
Genetic-Algorithmic Optimisation for School-Allocation Mechanisms
A Study of Amsterdam’s Student to High-School Allocation Problem

MSc Thesis (Afstudeerscriptie)

written by

Philip W.B. Michgelsen
(born May 30th, 1990 in Enschede, The Netherlands)

under the supervision of Prof. Dr. Jan van Eijck, and submitted to the Board of Examiners in partial
fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
July 5th, 2016 Dr. A. Baltag

Prof. Dr. J. van Eijck
Prof. Dr. B. van der Klaauw
Dr. C. Schaffner
Dr J. Szymanik

Foreword

Abstract

In the municipality of Amsterdam, students who graduated from primary school, are allocated to high schools
through a school-allocation mechanism. In recent years, different school-allocation mechanism have been used
and all have been criticised by the public. This thesis investigates the school-allocation mechanisms that have
been used in Amsterdam, from a mathematical point of view, and aims to make it mathematically clear and
formal what properties a school-allocation mechanism must have, according to the municipality of Amster-
dam’s policy makers, and what properties the used allocations mechanisms actually have. Furthermore, this
thesis aims to explore if a genetic-algorithmic optimisation method can help in the design of a new school-
allocation mechanism, which can outperform the school-allocation mechanisms used in Amsterdam. The
two most important formal properties desired of school-allocation mechanisms by policy makers, are Pareto
consistency and strategy proofness. A school-allocation mechanism is Pareto consistent if it only produces
Pareto-optimal allocations. In addition, other conditions are posed by Amsterdam’s policy makers, which
determine, given two Pareto-optimal allocations, which is considered to be better. With these additional
conditions, an objective fitness function can be given, which determines which Pareto-optimal allocation is
fittest. The existence of a particular school-allocation mechanism, the Permutation Allocation Mechanism,
which is able to produce all Pareto-optimal allocations for some given school market, makes it then possible
to find the fittest Pareto-optimal school allocation by using a genetic-algorithmic optimisation method. This
thesis shows that the so obtained genetic-algorithmic optimised school-allocation mechanism is expected to
statistically outperform its not-optimised counterpart.

Acknowledgments

First of all, I would like to thank my supervisor Jan van Eijck: thank you for introducing me to the fascinating
topics of functional programming, genetic algorithms and matching theory. Without the classes and research
projects taught by you, it would not have been possible for me to write this thesis. Also, I would like to
thank you very much for helping me gain the computational skills I always aspired. I would also like to
thank Christian Schaffner, whose courses I enjoyed so very much and who helped me gain the by me much
desired mathematical maturity. Moreover, I am very grateful to Göran Sundholm, my professor from Leiden,
for introducing me to field of Logic, which became my great passion. For this particular project, I would
like to thank Werner Toonk, from the Amsterdam city council, and Pieter Reimer, from the municipality of
Amsterdam, who provided me with the background knowledge of the Amsterdam school-allocation problem
and with the data needed to run the simulations. In addition, I would like to thank all the other members
of the thesis committee: thank you very much that you are willing to make the time to read and assess my
‘afstudeerscriptie’. To all other MoL students, I would like to say a huge thanks for always helping me out
and making the time to help me acquire the background knowledge I was lacking upon starting this master’s
program. In particular, I would like to thank Tim Coopmans, Mathijs Mul, Anna Oosting and Olim Tuyt.
Finally, I would like to thank my parents for always supporting me and my greatest love Marit, for always
standing by me.

i

Contents

1 Introduction 1

2 Background 2
2.1 Dutch School System . 2
2.2 Amsterdam High Schools . 4
2.3 School-Allocation Mechanisms in Amsterdam . 6
2.4 Deferred Acceptance in Amsterdam . 8
2.5 Looking Ahead . 10

3 School Allocations 11
3.1 School Allocations . 11
3.2 Student Preferences . 12
3.3 School Markets . 14
3.4 Priorities . 14
3.5 Properties of Allocations . 15

4 School-Allocation Mechanisms 19
4.1 Mechanisms . 19

4.1.1 Permutation Allocation Mechanism . 20
4.1.2 Boston Allocation Mechanism . 23
4.1.3 Deferred Acceptance School-Allocation Mechanisms . 27

4.2 Strategic Questions . 32
4.2.1 Strategy Proofness . 32
4.2.2 Strategic Investigations of School-Allocation Mechanisms 34

4.3 Simulations with Mechanisms . 36
4.4 Mechanisms for Amsterdam . 38

5 Genetic Optimisation 40
5.1 Optimisation . 40
5.2 Genetic Algorithms . 40
5.3 Reproduction . 43
5.4 Genetic Optimisation of School Allocations . 45

5.4.1 Organisms and Chromosomes . 45
5.4.2 Fitness Function and Reproduction . 46
5.4.3 Chromosome Manipulation: Crossover and Mutation . 47
5.4.4 GOPAM . 49

5.5 Simulations with the GOPAM . 51
5.6 Genetic-Algorithmic Optimisation for Allocation Mechanisms . 52

6 Bibliography 54

ii

7 Appendix: Computational Implementations 57
7.1 Haskell . 57

7.1.1 Imported Modules and Introduced Types . 57
7.1.2 General Help Functions . 57

7.2 School Allocation Mechanisms . 59
7.2.1 Permutation Allocation Mechanism . 59
7.2.2 Boston Allocation Mechanism . 60
7.2.3 Deferred Acceptance . 61

7.3 GOPAM . 62
7.3.1 Help Functions . 62
7.3.2 The GOPAM . 63
7.3.3 Fitness Functions . 67

iii

Chapter 1

Introduction

In recent years, in the municipality of Amsterdam, students who graduated from primary schools, were allo-
cated to high schools through a school-allocation mechanism. The mechanism used for this allocated students
to high schools based on preference lists handed in by students using a deferred acceptance school-allocation
mechanism. The first deferred acceptance mechanism used was severely criticized, because it resulted in
Pareto-inefficient school allocations. An allocation A is Pareto inefficient, if there exists some allocation A′

in which some students are assigned a school which they prefer over the school assigned to them in A, and no
student is assigned a school in A′, which the student likes less than the school assigned in A. In particular,
it meant that the allocation, produced by the school-allocation mechanism in Amsterdam, gave students
rational trade options: in the final allocation some students could, by switching places, both be better off,
based on their handed-in preference list. Such school swaps were not allowed, since they would render the
allocation mechanism not strategy proof. In a strategy-proof allocation mechanism, the dominant strategy
for students is to reveal their true school preferences. Strategy proofness was an important motivation of
the representative body of Amsterdam’s high schools and the municipality of Amsterdam, for choosing the
Deferred Acceptance school-allocation algorithm.

In this theses different known school-allocation mechanisms will be investigated from a mathematical point of
view. The Amsterdam school-allocation problem of allocating primary school students to high schools accord-
ing to handed-in preference lists, will be taken as the point of departure. All school-allocation mechanisms
investigated in this thesis are mechanisms that closely resemble mechanisms that have been used in Amster-
dam to allocate students to high schools. The goal of this thesis is twofold. First, this thesis aims to make
it mathematically clear and formal what properties the Amsterdam policy makers wish a school-allocation
mechanism to have and what specific properties allocations produced by the different known mechanism ac-
tually have. Second, this thesis aims to explore if a genetic-algorithmic optimisation method can help in the
design of a new school-allocation mechanism, which can outperform the known school-allocation mechanisms.
It is the hope of the author that (i) this thesis enables policy makers to choose a school-allocation mechanism
best suited for the specific problems of Amsterdam, and that (ii) this thesis shines light on a new innovative
approach to school-allocation mechanisms by using genetic algorithms to optimise known school-allocation
mechanisms.

The structure of this thesis will be as follows: first, the Dutch school system and specifics of the Amsterdam
school-allocation problem will be introduced; second, the formal understanding of school-allocation problems
will be set out; third, the school-allocation mechanisms that have been used in Amsterdam will be studied
and tested; and fourth, the new genetic approach to school-allocation mechanisms will be explored and tested.
All code that is used for testing the school-allocation mechanisms discussed in this thesis and in the design
of the new genetic optimisation method, is attached to the end of this thesis.

1

Chapter 2

Background

2.1 Dutch School System

The Netherlands educational system is divided into three ‘horizontal’ levels: primary, secondary and tertiary
education. The three horizontal education levels consist of different ‘tiers’, which range from a more applied
to a more scientific orientation. The primary school level consists of only one tier, which is called ‘basisschool’.
The secondary school level consists of three tiers VMBO, HAVO and VWO, where both the VMBO and VWO
tiers are further subdivided into different programs (again ranging from a more applied to a more scientific
focus). Furthermore, VMBO students have the possibility to follow their education with extra aid called
LWOO (NL: leerwegondersteuenend onderwijs).1 The tertiary education level consists of vocational educa-
tion (MBO) and higher education (HBO and University). All schools in the secondary education level will be
called ‘high schools’ in the following. Figure 2.1 below gives a schematic overview of the Dutch school system.

In the Netherlands there is compulsory education. The Compulsory Education Act of 1969, requires students
to be enrolled in a registered school from the age of 5 for at least 12 school years or until the end of the
school year in which the student turns 16. After this period, students who do not have obtained a diploma
for HAVO, VWO or MBO two and higher, will have to follow education until they have done so, or until
they turn 18. This means that in The Netherlands there is de facto compulsory education until the age of
18.2 Since primary school normally takes eight years and students usually are five years old in the first year,
all students who attend ‘basisschool’ will subsequently attend secondary education.

Every student, upon leaving primary school, receives an official school recommendation (NL: schooladvies),
composed by the teaching staff, which dictates for which secondary education the student may apply.3 Stu-
dents then apply themselves for some secondary school and educational program, that is in line with the
school recommendation. Students are allowed to apply for more applied programs than advised, but may
not apply to more more scientific programs than recommended in the official recommendation. Secondary
schools are obliged, barring some rare exceptions, to accept the applying students, if the application is in
accordance with the school recommendation.4 Since some schools are very popular and school capacities
are limited, schools have to fairly decide which students to enrol and which not. To help this decision pro-
cess school-allocation mechanisms have been introduced, either by schools individually (e.g. lotteries) or by
schools collectively (e.g. matching mechanisms).

1For students with special educational needs for which the before mentioned secondary education tiers (also with extra aid)
are too demanding, there exists a special form of secondary education: praktijkonderwijs. In the following, due to the very
limited size and special nature of this form of education, we will not regard praktijkonderwijs as secondary education.

2Article 3 and 4a of the Compulsory Education Act of 1969 (NL: Leerplichtwet 1969).
3There is no legal bound on the number of tiers that may be advised by the teaching staff to some student, although the

PO-raad and VO-raad (the representative bodies of respectively primary and secondary schools) claim that no more than two
tiers or programs can be advised.

4Article 2 sub 1, in conjunction with, article 3 sub 2, of the Organisational Decision on the Law on Secondary Education
(NL: Inrichtingsbesluit Wet op het Voortgezet Onderwijs).

2

Figure 2.1: Schematic Representation of the Dutch School System

In the city of Amsterdam, the difference in popularity between different high schools was very large. This
resulted in a particular need for individual lotteries or a central school matching mechanism. Such decision
processes, although of great impact on students, have no influence on the future study opportunities of the
student, since the differences in quality of education between different high schools, for a particular tier, are
very small, and graduation in a specific tier determines which path of studies a student can follow, not at
which school that tier was followed. The arrows from secondary education programs to tertiary education
programs, in the Dutch school-system diagram (Figure 2.1) indicate what is the most scientific tertiary
education program that students are allowed to attend to, after finishing secondary education. Degrees of
some secondary and tertiary education programs allow a continuation of studies in some other secondary or
tertiary education program (where such a shift of tier is allowed is again indicated with arrows). The Dutch
school system diagram illustrates that it is very important for Dutch high-school students to attend the ‘right’
secondary education tier in light of the possible tertiary education tiers that can be attended. Attending
the ‘right’ secondary education tier is however completely up to the future high-school students themselves,
since there is no shortage of seats in Amsterdam, nor in the Netherlands, to place all high-school students
in some school, within acceptable range from their home, offering the secondary education tier the student
wants to attend. There are, however, some high schools to which more students apply then it can offer seats.

3

This problem is known (in Amsterdam) as the capacity problem. It is important to stress again, that this
capacity problem by no means implies that some students will not be able to follow secondary education in
the educational tier of their liking within an acceptable distance from their home. If in the following there
is any reference to a capacity problem it is meant that more students prefer to enrol at some particular high
school than it can offer seats.

2.2 Amsterdam High Schools

This thesis investigates school-allocation mechanisms that have been used or may be used in the municipality
of Amsterdam. To better understand the need for a good school-allocation mechanism in Amsterdam, it is
important to first clarify the present situation of secondary education in Amsterdam.

In the City of Amsterdam, the local government, the municipality of Amsterdam, and the the representative
body of all high schools and vocational education institutions in Amsterdam, the OSVO, agree on further
legislation on the transfer from primary education to secondary education in the City of Amsterdam, every
year, in a document called the ‘Core Procedure Transfer Primary Education Secondary Education’ (NL:
kernprocedure Overstap PO-VO).5 The regulations found in the Core Procedure include regulations on, the
official school recommendations, application to high schools, the school-allocation mechanism, providence of
information on high schools, and, priorities for students for specific high schools.

The Core Procedure only allows one or two successive secondary education tiers from the enumeration below,
as a school recommendation (baring some rare exceptions)6

1. VMBO-B (possibly with LWOO);

2. VMBO-K (possibly with LWOO);

3. VMBO-T (possibly with LWOO);

4. HAVO;

5. VWO;

However, the Core Procedure does not allow VMBO-T to be recommended in combination with VMBO-K.7

This means that in the City of Amsterdam students can have a school recommendation, ‘VMBO-T or HAVO,’
but not ‘VMBO-T or VWO,’ or, ‘VMBO-B or VMBO-T.’ At the end of the seventh class of primary school,8

students will be given a preliminary school recommendation; in January of the eighth class the definite official
school recommendation will be given, by at least two staff members of the primary school in question, where
at least one is the teacher of the eighth class.9

Each prospective high-school student, after having received information on all available schools (and their
capacity), officially applies to one high school (approximately mid March of the final year of primary school).
The student does this by setting up a strict preference list of high schools, where the student puts the school
(s)he prefers the most ‘highest’ (first) on the preference list. The school that is most preferred is the school
where the student legally and de facto applies. This school checks if the preference list is in accordance with
the high-school recommendation and if so inputs the preference list in the school-allocation mechanism.10

If some student cannot be placed, by the school-allocation mechanism at the most preferred school, then
the mechanism will try to allocate the student at some other school mentioned on the preference list, in

5OSVO & Gemeente Amsterdam (2015).
6Also the recommendations ‘praktijkonderwijs’, ‘extra year of language education,’ ‘in between special provision,’ ‘special

education,’ ‘high-school preparatory class for international students,’ are allowed (cf. OSVO & Gemeente Amsterdam (2015):
p. 9.).

7OSVO & Gemeente Amsterdam (2015): p. 9.
8The seventh class of primary school is internationally sometimes called the ‘fifth grade’; it is normally the seventh year of

primary school, where students are 10 to 11 years old.
9OSVO & Gemeente Amsterdam (2015): p. 10.

10OSVO & Gemeente Amsterdam (2015): §4.1, p. 22.

4

accordance with the order on the preference list. Prospective high-school students are urged to make the
preference list as long as possible, such as to prevent that the student cannot be allocated at all to some
school on his preference list. If a student cannot be placed by the mechanism, the student will be contacted
by the proper authorities informing the student of this fact. All students who have not been allocated or that
do not agree with the school that they are allocated to, will again go through a school-allocation mechanism,
which will allocate them to some school that still has seats left, based on a new preference list over the schools
that still have seats left.11 Limited by very strict legal boundaries it is allowed for schools to make use of
some priority rules for students. Examples of such priority rules are: ‘every student who applied and who has
siblings already enrolled, will be granted priority,’ ‘students applying, who have attended primary schools
operating under a similar educational philosophy will be granted priority,’ ’students applying whose parents
are employees will be granted priority.’ Students can only make use of some priority if they place the school
offering the priority highest on their preference list;12 if they do so, then they will be guaranteed a seat at
that school if and only if there are enough seats to place all priority students.13 Furthermore, compelling
social or medical reasons can justify the use of the so called ‘hardship clause’ (NL: hardheidsclausule), which
is a legal exception that can guarantee students a seat at some high school.

In recent years, 2013 to 2016, 7000 to 8000 students needed to be allocated to some high school.14 In 2015,
the year of the test data used in this thesis, there where 53 high schools, which together offer 135 application
possibilities. A high school can offer multiple application possibilities, because it can offer multiple education
tiers (e.g. VMBO-T, HAVO, VWO, etc.), special tracks (e.g. music, art, dance, etc.), and combinations of
tiers (e.g. HAVO/VWO class, VMBO-T/HAVO class). The application possibilities for combinations of tiers
are allowed for the first years of the secondary education such that students which cannot decide between
two education tiers, have the opportunity to postpone their tier decision.

Nota Bene: In the following each application possibility will be regarded as a separate high school.

In 2015 of the approximately 8000 students, one quarter had a VWO school recommendation, another quarter
a HAVO or HAVO/VWO school recommendation, and the other half a school recommendation for at least
one type of VMBO.15 Based on 2015 students’ preference lists, there were 25 schools (19%) for which there
were more students who placed the school highest on their preference list than the school had seats available.
The latter means that the ratio of available seats of some school x divided by the number of students who
place school x highest on their preference list, the capacity indicator, was greater than one for 25 schools.
There were 7 HAVO, 8 VMBO and 10 VWO high schools that had a capacity indicator greater than one in
2015. The most extreme cases were: IJburg College 1 VMBO-K, with a capacity indicator of 4.7 (47 highest
preferences for 10 seats), Spinoza Lyceum HAVO, with a capacity indicator of 3.4 (199 highest preferences
for 58 seats), and Spinoza Lyceum VMBO-T Art Track (NL: kunstklas), with a capacity indicator of 2.8
(156 highest preferences for 56 seats).16 Note that the capacity indicator tells something about the actual
popularity of some school, since the preference lists that were handed in by students in 2015 were made under
knowledge of the fact that handing in preference lists reflecting the true preferences was a dominant strategy
for the school-allocation mechanism in use then; that is, no student could be hurt by handing in his or her
actual true preferences.

11OSVO & Gemeente Amsterdam (2015): §4.1 in conjunction with §6.2.
12In 2015 students could also make use of their priority for schools not placed highest on their preference list, but students

were only allowed to use one priority (OSVO & Gemeente Amsterdam (2014): p. 31 (§4.1), p. 35 (§5.1), p. 36 (§5.6), p. 28
(§5.8)).

13OSVO & Gemeente Amsterdam (2015): §4.3 in conjunction with p. 32.; Gautier et al. (2016): p. 14.
14Numbers of 2013 to 2015 from Gautier et al. (2015), p.4; numbers of 2016 published by the municipality of Amsterdam on

their website on secondary education, URL: https://www.amsterdam.nl/onderwijs-jeugd/voortgezet-onderwijs/, retrieved
14 June 2016.

15Gautier et al. (2015): p. 3.
16The numbers for obtaining the capacity indicator come from Table 3 in Gautier et al. (2015), pp. 7-10.

5

https://www.amsterdam.nl/onderwijs-jeugd/voortgezet-onderwijs/

2.3 School-Allocation Mechanisms in Amsterdam

The history of school-allocations mechanisms in Amsterdam can be described by identifying four periods (in
chronological order): (i) the pre-lotteries period, (ii) the desynchronized lotteries period, (iii) the synchronized
lotteries period, and (iv) the deferred-acceptance matching period. In the pre-lotteries period, no lotteries
to fairly decide which student applications to accept were organised by high schools yet, because there
was no capacity problem. In the first years that high schools faced more applications than they had seats
available, two strategies were used by high schools to fairly decide which students to accept: they either
organised a lottery, or accepted students based on time of application. The introduction of these decision
mechanisms marked the beginning of the desynchronized lotteries period. Both decision mechanisms made
high schools push the date of the decision on which students to accept forward each year. To overcome
this, the municipality of Amsterdam and the representative body of high schools in Amsterdam, the OSVO,
introduced, in 2005, strict rules for this decision process. These rules can be briefly summarised as follows:

1. each student was only allowed to apply to one school between set dates (by the OSVO);

2. high schools had to accept students based on a fair lottery, organised at a time set by the OSVO.

All students who were unfortunate in the first round of lotteries could in a next similar round apply for the
schools that at that time still had seats left. In this second round, students could again only apply for one
school, but high schools were now allowed to either organise a fair lottery (at a set time) or to base the
decision on the time of application. Students who were unfortunate twice would then be allocated by the
representative body, at some high school that still had seats available, while considering the specific wishes
and needs of the student.17 The introduction of these strict rules marked the beginning of the synchronized
lottery phase, and the system introduced by the municipality of Amsterdam and the OSVO can be seen as a
variant of the Boston school-allocation mechanism (BAM). The BAM can be briefly described as follows:18

0. Students hand in a preference list over (all) secondary schools;

1. Each school decides by a fair lottery which students, who listed the school as their first choice, to accept.

k. Each school, with seats still available, decides by a fair lottery who of the students, who listed it as
their k-th choice, to accept.

The k-th round is repeated, until each student is assigned a seat. An important difference between the BAM
and the system used in Amsterdam in the synchronized lotteries phase, is that students are not obliged to
hand in a complete preference list over all high schools in advance, but are allowed to apply for one school (for
which they want to participate in the lottery) at each stage. This means that students in the Amsterdam
case can hand in their preferences adaptively, based on the outcomes of earlier rounds. The introduction
of strict regulations for the high-school admissions was the introduction of the first real school-allocation
mechanism in Amsterdam. From that point on, there was a uniform system in place to allocate students to
high schools, that in principle could have been executed by one single interactive computer program. Hence,
if in the following there is a reference to school-allocation mechanisms in Amsterdam, the Amsterdam Boston
variant, discussed above, will be understood as a member of this collection.

In 2012 four researchers from the Department for Research, Information and Statistics for the municipality
of Amsterdam, conducted a study on what parents saw as their ‘ideal school’, which schools parents preferred
for their children, their opinions on the city’s plan for new schools and on the school-allocation mechanism
(i.e. the Boston variant).19 It was found that many parents found the synchronized lotteries stressful and
that most parents preferred a school-allocation mechanism where a preference list over high schools can be
handed in before the allocation mechanism started. Furthermore, 6 out of 10 parents indicated that they
would prefer to hand in a school preference list with the three schools most preferred by their child, ordered
in order of preference; almost no parent supported the city’s plan to request students to hand in preference

17OSVO & Gemeente Amsterdam (2013): §§ 4.1-2, 6.3, pp. 41-44, 64.
18Abdulkadiroğlu et al. (2005): p. 369; De Haan et al. 2015: pp. 5-6.
19Cohen et al. (2012): pp. 11-14.

6

lists of a minimal length of 15.20 The study also showed that 8 out of 10 parents found the process of the
synchronized lotteries clear.21 In the same study, the researchers also found that in the year 2011, a school
year in the synchronized lotteries phase, only 6% of students where unfortunate in the first round. Further-
more, they found that there were no significant differences in school performances between the first-round
fortunate and unfortunate students. Moreover, of the unfortunate students almost all indicated that they
were equally pleased with their life as the fortunate students.22

The municipality of Amsterdam and the representative body of high schools, OSVO, decided, based on the
2012 study, to introduce a new school-allocation mechanism in 2015: a deferred acceptance school-allocation
mechanism. The choice for the Deferred acceptance school-allocation mechanism was mainly based on the
following two reasons:

1. it allowed students to hand in one preference list of high schools in advance;

2. handing in a preference list according to the true preferences over high schools, is a (weakly) dominant
strategy in deferred acceptance school-allocations mechanisms.

Deferred acceptance school-allocations mechanism match students to high schools according to preferences
of the students over high schools and preferences of the high schools over students. Since in the Dutch school
system high schools are obliged to accept all applying students (barring some rare exceptions) preferences of
high schools over students are not allowed in a similar way as students have preferences over high schools.
However, in the Amsterdam system, some students have priorities for certain schools, and these priorities can
be seen as preferences of high schools over students (e.g. suppose two students s and s′ both want to go to
school a, and student s has a priority for school a and s′ not, then this can be modelled by saying that school
a prefers s over s′). Nevertheless, there are not enough priorities to create lengthy preference lists for the
high schools, which deferred acceptance mechanisms need to function well. Therefore, preference lists of high
schools over students are artificially augmented. The augmenting of school preferences can then be carried
out by single or multiple tie-break. The distinction between multiple tie-breaking and single tie-breaking
deferred acceptance school-allocation mechanisms lies in the following:

� multiple tie-breaking : every high school’s preference list is randomly augmented by an individual lottery;

� single tie-breaking : one lottery determines the augmentation of each high school’s preference list

If school priorities are incorporated in high schools’ preference lists, then both under multiple and single
tie-breaking not all high-school preference lists are identical, but under single tie-breaking all high-school
preference lists are very similar. If school priorities are not incorporated in the high schools’ preference
lists and the preference lists are thus randomly generated, then under single tie-breaking all high schools’
preference lists are identical, whereas under multiple tie-breaking this is not necessarily the case. The assign-
ment of artificial preference lists over students to high schools, in the deferred acceptance school-allocation
mechanisms, is where a ‘lottery element’ is incorporated in the allocation mechanisms. Based on the prefer-
ence lists of the two parties (students and high schools) a deferred acceptance mechanism matches students
to schools to create a high-school allocation. In 2015 the multiple tie-breaking deferred acceptance school
allocation mechanism (DA-MTB) was used,23 whereas in 2016 the single tie-breaking deferred acceptance
school-allocation mechanism (DA-STB) was used; in both cases priorities were incorporated in the high
schools’ preferences.24 In Chapter 3 (Theorem 4.19) it will be shown that deferred acceptance with single tie
breaking, with no priorities incorporated in high school’s preferences, is equivalent to the permutation school-
allocation mechanism (PAM) which is an implementation of the random serial dictatorship school-allocation
mechanism (RSD).

20Cohen et al. (2012): pp. 46-48.
21Cohen et al. (2012): p. 44.
22Cohen et al. (2012): p. 45.
23OSVO & Gemeente Amsterdam (2014): p. 44.
24OSVO & Gemeente Amsterdam (2015): p. 5.; Gautier et al. (2016): p. 2.

7

2.4 Deferred Acceptance in Amsterdam

The first use of a deferred acceptance mechanism marked the beginning of the contemporary deferred accept-
ing matching period. In 2015 the DA-MTB was used to allocate 7510 students.25 At that time, there were
9846 seats available at 53 schools, where schools, in this case, can contain multiple application possibilities
(i.e. including all educational tiers offered by some the high school). There was a shortage of 998 seats to
place all students at the school they preferred most. In the final allocation produced by the DA-MTB, 74%
of the students were allocated to the school they preferred most26 and 95% of the students were allocated to
a school students placed in the top three of their preference list.27

The outcome of the 2015 allocation was severely criticized, because parents claimed to have been promised
that 99.9% of the students would be allocated to a school students placed number one, two of three in their
preference list.28 Furthermore, parents complained that the outcome of the allocation was Pareto inefficient,
which means that there were pairs of students, who would, by swapping allocated schools, both be allocated
to a school they preferred more. The two criticisms led to a judicial process initiated by the parents against
the municipality of Amsterdam and the representative body of high schools (OSVO) before the court of
Amsterdam. The aim of the lawsuit was to force the OSVO to allocate students who had been allocated
to a school sixth or lower on their preference list, to a school higher on their preference list and to allow
students to swap schools.29 Both requests were rejected by the court, because (i) the court did not agree
that the OSVO had led parents to believe that 99.9% of the students would be allocated to a school in their
top three,30 and (ii) swapping of assigned schools could not be allowed, because it may create a market for
school seats,31 it would cease to give all students equal opportunities,32 and it would render the mechanism
not strategy proof in future use.33

Interestingly, the court ruling gives insight in why the representative body of schools (OSVO) and the mu-
nicipality of Amsterdam explicitly opted for a strategy-proof school-allocation mechanism (which all deferred
acceptance variants are from the perspective of the students). In strategy-proof school-allocations mecha-
nisms, no student can be hurt by handing in a preference list, which reflects his or her actual true high-school
preferences. The arguments to opt for a strategy-proof school-allocation mechanism, noted in the court rul-
ing, are (i) it reduces the number of people who hand in preference lists that do not reflect true preferences,34

(ii) it gives policy makers insight into the true preferences of students, which allows them to adjust school
policy to actual needs,35 and (iii) it facilitates communication, because parents and students can be genuinely
instructed to hand in their true preferences, since this can never be in their own disadvantage.36

In the same month as the court proceeding, the OSVO requested a research company to conduct a satisfac-
tion survey on the DA-MTB under parents, students, high-school staff and primary school staff. The study
showed that 77% of the participating parents was pleased or very pleased about the DA-MTB-produced
allocation. Furthermore, it became clear that 76% of the participating parents found it acceptable if their
child would be allocated to a school in its ‘top three’.37 However, the study also showed that 53% of the
1143 participating parents and about half of the participating students, found it hard to identify 10 schools
in order of preference. Moreover, even though 86% of the participating students were aware that it was
beneficial to list as many schools as possible in their preference list, only 13% succeeded in enlisting at least

25Gautier et al. (2015): p. 4.
26Gautier et al. (2015): p. 19.
27Panel Inzicht (2015): p. 7.
28Rechtbank Amsterdam (2015): §3.3.
29Rechtbank Amsterdam (2015): §3.1.
30Rechtbank Amsterdam (2015): §4.6.
31Rechtbank Amsterdam (2015): §4.8.
32Rechtbank Amsterdam (2015): §4.8.
33Rechtbank Amsterdam (2015): §4.9.
34Rechtbank Amsterdam (2015): §4.5.
35Rechtbank Amsterdam (2015): §4.5.
36Rechtbank Amsterdam (2015): §2.7; Gautier et al. (2015b): pp. 4-5.
37Panel Inzicht (2015): p. 33.

8

10 schools.38 In the first weeks of the school year, when students had enrolled in their assigned schools, the
research company also assessed student satisfaction. Of students allocated to a school they ranked first or
second on their preference list, 95% were pleased with the final allocation; the same was true for 50% of the
students allocated to their third choice or lower. Nonetheless, 75% of the participating students allocated to
a third choice or lower likes going to school at their allocated school, versus 91% for students allocated at
their first or second choice.39 Another important finding of the study was that 51% of the participating par-
ents found the school allocation process as a whole (school choice, application and allocation) not transparent.

In 2015, in a written reply to the criticisms and the survey on the school-allocation mechanism, the munici-
pality official for education Simone Kukenheim,40 expressed her disappointment in the decision for a Pareto
inefficient school-allocation mechanism.41 Furthermore, she indicated five ‘starting points’, which should be
taken into account by the decision for any school-allocation mechanism:42

1. students and parents should be, to the highest possible degree, able to control to which schools the
student will be allocated;

2. a school-allocation mechanism in which more students are assigned their highest preferred school, should
be favoured over other allocation mechanisms; students should only not be allocated to their highest
preferred school, if it is not possible to allocate all students who prefer that school highest to that
school;

3. the final allocation should not give students any reason to want to switch seats among each other;

4. the workings of the allocation mechanism should be clear to parents, students and schools and must be
transparent;

5. the allocation mechanism should provide the final allocation within a couple of weeks.

In short, this means that the municipality of Amsterdam finds any school-allocation mechanism sufficient
(1) if it respects preferences of students, (2) if it tries to place as much students as possible on their highest
preferred school, (3) if it is Pareto consistent,43 and (4) if it is comprehensible and (5) fast. Starting points 2,
3 and 5 can be safely translated into a mathematical setting. In fact, it can be demonstrated mathematically
that the DA-STB, under certain conditions, satisfies starting points 3 and 5, and, to a certain degree, also
2. Since the DA-STB was adopted in some form, after this statement of the municipality official, it can be
concluded that the authorities deem the DA-STB used in Amsterdam, to satisfy starting points 1 and 4.
This conclusion gives a point of reference to determine if other school-allocation mechanisms satisfy these
starting points 1 and 4.

In 2016 the DA-STB was used to allocate 7453 students. There were 10196 seats available, at 62 schools,
where schools, in this case, can contain multiple application possibilities (i.e. including all educational tiers
offered by some the high school). There was a shortage of almost a thousand seats to place all students at
the school they preferred most. In the final allocation 83.66% of the students was placed at the school of
their highest preference (for 2015 DA-MTB only 74%) and 95.23% was allocated a seat in a school in their
top three.44 Because it is expected under DA-STB that some students will be placed at a school very low
on their preference list, students and parents were advised to hand in longer preference lists than previously,
when the DA-MTB was used. The length of the preference lists was 7.72 on average (this was 5.25 in 2015
for DA-MTB), for VWO students this was 11.19 (this was 6.7 for DA-MTB).45 The DA-STB was unable to
allocate 37 students (0.005%) of which 11 students (30% of 37) had only one school on their preference list,
18 students (49% of 37) had less than four schools, and 9 students (19% of 37) ten or more schools. Students

38Panel Inzicht (2015): p. 29.
39Panel Inzicht (2015): p. 34.
40A political appointment in the executive branch of the municipal government (NL: Wethouder Onderwijs).
41Kukenheim (2015): pp. 2-3.
42Kukenheim (2015): pp. 3-4.
43N.B. a school-allocation mechanism that produces Pareto-optimal allocations is called Pareto consistent.
44OSVO (2016); Gautier et al. (2016): p. 15.
45Gautier et al. (2016): p. 10.

9

with a VWO school recommendation were overrepresented among the not-allocated students (49% of 37).46

The representative body of high schools organised another ‘run’ of DA-STB for all students who were not
allocated or unhappy with their assignment. These students could hand in a new preference list over schools
that (by now) still had seats available. 21 of the 37 not-allocated students and 46 previously allocated stu-
dents participated in this second round. All students participating in this second round were allocated to
the school of their first choice (in their new preference list over still available schools).47

In 2016, 1020 students (14%) had placed a school for which they were offered priority, highest on their
preference list (in comparison, in 2015, when the DA-MTB was used, 811 students (11%) placed a school for
which they were offered priority highest). In the specific DA-STB adopted in Amsterdam, students could
only use their priority if they placed the school for which they had a priority highest on their preference list;
in the DA-MTB, used the year before, students were allowed to use their priority (only one) for a school on
any place in their preference list. In 2016, there were some schools, for which more students were offered
priority than the school had seats available; which students were accepted by that school was then decided
by the single tie break.48

2.5 Looking Ahead

At the time of writing this thesis, no satisfaction survey has yet been conducted on the DA-STB, used in
2016. There is a satisfaction survey planned and its results will be presented to the city council of Ams-
terdam in September 2016.49 Before the publication of these results, it is hard to say how pleased parents,
students, high-school staff and primary school staff are with the mechanism and the allocation produced by
the mechanism. The mechanism still led to some very unfortunate students’ high-school assignments and as
it required longer preference lists to be handed in, it will thus be very interesting to see how parents and
students have experienced this year’s allocation process.

In the following the different school-allocation mechanisms used in Amsterdam will be discussed from a math-
ematical point of view. Each mechanism will be explained and investigated for the mathematical properties
desired by policy makers (and society). Some of these mechanisms will be treated in the form in which they
have been used in Amsterdam and others will be treated more generally. For the mathematical investigation
of school-allocation mechanisms, ‘school allocation’ needs to be mathematically translated. In the next chap-
ter, Chapter 3, all formal concepts needed to formally discuss the different school-allocation mechanisms will
be introduced. In Chapter 4, it will be shown what kind of allocations the different mechanisms produce and
what the game-theoretic consequences of different mechanisms are.

In light of the ‘starting points’ given by the municipality official for education, a new approach to school-
allocation mechanisms will be presented in Chapter 5. It will be explored if using genetic-algorithmic optimi-
sation could help in providing a school-allocation mechanism which satisfies more of the desired properties
than the other discussed school-allocation mechanisms. The benefit of using a genetic optimisation method
is that a fitness function needs to be introduced, which determines which allocations will ‘survive’, and will
thus be produced by a genetic-algorithmic optimised school-allocation mechanism. The political wishes for
school allocations can be incorporated into and formally captured by this fitness function, which makes a
genetic-algorithmic optimised school-allocation mechanism a very legitimate school-allocation mechanism.

46The DA-STB is unable to place some student if all schools on the preference list of the students have no seats left at the
stage of mechanism where it is allocating the student (cf. Kukenheim (2016): p. 2.; Theorem 4.19).

47OSVO (2016); OSVO (2016); Gautier et al. (2016): p. 11.
48Gautier et al. (2016): p. 14.
49Kukenheim (2016): p. 3.

10

Chapter 3

School Allocations

3.1 School Allocations

The Amsterdam school choice case can be formally described as an allocation problem between two disjoint
sets of agents: students applying for Amsterdam’s high schools and the high schools of Amsterdam. The
particularities of the Amsterdam case will only be mentioned in this formal treatment of the problem when
strictly necessary. Consequently, in the following no longer will be referred to the actual students applying for
high schools in Amsterdam, but to a finite set of n students S = {s1, s2, ..., sn}, where each si denotes a student
applying to go to high school hi from a finite set of m high schools H = {h1, h2, . . . , hm}, where we associate
a capacity (or quota)1 ch to each high school; the set containing all such capacities composes a function from
high schools to positive integers greater than zero, s.t. C ∶H → Z>0 and C = ⟨(h1, ch1), (h2, ch2), ..., (hm, chm)⟩.
These capacities indicate the maximum number of students who can be allocated to some high school from
H. Since all students rightfully applying for high schools in Amsterdam have a right to receive secondary
education, the objective is to produce an allocation such that each student is matched to some high school
from which it will receive its secondary education in which no high school is assigned more students than for
which it has seats. The following definition captures the concept of an allocation mathematically.

Definition 3.1 (Allocation) Let S and H be two finite disjoints sets and let C ∶ H → Z>0 be a function
from H to positive integers greater than zero, s.t. for each h ∈ H there is some positive integer greater
than zero C(h) = ch denoting the capacity of h. An allocation A of elements of S to elements of H is a
function A ∶ S →H, such that for all h ∈H: ∣{s ∈ S ∣A(s) = h}∣ ≤ C(h).

The disjoint sets of agents underlying an allocation are also called parties. The following example clarifies
the mathematical understanding of a school allocation:

Example 3.2 Say that there are two high schools a and b, s.t. a has capacity 1 and b has capacity 2.
Furthermore, assume that there are three students, student 1, 2 and 3. Formally this gives S = {1,2,3},
H = {a, b}, and C = {(a,1), (b,2)}. A possible allocation, given these students and high schools could be
A = {(1, a), (2, b), (3, b)}, which captures the allocation in which student 1 is assigned to school a and
students 2 and 3 are assigned to school b. Since no school is assigned more students than its capacity,
the sets S and H are disjoint and finite, A is an allocation according to Definition 3.1.

1cf. Roth & Sotomayor (1990): p. 126.

11

3.2 Student Preferences

In the Amsterdam case, the goal is to produce allocations that respect the preferences of students over high
schools. Consequently, to each student s ∈ S a list is associated capturing these preferences. Before the
formal treatment of these preferences via lists can be introduced, it is important to make some remarks
about modelling school preferences. Preference lists aim to represent how a student would choose among
different alternatives when faced with a choice. If some student s prefers school h over h′, this is meant to
represent the fact that, if student s were faced with a choice from a set of high schools which to attend,
s would never choose h′, if h was available as a choice as well. If, however, student s would choose either
one in the foregoing situation, it is said that s is indifferent between h and h′.2 With this understanding of
preferences in mind, three further assumptions on preferences will be made, namely that preference lists are
(i) total, (ii) transitive, and (iii) strict. The first two assumptions are customary in economics and attempt
to capture rationality. A preference list is total, when all schools mentioned in the preference lists can be
compared, that is, for every two schools h and h′ mentioned in the preference list, the student is able to say
which school he likes more or that he is indifferent between the two. A preference list is transitive, if for all
triples of schools h,h′, h′′, it holds that, if school h is preferred over h′ and h′ is preferred over h′′, than school
h is preferred over school h′′.3 A preference list is strict if for every two schools mentioned in the preference
list, the student is not indifferent. Another example of a total, transitive, strict ordering is the list of positive
integers from 0, 1, 2, onwards. The modelling of preferences adopted here is called an ordinal modelling of
preferences, which means students have a first choice, second choice, third choice, etc. Furthermore, it is not
necessary for every high school h from H to occur in some preference list. 4 The adoption of such a model
of preferences to capture the Amsterdam case is justified on the following three grounds:

1. the 2012 study of the research department of the municipality of Amsterdam suggested that parents
wanted students to be able to hand in preferences as ordinal preference lists;5

2. ordinal preference list are able to capture ‘incomplete preference lists’, that is, preference lists in which
students do not have to indicate in which order they prefer all high schools, but only which high schools
they prefer most (this incomplete preference list was the preference list format in use in Amsterdam in
2015 and 2016);

3. there is no empirical data of preference lists with indifferences nor of cardinal preference lists available,
hence allowing such preference list would make it impossible to critically test new suggested allocation
mechanisms.

In the foregoing it was announced that the preference lists of students will be formally modelled as mathemat-
ical lists. To introduce the formal understanding of preference lists, the mathematical notion of a permutation
needs to be introduced first.

Definition 3.3 (Permutation) Let A be some finite set with cardinality n. Let ΠA = {π ∣ π ∶ n → A},
that is, ΠA is the set of functions from n to A (N.B. n is an ordinal, i.e. n = {0,1,2, ..., n− 1}). Let ΠA

be the set of permutations of A s.t. every π ∈ ΠA is some permutation of A. A permutation π is called
a random permutation of A if some π is chosen uniform from ΠA, this is denoted by π ←

r
ΠA.

Permutations are intuitively best understood as orderings of sets, e.g. ⟨1,3,2⟩ is a permutation of the set
{1,2,3}. Permutations are understood as functions, viz. bijections, such that it is possible to refer to the i-th
element of some permutation and vice versa. Let π be the permutation ⟨1,3,2⟩ of the set {1,2,3}; formally π is
then a specific bijection from {0,1,2} to {1,2,3}, namely the function (i.e. set of pairs) {(0,1), (1,3), (2,2)};
with this representation it is possible to denote the first element of π by π(0) and to denote the position of
3 in π as π−1(3), which is 1. With Definition 3.3 a definition of lists can be given:

2Roth & Sotomayor (1990): pp. 17-18.
3Roth & Sotomayor (1990): pp. 18-19.
4Manlove (2013): p. 1.
5Cohen et al. (2012): pp. 46-48.

12

Definition 3.4 (List) The surjection A⃗ ∶m→ A is a list, if there exists some finite set A with cardinality
n and finite ordinal m s.t. m ≥ n. Some operations on lists: Let A⃗ and B⃗ be lists with cardinality resp.
n and m,

� Translation: Tδ(A) = {(a + δ, b) ∣ (a, b) ∈ A};

� Concatenation: A⃗ + +B⃗ = A⃗ ∪ Tn(B⃗);

� Add (an element): a ∶Ð→A =
Ð→
{a} ∪ T1(

Ð→
A);

� Tail of a list: τ(Ð→A) = T−1({(i, a) ∈
Ð→
A ∣ i > 0});

� k Initial Segment: ι(k,Ð→A) = {(j, a) ∈Ð→A ∣ j < k}

Nota Bene: (i) Tδ(A⃗) is a function, but not a list if δ > 0; (ii) A⃗ + +B⃗ is a list; (iii) a ∶ Ð→A is a list.
Notation: to stress that some object is a list, an arrow will be written over it; furthermore, angle brackets
(or ‘chevrons’) are used to give a list as an ordering of elements, e.g. ⟨a1, a2, a3⟩ is a list (representation)
of {a1, a2, a3} and formally is the set {(0, a1), (1, a2), (2, a3)}.

From the above definition it follows that all permutations are lists, but not that all lists are permutations.

Example 3.5 Let A = {1,2,3}, then π = ⟨1,2,3⟩ is a list (or ‘list representation’ of A) and a permutation

of A, but
Ð→
A′ = ⟨1,1,2⟩ is a list based on A′ = {1,2} ⊆ A, but not a permutation of A′ (nor of A).

Furthermore note that we have: Ð→
A′ = ⟨1,1,2⟩ = {(0,1), (1,1), (1,2)}.

Some important remarks on lists. First, note that A⃗(i) denotes the (i + 1)-th element of the list A⃗ and that
Ð→
A−1(a) gives the position (or ‘index’) of a in

Ð→
A . Second, note that the translation operation from Definition

3.3 is an operation on sets of pairs (functions) and is only used to define the operations on lists and is not
used anywhere else. Third, note that operation of concatenation can be intuitively understood as simply
concatenating two lists to make one longer lists, e.g. ⟨1,2⟩++⟨2,1⟩ = ⟨1,2,2,1⟩. Fourth, note that adding an
element always adds an element at the beginning of the list, e.g. a ∶ ⟨b⟩ = ⟨a, b⟩, if a needs to be added to the
end of ⟨b⟩, ⟨b⟩++⟨a⟩ will do. Fifth, the tail of some list ⟨a1, a2, ..., an⟩ is just ⟨a2, ..., an⟩ s.t. the latter is still

a list. Sixth, a k initial segment of some list
Ð→
A is the list of the first k items of

Ð→
A ; any initial segment

Ð→
A ′ of

some list
Ð→
A is a k initial segment for some k ≤ ∣Ð→A ∣. Seventh, note that the empty set ∅, is also a list; it is is

usually called the empty list and is sometimes denoted by ⟨⟩. Seventh, observe that,
Ð→
A + +⟨⟩ = Ð→A = ⟨⟩ + +Ð→A

and a ∶ ⟨⟩ = ⟨a⟩ =
Ð→
{a} = {(0, a)}. With lists explained, the formal understanding of preference lists can be

introduced:

Definition 3.6 (Preference List) Let A and B be two finite disjoints sets. Let ΠB be the set of all
permutations of B. A preference list Pa of some a ∈ A over B is an initial segment of some π ∈ ΠB.

In the following a preference list will be called complete if it is a permutation of the other party. Furthermore,
given some preference list Ps of some student s that contains elements h and h′ from the other party, the
relation ‘s prefers h over h′’ will be denoted by h >s h′. Note, that if h >s h′, then P −1

s (h) < P −1
s (h′). That

is, if a student prefers h over h′, then the index of h is lower than the index of h′ in the respective preference
list. Moreover, the k-th preference position of student s is Ps(k − 1) and the preference position of high
school h for student s is P −1

s (h)+1. Hence, the first choice of some student s, Ps(0), is preference position 1.
Furthermore, with the ‘top n’ of student s the initial segment with length (i.e. cardinality) n of Ps is referred
to. Moreover, note that the set of all preference lists P = {Ps1 , Ps2 , ..., Psn} is called a preference profile. The
set of preference lists of students over high schools is therefore called the preference profile of the students.

13

Example 3.7 Let H = {a, b, c} and S = {1,2,3}, with C = {(a,1), (b,2), (c,1)}. Furthermore, say

� P1 = ⟨a, b, c⟩;
� P2 = ⟨b, a, c⟩;
� P3 = ⟨b, c⟩.

Then the preference lists of students 1 and 2 (i.e. resp. P1 and P2) are complete and the preference list
of student 3 is incomplete. Furthermore, student 1 has school a on preference position 1, school b on
preference position 2 and school c on preference position 3, whereas student 3 has no preference position
3. Moreover, student 2 his first choice is b, his second choice is a and so on; the ‘top 2’ of student 2 is
⟨b, a⟩.

3.3 School Markets

The study of allocations between two parties that respects preferences of one of the parties or of both
parties, originally belongs to economics. In particular, finding suitable allocations is studied in a sub field
of microeconomics called market design, where the theory on ‘suitable allocations’ is denoted by ‘matching
theory’. Matching theorists are mainly concerned with applying game-theoretic techniques, to formalize
economic properties of allocations, such that ‘market failures’ can be prevented. The origin of ‘matching
theory’ in economics, explains why the single concept to capture all concepts introduced in this section
before, is called a ‘school market ’:6

Definition 3.8 (School Market) Given a finite set of n students S, a finite set of m high schools H, a ca-
pacity assignment C ∶H → Z>0 and a preference profile of the students P = {Ps ∣ Ps is the preference list of student s ∈
S}, the quadruple (4-tuple), M = (S,H,C,P) is called a school market iff the sum of all capacities is at
least the cardinality of S.

Observe that a school-allocation problem, as the Amsterdam case, is only referred to as a market, if and only
if all student are able to receive secondary education somewhere. The problem is therefore not, if or how
the students can get secondary education, but where.

3.4 Priorities

In Amsterdam there have been different rules regarding priorities. Priorities are rights that some students
can obtain to be admitted to some high schools. Priorities are only allowed within very strict legal boundaries
and can only be used in some exceptional cases. Examples of such priority rules are: ‘every student who
applied and who has siblings already enrolled will be granted priority,’ ‘students applying who have attended
primary schools operating under a similar educational philosophy will be granted priority,’ ’students applying
whose parents are employees will be granted priority.’ Before 2016 it was possible for students to apply to
some high school via a priority, even if this school was not placed highest on their preference list; nowadays
this is no longer permitted. Students can only use their priority right if they place the school for which they
have such a right highest on their preference list. The priority right then guarantees students a seat on the
respective high school if and only if the number of students with priorities for that high school does not
exceed the capacity of that high school. If the latter is the case, then a lottery decides which students will
be guaranteed seats.7

The priorities in Amsterdam form no system of priorities, that is, there is no order over priorities such that
some priorities weigh heavier than others.8 About 14% of the students used a priority right in 2016, by

6Manlove (2013): p. 8.
7OSVO & Gemeente Amsterdam (2015): §4.3 in conjunction with p. 32.; Gautier et al. (2016): p. 14.
8In Boston there is such a system of priorities, cf. Abdulkadiroğlu et al. (2005): p. 368.

14

placing a school for which they had a priority, highest on their preference list. Priorities can be formalised
by regarding them as preferences of high schools over students. That is, a high school h will be said to
prefer student s over s′ if student s is offered priority for h and s′ is not; if both are offered priority or
both not, then school h is said to be indifferent on s and s′. The number of priorities in Amsterdam is so
low, and the system of priorities so simple, that the preference lists for high schools over students, obtained
by incorporating priorities, are very ‘indifferent’. The latter will lead to new problems, namely to decide
upon which tie-breaking rules to use. Tie-breaking rules decide which student to favour if only some can
be assigned to some school h to which all students want to be assigned and on which h is indifferent. In
the contemporary rules for priorities in Amsterdam, this issue can be circumvented, since priorities can be
dealt with, before the allocation mechanisms come in to play. That is, first all students with priority rights
will be allocated according to their priorities. Then, a school-allocation mechanism is used on the remaining
school market, that is the market that only contains students not yet assigned (i.e. students who did not
use priorities and students who were eliminated by lottery for their priority school) with properly adjusted
capacities. The school-allocation problem regarding the so obtained school market, is the school-allocation
problem on which this thesis focusses. In the following priorities are therefore neglected. There is thus no
need for a discussion on which tie-breaking rule to use, nor do school-allocation mechanisms that cannot cope
with priorities need to be dismissed, since the Amsterdam school-allocation problem can be regarded as a
school-allocation problem in which there are no priorities.

3.5 Properties of Allocations

As indicated earlier, finding allocations is not just to find some matching between two disjoint parties, but to
find matchings that satisfy certain conditions. In the Amsterdam case, some of the conditions which a school
allocation must satisfy can be taken from the written reply to the criticisms on the DA-MTB produced allo-
cation of 2015. In her reply, the municipality official for eduction Simone Kukenheim, indicated five ‘starting
points’ which should be taken into account in the design of a (new) school-allocation mechanism for the Am-
sterdam school case. These ‘starting points’ suggest which mathematical properties the Amsterdam school
allocation should have. The ‘starting points’ can be summarized as follows, the school-allocation mechanism
(1) should respect preferences of the students, (2) should try to place as much students as possible on their
first choice, (3) should not give rise to reasonable trading options between students, and (4) it should be
comprehensible and (5) fast.9 As indicated in the previous chapter (cf. Section 2.4) starting points 2, 3 and
5 allow a mathematical translation, however only 3 has a univocal translation, viz. Pareto optimality. An
allocation A is Pareto optimal, if there cannot be some allocation A′, such that in A′ some students are better
off than in A, whereas no students in A′ are worse off than in A. It is however non trivial that the concept
of Pareto optimality translates the third starting point of no reasonable trade options. In this section it will
be argued, why this concept, and not the more direct translation of pair-wise Pareto efficiency is a formal
translation of the third starting point of the municipality official.

An allocation is pair-wise Pareto efficient if there are no pairs of students who want to switch schools. This
can be expressed by the condition that there cannot be two students s and s′ s.t. s prefers the school to
which s′ is assigned over the school to which he is assigned and vice versa.

Definition 3.9 (Pair-wise Pareto-Efficient Allocations) Let A ∶ S → H be some allocation between two
finite disjoint sets S and H. The allocation A is pair-wise Pareto efficient iff:

∀s, s′ ∈ S ∶ A(s) <s A(s′)⇒ A(s′) >s′ A(s)

Intuitively, some allocation is pair-wise Pareto efficient, if for every student, for every school on his or
her preference list, there is no student which is assigned a school that the student prefers over its present
assigned school, is willing to switch with the student in question. Although pair-wise Pareto efficiency is a
desirable property for school allocations, the property by itself does not capture everything the municipality
of Amsterdam wants for its school allocations. Consider the following example:

9Kukenheim (2015): pp. 3-4.

15

Example 3.10 Let S = {1,2} and let H = {a, b, c}, such that all high schools have capacity 1. Say we
have the following preference lists:

� P1 = ⟨a, b, c⟩;
� P2 = ⟨a, c, b⟩.

Consider the allocation A = {(1, b), (2, c)}. Now student 1 and 2 do not want to switch, that is, A(1) >1

A(2) and A(2) >2 A(1), hence A is pair-wise Pareto efficient. Note, however, that allocation A could
be ‘improved’ to some allocation A′ by assigning school a to either 1 or 2, consider the allocation A′ =
{(1, a), (2, c)}. In allocation A′, student 1 has preference position 1 and student 2 has preference position
2, whereas under A both students had preference position 2.

From the above example it is clear that it is possible to ‘improve’ pair-wise Pareto-efficient allocations, such
that no student is assigned a lower preference position, whereas some student is assigned a higher preference
position. If the latter is possible, then the allocation is not Pareto optimal. A closer look at Example 3.10
suggests that it might be wise to not only desire pair-wise Pareto-efficient allocations, but also saturated
allocations. An allocation is saturated if all schools which students prefer over the school they are assigned
to have reached their full capacity.

Definition 3.11 (Saturated Allocations) Let A ∶ S → H be some allocation between two finite disjoint
sets. Let C ∶H → Z>0 be the capacities of all h ∈H. The allocation A is saturated iff:

∀s ∈ S ∀h ∈H ∶ h >s A(s)⇒ ∣@(h)∣ = ch,

with ch the capacity of h and @(h) = {s ∈ S ∣ A(s) = h}.

Intuitively saturated school allocations are such that it is not the case that some (popular) high school has
seats left, but students who want to go there, are not allocated to that school, but to some other school.
The following example will demonstrate, that although pair-wise Pareto-efficient saturated allocations fulfil
important conditions that the municipality of Amsterdam desires, they still allow objective ‘improvement’:

Example 3.12 Let S = {1,2,3} and let H = {a, b, c}, such that all high schools have capacity 1. Say we
have the following preference lists:

� P1 = ⟨b, a, c⟩;
� P2 = ⟨c, b, a⟩;
� P3 = ⟨a, c, b⟩;

Consider the allocation A = {(1, a), (2, b), (3, c)}. Note that A is pair-wise Pareto efficient, since (i)
student 1 and 2 do not want to switch places, because 2 doesn’t want to, (ii) student 1 and 3 do not want
to switch, because 1 does not want to, and (iii) student 2 and 3 do not want to switch, because 3 does not
want to. Furthermore, A is saturated, because all schools have reached their full capacity. Now consider
allocation A′ = {(1, b), (2, c), (3, a)}, in this allocation all students are assigned their first choice, whereas
under A they all were assigned their second choice. This means that there exist an allocation, namely
A′, in which some students are better off (viz. all students) and no students are worse off. Hence, A
is not Pareto optimal. Allocation A′ cannot be reached from A by a pairwise switching of places, s.t.
each switch is an improvement for all participants, but it can be reached by a trade cycle. Consider
the following trade cycle, 1 ↦ 2 ↦ 3 ↦ 1, which captures the idea that if 1 goes to the school of student
2, student 2 goes to the school of student 3, and student 3 goes to the school of student 1, then all
students are at a school they prefer over the school assigned under A. Clearly this trade cycle benefits all
participants, because before all students were assigned their second choice and afterwards all are assigned
their first choice, hence pair-wise Pareto efficient saturated allocations are not optimal allocations yet.

16

The example above illustrates that pair-wise Pareto efficiency only tells something about pair-wise trades of
school seats from which both students benefit, and that the impossibility of such pair-wise trades does not
imply the impossibility of trade cycles that benefit all students in the cycle. If a trade cycle that benefits all
participants is possible in some allocation, then it cannot be that the allocation is Pareto optimal. In other
words, if some allocation is Pareto optimal then such trade cycles are impossible (the contrapositive of the
former statement). With these insights, a formal definition of Pareto optimality can be given:

Definition 3.13 (Pareto-Optimal Allocations) Let A ∶ X → Y be some allocation between two finite
disjoint sets. The allocation A is Pareto optimal iff there is no allocation A′ ∶X → Y s.t.

(i) ∃x ∈X ∶ A(x) < A′(x);

(ii) ∀x ∈X ∶ A(x) ≤ A′(x).

Note that the allocation A′ from Example 3.12 is a Pareto-optimal allocation. Furthermore, with the concept
of Pareto optimality now formalised, the previous examples (Examples 3.10 and 3.12) establish the following
two propositions:

Proposition 3.14 If some allocation is pair-wise Pareto efficient, then it is not necessarily Pareto
optimal.

Proposition 3.15 If some allocation is saturated and pair-wise Pareto efficient, then it is not necessarily
Pareto optimal.

The above propositions suggest that Pareto optimality is a stronger property than the combined property of
pair-wise Pareto efficiency and saturatedness. This suggestion is correct, since if some allocation is Pareto
optimal, then it is impossible that there can be two students who, if they switch, they are both better off
(otherwise the allocation was not Pareto optimal). Furthermore, if some allocation is Pareto optimal, then it
is impossible that it is not saturated, since a trivial ‘improvement’ of the allocation would just be to assign
the students for which the school that they prefer over their present assigned high school, to that more
preferred school. The foregoing implies that every Pareto-optimal allocation is pair-wise Pareto efficient and
saturated.

Proposition 3.16 Every Pareto-optimal allocation is pair-wise Pareto efficient and saturated.

The municipality official suggested that a suitable allocation for the Amsterdam school choice case did not
allow any reasonable trading options for students. From the above it is clear, that it does not suffices to
only allow no pairwise trading options, nor to only allow saturated pair-wise Pareto-efficient allocations, to
capture this idea. The stronger notion of Pareto-optimality does capture this idea, and, furthermore, implies
that there are no finite trading cycles possible either. The notion of Pareto optimality is also found in the
literature as an important ‘optimality criterion’ for one-sided one-to-many matchings (as the Amsterdam
school case) and it is regarded by economists as a “minimal requirement for any ‘reasonable’ solution” to
these kind of matching problems.10 In the following we will denote the set of Pareto-optimal allocations for
some school market M by PAROPTM.

The other two ‘starting points’ of the municipality official that allow mathematical translation were the
mechanism should respect preferences of the students and should try to place as much students as possible
on their first choice. The first of these two is not univocal: different mechanisms ‘respect’ the preferences
of students in different ways. To decide whether a system ‘respects’ student preferences can therefore be
explained in different ways. For example, one understanding could be ‘handing true preferences is a dominant
strategy’, another ‘the full top n of a student is accounted for by the mechanism’. This condition will be

10Manlove (2013): pp. 5-6, 304; cf. Hylland & Zeckhauser (1979): p. 293.

17

treated when different known mechanisms are discussed and when strategic questions are investigated. The
other ‘starting point’ mentioned in the opening paragraph, of the more students are assigned their first choice,
the better, is also not univocal; the words of the municipality official “I advocate a system in which more
students are assigned their first choice”, can be explained in multiple ways. Three possible understandings
are:

1. I advocate a system in which the more students are assigned their first choice the better;

2. I advocate a system in which students should only not be allocated to their highest preferred school, if
it is not possible to allocate all students who prefer that school highest to that school;

3. I advocate a system in which more students are assigned their first choice, than under DA-MTB allo-
cations.

The second understanding is based on an example that the official gives prior to the cited standpoint, which
is the following: “on 28 schools students are eliminated by lottery, whereas on 14 of these schools the number
of students who indicated it as their first choice was higher than the capacity”.

Example 3.12 clearly demonstrated, that it is not sufficient to demand pair-wise Pareto-efficient allocation
(even combined with saturatedness) for all of the three above understandings, since in Example 3.12, all
three students could be assigned their first choice, but assigning all of them their second choice still yields a
pair-wise Pareto-efficient and saturated allocation. In spite of the fact that Pareto-optimality captures many
of the desired properties of allocations (pair-wise Pareto efficiency, saturatedness, no trade cycles) allocations
which are Pareto optimal do not necessarily assign as much students to their highest preferred school as
possible. Consider the following example:

Example 3.17 Let S = {1,2,3,4} and let H = {a, b, c}, s.t. school a has capacity 2 and all other schools
have capacity 1. Say we have the following preference lists:

� P1 = ⟨a, b, c⟩;

� P2 = ⟨a, b, c⟩;

� P3 = ⟨b, a, c⟩;

� P4 = ⟨b, a, c⟩.
Let A = {(1, c), (2, a), (3, a), (4, b)} be some allocation that is produced by assigning students the highest
preferred still available school in the following order, first student 4, than 3, than 2, than 1. Then
allocation A is Pareto optimal (result established in next section; Theorem 4.5). Observe that also the
allocation A′ = {(1, a), (2, a), (3, c), (4, b)} is possible. In A′ three students are assigned their first choice
(viz. students 1,2 and 4), whereas in A only two students are assigned their first choice (viz. students 2
and 4). Futhermore, under A′ all students who preferred school a the most are now assigned to school
a, which was not the case under A.

The above example demonstrates that Pareto-optimal allocations do not necessarily satisfy the second starting
point (in the first and second understanding) of the municipality official. Note, however, that both A and A′

are Pareto-optimal allocations.11 The example shows that Pareto optimality can satisfy two of the ‘starting
points’, but does not necessarily do so. To produce allocations which always satisfy the wishes of the
policy makers, more than Pareto-optimality should thus be demanded. Note that Pareto optimality should
nevertheless always be demanded to let the allocation satisfy the municipality official’s third ‘starting point’.
Furthermore, observe that it can never be the case that among the allocations that assign the most students
to their first choice, there is no Pareto-optimal allocation. Example 3.17 thus shows that Pareto-optimality
is a necessary property for allocations to have, but it is not a sufficient property. In the following section the
allocations mechanisms occurring in Amsterdam’s school-allocation history will be treated (i.a. DA-STB,
DA-MTB, Boston Allocation Mechanism). For all the treated mechanisms it will be shown which properties,
discussed in this section, the allocations, produced by the treated mechanisms, have, and furthermore, if the
allocations satisfy the municipality official’s recommendations.

11Assign in the order 1,2,4,3 the students their highest still available school, cf. Theorem 4.5.

18

Chapter 4

School-Allocation Mechanisms

4.1 Mechanisms

Bipartite matching problems, as the Amsterdam school-allocation problem, come in different forms. Bipartite
matching problems can be one-sided or two-sided and can be one-to-one or one-to-many. The distinction
between one-sided and two-sided matching problems is based on how many parties have preferences. The
Amsterdam school-allocation problem, in its present formal format, is thus a one-sided Bipartite matching
problem. The distinction between one-to-one or one-to-many, refers to nature of the matching, if individuals
are matched with individuals, the problem is one-to-one; if individuals are matched to sets, the problem is
one-to-many. In the Amsterdam school-allocation problem high schools (individuals) are matched to sets
of students. The Amsterdam problem is therefore naturally modelled as a one-to-many one-sided Bipartite
matching problem.

The introduced distinctions between one-sided and two-sided are important, because these classes indi-
cate which solution concepts are desirable. In general, the central solution concept for two-sided matching
problems is stability, and for one-sided matching problems is Pareto optimality.1 The distinction between
one-to-one and one-to-many is important for choosing which mechanism can be used to produce an appro-
priate matching. This latter distinction is sometimes purely semantic, since some problems can be framed in
either ‘class’. First of all, note that any one-to-many matching problem (as the Amsterdam school case) can
be translated into a one-to-one matching problem. If one focusses on school seats, in stead of schools, the
Amsterdam school-allocation problem becomes a one-to-one matching problem: students (individuals) must
be assigned to school seats (individuals). A formal understanding of this different framing would be to trans-
late the set of high schools H to a set of school seats H′ = {ph1

1 , ph1

2 , . . . , ph1
ch1
, ph2

1 , . . . , ph2
ch2
, . . . , phm

chm
}, s.t. for

each high school h ∈H there are ch distinct school seats phj , with 1 ≤ j ≤ ch in H′. The many-to-one matching
problems that can be framed as one-to-one matching problems, have the advantage that all formal results
on one-to-one matching mechanisms carry over to the problem space of those many-to-one matching problems.

Just as many-to-one problems can sometimes be framed as one-to-one problems, so can one-sided problems
sometimes be framed as two-sided problems. By assigning random artificial preferences to the side which
originally had no preferences, both sides have preferences and two-sided matching mechanisms can be used.
The consequence of such translations are not always as innocent as the translations from may-to-one to one-
to-one. For instance, it is unclear which solution concept should be chosen, stability or Pareto optimality for
one of the two parties. Furthermore, these artificial preferences can have severe real life implications and it
is arguable if this is always admissible. In the Amsterdam school-allocation problem, there is however also a
more natural two-sided framing of the problem possible, by understanding priorities as school preferences (cf.
Section 3.4). Since in the following priorities will not be understood as school preferences, this translation is
not further discussed here.

1Manlove (2013): pp. 5-6; Abdulkadiroğlu et al. (2009): p. 1955.

19

In the above the term mechanism was used to describe a systematic procedure that selects an allocation for a
school market.2 If a mechanisms selects the allocations based on a revealed preference profile of the students,
then mechanisms are called a direct mechanisms. 3 Since all the mechanisms that will be discussed in the
following require students to reveal their preferences over schools, no distinction will be made between direct
and indirect mechanisms.

Definition 4.1 (Mechanism) Let M be some school market. Let A be the set of allocations possible for
M. If M is a function mapping school market M to some allocation A ∈ A, then M is a mechanism.

In the following section some widely used matching mechanisms will be discussed. First two one-sided school-
allocation mechanisms will be discussed, the Permutation Allocation Mechanism and the Boston Allocation
Mechanism. Thereafter, two different versions of the two-sided allocation mechanism with deferred acceptance
will be discussed. The two-sided allocation mechanisms treated in the following still satisfy the definition
above and only need a school market as input, since these mechanisms will artificially create preferences for
the high schools.

4.1.1 Permutation Allocation Mechanism

The first school-allocation mechanism that will be discussed is the Permutation Allocation Mechanism (PAM).
This mechanism is a queue-order mechanism, in which individuals are assigned schools from a set of remaining
still available schools, when students with higher queue rankings are already assigned there most preferred
still available school.4 Queue-order mechanisms, as the PAM are also called (random) serial dictatorships
and are sometimes named lottery mechanisms if the order of the queue is determined randomly.5 Serial
dictatorships are widely used, for example to allocate dormitory rooms (or on-campus housing facilities) to
students6 and to assign Navel academy graduates to ships.7 The following set of instructions in pseudo code
outline the Permutation Allocation Mechanism.

Definition 4.2 (Permutation Allocation Mechanism (PAM)) All (probabilistic) algorithms that are
extensionally equivalent to the following algorithm are called the Permutation Allocation Mechanism
(PAM):

input : School Market M = (H,S,P,C).
output: Allocation A ∶ S →H.

Generate a random permutation
Ð→
S ←

r
ΠS ;

for 0 ≤ i ≤ ∣Ð→S ∣ − 1 do

Assign
Ð→
S (i) to the most preferred school of

Ð→
S (i), according to PÐ→

S (i) that still has seats

available;

return the set of all (s,A(s)) with s ∈ S.

Notation: both the allocation A produced by PAM , and the process of producing A by PAM , on the school

market (S,H,C,P) by permutation
Ð→
S will be denoted by PAMÐ→

S
(S,H,C,P). The set of allocations that

can be produced by the PAM on some school market M will be denoted by PAMM.

The PAM simply generates a random order of students and then consequently assigns each student in that
order to the most preferred school that is still available. If ‘assign’ is mentioned in the stipulation of a
school-allocation mechanism, then this is where the allocation, viewed as a function, is generated; that is, for
every ‘assignment’ a pair (student, high school) is added to the allocation. Each iteration of the ‘for loop’ in

2A mechanism is sometimes also called a social choice function, cf. Svensson (1999) p. 559.
3Abdulkadiroğlu & Sönmez (2003): p. 733.
4Svensson (1999) p. 558.
5Abdulkadiroğlu & Sönmez (1998): p. 689.
6Abdulkadiroğlu & Sönmez (2003): p. 731.
7Roth & Sotomayor (1990): p. 90.

20

the above description of the PAM is where a student is assigned the best available school. Each such iteration
will be called a stage of the PAM. The stage in which some student s is assigned to some school by PAM can

be denoted by
Ð→
S −1(s), that is, the index of s in the permutation used to allocate students. The following

example briefly demonstrates the workings of the mechanism:

Example 4.3 Let S = {1,2,3} and let H = {a, b, c}, such that all high schools have capacity 1. Say we
have the following preference lists:

� P1 = ⟨c, a, b⟩;
� P2 = ⟨a, b, c⟩;
� P3 = ⟨a, b, c⟩;

Let the above described school market be the input to the PAM. The first thing the PAM does is the

generate a random permutation
Ð→
S of the set of students S. Say

Ð→
S = ⟨2,3,1⟩. Then in stage 0, the PAM

assigns student
Ð→
S (0) = 2 to its most preferred school that still has seats available. Since all schools still

have seats available, this is a, hence (2, a) is added to the allocation. In the next stage, the PAM assigns

student
Ð→
S (1) = 3 to 3’s most preferred school that still has seats available, which is b, hence (3, b) is

added to the allocation. In the final stage, student
Ð→
S (2) = 1 is assigned to school c, since c still has seats

available. Hence, the PAM generate the allocation A = {(1, c), (2, a), (3, b)}.

The allocations produced by mechanisms can have certain formal properties (cf. section 3.5). If all the
allocations produced by some mechanism, given some school market, have certain properties, the mechanism
itself can also be said to have certain corresponding formal properties. From the introductory discussion
on school-allocation mechanisms it was claimed that matching mechanisms for one-sided matching problems
that produce Pareto-optimal allocation are of special interest. If some matching mechanism only creates
Pareto-optimal allocations, then it said that the mechanism is Pareto consistent :

Definition 4.4 (Pareto-consistent Mechanism) Let M be some school market and let M be some mech-
anism. Say MM is the set of allocations that M can produce for the school market M. Then M is
Pareto consistent if and only if MM ⊆ PAROPTM.

The allocations produced by the Permutation Allocation Mechanism (or Random Serial Dictatorship) are of
special interest, since all of them are Pareto optimal. That is, the PAM is a Pareto-consistent mechanism.
Furthermore, all Pareto-optimal allocations possible for some given school marketM are exactly the possible
outcomes for the PAM on that school market M.

Theorem 4.5 (PAM = PAROPT) Let M = (S,H,C,P) be some school market, with ∣H∣ = m. Let
PAMM be the set of all allocations that can be produced by PAM on M and let PAROPTM be the set
of all Pareto-optimal allocations for M. Then PAMM = PAROPTM.

Proof. First the inclusion PAMM ⊆ PAROPTM will be proved, then the inclusion PAMM ⊇ PAROPTM.

⊆: Let A be some allocation produced by PAMÐ→
S
(M). Assume for reductio that A is not a Pareto-

optimal allocation, then there exists some allocation A′ s.t.

– ∃s ∈ S ∶ A(s) <s A′(s), and

– ∀s ∈ S ∶ A(s) ≤s A′(s).

Let s be the first student in
Ð→
S that is strictly better off in A′, that is ∀s′ ∈ S(S−1(s′) < S−1(s)⇒

A(s′) ≤s′ A′(s′)). Say A(s) = h and A′(s) = h′, with h ≠ h′. Since PAMÐ→
S
(M) did not assign h′

to s, it must have been that h′ did not have seats left at stage S−1(s) of PAMÐ→
S
(M). The latter

implies that there are ch′ students assigned to h′ in PAMÐ→
S
(M), before stage S−1(s). Since s is

the first student who is better off under A′ and no student is worse off in A′, it must be that for all

21

students s′ with a lower index than s in
Ð→
S : A(s′) = A′(s′). Hence, if there are ch′ students, with

a lower index than s, assigned to h′ under A, then also ch′ students, with a lower index than s are
assigned to h′ under A′. Since A′(s) = h′ as well, there are more than ch′ students assigned to h′

under A′; by Definition 3.1 we then have that A′ is not an allocation: contradiction. This means
that there cannot be such an allocation A′, hence A is a Pareto-optimal allocation.

⊇: Let A be some Pareto-optimal allocation for the school market M, with ∣H∣ =m. Let Ui = {s ∈ S ∣
A(s) = Ps(i)}, that is Ui is the set of students who have preference position i + 1 under A. Then

there are sets U0, U1, ..., Um−1, s.t. ⋃m−1
i≥0 Ui = S, where some Ui are possibly empty. Say

Ð→
Ui is some

list representation of Ui and let

Ð→
S ∶=Ð→U0 + +

Ð→
U1 + +... + +

ÐÐÐ→
Um−1.

Say PAMÐ→
S
(M) = A′. It will now be shown by induction on i, that ∀s ∈Ð→Ui ∶ A(s) = A′(s).

– (Base i ∶= 0): Say
Ð→
U0(0) = s, then

Ð→
S (0) = s. Since s is the first student in the permutation

Ð→
S

it will be assigned its first choice under PAMÐ→
S
(M), hence A(s) = A′(s). Now assume that for

all predecessors s′′ of some s′ ∈ Ð→U0: A(s′′) = A′(s′′). Now suppose for reductio, A(s′) ≠ A′(s′).
Then it must be that at stage

Ð→
S −1(s′) of PAMÐ→

S
(M) school A(s′) has no seats left. Since

for all the predecessors s′′ of s′, A(s′′) = A′(s′′), it must then be that school A(s′) is assigned
more students than its capacity, making A not an allocation: contradiction. Hence, also for s′

it must be that A(s′) = A′(s′).
– (Induction Step i ∶= k): Assume as the induction hypothesis (IH) that for all

Ð→
Uj with j < k, that

∀s ∈Ð→Uj : A(s) = A′(s). Assume that for all predecessors s′ of some s′ ∈Ð→Uk: A(s′) = A′(s′). Now
suppose for reductio A(s) ≠ A′(s). Then there are two cases to consider, either A(s) >s A′(s)
or A(s) <s A′(s) (since preferences are strict). In the first case, when s is assigned a better

school under A, it must be that school A(s) has no seats left at stage
Ð→
S −1(s) of PAMÐ→

S
(M).

But since by IH for all predecessors s′ of s in
Ð→
S , A(s′) = A′(s′), it must then be that school

A(s) is assigned more students then its capacity, making A not an allocation: contradiction. In

the second case, when s is assigned a worse school under A, it must be that at stage
Ð→
S −1(s) of

PAMÐ→
S
(M) a better school still has seats left. Since A is a Pareto-optimal allocation, A must

be saturated (cf. Proposition 3.16), hence it cannot be that school A′(s) has seats available in
allocation A. All predecessors of s are assigned the same schools under A and A′, thus it must

be that there is some successor s′ of s in
Ð→
S s.t. A(s′) = A′(s) and A(s′) ≠ A′(s′). This student

s′ is either better off under A′ or worse off; if s′ is better off, then both s and s′ are better off,
without any student necessarily being worse off, making A not Pareto optimal: contradiction;
if s′ is worse off, then PAM does not necessarily produce Pareto-optimal allocations, since A
would be a ‘Pareto improvement’ of A′, but it was shown directly above that PAM ⊆ PAROPT :
contradiction. Hence, we must have A(s) = A′(s).

From the inductive argument it can be concluded that to every Pareto-optimal allocation A for
some school market M there corresponds some permutation Π on S s.t. PAMΠ(M) produces A.
Hence every Pareto-optimal allocation for M is in the set PAMM.

Corollary 4.6 From Theorem 4.5 and Proposition 3.16 it follows that the all allocations for some school
market M produced by the PAM, given M, are pair-wise Pareto efficient and saturated.

The above theorem demonstrates that all Pareto-optimal allocations for some school marketM = (H,S,C,P)
can be found by performing the PAM with all possible permutations in ΠS . Moreover, Theorem 4.5 shows
that to every permutation there is associated a Pareto-optimal allocation. Note however that there can be
more permutations that generate the same allocation, when using the PAM:

22

Example 4.7 Consider the following Let S = {1,2,3} and let H = {a, b, c}, s.t. all schools have capacity
1. Say that the students have the following preference lists:

� P1 = ⟨a, b, c⟩;
� P2 = ⟨b, a, c⟩;
� P3 = ⟨a, b, c⟩;

Now consider the following to permutation
Ð→
S = ⟨1,2,3⟩ and

Ð→
S ′ = ⟨2,1,3⟩. Clearly PAMÐ→

S
(S,H,C,P) =

PAMÐ→
S ′

(S,H,C,P) = {(1, a), (2, b), (3, c)}, since it does not matter if student 1 or 2 is assigned the best
available school first, because the first choice of 1 and 2 differs.

Theorem 4.5 establishes that there cannot be more Pareto-optimal allocations for some given school market
M = (H,S,C,P) than ∣S ∣! (i.e. the factorial of the number of students, which are the number of different
permutations of S). Furthermore, Example 4.7 shows that is possible that multiple permutations corresponds
to one and the same allocations, hence we must have:

Corollary 4.8 For a given school market M = (H,S,C,P), there is a surjective function mapping the
set of permutations of the set of students ΠS to the set of Pareto-optimal allocations for that school

market PAROPTM, namely the function PAMÐ→
S
(M) for

Ð→
S ∈ ΠS .

Theorem 4.5 will be very important in the design of the genetic school-allocation algorithm introduced
in the next chapter, since it shows that if optimisation on the set of Pareto-optimal allocations needs to be
performed, this can also be performed on the set of permutation of the students, whereby for each permutation
the associated allocation is produced by the PAM.

4.1.2 Boston Allocation Mechanism

The second mechanism that will be discussed is the Boston Allocation Mechanism (BAM). The mechanism
resembles the system in use in Amsterdam before the introduction of the deferred acceptance school-allocation
mechanism, and can be described as multiple rounds of synchronized lotteries. In short, the BAM performs
multiple rounds of lotteries per school to decide which students to assign to that school, such that in round
i, lotteries decide if students not allocated yet, will be assigned to their i-th choice. The major difference
between the BAM and the system of synchronized lotteries that was in use in Amsterdam, is that in the
BAM students hand in preference lists once in advance, whereas in the old Amsterdam system, students
handed in their i-th choice at the i-th round. This difference allows students to ‘strategise’ differently in
the old Amsterdam mechanism than in the BAM. In this thesis the BAM will be investigated and not the
old Amsterdam system, because the BAM is a more evolved school-allocation mechanism, not peculiar to
Amsterdam alone, that was used in more school districts and for other allocation problems.8 The following
set of instructions in pseudo code outline the Boston Allocation Mechanism:

(Definition on next page)

8The BAM and similar systems were in use in the Hillsborough County School District in Tampa-St. Petersburg, and in
Cambridge (MA), Denver, Minneapolis and Seatle; the mechanism was also used for matching medical graduates to internships
in several regions of the United Kingdom (cf. Abdulkadiroğlu et al. (2005): p. 369).

23

Definition 4.9 (Boston Allocation Mechanism (BAM)) All (probabilistic) algorithms that are exten-
sionally equivalent to the following algorithm are called the Boston Allocation Mechanism (BAM):

input : School Market M = (H,S,P,C).
output: Allocation A ∶ S →H.

Let ρ ∶= −1;
Let Nρ ∶= S;
while Nρ ≠ ∅ do

Let ρ ∶= ρ + 1;
Let Nρ ∶= Nρ−1;
for h ∈H do

Let
Ð→
Nh
ρ be some random permutation of Nh

ρ = {s ∈ Nρ ∣ Ps(ρ) = h};

Assign the first ch students of
Ð→
Nh
ρ to h, let these students be Wh

ρ ;

Let Nρ ∶= Nρ ∖Wh
ρ ;

Let ch ∶= ch − ∣Wh
ρ ∣;

return the set of all (s,A(s)) with s ∈ S.

Notation: both the allocation A produced by BAM , and the process of producing A by BAM , on the school

market (S,H,C,P) by permutation
Ð→
S will be denoted by PAMÐ→

S
(S,H,C,P). The set of allocations that

can be produced by the PAM on some school market M will be denoted by BAMM.

Each iteration of the while loop in the BAM is called a round. The round in which ρ has value i is called the
(i + 1)-th round (or round i + 1), referring to the position on the preference list of the students to which the
round corresponds. The set Nρ is the set of students who are not assigned in the rounds ≤ ρ. The set Wh

ρ

are the students who are assigned to school h in round (ρ + 1), that is, the students who won the lottery for
school h, which was their (ρ + 1)-th choice, in round (ρ + 1). Moreover, note that at each round i, the Nh

i−1

are disjoint (and thus the Wh
(i−1) as well), because students can only place one school on the i-th place in

their preference list. Furthermore, if a null school h0 is introduced to the set of high schools, such that it has
enough seats for all students, i.e. ch0 = ∣S ∣, and place this school last on every student’s preference list, i.e.
∀s ∈ S ∶ Ps ∶= Ps + +⟨h0⟩, then the BAM will always terminate. The following example briefly demonstrates
the workings of the mechanism:

Example 4.10 Let S = {1,2,3,4} and let H = {a, b, c}, s.t. school c has capacity 2 and all other schools
have capacity 1. Say the students have the following preference lists:

� P1 = ⟨a, b, c⟩;

� P2 = ⟨b, a, c⟩;

� P3 = ⟨b, a, c⟩;

� P4 = ⟨b, a, c⟩.
In the first round of the BAM, the sets Nh

ρ are then:

� Na
0 = {s ∈ N0 ∣ Ps = a} = {1};

� Na
0 = {s ∈ N0 ∣ Ps = b} = {2,3,4}.

Now say the lotteries (permutations) have the following outcomes:

�

Ð→
Na

0 = ⟨1⟩;

�

Ð→
N b

0 = ⟨2,4,3⟩.
Then student 1 is assigned to school a and student 2 is assigned to b. After these assignments then
N0 = {3,4}. Now observe that students 3 and 4 both have school a as their second choice. Since school a

does not have any seats left, there will be no students assigned from
Ð→
Na

1 in the second round. The latter
means that no students are assigned to schools in round 2 and thus N1 = {3,4} = N2. In the third round,
students 3 and 4 both have school c as their third choice. Since school c has 2 seats left and for every

24

Ð→
N c

2 ←
r
N c

2 students 3 and 4 will be assigned to school c, students 3 and 4 will be assigned to school c in

round 3. After these assignments, N2 is set to N2 ∖W c
2 = {3,4} ∖ {3,4} = ∅ and there cannot be a next

iteration of the while loop, for N2 = ∅. This means the BAM returns A = {(1, a), (2, b), (3, c), (4, c)}.

From the example it becomes also clear, that an algorithm for performing the BAM, in which one single
permutation is used per round, to perform the lotteries is equivalent to the algorithm outlined in Definition

4.9. That is, in stead of generating all the permutations
Ð→
Nh
ρ , also one permutation on Nρ can be generated,

such that for each school h the first ch students (where ch is the ‘updated’ capacity), for which Ps(ρ) = h,
are assigned to h, since all Nh

ρ are disjoint.

The BAM is often used in combination with an expanded system of priorities. For instance, in Boston, when
the system was still used, first a younger sibling had priority to attend the same school as an older sibling,
next in priority for half of each program’s seats were students from the school’s ‘walk zone’, etc.9 These
priorities then influenced the lotteries, that is children with priorities would be ordered in their priority or-
dering before all non priority students, in the permutation for the specific school in the specific round. Since
in the Amsterdam school-allocation problem, how its formalised here, priorities are not taken into account,
in the following formal results on the BAM, it will be assumed that there is no such system of priorities.
Furthermore, the BAM can also be used without lotteries, if all high schools have elaborate preference lists
over students; these preference lists are then used as the lottery outcomes.

The PAM and BAM are different school-allocation mechanisms for some given school marketM and are not
extensionally equivalent algorithms.10 The next examples demonstrates this by giving some allocation on
some school market M which is a possible outcome of the PAM, but can never be produced by the BAM:

Example 4.11 Let S = {1,2,3} and let H = {a, b, c}, s.t. all schools have capacity 1. Say that the
students have the following preference lists:

� P1 = ⟨b, a, c⟩;
� P2 = ⟨b, a, c⟩;
� P3 = ⟨a, c, b⟩;

Let the above described school market be the input of the PAM with permutation
Ð→
S = ⟨2,1,3⟩. Then

PAMÐ→
S
(S,H,C,P) = {(1, a), (2, b), (3, c)}. Now observe that the BAM, given the same school market

(S,H,C,P) would never produce this allocation, since the BAM will always assign student 3 to school
a in the first round. Furthermore, the BAM will assign either student 1 or 2 to school b in the first
round, such that in the third round, then the by lottery eliminated student of the former round will be
assigned school c. This means that the only allocations that the BAM can produce for this school mar-
ket are {(1, b), (2, c), (3, a)} and {(1, c), (2, b), (3, a)}. The BAM can thus never produce the allocation
PAMÐ→

S
(S,H,C,P) = {(1, a), (2, b), (3, c)}.

The example above is a counter example for the claim that the BAM and the PAM are extensionally equiva-
lent. The proof of the next theorem demonstrates, however, that every allocation that the BAM produces on
some school marketM can also be the result of the PAM on that same market. These two results combined
give that BAMM ⫋ PAMM.

Theorem 4.12 (BAM ⫋ PAM) LetM = (S,H,C,P) be some school market. Then PAMM ⫋ BAMM.

Proof. First observe that Example 4.11 demonstrates that PAM ⊈ BAM , hence it suffices to show that
every allocations produced by the BAM for some school market M can be produced by the PAM , to

9Abdulkadiroğlu et al. (2005): p. 368.
10Two algorithms ϕ and ψ are extensionally equivalent, if for the same input ϕ and ψ always produce the same output.

Note, that it is possible for two algorithms ϕ and ψ to compute the output differently, if so then ϕ and ψ are intensionally not
equivalent.

25

demonstrate that BAMM ⫋ PAMM. Let M = (S,H,C,P) be some school market, s.t. ∣S ∣ = n and

∣H∣ =m. Let BAMW(S,H,C,P) = A, where W = {Wh1

0 ,Wh2

0 , ...,Whm

0 ,Wh1

1 ,,Whm

l }, that is, W is the
set of all the lottery winning students for each school of each round, where we assume that the BAM
needed l + 1 rounds. Now say:

S⃗ = (Wh1

0 + +Wh2

0 + +... + +Whm

0) + +
(Wh1

1 + +Wh2

1 + +... + +Whm

1) + +
...

(Wh1

l + +Wh2

l + +... + +Whm

l)

Note that Wh
i are the students assigned to school h in round i+1. Now let PAMÐ→

S
(S,H,C,P) = A′. The

following shows by induction on i, that for some arbitrary school h, for all students s ∈Wh
i : A(s) = A′(s).

� Base (i ∶= 0): Let h be some arbitrary school. For all s ∈Wh
0 , school A(s) is their first choice and the

BAM allocates them to their first choice. Since ∣Wh
0 ∣ ≤ ch, also all s ∈Wh

0 will be assigned to A(s) by
PAMÐ→

S
(S,H,C,P), because (i) h must have the capacity to place them, (ii) h is their most preferred

school, and (iii) the only students placed at h for students s′ in Wh1

0 ++...++Wh
0 ++...++Whm

0 are

the s in Wh
0 , because the W

hj

0 are disjoint.

� Induction Step (i = k). Assume as induction hypothesis (IH) that for all W
hj
u with u < k that

∀s ∈ Whj
u ∶ A(s) = A′(s). Let h be some arbitrary school for which Wh

k is non-empty (the empty
case is trivial). Let s be some arbitrary student in Wh

k and suppose for reductio that s is not
assigned to h by PAMÐ→

S
(S,H,C,P), that is A(s) ≠ A′(s). Then there are two cases to consider:

Case 1: School h is full. Note that the only students allocated to h in previous stages are, by the
IH, ⋃u<kWh

u , hence h being full implies ∑u<k ∣Wh
u ∣ = ch. This means that Wh

k = ∅ by the
structure of the BAM: contradiction.

Case 2: Student s prefers A′(s) over h and A′(s) had seats left. If A′(s) is preferred over h, then

there exists u < k s.t. s ∈ NA′(S)
u = {s ∈ Nu ∣ Ps(u) = A′(s)}. Since we have s ∈ Wh

u , it

must be that for all u < k that s ∉ WA′(S)
u (that is, student s must have been eliminated

by lottery in all the previous rounds). But if A′(s) is not full and by IH the only students

assigned to A′(s) are ⋃u<kWA′(s)
u , then it must be the case that ∑u<k ∣W

A′(s)
u ∣ < cA′(s).

But then also ∑u<k ∣N
A′(s)
u ∣ < cA′(s) and thus there exists u ≤ k s.t. s ∈ WA′(S)

u by the
structure of the BAM: contradiction.

Both cases give a contradiction, hence it must be that for arbitrary s in Wh
k : A(s) = A′(s).

Since for arbitrary h, for all i, for all s ∈Wh
i : A(s) = A′(s), it must be that A = A′. Hence, the allocation

A could also have been the result of the PAM with permutation
Ð→
S .

The BAM is also a Pareto-consistent mechanisms, since all allocations produced by the BAM, for some given
school market M, can also be produced by the PAM and, as established in the previous section, the PAM
only produces Pareto-optimal for some given school market M.

Corollary 4.13 By Theorem 4.12 in conjunction with Theorem 4.5, the Boston Allocation Mechanism
is Pareto consistent.

Corollary 4.14 From Corollary 4.13 and Proposition 3.16 it follows that the all allocations for some
school market M produced by the BAM, given M, are pair-wise Pareto efficient and saturated.

From Theorem 4.12, which gives that BAMM is a strict subset of PAMM, it is clear that the BAM cannot
produce all Pareto-optimal allocations for some given school market. This also implies that the BAM cannot
be exploited to optimise over the set of Pareto-optimal allocations for some school market.

26

4.1.3 Deferred Acceptance School-Allocation Mechanisms

In this section two variants of the Deferred Acceptance (DA) School-Allocation Mechanism will be discussed.
DA algorithms are matching mechanisms for two-sided bipartite matching problems. The most famous exam-
ple of a two-sided matching problem is the stable marriage problem, formulated by Gale & Shapley (1962).
The problem is to match men and women according to their preferences over the other sex, as to create
stable marriages. Intuitively, a matching is stable if, in no two couples, both agents prefer one another over
their current assignees. If such pairs do exist, then they could undermine the matching produced by the
matching mechanism, by forming a private arrangement outside of the matching. A matching mechanism
for two-sided preferences should therefore always aim to produce stable matchings. There is many empirical
and theoretical evidence supporting the solution concept of stability for two-sided matching problems.11

The stable matching algorithm, described by Gale and Shapley in 1962 can be easily adjusted to be a matching
mechanism for specific school markets, where not only the students have preferences over the high schools,
but the high schools have preferences over the students as well. These preferences could either be actual
preferences (e.g. based on test results by students) or an implementation of priorities as preferences. The
deferred acceptance school-allocation mechanism so obtained is the following (N.B. l > k):

0. Students and schools hand in their preference lists;

k. Until the set of unmatched students is empty, each student is tentatively matched to their first choice.
Each school h accepts the ch highest ranked students, according to h’s preferences and are now tenta-
tively matched to h. The not accepted students are set to be unmatched and their preference list is
updated to the tail (cf. Definition 3.4) of their preference list.

l. The mechanism produces an allocation according to the final obtained matching.

This procedure is called a deferred acceptance matching mechanism, because at each step the mechanism
only tentatively assigns students to schools, but does not allocate them directly to that school, that is, the fi-
nal decision to allocate students to some school is deferred to the stage where no more students are unmatched.

Similarly as for the BAM, if a null school h0 is introduced to the set of high schools, such that it has
enough seats for all students, i.e. ch0 = ∣S ∣, and place this school last on every student’s preference list, i.e.

∀s ∈ S ∶ Ps ∶= Ps + +
ÐÐ→
{h0}, then the algorithm will always terminate. To see this, observe that the highest

ranked ch0 students, according to ch0 preferences, are always all students in S. Hence, at some point when
some student s is not accepted by any of its real preferred schools, then it will be matched to h0 by the mech-
anism, from which it can never be removed. Note that the preferences of the null school are not important,
since it has a high enough capacity to accommodate all students. The interpretation of some student being
assigned to the null school, is to say that the student cannot be allocated. Another possibility to forcing
the algorithm to terminate is by making all the student’s preference lists complete, that is augmenting the
preference list of each student by placing all schools not occurring in its preference list, after the schools on
its preference list in some (strict) order.

From the above description of the deferred acceptance school-allocation mechanism it is clear that the mecha-
nism needs high-school preferences over students to operate. Given these preferences, the mechanism produces
stable allocations, that is, there will be no two pairs (s, h) and (s′, h′) in the allocation such that (i) s prefers
to be matched with h′, (ii) s′ prefers to be matched with h, (iii) h prefers to be matched with s′, and (iv) h′

prefers to be matched with s. It will not be demonstrated formally that the deferred acceptance mechanism
is stable, because this notion is not very interesting for the Amsterdam school-allocation problem.12 In the
literature on college-allocation problems, stability is often the central solution concept, because both parties
(students and colleges) are allowed to have preferences over the other party.13 A college admission problem
is thus often a real two-sided matching problem; the Amsterdam school-allocation problem is however only a

11Emperical evidence: Kagel & Roth (2000): pp. 202, 204, in conjunction with Roth (1991) and Roth (1990); theoretical
evidence: Roth & Sotomayor (1990).

12For more on stability for many-to-one two-sided allocation problems see Roth & Sotomayor (1990).
13Abdulkadiroğlu & Sönmez (2003): p. 731.

27

two-sided matching problem when school priorities are understood as high-school preferences over students.
As argued earlier, this understanding of priorities is not chosen in this thesis, since there are not enough
priorities nor a complicated enough system of priorities in Amsterdam, to obtain lengthy high-school pref-
erences, needed for well working two-sided matching mechanisms.14 If only one party has preferences, the
property of stability is not important for some allocation to have.15 In discussing properties of allocations,
produced by deferred acceptance school-allocations mechanisms, for the Amsterdam case, it is therefore not
necessary to concentrate on high-school welfare, that is, if the allocation is Pareto optimal from the point of
view of the high schools.

From the foregoing it is clear that to apply deferred acceptance school-allocation mechanisms in the Amster-
dam case, high-school preferences need to be generated. To formulate this idea, the concept of a tie-breaking
rule is used. High schools in Amsterdam can be formally seen to be indifferent on all students, that is,
for all h ∈ H, for all s, s′ ∈ S, s ≤h s′ and s′ ≤h s. in the adopted formal understanding of the Amsterdam
school-allocation problem indifferent preferences are not allowed. To break this indifference a tie-breaking
rule is needed which decides which student the school prefers more, if a school is indifferent between two
students. The tie-breaking rule by breaking indifferences creates strict preference orderings over students
and thus actual preference lists for high schools according to Definition 3.6. Two accepted ways for creating

preference lists for high schools are, (i) generate a random permutation
Ð→
S of the set of students and set

Ð→
S as the preference list Ph for all high schools h ∈ H, and (ii) for every school h ∈ H generate a random

permutation
Ð→
S h and let Ph ∶=

Ð→
S h. Option (i) is called the single tie-breaking rule and option (ii) is called a

multiple tie-breaking rule.

Definition 4.15 (Tie-Breaking Rule) Let M = (H,S,P,C) be some school market. Let θ(M) be some
(probabilistic) algorithm for generating a preference list Ph for all h ∈ H over S (cf. Definition 3.6).
Then θ is called a tie-breaking rule. If θ is a (probabilistic) algorithm s.t. for every run of θ given some
school market M = (H,S,P,C), for all Ph, Ph′ ∈ θ(M) ∶ Ph = Ph′ , then θ is called the single tie-breaking
rule. Any tie-breaking rule that is not the single tie-breaking rule is called a multiple tie-breaking rule.

With a clear understanding of how to create high-school preferences and how this can be formally captured,
deferred acceptance school-allocation mechanisms can now be formally defined as a school-allocation mecha-
nism, with two inputs: a school marketM and a tie-breaking rule θ for generating the high-school preferences:

(Definition on next page)

14If priorities are understood as high-school preferences the notion of stability is understood as: “there should be no unmatched
student-school pair (i, h) where student i prefers school h to her assignment and she has higher priority than some other student
who is assigned a seat at school h” (Abdulkadiroğlu et al. (2009): p. 1955). If an allocation is stable in this sense, it is
sometimes said that there is no ‘justified envy’.

15Manlove (2013): pp. 5-6.

28

Definition 4.16 (Deferred Acceptance Allocation Mechanism (DAAM)) All (probabilistic) algorithms
that are extensionally equivalent to the following algorithm are called the Deferred Acceptance Allocation
Mechanism (DAAM):

input : School Market M = (H,S,P,C), tie-breaking rule θ.
output: Allocation A ∶ S →H.

Let H ∶=H ∪ {h0};
Let C ∶= C ∪ {(h0, ∣S ∣)};
Let N ∶= S;
Run θ(H,S,P,C) to generate a preference profile PH = {Ph0 , Ph1 , ...} for all h ∈H;
while N ≠ ∅ do

for h ∈H do
Let Th = {s ∈ S ∣ Ps(0)} ;

Let
Ð→
Wh = ι(ch,

Ð→
Mh), where

Ð→
Mh = {(i, s) ∣ s ∈ Th} (c.f. Definition 3.4 for ι) s.t.

∀(i, s)(j, s′) ∈Ð→Mh ∶ P −1
h (s) < P −1

h (s′)⇒ i < j;
Let N ∶= N ∖Mh ∪Lh, where Mh = {s ∈ S ∣ (i, s) ∈Ð→Mh} and Lh = {s ∈ Th ∣ (i, s) ∉Ð→Wh} ;

for n ∈ N do
Pn ∶= τ(Pn) (c.f. Definition 3.4 for τ);

for h ∈H do

Assign all s s.t. (i, s) ∈Ð→Wh to h;

return the set of all (s,A(s)) with s ∈ S.

If θ is the single tie-breaking rule, the obtained algorithm is called the Deferred Acceptance Allocation
Mechanism with Single Tie Break (DA-STB); if θ is a multiple tie-breaking rule, the obtained algorithm
is called the Deferred Acceptance Allocation Mechanism with Multiple Tie Break (DA-MTB). Notation:
Any allocation produced by the DA-STB for some school marketM will be denoted by DA(M, STB); any
allocation produced by a DA-MTB by DA(M,MTB). Again both the process and the final allocations
will be referred to as DA(M, θ).

As in the case of the BAM, each iteration of the while loop in the DAAM is called a round. Note that in each

round a new list of ‘winners’
Ð→
Wh for every school is generated, which are the students who are tentatively

assigned to school h in that round. These ‘winners’ are not, as in the BAM, determined by some random
permutation generated each round, but by the preferences of the high schools over the students, generated by
a given tie-breaking rule θ. Furthermore, observe that the ‘losers’ Lh for each school, in some round, are all
given a new preference list τ(Pl), which is just the tail (cf. Definition 3.4) of the old preference list Pl. The
following example will briefly demonstrate how the DAAM works, both according to the intuitive description
of the algorithm and the formal description:

Example 4.17 Let S = {1,2,3} and let H = {a, b, c}, such that all high schools have capacity 1. Say
we have the following preference lists for students and high schools (generated by some tie-breaking rule θ):

� P1 = ⟨a, b, c (, h0)⟩;

� P2 = ⟨a, b, c (, h0)⟩;

� P3 = ⟨b, a (, h0)⟩.

� Pa = ⟨2,1,3⟩;

� Pb = ⟨1,2,3⟩;

� Pc = ⟨3,2,1⟩.
First a new school h0 is generated, which has capacity ∣S ∣ = 3. This school is added to each student’s
preference list. In round 1, both students 1 and 2 will be matched to school a, i.e. their first choice
(Formally: Ta = {1,2}). Only student 2 is accepted by school a, since its capacity is 1, so it can only

accept 1 student, and a prefers student 2 over student 1 (Formally: Ta = {1,2},
Ð→
Ma = {(0,2), (1,1)},

Ð→
Wa = ι(1,

Ð→
Ma) = {(0,2)}, and N ∶= {1,2,3} ∖ {2} ∪ {1} = {1,2}). Student 3 is matched to school b and

29

accepted by b (Formally: Tb = {3},
Ð→
Mb = {(0,3)},

Ð→
Wb = ι(1,

Ð→
Mb) = {(0,3)}, and N ∶= {1,3}∖{3}∪∅ = {1}).

At the end of round 1, only student 1 is then unmatched, hence his preference list P1 will be updated to
its tail, that is ⟨b, c, h0⟩ (Formally P1 ∶= τ(P1)). In round 2, the only unmatched student, student 1, is
matched to his first choice, according to his new preferences, school b (Formally: Tb = {1,3}). School
b has now two students matched to it, student 1 and student 3, which was matched to b in round 1.

School b only accepts student 1, since it prefers student 1 over student 3 (Formally:
Ð→
Mb = {(0,1), (1,3)},

Ð→
Wb = ι(1,

Ð→
Mb) = {(0,1)}, and N ∶= {1} ∖ {1} ∪ {3} = {3}). Now student 3 is the only unmatched student,

hence P3 ∶= τ(P3) = ⟨a, h0⟩. In round 3, student 3 is matched to school a. Since school a prefers student
2 over student 1, student 3 is not accepted by a and thus remains unmatched (Formally: Ta = {2,3},
Ð→
Ma = {(0,2), (1,3)},

Ð→
Wa = ι(1,Ð→Ma) = {(0,2)}, and N ∶= {3} ∖ {2} ∪ {3} = {3}). Again student 3’s

preference list will be updated s.t. P3 ∶= τ(P3) = ⟨h0⟩. In round 4, student 3 is then matched and accepted

by the null school, meaning that student 3 remains unmatched (Formally Th0 = {3},
ÐÐ→
Mh0 = {(0,3)},

ÐÐ→
Wh0 = ι(1,

ÐÐ→
Mh0) = {(0,3)}, and N ∶= {3} ∖ {3} ∪ ∅ = ∅). Finally, the allocation {(2, a), (1, b), (3, h0)} is

obtained.

In discussing properties of allocations, produced by deferred acceptance school-allocations mechanisms, for
the Amsterdam case, it is not necessary to concentrate on high-school welfare, but only to investigate the
welfare of the students, since the high-school preferences are artificially created. Since deferred acceptance
algorithms were not designed for one-sided matching problems, not all tie-breaking rules produce Pareto-
optimal allocations (from the view of the students). Consider the following example:

Example 4.18 Let S = {1,2,3} and let H = {a, b, c}, such that all high schools have capacity 1. Say we
have the following preference lists for students and high schools:

� P1 = ⟨a, b (, h0)⟩;

� P2 = ⟨a, b, c (, h0)⟩;

� P3 = ⟨b, a (, h0)⟩.

� Pa = ⟨3,1,2⟩;

� Pb = ⟨1,2,3⟩;

� Pc = ⟨1,3,2⟩.
Consider the following ‘table description’ of the deferred acceptance allocation mechanism, given the
above preferences:

a b c h0

Round 1 1, �2 3 - -
Round 2 1 2,�3 - -
Round 3 �1,3 2 - -
Round 4 3 1,�2 - -
Round 5 3 1 2 -
Allocation 3 1 2 -

In the allocation A = {(1, b), (2, c), (3, a)}, students 1 and 3 want to switch, since 1 prefers a over b and
4 prefers b over a. This means that from the view of the students A is not pair-wise Pareto efficient and
thus not Pareto optimal. From the perspective of the high schools, the switch between student 1 and 3,
will not be beneficial, since school a prefers student 3 over 1, and school b prefers 1 over 3. Hence, if
both parties have a say on the switch, supposing they base their decision on their preferences, then the
switch will not take place. It is easy to see that there cannot be a switch between (1, b) and (2, c), and
(2, c) and (3, a), either, hence, allocation A is stable.

The above example not only demonstrates that allocations produced by a deferred acceptance school-
allocation mechanism are not necessarily Pareto optimal, it also shows that stability does not imply Pareto
optimality (from the perspective of the students). In Section 3.5 it was argued that Pareto optimality is a
property that school allocations for Amsterdam need to fulfil. Hence, from Example 4.18 it can be concluded
that not any deferred acceptance allocation mechanism, with any tie-breaking rule θ, will do. Moreover,
it is clear that it cannot be that the DA-MTB always produces Pareto-optimal allocations, since Example

30

4.18, could describe a process of running the DA-MTB. The question remains if there are tie-breaking rules
θ for which all allocations produced by DAAM are Pareto optimal. From the next theorem it follows that all
allocations produced by the DA-STB are Pareto optimal. Moreover, the theorem states that the DA-STB is
extensionally equivalent with the PAM and, by Definition 4.2 it then follows, that the DA-STB is just the
PAM.

Theorem 4.19 (PAM = DASTB) Let M = (S,H,C,P) be a school market. Let
Ð→
S be some random

permutation of S. Let PAMÐ→
S
(M) = A and let DA(M, STB) = A′, s.t. the identical preferences Phi of

each high school hi are
Ð→
S . Then A = A′.

Proof. It will be shown by induction that for all i < ∣S ∣: A(Ð→S (i)) = A′(Ð→S (i)).

� Base (i ∶= 0): Say
Ð→
S (0) = s and A(Ð→S (0)) = h. Then it must be the case that Ps(0) = h. If Ps(0) = h,

then the DA-STB tentatively matches s to h. Now s can only be removed from h by the DA-STB if

it allocates ch students s′ to h, for which we have
Ð→
S −1(s′) <Ð→S −1(s). Since

Ð→
S (0) = s such students

s′ cannot exist, hence we must have A′(Ð→S (0)) = h.

� Induction Step (i ∶= k + 1): Assume as the induction hypothesis (IH) that for all j ≤ k: A(Ð→S (j)) =
A′(Ð→S (j)). Say

Ð→
S (k + 1) = s′ and A(Ð→S (k + 1)) = h′. Suppose for reductio that A′(Ð→S (k + 1)) = h′′,

where h′′ ≠ h′. We then have two cases to consider:

– Case 1 (h′′ >s h′): If A(Ð→S (k + 1) ≠ h′′, but A(Ð→S (k + 1)) = h′ and h′′ >s h′, then it must have
been the case that at stage k + 1 of the PAM school h′′ did not have seats left, otherwise s′

have been allocated there, since s′ prefers h′′ over h′. This means that in earlier stages other
students than s′ have been allocated to h′ by the PAM. By the IH we have for these other
students that they are also allocated to h′ in the allocation A′ produced by the DA-STB. This

means that we cannot have A(Ð→S (k + 1)) = h′, because then there are more students allocated
to h′ then it has seats available: contradiction.

– Case 2 (h′′ <s h′): If A′(Ð→S (k + 1) ≠ h′, but A′(Ð→S (k + 1) = h′′, and h′ >s h′′, then it must have
been the case that there are ch′ students s′′ allocated to h′ by the DA-STB for which we haveÐ→
S (s′′) < Ð→S (s′). Now note that these students s′′ are allocated in earlier stages to h′ by the

PAM, than s′ is allocated. Since A(Ð→S (k + 1)) = h′ at stage k + 1, school h′ had seats left at
stage k + 1, which means that in earlier stages of the PAM there are not ch′ students allocated
to h′: contradiction.

If we have that for all i < ∣S ∣, A(Ð→S (i)) = A′(Ð→S (i)), then all students are allocated to the same high

schools in A and A′. This gives us that if the permutation
Ð→
S of the PAM is the same as the identical

preferences of the high schools in the DA-STB, then the two allocations produced by the respective
mechanisms are identical. From this we can conclude that the set of allocations the PAM and the
DA-STB can produce for the same students, high schools and student preferences, are identical.

Corollary 4.20 From Theorems 4.19 and 4.5 it follows that all allocations for some school market M
produced by the DA-STB are Pareto optimal.

In Theorem 4.19 it is necessary that all high schools really have identical preferences. If a single tie-breaking
rule is used to ‘break’ indifferences on ‘preference lists’ of high schools, which are only partly strict, then not
all preference lists of all high schools are necessarily identical, notwithstanding that one single permutation
is used to break all ties. In the literature this scenario is sometimes also called deferred acceptance with
single tie break. Note that this scenario cannot occur in the setting of this thesis, since it is assumed that
high schools do not have preference lists. Hence, it is never necessary to ‘break’ indifferences of preference
lists. In this thesis single tie break refers to the way the artificial high-school preferences are created. If
they are created by generating a single random permutation which is then each high school’s preference, then
a DAAM carried out on this will be equivalent to the PAM carried out on the same school market, if the

31

permutation of the PAM is the random permutation used for the high-school preferences. Another school-
allocation mechanism found in the literature, not discussed in this thesis, but also equivalent to the PAM is
the Top Trading Cycles Mechanism (TTC) from random endowments. If the initial allocation, from which
the trade cycles will be carried out by the mechanism, is a random allocation, then the set of allocations
produced by the TTC is equivalent the set of allocations produced by the PAM on that school market.16

4.2 Strategic Questions

4.2.1 Strategy Proofness

Policy makers not only set certain conditions for the allocations that some school-allocation mechanism
must produce, but also for the game-theoretic properties a school-allocation mechanism needs to satisfy. A
school-allocation mechanism can be described as a game, in which students can play certain strategies (the
preference lists they hand in) that in part determine the outcome of the game (the school to which they will
be assigned). An important game-theoretic property for school-allocation mechanisms found in the literature
is strategy proofness. A mechanism is strategy proof, if it is a dominant strategy for students to hand in their
actual true preferences. This means that it should not be possible for students to hand in some preference
list Q, which is different from their actual true preference list P such that the ‘strategic’ preference list Q
allows them to be assigned a better school, than they would have been assigned to had they handed in their
actual true preference list P .

The reasons for demanding a strategy-proof mechanism are manifold. In two contemporary school-allocation
cases, Boston and Amsterdam, the following reasons were put forward for demanding a strategy-proof mech-
anism:

� it gives policy makers insight in the private actual true preferences of students, which allows policy
makers to adjust their school policy to actual needs;17

� it “levels the playing field by diminishing the harm done to parents who do not strategise or do not
strategise well”;18

� it facilitates communication to parents on the school-allocation process, since it enables authorities to
truthfully advise parents and children to hand in their actual true preferences;19

� it allows its performance to be measured against the true private preferences of the students, since these
actual preferences of students are expected to be almost identical to the handed in student preferences.20

To demonstrate that a mechanism is strategy proof it suffices to show that, given some allocation M(M),
produced by some mechanism M on some school market M, no student s could have been assigned to some
school which he prefers over his assigned school, by handing in ‘strategic’ (or untruthful) preferences. A
mechanism can be shown to be strategy proof directly, or by demonstrating that the mechanisms satisfies
the stronger property of coalition strategy proofness. The latter notion implies that no group of students (the
coalition) can hand in ‘strategic’ preferences, such that some coalition member is strictly better off and no
coalition member is worse off. To capture these ideas formally, the strategic interaction for school-allocation
mechanisms is represented in normal form (sometimes also called strategic or matrix form). Games written in
normal form require a model of a player’s utility in every possible outcome of the game, a formal demarcation
of possible strategies by the players and a description of all players:21

16Abdulkadiroğlu & Sönmez (1998): Theorem 2.
17Rechtbank Amsterdam (2015): §4.5.; Abdulkadiroğlu et al. (2006): p. 17.
18This was the key motivation for supporting a strategy-proof allocation mechanism by the Superintendent of the Boston

Public Schools (Abdulkadiroğlu et al. (2006): p. 17).
19Rechtbank Amsterdam (2015): §2.7; Gautier et al. (2015b): pp. 4-5; Abdulkadiroğlu et al. (2006): p. 17.
20Abdulkadiroğlu & Sönmez (2003): p. 743.
21Leyton-Brown & Shoham (2008): p. 3.

32

Definition 4.21 (Induced Game) The game G(M,M) = (S,Q,U) induced by some mechanism M for
some school market M = (S,H,C,P) is the game where

(i) the set of players is S;

(ii) the set of strategies Q for each player s ∈ S is the set of possible preference lists over H.

(iii) the set of real-valued utility (or payoff) functions U is s.t. for each student s ∈ S, there is a function
Us ∶Q→ R, s.t.

u(Qs) = (∣H∣ − 1) – P −1
s (A(s))

where A(s) is the school to which s is allocated in the allocation A produced by M for school market
(S,H,C, (Q{s},Q−{s})).

Notation: A strategy profile (i.e. a vector of all the strategies played by the students) is sometimes
written as (QN ,Q−N), where QN denotes the strategies for some set of players N and Q−N denotes the
set of strategies of the other players.

Note that in the game induced by some mechanism and school market, the set of strategies available for each
player is the same. Furthermore, the utility of some player for some given strategy is always calculated in
the same way; a player’s utility only depends on his truthful preferences, the total number of high schools
and the school to which he is assigned; if a student is assigned his first choice his utility is maximal. Given a
strategy profile, the utility for each player can be calculated. The standard assumption in game theory is that
every player is an active strategic player, that can reason about the strategic behaviour of the other players
and that always tries to maximize his utility. Furthermore, it is important to stress that game theoretic
investigations are not psychological investigations. This means that if the conclusion of some game-theoretic
argument is that some player could have done better, this does not mean that in the real world, it is expected
that students will always behave in this better way; it just means that if some player plays some other
strategy, his utility is higher. In game theory it is standard practice to argue retrospectively, that is knowing
the strategies of the other players and thus the (probabilistic) outcome of a game, what are the expected
utilities for some student for each respective strategy. Also the notions of strategy proofness and coalition
strategy proofness need to be understood in this non-psychological understanding. That is, if, given a certain
strategy profile and some allocation produced by the mechanism, a player can have a higher utility playing an
untruthful strategy instead of a truthful one, everything else being equal, then the mechanism is not strategy
proof. Similarly, if there exists some coalition N ⊆ S such that at least one coalition member can profit from
‘strategic’ preference lists by some coalition members, without any coalition member being hurt, then the
mechanism is not coalition strategy proof.

Definition 4.22 (Strategy Proofness) Let G(M,M) = (S,Q,U) be the game induced by some mechanism
M for school market M. The mechanism M is called strategy proof, iff:

∀s ∈ S ∀QS ∈Q ∶ Qs ≠ Ps ⇒ U(Qs) ≤ U(Ps)

where Qs is some untruthful strategy and Ps is a truthful strategy.

From the above definition it is clear that the notion of strategy proofness only concerns the behaviour of
individuals. That is, if a system is strategy proof, no individual can misrepresent its preferences in such a
way, that he will be strictly better off. This notion however does not exclude the possibility of a ‘strategic’
coalition, in which some some members hand in untruthful preference lists, to benefit some coalition members,
without hurting any coalition member. The reasons for wanting a strategy-proof allocation mechanism, can
also be used as justifications for desiring a coalition strategy-proof mechanism, hence it is important to also
introduce this stronger notion.

33

Definition 4.23 (Coalition Strategy Proofness) Let G(M,M) = (S,Q,U) be the game induced by some
mechanism M for school market M. Let Q and T be two strategy profiles, s.t. T is the truthful strategy
profile, i.e. ∀s ∈ S ∶ Ts = Ps, with Ts ∈ T and Q is a coalition manipulated strategy profile, that is, there
is some coalition N ⊆ S, s.t. there exists n ∈ N for which Qn ≠ Pn, with Qn ∈ Q. The mechanism M is
coalition strategy proof iff:

� ∃n ∈ N ∶ U(Qn) < U(Tn);

� ∀n ∈ N ∶ U(Qn) ≤ U(Tn).

Now note that Definition 4.23 allows the coalition member that is better off to hand in its truthful preferences,
hence it is possible for some mechanism to be strategy proof, without being coalition strategy proof. In that
case, all coalition members that are strictly better off hand in their true preferences, whereas the coalition
members which are not strictly better off possibly hand in untruthful preferences. On the other hand, if some
mechanism is coalition strategy proof, then it must also be strategy proof. Suppose some mechanism is not
strategy proof, then it must be that there is some student who does not hand in its actual preferences and
that is strictly better off by doing so. Now take the set just containing this student. This set is a coalition
that renders the mechanism not coalition strategy proof, since in this set (i) there is a coalition member
which hands in untruthful preferences, (ii) there is a coalition member that is strictly better of, and (iii) no
coalition members are worse off. Hence, any mechanism that is coalition strategy proof is also strategy proof.
Thus, for showing that some mechanism is strategy proof, it is sufficient to show that it is coalition strategy
proof.

The first ‘starting point’ mentioned by Amsterdam’s municipality official for education was that a school-
allocation mechanism should respect the preferences of the students. It is not clear what is precisely meant by
this condition, but it is possible to interpret this as (coalition) strategy proofness, by saying that a mechanism
does not respect students’ preferences, when it does not take the actual true preferences of students into
account in the strongest possible way. Note that this interpretation is not considered the right interpretation
of this starting point in the following. It is just mentioned here to stress that (coalition) strategy proofness,
could be a ‘starting point’ for the municipality official for education.

4.2.2 Strategic Investigations of School-Allocation Mechanisms

The notions of strategy proofness and coalition strategy proofness are only interesting if there can actually
exists (coalition) strategy-proof school-allocation mechanisms. The first school-allocation mechanisms in-
vestigated in detail in the foregoing was the simple and elegant Permutation Allocation Mechanisms. The
following theorem establishes that the mechanism is coalition strategy proof:

Theorem 4.24 (PAM is Coalition Strategy Proof) Let M = (S,H,C,P be some school market. Let
G = (PAM,M) be the game induced by the PAM on school market M. Then PAM is a coalition
strategy-proof mechanism.

Proof. Say PAMÐ→
S
(S,H,C,P) = A. Now suppose for reductio that PAM is not coalition strategy proof.

Then there exists some allocation PAMÐ→
S
(S,H,C,Q) = A′ and coalition N ⊆ S, s.t. the strategy profile

Q differs from the truthful strategy profile P only for the coalition members, that is ∀s ∈ S ∶ s ∉ N ⇒
Ps = Qs, and we have:

� ∀n ∈ N ∶ Un(Qn) ≥ Un(Pn);
� ∃n ∈ N ∶ Un(Qn) > Un(Pn).

Let m be the first coalition member occurring in
Ð→
S that is strictly better off (which must exist). By

supposition it must be that, ∀n ∈ N ∶ Ð→S −1(n) < Ð→S −1(m) ⇒ Um(Pm) = Um(Qm), since no coalition
member is worse off in A′ and m is the first coalition member to be better off. But if the utility for these

coalition members is the same, then also the assigned school is the same, that is, ∀n ∈ N ∶ Ð→S −1(n) <
Ð→
S −1(m) ⇒ A(m) = A′(m). Observe, that also ∀s ∈ S ∶ s ∉ N ∧ Ð→S −1(s) < Ð→S −1(m) ⇒ A(s) = A′(s).

34

For suppose not. Then there is a first non-coalition member s for which A(s) ≠ A′(s). If it has any
predecessors, then these are non-coalition members s′, s.t. A(s′) = A′(s′) or coalition members n,

for which also A(n) = A′(n). Now say
Ð→
S −1(s) = j, then at stage j, in both PAMÐ→

S
(S,H,C,P) and

PAMÐ→
S
(S,H,C,Q) the same seats are available for s, so in both cases the same best available seat for s

is assigned to s hence A(s) = A′(s): contradiction. Hence for all predecessors s′ of m (coalition members
and non-coalition members) it must be that A(s′) = A′(s′), thus it cannot be that A(m) ≠ A(m′). For
if so, then there is seat available at some school h in PAMÐ→

S
(S,H,C,Q), s.t. h >m A(s), according to

m’s truthful preferences. But then this seat is also available at stage
Ð→
S −1(m) in PAMÐ→

S
(S,H,C,P),

because in all stages upto
Ð→
S −1(m), PAMÐ→

S
(S,H,C,Q) behaved just as PAMÐ→

S
(S,H,C,P), and thus

A(m) = A′(m). But the latter means that m is not strictly better off: contradiction. Hence, PAM is
coalition strategy proof.

Corollary 4.25 (PAM is Strategy Proof) Given that PAM is coalition strategy proof, it must be that
PAM is strategy proof.

In the actual Amsterdam case, with school priorities, if all students with priorities were assigned to their
‘priority school’ before the PAM would be used to allocate the others, the PAM is not strategy proof for
the student population as a whole, but only for the school market on which the PAM is used. Consider the
following. Let s be some student with the following preference list Ps = ⟨a, b, c, ...⟩, who has a priority for
school b, in some school marketM. If the PAM assigns student s to school c, than s could have done better
by handing in Qs = ⟨b, a, c⟩, thereby using his priority to get a guaranteed seat at school b. Note, however,
that the expected utility when handing in his actual preference list, with school a on the first preference
position, is not Us(Qs) = (H − 1) − 2, but is,

∑
h∈H

PrÐ→
S←ΠS

[PAMÐ→
S
(M)(s) = h] ⋅ (∣H∣ − 1 − P −1

s (h))

since if some other permutation was generated by the PAM, then s was maybe even assigned to school a.
Hence, the expected utility when handing in Qs is the sum over all high schools h ∈ H of the probability to
be assigned to some school h times the utility when being assigned to that school h. It is not at all clear if
the expected utility with handing in true preferences will be lower than the expected utility for Q(s). Hence,
while the PAM may, not by definition, be strategy proof in the case with priorities on the school market as a
whole, it could still be de facto strategy proof, because the expected utility for handing in true preferences
is higher than, or equally high as going for the sure bet with the ‘priority school’ placed highest.

By Theorem 4.19 and 4.5 it is clear that (coalition) strategy-proof and Pareto-optimal school-allocation mech-
anisms for school markets with no priorities exist, namely the PAM or equivalently DA-STB (cf. Theorem
4.19). Not all Pareto-optimal allocations are also (coalition) strategy proof, since the following example shows
that the BAM is not strategy proof and thus also not coalition strategy proof:

Example 4.26 Let S = {1,2,3} and let H = {a, b, c}, s.t. all schools have capacity 1. Say we have the
following preference lists:

� P1 = ⟨a, b, c⟩;
� P2 = ⟨a, c, b⟩;
� P3 = ⟨a, b, c⟩;

Now BAM(S,H,C,P) = {(1, b), (2, a), (3, c)}, which was produced in the following order:

� Round 1: all students place school a as their first choice, hence there is one lottery in this round

and it takes place for school a. Say
Ð→
S a1 = ⟨2,1,3⟩. Then student 2 is assigned to school a.

� Round 2: the two not allocated students, 1 and 3, both place school b as their second choice, hence

there is a one lottery and it take place for school b. Say
Ð→
S b2 = ⟨1,3⟩. Then student 1 is assigned to

school b.

35

� Round 3: student 3 is assigned to school c

With the outcome of the lotteries and the strategies of the others known, could student 3 have done better?
Yes, if student 3 hands in the ‘strategic’ preference list Q3 = ⟨b, c, a⟩, then student 3 would have been
allocated to school b and we would have the alternative allocation A′ = {(1, c), (2, a), (3, b)}. We then
have U3(P3) < U3(Q3), since U3(P3) = 2 − P −1

3 (c) = 2 − 2 = 0, U3(Q3) = 2 − P −1
3 (b) = 1 and 0 < 1. This

means that under ‘strategic’ preferences Q3 student 3 is better off, hence the BAM cannot be strategy
proof.

In the above example it is unwise for student 3 to hand in its actual preferences. In general, it is unwise
to place a very popular high school highest on the preference list under the BAM, if there is also another
unpopular high school that is preferred (almost) equally. If an unpopular high school is placed highest, then
students are almost certain to be assigned to that school by the BAM, whereas it is very uncertain to be
assigned a popular high school. Furthermore, under the BAM it is not recommended to place a popular
high school on any place below first, since the high school will probably already reach its capacity in the
first round, meaning that the student will not participate in any lottery in the round corresponding to the
preference position of the popular high school.22 Note however, that it can also be seen as an advantage of
the BAM that it tempts students in placing the unpopular high school first, if it is preferred almost equally
much as a popular most preferred high school, since this makes the capacity problem less severe.

The result from Example 4.26 that the BAM is not strategy proof also has implications for the meaning of
Corollary 4.13, claiming that the BAM is Pareto optimal. Whether a system is Pareto optimal depends on
the preferences of the students, that is, the handed in preferences of the students. It is expected when a not
strategy-proof school-allocation mechanism is used, that the handed-in preferences do not reflect the stu-
dents’ actual preferences. This could render the allocations, produced by the not strategy-proof mechanism,
not Pareto optimal when the truthful preferences are considered, in stead of the handed-in preferences.23

Hence, it is very hard to determine if the BAM is actually Pareto optimal in light of the true preferences. If a
school-allocation mechanism is strategy proof and can be shown Pareto optimal, then it can be claimed with
almost certainty that there cannot exists some trade cycle of students, based on their actual true private
preferences, which will benefit all trade-cycle participants.24

In the earlier discussion on deferred acceptance school-allocations mechanisms it was shown that the DA-
MTB was not Pareto consistent. From the official correspondence of the municipality official of eduction in
Amsterdam, which was released after DA-MTB was used in Amsterdam, and after the court case in which its
use resulted, it is clear that the city of Amsterdam, does not want to use non-Pareto-consistent mechanisms
again. Since the Amsterdam case is taken as the point of departure for this study, the game-theoretic
properties of the DA-MTB will not be investigated in detail. It is however important to say, without any
formal demonstration, that, while the mechanism is not Pareto optimal, it is coalition strategy proof.25

4.3 Simulations with Mechanisms

For testing how the three investigated school-allocation mechanisms (PAM, BAM and DA-MTB) perform
in the Amsterdam case, the actual handed-in preference lists of students and the real high-school capacities
from 2015 are used.26 This data was obtained from the municipality of Amsterdam. To make the tests
computationally more feasible, the school-allocation mechanisms are only tested on the VWO population.

22Note that in the Amsterdam version of the BAM, where students hand in their preferred school per round, it is impossible
that students cannot participate in some round, since the students are not allowed to hand in a preferred school that already
reached its capacity (cf. Section 2.3).

23Abdulkadiroğlu & Sönmez (2003): p. 734.
24It is impossible to be certain, since in the real world students could hand in untruthful preferences for a strategy proof

mechanism.
25The DA-MTB as described in this thesis is actually the student proposing deferred acceptance algorithm with multiple tie-

breaking, it was first shown in Dubins & Freedman (1981) that this mechanism is coalition strategy proof from the perspective
of the students. The result is reconstructed in detail in Roth & Sotomayor (1990).

26By Theorem 4.19 we have that the DA-STB is equivalent to the PAM (or RSD) since no priorities are incorporated in the
high-school preferences.

36

The VWO population are all students who, (i) only place VWO high schools in their preference list (including
HAVO-VWO schools), and (ii) are allowed to do so. Note that in (i) we mean by high schools, (HAVO-)VWO
application possibilities, and not actual high schools. Furthermore, note that (ii) means that the students in
the VWO population had a VWO or HAVO-VWO school recommendation. The VWO population consists
of 1885 students and 39 high schools, where a null school is included.

The three school-allocation mechanisms are tested on how many students they leave not allocated, how
many students are assigned their first choice, and what the mean preference position of the allocation is; all
averaged over 100 runs of the respective mechanism. The mean preference position of some allocation µ(A)
for some given school market M = (H,S,C,P) is,

µ(A) = ∑s∈S 1 + P −1
s (A(s))

∣S ∣
For every run a different seed is used. A seed is an integer from which all pseudo randomness in the school-
allocation mechanism is deduced. Normally, a different seed will result in a different allocation produced
by a school-allocation mechanism. For the PAM a different seed results in a different permutation; for the
BAM a different seed results in different lotteries for each school in each round; for the DA-MTB a different
seed results in different (artificial) high-school preferences. The DA-MTB tested here is such that each high
school is assigned a random permutation as its preferences over students. The seeds used were the first 100
natural numbers in their natural order, that is ⟨0,1,2, ...,99⟩. The computational implementations of the
mechanisms tested are found in Chapter 7. The tests gave the following results:

Not Allocated First Choice Mean Pref. Pos. Par. Cons. Coa. Strat. Proof

PAM : 6.93 (0.36 %) 1566.05 (83.08 %) 1.2970 Yes Yes
BAM : 8.13 (0.43 %) 1636.00 (86.79 %) 1.2606 Yes No
DA-MTB : 0.38 (0.02 %) 1379.64 (73.19 %) 1.3545 No Yes

Note that if some student is not allocated, the preference position is said to be one more than the preference
position of the last school mentioned in his preference list. Sometimes, leaving some student not allocated
benefits other students and thus brings the mean preference position of the population down, but this is not
necessarily the case. From the above table it is clear that the mechanism which allocates the most students
is DA-MTB. The results also show that the BAM assigns most students their first choice and that the BAM
has the lowest mean preference position on average.

The above statistics suggest that the PAM, on the properties tested here, is always out performed. Note
however, that this is only the case when focused on the statistics and not on the formal properties, since
the PAM is the only tested mechanism that is Pareto consistent and coalition strategy proof. Furthermore,
note that the results of the BAM are very difficult to interpret, since the BAM is not strategy proof. Hence,
under the BAM, students are not expected to hand in their actual true school preferences, the BAM is tested,
however, on preference lists handed in for a strategy-proof system. This means that the mechanism is tested
on preference lists that resemble the actual true preferences of students very closely. The statistics therefore,
are not likely to give a good impression of how the system would perform in practice. To test this, expected
strategic preference list of students, corresponding to their true preference lists, should be obtained, on which
the mechanism is then ran. After this, the number of students who are not allocated, the number of students
assigned their first choice, and the mean preferences positions can be calculated, by using the actual true
preferences. Moreover, since the DA-MTB is not Pareto optimal, the above results of the DA-MTB are also
hard to interpret, and cannot be translated one-to-one into expectations about the satisfaction of students
and parents with the produced allocation. If students find someone, with whom they could switch places to
be both better off, it is unlikely that the student will still consider the allocation satisfactory, even though
the allocation has nice statistics for the whole population. Hence nice statistics concerning the number of
students not allocated, do not say very much, if students who are allocated, can be very unhappy with their
assigned school, since they know they can, without harming anyone, be assigned a better school.

37

Other simulations by Gautier et al. (2015b) on the Amsterdam data, for these respective three systems,
showed that DA-MTB places 73.6% of students on their first choice, whereas DA-STB place 82% of students
on their first choice. The DA-STB in the tests by Gautier et al. (2015b) differs from the DA-STB/PAM in the
simulations here, because Gautier et al. (2015b) incorporated priorities in the school preferences, and then
used one single permutation to create the strict preferences of high schools over students.27 Nevertheless,
the obtained DA-STB in the simulation by Gautier et al. (2015b) comes very close to simulations by our
PAM, because the system of priorities is not very extensive and complicated in Amsterdam, and confirm
that DA-STB/PAM is expected to place more students on their first choice than the DA-MTB. Furthermore,
Gautier et al. (2015b) show that the number of students placed in their top 3 and top 5 is almost similar for
DA-MTB and DA-STB (their version): top 3, 94.7% for DA-MTB and 94.8% for DA-STB; top 5, 98.5% for
DA-MTB and 97.4% for DA-STB.

4.4 Mechanisms for Amsterdam

From Chapter 3 it became clear that it is the wish of the municipality of Amsterdam, to have Pareto-optimal
allocations. This desire was made public after a not Pareto-optimal allocation was produced in 2015 by the
DA-MTB. The only mechanisms that are investigated in Chapter 4 that produce Pareto-optimal allocations
are the PAM and the BAM. It became clear in the legal proceedings, after the DA-MTB was used in Amster-
dam, that both the municipality and the representative body of high schools in Amsterdam, preferred to have
a strategy-proof allocation mechanism. Since only the PAM is both Pareto consistent and (coalition) strategy
proof, it seems that from the three investigated school-allocation mechanism, PAM is most in line with the
desires of the authorities. Furthermore, the simulations with the three mechanisms showed that the number
of students who receive their first choice is very high under the PAM and only differs marginally from the
BAM. Moreover, the allocations produced by the PAM are all the Pareto-optimal allocations for some school
market, whereas the allocations produced by the BAM are only a strict subset of those. Another advantage
of the PAM, not discussed earlier, but found in the literature, is that it is the only one-sided mechanism
that is strategy-proof, nonbossy and neutral.28 A mechanism is nonbossy, if a student cannot change the
outcome of the mechanism, by handing in a different preferences, without also changing the school to which
he is assigned;29 a mechanism is neutral if no school is treated differently than some other school.30 If policy
makers thus want a strategy-proof, nonbossy and neutral school-allocation mechanism, then their only option
is the PAM.

The simulation also showed, that the PAM had some disadvantages. In comparison with the DA-MTB, the
PAM tends to leave more students unassigned and requires students to hand in longer preference lists then
needed under DA-MTB. Furthermore, in 2009, Abdulkadiroğlu, Pathak and Roth showed that, if both par-
ties have preferences, then no strategy-proof mechanisms can Pareto improve on allocations produced by any
variant of the deferred acceptance school-allocation mechanisms. That is, in any allocation produced by some
other strategy-proof mechanism, there will be at least one student, who is worse off under this allocation, then
under an allocation produced by a deferred acceptance school-allocation mechanism. This also means that
no PAM produced allocation dominates deferred acceptance produced allocations. However, also allocations
produced by deferred acceptance, do not dominate PAM produced allocations either (which is expected, since
the PAM is Pareto optimal). Intuitively, their result entails that it is never the case that there is a deferred
acceptance produced allocation A and a PAM produced allocation A′, such that all students are equally well
or better off in A as/than in A′, or vice versa.31 Since in the Amsterdam case under discussion in this thesis,
the municipality official explicitly suggested that any future allocation mechanisms used should not allow any
reasonable trading options under students, in the final allocations, deferred acceptance produced allocations,
in which not all high schools have the same preferences, are excluded, since they are not necessarily Pareto
optimal (cf. Example 4.18). Hence, notwithstanding the fact that deferred acceptance produced allocations
cannot be Pareto dominated by PAM produced allocations, deferred acceptance produced allocations, other

27Gautier et al. (2015b): p. 5.
28Svensson (1999): p. 558.
29Svensson (1999): p. 560.
30Svensson (1999): pp. 561-562.
31Abdulkadiroğlu et al. (2009): pp. 1692-1693.

38

than DA-STB, are not recommended for use in Amsterdam, since they are not Pareto optimal.

Another important result by Lin Zhou, from 1990, showed, that there cannot be a one-sided mechanism, in
which either party has more than 2 members, that is Pareto consistent, strategy proof and symmetric. A
mechanisms is symmetric, if two student’s that hand in the same preference list, always have the same utility
(N.B. actual utility not expected utility). Zhou’s result shows that it is impossible to have a mechanism,
that is as the PAM, in that it is strategy proof and Pareto consistent, but that is also symmetric. The PAM
is clearly not symmetric, since the order in the permutation discriminates between students. If however, a
symmetric mechanism is desired by policy makers, then Zhou’s result implies that either strategy proofness
or Pareto consistency must be abandoned as a further condition on the school-allocation mechanism. Zhou’s
result can be interpreted as saying that if strategy proofness and Pareto consistency are required of a mech-
anism, then a lottery element in the school-allocation mechanism cannot be excluded.

The above shows that the PAM has certain advantages over the other school-allocation mechanism investi-
gated in this thesis and other school-allocations mechanisms not yet designed. However, the PAM on itself,
does not always select nor favour Pareto-optimal allocations in which most students are assigned their first
choice. That is, the second ‘starting point’ of the municipality official for education, understood as as much
students as possible should be assigned their first choice, is not something the PAM can guarantee, as is clear
from the simulations and the discussion in Section 3.5. The next chapter will try to find a way in improving
the PAM such that its desirable properties will be kept and that it will favour allocations in which the most
students are assigned their first choice.

39

Chapter 5

Genetic Optimisation

5.1 Optimisation

From the first chapter it is clear that the municipality official of Amsterdam wished any school-allocation
mechanism to be used for solving the Amsterdam allocation problem, to satisfy the following conditions:

1. it needs to respect students’ preferences;

2. it needs to assign as much students as possible to their first choice;

3. it needs to be Pareto consistent;

4. it needs to be comprehensible and explicable;

5. it needs to be fast.

As is clear from the foregoing not all school-allocations mechanisms are able to satisfy the third condition.
From Theorem 4.5 it is clear that there is a school-allocation mechanisms that is able to produce all the Pareto-
optimal allocations that can possibly exist for some given school market, viz. the PAM. In this chapter it will
be investigated if it is possible to exploit this property of the PAM, by optimising its results, such that it also
satisfies the other conditions put forward by the municipality official. The method of optimisation will be
genetic-algorithmic. A genetic-algorithmic optimisation method uses concepts from genetics to converge to
an optimum in a very large problem space. The optimum in the case of the Amsterdam allocation problem
seems to be some allocation that is Pareto optimal and also assigns most students to their first choice. More
conditions can be posed on this optimum and genetic algorithms allow its users to alter what the optimum is,
without needing to rebuild the entire algorithm, but only to adjust a very small part, viz. the fitness function.
By using a genetic algorithm for finding an optimal allocation in the set of Pareto-optimal allocations, it can
be said that the PAM is optimised, since the allocations producible by the PAM are equivalent to the set
of Pareto-optimal allocations. Moreover, in the following it will become clear that actually the PAM is an
integral part in genetic-algorithmically finding the optimal allocation, hence it can rightfully be claimed that
the PAM will be genetic-algorithmically optimised. Before the genetic-algorithmic optimisation method of
the PAM can be explained, first the concept of genetic-algorithmic optimisation will be introduced.

5.2 Genetic Algorithms

Genetic algorithms were introduced by John Holland in the 1960s and were further developed and improved
by Holland’s research group at the University of Michigan in the 1960s and the 1970s.1 In the words of one of
Holland’s PhD students, “genetic algorithms are search algorithms based on the mechanics of natural selec-
tion and natural genetics”.2 Genetic algorithms use the idea of survival of the fittest among data, determined

1Mitchell (1996): p. 3.
2Goldberg (1989): p. 1.

40

by some given fitness function, combined with a structured yet randomised information exchange, inspired
from the concepts of mutation and crossover from genetics, to provide a robust and very efficient optimum
search algorithm, to find an optimum set of data points in a given search space. In short, a genetic algorithm
reproduces a sample of organisms, from an initial population, in such a way that, without heaving to go
through the entire population, the fittest data points can be found.3 More formally, the search space ele-
ments, or organisms, are coded in finite-length strings over some finite alphabet, to form chromosomes; these
chromosomes go through some evolutionary process of the genetic algorithm, by undergoing reproduction (or
selection), crossover and mutation; finally some fittest chromosomes are obtained, which can be decoded, to
give optimal organisms, which form with high probability a search space optimum. The notion of a genetic
algorithm is not formally demarcated, but rather is a concept under which different algorithmic techniques
fall, which all make use of concepts of genetics to find ‘fittest’ data points. Genetic algorithms differ from
other optimisation procedures in that they (i) work with a coding of the search space elements, not the
elements themselves, (ii) search from an initial population of data points and not a single data point, (iii)
use an objective fitness functions to determine the fitness of data points, and (iv) use probabilistic instead
of deterministic transition rules to traverse the search space.4

The most rudimentary genetic algorithm consists of three types of operations: reproduction (or selection),
single-point crossover and mutation. Reproduction selects the organisms in the population that will survive
the shift to a new generation; normally, the higher the organism’s share in the total fitness of the population,
the higher its probability to be reproduced. Crossover randomly selects a cut-off point and then exchanges
the subsequence before and after the cut-off point between two chromosomes that correspond with two
organisms. Mutation randomly changes some letter in the coding of the chromosome to obtain another
finite string. Mutation can normally occur at each position in a chromosome, but with only a very small
probability.5 A genetic algorithm then iterates these operations multiple times such that in each iteration,
first reproduction is performed, then some reproduced organisms are crossed over, and finally some crossed
over organisms will be mutated; each iteration of the three operations will result in a new population. Each
such iteration will be called a generation, therefore also the new populations produced by an iteration will be
called a generation. The three operations are typically iterated 50 to 500 times. The entire set of generations
so obtained will then be called a run. Randomness plays a large role in deciding how the three operations
will behave, carrying out a genetic algorithm with different pseudo-random number seeds will therefore often
yield different sets of highly fit organisms.6 To give some intuition on genetic algorithms and its operations
a simple genetic algorithm is introduced.

Example 5.1 Say in the set of bit strings of length 6 we want to find the highest double prime bit
strings.

A bit string is double prime, if (i) the integer value of the string is prime and (ii) the number of
ones occurring in the string sum op to some prime. For instance, the bit string 000011 is double
prime, since 000011 has integer value 3 (i.e. 0 ⋅ 26 + 0 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22 + 1 ⋅ 21 = 3) and the
string 000011 only has 2 ones.

In the case of length 6 bit strings, there are only 26 = 64 possible candidates, hence the highest double
prime bit string could be found by hand, however, in the case of length 100 bit strings, there are about
1.28 ⋅ 1030 possible candidates (a number of 31 digits), hence computing by hand or by brute force com-
binatorial methods what the highest double prime bit string of 100 digits is, seems to be cumbersome. A
genetic algorithm is often more efficient to find the optimum.

To clearly explain the genetic approach, the length 6 bit strings case will be treated. As a coding of
the organisms, the bit strings, we simply use the bit strings themselves, since these are already finite
strings over a finite alphabet. In this case organisms and chromosomes are thus identical (in most other

3Goldberg 1989: p. 1.
4Goldberg (1989): p. 7.
5Mitchell (1996): p. 8.
6Mitchell (1996): p. 9.

41

cases the correspondence is not identity). After a sufficient coding is found, a fitness function should be
constructed, to formally capture the optimum desired to be found. Let v(x) be the integer value of some
bit string x and let p(n) be the function that returns 1 if integer n is prime and 0 otherwise, furthermore,
let s(x) be the sum of ones in some bit string x. Then the following fitness function captures what is
needed:

f(x) = v(x) ⋅ p(v(x)) ⋅ p(s(x)) + 1

With the above fitness function, all non double prime bit strings have a fitness value of one (which is
lower then the first double prime bit string 000011) and the larger the double prime bit string the higher
its fitness value. With a fitness function constructed, a reproduction method needs to be chosen. The
standard reproduction method is the roulette-wheel reproduction method, in which the expected number
of times a chromosome will be selected to be reproduced is that chromosome’s fitness divided by the total
fitness of the population; that is, the individual’s weight in the total fitness determines the chance of
surviving into the crossover and mutation pool. As the mutation function on bit strings, we simply
flip a biased coin, according to the mutation parameter, for each bit occurring in a bit string, if the
coin comes up on some fixed side, then we flip that bit, otherwise we move on to the next bit in a bit
string. For instance, given bit string 100110 and mutation parameter 0.33, we will flip a coin c s.t.
Pr[c is heads] = 0.33 and Pr[c is tails] = 0.67. Then for each bit bi in 100110 we flip the coin, say this
gives: T,T,H,T, T,H. Then the third and last bit in 100110 will be flipped and the string 101111 is thus
obtained. For crossover we interchange the initial segment and ‘leftover’ bits of two bit strings, given
some random cut off point. For instance, given bit strings 010101 and 101100 and cut-off point 4, we
obtain the following bit strings after crossover:

0101 00 and 1011 01,

where 0101 ∣ 00 is the 4 initial segment of 010101 combined with the last two bits of 101101, and similarly
1011 ∣ 01 is the 4 initial segment of 101100 combined with the last two bits of 010101. Say we begin with
some random initial population; then randomly, but proportionally according to the fitness value, some
strings are selected from the initial population to be reproduced in the new generation. Let the initial
population be the strings x1 to x6:

xi v(xi) p(v(xi)) p(s(xi)) f(xi) P (xi) =
f(xi)

∑6
1≤j f(xj)

x1 110111 55 0 1 1 ≈ 0.019
x2 100101 37 1 1 38 ≈ 0.703
x3 001011 11 1 1 12 ≈ 0.222
x4 010111 23 1 0 1 ≈ 0.019
x5 000100 8 0 0 1 ≈ 0.019
x6 001100 12 0 0 1 ≈ 0.019

Then each string xi is selected by the roulette-wheel reproduction with probability P (xi), hence we
expect the selected organisms to be almost all x2 and some x3. It seems reasonable that we want more
strings with a structure close to x2 to reproduce, since we are looking for the highest double prime, and
v(x2) > v(x3). Then of the selected strings, some percentage according to some fixed crossover parameter
will be crossed over and also, some percentage according to some fixed mutation parameter which will
determine the mutation coin flip, will be mutated. This will yield a new generation of length 6 bit strings,
of which again some will be selected to undergo the creation of a new generation, of which again some
will be mutated and crossed over. Finally, after some given number of generations is created, some
population of bit strings will be obtained. In every creation of a new generation, the fittest bit strings
are more likely to make it to the new generation. Therefore, it is expected, that after a sufficient number
of generations, the fittest length 6 bit string, that is the highest double prime length 6 bit string, is an
element of the last generation (this should be 111101, since the integer value of 111101 is 61, which is
prime, and 111101 contains 5 ones, which is also prime).

In the above example the highest double prime bit string is searched for. Knowing that we want the highest,
in terms of integer value, there are of course more efficient methods of finding this bit string, then to write a

42

complete genetic algorithm. For instance, all even bit strings (ending with 0) can immediately be discarded,
since they can never be double prime. Other similar methods can be used, to decrease the search space and
to eliminate the need for a smart searching method. However, such methods are not easily found, when the
optimal being searched for, is not so well understood as the property of being double prime. In the case were,
among all allocations for some school market, the Pareto-optimal allocations with most students assigned to
their first choice is looked for, it is, for instance, not clear how the search space can be greatly minimised.

Example 5.1 also illustrates that genetic algorithms need more than the operation of reproduction, because
otherwise no new areas of the search space will be covered. If the only manipulation on the population
performed by a genetic algorithm is reproduction, then the genetic algorithm will simply converge to the
fittest organism in the initial population. If, however, the genetic algorithm also performs crossover and
mutation, then, in light of the specific example from Example 5.1, the string 111101 (the optimum) can be
found, whereas with only reproduction, the genetic algorithm is expected to result in a population with just
the string 100101 (the optimum of the initial population). All three basic operations of a genetic algorithm
(reproduction, mutation and crossover) are as important. Where reproduction ensures convergence, crossover
ensures giant jumps within the search space and mutation ensures nearby search in the search space.

5.3 Reproduction

In Example 5.1 reproduction was carried out using a roulette wheel. This is just one among many methods
for selecting which organisms should be reproduced. Other widely used methods are total-order reproduction
and expected number control reproduction. These other reproduction techniques will not be discussed, since
the genetic algorithm introduced in this thesis for optimising school allocations, will also use a roulette-wheel
reproduction technique.7 In roulette-wheel reproduction each organism is reproduced with a probability cor-
responding to its share in the total fitness. To carry out this reproduction technique a specific bound on
the generation size must be given in advance. The method for carrying out this fitness function differs for
different types of fitness functions. If the reproduction method is used in combination with a fittest-0 fit-
ness function, where the fittest organism receives a fitness of 0, then the reproduction technique is slightly
more cumbersome, than when used in combination with a fittest highest fitness function, where the fitter
the organism, the higher the fitness value. In this thesis a fittest highest fitness function is used, hence the
reproduction technique will only be discussed for this case:

(Definition on next page)

7For more on total-order reproduction see ‘rank selection’ in Mitchell (1996): p. 127; for more on expected number control
consult Goldberg (1989): p. 24.

43

Definition 5.2 (Roulette-Wheel Reproduction) Let X = ⟨x1, ..., xn⟩ be a finite population of organisms
and let f ∶ X → R be some fitness function, s.t. the further f(x) is away from zero the fitter x is. Let
c ∈ N be some given bound on the generation size. All procedures extensionally equivalent to the following,
are called a roulette-wheel reproduction technique:

input : Finite list of organisms
Ð→
X = ⟨x1, ..., xn⟩, bound on generation size c ∈ N.

output: Finite list of organisms
Ð→
Y s.t. all organisms in Y also occur in

Ð→
X .

for 0 ≤ i ≤ ∣Ð→X ∣ − 1 do

if i < ∣Ð→X ∣ − 1 then

associate
Ð→
X(i) with interval [∑nj<i pj ,∑nj≤i pj), where pj =

f(Ð→X(j))
∑n0≤k f(

Ð→
X(k))

;

else

associate
Ð→
X(i) with interval [∑nj<i pj ,∑nj≤i pj];

Generate a list
Ð→
R = ⟨r1, r2, ..., rc⟩ of c random real numbers s.t. 0 ≤ ri ≤ 1;

for 0 ≤ i ≤ ∣Ð→R ∣ − 1 do

reproduce the
Ð→
X(i) in which

Ð→
R(i) falls;

return a list Y of all reproduced organisms.

Note that when the returned list Y is created in the order corresponding to the order of intervals in which
the ri fall, then the list Y is a random permutation of the reproduced organisms. That is, if, for instance,
r1 falls in the interval assigned to x5 and Y (0) is set to x5, the list Y so obtained is a random permutation
of the reproduced organisms. Furthermore, observe that it is possible to carry out the procedure on sets
of organisms as well, by just multiplying the fitness of each organism by its frequency in the population.
That is, if some organism x occurs k times in the population, then just multiply x’s fitness with k and then
proceed as above; this will yield the same reproduced organisms. Moreover, note that the probability of some
organisms xi being reproduced in the procedure described in Definition 5.2 is the weight of the organism’s
fitness in the total fitness, that is:

Pr[xi is reproduced] = f(xi)
∑nj=1 f(xj)

This also means that the expected number of xi occurring after reproduction is xi’s share in the total fitness
times the given bound c on the generation size, that is:

c ⋅Pr[xi is reproduced]
Note that under roulette-wheel reproduction, an organism is only reproduced with certainty if that organ-
ism’s fitness is the total fitness (since then it will have a probability of 1 to be reproduce). That is, organisms
are only guaranteed to be reproduced under roulette-wheel reproduction if the genetic algorithm converged
to some chromosome. To ensure that in earlier stages the fittest organisms are not eliminated by accident
by the roulette-wheel reproduction technique, the creation of a new generation is often carried out in an
elitist manner. If elitism is applied, it will be ensured that the fittest organism will reproduced. Moreover,
in elitism it is normal practice to protect a copy of the fittest organism from crossover and mutation as well.
Elitism was first introduced by Kenneth De Jong, in 1975, and was shown by many researchers to significantly
improve the performance of genetic algorithms.8

8Mitchell (1996): p. 126; De Jong (1975): p. 102.

44

5.4 Genetic Optimisation of School Allocations

The goal of this thesis is to investigate the possibility of using genetic algorithms for optimising school
allocations. As a point of departure for this study, the Amsterdam school-allocation problem is chosen.
From previous chapters it is clear that the problem can be understood as finding the fittest Pareto-optimal
allocation. What will be considered fittest is given by the ‘starting points’ from the municipality official
for education. The upside of using genetic algorithms to find optima is that the fitness function can be
adjusted to the present need or understanding of what must be considered the fittest allocation. If in the
future another Pareto-optimal allocation is considered ‘fittest’, for instance, the one with the lowest mean
preference position, then only the fitness function needs to revised without altering the rest of the genetic
optimisation method. In the next sections the genetic algorithm used for optimising the Pareto-optimal
allocations will be introduced, which will make clear why it is possible to force the genetic algorithm to
produce different allocations by just revising the fitness function.

5.4.1 Organisms and Chromosomes

As indicated before, genetic algorithms find the optimal organisms by manipulating chromosomes. Chromo-
somes are, in the genetic-algorithmic universe, finite encodings of organisms. The best suited finite strings in
some finite alphabet available for encoding Pareto-optimal allocations are permutations. From Theorem 4.5 it
became clear that to every Pareto-optimal allocation there corresponds at least one permutation for which the
PAM produces that allocation, and that to every permutation there corresponds a Pareto-optimal allocation.
To obtain school allocations from permutations (decoding) the PAM can simply be used. The encodings for
Pareto-optimal school allocations used in the genetic algorithm presented in the following, the chromosomes,
will thus be permutations of students; the organisms are then the corresponding school allocations. In the
setting of genetics and thus genetic algorithmics, a chromosome can conceptually be divided into genes, such
that each gene encodes a trait of the organism. Each gene is located at some particular position on the chro-
mosome: the locos. The different possible settings for a gene, at a certain locus, are called alleles. 9 Hence

in the present case, a chromosome, some permutation
Ð→
S , can be divided into the different places of that per-

mutation, i.e.
Ð→
S (0),Ð→S (1), ..., which form the loci, on each locus a student is located, hence students are the

genes in the present setting; which student is located at
Ð→
S (i) then determines which allele makes up the gene.

A genetic algorithm optimises organisms by reproducing, mutating and crossing over chromosomes. The
only time organisms are needed is when the fitness of some chromosome needs to be determined. The fitness
of a chromosome is given by the fitness of its corresponding organism. In the present case, the fitness of
some permutation will thus be calculated by calculating how ‘fit’ the unique corresponding allocation is. By
defining the operations that manipulate the chromosomes, crossover and mutation in such a way that a chro-
mosome (some permutation) will never be manipulated in something that is not a permutation of students,
we ensure that each generation consists of permutations of students in the given school market. Theorem
4.5 establishes that it is possible to search through the set of Pareto-optimal allocations to find the fittest
Pareto-optimal allocations for some given school market by searching through the set of permutations on
students in that school market. From Corollary 4.8 and Example 4.7 it is known that some allocation can be
encoded into different permutations and that there is thus no one-to-one correspondence between permuta-
tions and allocations (but only a surjective correspondence). This is not problematic: it only implies that the
genetic algorithm will sometimes perform some redundant search efforts trough the space of Pareto-optimal
allocations for some given school market. That is, some manipulation (crossover or mutation) performed by
the genetic algorithm on some permutation of students might not yield a new corresponding school allocation

(e.g. say the genetic algorithm manipulates
Ð→
S from Example 4.7 s.t. it becomes

Ð→
S ′, then this manipulation

does not lead to a new part of the search space being covered). The probability that some manipulation will be
redundant for an actual very large student population, as in the Amsterdam case, is however extremely small.

Now that it is clear what should be the chromosomes to find the optimal organism(s), the genetic algorithm
for optimising school allocations can be introduced. The genetic algorithm presented will be called GOPAM,

9Mitchell (1996): p. 5.

45

which is short for Genetic Optimisation of the Permutation Allocation Mechanism. This name is chosen,
because the PAM is an integral part of the GOPAM, since it is used for turning chromosomes (permutations)
into organisms (allocations), and it is the nature and formal results of the PAM, that ensure that permutations
can be used to optimise Pareto-optimal school allocations. As in the example of the double prime bit strings,
the GOPAM will be introduced by first presenting the fitness function and the method of reproduction.
Next, the methods for manipulation chromosomes, crossover and mutation, needed to widen the scope of the
search in the Pareto-optimal allocations for some given school market, will be presented. Finally some general
remarks on the allocations produced by the GOPAM and the formal properties of these will be discussed.

5.4.2 Fitness Function and Reproduction

Now that is clear what will be optimised, conditions must be set that give when a certain organism is
fitter than some other organism. In the present case, all organisms are Pareto-optimal allocations, so the
fitness function of the genetic algorithm only needs to capture whether some Pareto-optimal allocation A
is considered fitter than some other Pareto-optimal allocation A′. From the official correspondence of the
municipality official for education different fitness conditions can be deduced, since the ‘starting points’
were not univocal: the fittest Pareto-optimal allocation is the Pareto-optimal allocation in which either
(i) most students are assigned their first choice, or (ii) in which students are only not allocated to their
highest preferred school, if it is not possible to allocate all students who prefer that school highest to that
school. Both understandings of the second ‘starting point’ can be implemented in the fitness function, but
since only the first understanding gives a comparative concept,10 that understanding will be considered the
primary fitness condition, to which the second understanding can be supplemented in the form of a penalty.
Later when variants of the fitness functions are discussed, the addition of the penalty to capture the second
understanding will be further investigated, but for now only the first understanding will be incorporated in
the fitness function. To capture the first understanding, a fittest highest fitness function, is best suited, since
it is not clear what the fittest possible Pareto-optimal allocation will be in the search space, but it is clear
to say which allocation is fitter. Another fitness condition, more in line with the first ‘starting point’ that a
school-allocation mechanism should respect the preferences of students is to deem some allocation A fitter
than some allocation A′, if in allocation A there are less students unassigned than in A′. This condition
makes sure that allocations which disregard certain preference lists by not allocating the owners, will be
considered less fit. The following fitness function both captures the more students assigned first choice the
fitter and the less students not allocated the fitter :

f(A) = (1

g(A) + 1
⋅ h(A))

2

where

� A is some allocation;

� g(A) is the number of students not allocated in A, i.e. the number of students assigned to the null
school;

� h(A) is the number of students assigned to their first choice.

The above fitness function penalises any allocation for leaving students not allocated. The penalty in the
fitness function above is very harsh and can be adjusted to any penalty found appropriate by policy makers
for capturing the problem of leaving students not allocated. Note that not allocated students can be allocated
by hand after the allocation is produced by the mechanisms, since the total number of school seats far exceeds
the number of applying students (e.g. in the VWO case, 1885 VWO students and 3109 VWO application
possibilities). Furthermore, observe that the value obtained by multiplying the penalty with the number of
first-choice students is squared. This method of enlarging the differences in fitness values between allocations
is called fitness scaling. This is done to make small differences between allocations entail larger differences in
fitness value. For instance, say two allocations A and A′ have the same number k of students not allocated,
but in allocation A there is one student less assigned its first choice than in A′, say l vs. l + 1. Then the
fitness values without the fitness scaling of A and A′ would respectively be,

10i.e. a concept that allows one to formulate “a comparison in the form of a more-less-statement, without the use of numerical
values” (Carnap (1967): p. 9); in casu ‘more-less fitter’.

46

1

k + 1
⋅ l = l

k + 1
and

1

k + 1
⋅ (l + 1) = l + 1

k + 1
,

which on larger numbers only gives an almost negligible difference in fitness value. This is problematic, since
the odds for both allocations to be reproduced would then be almost similar, which impedes the genetic algo-
rithm from converging to the better allocation A′. With fitness scaling, by squaring the value, the difference
in fitness value between A and A′ becomes significant.

The fitness function described above is necessary to perform reproduction. The method of reproduction
in the GOPAM will be the roulette-wheel reproduction method. As explained in the foregoing, this means
that each organism has a probability to be reproduced that is equal to its weight in the total fitness of the
population. The reproduction in the GOPAM is performed with elitism. This means that before reproduction
is carried out, the fittest organism in the given population will be located and copied. The copy will then be
added into the new generation. This means that this copy of the fittest organism is always reproduced and
furthermore cannot be manipulated by crossover nor mutation, since it is added to the new generation (and
a new generation is only formed after crossover and mutation are performed, according to the crossover and
mutation parameters, on the organisms selected by reproduction). Note, however, that the fittest organism
is not removed from the population that will undergo reproduction, crossover and mutation. This is done
such that the manipulating operations could optimise the fittest organism, such that in the new generation,
the fittest organism that was copied, might be no longer the fittest organism. Furthermore, since the fittest
organisms is only copied and added to the new generation, and the original is still undergoing mutation and
crossover, it is even expected that, for sufficient crossover and mutation parameters, this fittest organism
will be crossed over and mutated, since the roulette-wheel reproduction is expected to make the share of the
fitter organisms in the population grow, thereby increasing the probability that the fittest organism will be
mutated and crossed over.

5.4.3 Chromosome Manipulation: Crossover and Mutation

When a fixed number organisms are selected by roulette-wheel reproduction, according to the bound on
the generation size, some of the organisms undergo crossover and mutation. It is customary to first per-
form crossover and then mutation.11 A crossover parameter, a real number from 0 to 1, determines which
percentage of reproduced organisms will be crossed over. Since crossover is always performed on pairs, an
even number of organisms on which crossover will be performed, needs to be calculated, given the crossover
parameter and the fixed bound on the generation size. The number of organisms on which crossover will be
performed, that is the size of the crossover pool, is:

size crossover pool = (c ⋅ ρc) − [c ⋅ ρc mod 2] where

� c is the fixed bound on the generation size;

� ρc is the crossover parameter;

� [x mod y], with x, y ∈ R, is the remainder after division of x by y as a real number.

Since the GOPAM orders the chromosomes selected by reproduction in the order of the intervals in which the
random numbers, created for roulette-wheel reproduction, fell, the first k occurring selected chromosomes,
where k is the size of the crossover pool, can be selected for crossover. In this way it is guaranteed that a
percentage, corresponding to the crossover parameter, of randomly selected chromosomes is crossed over.12

Furthermore, by just pairing up the crossover pool (e.g. ⟨a, b, c, d⟩ becomes ⟨(a, b), (c, d)⟩) also random pairs
of chromosomes are selected for crossover. Given a pair of chromosomes (A,B), the operation of crossover
first determines a random integer r, s.t. 0 < r < ∣A∣ = ∣B∣, which is a cut-off point for splitting the chromosome

(permutation) A. For the splitting of A a function splitAt is used, such that splitAt(i,Ð→S) creates two lists,

a list of items before
Ð→
S (i) ordered as in

Ð→
S , and a list of items from

Ð→
S (i) onwards, ordered as in

Ð→
S . For

instance, splitAt(1, ⟨a, b, c⟩) = (⟨a⟩, ⟨b, c⟩). The first list created by splitAt on some list A will be called in the

11Mitchell (1996): pp. 8-9; Goldberg (1989): p. 12.
12cf. the remarks in Section 5.3 after Definition 5.2.

47

following, L(A), the second list, R(A). After the list A is split into L(A) and R(A), the crossover operation,
will create two new lists C and D, s.t.:

� C = L(A) + +B′;

� D = B′′ + +R(A),

where B′ are all students not occurring in L(A) ordered as in B, and B′′ are all students not occurring in
R(A) ordered as in B. The new permutations C and D so obtained by the crossover operation are the results
of performing crossover on permutations A and B. More formally, the crossover operation is the following
procedure:

input : A randomized list (population)
Ð→
P of permutations (chromosomes)

Ð→
S i, the crossover

parameter ρc, the bound on the generation size c.

output: A list (population)
Ð→
P ′ of permutations (chromosomes)

Ð→
S i.

Let
Ð→
P ′ ∶= ∅;

Let s ∶= (c ⋅ ρc) − [c ⋅ ρc mod 2];
Let Pool ∶= ι(s,Ð→P);
Let Pairs ∶= pairUp(Pool), where

pairup(Ð→X) = {(x,x′) ∣ (i, x), (i + 1, x′) ∈Ð→X and [i mod 2] = 0};

for (Ð→A,Ð→B) ∈ Pairs do

Generate a random integer r, s.t. 0 < r < ∣Ð→A ∣;
Let (L(Ð→A),R(Ð→A)) ∶= splitAt(Ð→A, r), where

splitAt(Ð→X, i) = ({(j, x) ∈Ð→A ∣ j < i},{(j, x) ∈Ð→A ∣ j ≥ i};

Let
Ð→
C ∶= L(Ð→A) + +

Ð→
B′, where

Ð→
B′ = {(i, b) ∈Ð→B ∣ (i, b) ∉ L(Ð→A)} s.t.

∀(i, b)(j, b′) ∈
Ð→
B′ ∶Ð→B−1(b) <Ð→B−1(b′)⇒

Ð→
B′−1(b) <

Ð→
B′−1(b′);

Let
Ð→
D ∶=

Ð→
B′′ + +R(Ð→A), where

Ð→
B′′ = {(i, b) ∈Ð→B ∣ (i, b) ∉ R(Ð→A)} s.t.

∀(i, b)(j, b′) ∈
Ð→
B′′ ∶Ð→B−1(b) <Ð→B−1(b′)⇒

Ð→
B′′−1(b) <

Ð→
B′′−1(b′);

Let
Ð→
P ′ ∶=Ð→P ′ + +Ð→C + +Ð→D ;

return The list (population)
Ð→
P ′.

It is immediate that the permutations
Ð→
C and

Ð→
D so produced will still be permutations of students if the

permutations
Ð→
A and

Ð→
B are. Hence, the operation of crossover performed on two permutations

Ð→
A and

Ð→
B will

produce organisms, corresponding to
Ð→
C and

Ð→
D , that are Pareto-optimal allocations for the school market in

question.

Mutation differs from crossover in that no ‘(mutation) pool’ is generated before the operation is performed.
Mutation is performed on each chromosome individually, that is, for each gene in the chromosome a biased
coin is flipped to determine if the gene will be mutated, thereby mutating the chromosome. The bias of
the coin is determined by the mutation parameter, which is some real number ρm ∈ [0,1]. This means that
if the mutation parameter is 0.25, then some gene, in some chromosome, is mutated with a probability of
0.25. More formally, the operation of mutation generates a random real number r ← [0,1] for each gene s
s.t. if r < ρm, then s is mutated. A mutation of s will be an exchange of s with some student s′ in the
permutation in question (the respective chromosome) s.t. the index of s′ is at least as low as the index of
s. If the operation has ‘flipped a coin’ for each allele in the chromosome, then the operation of mutation is
finished for that chromosome. More formally the operation of mutation, on some population is the following:

48

input : A list (population)
Ð→
P = ⟨Ð→S 0,

Ð→
S 1, ..,

Ð→
S c⟩ of permutations (chromosomes)

Ð→
S i, the mutation

parameter ρm

output: A list (population)
Ð→
P ′ = ⟨Ð→S ′

0,
Ð→
S ′

1, ..,
Ð→
S ′
c⟩ of permutations (chromosomes)

Ð→
S i.

Let
Ð→
P ′ ∶= ∅;

for 0 ≤ i ≤ ∣Ð→P ∣ − 1 do

Let
Ð→
S ′
i ∶= ∅;

for 0 ≤ j ≤ ∣Ð→S i∣ − 1 do
Generate a random integer r ← [0,1];
if r ≥ ρm then

Let
Ð→
S ′
i ∶=
Ð→
S ′
i + +⟨

Ð→
S i(j)⟩;

else
Generate a random index k s.t. 0 ≤ k ≤ vectS−1

i (j);
Let

Ð→
S ′
i ∶=
Ð→
S ′
i ∪ {(j,Ð→S ′

i(k))} (i.e. inserting the random student at the new position);

Let
Ð→
S ′
i ∶=
Ð→
S ′
i ∖ {(k,Ð→S ′

i(k))} (i.e. removing the student from the old position);

Let
Ð→
S ′
i ∶=
Ð→
S ′
i ∪ {(k,Ð→S i(k))} (i.e. inserting the present student at the random position);

Let
Ð→
P ′ ∶=Ð→P ′ + +⟨Ð→S ′

i⟩;

return The list (population)
Ð→
P ′.

Note that when some gene is mutated, in most cases that gene, some student s, is assigned a lower index in
the resulting new permutation; the side effect of this is of course, that then also some other random student
s′, with whom s switches places, is assigned a higher index. The student who ‘mutates’ is never worse off,
however, every mutation in which some student is better off (in terms of position in the permutation), will
always yield some student who is worse off (in terms of position in the permutation).

5.4.4 GOPAM

With the three main operations of a genetic algorithm (reproduction, crossover and mutation) explained
and introduced and one particular fitness function given, the GOPAM, the method for genetic-algorithmic
optimisation of school allocations is fully stipulated. The GOPAM, given some school market, a bound on
the number of generations, a bound on the generation size, a crossover and mutation parameter, can be
called a school-allocation mechanism. Formally, it is not a mechanism in the sense of Definition 4.1, because
the GOPAM does not map a school market to a single allocation, but to a set of allocations (a population).
However given enough time, the GOPAM is expected to converge to a population consisting of multiple copies
of one allocation, which makes it very similar to the formal mechanisms seen in Chapter 4. Furthermore, it
is straightforward how a single school allocation could be selected from the population to which the GOPAM
has converged: just take the fittest organism.

For all the mechanisms in Chapter 4, the PAM, BAM and DA-MTB, the formal properties of the allocations
produced were studied. That is, it was investigated whether the allocations produced by those mechanism
were Pareto optimal or not. The GOPAM, as indicated before, can only create Pareto-optimal allocations,
since its chromosomes are permutations, which by the PAM correspond to Pareto-optimal allocations. The
organisms to which the GOPAM converges are thus necessarily Pareto-optimal allocations.

The game-theoretic properties of the GOPAM are not as easily found as the nature of the allocations it
produces. The randomness occurring in every generation and every operation of the GOPAM makes it very
difficult to say whether the GOPAM is strategy proof or even coalition strategy proof. If a student s could,
by handing in some ‘strategic’ preference list Qs, force the GOPAM to converge to some allocation, wherein
s is assigned a better school, then he would be, had he handed in his actual true preferences Ps, then the
GOPAM is clearly not strategy proof. It is not clear if the latter is possible. It is an open question whether

49

the GOPAM is strategy proof or even coalition strategy proof.

Multiple ‘strategic actions’ could be taken by the student. Not only can he order his schools differently in
his ‘strategic’ preference list, the student can also decide to hand in a preference list with a certain length.
The GOPAM converges to certain allocations based on the fitness of those allocations. The fitness function
f favours allocations in which (i) more students are assigned their first choice and (ii) less students are
not-allocated. To steer this convergence, a student s must be able to hand in a ‘strategic’ preference list Qs,
which could do one of the following:

(a) allocations based on Qs tend to have a higher fitness value than allocations based on Ps and in allocations
based on Qs, student s is assigned a better school than in allocations based on Ps;

(b) handing in Qs tends to benefit allocations where s is better off after crossover;

(c) handing in Qs results in a higher probability for s of being mutated;

(d) handing in a shorter or longer preference list Qs than Ps results in allocations in which s is better off.

It is not clear what manipulation of the actual preference list, to obtain some ‘strategic’ preference list, could
result in either (a), (b) or (c). However, it seems that the present fitness function f tends to benefit shorter
preference lists, since the fitness function will assign lower fitness values to allocations in which more students
are not allocated. The shorter the student’s preference list, the more likely it is that it will result in the student
not being allocated, thereby lowering the fitness value of allocations in which he is not-allocated, which will
also entail that allocations in which he is assigned the higher preference positions, with non-null schools, will
receive higher fitness values. This shortcoming could be easily overcome by demanding preference lists to have
a certain length, whether this is admissible is unclear. Furthermore, note that the game-theoretic properties
of the GOPAM depend on the fitness function used, for instance result (c) can also be easily overcome by
deleting the penalty for not allocated students in the fitness function. It could therefore very well be that only
certain fitness functions are (coalition) strategy proof or de facto (coalition) strategy proof while others aren’t.

Another fitness function that immediately come to mind is the fitness function f ′, which is just as f , but now
the second understanding of the second ‘starting point’, that students should only not be allocated to their
highest preferred school, if it is not possible to allocate all students who prefer that school highest to that
school, is incorporated in the fitness function. Say some allocation A is non-maximal, if and only if, there is
some school h ∈ H s.t. the number of students who place h highest on their preference list is higher than ch
and not all students assigned to h in A place h highest on their preference list. The property of some allocation
being non-maximal then captures the second understanding of the second starting point. This property can
be translated into a penalty similarly to the penalty for not-allocated students by multiplying the result of
the fitness function f by 1 divided by the number of non-maximal students plus 1. Non-maximal students are
students assigned to some school h, who do not place h highest on their preference list and h is such that the
number of students who place h highest on their preference list is higher than ch. The fitness function f ′ so
obtained would capture both understandings of the municipality official for education’s second starting point.

Another fitness function that seems to make the GOPAM converge to interesting allocations, is the fitness
function f ′′ which assigns higher fitness values to allocations with a lower mean preference position. Note
that the mean preference position of some allocation µ(A) for some given school market M = (H,S,C,P) is

µ(A) = ∑s∈S 1 + P −1
s (A(s))

∣S ∣
This fitness function can be adjusted to have a penalty for not-allocated students or not, just as the fitness
function that assigns higher fitness values for allocations which assign more students their first choice. The
fitness function f ′′, capturing the lower mean preference position the fitter and the less students not allocated
the fitter, is then:

f ′′(A) = (1

g(A) + 1
⋅ h′(A))

2

where

50

� A is some allocation;

� g(A) is the number of students not allocated in A, i.e. the number of students assigned to the null
school;

� h′(A) = ∑
s∈S

∣H∣ − (P −1
s (A(s)) + 1), s.t. h′(A) > h′(A′) iff µ(A) < µ(A′).

Reasonable other options for fitness functions could be: the less low preference positions the fitter, more
popular allocations are fitter, or better preference profile then fitter. An allocation A is said to be more
popular than some allocation A′, if more students prefer A over A′ than the other way around; an allocation’s
preference profile ‘dominates’ some other allocation’s preference profile, if it assigns more students their first
choice, second choice, third choice, etc. All these options are easily programmable, and the GOPAM can
thus easily be adjusted to converge to either of these other fitness conditions or to combinations of those.
The upside of using a genetic approach is that policy makers always have the opportunity to decide every
year anew which fitness conditions they consider just. As indicated before, the ‘strategy proofness’ of the
GOPAM depends heavily on the fitness function chosen, hence before simply deciding upon another fitness
function, the game-theoretic consequences need to be investigated.

5.5 Simulations with the GOPAM

With the GOPAM fully introduced and variants of fitness functions discussed, it remains to be shown what
kind of allocations the GOPAM, with certain fitness functions, produces. As was tested for the other mecha-
nisms, also for the GOPAM with certain fitness functions, it will be shown what are the number of students
not allocated, how many students are assigned their first choice and what is the mean preference position,
but now for the fittest allocation to which the GOPAM converges. The GOPAM will as well be tested on the
VWO population, such that its results can be compared to the other mechanisms. The GOPAM has been
ran with the following fitness functions:

F1 : the more students assigned first choice, the fitter;

F2 : the more students assigned first choice and the less students not allocated, the fitter;

F3 : the lower the mean preference position, the fitter;

F4 : the lower the mean preference positions and the less students not allocated, the fitter;

F5 : the more students assigned first choice, the less non-maximal students, and the less students not
allocated, the fitter.

For each fitness function the GOPAM will be ran for 100 generations with an initial population of 30 random
generated chromosomes (permutations), with a bound on the generation size of 30 as well. The crossover
parameter is 0.5, which means that 14 permutations will crossed over in each generation. The mutation
parameter is 0.00025, which means that about (0.00025 ⋅ 1885) ⋅ 2 = 0,9425 ≈ 1 student(s) per allocation are
expected to be switched. The seed used in all runs is zero. This gives the following results:13

Not Allocated First Choice Mean Pref. Pos. Par. Cons. Coa. Strat. Proof

F1: 9 (0.48 %) 1581 (83.87 %) 1.2809 Yes ?
F2: 0 (0.00 %) 1566 (83.08 %) 1.2928 Yes ?
F3: 4 (0.21 %) 1572 (83.40 %) 1.2632 Yes ?
F4: 1 (0.05 %) 1567 (83.13 %) 1.2633 Yes ?
F5: 0 (0.00 %) 1559 (82.71 %) 1.2976 Yes ?
PAM : 6.93 (0.36 %) 1566.05 (83.08 %) 1.2970 Yes Yes
BAM : 8.13 (0.43 %) 1636.00 (86.79 %) 1.2606 Yes No
DA-MTB : 0.38 (0.02 %) 1379.64 (73.19 %) 1.3545 No Yes

13The average running time for the GOPAM with the different fitness functions is about one hour. The GOPAM was tested
on a commercially available laptop with a dual-core quadruple-thread 2.50 GHz processor.

51

From the table above it is clear that the GOPAM makes it possible to optimise the PAM in such a way that
the number of first choice students stays high, the mean preference position stays low, but with allocating
as much students as possible. If no penalty is given for not-allocated students, then the GOPAM really
outperforms the PAM in the number of first choice students (in the case of F1) and in the mean preference
position (in the case of F3).

5.6 Genetic-Algorithmic Optimisation for Allocation Mechanisms

In this chapter a genetic-algorithmic optimisation for the PAM was introduced and studied. To say if the re-
sulting mechanism, the GOPAM, can be interesting for the Amsterdam school-allocation problem it must be
studied more rigorously, since it is still unclear what the exact game-theoretic properties are of the GOPAM
with different fitness functions. This uncertainty makes it hard to say if the GOPAM meets all the ‘starting
points’ put forward by the municipality official for education, but it can nevertheless be shown that the
GOPAM meets most.

It can be said that the GOPAM meets the first starting point of the municipality official, since it can be
adjusted to respect certain aspects of the preferences of the student population. For instance, it was demon-
strated that the GOPAM can be adjusted to converge to some allocation in which most students are assigned
their first choice, or to some allocation in which the least possible number of non-maximal students are
present. Furthermore, it is possible to alter the GOPAM by introducing a ‘mean-preference’ fitness function
as to make the GOPAM converge to some allocation which benefits the student population as a whole. From
this it can be concluded that, the GOPAM respects the students’ preferences in some way and thus meets the
first ‘starting point’. However, with important game-theoretic properties of the different GOPAM versions
unknown, it remains difficult to say if the GOPAM really respects the preferences of the students in every
possible way.

The second starting point could be understood in different ways (cf. the three interpretations in Section
3.5). From the simulations and discussion on the different fitness function for the GOPAM it is clear that the
GOPAM meets the second starting point in each of the three understandings. The GOPAM can converge
to the allocation in which most students are assigned their first choice (covering the first understanding), it
can converge to the allocation in which the least number of non-maximal students are present (covering the
second understanding) and it was shown to place more students on their first choice than the DA-MTB is
expected to do in Section 5.5 (covering the third understanding). The design of the GOPAM also ensures
that all versions of the mechanism satisfy the third starting point, since it always produces Pareto-optimal
allocations. This means that it is impossible for there to be reasonable trade options for students based on
their handed-in preferences (cf. Section 3.5). Moreover, all versions of the GOPAM are fast and easily ran
on commercially available computers, which makes it hard to see how the GOPAM could not meet the fifth
starting point.

The fourth starting point mentioned by the municipality is the most unclear and it is therefore hard to
judge if the GOPAM meets this demand. The municipality official desires a school-allocation mechanism
of which the workings are clear and transparent to parents, students and schools. The only point of ref-
erence to judge if the GOPAM satisfies this demand, is that the DA-STB, in the way used by Gautier et
al. (2015b), is considered clear and transparent. Note that the DA-STB as in Gautier et al. (2015b), is
what is considered in this thesis as a DA-MTB (since not all high schools have the same preferences). This
means that the DA-STB from Gautier et al. (2015b) is not reducible to the PAM, which makes the mecha-
nisms not at all straightforward. If that mechanism is considered clear and transparent, it can be said that
the GOPAM might also be. The GOPAM viewed as an optimisation method that just tries to locate the
Pareto-optimal allocation that satisfies certain further conditions, is easily explained and understood. The
exact workings of the GOPAM are probably less clear, but are nevertheless transparent and explainable.
In short, it is hard to say if the GOPAM meets the fourth starting condition, but it is definitely also not
clear that it does not do so, since also the mechanism from Definition 4.16 is considered clear and transparent.

52

This thesis explores a new route for school-allocation mechanisms, in that it tries to see if genetic optimisation
can be interesting to find better allocations for school markets. The first test results look very promising and
the genetic optimisation method is so adaptive that it can be easily adjusted to meet certain conditions not
yet investigated here. However, there remain many open questions which need to be answered before this
method could ever be used as a school-allocation mechanism. The most prominent question is whether the
GOPAM with the fitness functions considered in this thesis is (coalition) strategy proof or de facto coalition
strategy proof. Furthermore, it is interesting to study how long the preferences lists of the students need to
be. From the research by Cohen et al. (2012) and the satisfaction survey of Panel Inzicht (2015), it became
clear that parents and students prefer to hand in short preference lists. Since the GOPAM is an optimisation
method, it can maybe be adjusted in such a way that it can cope with very short preference lists, which
would definitely be very well received by the population of Amsterdam.

In the foregoing all school allocations used in Amsterdam have been discussed and a new mechanism, the
GOPAM has been introduced. For every mechanism important formal mathematical properties have been
explained and demonstrated, and it is shown in what way each mechanism meets the starting points of the
municipality official. The starting points are not all easily translatable to the mathematical setting, which
makes it hard to say precisely which mechanism comes closest to what the municipality of Amsterdam desires.
It is the hope of the author that this thesis not only shines light on a possible new approach in solving the
Amsterdam allocation problem by using genetic algorithms, but also helps policy makers in making the
‘starting points’ more formal, as to guide future research on school-allocations mechanisms in the city of
Amsterdam.

53

Chapter 6

Bibliography

Abdulkadiroğlu, A., Pathak, P.A. & Roth, A.E. (2009), “Strategy-proofness versus Efficiency in Matching
with Indifferences: Redesigning the NYC High School Match”, American Economic Review, Vol. 99(5), pp.
1954-1978.

Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E. & Sönmez, T. (2006), “Changing the Boston School Choice
Mechanism: Strategy-proofness as Equal Access”, Study on the previously used school allocation mechanism
used by Boston Public Schools, Unpublished, URL: http://seii.mit.edu/wp-content/uploads/2012/
04/Boston-Mechanism.pdf, Retrieved June 14, 2016.

Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E. & Sönmez, T. (2005), “The Boston Public School Match”,
American Economic Review, Vol. 95(2), pp. 368-371.

Abdulkadiroğlu, A. & Sönmez, T. (2003), “School Choice: A Mechanism Design Approach”, American
Economic Review, Vol. 93(3), pp. 729-747.

Abdulkadiroğlu, A. & Sönmez, T. (1999), “House Allocation with Existing Tenants”, Journal of Economic
Theory, Vol. 88(2), pp. 233-260.

Abdulkadiroğlu, A. & Sönmez, T. (1998), “Random Serial Dictatorship and the Core from Random
Endowments in House Allocation Problems”, Econometrica, Vol. 66(3), pp. 689-701.

Carnap, R. (1967), “Logical Foundations of Probability”, Third Impression, University of Chicago Press.

Cohen, L., De Jong, I., Jakobs, E. & Slot, J. (2012), “Berlage of Barlaeus?”, Department for Research, In-
formation and Statistics for the Minicipality of Amsterdam (NL: Onderzoek, Informatie en Statistiek van de
Gemeente Amsterdam), URL: http://www.ois.amsterdam.nl/pdf/2012_berlage%20of%20barlaeus.

pdf, Retrieved June 14, 2016.

Dubins, L. E. & Freedman, D. A. (1981), “Machiavelli and the Gale-Shapley Algorithm”, The American
Mathematical Monthly, Vol. 88(7), pp. 485-494.

Gale, D. & Shapley, L. S. (1962), “College Admissions and the Stability of Marriage”, The American
Mathematical Monthly, Vol. 69(1), pp. 9-15.

Gautier, P.A., De Haan, M., Van der Klaauw, B. & P.A., Oosterbeek (2016),
“Eerste Analyse Matching en Loting Voortgezet Onderwijs Amsterdam 2016*”, Eval-
uation Paper, URL: http://www.verenigingosvo.nl/wp-content/uploads/2013/09/

Rapport-loting-en-matching-2016-beschrijvend-rapport.pdf, Retrieved June 14, 2016.

Gautier, P.A., De Haan, M., Van der Klaauw, B. & Oosterbeek, H. (2015), “Eerste Analyse Matching en
Loting Voortgezet Onderwijs Amsterdam 2015*”, Evaluation Paper, URL: https://sites.google.com/
site/pietgautier/Evaluatie_Matching_%28beschrijvend_rapport%29.pdf?attredirects=0&d=1,
Retrieved June 14, 2016.

54

http://seii.mit.edu/wp-content/uploads/2012/04/Boston-Mechanism.pdf
http://seii.mit.edu/wp-content/uploads/2012/04/Boston-Mechanism.pdf
http://www.ois.amsterdam.nl/pdf/2012_berlage%20of%20barlaeus.pdf
http://www.ois.amsterdam.nl/pdf/2012_berlage%20of%20barlaeus.pdf
http://www.verenigingosvo.nl/wp-content/uploads/2013/09/Rapport-loting-en-matching-2016-beschrijvend-rapport.pdf
http://www.verenigingosvo.nl/wp-content/uploads/2013/09/Rapport-loting-en-matching-2016-beschrijvend-rapport.pdf
https://sites.google.com/site/pietgautier/Evaluatie_Matching_%28beschrijvend_rapport%29.pdf?attredirects=0&d=1
https://sites.google.com/site/pietgautier/Evaluatie_Matching_%28beschrijvend_rapport%29.pdf?attredirects=0&d=1

Gautier, P.A., De Haan, M., Van der Klaauw, B. & Oosterbeek, H. (2015b), “Simulatie Analyse
Matching en Plaatsing Voortgezet Onderwijs Amsterdam 2015”, URL: https://sites.google.com/site/
pietgautier/Evaluatie_Matching_%28simulaties%29.pdf?attredirects=0&d=1, Retrieved June 14,
2016.

Goldberg , D.E. (1989), “Genetic Algorithms in Search, Optimization, and Machine Learning”, Addison-
Wesley Publishing Company.

De Haan, M., Gautier, P.A., Oosterbeek, H. & Van der Klaauw, B., (2015), “The performance of
school assignment mechanisms in practice”, Discussion Paper, URL: https://sites.google.com/site/
pietgautier/schoolchoice2015may.pdf?attredirects=0&d=1, Retrieved June 14, 2016.

Hylland, B. & Zeckhauser, R. (1979), “The Efficient Allocation of Individuals to Positions”, The
Journal of Political Economy, Vol. 87(2), p. 293.

De Jong, K. (1975), “An Analysis of the Behavior of a Class of Genetic Adaptive Systems”, Ph.D. thesis,
University of Michigan, Ann Arbor.

Kagel, J.H. & Roth, A.E. (2000), “The Dynamics of Reorganization in Matching Markets: A Laboratory
Experiment Motivated by a Natural Experiment”, The Quarterly Journal of Economics, Vol. 115(1), pp.
201-235.

Kukenheim, S. (2016), “Voortgang Kernprocedure 2016”, Letter to the city council of Amsterdam on pro-
ceedings of the ‘Kernprocedure 2016’, URL: http://zoeken.amsterdam.raadsinformatie.nl/cgi-bin/
showdoc.cgi/action=view/id=287932/type=pdf/1_brief_Voortgang_Kernprocedure_2016.pdf, Re-
trieved June 14, 2016.

Kukenheim, S. (2015), “Uitkomst Evaluatie en Tevredenheidsonderzoek Matching PO-VO”, Official Reply
from Municipality Official for Education, URL: http://www.stichtingvsa.nl/pdf/20151006/bijlage_
1_20151005_WH_brief_evaluatie_matching_PO-VO.pdf, Retrieved June 14, 2016.

Leyton-Brown, K. & Shoham, Y. (2008), “Essentials of Game Theory: A concise, Multidisciplinary
Introduction”, Synthesis Lectures on Artificial Intelligence And Machine Learning # 3, Morgan & Claypool.

Manlove, D. F. (2013), “Algorithmics of Matching under Preferences”, Series on Theoretical Computer
Science Vol. 2, World Scientific Publishing.

Mitchell, M. (1996), “An Introduction to Genetic Algorithms”, MIT Press.

OSVO (2016), “Persbericht 7 April 2016”, URL: http://www.verenigingosvo.nl/wp-content/uploads/
2016/04/Persbericht-Kernprocedure-VO-OSVO-II.pdf, Press Release, Retrieved June 14, 2016.

OSVO (2016), “Jaarlijkse Matching Leerlingen Groep 8 naar Amsterdams Voortgezet Onderwijs
is Afgerond”, Press Release, URL: http://www.verenigingosvo.nl/wp-content/uploads/2013/

09/16053-ALG-Persbericht-Kernprocedure-VO-tweede-matching-OSVO-DEF-150416.pdf, Retrieved
June 14, 2016.

OSVO & Gemeente Amsterdam (2015), “Kernprocedure Overstap PO-VO Amsterdam 2016”, URL:
http://www.verenigingosvo.nl/wp-content/uploads/2015/10/Kernprocedure-2015-2016.pdf, Re-
trieved June 14, 2016.

OSVO & Gemeente Amsterdam (2014), “Kernprocedure Overstap PO-VO Amsterdam School-
jaar 2014-2015”, URL: http://www.onderwijsconsument.nl/wordpress/wp-content/uploads/

kernprocedure-2014-2015.pdf, Retrieved June 14, 2016.

OSVO & Gemeente Amsterdam (2013), “Kernprocedure Overstap PO-VO 2013-2014”, URL: http://
www.barlaeus.nl/wp-content/uploads/2014/02/kernprocedure-2013-2014.pdf, Retrieved June 14,
2016.

55

https://sites.google.com/site/pietgautier/Evaluatie_Matching_%28simulaties%29.pdf?attredirects=0&d=1
https://sites.google.com/site/pietgautier/Evaluatie_Matching_%28simulaties%29.pdf?attredirects=0&d=1
https://sites.google.com/site/pietgautier/schoolchoice2015may.pdf?attredirects=0&d=1
https://sites.google.com/site/pietgautier/schoolchoice2015may.pdf?attredirects=0&d=1
http://zoeken.amsterdam.raadsinformatie.nl/cgi-bin/showdoc.cgi/action=view/id=287932/type=pdf/1_brief_Voortgang_Kernprocedure_2016.pdf
http://zoeken.amsterdam.raadsinformatie.nl/cgi-bin/showdoc.cgi/action=view/id=287932/type=pdf/1_brief_Voortgang_Kernprocedure_2016.pdf
http://www.stichtingvsa.nl/pdf/20151006/bijlage_1_20151005_WH_brief_evaluatie_matching_PO-VO.pdf
http://www.stichtingvsa.nl/pdf/20151006/bijlage_1_20151005_WH_brief_evaluatie_matching_PO-VO.pdf
http://www.verenigingosvo.nl/wp-content/uploads/2016/04/Persbericht-Kernprocedure-VO-OSVO-II.pdf
http://www.verenigingosvo.nl/wp-content/uploads/2016/04/Persbericht-Kernprocedure-VO-OSVO-II.pdf
http://www.verenigingosvo.nl/wp-content/uploads/2013/09/16053-ALG-Persbericht-Kernprocedure-VO-tweede-matching-OSVO-DEF-150416.pdf
http://www.verenigingosvo.nl/wp-content/uploads/2013/09/16053-ALG-Persbericht-Kernprocedure-VO-tweede-matching-OSVO-DEF-150416.pdf
http://www.verenigingosvo.nl/wp-content/uploads/2015/10/Kernprocedure-2015-2016.pdf
http://www.onderwijsconsument.nl/wordpress/wp-content/uploads/kernprocedure-2014-2015.pdf
http://www.onderwijsconsument.nl/wordpress/wp-content/uploads/kernprocedure-2014-2015.pdf
http://www.barlaeus.nl/wp-content/uploads/2014/02/kernprocedure-2013-2014.pdf
http://www.barlaeus.nl/wp-content/uploads/2014/02/kernprocedure-2013-2014.pdf

Panel Inzicht (2015), “Rapport Tevredenheidsonderzoek Matching”, Report on Satisfaction Survey of DA-
MTB commissioned by the OSVO, URL: http://www.verenigingosvo.nl/wp-content/uploads/2015/
10/Eindrapport-tevredenheidsonderzoek-matching-2015.pdf, Retrieved June 14, 2016.

Rechtbank Amsterdam (2015), “Amsterdamse plaatsingssysteem middelbare scholen met ruilverbod houdt
stand.”, Court Ruling Number: ECLI:NL:RBAMS:2015:4085, URL: http://uitspraken.rechtspraak.
nl/inziendocument?id=ECLI:NL:RBAMS:2015:4085, Retrieved June 14, 2016.

Roth, A.E. (1990), “New Physicians: A Natural Experiment in Market Organization”, Science, Vol.
250(4987), pp. 1524-1528.

Roth, A.E. (1991), “A Natural Experiment in the Organization of Entry-Level Labor Markets: Regional
Markets for New Physicians and Surgeons in the United Kingdom”, The American Economic Review, Vol.
81(3), pp. 415-440.

Roth, A.E. & Sotomayor, M. A. Oliveira (1990), “Two-sided matching: a study in game-theoretic modeling
and analysis”, Econometric Society Monographs, No. 18, Cambridge University Press.

Svensson, L.-G. (1999), “Strategy-proof allocation of indivisible goods”, Social Choice and Welfare, Vol.
16(4), pp. 557-567.

Svensson, L.-G. (1994), “Queue allocation of indivisible goods”, Social Choice and Welfare, Vol. 11(4), pp.
323-330.

Zhou, L. (1990), “On a conjecture by Gale about one-sided matching problems”, Journal of Economic Theory,
Vol. 52(1), pp. 123-135.

56

http://www.verenigingosvo.nl/wp-content/uploads/2015/10/Eindrapport-tevredenheidsonderzoek-matching-2015.pdf
http://www.verenigingosvo.nl/wp-content/uploads/2015/10/Eindrapport-tevredenheidsonderzoek-matching-2015.pdf
http://uitspraken.rechtspraak.nl/inziendocument?id=ECLI:NL:RBAMS:2015:4085
http://uitspraken.rechtspraak.nl/inziendocument?id=ECLI:NL:RBAMS:2015:4085

Chapter 7

Appendix: Computational
Implementations

7.1 Haskell

In the following the computational implementations of all the school-allocation mechanisms tested in this
thesis will be presented. All mechanisms were implemented using the programming language Haskell (Version
2010). Haskell is a general-purpose purely functional programming language, with non-strict semantics and
strong static typing. The code was ran using the Glasgow Haskell Compiler on a Windows computer using
GHCi, version 8.0.1. The code will be presented non verbosely and is attached for completeness.

7.1.1 Imported Modules and Introduced Types

import System.Random

import Data.List

import Data.Ord (comparing)

-- Types --

type Seed = Int

type Student = Int

type School = Int

type Frequency = Int

type Allocation = [(School,[Student])]

type Permutation = [Student]

type Highschools = [(School,Frequency)]

type Preferences = [(Int,[Int])]

type Organism = (Allocation, Permutation)

type Population = [((Allocation, Permutation), Frequency)]

7.1.2 General Help Functions

-- The function allocationAdd updates a school assignment in some allocation by

-- simply adding the student to the assignment.

allocationAdd :: Allocation -> Student -> School -> Allocation

allocationAdd allocation studentIn school = let

oldschoolassignment = lookup’ school allocation

newschoolassignment = studentIn : oldschoolassignment

in (school,newschoolassignment) : delete (school,oldschoolassignment) allocation

57

-- The function allocationAddStuds adds multiple students to some high school in a

-- given allocation.

allocationAddStuds allocation [] _ = allocation

allocationAddStuds allocation (stud:studs) school =

allocationAddStuds (allocationAdd allocation stud school)

studs school

-- The function allocationUpdate adds studentIn to the assignment of some school in an

-- allocation and removes studentOut from that assignment.

allocationUpdate :: Allocation -> Student -> Student -> School -> Allocation

allocationUpdate allocation studentIn studentOut school = let

Just oldschoolassignment = lookup school allocation

newschoolassignment = studentIn : delete studentOut oldschoolassignment

in (school,newschoolassignment) : delete (school,oldschoolassignment) allocation

-- The function exchange takes a list xs and two indices i and j and exchanges xs[i]

-- and xs[j] in xs.

exchange :: Eq a => [a] -> Int -> Int -> [a]

exchange xs i j = let

elemj = xs !! j

elemi = xs !! i

spliti = splitAt i xs

addj = ((fst spliti) ++ [elemj] ++ (delete (xs !! i) (snd spliti)))

splitj = splitAt j addj

in (fst splitj) ++ [elemi] ++ (delete (xs !! j) (snd splitj))

-- The function generatePermutation generates a permutation of a list based on some

-- seed, according to the Fisher Yates Shuffle, first implemented by Durstenfeld.

generatePermutation :: Eq t => Seed -> [t] -> [t]

generatePermutation _ [] = []

generatePermutation _ [a] = [a]

generatePermutation seed xs = let

len = length xs

seeds = map (‘mod‘ 10000) (randoms $ mkStdGen seed :: [Int])

in fisherYates seeds (len-1) xs where

fisherYates _ 0 ys = ys

fisherYates (s:sds) i ys =

fisherYates sds (i-1)

(exchange ys i (fromIntegral $ fst (random (mkStdGen s)) ‘mod‘ (i+1)))

-- Alternative version of lookup for lists (without Maybe).

lookup’ :: Eq a => a -> [(a, [t])] -> [t]

lookup’ _ [] = []

lookup’ k ((x,y):rest)

| k == x = y

| otherwise = lookup’ k rest

-- Lookup function for snd element of a pair, returns its first element if existing.

lookupsnd :: Eq b => b -> [(a,b)] -> Maybe a

lookupsnd _key [] = Nothing

lookupsnd key ((x,y):xys)

| key == y = Just x

| otherwise = lookupsnd key xys

58

7.2 School Allocation Mechanisms

7.2.1 Permutation Allocation Mechanism

-- The function permutationAllocationMechanism performs the PAM.

permutationAllocationMechanism :: Seed

-- seed

-> Highschools

-- list of schools and their capacity

-> Preferences

-- preferencelists for all students

-> (Allocation,Permutation)

-- Pair of an allocation produced by PAM on the

-- permutation

permutationAllocationMechanism seed highschools prefs = let

studs = map fst prefs

permutation = generatePermutation seed studs

in (sortBy (comparing fst)

(allocationByPermutation permutation prefs highschools),

permutation)

-- The function allocationByPermutation generates an allocation, given some permutation.

-- using the PAM method

allocationByPermutation :: Permutation -> Preferences -> Highschools -> Allocation

allocationByPermutation permutation prefs highschools = let

startalloc = map (\(s,c) -> (s,[])) highschools

in allocationByPermutation’ permutation prefs highschools startalloc

where

allocationByPermutation’ [] _ _ allocation = allocation

allocationByPermutation’ (stud:studs) prefs highschools allocation =

allocationByPermutation’ studs prefs highschools

(highestLeftover stud prefs highschools allocation)

-- The function highestLeftover places a student in the highest preferred school that

-- is still available in some given allocation.

highestLeftover :: Student -> Preferences -> Highschools -> Allocation -> Allocation

highestLeftover student prefs highschools allocation = let

prefstud = lookup’ student prefs

in highestLeftover’ prefstud highschools allocation where

highestLeftover’ [] _ _ = error "No Highest Leftover Found"

highestLeftover’ (school:rest) highschools allocation = let

Just capacity = lookup school highschools

allocated = lookup’ school allocation

in if (capacity - (length allocated)) > 0

then allocationAdd allocation student school

else highestLeftover’ rest highschools allocation

59

7.2.2 Boston Allocation Mechanism

-- The function boston performs the Boston Allocation Mechanism.

boston :: Seed -> Highschools -> Preferences -> Allocation

boston seed highschools studprefs = let

studs = map fst studprefs

seeds = map (‘mod‘ 10000) (randoms $ mkStdGen seed :: [Int])

in sortBy (comparing fst) $ performBoston seeds studprefs highschools 0 ([], studs)

where

performBoston _ _ _ _ (allocation, []) = allocation

performBoston (seed:seeds) prefs highschools index

(allocation, notallocated) = let

studs = map fst prefs

schools = map fst highschools

round = findstuds notallocated prefs index schools schools

newallocation = bostonRound seed allocation round schools

notallocated’ = studs \\ (concat (map snd newallocation))

in performBoston seeds prefs highschools (index+1)

(newallocation, notallocated’)

where

findstuds notallocated preferences index schools [] = []

findstuds notallocated preferences index schools (sch:schs) = let

prefs = filter (\(stud,prefs) -> stud ‘elem‘ notallocated)

preferences

candidates = map fst $

filter (\ (stud,prefs) ->

(prefs !! index) == sch) prefs

in (sch, candidates) : findstuds notallocated preferences index

schools schs

bostonRound seed allocation round schools = let

lotteryseeds = map (‘mod‘ 10000) (randoms $ mkStdGen seed :: [Int])

in bostonRound’ lotteryseeds allocation round schools

where

bostonRound’ (seed:seeds) allocation round [] = allocation

bostonRound’ (seed:seeds) allocation round (school:schools) =

let

candidates = lookup’ school round

Just capacity = lookup school highschools

atschool = length $ lookup’ school allocation

seatsleft = capacity - atschool

in if (length candidates) <= seatsleft

then bostonRound’ seeds

(allocationAddStuds allocation candidates school)

round schools

else let

lottery = generatePermutation seed candidates

winners = take seatsleft lottery

in bostonRound’ seeds

(allocationAddStuds allocation winners

school)

round schools

60

7.2.3 Deferred Acceptance

-- The function deferredAcceptance performs the DA-MTB.

deferredAcceptance :: Seed -> Highschools -> Preferences -> Allocation

deferredAcceptance seed highschools studprefs = let

students = map fst studprefs

schools = map fst schoolprefs

schoolprefs = generateSchoolpreferencesMTB seed highschools students

allocation = zip schools $ replicate (length highschools) []

in sortBy (comparing fst) $

(\(a,b,c) -> c) $

daRecursion highschools schoolprefs (students, studprefs, allocation)

where

generateSchoolpreferencesMTB :: Seed -> Highschools -> [Student] -> Preferences

generateSchoolpreferencesMTB seed highschools students = let

schools = map fst highschools

seeds = generateSeeds seed $ length schools

lotteries = generatePermutations seeds students

in zip schools lotteries where

generatePermutations [] _ = []

generatePermutations (sd:sds) studs = generatePermutation sd studs :

generatePermutations sds studs

-- The function daRecursion performs the recursive step over the list of students

-- in the DA algorithm.

daRecursion :: Highschools

-> Preferences

-> ([Student], Preferences, Allocation)

-> ([Student], Preferences, Allocation)

daRecursion highschools schoolprefs ([],studprefs,allocation) =

([],studprefs,allocation)

daRecursion highschools schoolprefs ((stud:studs), studprefs, allocation) =

let

Just studpref = lookup stud studprefs

topschool = head studpref

Just schoolpref = lookup topschool schoolprefs

Just enrolled = lookup topschool allocation

prefposlist = map (\x -> (x, head $ elemIndices x schoolpref)) enrolled

studprefpos = head $ elemIndices stud schoolpref

in if capacitycheck enrolled topschool highschools

then daRecursion highschools schoolprefs

(studs,

studprefs,

allocationAdd allocation stud topschool)

else let

Just lowestranked = lookupsnd (maximum $ map snd prefposlist) prefposlist

in if studprefpos < (maximum $ map snd prefposlist)

then daRecursion highschools schoolprefs

(lowestranked : studs,

preferenceUpdate studprefs lowestranked topschool,

allocationUpdate allocation stud lowestranked topschool)

else daRecursion highschools schoolprefs

(stud:studs,

preferenceUpdate studprefs stud topschool,

allocation)

where

61

-- The function capacitycheck returns True if some school has seats left

capacitycheck :: [Student] -> School -> Highschools -> Bool

capacitycheck students school highschools = let

Just capacity = lookup school highschools

in length students < capacity

-- The function preferenceUpdate removes a school from a student’s preference list.

preferenceUpdate :: Preferences -> Student -> School -> Preferences

preferenceUpdate studprefs student schoulOut = let

Just oldprefs = lookup student studprefs

in (student, delete schoulOut oldprefs) :

delete (student, oldprefs) studprefs

7.3 GOPAM

7.3.1 Help Functions

-- cumList converts a list of probabilities (summing up to 1) into a list of

-- intervals corresponding to those probabilities.

cumList :: Fractional t => [t] -> [(t, t)]

cumList [] = []

cumList (p:rest) = (0.0,p) : cumList’ p rest where

cumList’ _ [] = []

cumList’ p (q:rest) = (p,p+q) : cumList’ (p+q) rest

-- Generalisation of ’div’ to any instance of Real (from Data.Fixed).

div’ :: (Real a,Integral b) => a -> a -> b

div’ n d = floor ((toRational n) / (toRational d))

-- The function generateseeds generates random numbers based on some seed.

generateSeeds :: Seed -> Int -> [Int]

generateSeeds seed k = map (‘mod‘ 10000) (take k (randoms $ mkStdGen seed :: [Int]))

-- The function freqRep represents a population of individual organisms as pairs.

-- (organism, frequency) similar to the type Population.

freqRep :: [Organism] -> Population

freqRep [] = []

freqRep (org:rest) = (org, (count org rest) + 1) :

freqRep (filter (\x -> x /= org) rest)

where

count _ [] = 0

count x (y:ys)

| x == y = 1 + (count x ys)

| otherwise = count x ys

-- Generalisation of ’mod’ to any instance of Real (from Data.Fixed).

mod’ :: (Real a) => a -> a -> a

mod’ n d = n - (fromInteger f) * d where

f = div’ n d

-- The function nelem is the dual of elem.

nelem :: (Eq a, Foldable t) => a -> t a -> Bool

nelem x y = not (x ‘elem‘ y)

-- The function normalize makes a list of numbers sum up to one and keeps the

-- proportions intact.

62

normalize :: Fractional b => [b] -> [b]

normalize xs = let

sumlist = sum xs

coefficient = (1 / sumlist)

in map (\x -> x * coefficient) xs

-- pairUp takes a list and pairs up every two elements.

pairUp :: [a] -> [(a,a)]

pairUp [] = []

pairUp [_] = error "pairUp ERROR: not an even number"

pairUp (x:y:xs) = (x,y) : pairUp xs

-- The function randIndex returns a random index from a list with length length.

randIndex :: (Integral a, Random a) => Int -> a -> a

randIndex seed length = if length == 0

then error "length of the list for the random index is 0"

else (fst $ random (mkStdGen seed)) ‘mod‘ length

-- randomRange takes a seed, an interval and a quantity n and returns n values

-- uniformly picked from the interval using the seed.

randomRange :: Random a => Seed -> (a, a) -> Int -> [a]

randomRange seed (a,b) k = take k $ randomRs (a,b) (mkStdGen seed)

-- tripleUp takes a list and pairs up every three elements

tripleUp :: [a] -> [(a,a,a)]

tripleUp [] = []

tripleUp [_] = error "tripleUp ERROR: not a multiple of three"

tripleUp [_,_] = error "tripleUp ERROR: not a multiple of three"

tripleUp (x:y:z:xs) = (x,y,z) : tripleUp xs

7.3.2 The GOPAM

-- The function createSample generates an initial (or sample) population for the

-- genetic algorithm, in casu this is a list of pairs of allocations produced by the

-- PAM and the permutation used to produce this allocation.

createSample :: Seed -> Int -> Preferences -> Highschools -> [Organism]

createSample seed size prefs highschools = let

seeds = generateSeeds seed size

in createSample’ seeds highschools prefs where

createSample’ [] _ _ = []

createSample’ (s:rest) highschools prefs =

permutationAllocationMechanism s highschools prefs :

createSample’ rest highschools prefs

-- Function Evolve

-- The function evolve preforms the GOPAM.

evolve :: Seed

-- seed

-> Highschools

-- list of schools and their capacity

-> Preferences

-- preferencelists for all students

-> Int

-- bound on generation size

-> Int

-- maximum number of generations

-> Float

63

-- crossover parameter

-> Float

-- mutation parameter

-> Population

-- Population after evolution

evolve seed highschools prefs gensize nrgen cpar mpar = let

primeseeds = generateSeeds seed 2

seedpop = primeseeds !! 0

seedgen = primeseeds !! 1

pop = freqRep $ createSample seedpop gensize prefs highschools

seedsgen = generateSeeds seedgen nrgen

in evolve’ seedsgen prefs pop nrgen where

evolve’ _ _ pop 0 = pop

evolve’ (s:seeds) prefs pop k =

evolve’ seeds prefs (createGen s highschools gensize cpar mpar prefs pop)

(k-1)

-- The function createGen creates a new generation from a given population, by

-- performing reproduction, mutation and crossover. The actual elitism takes

-- place here, in the sense that the best reproduced organism cannot crossover

-- nor mutate.

createGen :: Seed

-- seed

-> Highschools

-- list of schools and their capacity

-> Int

-- bound in generation size

-> Float

-- crossover parameter

-> Float

-- mutation parameter

-> Preferences

-- preference lists for all students

-> Population

-- old generation

-> Population

-- new generation

createGen seed highschools gensize cpar mpar prefs pop = let

[(seedPool, seedCross, seedMut)] = tripleUp $ generateSeeds seed 3

reproduced = reproduction seedPool pop gensize

highschools prefs

bestentity = head reproduced

pool = tail reproduced

nrstudents = fromIntegral $ length $ map fst prefs

seedsmut = generateSeeds seedMut gensize

in let

sizecrossoverpool = round $ (fromIntegral gensize)*cpar -

(mod’ ((fromIntegral gensize)*cpar) 2)

crossoverpool = pairUp $ take sizecrossoverpool pool

clonepool = drop sizecrossoverpool pool

seedscross = take gensize (randoms $ mkStdGen seedCross)

seedsmut = generateSeeds seedMut gensize

in freqRep $ sortallocations $ bestentity : (mutate seedsmut highschools prefs

((crossover’ seedscross highschools prefs crossoverpool) ++

clonepool))

where

crossover’ _ _ _ [] = []

crossover’ (s:srest) highschools prefs ((a,b):prest) =

(crossover s highschools prefs a b) ++

64

(crossover’ srest highschools prefs prest)

mutate _ _ _ [] = []

mutate (s:srest) highschools prefs (o:orest) =

(mutation s (mpar :: Float) highschools prefs o) :

mutate srest highschools prefs orest

sortallocations :: [Organism] -> [Organism]

sortallocations [] = []

sortallocations (org:orgs) = sortallocation org : sortallocations orgs

where

sortallocation (alloc,perm) =

(map (\(sch,stds) -> (sch, sort stds)) alloc,

perm)

-- Function Reproduction

-- The function reproduction performs reproduction using a roulette wheel

-- reproduction technique in combination with elitism.

reproduction :: Seed

-- seed

-> Population

-- population

-> Int

-- bound on generation size

-> Highschools

-- list of schools and their capacity

-> Preferences

-- preference lists for all students

-> [Organism]

-- allocations that are reproduced s.t. the first allocation is the

-- best entity of the population, the order of the tail is totally

-- random, since the probability that some organism occurs at some

-- position in the tail is equal to its fitness weight in the total

-- fitness, which is its probability to survive, hence according to

-- the probability of survival organisms occur.

reproduction seed pop size highschools prefs = let

nrstudents = length $ map fst prefs

pop’ = map fst pop

fitnesspop = zip pop (map (\x -> fitness x prefs highschools) pop’)

bestentity = fst $ fst $ maximumBy (comparing snd) fitnesspop

totalfit = sum $ map (\(((alloc,permut), freq), fit) ->

fromIntegral freq * fit) fitnesspop

fitProb = normalize $ map (\ (((alloc,permut), freq),fit) ->

fromIntegral freq * fit / totalfit) fitnesspop

popInterval = zip pop’ (cumList fitProb)

coinflips = randomRange seed (0.0,1.0) (size-1)

in bestentity : reproduce coinflips popInterval

where

reproduce [] _ = []

reproduce (flip:rest) popInterval =

reproduce’ flip popInterval : reproduce rest popInterval

where

reproduce’ flip ((organism,(a,b)):rest) = if b == 1

then if a <= flip && flip <= b

then organism

else reproduce’ flip rest

else if a <= flip && flip < b

then organism

else reproduce’ flip rest

65

-- The function mutation given some organism (alloc,perm) picks a random real r in the

-- interval [0.0,1.0] for every student in alloc. If r is smaller than the mutation

-- parameter, then the student is switched with some random selected student which has

-- a lower index than or equal index as the student in perm.

mutation :: Seed

-- seed

-> Float

-- mutation parameter, percentage (<1.0) of students who will ’mutate’

-> Highschools

-- list of schools and their capacity

-> Preferences

-- preference lists for all students

-> Organism

-- organism that will be mutated

-> Organism

-- mutated allocation

mutation seed mpar highschools prefs (allocation,permutation) = let

studs = concat $ map snd allocation

seedsmut = pairUp $ generateSeeds seed ((length studs) * 2)

in (allocationByPermutation (mutate seedsmut mpar permutation studs)

prefs highschools,

permutation)

where

mutate _ _ permutation [] = permutation

mutate ((seedCF, seedRS):seedpairs) mpar permutation (stud:studs) = let

coinflip = fst $ randomR (0.0,1.0) (mkStdGen seedCF)

in if coinflip >= mpar

then mutate seedpairs mpar permutation studs

else let

Just indexstud = elemIndex stud permutation

newindices = [x | x <- [0..indexstud]]

newindex = randIndex seedRS (length newindices)

in exchange permutation newindex indexstud

-- The function Crossover given two organisms (alloc1, perm1) and (alloc2, perm2),

-- splits perm1 in two pieces perm1a and perm1b, s.t. no piece is the empty list, and

-- creates two new permutation perm1a++perm2’ and perm2’’++perm1b, where

-- perm2’ are all the students not occurring in perm1a ordered as in perm2

-- perm2’’ are all the students not occurring in perm1b ordered as in perm2.

crossover :: Seed

-- seed

-> Highschools

-- list of schools and their capacity

-> Preferences

-- preference lists for all students

-> Organism

-- organism that will crossover

-> Organism

-- organism that will crossover

-> [Organism]

-- list of two crossed over allocations

crossover seed highschools prefs (alloc1, perm1) (alloc2, perm2) = let

cutoff = 1 + (fst $ random (mkStdGen seed)) ‘mod‘ ((length perm1) - 1)

(perm1a,perm1b) = splitAt cutoff perm1

in [(allocationByPermutation (crossover’ True perm1a perm2)

prefs highschools, (crossover’ True perm1a perm2)),

(allocationByPermutation (crossover’ False perm1b perm2)

prefs highschools, (crossover’ True perm1a perm2))]

66

where

crossover’ head partof1 perm2 = let

missing = filter (‘nelem‘ partof1) perm2

in if head

then partof1 ++ missing

else missing ++ partof1

7.3.3 Fitness Functions

N.B. the variants with no penalty for not-allocated students are omitted, because these can be obtained from
the variants with the penalty by just deleting the function schoolzerofactor.

Most First Choice Students with Penalty for Not-Allocated

-- Fitness by number of students assigned their first choice with penalty for not allocated.

fitness :: Organism -> Preferences -> Highschools -> Float

fitness (allocation, permutation) prefs highschools =

(schoolzerofactor allocation * numberOne allocation highschools prefs) ** 2

where

-- The function schoolzerofactor returns 1 if no students are allocated to school

-- 0, and lower values the more students are allocated to zero.

schoolzerofactor alloc = (fromIntegral 1) /

(fromIntegral $ 1 + (length $ lookup’ 0 alloc))

-- The function numberOne returns the number of students who are assigned their first

-- choice in some given allocation.

numberOne :: Allocation -> Highschools -> Preferences -> Float

numberOne alloc highschools prefs = let

studs = map fst prefs

in snd $ numberOne’ alloc highschools prefs (studs,0.0)

where

numberOne’ alloc highschools prefs ([],score) = ([], score)

numberOne’ alloc highschools prefs ((stud:studs),score) = let

firstchoice = head $ lookup’ stud prefs

school = fst $ head $ filter (\(sch,stds) -> stud ‘elem‘ stds) alloc

in if firstchoice == school

then numberOne’ alloc highschools prefs (studs,score+1.0)

else numberOne’ alloc highschools prefs (studs,score)

Lowest Mean Preference with Penalty for Not-Allocated

-- Fitness by mean preference position with penalty for not allocated.

fitness :: Organism -> Preferences -> Highschools -> Float

fitness (allocation, permutation) prefs highschools =

(schoolzerofactor allocation * fitness’ allocation prefs) ** 2

where

-- The function schoolzerofactor returns 1 if no students are allocated to school

-- 0, and lower values the more students are allocated to zero

schoolzerofactor alloc = (fromIntegral 1) /

(fromIntegral $ 1 + (length $ lookup’ 0 alloc))

-- The function fitness’ calculates the fitness of some allocation by summing

-- the distance of the actual preference position of each student allocated to

-- some school in the allocation from the lowest possible preference position

fitness’ [] _ = 0.0

fitness’ ((sch,stds):rest) prefs = (fromIntegral $

67

fitnessschool sch stds prefs) +

fitness’ rest prefs

where

-- The function fitnessschool returns the sum of the preference positions of

-- the students allocated to that school.

fitnessschool :: School -> [Student] -> Preferences -> Int

fitnessschool _ [] _ = 0

fitnessschool sch (std:rest) prefs = let

least = length highschools

stdpref = lookup’ std prefs

prefpos = if elemIndices sch stdpref == []

then least

else (head $ elemIndices sch stdpref) + 1

-- if a school is not in a student’s pref. list, then it is

-- said that the school is on the least possible pref position

in (least - prefpos) + fitnessschool sch rest prefs

Most First Choice Students with Penalty for Not-Allocated and Penalty for Non-Maximal

-- Fitness by number of students assigned their first choice with penalty for not allocated

-- and a penalty for the number of students who are assigned to some school which they do

-- not prefer most and for which there are more students who place it highest than its

-- capacity.

fitness :: Organism -> Preferences -> Highschools -> Float

fitness (allocation, permutation) prefs highschools =

(schoolzerofactor allocation *

nonmaximal allocation highschools prefs *

numberOne allocation highschools prefs) ** 2

where

-- The function schoolzerofactor returns 1 if no students are allocated to school

-- 0, and lower values the more students are allocated to zero.

schoolzerofactor alloc = (fromIntegral 1) /

(fromIntegral $ 1 + (length $ lookup’ 0 alloc))

-- The function numberOne returns the number of students who are assigned their first

-- choice in some given allocation.

numberOne :: Allocation -> Highschools -> Preferences -> Float

numberOne alloc highschools prefs = let

studs = map fst prefs

in snd $ numberOne’ alloc highschools prefs (studs,0.0)

where

numberOne’ alloc highschools prefs ([],score) = ([], score)

numberOne’ alloc highschools prefs ((stud:studs),score) = let

firstchoice = head $ lookup’ stud prefs

school = fst $ head $ filter (\(sch,stds) -> stud ‘elem‘ stds) alloc

in if firstchoice == school

then numberOne’ alloc highschools prefs (studs,score+1.0)

else numberOne’ alloc highschools prefs (studs,score)

-- the function nonmaximal returns 1 if the allocation is non-maximal and returns

-- 1/1+#nm, where #nm are the number of non-maximal students.

nonmaximal alloc highschools prefs = let

studs = map fst prefs

in (fromIntegral 1) /

(fromIntegral $ 1 + nonmaximal’ (studs,0) alloc highschools prefs)

where

nonmaximal’ ([],score) alloc highschools prefs = score

68

nonmaximal’ ((stud:studs),score) alloc highschools prefs = let

school = fst $ head $

filter (\(sch,stds) -> stud ‘elem‘ stds) alloc

Just capacity = lookup school highschools

firstchoicers = map fst $ filter

(\(stud,prefs) -> (head prefs) == school) prefs

assignees = lookup’ school alloc

in if length (firstchoicers) > capacity

then nonmaximal’ (studs,score) alloc highschools prefs

else let

nelem x xs = not (x ‘elem‘ xs)

score’ = length $ filter

(\stud -> nelem stud firstchoicers)

assignees

in nonmaximal’ (studs,score+score’) alloc highschools

prefs

69

	Introduction
	Background
	Dutch School System
	Amsterdam High Schools
	School-Allocation Mechanisms in Amsterdam
	Deferred Acceptance in Amsterdam
	Looking Ahead

	School Allocations
	School Allocations
	Student Preferences
	School Markets
	Priorities
	Properties of Allocations

	School-Allocation Mechanisms
	Mechanisms
	Permutation Allocation Mechanism
	Boston Allocation Mechanism
	Deferred Acceptance School-Allocation Mechanisms

	Strategic Questions
	Strategy Proofness
	Strategic Investigations of School-Allocation Mechanisms

	Simulations with Mechanisms
	Mechanisms for Amsterdam

	Genetic Optimisation
	Optimisation
	Genetic Algorithms
	Reproduction
	Genetic Optimisation of School Allocations
	Organisms and Chromosomes
	Fitness Function and Reproduction
	Chromosome Manipulation: Crossover and Mutation
	GOPAM

	Simulations with the GOPAM
	Genetic-Algorithmic Optimisation for Allocation Mechanisms

	Bibliography
	Appendix: Computational Implementations
	Haskell
	Imported Modules and Introduced Types
	General Help Functions

	School Allocation Mechanisms
	Permutation Allocation Mechanism
	Boston Allocation Mechanism
	Deferred Acceptance

	GOPAM
	Help Functions
	The GOPAM
	Fitness Functions

