type-safety for Sπ−dist
processes.

We do this in a slightly hand-wavy manner, since it is more or less straight-
forward. In particular, since the reduction semantics of Sπ−dist is the same as
πnc, we only need to review what effect the πdist restrictions have on the pro-
cess assignments. In particular, the only problem that arises is that we can
get well-typed terms which cannot be composed with their parallel representa-
tives ([Pér+12, Def. 6.5]). This does not mean that such terms exhibit unsafe
behaviour, but rather that processes which are dual to them, produce invalid
Sπ−dist terms when composed with them.

As an example, consider the following well-typed πMILL process P :

c : 1 ( 1⊗ 1 ` (νx)c〈x〉.c(y) :: x : 1 (3.2.1)

Note that P is also a valid Sπ−dist term. In order to compose this process, we
need to have another well-typed process Q, which provides the service along
channel c, which is used by P . The type of c implies that Q would have to
perform both input and output on the channel c, so if we applied Cut along the
channel c, we would obtain the process (νc)(P | Q), which is an invalid Sπ−dist
term, because it violates full ownership: both P and Q perform input on the
name c.

We could turn a blind eye on this issue via some appeal to ‘syntactical-well-
formedness’, but we might as well just figure out how to fix it. We recursively
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define the notation of iterated operations:

(0
i Ai := 1

((n+1)
i Ai := An+1 ( ((n

i Ai)

⊗0
iBi := 1

⊗(n+1)
i Bi := Bn+1 ⊗ (⊗ni Bi)

for some sequences of Ai’s and Bi’s. We also omit the superscript n when it is
irrelevant or inferable.

We now have the following proposition.

Proposition 3.2.1. Ensuring that well-typed πnc processes are also (syntacti-
cally) well-formed Sπ−dist processes is equivalent to restricting all the type for-
mation rules in Figure 8 in a way that ensures that all types have one of the
two forms: (i Ai or ⊗iBi.

Proof. (Note: the restriction mentioned in the proposition can be implemented
as a simple side-condition in each rule of Figure 8. For example, in the rule (R,
since the channel x is being assigned the type x : A ( B, we require that B
also has the shape B =(i Bi. Similarly for other rules. Alternatively, separate
type formation rules can be presented.)

There are two syntactic conditions we need to consider: the localised channels
restriction (LCr) and the full-ownership restriction (FOr). The LCr is relevant
whenever new input prefixes are formed, while the FOr is relevant whenever a
parallel composition appears.

We consider only a couple of rules from Figure 8 as an example:
• Rule (R: from the localised channels restriction (LCR), we infer that y
cannot be used for input and therefore its type A must be of the form
(i Ai.

• Rule ⊗L: similarly, from the LCr we infer that y is typed as input-only
(i.e.(i Ai) and, further, that B must be of the form⊗iBi (since otherwise
it is possible to apply cut on x and violate FOr).

Similarly for the other rules.

We therefore define the type system Sπ−distMILL by the rules in Figure 8 with
the additional restriction from Proposition 3.2.1. We can then finally claim the
following:

Proposition 3.2.2. Sπ−distMILL ensures type-safety of Sπ−dist processes, i.e. Sπ−distMILL
has subject reduction and progress.

Proof. From the fact that πMILL provides type-safety to πnc processes and
Proposition 3.2.1.
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We now move on to our main goal: showing that the type-safety of Sπ−distMILL
is preserved when we move from synchronous to FIFO-buffered communication.
In particular, this will allow us to type-check π−dist processes (that are expressed
using only the ‘user’ syntax) using the type rules of Sπ−distMILL and ensure safety
of their execution.

We first of all note that the restriction from Proposition 3.2.1 is even more
crucial for π−dist than it was for Sπ−dist. Consider again the process P in 3.2.1.
Under FIFO-buffered channel semantics, this process no longer merely lacks a
parallel representative, but actually violates the intended session type protocol.
In particular, if we allowed P to be well-typed, it could output the name x and
later receive it back itself in the next reduction. However, the restrictions from
Proposition 3.2.1 ensure that all channels are used exclusively for either input
or output, therefore such situations cannot occur. In particular, P could not be
well-typed.

In order to formally relate synchronous and FIFO-buffered communication se-
mantics of Sπ−distMILL processes, we define a translation function from Sπ−distMILL
to π−dist.

Definition 3.2.1 (Encoding into FIFO-buffered semantics). We define the
translation function

L·M : Sπ−distMILL→ π−dist

simply as the identity embedding between the two syntaxes.

The co-domain of L·M is a subset of processes expressed in the ‘user’ syntax part
of πdist.

We can now define formally what it means for a π−dist process to be well-
typed:

Definition 3.2.2 (Well-typed π−dist process). We say that P ∈ π−dist is well-
typed if there exists Q ∈ Sπ−distMILL, such that

LQM = P

where π−dist and L·M is the translation from Definition 3.2.1.

We denote the sub-calculus of well-typed π−dist processes as π−distMILL, and write
P ∈ π−distMILL to mean that P is a well-typed π−dist process according to the
above definition.

When we talk about type judgements ∆ ` P :: x : A for some P ∈ π−distMILL, we
mean that there exists a Q ∈ Sπ−distMILL, such that LQM = P and ∆ ` Q :: x : A.

Observe that since L·M is the identity embedding, LQM = P is equivalent to saying
that P = Q′, for some Q′ ∈ Sπ−dist.

In order to show that this definition of well-typedness ensures safety, we show
that there is an operational correspondence between Sπ−distMILL and π−distMILL
processes via a series of propositions.

We start with the simplest proposition, which says that the translated terms
can always mimic the reductions of the source terms.
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Proposition 3.2.3 (Operational completeness of L·M). For all P, P ′ ∈ Sπ−distMILL,

P −−−→ P ′ implies LP M ===⇒ LP ′M

Proof. Since P is well-typed, we have that

∆ ` P :: z : T

for some context ∆, channel z and type T .

We prove the lemma by induction on the derivation of the processes type judge-
ment. The proof is essentially the same as the proof of subject reduction for
πDILL ([CPT13, Thm. A.1]), we do inversion on the type judgements to consider
the possible cases.

In particular, by case analysis on the type judgments, we get that P −−−→ P ′

implies that the last application was either Cut or 1L, because all the other rules
produce prefixed terms.

Case Cut By inversion, we can infer that:
• P ≡ (νx)(P1 | P2)
• ∆ ≡ ∆1,∆2

• ∆1 ` P1 :: x : A
• ∆2, x : A ` P2 :: z : T

By case analysis on the LTS and type judgements, we get that only the
following sub-cases are possible:

P1 −−−→ P ′1 Since P1 is structurally smaller than P , we are done by the
induction hypothesis.

P2 −−−→ P ′2 Same as the previous case.

P1
(νy)x〈y〉−−−−→ P ′1 and P2

x(y)−−−→ P ′2

Appealing to Lemma A.7 in [CPT13], we have that it’s sufficient to
consider:

P1 ≡ (νy)x〈y〉.P ′1
P2 ≡ x(z).P ′2

P −−−→ P ′ ≡ (νx)(νy)(P ′1 | P2{y/z})

Therefore, we can infer that

LP M ≡ (νx)((νy)x〈y〉.P ′1 | x(z).P ′2 | x:[])
−−−→ (νx)((νy)(P ′1 | x:[y]) | x(z).P ′2)
−−−→ (νx)(νy)(P ′1 | P ′2{y/z} | x:[])
≡ LP ′M

as desired.
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P1
x(y)−−−−→ P ′1 and P2

(νy)x〈y〉−−−→ P ′2 Similar to the previous case.

Case 1L Since this does not affect the terms structure, it follows from the IH.

Observe that in the previous lemma we actually showed an even stronger result,
namely

P −−−→ P ′ implies JP K −−−→−−−→ JP ′K

This is because we can always simulate a synchronous reduction, by two reduc-
tions in πdist: one that enqueues the message and another one that dequeues.
In fact, we could have even avoided proving the previous proposition explicitly,
by just referring to this observation.

However, by inspecting the previous proof we can see that a non-reducible
Sπ−distMILL term cannot become reducible after a translation. This is captured
in the following lemma.

Lemma 3.2.1. For all P ∈ Sπ−distMILL,

P −−−→ iff LP M −−−→

Proof. The only if part follows from Proposition 3.2.3.

The if part follows by a very similar case analysis. Namely, LP M also reduces
only if it is unprefixed. However, this means that P ’s derivation was exactly the
same as the cases analysed in Proposition 3.2.3 and therefore P also reduces.

Next, we note that we obviously do not have that LP M −−−→ Q implies that
Q ≡ LP ′M, because, as we already observed, for every reduction in Sπ−dist, two
reductions in π−dist are needed. More generally, the translated terms do not
necessarily follow the same reduction path as the original synchronous terms,
i.e.

LP M −−−→−−−→ Q does not imply Q ≡ LP ′M

As a counter-example, consider the following derivation:

Example 3.2.1 (Asynchronous reduction). Consider the process PQ ∈ Sπ−distMILL,
defined by:

PQ = (νx)(P | Q) = (νx)((νy1)x〈y1〉.(νy2)x〈y2〉 | x(z1).x(z2))

We then have that

L(νx)(P | Q)M ≡ (νx)(LP M | LQM | x:[])
−−−→≡ (νx)((νy2)x〈y2〉 | (νy1)(x:[y1]) | LQM)
−−−→≡ (νx)((νy1)(νy2)(x:[y1, y2]) | LQM)
6≡ LP ′M, for any P ′, nevertheless:

−−−→≡ (νx)((νy2)(x:[y2]) | x(z2))
−−−→≡ end = LendM
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However, while the translated term did not follow the same reduction path as
original, eventually it reduced to end, which is reachable from PQ.

Our next claim is that this will always happen, i.e. that the reductions of
π−distMILL are confluent and can always reach a ‘well-typed state’.

Proposition 3.2.4 (Confluence). For all P ∈ Sπ−distMILL, for all Q1, Q2 ∈
πdist, whenever

LP M ===⇒ Q1 ∧ LP M ===⇒ Q2

then there exists a process P ′, such that

Q1 ===⇒ LP ′M ∧Q2 ===⇒ LP ′M

holds.

Proof. Sketch: The proof is once again by induction on the derivation of the
type judgement of P . Assume the premise of the proposition’s implication holds.
By Lemma 3.2.1, we have that LP M −−−→ implies P −−−→. From this, similarly
as in the proof of Proposition 3.2.3, we can again conclude that the last rule
applied was either Cut or 1L.

The main case we have to consider is once again Cut. By inversion we have that

LP M ≡ (νx)((νy)x〈y〉.P1 | x(z).P2 | x:[])

and
LP M −−−→ (νx)((νy)(P1 | x:[y]) | x(z).P2)

Now, by the full-ownership restriction, we have that P2 owns x, therefore P1 can
only append to the buffer of x. We can then perform sub-induction on (some
well-ordering of) the reduction paths of P1 and P2. In particular, from the fact
that Sπ−distMILL processes are confluent [CPT13, Thm. 5.2], we can choose a
‘convenient’ reduction paths of P1 and P2, where they maximally delay further
communication with each other. We will then get a smallest possible term
among the reduction paths that do not touch the buffer again, and we can then
perform a single reduction that returns us to a well-typed Sπ−dist term, on which
we can then apply the IH.

From this, we can immediatelly conclude the following:

Corollary 3.2.1 (Operational soundness). For all P, P ′ ∈ Sπ−distMILL,

LP M ===⇒ LP ′M implies P ===⇒ P ′

We now finally arrive at an important conclusion.

Theorem 3.2.1 (Operational correspondance). For all P, P ′ in Sπ−distMILL,

P ===⇒ P ′ iff LP M ===⇒ LP ′M

Proof. By Proposition 3.2.3 and Corollary 3.2.1.

Using the above theorem we can conclude preservation and progress.
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Corollary 3.2.2 ((Weak) Subject reduction). Let P, P ′ ∈ π−distMILL and as-
sume that

∆ ` P :: x : T

then P ===⇒ P ′ implies that

∆ ` P ′ :: x : T

.

Proof. P , P ′ ∈ π−distMILL implies that P , P ′ ≡ LRM, LR′M for some R, R′ ∈
Sπ−distMILL. By Theorem 3.2.1 we have that R ===⇒ R′ and the result follows
from the fact that Sπ−distMILL has subject reduction.

To state progress we have to define when a process has a ‘potential’ for reduc-
tion:

Definition 3.2.3 (Live process). We say that a process π-calculus process P is
live, if P ≡ (ν~n)(α.P ′ | R), for some vector of names ~n, prefix α and processes
P ′, R.

We can now deduce progress. We use the notation · ` P :: x : A to mean that
P is typed under the empty context.

Corollary 3.2.3 (Progress). If P ∈ π−distMILL, · ` P :: z : 1 and P is live,
then P ===⇒ Q for some Q ∈ π−distMILL.

Proof. We have that P ≡ LRM, for some R. Since L·M is the identity embedding,
R is also live and · ` R :: z : 1, hence by progress of Sπ−distMILL R reduces to
some R′. Finally, by Theorem 3.2.1 we have that P ≡ LRM ===⇒ LR′M ≡ P ′, for
some P ′ ∈ π−distMILL, as required.

4 Outro

We now sum up our journey towards taming π-calculus and Session Types for
distributed programming languages.

4.1 Summary of the results

Arguably, for the biggest part, this thesis is concerned with motivating and then
developing the πdist calculus. Why would someone develop yet another flavour
of π-calculus, when there are already too many of them?

One of the main inspirations for doing this, in particular, for attempting to
develop a π-calculus with FIFO-buffered channels, was the realisation that Ses-
sion Types are about ordered communication. More precisely, the type of the
channel expresses the flow of information through it, which is ordered. Con-
sidering a formalism (or a runtime that implements it), which automatically
preserves the order of information flow within units of interaction, allows to
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remove some strain on the possible communication patterns, as discussed in
subsubsection 3.1.2.

The variety of encodings and embeddings appearing in the previous section
might cause confusion, so we summarise the story in a slightly simplified way.

Our goal was to ensure type-safety of TinyPi programs. TinyPi programs are
translated (or compiled) to πdist processes, so we reduced our goal to ensuring
type-safety of πdist processes. To do that, we took the ‘user’ syntax of πdist,
removed choice from it and pretended this was a synchronous calculus. We could
then, with a little bit of tweaking, apply the type system πMILL to type πdist
processes. We were allowed do this, because we proved that the ‘original’ type-
safety of πMILL is preserved under FIFO-buffered communication semantics
(and a few extra constraints).

The important point here is that in both steps we were working with the user
syntax of πdist, therefore a programmer working with TinyPi does not need to
see the FIFO buffers. The channel buffers become an implementation detail,
which is not visible in the high-level syntax.

Unfortunately, we showed our results only for π−dist, which does not contain
choice. Does the preservation of type-safety carry over if we extend πMILL
with additive connectives (i.e. obtain correspondence with the ‘full’ intuitionistic
linear logic) and restore choice in πdist? We do not have a proof, but we
believe that the answer essentially depends on what degree of expressiveness
is permitted for the (typed) choice operator.

In particular, if we are only interested in so-called labelled choice, which repre-
sents standard sum types and appears in the process assignment for πDILL, then
we think the answer is “yes”. In particular, the extra branching introduced by
this flavour of choice should not cause any problems, because the linear typing
discipline ensures that no interference is possible on a global level, therefore
the overall situation does not change even under FIFO-buffered communica-
tion.

However, if we wanted to somehow type the full-power of input-guarded choice
– namely, the fact that it can operate on channels – then we believe the answer
would be negative, because πDILL is not powerful enough to handle such cases.
In particular, this would imply that the choice branches are dependent on input
from multiple channels, which exits the realm of binary protocols that πDILL
types.

Finally, we would like to go back to Example 3.2.1 for a moment to appreciate
the practical outcomes of the result.

FIFO-buffered (and more generally, asynchronous) communication semantics is
very appealing in implementations, because it allows communicating processes
to execute independently, which greatly improves parallelism of the programs.
In particular, as Example 3.2.1 shows, the process PQ has the freedom to ex-
ecute via multiple paths, however since it is well-typed, none of the paths can
lead to something ‘going wrong’.

The benefits of asynchronous protocols have always been obvious in distributed
settings, e.g. where two computers communicate over the network and network
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latency is the bottleneck of the distributed system. On the other hand, it
is sometimes argued that for tightly coupled local computations, synchronous
concurrency is preferred because it avoids the use of any buffers, and therefore
can be more efficient both in space and time. Nevertheless, modern computing
device architectures are increasingly changing in a way which makes them, even
locally, resemble a distributed system, where communication latency is, once
again, the main bottleneck of the system. This makes asynchronous communi-
cation appealing even in local settings.

Another argument against asynchronous protocols is that it is much harder
to reason about correctness of both asynchronous protocols and the programs
implementing them. However, by equipping our calculus with a FIFO-buffered
session type system, we are able to enjoy the benefits of decoupled asynchronous
execution while retaining full safety.

4.2 Future work and conclusion

As the title of the thesis suggests, we, unfortunately, feel there are more things
that we did not manage to do, rather than that we did.

In particular, although we managed to describe πdist, it can be argued that this
description is not convenient to work with. Therefore, in future work, at the
very least it would be interesting to develop a suitable notion of behavioural
equivalence for FIFO-ordered communication. Moreover, it is clear that the
behavioural aspects of πdist are quite different from other π-calculi. In order to
analyse this, we would want to lift all the syntactic constraints into a type sys-
tem. It would then be possible to, for example, develop behavioural equivalences
for typed-contexts, as it is done in, e.g. [CPT13].

Going even further with this, it is actually an interesting question whether πdist
would benefit from a completely different formulation, which is not based on
the π-calculus. In particular, we have seen that the full-ownership restriction
does not mix well with the general formulation of the π-calculus.

We would also very much like to extend the type system of πDILL to be able to
handle symmetric protocols, where two participants communicate by executing
identical actions. These kind of protocols appear, when one considers problems
such as leader-election, and are unfortunately untypeable in πDILL, because it
assumes binary, dual communication.

In summary, we have barely scratched the opportunity for a slightly different
approach to the formulation of π-calculi, session typing and, in general, formal
treatment of distributed communication, but we hope that this work might serve
as an inspiration for future research in this direction.
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