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Abstract

This thesis develops inquisitive conditional-doxastic logic, obtained by enriching classi-
cal multi-agent plausibility models with issues for each agent. The aim of these models
is to allow for a finer approach to modelling inquiry.

Issues capture informative and interrogative content, and so by associating an issue
to an agent we are able to capture both their information state and their inquisitive state,
while a plausibility map on worlds captures their doxastic state. Moreover, inquisitive
plausibility models allow for conditionalisation on both informative and interrogative
content.

Two conditional-doxastic modalities are introduced and axiomatised; a considers
modality unique to inquisitive conditional-doxastic logic, which conditionalises on is-
sues with respect to both an agent’s doxastic and inquisitive state, and a generalisation
of (conditional) belief, which conditionalises solely on an agent’s doxastic state.

We show that inquisitive conditional-doxastic logic encodes the same assumptions
concerning conditionalisation and conditional-doxastic logic. And, just as conditional-
doxastic logic may be taken as the static counterpart to a dynamic logic of belief revi-
sion, inquisitive conditional-doxastic logic can be taken as the static counterpart to a dy-
namic logic of belief revision within an enriched setting that includes formal resources
to model interrogatives.

Inquisitive conditional-doxastic logic is shown to be sound and complete with re-
spect to inquisitive plausibility models, and it is shown that both (conditional) belief
and knowledge modalities can be defined in terms of the considers modality. However,
we also show that the entertains modality of inquisitive epistemic logic cannot be de-
fined by the considers modality. Therefore, as the basic inquisitive conditional-doxastic
logic is axiomatised solely by the considers modality over the base inquisitive seman-
tics it cannot be used to reason about an agent’s inquisitive state independently of their
doxastic state.

For this reason, we also axiomatise inquisitive plausibility logic and show it is sound
and complete with respect to the same class of inquisitive plausibility models. This logic
introduces modalities which restrict the issue associated to each agent to the worlds
considered at least as plausible as the current world or state of evaluation, and those
strictly less plausible. The entertains modality of inquisitive epistemic logic is taken as
basic in the axiomatisation of inquisitive plausibility logic, and we show the considers
modality of basic inquisitive conditional-doxastic logic is definable. Therefore, inquis-
itive plausibility logic allows for a full study of the interaction between epistemic and
conditional-doxastic modalities within the framework of inquisitive semantics.
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Introduction

Inquisitive semantics is a semantic framework based on a notion ofmeaning intended to
capture both informative and inquisitive content, formally modelled via issues, in order
to analyse information exchange—seen as process of raising and resolving issues.

We restrict ourselves to a propositional language in this thesis, which allows us to
characterise issues as downward closed sets of sets of possible worlds. The logic InqD
(Ciardelli, Groenendijk, and Roelofsen 2015) captures the relation of entailment be-
tween issues characterised this way. InqD is introduced and outlined in chapter 1.

Inquisitive epistemic logic (Ciardelli 2014b) extends InqD to an epistemic setting,
by associating to each of a set of agents an issue, intended to capture the information
available to an agent and the issues they entertain.

In this way the relationship between inquisitive epistemic logic and InqD parallels
the relationship between epistemic logic and propositional logic (cf. Ciardelli 2015, §7.2)
For, in epistemic logic an information state—a set of possible worlds—is associated to
each agent in order to capture the information available to them. Using the information
states associated to agent’s in epistemic logic the propositional attitude of knowledge
can be formallymodelled. Following this parallel, inquisitive epistemic logicmodels the
propositional attitudes of both knowledge and of entertaining an issue, with the attitude
of entertaining standing in the same relation to issues as knowledge does to classical
proposition. Chapter 2 introduces epistemic logic in section 1 and inquisitive epistemic
logic in section 2.

However, epistemic logic does not have sufficient expressive power to capture the im-
portant propositional attitude of belief. This is captured by doxastic logic, or Moreover,
an epistemic-doxastic logic may be used to capture to interaction between the proposi-
tional attitudes of knowledge and belief (cf. Stalnaker 2006). So, a natural progression
of inquisitive epistemic logic may be to investigate a logic capturing the proposition at-
titude with respect to issues which parallels belief, and its interaction with the attitude
of entertaining.

Alternatively, one may study the attitude of conditional belief—intending to capture
what an agent believes conditional upon certain information being true, and how this
relates to other conditional beliefs. From this point of view an analysis of belief is a
special case of conditional belief, when no information is conditionalised on. Not only
does this approach attempt to analyse a more general propositional attitude, but from a
formal point of view the resulting logic allows for the reduction of a dynamic logic of
conditional belief, where agent’s may learn new information, to be reduced to a static
logic. This establishes a strong connexion between conditional belief and belief revision
(indeed, conditional beliefs can be thought of as a ‘plan’ for what will be believed in the
information being conditionalised on is established to be true).

We take the latter approach in this thesis, constructing parallel to conditional-doxas-
tic logic (Baltag and Smets 2006) within an inquisitive setting, and introduce the propo-
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sitional attitude of (conditional) considering an issue in parallel to believing a classical
proposition. This is the subject of chapter 3, which constitutes primary theoretical chap-
ter of this thesis. Section 3.1 introduces conditional-doxastic logic, which is then gen-
eralised to an inquisitive setting in section 3.2, termed inquisitive conditional-doxastic
logic.

The primary semantic structures for interpreting inquisitive conditional-doxastic
logic are introduced in section 3.3. These are a generalisation of the plausibility models
used to interpret conditional-doxastic logic, termed inquisitive plausibility models.

Given a base semantic structure section 3.3.1 contains a detailed study of (condi-
tional) considering, while section 3.3.2 investigates the properties of conditional belief
with respect to issues. Still, the theoretical point of view adopted is largely a formal one.
We do not aim to connect the formally defined attitude of considering an issue with
an informal concept, nor do we look to defend the assumptions made by Baltag and
Smets in the base conditional-doxastic logic. These considerations are important, but
due to the complexity of axiomatising inquisitive conditional-doxastic logic are beyond
the scope of this thesis.

However, our axiomatisation of inquisitive conditional-doxastic logic allows us to
observe that the interrogative content of issues can be ‘factored out’ of the process of
conditionalisation. Importantly this establishes that the notion of conditionalisation
captured by inquisitive conditional-doxastic logic is the same as that captured by con-
ditional-doxastic logic. This is one of the key results of the thesis—belief revision as
modelled by conditional-doxastic logic can be straightforwardly generalised to a notion
of meaning that captures information and inquisitive content, and moreover the pro-
cess of conditionalisation this relies upon can be isolated to the informative content
of the propositions (i.e. issues) used to modelled this notion of meaning. Inquisitive
conditional-doxastic logic, and this process of conditionalisation is the concern of the
following three chapters.

The completeness of inquisitive conditional-doxastic logic with respect to the class
of inquisitive plausibility models is established via showing that inquisitive conditional-
doxastic logic is complete with respect to an alternative class of models, detailed in chap-
ter 4 and the transformations between the two types of models is detailed in chapter 5.
This strategy follows the approach of Baltag and Smets (2006) to the completeness of
conditional-doxastic logic with respect to plausibility models. Still, we do pause in sec-
tion 4.1 to note how the alternative semantic structures can offer a different perspective
on inquisitive conditional-doxastic logic.

Chapter 6 then establishes the soundness and completeness of inquisitive condi-
tional-doxastic logic with respect to both classes of models via the results of the pre-
ceding chapters.

However, while conditional-doxastic logic axiomatises both conditional belief and
knowledge with respect to plausibility models, inquisitive conditional-doxastic logic
fails to axiomatise entertainingwith respect to inquisitive plausibilitymodels. Moreover,
we show in section 5.3 of chapter 5 that the modality corresponding to entertaining is
not definable in terms of the modality correspond to considering (while in section 3.4.2
of chapter 3 we show that the modalities corresponding to conditional belief and knowl-
edge on inquisitive plausibility models are definable in terms of conditional belief).

This leads us to explore and axiomatise inquisitive plausibility logic in chapter 7, in
which the modalities corresponding to entertaining and considering can both be cap-
tured. Moreover, inquisitive plausibility logic is shown to be sound and complete with
respect to inquisitive plausibilitymodels. This allows the interaction between the two in-
quisitive attitudes—entertaining and considering—to be explored in full in future work.
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Chapter 1

Inquisitive Semantics

1.1 Inquisitiveness, informally
At the core of inquisitive semantics is a notion of meaning, intended to provide an ade-
quate foundation for the analysis of the exchange of information in linguistic discourse.
A fundamental distinction is made between the informative and inquisitive content of
a sentence. The former is understood as what must be the case if the sentence is true,
and the latter as information sufficient to resolve the issue raised by the sentence. For
example, in uttering ‘has Sue contacted you yet?,’ I presuppose that Sue has intended
to contact you, and I also raise the issue of whether or not she has done. Moreover, it
seems I request an informative response to the issue raised, and thus the sentence con-
tains inquisitive content. Contrast this to an utterance of ‘Sue intends to contact you,’
corresponding to the presupposition on the previous utterance which contains only in-
formative content, and invites no response. However, as Ciardelli, Groenendijk, and
Roelofsen (2012, §6.2) note, when raising an issue a speaker may also merely invite a
response to the issue raised. Not all interrogatives thus identified require a response.

Classically, the meaning of a sentence is identified with its truth-conditions, relative
to a world of evaluation for intensional constructs. This gives an account of informative
content; the restriction of logical space (conceived as a set of possible worlds) such that
the sentence is true given any given world.

Worlds are maximally specific, in the sense that either ' or :' holds at a world for
any given sentence ', and therefore the truth conditions of a sentence partition logical
space into two sets—those in which the sentence is true, and those in which the sentence
is false. Given that worlds are maximally specific it follows that every interrogative is
resolved in each worlds. For example, given a worldw it will either be the case that Sue
has contacted you, or that Sue has not contacted you, whence the issue raised by the
interrogative ‘has Sue contacted you yet?’ is settled.

However, given a set of worlds s it may be the case that in some of the worlds in s Sue
has contacted you and in other Sue has not. Therefore, by evaluating sentences relative
to a collection of worlds can be thought of corresponding to evaluating a sentence with
respect to incomplete information. These information states can be characterised by
the propositions true in all and only the worlds of the state. This perspective is familiar
from epistemic logic, where the epistemic state of an agent is modelled by a collection of
worlds, and an agent knows ' just in case ' is true at every world of an agent’s informa-
tion state. And so an agent will fail to know ' if there are two worlds in an agent’s epis-
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temic state which differ with respect to the truth of '. Following this intuition we think
of sets of worlds as information states. If an information state contains a single world,
then that state has maximal information. However, if the information state contains
multiple worlds, then it contains only partial information, crucially missing additional
content that would allow one to distinguish between them.

Therefore, by evaluating sentences from arbitrary collections of worlds it is not guar-
anteed that there will be sufficient information to establish the information sufficient to
resolve an issue, and so information states do not in general contain sufficient content
to resolve any arbitrary interrogative.

This method of evaluation gives rise to a notion of support with respect to both in-
formative and inquisitive content. In the case of the former an information state entails
the informative content of a sentence just in case every world in the information state is
one in which its informative content is true. While in the case of the latter, an informa-
tion state entails the inquisitive content of a sentence just in case the information state
entails at least one resolution of an interrogative, which in turn reduces to at least one
resolution of the interrogative being true in every world of the information state.

The notion of support will be formalised in the following section by defining sup-
port conditions for formulas constructed from a dichotomous syntax of declaratives
and interrogatives. Still, both types of formula will express a singular type of proposi-
tion, consisting of the information states in which the formula is supported. Coupled
with a collection of rules of inference this system comprises the logic termed InqD, first
detailed in Ciardelli, Groenendijk, and Roelofsen (2015). InqD will form the core of
our investigations into inquisitive conditional-doxastic logic and inquisitive plausibility
logic. However, the underlying conception of a proposition, how these ought to relate
to one another, and an alternative (but equivalent) logic, termed InqB this gives rise to,
was first presented in Ciardelli and Roelofsen (2009) and systematically investigated in
Ciardelli (2009). Ciardelli and Roelofsen (2011) is a concise introduction to InqB and
summarises many important results and properties of this logic.

1.2 InqD

Logical Language

The choice of InqD as the base language to formalise the propositional case of inquisitive
semantics allows us to make a distinction between declaratives and interrogatives at a
syntactic level. The language is constructed by simultaneous recursion as follows:

Definition 1.2.1 (Syntax of InqD). Let At be a set of atomic formulas.

1. For any p 2 At; p 2 LŠ

2. ? 2 LŠ

3. If ˛1; : : : ; ˛n 2 LŠ then ‹f˛1; : : : ; ˛ng 2 L‹

4. If ' 2 Lı and  2 Lı then ' ^  2 Lı, where ı 2 fŠ; ‹g

5. If ' 2 LŠ [ L‹ and  2 Lı then ' !  2 Lı, where ı 2 fŠ; ‹g

6. Nothing else belongs to either LŠ or L‹

We refer to the elements of LŠ as declaratives and the elements of L‹ as interroga-
tives. However, declaratives and interrogatives are tightly connected. For, the interroga-
tive ‹ applies exclusively to a collections of declaratives, upon which basic interrogatives,
of the form ‹f˛1; : : : ; ˛ng, are constructed.
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In addition to this we will adopt the convention of using lower case Latin letters
p; q; : : : to denote elements of At, ˛; ˇ;  range over declaratives, �; �; � range over
interrogatives, and '; ; � range over the whole language. Furthermore, we define :'

as ' ! ? (from this it is immediate that :' is always a declarative), and ' $  

for .' !  / ^ . ! '/. Finally a basic interrogative of the form ‹f˛;:˛g will be
abbreviated by ‹˛ and referred to as a polar interrogative.

Semantics

Models for InqD do not differ from possible world models for classical propositional
logic, they consist of a set of possible worlds, and a valuation function specifying the
atomic formulas true at each world.

Definition 1.2.2 (Models for InqD). An InqD model for a set At of atomic formulas is a
pairM D hW;V i, where:

– W is a set, whose elements we refer to as possible worlds
– V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas

true at w

The inquisitive turn comes from evaluating formulas from information states, rather
than worlds, and taking the fundamental semantic notion to be that of an issue—a col-
lection of information states. As in Ciardelli and Roelofsen (2014a) the motivating idea
is that an issue is identified with the information sufficient for its resolution, whence its
characterisation.

Definition 1.2.3 (States and issues). LetM D hW;V i be an InqD model.

� An information state is a set s � W of possible worlds.1
� An issue is a non-empty set I of information states which is downward closed: if
s 2 I and t � s, then t 2 I .

� Given amodelM we denote by IM the set of all issues overW . We will suppress
the subscriptM when the set of possible worlds is given by context.

AsCiardelli (2014b, 99, fn. 2) highlights, the notion of a resolution is a generalisation
of the notion of a basic answer from the interrogative frameworks of Hintikka (1999,
2007) and Winiewski (1996). Still, the term resolution is used as a reminder that this is
a technical notion, relative to the framework of inquisitive semantics.

Downward closure ensures that for any information state that resolves an issue, the
refinement of that information state with further information will also resolve the issue.
This corresponds to the property of persistence, defined below.

For any issue I there is a corresponding information state jI j ´
S
I . Given jI j D s

for some information state s we may say that I is an issue over s, for any t 2 I will be
such that t � s. The following fact is a consequence of downward closure.

Fact 1.2.4. For an issue P , and world w; fwg 2 P iff w 2 jP j.

We now formulate the semantics of InqD via the notion of support between informa-
tion states and formulas. Intuitively, an information state can be thought of as incom-
plete information about the actual world. For example, we can capture all and only the
information contained in the formula p by taking the state consisting of exactly those
worlds w such that p 2 V.w/. For a declarative ˛ to be supported in s amounts to ˛

1Given a state s we write s# for its downward closure. For example, fw;vg# D ffw;vg; fwg; fvg;;g
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being established by the information available in s, while for an interrogative � to be
supported amounts to � being resolved by the information available in s.

Definition 1.2.5 (Support conditions for InqD).
LetM D hW;V i be an InqD model and s an information state:

1. M; s � p iff p 2 V.w/ for all w 2 s

2. M; s � ? iff s D ;

3. M; s � ‹f˛1; : : : ; ˛ng iffM; s � ˛1 or : : : orM; s � ˛n
4. M; s � ' ^  iffM; s � ' andM; s �  

5. M; s � ' !  iff for every t � s; ifM; t � ' thenM; t �  

The characteristics of support for a propositional atom, and conjunction parallel the
truth conditions for the same operators from classical propositional logic. The support
condition for implication differs importantly, ensuring that ' implies  just in case
any refinement of the information state chosen for evaluation which supports ' also
supports  . Thus, that any possible resolution of ' given the information guaranteed
by the state of evaluation, will also resolve  . Finally, support for basic interrogatives
follows the idea that an interrogative is supported just in case one of its resolutions is
supported.

A fundamental property of support conditions is that they are persistent, in the fol-
lowing sense.

Fact 1.2.6 ( Persistence). For all formulas ', ifM; s � ' and t � s, thenM; t � '.

An intuitive consequence of persistence is that the refinement of any information
state which resolves an interrogative will continue to do so.

We define the proposition expressed by', modulo amodelM and denoted by ŒŒ'��M ,
as the set of all states inM which support'. Wewill suppress the subscript if the relevant
model is determined by context.

Definition 1.2.7 (Inquisitive propositions). For an InqD modelM and formula ',
ŒŒ'��M ´ fs j M; s � 'g denotes the proposition expressed by '.

By persistence every proposition is an issue, and we may often use the terms inter-
changeably, allowing context to disambiguate.

Figure 1.1 depicts the propositions expressed by some simple formulas. The figure
also serves to highlight how the meaning of an interrogative is captured by InqD. For
example, the polar interrogative ‹p of 1.1f selects collections of possible worlds that
supportp and:p, corresponding to the components of the basic interrogative ‹fp;:pg.
So, to resolve ‹p it is sufficient to establish information that supports either p or :p

Similarly, ‹fp; qg depicted in 1.1g selects collections of possible worlds into those that
support p and those that support q.
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11 10

01 00

(a) ŒŒp��

11 10

01 00

(b) ŒŒq��

11 10

01 00

(c) ŒŒp ^ q��

11 10

01 00

(d) ŒŒp ! q��

11 10

01 00

(e) ŒŒ>��

11 10

01 00

(f) ŒŒ‹p��

11 10

01 00

(g) ŒŒ‹fp; qg��

11 10

01 00

(h) ŒŒ‹p^‹q��

11 10

01 00

(i) ŒŒp !‹q��

11 10

01 00

(j) ŒŒ‹p !‹q��

Figure 1.1: The inquisitive propositions expressed by some simple formulas. 11 repre-
sents a world where both p and q are true, 10 a world where only p is true, etc. For
simplicity we draw only maximal supporting states. Thus, p has in total 4 supporting
states, ‹p !‹q has 9, and > has 16.

Figure 1.2 depicts aspects of the complex interrogative p ! ‹q in greater detail.
Here, for each information state in ŒŒp ! ‹q��, wheneverp is supported, ‹q is supported.
So, as in the state the state f11; 10g resolving p does not give rise to the issue of whether
q it is not a constituent of the proposition. A still more perspicuous was to understand
this is that intersecting ŒŒp�� with ŒŒp ! ‹q�� constitutes establishing p and raising the
issue of q or :q, as shown in figure 1.2.2

11 10

01 00
11

(a) ŒŒp��

11 10

01 00

(b) ŒŒp !‹q��

11 10

01 00
11

(c) ŒŒp��\ŒŒp !‹q��

Figure 1.2

Derivation System3

The natural deduction system of InqD is shown in figure 1.3. Here '; range over all
propositions while ˛; ˇ range only over declaratives.

Conjunction and implication both have their standard introduction and elimination
rules, from falsum one can infer any proposition, while double negation is restricted to
declaratives, an aspect of this category we shall explore below. Furthermore, the rules
for the interrogative operator are disjunctive, following the correspondence between
supports for an interrogative and n-ary disjunction. The introduction rule simply states

2Note that the language of InqD restricts the application of conjunction to formulas of the same type;
either declarative or interrogative. Therefore,p^‹q is not a well-formed formula. However, as is clear from
the support conditions of InqD,p is semantically equivalent to ‹fpg, and so ŒŒ‹fpg ^ ‹q�� is the proposition
corresponding to the intersection ŒŒp�� with ŒŒp ! ‹q�� in this example.

3See Ciardelli (2014a)
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Conjunction Implication

'  

' ^  

' ^  

 ' 

' ^  

 

Œ'�....
 

.' !  /

.' !  / '

. /

Interrogative Kreisel-Putnam

ai

‹f˛1; : : : ; ˛ng

Œ˛1�....
' : : :

Œ˛n�....
' ‹f˛1; : : : ; ˛ng

‹fg˛1g'‹fg˛ng

˛ ! ‹fˇ1; : : : ; ˇng

‹f˛ ! ˇ1; : : : ; ˛ ! ˇng

Falsum Declarative double negation

?
'

::˛
˛

Figure 1.3: The natural deduction system of InqD.

that if some ˛i is established, then any interrogative ‹f˛1; : : : ; ˛ng for which ˛i is a reso-
lution is resolved, while the elimination rule states that if an interrogative ‹f˛1; : : : ; ˛ng

is resolved, and each of its resolutions entails ', then we can infer ', corresponding to
the intuition that an interrogative can only be established if at least one its resolutions
is. The unique rule of InqD is Kreisel-Putnam. Intuitively this rule states that if a declar-
ative implies an interrogative, then it must imply some resolution of that interrogative.
The formal requirement of Kreisel-Putnam within inquisitive semantics is observed in
Ciardelli and Roelofsen (2011, §3.6), while the relation that holds when an interrogative
implies another is explored in Ciardelli (2014a, §3).

As is standard we will write ˚ `  to mean that there exists a proof whose set of
undischarged assumptions is included in ˚ , and whose conclusion is  .

Theorem 1.2.8 (Soundness and completeness of InqD).
InqD is sound and (strongly) complete with respect to InqD models.

Proof. See Ciardelli (2014a).

An important property of InqD is its status as an intermediate logic, a fact estab-
lished by its equivalence to InqB (Ciardelli 2009), and the fact that the latter includes IPC,
cf. Ciardelli (2009, p. 25). Therefore, inquisitive propositions inherit many characteris-
tics of intuitionistic propositions, and in particular every intuitionistic tautology has an
expression in InqD. Some are straightforward, as in the following fact.

Fact 1.2.9. For any modelM , state s, and formula ',M; s � ' ! ::'.

Another property of InqD inherited from its status as an intermediate logic are the
import-export rules for the conditional. To demonstrate the proof system of InqD we
show the derivations. We refer to the introduction rule for a connective ı as .ıe/, and
to the elimination rule as .ıi/. We illustrate when an assumption has been discharged
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using implication elimination by superscripting the assumption with a number n, and
noting n with the application of the rule.

Proposition 1.2.10. For '; ; � 2 LInqD the following rules are derivable:
' ! . ! �/

.' ^  / ! �
.Imp:/

.' ^  / ! �

' ! . ! �/
.Exp./

Proof.

' ! . ! �/
Œ' ^  �1

' .^e/

 ! �
.!e/

Œ' ^  �1

 
.^e/

.' ^  / ! �
.!i;1/

Œ'�2 Œ �1

' ^  
.^i/

.' ^  / ! �
� .!e/

 ! �
.!i;1/

' ! . ! �/
.!i;2/

As noted above, the semantics for InqD differs from classical propositional logic in
its notion of support. However, classical truth conditional semantics can be recovered
from support conditions by evaluating formulas relative to those states which contain
exactly one world.

Definition 1.2.11 (Truth). Given an InqD modelM , ' is true at a world w 2 W just in
caseM; fwg � ', which we abbreviate toM;w � '.

From this definition, in conjunction with persistence, we can derive the following
clauses.

Proposition 1.2.12 (Truth conditions for InqD).
LetM D hW;V i be an InqD model and w an arbitrary element ofW :

1. M;w � p iff p 2 V.w/

2. M;w ² ?

3. M;w � ‹f˛1; : : : ; ˛ng iffM;w � ˛1 or : : : orM;w � ˛n
4. M;w � ' ^  iffM;w � ' andM;w �  

5. M;w � ' !  iffM;w ² ' orM;w �  

Inspection shows that these are the familiar truth conditions from classical proposi-
tional logic, provided the interrogative operator is interpreted as n-ary disjunction.

Definition 1.2.13 (Truth set). We define the truth-set of a formula ' in a model M as
the set of all worlds inM in which ' is true: j'jM ´ fw 2 W j M;w � 'g.

Fact 1.2.14. For any formula ', j'jM D
S
ŒŒ'��M .

We also observe that the support conditions for a declarative can be given in terms
of its truth conditions.

Proposition 1.2.15. M; s � ˛ iff 8w 2 s;M;w � ˛.

And as a consequence of this, the proposition expressed by a declarative can be com-
pletely characterised by its truth conditions. Furthermore, for any proposition ' we can
associate a declarative, denoted by Š' such that j'j D jŠ'j, meaning ' and Š' have the
same truth conditions, by taking the double negation of ', i.e. Š' ´ ::'. Informally,
this is because truth is local to a world of evaluation, and so as worlds behave classically,
the truth of a proposition is equivalent to the truth of its double negation, fact 1.2.16
follows from proposition 1.2.12, above.
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Fact 1.2.16. For any modelM , world w, and formula ',M;w � ' iffM;w � ::'.

Corollary 1.2.17. For any declarative ˛,M; s � ˛ iffM; s � ::˛.

Corollary 1.2.18. For any modelM , state s, and formula ', j'j D j::'j D jŠ'j.

In particular, the proposition expressed by taking the declarative variant of a formula
is uniquely characterised by its truth conditions, and conversely as a consequence of this,
declaratives in general can be semantically characterised as those propositions wholly
determined by their truth conditions.

Proposition 1.2.19. For any formula ', ŒŒŠ'�� D }.jŠ'j/ D }.j'j/.

Proof. Š' is a declarative, so by proposition 1.2.15 M; s � Š' iff 8w 2 s;M;w � ˛.
Equivalently, s 2 ŒŒŠ'�� iff s � jŠ'j, iff s 2 }.jŠ'j/. Therefore ŒŒŠ'�� D }.jŠ'j/. That
}.Š'/ D }.j'j/ follows immediately from corollary 1.2.18.

We term j'j the informative content of '. And, following proposition 1.2.19 we
introduce the parallel notation for issues, allowing us to talk of the ‘informative content’
of an issue, independently of when an issue corresponds to a proposition.

Definition 1.2.20. For any issue P , ŠP ´ }.jP j/.

As the following corollary of proposition 1.2.19 in conjunction with corollary 1.2.17
shows, inquisitive propositions corresponding to declaratives are wholly determined by
their informative content.

Corollary 1.2.21. For any declarative ˛, ŒŒ˛�� D }.j˛j/.

One particular application of corollary 1.2.17 is the case of conditionals. The set of
declaratives is inductively defined so that interrogatives can only occur in a declarative
as the antecedent of an implication. As is shown below, only the informative content of
such a formula is relevant to the evaluation of the conditional.

Proposition 1.2.22. � ! ˛ � Š� ! ˛

Entailment of a formula by a set of formulas is defined as preservation of support.

Definition 1.2.23 (Entailment).
˚ �  iff for any modelM and state s, ifM; s � ˚ thenM; s �  .

Ciardelli (2014a, p. 114) explores entailment in detail. For now, this definition allows
us to observe that InqD is a conservative extension of classical proposition logic, in the
following sense.

Fact 1.2.24 (Conservativity). Let � be a set of classical formulas. Then, � � ˛ iff �
entails ˛ in classical propositional logic.

Resolutions

The idea of information resolving an interrogative provided conceptual motivation for
the support conditions of inquisitive semantics. We are now able to give a syntactic
counterpart, for complex as well as basic interrogatives, by defining a set of resolutions
for any given formula of InqD.

Definition 1.2.25 (Resolutions). The set R.'/ of resolutions for a given formula ' is
defined inductively by:

12



– R.˛/ D f˛g

– R.‹f˛1; : : : ; ˛ng/ D f˛1; : : : ; ˛ng

– R.� ^ �/ D f˛ ^ ˇ j ˛ 2 R.�/ and ˇ 2 R.�/g

– R.' ! �/ D f
V
˛2R.'/.˛ ! f .˛// j f W R.'/ ! R.�/g

The adequacy of this definition is shown by the following proposition.

Proposition 1.2.26. For anyM; s and ';M; s � ' iffM; s � ˛; for some ˛ 2 R.'/.

This also gives rise to the following normal form result.

Proposition 1.2.27 (Normal form). For any ': ' � ‹R.'/.4

This proposition states any given formula in the language of InqD is semantically
equivalent to a ‘basic’ interrogative of the form ‹f˛1; : : : ; ˛ng. These results ground our
basic perspective on InqD, and an understanding of the system that we will extend when
we introduce doxasticmodalities: a state supports an interrogative just in case it contains
sufficient information to resolve the interrogative.

We introduce two final pieces of notation. First, proposition 1.2.15 and fact 1.2.16
allow us to define a ‘pseudo negation’ operator for declaratives, which is semantically
equivalent to the negation of the declarative. More importantly, the double pseudo-
negation of a declarative is syntactically equivalent to the declarative itself.

Definition 1.2.28 (Pseudo-negation).

�˛ ´

�
ˇ if ˛ is of the form :ˇ

:˛ if ˛ is of the form ˇ

Proposition 1.2.29. For any declarative ˛:

1. ��˛ D ˛

2. �˛ a` :˛

Proof.

1. Immediate.

2. If ˛ is of the form ˇ then �˛ D :˛, and so trivially �˛ a` :˛. If ˛ is of the form
:ˇ then we need to show that ˇ a` ::ˇ. We observe that ˇ ` ::ˇ, as ::ˇ ` ˇ

follows immediately via the rule declarative double negation elimination. Recall :ˇ

abbreviates ˇ ! ?.

ˇ Œ:ˇ�1

?
.!e/

::ˇ
.!i;1/

While we do not have current use for this operator, it will become useful when prov-
ing completeness of the conditional doxastic extension of InqD. The following fact is
easily verifiable, given the soundness and completeness of InqD.

Fact 1.2.30. :.:˛1 ^ � � � ^ :˛n/ a` :.�˛1 ^ � � � ^ �˛n/

4' �  denotes that the two formulas ' and are equivalent, in the sense that for all modelsM and
states s,M;s � ' iffM;s �  .

13



With this fact in hand we can define truth conditional disjunction with respect to
declaratives.

Definition 1.2.31 (Truth conditional disjunction). ˛1_� � �_˛n ´ :.�˛1^� � �^�˛n/

By fact 1.2.30 support and truth conditions for disjunction can be derived.

S: M; s � ˛ _ ˇ iff 8w 2 s;M;w � ˛ _ ˇ

T: M;w � ˛ _ ˇ iffM;w � ˛ orM;w � ˇ

Remark 1.2.32 (Alternative characterisation of informative content). With disjunction
defined we can associate an alternative formula to the informative content of a inquisi-
tive proposition. For, given a formula ', Š' ´

W
R.'/.

There will be some useful formal applications of this alternative characterisation.
Furthermore, it offers an alternative perspective on a familiar notion. It’s what must be
the case in a possible world for an interrogative to be solvable at that world.

However, we will generally avoid this terminology and notation.
We conclude this chapter by restating the resolution theorem fromCiardelli (2014b),

with respect to InqD, a feature of the logic whose preservation will prove essential in its
generalisations.

The concept of a resolution is generalised to sets of formulas in the following way.

Definition 1.2.33 (Resolutions of set). The set R.˚/ of resolutions of a set of formulas
˚ contains those sets of declaratives � such that:

1. for all ' 2 ˚ , there is an ˛ 2 � such that ˛ 2 R.'/

2. for all ˛ 2 � , there is a ' 2 ˚ such that ˛ 2 R.'/

This allows a statement of the following theorem.

Theorem 1.2.34 (Resolution theorem). ˚ `  iff for all � 2 R.˚/ there exists some
˛ 2 R. / such that � ` ˛.

Which has a semantic counterpart in the following fact.

Fact 1.2.35. ˚ �  iff for all � 2 R.˚/ there is an ˛ 2 R. / such that � � ˛.
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Chapter 2

Inquisitive Epistemic Logic

2.1 Epistemic Logic
In the previous chapter we saw how possible world semantics could be generalised via
the notion of support to provide a framework for modelling interrogatives. An indepen-
dent generalisation uses possible world semantics to describe and reason about what
agent’s know about the worlds and each other. We term the framework arising from
this epistemic logic.

Inquisitive semantics and epistemic logic share a conceptual insight, viz. modelling
information states as collections of possible worlds. While inquisitive semantics uses
this to investigate a generalised notion of a proposition, epistemic logic uses informa-
tion states to model the information an agent has. We have semantic structures of the
following kind.

Definition 2.1.1 (Epistemicmodels). An epistemicmodel for a set At of atomic formulas
and a set A of agents is a tuple: M D hW; f�aga2A; V i, where:

– W is a set of possible worlds
– V W W ! }.At/ is a valuation map, stating for each world w 2 W the atomic

formulas true at w
– �a is an epistemic map W ! }.W / associating to each world an information

state �a.w/, satisfying the following conditions:
Factivity: for any w 2 W , w 2 �a.w/

Introspection: for any w; v 2 W , if v 2 �a.w/, then �a.v/ D �a.w/

As in InqDmodels, the valuationmap specifies those atomic formulas true at a world,
and the truth conditions of complex formulas are given on the basis of these. To inter-
pret an agent’s epistemic state we require additional vocabulary, achieved by augmenting
the base language with modal operators Ka for each agent a 2 A, interpreted via the
epistemic state of an agent at a world as follows:1

Definition 2.1.2 (Knowledge).M;w � Ka' iff 8v 2 �a.w/;M; v � '

This clause states that an agent a at a world w in a model M knows that ' iff the
truth of ' is established by the epistemic state of a atw. In other words, ' is true at any
world compatible with the agent’s current knowledge.

1The full syntax of epistemic logic is given by: ' ´ p j :' j ' ^ ' j Ka'.
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While worlds in these models are described only by first-order information, by rela-
tivising an agent’s epistemic state to a worldwe can think of a possible world as capturing
not only first-order facts, but also higher-order facts about the epistemic state of agent’s,
just as first and higher-order facts are determinate in the actual world.

Factivity requires an agent’s information state never rules out the actual world. As
a consequence, an agent can know a piece of information only if it is true of the actual
world. This ensures knowledge is factive, meaning that if a knows ', then ' is true of
the actual world. Formally, this meansKa' ! ' is a theorem of epistemic logic.

Introspection requires that if an agent has insufficient information to rule out a
world, then their information state is the same in both worlds. This ensures an agent
always knows their own information state, as their own information state must be con-
stant over all the worlds compatible with the agent’s information. In other worlds, it is
impossible for an agent’s to be uncertain about their own epistemic state. If an agent
knows ' then she knows that she knows ', and if she doesn’t know ', she knows this
too. As with factivity, this means both Ka' ! KaKa' and :Ka' ! Ka:Ka' are
theorems of epistemic logic.

11 10

01 00

(a)Kap

11 10

01 00

(b)Ka.p _ q/

11 10

01 00

(c)Ka.p ^ q/

11 10

01 00

(d)Ka.p ! q/

11 10

01 00

(e)Ka>

Figure 2.1: Epistemic states for an agent at world 11, paired with the strongest formula
characterising that state. As in figure 1.1, 10 represents a world where p is true and q
false, etc. In order to distinguish epistemic states, which are sets of worlds, from issues
we use lines with a heavier weight.

2.2 Inquisitive Epistemic Logic
We have seen how information states play an important role in both inquisitive seman-
tics and epistemic logic. Clearly, then, it is possible to construct a logic to reason about
how the epistemic states of multiple agents relate to issues, by moving from truth to
support conditions in order to interpret epistemic models. However, the framework of
inquisitive semantics allows for a richer enhancement of epistemic logic by modelling
not only the relation between an agent’s epistemic state and issues, but also by provid-
ing sufficient semantic structure to model the inquisitive state of an agent in tandem
with their epistemic state. To do so we use the framework of inquisitive semantics to
associate to each agent an issue over their epistemic state.

Issues will be used to represent an agent’s inquisitive state, with these capturing the
epistemic goals of an agent.

We need not assume the issue used to model an agent’s epistemic goals coincides
with a unique issue held by the agent. For, given proposition 1.2.27 any interrogative can
be represented as a basic interrogative, whence a complex formula comprised a number
of distinct interrogatives may be taken to more naturally describe an agent’s epistemic
state, but can be modelled via a single issue.
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Wemodel an issue over an agent’s epistemic state following the idea that a fundamen-
tal epistemic goal is to have true beliefs, and resolving an issue should be conductive to
this. In other words, we assume an agent entertains an interrogative only if one or more
of its resolutions could be true of the actual world from the agent’s perspective.

Worlds outside an agent’s epistemic state support information known to be false,
and so cannot be possible resolutions. If the issue were over a subset of their epistemic
state, then it would become possible for the agent to have, or learn, information which
conflicts with any resolution of the issue held. Such an issue would have the potential
to, and may in fact be, epistemically misleading.

The requirements of factivity and introspection on epistemic states inherited from
epistemic models, and the latter is extended to an agent’s inquisitive state, following the
idealisation away from agent’s uncertainty about their own epistemic states.

Using issues to capture the inquisitive states of agents at a world we have inquisitive
epistemic models (iems).

Definition 2.2.1 (Inquisitive epistemicmodels). An inquisitive epistemicmodel for a set
At of atomic formulas and a set A of agents is a tuple: M D hW; f˙aga2A; V i, where:

– W is a set of possible worlds
– V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas

true at w
– ˙a is a state map W ! I associating to each world w 2 W an issue ˙a.w/

satisfying the following conditions:
Factivity: for any w 2 W , w 2 �a.w/, where �a.w/ ´

S
˙a.w/

2

Introspection: for any w; v 2 W , if v 2 �a.w/, then˙a.v/ D ˙a.w/

11 10

01 00

(a)Ea>

11 10

01 00

(b)Eap !‹q

11 10

01 00

(c)Ea‹fp; qg

11 10

01 00

(d)Ea‹q

11 10

01 00

(e)Ea.p ^ q/

Figure 2.2: Examples of issues over epistemic states.

The language used to interpret these models is obtained by enriching the language
of InqD with operators for knowledge, as in EL, and a modality termed entertains.

Definition 2.2.2 (Syntax of IEL). For At be a set of atomic formulas. We add to the syntax
of InqD (definition 1.2.1) the following clause:

7. If ' 2 LŠ [ L‹, thenKa';Ea' 2 LŠ, for a 2 A

In order to interpret the additional operators we introduce the following support
clauses to those of InqD:

Definition 2.2.3 (Support conditions for IEL). LetM be an IEL model, and s an informa-
tion state.

2From this we observe that an agent’s epistemic state can be recovered from their inquisitive state,
whence an inquisitive epistemic model also determines a standard epistemic model.
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6. M; s � Ka' iff 8w 2 s;M; �a.w/ � '

7. M; s � Ea' iff 8w 2 s and 8t 2 ˙a.w/;M; t � '

The truth condition for the entertains modality is derived from the above support
condition, as the support condition straightforwardly quantifies over all the worlds in a
given state of evaluation.

Definition 2.2.4 (Truth clause for entertains).M;w � Ea' iff 8t 2 ˙a.w/;M; t � '

Just as with knowledge, the semantic clause internalises the semantic consequence
relation of the base logic; truth at a world for the former, and support by an information
state for the latter.

Moreover, as inquisitive semantics defines support relative to information states we
can simplify the semantic clause for knowledge, by directly assessing the agent’s state.

Fact 2.2.5. M; s � Ka' iff 8w 2 s;8v 2 �a.w/;M; v � '

That epistemic states are information states proves important, for any information
state can be transformed into an issue by taking its downward closure, as issue are simply
downward closed sets of states. So, just as �a.w/ describes an agent’s epistemic state,
}.�a.w// can be interpreted to detail every possible refinement of an agent’s epistemic
state.3 In this way, restrictions on}.�a.w// correspond to selections of epistemic states
an agent could, in principle, attain. This is analogous to how �a.w/ \ j'j will typically
be a subset of �a.w/ specifying the refinement of the agent’s epistemic state with the
knowledge that ' is true. More generally, }.�a.w// D f�a.w/ \ jP j j P 2 I g.

Our interest is in restrictions to }.�a.w// that correspond to issues, capturing re-
finements to the agent’s epistemic state sufficient to resolve certain refinements to the
agent’s epistemic state. For example, as in figure 2.2c an agent may know that p _ q is
true of the actual world, and entertain whether p or q is true, but be disinterested in
whether p ^ :q, p ^ q, or :p ^ q is true, though these will be sufficient to resolve the
issue entertained by the agent. Therefore, the issue associated to the agent corresponds
to the proposition ‹fp; qg.

Our interpretation of the entertains modality adds to this the notion that the agent
intends, or desires, to attain any of the states selected, intuitively be establishing—or
learning—sufficient information to resolve the issue entertained. This allows us to cap-
ture an agent’s goals via interrogatives, specifically those whose resolutions are part of
the goals of the agent. Therefore, via this interpretation of the entertains modality, an
agent entertains an interrogative just in case they desire to have knowledge (equiv. be in
an epistemic state) which resolves it.4

For example, figure 2.2 can be read left to right as the development of an agent’s epis-
temic and inquisitive states. They begin in an ignorant state with no goals, and therefore
entertain no proposition stronger than what is currently known, >. And, subsequently,
as in 2.2b they refine their epistemic goals, and the information states characterising the
weakest states they consider desirable are p ! q and p ! :q. These formulas are the
weakest resolutions to p !‹q, and entail all others. Therefore, we can say the agent
entertains the issue of p !‹q.

3This caveat is important, �a.w/ may contain epistemic states which cannot be achieved, in the same
manner as conditionalisation, if interpreted as learning (discussed below) details the result of agents con-
ditionalising on information that cannot be learnt. That fvg 2 }.�a.w// for every v 2 �a.w/ expresses
the fact that the agent doesn’t know which world is actual, not that the actual world is undetermined.

4This gives an additional rationale for the requirement that ˙a.w/ is an issue over �a.w/, for any
desirable epistemic state must be factive, by virtue of its characterisation.
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2.2c suggests a significant shift in the agent’s goals upon learning that either p or q
is the case, as she revises her goals to establishing which. Note that we are applying IEL
purely descriptively, and make no assumptions about the agent’s process of revision. In
following chapters when conditionalisation, and eventually revision, are introduced, we
will assume such leaps of reasoning are not made. Instead, we will suppose a process
similar to the move from 2.2c to 2.2d, where the latter state is completely determined by
the former and the information learnt, namely p.

In 2.2e the agent has reached a stage of complete knowledge, and consequently can
desire no better epistemic state than that which they are currently in. However, and
as with any epistemic state, by internalising the notion of support the agent (formally)
entertains every proposition supported by their current state. This ambiguity between
whether a given proposition is entertained on the basis of a resolution or not can be
avoided by defining a modality to capture those issues the agent does not know a reso-
lution to. Ciardelli and Roelofsen (2014a) term this wondering.

Wa' ´ Ea' ^ :Ka'

A simple inspection shows that in figures 2.2a and 2.2e the agent wonders about no
proposition, while in the remaining figures that agent wonders about the propositions
entertained.

For wondering to be defined with respect to states in addition to worlds the support
condition for the knowledge modality is required. We first observe that, as the truth
condition for knowledge universally quantifies over an information state, and a declar-
ative is supported only if it is supported at every world in the information state, in the
case of declaratives it can be simplified to the following definition, given the inquisitive
notion of support.

Fact 2.2.6 (Truth condition forK modality). M;w � Ka' iffM;�a.w/ � '

TheK modality describes an agent’s epistemic state, and thus is naturally modelled
as a declarative, allowing us to define the following support clause for it.

Fact 2.2.7 (Support condition for theK modality in terms of its truth conditions).
M; s � Ka' iff 8w 2 s;M;w � Ka'

The following fact, used to axiomatise IEL (cf. Ciardelli (2014b)), shows knowledge
is distributive with respect to interrogatives, meaning an agent knows an interrogative
just in case they know (at least) one of its resolutions.

Fact 2.2.8. Ka‹f˛1; : : : ; ˛ng ! Ka˛1 _ � � � _Ka˛n is valid with respect to iems.
In full, the following axioms and rules of inference augment the rules of inference

of InqD for a sound and complete system, IEL, with respect to iems.

1. Ea.' !  / ! .Ea' ! Ea /

2. Ea˛ ! ˛

3. i) Ea' ! EaEa' and ii) :Ea' ! Ea:Ea'

4. Ka.' !  / ! .Ka' ! Ka /

5. Ea˛ $ Ka˛

6. Ka‹f˛1; : : : ; ˛ng ! Ka˛1 _ � � � _Ka˛n

;....
'

Ea'

;....
'

Ka'
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Finally we remark on an alternative approach to the definition of an agent’s epis-
temic agenda. For, we can view the process as relativising the possible epistemic states
to the resolutions of a collection of issues which the agent wishes to resolve. In this case
an agent’s epistemic agenda may be represented syntactically, as a set of interrogatives
f�1; : : : ; �kg, with the natural assumption that the informative content of each �i is
entailed by the agent’s epistemic state. Semantically, this corresponds to taking ˙a.w/
to be }.�a.w// \ ŒŒ�1�� \ : : : \ ŒŒ�j ��.

Representing the epistemic agenda of an agent in this way is from a purely formal
perspective unnecessary, as the catalogue of which interrogatives determine the agent’s
agenda is lost when condensed to the semantic object ˙a.w/ when an iem is defined.
Therefore, beyond the intuitive appeal of this approach, we have little to say about it.

Fact 2.2.9 (Soundness and completeness of IEL). IEL is sound and complete with respect
to iems.

Proof. See Ciardelli (2014b).
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Chapter 3

Inquisitive Conditional-Doxastic
Logic

The previous chapter brought together inquisitive semantics and epistemic logic. We
now turn to synthesising inquisitive semantics with conditional-doxastic logic to form
inquisitive conditional-doxastic logic.

Conditional-doxastic logic has two interrelated, but distinct interpretations. First,
as a static logic, describing both an agent’s doxastic and epistemic states (beliefs and
knowledge, respectively) and how the states appear when conditionalising on arbitrary
pieces of information. Second, as the static reduction of a dynamic logic which describes
how an agent’s doxastic and epistemic states are revised upon learning new information.

The latter interpretation allows conditional-doxastic logic to be treated as a formal
tool, which need not have any value independent of its dynamic counterpart. The for-
mer, on the other hand, requires a clear interpretation of conditional-doxastic logic,
fromwhich its value can be understood. Furthermore, this perspective will bemore gen-
eral, precisely because it deals with conditionalising on arbitrary pieces of information—
in particular, information that cannot (truthfully) be learnt. The following section takes
this former perspective, and uses this perspective to motivate the way in which inquis-
itive semantics and conditional-doxastic logic are synthesised in the remainder of this
chapter.

Before continuing let us briefly mention a third perspective that can be taken on
conditional-doxastic logic, viz. as extending classical logic with non-classical and non-
monotonic implications. This perspective can similarly be applied mutatis mutandis to
inquisitive conditional-doxastic logic, we will only briefly return to this approach.

3.1 Conditional-Doxastic Logic
As with inquisitive semantics, epistemic logic, and inquisitive epistemic logic, condi-
tional-doxastic logic builds on the basis of possible world semantics. Indeed, condi-
tional-doxastic logic is a straightforward generalisation of epistemic logic, where instead
of associating to each agent an single information state, an information state is associ-
ated to each agent for every classical proposition.

To our knowledge Board (2004) is the first to introduce operators for conditional
belief, and axiomatise the logic we call CDL. However, our presentation and terminology
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follows Baltag and Smets (2006).
Both Board and Baltag and Smets highlight the connexion between the process of

belief revision captured by CDL and the AGM account of belief revision, detailed in Al-
chourrón, Gärdenfors, and Makinson (1985). Furthermore, the process of condition-
alisation that underlies the logic from a semantic point of view can be found in Stal-
naker (1996, §3), who also connects this characterisation to Alchourrón, Gärdenfors,
and Makinson (1985), and identifies this account as the first he is aware of.

In short, following Baltag and Smets (2006), conditional-doxastic logic can be inter-
preted using semantic structures termed conditional-doxastic models (cdms).

We let P;Q; : : : denote arbitrary information states relative to logics with an inter-
pretation based on classical propositional logic (i.e. in the remainder of this section).

Definition 3.1.1 (Conditional-doxastic models).
A conditional-doxastic model for a set At of atomic formulas and a set A of agents

is a tupleM D hW; fsPa ga2A;P2}.W /; V i, where:

– W is a set of possible worlds
– V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas

true at w
– sPa is a doxastic mapW ! }.W / associating to each world w 2 W an informa-

tion state sPa .w/ satisfying the following conditions:
Safety if w 2 P then sPa.w/ ¤ ;

Introspection if v 2 sPa.w/ then s
Q
a .w/ D s

Q
a .v/

Adjustment sPa.w/ � P

Success if s
Q
a .w/ \ P ¤ ; then sPa.w/ ¤ ;

Minimality s
P\Q
a .w/ D sPa.w/ \Q; if sPa.w/ \Q ¤ ;

Note the change in notation of an agent’s state map from �a in epistemic models to
sa in conditional-doxastic models. This is intended to represent an underlying change
in the type of information the state contains, from the current epistemic state of an agent,
to their current (conditional) doxastic state.

Intuitively sPa.w/ captures those worlds in which an agent’s a’s beliefs are true, given
that they take P to be true.

The syntax of conditional-doxastic logic is given by adding a conditional belief op-
erator to classical propositional logic, as in the following definition:

' ´ p j :' j ' ^ ' j B'a '

With the enriched language of CDL and state maps for agents, we can interpret dox-
astic maps through the following semantic clause. As is standard we write s

 
a.w/ for

s
j j
a .w/.

Definition 3.1.2 (Conditional belief).M;w � B
 
a ' iff 8v 2 s

 
a.w/ W M;v � '.

An agent taking P to be true and their resulting doxastic state can be interpreted in
various ways. For example, an agent may take P to be true just in case they learn P , or
just in case they are informed of P from a source they deem reliable.

More abstractly, we can interpret conditional belief as describing perceived entail-
ment relations between propositions given the agent’s current doxastic state, whereB a '
reads ‘the agent a believes ' conditionally on .’ For the moment we will not give a con-
crete interpretation of what conditionalising on P amounts to, and observe only that
sPa.w/ encodes some function of an agent and a piece of information, satisfying certain
conditions.
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The first of these is safety, which ensures an agent’s doxastic state will always be
consistent with a proposition true of the actual world. In other words, an agent will
never rule out the potential truth of, a proposition true of the actual world.

Introspection follows the samemotivation as in epistemicmodels. We assume agents
know their own conditional doxastic states, amounting to the assumption that agents
have a fixed attitude to any given piece of information, and they cannot revise their own
(conditional) beliefs about their conditional beliefs.

Adjustment ensures that an agent conditionalising on some information results in a
state in which that information is true.

Success states that if an agent’s knowledge is consistent with the truth ofP , then they
can consistently conditionalise onP .1 Together with adjustment, success ensures that if
P is consistent with an agent’s epistemic state, then conditionalising on P will not lead
to a trivial doxastic state supporting P .

In addition minimality ensures this non-trivial belief amounts to the agent mini-
mally adjusting their doxastic state to exclude the possibility that P is false. More gen-
erally, minimality ensures that if the agent’s beliefs will only be revised when they are
contradicted by the information conditionalised on. As a consequence, when condition-
alising on more specific information agents conditional doxastic states are the result of
iterated conditionalisation, so long as each iterative step does not lead to an inconsistent
state, as the following fact highlights. Therefore, so long as an agent can consistently iter-
atively conditionalise onP1; : : : ; Pk , this amounts of conditionalising onP1\� � �\Pk .
It is only when for some i; j such that s

P1\���\Pi
a .w/\Pj D ; that an agent will revise

their conditional doxastic state.2
These conditions characterise a certain kind of belief revision, given by a process of

conditionalisation that, beyond some background assumptions about what can be con-
ditionalised on, an the relationship between conditionalising at distinct worlds, is in-
tersective when conditionalising on information that is consistent with an agent’s given
conditional doxastic state, but does not (directly) constrain the agent if they condition-
alise on information inconsistent with that state. This latter case is left to be specified by
the model, and thus the agent being modelled.

While conditional-doxastic models do not explicitly encode an agent’s epistemic
state, this can be recovered by taking the union of all their doxastic maps, following
the intuition that an agent’s epistemic map captures those worlds compatible with their
knowledge, which in turn are those worlds, which, from the agent’s point of view could
be the actual world, and which the agent could given some additional information, re-
vise their epistemic state in order to approximate. In other words, an agent knows P
just in case P is believed under any conditions. Formally, �a.w/ ´

S
P2I sPa.w/,

which in turn can be captured by the syntactic definition Ka' $ B
:'
a ?,3 stating an

agent knows ' just in case conditionalising on its negation would lead them to a state
of inconsistency. By this reduction it is immediate that the knowledge modality satis-
fies introspection, as conditional belief does. Furthermore, the safety condition ensures
knowledge is factive.

1N.b. success can also be stated as: if �a\P ¤ ;, thensPa .w/ ¤ ;, given �a.w/ ´
S
Q2I s

Q
a .w/.

As, for success to apply P need only be consistent with some conditional doxastic state s
Q
a .w/.

2N.b. iterative conditionalisation is not associative. For example, given a plausibility model from the
following section, consisting of three worlds w;v; u such that w <wa v <wa u, and propositions P1 D

fv; ug andP2 D fw;v; ug, then s
P1
a .w/ D s

P1
a .w/\P2 D fvg, which s

P2
a .w/ D fwg ¤ s

P2
a .w/\

P1 D ;, whence s
P1
a .w/\P2 ¤ s

P2
a .w/\P1.

3Note, we also have the following equivalence: B:'
a ? $ B

:'
a ', allowing us to define knowledge as

Ka' $ B
:'
a ', as in CDL.
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With epistemic states regained, we can observe that an agent’s current doxastic state
can be captured by conditionalising on any proposition they know to be true, as this will
incur no revision of their doxastic map. Indeed, as it is trivially the case that every agent
knows >, be can define plan belief that ' as conditional belief that ' given >. Thus, we
write Ba' for B>

a '.
Interpreting conditionalising on ' as learning ' interpretation of the state map con-

ditions can be given a dynamic twist.
Safety, then, expresses that an agent can always consistently to learn a piece of in-

formation which is true of the actual world. Introspection states an agent continues
to be introspective upon learning new information. Adjustment states that learning is
effective—if an agent learnsP , they come to believeP . Success states that if a piece of in-
formation is consistent with an agent’s epistemic state it can be learnt. Finally, minimal-
ity states that an agent’s beliefs are never given up when learning information consistent
with their (conditional) doxastic state. Importantly, on this interpretation learning does
not affect the agent’s current epistemic state. Therefore, sPa.w/ does not capture what
the agent believes upon learning P , but how the agent’s current doxastic state would
appear upon learning P .

Following Baltag and Smets (2006, pp. 15–16), conditional-doxastic logic is axioma-
tised by augmenting any sound and complete axiomatisation of classical logic with the
following collection of axioms, and an additional rule of inference.

1. B a .' ! �/ ! .B
 
a ' ! B

 
a �/

2. B:'
a ' ! '

3. i. B a ' ! B
�
aB

 
a  and ii. :B

 
a ' ! B

�
a:B

 
a '

4. B'a '
5. B'a:' ! B

 
a :'

6. :B :' ! .B
 ^'
a � $ B

 
a .' ! �//

7. From ` ' infer ` B
 
a '

The first axiom ensures that conditional beliefs are closed under (conditionally) be-
lieved consequence, while the following axioms correspond in a one-one manner to the
conditions imposed on doxasticmaps. With this, Baltag and Smets (2006) show that CDL
is sound and complete with respect to conditional-doxastic models. Furthermore, they
establish ICDL is sound and complete with respect to plausibility models (pms). These are
semantic structures of the following kind.

Definition 3.1.3 (Plausibility models). A plausibility model M for a set At of atomic
formulas and a set A of agents, is a tuple: hW; f�wa gw2W

a2A
; V i, where:

1. W is a set of possible worlds
2. V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas

true at w
3. �wa associates to each world w and agent a a well-preorder4 over a subset of W

satisfying the following conditions:
Factivity w 2 �a.w/;where �a.w/ ´ fv j 9u W v �wa ug

Introspection if v 2 �a.w/ then x �va y if and only if x �wa y

4A binary relation �wa which is reflexive, transitive, and such that for every set s � fv j 9u W v �wa ug

there exists v 2 s such that v �wa u for all u 2 s.
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Defining Min�wa
P ´ fv 2 P j v �wa u for all u 2 P g as the set of �wa minimal

elements of P , conditional belief is interpreted on plausibility models via the following
clause:

Definition 3.1.4 (Belief).M;w � B
 
a ' iff 8v 2 Min�wa

j j;M; v � '

Baltag and Smets (2006, p. 14) show that every pm can be transformed into a cdm,
and conversely every finite cdm can be transformed into a pm, preserving the interpre-
tation of CDL formulas.5 This transformation is sufficient to establish CDL as sound and
complete with respect to plausibility models. Therefore, plausibility models can be seen
as quantitative counterparts to the essentially qualitative conditional-doxastic models
for CDL. For, the interpretation of conditional belief now relies on an interpretation of
an agent’s ordering of worlds, often explicated in terms of ‘degree of belief ’ or ‘plausibil-
ity.’ In the case of the latter v �wa u is read to state that at w the agent a considers v at
least as likely to be the actual world as u, following the mantra that belief aims at truth.

Reflexivity and transitivity follow immediately from the conception of �wa represent-
ing a plausibility ordering, while the requirement of well-foundedness ensures that an
agent will never have an infinite chain of worlds, each of which she considers strictly
more plausible. Factivity and introspection follow from the same motivation as with
respect to epistemic models, as they now pertain to the epistemic state of an agent. This
assumes an agent has a plausibility ordering over all the worlds compatible with her
knowledge, yet this assumption seems no more controversial as introspective condi-
tionalisation with respect to an arbitrary proposition as assumed by conditional-doxas-
tic models. Naturally, we can assume knowledge is not captured by plausibility models,
in which case factivity amounts the assumption that an agent always assigns some plau-
sibility to the actual world, and introspection ensures agents are certain of their own
plausibility orderings.

The correspondence between cdms and pms, when interpreted via CDL, establishes
both classes of models represent equivalent assumptions about how agents condition-
alise on information, which is captured qualitatively by cdms and quantitatively by pms.
In this sense axioms 1 – 6 capture general assumptions about conditionalisation, from
which further principles can be derived. Indeed, axiom 2 is equivalent to the principle
that knowledge entails belief,K˛' ! B

 
a ', if knowledge is abbreviated through condi-

tional belief, as above. And, using the same abbreviation, the principles of introspection
can be rewritten as B a ' ! KaB

 
a ' and :B

 
a ' ! Ka:B

 
a '.

Two well-known examples of derived principles are cautious and rational mono-
tonicity: .B ' ^ B �/ ! B ^�' and .B a ' ^ :B :�/ ! B

 ^�
a ', respectively.

While the principles taken as axioms, with the exclusion of minimality, and cautious
monotonicity, are largely uncontroversial rational monotonicity has generated some
discussion. In effect, this principle states that when an agent conditionalises on infor-
mation consistent with their (conditional) belief, this information will not undermine
any of their current (conditional) beliefs, and derives from minimality.6 See Stalnaker
(1994) for a proposed counterexample, but note this would only show rational mono-
tonicity/minimality should not be a basic principle of conditionalisation, requiring ad-
ditional assumptions to be valid.

Finally, this abstract perspective on conditionalisation allows CDL to be related to
5A generalisation of this transformation is fully detailed in chapter 5.
6For an informal demonstration, given minimality we have the following as a theorem of CDL W

:B
 
a :� ! .B

 
a .� ! '/ $ B

 ^�
a '/. Therefore, under the assumption ofB a ' ^ :B

 
a :� we can

infer B a .� ! '/ $ B
 ^�
a ', whence as B a ' entails B a .� ! '/, we infer B ^�

a '.
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the AGM theory of belief revision, e.g. Alchourrón, Gärdenfors, and Makinson (1985),
as in Baltag and Smets (2006) and Baltag, Renne, and Smets (2015).

3.2 Inquisitive conditional-doxastic Logic
Inquisitive conditional-doxastic logic gives an inquisitive twist to conditional-doxastic
logic by introducing interrogatives to the process of conditionalisation, mirroring the
relationship between inquisitive epistemic logic and epistemic logic of chapter 2.

As with CDL the most abstract perspective on ICDL generalises away from semantic
concrete interpretations of conditionalisation, and interprets theorems of ICDL as princi-
ples of conditionalisation, which can then be interpreted quantitatively or qualitatively.
To introduce ICDLwewill take the former approach, by enriching plausibility models for
CDLwith issues, familiar from IEL.The latter approachwill be developed in chapter 4, and
used to prove important properties of ICDL, such as soundness and completeness.

While themotivating semantics for ICDLwith arise from synthesising iemswith plau-
sibility models the language of ICDL will omit the entertain modality (Ea) of IEL. This
omission arises from technical issues axiomatising Ea on ipms. In chapter 5 we show
that entertains cannot be defined in terms of conditional modalities, and in chapter 6
we will briefly review the technical problems posed.

Still, in chapter 7 we will axiomatise an enriched language containing the entertains
modality, of which ICDL is a fragment. With this in mind explore certain connexions
between entertains and the conditional modality when setting out the interpretation of
ICDL with respect to ipms.

3.3 Inquisitive Plausibility Models
Inquisitive plausibility models (ipms) are our principal structures for a semantic inter-
pretation of ICDL.These arise from synthesising plausibilitymodels for classical doxastic
logic, as in section 3.1, and inquisitive epistemic models, as in chapter 2, to obtain mod-
els with structure to represent not only the doxastic state of an agent at a world, but also
their inquisitive state.

Definition 3.3.1 (Inquisitive plausibility models).
An inquisitive plausibility modelM for a set At of atomic formulas and a set A of

agents,7 is a tuple: hW; f�wa ga2A;w2W ; f˙aga2A; V i, where:

1. W is a set of possible worlds
2. �wa is a well-preorder over a subset ofW
3. ˙a.w/ is an issue over �a.w/, where �a.w/ ´ fv j 9u W v �wa ug

4. V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas
true at w

And the following conditions are satisfied:
Factivity w 2 �a.w/; for all w 2 W

Introspection 1 if v 2 �a.w/; then˙a.w/ D ˙a.v/

Introspection 2 if v 2 �a.w/; then x �va y if and only if x �wa y

The synthesis of pms and iems is not irreversible, and any ipm can be segmented into
these component parts, as figure 3.1 shows. Indeed, the assumptions made concerning

7We assume the set of agents is finite. However, modalities for common knowledge, belief and so on
will not be explored in this thesis, and so there is no technical need for this assumption.
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the preorder, and conditions of factivity and introspection stem from the same reasoning
as in the previous chapter and section for ems, iems, and pms.

ipm

hW; f�wa gw2W
a2A

; f˙aga2A; V i

pm

hW; f�wa gw2W
a2A

; V i

iem

hW; f˙aga2A; V i

Figure 3.1: Factorization of an inquisitive plausibility model.

Remark 3.3.2. We may replace conditions 2 and 3 in definition inquisitive plausibility
models (def. 3.3.1) as follows:

20. ˙a.w/ is an issue
30. �wa is a well-preorder over �a.w/ ´

S
˙a.w/

Proof. To see this alternative characterisation is equivalent we observe that if �wa is a
well-preorder over �a.w/ then �a.w/ D fv j v �wa u for some ug, for it is trivially the
case that a pre-order is a pre-order over all the elements it orders. Therefore, we can
rewrite 30 as 2.

This allows us to observe that 20 can be rewritten as 3, for we know that fv j v �wa
u for some ug is some subset ofW , and w �wa w, by factivity.

This alternative characterisation allows us to take an ‘issues first’ approach to ipms. It
seems for many applications of ICDL this would be the preferred approach to take, given
the ability to reason about issues is the primary distinguishing factor of ICDL from CDL.
However, in reasoning about ipms the alternative approach is often more transparent.

Our primary interest in inquisitive plausibilitymodels lies in the interaction between
an agent’s (conditional) beliefs and the issues the hold. For example, in figure 3.2 the
agent entertains whether p _ s or q _ t , and moreover believes r to be the case, in
conjunction with either p or q.

p; r

q; r

s

t

Figure 3.2

Through the modalities introduced for IEL and ICDL, we can
use the formulasEa‹fp _ s; q _ tg and Ba..p ^ r/ _ .q ^ r// to
express this. What we cannot capture with these two modalities
alone is that if the agent’s belief that r is correct, she would refine
her epistemic goals to focus on establishing whether p or q, for
s and t are sure to be false. Her epistemic goals are significantly
simpler given the information she believes. We can also observe
how the process of conditionalisation affects the considers of an
agent. For example, conditioning on :r the agent is able to make an corresponding
simplification to her epistemic goals, with the alternative issue of whether s or t holds
of the actual world being considered.
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To formally represent this aspect of an agent’s cognitive state we introduce the con-
siders modality. First, we define the language of ICDL, which enriches the syntax of InqD
by introducing an operator for the considers modality. As we will see below, further
modalities can be defined in terms of the considers modality, but could be added as
primitive operators if desired.

Definition 3.3.3 (Syntax of ICDL). Let At be a set of atomic formulas:

1. For any p 2 At; p 2 LŠ

2. ? 2 LŠ

3. If ˛1; : : : ; ˛n 2 LŠ then ‹f˛1; : : : ; ˛ng 2 L‹

4. If ' 2 Lı and  2 Lı then ' ^  2 Lı, where ı 2 fŠ; ‹g

5. If ' 2 LŠ [ L‹ and  2 Lı then ' !  2 Lı, where ı 2 fŠ; ‹g

6. If '; 2 LŠ [ L‹ then C a ' 2 LŠ

7. Nothing else belongs to either LŠ or L‹

Just as with InqD we refer to elements of LŠ as declaratives and elements of L‹ as
interrogatives. We continue to use the convention of using lower case Latin letters
p; q; : : : to denote elements of At, while ˛; ˇ;  range over declaratives, �; �; � range
over interrogatives, and '; ; � range over the whole language. Similarly, :' is short-
hand for ' ! ?, and so on.

We also observe the definitions of information states and issues can be restated with-
out adjustment for ipms.

As with InqD resolutions of formulas have a key role in our theorising about ICDL, and
thuswe briefly pause to define thesewith respect to the enriched language. Furthermore,
as ICDL differs from InqD only by the introduction of further declaratives no additional
clause is required to define the resolutions of formulas containing modalities.

Definition 3.3.4 (Resolutions for ICDL). The set R.'/ of resolutions for a given formula
' is defined inductively by:

– R.˛/ D f˛g

– R.‹f˛1; : : : ; ˛ng/ D f˛1; : : : ; ˛ng

– R.� ^ �/ D f˛ ^ ˇ j ˛ 2 R.�/ and ˇ 2 R.�/g

– R.' ! �/ D f
V
˛2R.'/.˛ ! f .˛// j f W R.'/ ! R.�/g

To define the semantics for the considers modality we first define the restriction of
an issue P to its �wa -minimal elements.

Definition 3.3.5 (Min�wa
P ). For any issue P , Min�wa

P ´ fs 2 P j s � Min�wa
jP jg,

where Min�wa
jP j ´ fv 2 jP j j v �wa u for all u 2 jP jg.

Note that Min�wa
P is guaranteed to be an issue by construction, i.e. non-empty and

downward closed. Recall that, on the other hand, Min�wa
jP j is an information state.

The following proposition shows thatMin�wa
jP j captures the agent’s doxastic statewhen

conditionalising onP , analogously to the way an agent’s epistemic state can be obtained
from˙a.w/.

Proposition 3.3.6. For any issue P , Min�wa
jP j D jMin�wa

P j.

Proof. By definition Min�wa
P ´ fs 2 P j s � Min�wa

jP jg, so if u 2 Min�wa
jP j

then it is immediate that fug 2 Min�wa
P , by the definition of Min�wa

P , above. And, as
jMin�wa

P j ´
S
.Min�wa

P /, u 2 jMin�wa
P j.

Conversely, if u 2 jMin�wa
P j, then fug 2 Min�wa

P , whence fug � Min�wa
jP j, so

u 2 Min�wa
jP j, by the definition of Min�wa

P , above.
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The ability to relativise an issue to a plausibility ordering allows us to state the sup-
port condition for a new modality we terms “considers” as follows.

Definition 3.3.7 (Support for considers).
M; s � C a ' iff 8w 2 s W 8t 2 Min�wa

.ŒŒ �� \˙a.w//;M; t � '

As with conditional belief, we will write Ca for C>
a . Moreover, we regard the epis-

temic, inquisitive, and doxastic state of an agent to be fixed at any given world of eval-
uation and the modal formula associated to these states, as with knowledge, entertains,
and belief respectively, to express what facts hold of these worlds. Therefore, the sup-
port clause for considers straightforwardly quantifies over the worlds constitutive of the
state of evaluation. From this we straightforwardly have the following truth condition.

Fact 3.3.8 (Truth for considers).
M;w � C a ' iff 8t 2 Min�wa

.ŒŒ �� \˙a.w//;M; t � '

Given the support condition for considers we can state the support conditions for
ICDL in full.

Definition 3.3.9 (Support conditions for ICDL).
LetM D hW;V i be an InqD model and s an information state:

1. M; s � p iff p 2 V.w/ for all w 2 s

2. M; s � ? iff s D ;

3. M; s � ‹f˛1; : : : ; ˛ng iffM; s � ˛1 or : : : orM; s � ˛n
4. M; s � ' ^  iffM; s � ' andM; s �  

5. M; s � ' !  iff for every t � s; ifM; t � ' thenM; t �  

6. M; s � C
 
a ' iff 8w 2 s W 8t 2 Min�wa

.ŒŒ �� \˙a.w//;M; t � '

As with aspects relating to the syntax of ICDL, important definitions and results con-
cerning InqD carry over to ICDL.

In particular the notion of an inquisitive proposition, the property of persistence,
that the support conditions of declaratives can be characterised in terms of their truth
conditions, and the semantic partner of the resolution theorem of proposition 1.2.26. In
the following we will simply refer to these results as stated above to aid readability.

3.3.1 The Considers Modality
Figure 3.3 depicts a simple example of the difference between entertains and considers
modalities. To understand exactly what considering amounts to we will examine four
distinct cases of the modality, corresponding to the kind of proposition conditionalised
on and considered.

First let us observe that the underlying assumptions about conditionalisation with
respect to declaratives inherited from plausibility models can be factored out from the
considers modality, as the following propositions’ corollary shows.

Proposition 3.3.10. For any issue P , Min�wa
P D }.Min�wa

jP j/ \ P .

Proof. From left to right suppose s 2 Min�wa
P . Then, s � jMin�wa

P j, and so by
proposition 3.3.6, s � Min�wa

jP j, whence s 2 }.Min�wa
jP j/. And, as Min�wa

P � P ,
this means s 2 }.Min�wa

jP j/ \ P .
From right to left if s 2 }.Min�wa

jP j/\P then s 2 P and s � Min�wa
jP j, whence

s 2 Min�wa
P , by definition.
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p

p; q

q

(a) Ea‹p

p

p; q

q

(b) Ca‹fp ^ q;:p ^ :qg

Figure 3.3: The distinction between an agent’s issues relative to their epistemic state and
their doxastic state. The left hand figure shows the issue associated to an agent, and the
right the result of conditionalising on >, where the global issue is omitted and the agents
doxastic state is represented using dashed lines. Each label gives a formula true of any
world in the agent’s depicted epistemic state.

Corollary 3.3.11. For any P;Min�wa
.P \˙a.w// D }.Min�wa

jP j/ \ P \˙a.w/.

Proof. ClearlyP \˙a.w/ is an issue. So, by proposition 3.3.10, Min�wa
.P \˙a.w// D

}.Min�wa
jP \˙a.w/j/ \ P \˙a.w/.

Therefore, we need only show that Min�wa
jP \˙a.w/j D Min�wa

jP j. But, as �wa
is defined to be over �a.w/ D

S
˙a.w/, the equality is immediate.

Corollary 3.3.12. For any , Min�wa
.ŒŒ ��\˙a.w// D }.Min�wa

j j/\ ŒŒ ��\˙a.w/.

Therefore, conditionalisation on the informative content of a proposition through
the considers modality amounts to refining the doxastic state obtained through condi-
tionalisation à la conditional belief to obtain a collection of doxastic states, a process
familiar from interpreting the entertains modality.

However, doxastic states derived in this way should not be identified with the dox-
astic goals of the agent, understood as those information states desired on the basis of
an agent’s doxastic state, straightforwardly because the doxastic states are the result of
refining the agent’s epistemic goals.

We have no resources to define additional issues an agent may hold solely on the
basis of believing a proposition, over and above those defined with respect to their epis-
temic state and the issue conditionalised upon.

Indeed, we could define a conditional variation of the entertainsmodality to capture
an agent’s epistemic goals conditional on the informative content of a proposition, with
the familiar assumptions about conditionalisation by the following clause.

M;w � E a ' iff 8t 2 Min�wa
.ŒŒŠ �� \˙a.w//;M; t � '

It is an easy exercise to check that E a ' is semantically equivalent to C Š a ', and
this is how we interpret the modality when conditionalising on the informative content
of a proposition; the epistemic states desirable to the agent given their epistemic goals
and the truth of the formula conditionalised on. As the following proposition suggests,
systematic constraints hold between an agent’s epistemic and conditional doxastic goals.

Proposition 3.3.13. Ea. ! '/ ! C
 
a '

Proof. Suppose M;w � Ea. ! '/. So, 8t 2 ˙a.w/, if M; t �  then M; t �
'. Therefore, as it is the case for any t 0 2 Min�wa

.ŒŒ �� \ ˙a.w// that t 0 2 ˙a.w/

andM; t 0 �  , it is immediate that 8t 2 Min�wa
.ŒŒ �� \ ˙a.w//;M; t � ', whence

M;w � C
 
a '.
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Two intuitive consequences follow from this proposition. First, any proposition en-
tertained is considered, for by taking  to be > the formula reduces to Ea' ! Ca'.
Second, if ' is consistent with what the agent considers, then it is consistent with what
the agent entertains. This can be seen by taking ' as :' in the previous reduction and
contraposing the formula to obtain :C

 
a :' ! :Ea:'.

The effect of conditionalising on an inquisitive proposition  , then, captures i) the
resulting doxastic state, given the information the agent is conditionalising on and ii) de-
sired refinements of the agent’s doxastic state, determined by the issues the agent wishes
to resolve on the basis of their epistemic goals and the issue conditionalised on. These
two components are captured by an issue analogously to the way an agent’s epistemic
state and goals are captured by ˙a.w/. , whereby the agent’s doxastic state is refined
to those states the agent considers desirable, intuitively understood as information the
agent wishes to establish, whose union is coextensive with the agent’s (conditional) dox-
astic state.8

Considers, then, evaluates an agent’s inquisitive doxastic state, derived from of both
the agent’s epistemic agent and some issue, and restricted to the worlds the agent con-
siders most plausible given the informative content of the issue.

Therefore, we read C a ' as stating ‘' is supported in every information state the
agent considers desirable and most plausible, given the truth of Š and the intersection
of the agent’s epistemic issues with the inquisitive content of ,’ where, following our in-
terpretation of IEL, an agent considers an state desirable just in case it contains sufficient
information to resolve their epistemic goals.

In particular, this means (just as with entertains) the strongest basic interrogative
supported will identify the salient issues the agent desires to resolve, with weaker inter-
rogatives specifying logical consequences of these.

A second parallel with entertains allows considers to be interpreted from an ‘inter-
rogative first’ perspective, where the information states quantified over by the modality
derive from issues the agent desires to resolve, over being given by information theywish
to establish. The foremost distinction of this interpretation is the perspective taken on
conditionalisation. For here the process can be interpreted as to include conditionali-
sation on interrogatives, whence corollary 3.3.11 shows not how conditionalisation can
be factored out into truth-conditional conditionalisation, but instead how the process
of conditionalisation can be broken down into a series of discrete steps, as in figure 3.4.

p; q

p

q p; q

p

q p; q

p

q p; q

p

q

}.�a.w// \˙a.w/ \ }.Min�wa
j‹fp ^ :q; qgj/ \ ŒŒ‹fp ^ :q; qg��

Figure 3.4: Breaking down the process of conditionalisation.

Indeed, while the considers modality can be conditionalised on in this way, the ap-
proach we have taken to ipms means we have not made any assumptions about condi-
tionalisation over those made with respect to declaratives from CDL.

8While the agent’s epistemic goals are captured by an issue over �a.w/, it will not, in general, be the case
that ŒŒ �� is an issue over Min�wa

.�a.w/ \ j j/. Recall only part of this restriction carried interpretive
value, while stipulating j˙a.w/j � �a.w/made for formal simplicity.
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Webegin our case by case analysis of considerwith conditionalisation applied declar-
atives. Here, only information content is conditionalised on and considered. Thismeans
the agent has no doxastic gaols, but moreover her epistemic goals are irrelevant, and the
semantic clause reduces to that of conditional belief defined on pms. So, when consid-
ering a declarative the considers modality boils down to truth in every world the agent
believes most plausible.

Proposition 3.3.14.M;w � C
 
a ˇ iff 8v 2 Min�wa

j j;M; v � ˇ; for any declarative ˇ:

Proof. M;w � C
 
a ˇ iff 8t 2 Min�wa

.ŒŒ �� \˙a.w//;M; t � ˇ. By proposition 1.2.15
this is the case iff 8v 2 jMin�wa

ŒŒ �� \ ˙a.w/j;M; v � ˇ. And, by proposition 3.3.6
this is equivalent to 8v 2 Min�wa

jŒŒ �� \˙a.w/j;M; v � ˇ.
Now, suppose v 2 Min�wa

jŒŒ �� \ ˙a.w/j. As ˙a.w/ is an issue over �a.w/, for
all u 2 j j, either v �wa u or u … �a.w/. So, v 2 Min�wa

j j. And, by analogous
reasoning, if u 2 Min�wa

j j, then u 2 Min�wa
jŒŒ ��\˙a.w/j. Therefore, Min�wa

j j D

Min�wa
jŒŒ �� \˙a.w/j. So,M;w � C

 
a ˇ iff 8v 2 Min�wa

j j;M; v � ˇ.

Considering an interrogative when conditionalising on a declarative is more inter-
esting, as the agent’s epistemic goals in the following clause are ineliminable.

M;w � C ˛a � iff 8t 2 Min�wa
.ŒŒ˛�� \˙a.w//;M; t � �

By introducing the resolutions9 of �, the following clause can be obtained.
M;w � C ˛a � iff 8t 2 Min�wa

.ŒŒ˛�� \˙a.w//;M; t � ˇi for some ˇi 2 R.�/

This allows us to observe that considering an interrogative can be partly tied to—note
the following fact is an only if statement—CDL-conditional belief, as follows.

M;w � C ˛a � only if 8v 2 Min�wa
j˛j;M; v �

W
ˇi2R.�/ˇi

This fact ties together the conceptualmotivation behind both CDL-conditional belief and
resolutions. For, such belief is captured by taking the most plausible worlds in which an
agent’s current beliefs are true, while resolutions specify the conditions under which an
interrogative is settled. Thus, the fact reveals it is a necessary condition that the inter-
rogative is resolved in every world the agent thinks most plausible for an her to consider
an interrogative when conditionalising on a declarative.

p

q

r

p

Figure 3.5

For many, and all polar, interrogatives
W
ˇ2R.�/ˇ � >. This means,

if the converse were to hold these would be trivially considered, con-
ditional on any proposition, which is demonstrably not the case. Fig-
ure 3.5 depicts amodel in which every world the agent believesmost
plausible the interrogative ‹fp; qg is solvable, meaning that some
resolution of ‹fp; qg is true at each world, and hence a truthful reso-
lution to ‹fp; qg is always possible. Yet, the agent does not consider
‹fp; qg.

Still, if an agent does consider some resolution to an interrogative, as a consequence
of the support condition they must also consider the interrogative. In this respect the
considers modality internalises the right to left direction of proposition 1.2.27, which
states ' � ‹R.'/, just as the forgoing entailment relied on the internalisation of the
converse. For example, in figure 3.5 :r holds in all the most plausible worlds, and so
Ca‹r holds.

9Given ICDL only introduces declaratives to InqD the definition of resolutions for ICDL parallels that of
InqD, as in section 1.2.
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A simple variation of the considers modality akin to wonders for entertains can be
defined to avoid this possibility, which is supported only if an agent considers an inter-
rogative but not any of its resolutions, reading disjunction over resolutions as existential
generalisation, as follows.

W 
a ' ´ C a ' ^ :

W
˛2R.'/C

 
a ˛

This variation applies to conditionalising on both interrogatives and declaratives.
Indeed, the latter case gives insight into an agent’s ‘short term’ epistemic goals, as then
the inquisitive state of an agent is the only source of (unresolved) interrogatives. Indeed,
the entertains modality can be used capture which of an agent’s goals arise uniquely in
their doxastic state, as follows.

D 
a ' ´ C a ' ^ :Ea'

p

q

r

s

(b)˙a.w/\ ŒŒq _ s��

p

q

r

s

(c)˙a.w/\ ŒŒq _ r��

p

q

r

s

(a)˙a.w/

Figure 3.6

Figure 3.6 depicts the result of refining an inquisitive state with two different declara-
tives. Observe in 3.6a the agent (unconditionally) considers whetherp_q or s, formally
Ca‹fp _ q; sg, as she believes p; q and s to be most plausible, while distinguishing p
and q from s, but not p from q. Intersecting her inquisitive state with the proposition
q _ r , as in 3.6b, leaves the remaining world equiplausible, and moreover allows her
to disregard p, thus C q_s

a ‹fq; sg. Indeed, this holds under the conditional wonders
modality also, and so we can write W

q_s
a ‹fq; sg, expressing the fact that whether q or s

is unresolved for the agent.
However, note that as q entails p _ q, it remains in 3.6b the case that the agent con-

siders whetherp_q or s under the standard considersmodality, formallyCa‹fp_q; sg.
The considers modality does not allow us to rule out redundant interrogatives derived
from truth conditional consequences of interrogatives considered, while the conditional
wonders modality does.

Still, in figure 3.6c the agent considers the proposition q, conditional on q _ r , and
as a result considers whether q or r , despite her beliefs, formally C q_r

a ‹fq; rg. Here we
can write C q_r

a q ^ :W
q_r
a ‹fq; rg to express this aspect of the agent’s cognitive state in

greater detail.

3.3.2 Conditional Belief
We define conditional belief on ipms as a straightforward generalisation of conditional
belief with respect to pms to interrogatives as well as declaratives.

Definition 3.3.15 (Truth for (conditional) belief).
M;w � B a ' iff 8t 2 Min�wa

ŒŒ ��;M; t � '

And, as with considers this gives rise to the following support condition.
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Definition 3.3.16 (Support for (conditional) belief).
M; s � B a ' iff 8w 2 s W 8t 2 Min�wa

ŒŒ ��;M; t � '

Indeed, as a corollary of following proposition shows, the semantic interpretation of
belief and considers will coincide if an agent has no epistemic goals.10

Proposition 3.3.17. M;w � B
 
a ˇ iff 8v 2 Min�wa

j j;M; v � ˇ.

Proof. Bydefinition,M;w � B
 
a ˇ iff 8t 2 Min�wa

ŒŒ ��;M; t � ˇ. By proposition 1.2.15
this is the case iff 8v 2 jMin�wa

ŒŒ ��j;M; v � ˇ, iff 8v 2 Min�wa
j j;M; v � ˇ, by

proposition 3.3.6.

Analogous to the reasoning with respect to considers, above, this means ipm belief
is a conservative extension of pm belief, with respect to declaratives.

Still, the pm interpretation of (conditional) belief as truth in the most plausible
worlds cannot be straightforwardly applied to interrogatives, as it relies on the fact that
declaratives are truth-conditional. One way to interpret belief is as a special case of the
considers modality, where only the conditional doxastic goals of the agent are taken
into account, parallel to the conditional entertains modality. However, we choose to
interpret conditional belief independently of an agent’s inquisitive goals, and instead
interpret belief to capture relations between propositions subject to an agent’s doxastic
state. Indeed, this perspective can was briefly raised with respect to CDL belief. Thus,
B
 
a ' reads ‘on the basis of the agent’s current beliefs, the agent holds  to entail '.’

Interpreted with respect to declaratives on pms, a declarative formula entails another
just in case all the worlds the agent believes as good candidates for the actual world given
the truth of the former proposition are worlds in which the latter is true. This is exactly
what belief boils down to in the special case of declaratives.

M;w � B˛aˇ iff 8v 2 Min�wa
j˛j;M; v � ˇ

Corollary 3.3.18. C ˛a ˇ � B˛aˇ

It is when conditionalising on an interrogative that the generalised concept of en-
tailment is apposite for interpreting conditional belief. For, by proposition 3.3.6 the
states quantified over by conditional belief are the result of intersecting the agent’s dox-
astic state, conditionalised on the informative content of  , with  . Therefore, the
modality quantifies over the resolutions to  , given the agent’s beliefs. More precisely,
if 8t 2 Min�wa

ŒŒ ��;M; t � ', this means that, given the agent’s beliefs given the infor-
mative content of  , for every resolution of  , some resolution of ' is supported. This
is captured by the following reduction, proved as part of theorem 5.2.1, in section 4.3.11

Fact 3.3.19.
M;w � B a ' iff 8˛ 2 R. /; ifM;w ² B Š a :˛; 9ˇ 2 R.'/ W M;w � B˛aˇ

In other words, from the agent’s perspective, given their current beliefs, resolving 
would resolve '. Alternatively, the issue of  implies the issue of '.

Similarly, if  is a declarative ˇ and ' an interrogative �, then the agent’s learns a
singular piece of information, and so if � is resolved, then the agent’s epistemic state
must support a specific resolution of �. We have the following reduction:

10As, in such a case˙a.w/ D }.�a.w//.
11The fact is a natural language statement of one of the axiom which allows the reduction of conditional

belief to the considers modality. Namely, B a ' $
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
a ˇ/.
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Fact 3.3.20.
M;w�Bˇa � iff 9˛ 2 R.�/ W 8v 2 Min�wa

jˇj;M; v�˛; iff 9˛ 2 R.�/ W M;w�Bˇ˛

p

q

r

s

(a) B‹pa ‹q

p

q

r

s

(b) B‹fp;q;sga ‹f:p;:q;:sg

Figure 3.7

Unlike knowledge, conditional belief generalised to interrogatives is not distributive
in general, as can be seen from the examples in figure 3.7. Formally, the distributivity of
knowledge is guaranteed by the fact that its semantic clause evaluates what is supported
by the agent’s epistemic state, which is in turn an information state. Indeed, an analogous
clause for belief would evaluate what is supported by an agent’s doxastic state.

Therefore, for such a clause would readM;w � B
 
a ' iffM;Min�wa

j j � '. But
note that by persistence, ifM;Min�wa

j j � ', then 8s 2 Min�wa
}.j j/;M; s � ' and

if for some v 2 Min�wa
j j;M; v ² ', then there exists some s 2 Min�wa

}.j j/ such
thatM; s ² '.

These two facts entail that M;Min�wa
j j � ' iff 8s 2 Min�wa

}.j j/;M; s �
'. Therefore, as j j D jŠ j, by corollary 1.2.18, and ŒŒŠ �� D }.jŠ j/, by proposi-
tion 1.2.19, this meansM;Min�wa

j j � ' iff 8s 2 Min�wa
ŒŒŠ ��;M; s � '. So, one can

evaluate the propositions supported by the doxastic state of an agent as a special case of
conditional belief, by conditionalising on the proposition expressed by the informative
content of the proposition conditionalised on.

Furthermore, through complex formulas containing the believes modality we can
distinguish certain aspects of an agent’s epistemic state. For example, B�a� ^ :B Š�a �

expresses that the agent can resolve � given a resolution of �, but not given the presup-
position of �. Note, this is only possible for interrogatives, �; �.

Similarly, the added expressive power of the considers modality allows us to capture
when an agent believes an issue on their epistemic agenda is resolved by conditionalising
on a given proposition. Here, we are interested in capturing when conditionalising on
 would lead to a resolution of�, i.e. that some resolution of�would be believed given
 .12 Formally:

M;w � R a � ´ Wa� ^
W
˛2R.�/B

 
a ˛

At this point we can observe an important distinction between support and truth con-
ditions.

For, when evaluated at a world
W
˛2R.�/B

 
a ˛ reads, by interpreting disjunction as

existential quantification, as there being some resolution˛ of�which the agent believes,
conditional on . However, an agentmay consider different resolutions of� at different

12A weaker condition may define when an issue is resolved by the definition: M;w � R
 
a � ´

Wa�^B
 
a �. This stipulates that, conditional on there is some resolution of � true at the most plausi-

ble  worlds, but does not guarantee the agent is in a position to identify a single resolution. Here, then,
conditionalising on  would not lead to a resolution of �, but a guarantee that � could in principle be
resolved, given additional information.
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worlds. For example, it may be the case thatM; fw; vg �
W
˛2R.�/B

 
a ˛, whileM;w �

B
 
a ˛ andM;v � B

 
a ˇ, for˛ ¤ ˇ 2 R.�/. This coincides with an interpretation of the

support condition as evaluating an agent’s epistemic state from a position of incomplete
information. More generally, every world in a state may agree on the agent’s current
beliefs, but differ with respect to how those beliefs will be revised if the agent were to
learn new information.

Finally, we can generalise the reduction of knowledge to considers to knowledge of
both declaratives and interrogatives by the following condition.

Ka' ´
W
˛2R.'/C

:˛
a ?

This reductionmirrors the reduction of knowledge to conditional belief in CDL, with
the proviso includes for interrogatives that at least one of the resolutions for ' is known.
Note the reduction can be recast in terms of conditional belief, as in the case of CDL,
given the connexion between considers and conditional belief observed in axiom 7, be-
low.

3.4 Axioms & Rules
Axioms

To obtain a sound and complete axiomatisation of ICDL with respect to ipms we
enrich InqDwith the following collections of axioms for eachmodality, and an additional
rule of inference.

The axioms governing the considers modality run parallel to CDL belief. Indeed, as
we have observed, CDL belief and considers share the same process of conditionalisation
on ipms, and stated axiomatically this means that under any semantic interpretation
a common conception of conditionalisation is at the core of both CDL and ICDL, and
the base framework of InqD generalises this from classical to inquisitive propositions.
Recall ˛ denotes an arbitrary declarative, while '; ; � denote arbitrary formulas which
are either declaratives or interrogatives.

Considers

1. C a .' ! �/ ! .C
 
a ' ! C

 
a �/

2. C 'a :' ! :'

3. C 'a '
4. i. C a ' ! C

�
a C

 
a ' and ii. :C

 
a ' ! C

�
a :C

 
a '

5. :C :' ! .C
 ^'
a � $ C

 
a .' ! �//

3.4.1 Axioms for ICDLEnrichedwithOperators forConditional Belief
and Knowledge

Both conditional belief and knowledge can be defined in terms of the considersmodality,
and the following three axioms describe the reduction. These allow conditional belief
and knowledge to be eliminated from the language of ICDL if added as primitive opera-
tors.

The first axiom with respect to conditional belief is a corollary of proposition 3.3.17,
while the second is a syntactic expression of fact 3.3.19.

In short, axiom 7 states that the process of conditionalisation that belief and consid-
ers encode is equivalent with respect to informative content, with respect to evaluating
declaratives.
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Axiom 8, on the other hand, ensures that conditional belief that ', given  , gener-
alises over conditionalising on the resolutions of ' and  reading conjunction as uni-
versal and disjunction as existential quantification, so long as resolutions of the latter
are consistent with what the agent believes given the informative content of  .

Belief

7. B a ˛ $ C
 
a ˛

8. B a ' $
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/

13

Finally, axiom 9 states that knowledge can be defined in terms of the considers
modality, by the fact that a proposition can be known if and only if the negation of one of
its resolutions would lead to a contradiction. Via axiom 7 we know

W
˛2R.'/ B

:˛
a ? $W

˛2R.'/ C
:˛
a ?, and therefore axiom2.2.8 can be rewritten asKa' $

W
˛2R.'/B

:˛
a ?,

establishing the well established connexion between knowledge and conditional belief.

Knowledge

9. Ka' $
W
˛2R.'/C

:˛
a ?

Rules
Necessitation and Replacement of Equivalents:

;....
'

C
 
a '

' $  

C
'
a � $ C

 
a �

3.4.2 Observations
Our axiomatisation of ICDL differs slightly from the axiomatisation of CDL in three re-
spects. First, the axiom that corresponds to the safety condition on cdms—axiom 2,
C
'
a :' ! :'—does not conditionalise on the negation of a formula, as it does in the

case of CDL—axiom 2, B:'' ! '. Second, axiom 5 of CDL—B':' ! B
 
a :'—is

not reflected in the axiomatisation of ICDL.
These two observations are connected. For the revised axiom for the safety condition

for ICDL allows for a straightforward derivation of a theorem corresponding to the CDL
axiom 3.1 in ICDL.

Proposition 3.4.1. `ICDL C
'
a :' ! C

 
a :'

Proof.

ŒC
'
a :'�1 C

'
a :' ! C

 
a C

'
a :'

C
 
a C

'
a :'

.!e/

C
'
a :' ! :'

C
 
a .C

'
a :' ! :'/

.Nec:/

C
 
a C

'
a :' ! C

 
a :'

.Ax:1/

C
 
a :'

.!e/

C
'
a :' ! C

 
a :'

.!i;1/

The proof uses both implication introduction and elimination, necessitation (Nec.) for
the considers modality, and axioms 1, 2, and 4ii of ICDL. The inference labelled (Ax. 1)

13Note the right hand side of this axiom can be rewritten as
V
˛2R. /

W
ˇ2R.'/.:B

 
a :˛ ! B˛a ˇ/.
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abbreviates a straightforward inference using implication elimination on axiom1 in con-
junction from the formula obtained via necessitation.

Third, our axiomatisation includes the rule of replacement of equivalents. We sus-
pect this is also required for the axiomatisation of CDL, as it is included in Board’s ax-
iomatisation 2004, p. 55, and the axiomatisation of CDL in Baltag, Renne, and Smets
(2015) establishes its derivability from a different axiomatisation of CDL from Baltag
and Smets (2006).

The modalities for both conditional belief and knowledge can be eliminated from
the language of ICDL when enriched with these operators.

Proposition 3.4.2 (Elimination of the B modality.).

B a ' a`
V
˛2R. /.:C

 
a :˛ !

W
ˇ2R.'/C

˛
a ˇ/

Proposition 3.4.3 (Elimination of theK modality.).
Ka' a`

W
˛2R.'/ C

:˛
a ?

Remark 3.4.4. We can also define alternative reductions for the belief modality, using a
two part reduction via the following axioms.

1. B a ' $
V
˛2R. /.:B

 :˛ ! B˛a '/

2. B˛a ‹fˇ1; : : : ; ˇng $ B˛aˇ1 _ � � � _ B˛aˇn

However, this requires the additional rule of the general replacement of equivalents.
' $  

� $ �Œ ='�

3.5 The Road Ahead
Our primary goal now is to establish that ICDL is sound and (weakly) complete with
respect to inquisitive plausibility models. However, the route to this theorem will be
tortuous.

First, we establish ICDL can be interpreted via a different semantic structure, termed
inquisitive conditional-doxastic models. We then establish a strong connexion between
ipms and icdms, namely that every ipm can be transformed into an icdm, and conversely
every finite icdm can be transformed into an ipm, preserving the interpretation of ICDL.

While the main purpose of this connexion is transfer the soundness and weak com-
pleteness of ICDL with respect to icdms to soundness and completeness with respect to
ipms (and in this respect icdms can be considered a technical tool), it is also the case
that icdms provide a qualitative counterpart to the quantitative nature of ipms in an
analogous fashion to cdms and pms with respect to CDL. In any case, we will observe
some properties of icdms along the way, and illuminate some aspects of ICDL.
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Chapter 4

Inquisitive Conditional-Doxastic
Models

While inquisitive plausibility models are our primary semantic structures for interpret-
ing ICDL, as in the case of classical conditional doxastic logic an alternative interpretation
of ICDL can be given through an alternative semantic structure, which we term inquisi-
tive-conditional doxastic models. These are a particular class of neighbourhood models,
which allows us to interpret each basic modality of ICDL as a neighbourhood function.

This alternative semantic foundation will ease the proof of the soundness and com-
pleteness of ICDLwith respect to ipms, for we shall see in the following chapter that there
is a tight connexion between ipms and icdms and will also allow us to highlight further
properties of the logic.

4.1 Inquisitive Conditional-Doxastic Models
We begin with the definition of inquisitive conditional-doxastic models (icdms).

Definition 4.1.1 (Inquisitive conditional-doxastic models).
An inquisitive conditional-doxastic model for a set At of atomic formulas and a set

A of agents, is a tuple: hW; fSPa ga2A;P2I ; V i, where:

– W is a set of possible worlds
– I is the set of all issues overW
– V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas

true at w
– SPa is a map W ! I associating to each world an issue, SPa .w/, satisfying the

following conditions:
Safety if w 2 jP j then SPa .w/ ¤ f;g, where jP j ´

S
P

Introspection if v 2 sPa.w/, then S
Q
a .w/ D S

Q
a .v/

Adjustment SPa .w/ � P

Success SPa .w/ ¤ f;g, if S
Q
a .w/ \ P ¤ f;g

Minimality S
P\Q
a .w/ D SPa .w/ \Q, if SPa .w/ \Q ¤ f;g

We write sPa.w/ for jSPa .w/j D
S

sPa.w/, Sa.w/ for
S
P2I SPa .w/, and sa.w/ for

jSa.w/j.
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Recall that in the inquisitive setting f;g is the inconsistent proposition, and so con-
ditions such as SPa .w/ ¤ f;g amount to SPa .w/ being consistent. For, as SPa .w/ is an
issue it is always the case that f;g � SPa .w/.

Furthermore, we will write S
'
a.w/ for S

ŒŒ'��
a .w/ when a formula expressing the issue

P is known, and similarly we write s
'
a.w/ for s

ŒŒ'��
a .w/.

Intuitively, each statemapSPa .w/ captures the agent’s general doxastic state, givenP ,
comprising of both the information they believe to be true of the actual world, captured
by sPa.w/, and the issues they consider on the basis of this. Therefore, the following
clause is used to interpret the considers modality on icdms.

Definition 4.1.2 (Support for considers).
M; s � C a ' iff 8w 2 s and 8t 2 S a .w/;M; t � '

As with cdms the conditions of safety through to minimality place constraints on
the process of conditionalisation captured by icdms. We observed in chapter 3 that in
terms of their axiomatisation, CDL and ICDL both encode the same process of condition-
alisation, whether through the considers or the believes modality, and here we see the
qualitative way in which this process was interpreted by cdms straightforwardly gener-
alises to issues.

As a consequence of this it is considers, rather than believes, that generalises CDL
conditional belief from a semantic point of view,1 by reformulating the interpretation of
CDL-conditional belief with issues. Indeed, an epistemic issue paralleling˙a.w/ factors
into the definition of considers, only indirectly via the union of all state maps, unlike
the corresponding definition on ipms. So, in order to interpret the considers modality
with respect to icdms no explicit use of an agent’s epistemic goals need be made.

This flexibility means that agents need not be modelled to have epistemic goals, or
any inquisitive state over and above that relevant to the considers modality. While in-
triguing, this aspect of icdms and ICDL will not be explored further in this thesis. How-
ever, it will be shown in chapter 5 that epistemic states are able to capture properties
of an agent which doxastic maps are unable to, by showing that the entertains modality
cannot be defined in terms of the considers modality (cf. proposition 5.3.1). Intuitively
this means that an agent’s epistemic goals cannot be extracted from the combination of
their epistemic and conditional doxastic goals.

Definition 4.1.3 (Support for conditional belief and knowledge).
LetM D hW; fSPa .w/ga2A;P2I ; V i be an icdm and s an arbitrary subset ofW :

– M; s � B
 
a ' iff 8w 2 s and 8t 2 .}.s

 
a.w// \ ŒŒ ��/;M; t � '

– M; s � Ka' iff 8w 2 s andM;sa.w/ � '

The following lemma establishes a basic simplification of the support clause for state
maps which we shall appeal to on numerous occasions.

Lemma 4.1.4 (Basic lemma).

– M; s � C
 
a ' if and only if 8w 2 s;S

 
a .w/ � ŒŒ'��

– M; s � :C
 
a ' if and only if 8w 2 s;S

 
a .w/ ª ŒŒ'��

Proof. Immediate via the support conditions for the considers modality.
1Though both considers and believes generalise CDL from a syntactic point of view, as these modalities

are equivalent with respect to declaratives, and hence classical propositions, as evidenced by axiom 7 of
ICDL. What we mean is that the semantic clause for the considers modality straightforwardly parallels that
of CDL conditional belief.
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4.2 Observations
In certain cases it is easier to work with a restatement of the support conditions for
doxastic modalities, where the support for a modality at a given state is derived from
the truth of the modality at each world in the state. These conditions are summarised
in the following proposition.

Proposition 4.2.1 (Modal formulas are truth-conditional). LetM be an icdm and s �

W arbitrary, then:

–M; s � C
 
a ' iff 8w 2 s;M;w � C

 
a ' iff 8w 2 s;8t 2 S

 
a .w/;M; t � '

–M; s � B
 
a ' iff 8w 2 s;M;w � B

 
a ' iff 8w 2 s;8t 2}.s

 
a.w//\ŒŒ ��;M; t � '

–M; s � K
 
a ' iff 8w 2 s;M;w � K

 
a ' iff 8w 2 s;M;sa.w/ � '

We now establish two properties of state maps that will be of use.

Proposition 4.2.2. SPa .w/ D f;g iff S ŠPa .w/ D f;g, for all w 2 W , P 2 I .2

Proof. From left to right suppose S ŠPa .w/ ¤ f;g. Then, there is some t 2 S ŠPa .w/

such that t ¤ ;. By downward closure this means there exists some v 2 t such that
fvg 2 S ŠPa .w/. By adjustment we know fvg 2 ŠP . We know that fug 2 P iff fug 2 ŠP ,
for by fact 1.2.4 fug 2 P iff u 2 jP j and ŠP ´ }.jP j/ by definition 1.2.20. So, we can
infer fvg 2 P . Therefore, by minimality we know that fvg 2 SPa .w/ D SP\ŠP

a .w/ D

S ŠPa .w/ \ P , for S ŠPa .w/ \ P ¤ f;g. This means SPa .w/ ¤ f;g.
From right to left suppose S ŠPa .w/ D f;g. Then, by success we know SPa .w/\ ŠP D

f;g. Reasoning again by the fact that jP j D jŠP j, this entails SPa .w/ D f;g.

Proposition 4.2.3. SPa .w/ D S ŠPa .w/ \ P , for all w 2 W , P 2 I .

Proof. There are two cases. The first is if the outcome of either state map is inconsistent.
If this is so, then the conclusion is immediate by lemma 4.2.2. The second is if both state
maps are consistent. Suppose this is the case.

From left to right suppose t 2 SPa .w/ but t … S ŠPa .w/ \ P . By adjustment we
have that t 2 P , as we have assumed t 2 SPa .w/, therefore it must be the case that
t … S ŠPa .w/.

We have assumed that S ŠPa .w/ is consistent, which entails S ŠPa .w/\P is consistent.
For, by our assumption of consistency we know that 9u 2 S ŠPa .w/ such that u ¤ ;,
whence there is some world v 2 t . Furthermore, adjustment, S ŠPa .w/ � ŠP , and so
t 2 ŠP , and as ŠP ´ }.jP j/ this ensures v 2 jP j from which fvg 2 P by fact 1.2.4,
whence fvg 2 S ŠPa .w/ \ P .

Therefore, as S ŠPa .w/ \ P ¤ f;g, S ŠPa .w/ \ P D S ŠP\P
a .w/, by minimality Yet, as

ŠP \ P D P this entails t … SPa .w/, a contradiction.
From right to left suppose t 2 S ŠPa .w/ \ P . It is trivially the case that if t D ;

then t 2 SPa .w/, therefore let us assume t ¤ ;. As, S ŠPa .w/ \ P ¤ f;g, we know by
minimality that SPa .w/ D S ŠP\P

a .w/ D S ŠPa .w/ \ P . And so t 2 SPa .w/.

Corollary 4.2.4. sŠPa .w/ D sPa.w/, for all w 2 W;P 2 I .

Proof. By definition sPa.w/ D
S

SPa .w/ and sŠPa .w/ D
S

S ŠPa .w/, so we need to show
that

S
SPa .w/ D

S
S ŠPa .w/.

2Recall that by definition 1.2.20 ŠP ´ }.jP j/.
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Let v 2
S

SPa .w/ be arbitrary. By proposition 4.2.3 we have the following equiv-
alence fvg 2 SPa .w/ iff fvg 2 S ŠPa .w/ \ P . From which the left to right direction
immediately follows, as v 2

S
SPa .w/ iff fvg 2 S ŠPa .w/ \ P by the equivalence and

fact 1.2.4, whence fvg 2 S ŠPa .w/, and so v 2
S

S ŠPa .w/.
For the right to left suppose v 2

S
S ŠPa .w/, then fvg 2 S ŠPa .w/, whence by adjust-

ment fvg 2 ŠP . By definition 1.2.20 ŠP D }.jP j/, so v 2 jP j and so by fact 1.2.4
we know fvg 2 P , ensuring fvg 2 S ŠPa .w/ \ P from which we can reason that
v 2

S
SPa .w/ by the above equivalence from proposition 4.2.3.

The following proposition will be of help in establishing the soundness of ICDL with
respect to icdms.

Corollary 4.2.5. For all formulas  and declaratives ˛, C a ˛ � C
Š 
a ˛

Proof. We reason contrapositively.
From left to right supposeM;w ² C

Š 
a ˛. Then, 9t 2 S

Š 
a .a/;M; t ² ˛, whence

by proposition 1.2.15 we know that for some v 2 s
Š 
a .a/;M; v ² ˛. By corollary 4.2.4

we know that s
Š 
a .a/ D s

 
a.a/, and so we know that for some v 2 s

 
a.w/;M; v ² ˛.

Therefore, 9t 2 S
 
a .w/;M; t ² ˛, namely t D fvg. Therefore,M;w ² C

 
a ˛.

The converse is established analogously.

Remark 4.2.6. This is the conditional analogue of the fact that � ! ˛ � Š� ! ˛ (cf.
proposition 1.2.22).

Corollary 4.2.7. A formula is consistent with the beliefs of a given agent a, conditional
on ', if and only if it is consistent conditional on the informative content of '. Formally:

:B'a: � :B Š'a : 

Proof. This follows from axiom 7 of ICDL, which statesB a ˛ $ C
 
a ˛, that any formula

of the form : is a declarative, and that declaratives behave classically.

Theorem5.2.1 of chapter 5 establishes that any ipm can be transformed into an equiv-
alent icdm, therefore to establish soundness of ICDLwith respect to both ipms and icdms
it suffices to establish the soundness of ICDL with respect to icdms.

4.3 Soundness of ICDL with Respect to icdms
We show that axioms 1–9 are valid with respect to icdms, and that the two introduced
rules of proof respect support, in the sense that if ' can be derived from '1; : : : ; 'n and
M; s � 'i for i � n thenM; s � '.

Theorem 4.3.1 (Soundness of ICDL wrt. icdms.). ICDL is sound with respect to icdms.
Remark 4.3.2. We sketch the background required for a proof of soundness.

Each axiom of ICDL is a declarative, and so by proposition 1.2.15 soundness can be
established via appeal to truth conditions. This observation allow us to sidestep many
unnecessary repetitions and complications.

Proof.
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1. C a .' ! �/ ! .C
 
a ' ! C

 
a �/

Suppose not. Then there exists some world w such that M;w � C
 
a .' ! �/ and

M;w � C
 
a ' butM;w ² C

 
a �. So, we know by the basic lemma that S

 
a .w/ � ŒŒ'��

and S
 
a .w/ � ŒŒ' ! ���. From the support clause from implication it is immediate

that S
 
a .w/ � ŒŒ���, yet this contradicts the fact thatM;w ² C

 
a �.

2. C'a :' ! :'

Suppose not. Then for some worldw it is the case thatM;w � C
'
a :' whileM;w ²

:'. However, it is then the case by the basic lemma that S
'
a.w/ � ŒŒ:'��. So, by

adjustment that S
'
a.w/ � ŒŒ'��, whence it must be the case that S

'
a.w/ D f;g.

However, asM;w ² :' we know thatM;w � ::', and so by fact 1.2.16 we know
M;w � '. Yet, this means that fwg 2 ŒŒ'��, whence w 2 j'j, and so by safety we
know that S

'
a.w/ ¤ f;g, contradicting what we inferred above, and so our initial

assumption must have been mistaken.

3. C'a '
Suppose not. This means that there is a world w such that M;w ² C

'
a '. By the

support clause for C this means 9t 2 S
'
a.w/;M; t ² ', which entails S

'
a.w/ ª ŒŒ'��.

This contradicts the condition adjustment on state maps.

4. C a ' ! C
�
a C

 
a ' and :C

 
a ' ! C

�
a :C

 
a '

i C a ' ! C
�
a C

 
a '

Suppose M;w � C
 
a ' but M;w ² C

�
a C

 
a '. So, for some t 2 S

�
a.w/;M; t ²

C
 
a '. Therefore, for some v 2 t;M; v � :C

 
a '. As v 2 t and t 2 S

�
a.w/,

v 2 s
�
a.w/, whence by introspection we know S

 
a .w/ D S

 
a .v/. Yet, this cannot

be the case, for it would implyM;w � C
 
a ' iffM;v � C

 
a '.

ii :C
 
a ' ! C

�
a :C

 
a '

SupposeM;w � :C
 
a ', butM;w ² C

�
a :C

 
a '. So, for some t 2 S

�
a.w/;M; t ²

:C
 
a '. This means that for some v 2 t , M;v � C

 
a '. But then, as v 2 t and

t 2 S
�
a.w/ we have v 2 s

�
a.w/, and so by introspection, S

 
a .w/ D S

 
a .v/. This

cannot be the case, for as before it would implyM;w � C
 
a ' iffM;v � C

 
a '.

5. :C :' ! .C
 ^'
a � $ C

 
a .' ! �//

Suppose M;w � :C
 
a :'. We now show M;w � C

 ^'
a � ! C

 
a .' ! �/ and

M;w � C
 
a .' ! �/ ! C

 ^'
a �

M;w � C ^'
a � ! C

 
a .' ! �/

SupposeM;w � C
 ^'
a �whileM;w ² C

 
a .' ! �/. The latter entails S

 
a .w/ ª

ŒŒ' ! ���. From this we infer there exists some t 2 S
 
a .w/ such thatM; t � ' but

M; t ² �.
We claim S

 
a .w/ \ ŒŒ'�� ¤ f;g. For, suppose not. Then, f;g D S

 
a .w/ \ ŒŒ'��.

This means that the t we observed to exist above must be the empty set. However,
M;; � � for all �, and so M; t � �, a contradiction. Therefore, by minimality
we know S

 ^'
a .w/ D S

 
a .w/ \ ŒŒ'��. Yet, by the basic lemma and the fact that

M;w � C
 ^'
a � we know S

 ^'
a .w/ � ŒŒ��� and so S

 
a .w/ \ ŒŒ'�� � ŒŒ���. This

contradicts the existence of t .
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M;w � C a .' ! �/ ! C
 ^'
a �

SupposeM;w � C
 
a .' ! �/. We showM;w � C

 ^'
a �.

First, we claim S
 
a .w/ \ ŒŒ'�� ¤ f;g. We know M;w � :C

 
a :'. Therefore,

S
 
a .w/ ª ŒŒ:'��.

From this it follows that 9t 2 S
 
a .w/;M; t ² :'. Moreover, we know t ¤ ;, as if

so it would be the case thatM; t � � for all propositions �. So, asM; t ² :' we
know that for some v 2 t;M; v ² :' by proposition 1.2.15, whence by fact 1.2.16,
M;v � '. Moreover, as issues are downward closed we know fvg 2 S

 
a .w/. So,

there exists some state t 0 2 S
 
a .w/ such thatM; t 0 � '. This establishes the claim

and entails S
 ^'
a .w/ D S

 
a .w/ \ ŒŒ'��, by minimality.

AsM;w � C
 
a .' ! �/ this entails that if u 2 S

 
a .w/ \ ŒŒ'�� thenM;u � �. Yet

this means that for all u 2 S
 ^'
a .w/ then u � �. Therefore,M;w � C

 ^'
a �, by

the basic lemma.

7.B a ˛ $ C
 
a ˛

First we observe S
 
a .w/ � }.s

 
a.w//. For, if t 2 S

 
a .w/, then t � s

 
a.w/, and

s
 
a.w/ ´

S
S
 
a .w/, so t 2 }.s

 
a.w//.

Suppose M;w � B
 
a ˛. Then, 8t 2 .}.s

 
a.w// \ ŒŒ ��/;M; t � ˛. But then since

S
 
a .w/ � }.s

 
a.w// and S

 
a .w/ � ŒŒ �� we can infer 8t 2 S

 
a .w/;M; t � ˛, whence

M;w � C
 
a ˛. Therefore,M;w � B

 
a ˛ ! C

 
a ˛

Suppose M;w � :B
 
a ˛. So M;w ² B

 
a ˛, and for some t 2 .}.s

 
a.w// \ ŒŒ ��/,

M; t ² ˛. From this we infer there is some v 2 t such thatM;v ² ˛. It is simple
to observe v 2 s

 
a.w/, and so we know fvg 2 S

 
a .w/. And, as fvg 2 S

 
a .w/ and

M;v ² ˛ we knowM;w ² C
 
a ˛, whenceM;w � :C

 
a ˛.

Therefore,M;w � :B
 
a ˛ ! :C

 
a ˛, which, as worlds behave classically, we contra-

pose to obtainM;w � C
 
a ˛ ! B

 
a ˛

8.B a ' $
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/

We split the proof into two cases.

a)B a ' !
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/

SupposeM;w � B
 
a ' whileM;w ²

V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/. So,

by the latterM;w � :
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/. This, as worlds be-

have classically, is equivalent to M;w �
W
˛2R. /:.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/.

So, theremust be some˛ 2 R. / such thatM;w � :.:B
 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/.

Therefore, for such an ˛,M;w � :B
 
a :˛ whileM;w ²

W
ˇ2R.'/B

˛
aˇ. The latter

entailsM;w �
V
ˇ2R.'/ :B˛aˇ.

Suppose M;w � B˛a '. Then, by proposition 1.2.27, M;w � B˛a ‹R.'/. And,
from this it follows by the semantics clause from conditional belief and the interrog-
ative operator ‹ that 8t 2 }.s˛a.w// \ ŒŒ˛��;M; t � ˇ1 or : : : orM; t � ˇn, for
ˇ1; : : : ; ˇn 2 R.'/. As ˛ is a declarative, ŒŒ˛�� has a greatest state, as does }.s˛a.w//,
whence }.s˛a.w// \ ŒŒ˛�� has a greatest state. Let g denote this state.
By the above reasoning we know that M;g � ˇi for some ˇi 2 R.'/, and by
persistence this holds for all t � g. Therefore, as g is the greatest state of}.s˛a.w//\
ŒŒ˛�� we know that 8t 2 }.s˛a.w// \ ŒŒ˛��;M; t � ˇi , whenceM;w � B˛aˇi .
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Yet, we know for all ǰ 2 R.'/ that M;w � :B˛a ǰ , which contradicts the fact
thatM;w � B˛aˇi . Therefore, our assumption was mistaken andM;w ² B˛a '.
Taking stock, we have assumedM;w � B

 
a ' whileM;w ²

V
˛2R. /.:B

 
a :˛ !W

ˇ2R.'/B
˛
aˇ/, and inferred that for some ˛ 2 R. /;M;w � :B

 
a :˛, while

M;w ² B˛a '.
AsM;w � :B

 
a :˛ we know there exists some t 2 .}.s

 
a.w// \ ŒŒ ��/ such that

M; t ² :˛. So, by proposition 1.2.15 we know there exists some v 2 t such that
M;v ² :˛, which entailsM;v � ˛. As v 2 t we know v 2 s

 
a.w/, which entails

fvg 2 S
 
a .w/. This means S

 
a .w/ \ ŒŒ˛�� ¤ f;g. Therefore, by minimality we know

S
 
a .w/ \ ŒŒ˛�� D S

 ^˛
a .w/. Therefore, as ŒŒ �� \ ŒŒ˛�� D ŒŒ˛��, for ˛ 2 R. /, this

entails S
 
a .w/ \ ŒŒ˛�� D S˛a.w/.

From the above it follows that S˛a.w/ � S
 
a .w/, and so s˛a.w/ � s

 
a.w/, whence

}.s˛a.w// � }.s
 
a.w//. Moreover, as ˛ is a resolution of , ŒŒ˛�� � ŒŒ ��. From these

facts we infer }.s˛a.w// \ ŒŒ˛�� � }.s
 
a.w// \ ŒŒ ��.

We knowM;w � B
�
a � iff }.s�a.w// \ ŒŒ��� � ŒŒ���, for any formulas �; � by the sup-

port clause for the conditional belief modality. Therefore, }.s a.w// \ ŒŒ �� � ŒŒ'��,
by our assumption thatM;w � B

 
a ', whence from the above reasoningM;w �

B˛a ', contradicting our earlier sub-conclusion thatM;w ² B˛a '.

b)
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/ ! B

 
a '

SupposeM;w �
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/ whileM;w ² B

 
a '.

From these assumptions we begin by making five observations. i. AsM;w ² B
 
a '

we know that 9t 2 .}.s
 
a.w// \ ŒŒ ��/ such thatM; t ² '. ii. As t 2 ŒŒ �� we know

thatM; t � ˛ for some ˛ 2 R. /. iii. Yet, asM; t ² ' we know thatM; t ² ˇ

for any ˇ 2 R.'/. iv. asM; t ² ' we know that t ¤ ;, forM;; � '. v. And, as
t 2 .}.s

 
a.w// we know that t � s

 
a.w/, whence for all v 2 t; fvg 2 S

 
a .w/.

By the first of the previous observations we know that for each v 2 t , fvg 2 ŒŒ˛��.
From this and the last of the observations we know that S

 
a .w/\ ŒŒ˛�� ¤ f;g. So, by

minimality we know S
 ^˛
a .w/ D S˛a.w/ D S

 
a .w/ \ ŒŒ˛��.

Therefore, as8v 2 t; fvg 2 ŒŒ˛�� and fvg 2 S
 
a .w/we infer that8v 2 t , fvg 2 S˛a.w/.

So, t � s˛a.w/, whence t 2 }.s˛a.w//. And therefore, as t 2 ŒŒ˛�� by the second
observation, we know that t 2 }.s˛a.w// \ ŒŒ˛��. This means that we have some
t 2 }.s˛a.w// \ ŒŒ˛�� such thatM; t ² ˇ for any ˇ 2 R.'/, whenceM;w ² B˛a '.
By observation ii we know that M;w ² B

 
a :˛, for t 2 S

 
a .w/ and M; t � ˛,

whenceM;w � :B
 
a :˛ as worlds behave classically.

So, given that we know M;w �
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/, we infer

M;w �
W
ˇ2R.'/B

˛
aˇ. This means for some ˇ 2 R.'/ we have M;w � B˛aˇ,

and so 8s 2 .}.s˛a.w// \ ŒŒ˛��/;M; s � ˇ. Yet, by the above reasoning we know
t 2 .}.s˛a.w// \ ŒŒ˛��/, and by observation iii we know that M; t ² ˇ for any
ˇ 2 R.'/. Therefore we have derived a contradiction.

9.Ka' $
W
˛2R.'/ C

:˛
a ?

From left to right supposeM;w � Ka'. ThenM;sa.w/ � ', and from this we infer
M;sa.w/ � ˛ for some ˛ 2 R.'/ by proposition 1.2.26. As sa.w/ ´

S
P2I sa.w/,

we know s:˛
a .w/ � sa.w/, and therefore by persistence we can inferM;s:˛

a .w/ � ˛.
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Therefore, S:˛
a .w/ D f;g by the basic lemma and the condition of adjustment of

icdms. So,M;w � C:˛
a ?, whenceM;w �

W
˛2R.'/ B

:˛
a ?.

Conversely, suppose M;w �
W
˛2R.'/ C

:˛
a ?. Then M;w � C:˛

a ? for some ˛ 2

R.'/. So, we know that S:˛
a .w/ D f;g by the basic lemma. Therefore, by the success

condition on icdms we know that SPa .w/ \ ŒŒ:˛�� D f;g. From this it follows thatS
Q2I S

Q
a .w/\ ŒŒ:˛�� D f;g, whence Sa.w/\ ŒŒ:˛�� D f;g, and so Sa.w/ � ŒŒ˛��. So,

we know that 8w 2 sa.w/; fwg 2 ŒŒ˛��, whence sa.w/ 2 ŒŒ˛��. Therefore,M;sa.w/ �
˛, whenceM;sa.w/ � ' by proposition 1.2.26. So,M;w � Ka'.

10. Necessitation
Suppose ' is valid, and letM be an arbitrary model. Then for any s � W ,M; s � '.
This means that ŒŒ'��M D }.W /. Therefore, for an arbitrary  and world v, S

 
a .v/ �

ŒŒ'��. Therefore,M;v � C
 
a ' for any world v, whenceM; s � C

 
a ', for any state s,

by proposition 1.2.15.

11. Replacement of Equivalents
Given the proof system adopted for ICDL allows for undischarged assumptions want to
show that from assumptions '1; : : : ; 'n that if ' $  is derivable thenC 'a � $ C

 
a �

is derivable. This is shown via induction on the length of proof.
To use the rule of replacement of equivalents wemust have a proof that f'1; : : : ; 'ng `

' $  of shorter length than the proof that f'1; : : : ; 'ng ` C
'
a � $ C

 
a �. Therefore,

we can assume via the induction hypothesis that f'1; : : : ; 'ng � ' $  .
Let M be an arbitrary icdm and s as state such that, M; s � 'i for i � n. Then
we know that for all states s, M; s � ' $  , whence ŒŒ'��M D ŒŒ ��M . Therefore,
by definition S

'
a.w/ D S

 
a .w/ for any w 2 s. Therefore by the basic lemma we

infer M;w � C
'
a � $ C

 
a �, whence M; s � C

'
a � $ C

 
a �, for any state s, by

proposition 1.2.15.

4.4 Some Rules andTheorems of ICDL
Remark 4.4.1. The following rules and theorems of InqD will be used in order to estab-
lish the completeness of ICDL with respect to icdms. As these will be used before the
completeness result we establish each result syntactically, and in full.

Lemma 4.4.2. The following rule of inference is derivable in ICDL.

C
'
a . ^ �/

C
'
a  

.Cw1:/

Proof. Note we only apply the rule of necessitation for the considers modality only after
both the assumptions made are discharged.

C
'
a . ^ �/

Œ ^ ��1

 
.^e/

. ^ �/ !  
.!i;1/

C
'
a .. ^ �/ !  /

.Nec:/

C
'
a . ^ �/ ! C

'
a  

.Ax:/

C
'
a  

.!e/
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Lemma 4.4.3. Each instance of the following schemas is a theorem of ICDL.

1. C 'a � ! C
'
a . ! �/

2. :C
'
a : ! .C

'
a � ! C

'^ 
a �/

Proof.

1 Note we only apply the rule of necessitation for the considersmodality only after both
the assumptions made are discharged.

Œ �1 Œ��2

� .^i;^e/

 ! �
.!i;1/

� ! . ! �/
.!i;2/

C
'
a .� ! . ! �//

.Nec:/

C
'
a � ! C

'
a . ! �/

.Ax:1/

2

ŒC
'
a ��

1 C
'
a � ! C

'
a . ! �/

.Thm.1/

C
'
a . ! �/

.!e/

Œ:C
'
a : �2 :C

'
a : ! .C

'^ 
a � $ C

'
a . ! �//

.Ax:5/

C
'^ 
a � $ C

'
a . ! �/

.!e/

C
'
a . ! �/ ! C

'^ 
a �

.^e/

C
'^ 
a �

.!e/

C
'
a � ! C

'^ 
a �

.!i;1/

:C
'
a : ! .C

'
a � ! C

'^ 
a �/

.!i;2/

Finally we observe a ‘meta-meta-rule’ of ICDL in the following.

Lemma 4.4.4. If ' a`  then C 'a � a` C
 
a �.

Proof. Suppose ' a`  . Then there exists a proof of ' on the (sole) assumption of  
and conversely a proof of  on the assumption of '. Therefore, by applying the rules
of implication introduction to both proofs we can discharge the assumptions of each to
obtain proofs of ' !  and  ! ' from no assumptions. Therefore, by the rule of
conjunction introduction we have ` ' $  .

So, by the rule of replacements of equivalents we know ` C
'
a � $ C

 
a �, for any �.

From this we can use the rule of conjunction elimination and modus ponens to obtain a
proof of C 'a � on the assumption of  and likewise of C a � on the assumption of C 'a �.
Therefore, C 'a � a` C

 
a �.
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Chapter 5

Connexions

We now begin the road to establishing inquisitive conditional-doxastic logic is sound
and complete with respect to plausibility models. This is established by showing each
icdm can be transformed into a inquisitive plausibility model, and each plausibility
model can be transformed to an icdm, each transformation preserving the interpre-
tation of ICDL. Meaning, that for any given icdm M and its corresponding ipm M ],
M; s � ' iffM ]; s � ', for any ICDL formula ', and equivalently for the transforma-
tion of a given ipmM to an icdmM [.1

The two subcomponents of this goal, soundness and completeness respectively, re-
quire different aspects of the transformation.

For completeness we need to ensure we can transform the canonical model for ICDL,
which will be an icdm, into an ipm. And, as the canonical will be finite this means we
can restrict our attention to transforming finite icdms into ipms. Indeed, the assumption
that our initial icdm is finite will be necessary to ensure the ordering of the resulting ipm
is a well-preorder

However, for soundness we require that any ipm can be transformed into an icdm,
to be sure that for any ipm countermodel to an given axiom a corresponding icdm coun-
termodel could be found.

5.1 From icdms to Plausibility Models
Theorem 5.1.1 (From icdms to ipms). Any finite icdm can be transformed into an ipm
preserving the interpretation of ICDL.

To prove theorem 5.1.1 we first define a method to transform a given icdm into an
ipm, before proving that if the given icdm is finite, then the structure it gives rise to is
indeed an ipm. The assumption of finiteness turns out to be crucial in establishing the
ordering on worlds generated by the method of transformation is indeed well-founded.
However, this is not strictly a limitation on the method of transformation, as the axioms
of ICDL are insufficient to establish its canonical structure has a well-founded ordering.

Definition 5.1.2 (Map from icdms to ipms).
Given an arbitrary icdm,M D hW; fSPa ga2A;P2I ; V i, we define amapM 7! M ],

whereM ] D hW ]; f�wa ga2A;w2W ; f˙aga2A; V
]i is constructed in the following way:

1Note our mappings will ensure the sets of possible worlds for both models is the same, and therefore
we will not adjust the states from which a given formula is supported.
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1. W ] ´ W

2. v �wa u if v 2 s
ffvg;fugg#

a .w/

3. ˙a ´ Sa.w/, where Sa.w/ ´
S
Q2I S

Q
a .w/

4. V ] ´ V

Lemma 5.1.3. For every finite icdmM ,M ] is an ipm.

Proof. LetM D hW; fSPa ga2A;P2I ; V i be an arbitrary (finite) icdm, and takeM ] D

hW ]; f�wa ga2A;w2W ; f˙aga2A; V
]i as defined above.

We first prove the model defined satisfies factivity and introspection, the conditions
referred to can be found in chapter 4.

Factivity By conditions safety and adjustment on icdms, we know w 2 s
ffwgg#

a .w/.
Therefore, by definition w �wa w, so w 2 �a.w/.

Introspection 1 Suppose v 2 �a.w/. As �a.w/ D fv j v �wa u for some ug, this
means v 2 s

ffvg;g#

a .w/. So, by introspection we infer S
Q
a .v/ D S

Q
a .w/, for allQ 2 I .

Therefore,˙a.w/ D ˙a.v/, by definition of˙a.w/.

Introspection 2 Suppose x 2 �a.w/. Therefore, x �wa x. This means x 2 s
ffxgg#

a .w/,
whence S

Q
a .w/ D S

Q
a .x/ for allQ 2 I , by introspection. In particular, this means

that s
ffyg;fzgg#

a .w/ D s
ffyg;fzgg#

a .x/, for all y; z 2 W . Therefore, y �xa z iff y �wa z.

We now prove the ordering defined is a well-preorder, the conditions referred to can
be found in chapter 4 definition 3.1.3.

Reflexivity Follows as a corollary of factivity.

Transitivity Suppose the ordering is not transitive. Then for some x; y; z 2 W we have
x �wa y, y �wa z, but x —wa z. This means x 2 s

ffxg;fygg#

a .w/, y 2 s
ffyg;fzgg#

a .w/ but
x … s

ffxg;fzgg#

a .w/.

First, as, x 2 s
ffxg;fygg#

a .w/ we know S
Q
a .w/ D S

Q
a .x/, by introspection. And, by the

condition of safety we know that since x 2 fx; y; zg then S
ffxg;fyg;fzgg#

a .x/ ¤ f;g. So,
it is the case that S

ffxg;fyg;fzgg#

a .x/ D S
ffxg;fyg;fzgg#

a .w/ ¤ f;g.

Second, we observe that fxg … S
ffxg;fyg;fzgg#

a .w/. For suppose not. Then, it is the case
that S

ffxg;fyg;fzgg#

a .w/ \ ffxg; fzgg# ¤ f;g. So, by the condition of minimality we
have S

ffxg;fzgg#

a .w/ D S
ffxg;fyg;fzgg#\ffxg;fzgg#

a .w/ D S
ffxg;fyg;fzgg#

a .w/\ffxg; fzgg#.
This would mean fxg 2 S

ffxg;fzgg#

a .w/, contradicting our original hypothesis, as then
by definition x �wa z.

Third, we use the above to infer that y 2 s
ffxg;fyg;fzgg#

a .w/. For, by the previous obser-
vation fxg … S

ffxg;fyg;fzgg#

a .w/, but by the first S
ffxg;fyg;fzgg#

a .w/ ¤ f;g. So, as by ad-
justment we know S

ffxg;fyg;fzgg#

a .w/ � ffxg; fyg; fzgg# we have S
ffxg;fyg;fzgg#

a .w/ �

ffyg; fzgg#. This ensures S
ffxg;fyg;fzgg#

a .w/\ffyg; fzgg# ¤ f;g fromwhich it follows
by minimality that S

ffyg;fzgg#

a .w/ D S
ffxg;fyg;fzgg#

a .w/ \ ffyg; fzgg#. As we know
y 2 s

ffxg;fzgg#

a .w/ this means that y 2 s
ffxg;fyg;fzgg#

a .w/.
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Finally, y 2 s
ffxg;fyg;fzgg#

a .w/ ensures S
ffxg;fyg;fzgg#

a .w/ \ ffxg; fygg# ¤ f;g. So
S

ffxg;fygg#

a .w/ D S
ffxg;fyg;fzgg#

a .w/ \ ffxg; fygg#. As fxg … S
ffxg;fyg;fzgg#

a .w/ this
means fxg … S

ffxg;fygg#

a .w/. This contradicts our assumption that x �wa y.

For every set s� fv j 9u W v�wa ug there exists v 2 s such that v�wa u for all u2 s

Suppose for some set s � fv j 9u W v �wa ug that for every v 2 s there exists some
u 2 s such that v 6�wa u.
Let v 2 s be arbitrary and instantiate u such that v —wa u. By definition of �wa , we
know that v … s

ffvg;fugg#

a .w/. By adjustment we know s
ffvg;fugg#

a .w/ � fv; ug, and
as v 2 fv; ug by safety that s

ffvg;fugg#

a .w/ ¤ ;. Therefore, it must be the case that
u 2 s

ffvg;fugg#

a .w/, whence u <wa v.
As v 2 s was arbitrary we have shown that for any v 2 s there exists some u ¤ v

such that u <wa v. Yet, we know that s is finite as W is finite. Therefore, for some
y it must be the case that there is no z such that z <wa y, whence we have derived a
contradiction.

˙a.w/ is an issue over �a.w/
Suppose v 2 �a.w/. Then v �wa u for some u, by definition. But then v 2

s
ffvg;fugg#

a .w/. In turn this means that fvg 2 S
ffvg;fugg#

a .w/, and so fvg 2 Sa.w/,
which entails fvg 2 ˙a.w/, by definition. This establishes �a.w/ �

S
˙a.w/, as

˙a.w/ ´ Sa.w/.
Suppose v … �a.w/. Then fvg … ˙a.w/, whence fvg … S

Q
a .w/ for any issue

Q 2 I . In particular, then, fvg … S
ffvgg#

a .w/. However, by the conditions of safety
and adjustment we know fvg 2 S

ffvgg#

a .v/. Therefore, S
ffvgg#

a .v/ ¤ S
ffvgg#

a .w/. So, by
introspection we know v … s

Q
a .w/ for all issuesQ, whence fvg … S

Q
a .w/ for allQ 2 I .

Therefore, fvg … Sa.w/, whence fvg … ˙a.w/, and so v …
S
˙a.w/. This establishesS

˙a.w/ � �a.w/.

Before continuing to a proof of theorem 5.1.1 we establish a number of preliminary
lemmas and corollaries to ease the proof. These lead to establishing a strong correspon-
dence between the semantic structure used to interpret the considersmodality on icdms
and the structure used to interpret considers in its corresponding ipm.

Lemma 5.1.4. For any icdm;
v 2 sPa.w/ iff v 2 .sa.w/ \ jP j/ and 8u 2 jP j; v 2 s

ffvg;fugg#

a .w/.

Proof. Left to right
Assume v 2 sPa.w/. From this we know fvg 2 SPa .w/. So, fvg 2 Sa.w/, and by
adjustment fvg 2 P . So, v 2 .sa.w/ \ jP j/.
Let u 2 jP j be arbitrary. So, fug 2 P , which entails P \ ffvg; fugg# D ffvg; fugg#.
We know fvg 2 SPa .w/, and so SPa .w/ \ ffvg; fugg# ¤ f;g, therefore by minimality
we have S

P\ffvg;fugg#

a .w/ D S
ffvg;fugg#

a .w/ D SPa .w/ \ ffvg; fugg#. This entails
fvg 2 S

ffvg;fugg#

a .w/. So, v 2 s
ffvg;fugg#

a .w/.

Right to left

Assume v 2 .sa.w/ \ jP j/ and 8u 2 jP j; v 2 s
ffvg;fugg#

a .w/, while v … sPa.w/.
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We know v 2 .sa.w/\ jP j/, and so v 2 jP j. From this we observe fvg 2 S
ffvgg#

a .w/

and fvg 2 P .
The latter follows by fact 1.2.4 that fvg 2 P . The former follows from the fact that,
as v 2 sa.w/, v 2 s

Q
a .w/ for some Q 2 I. Therefore, fvg 2 S

Q
a .w/, whence

S
Q
a .w/ \ ffvgg# ¤ ;, and so as by success fvg 2 Q, we have S

Q
a .w/ \ ffvgg# D

S
Q\ffvgg#

a .w/ D S
ffvgg
a .w/, by minimality.

Furthermore, as v 2 jP j we know fvg 2 P , by fact 1.2.4, and this means S
ffvgg#

a .w/\

P ¤ f;g. Therefore, by success we know SPa .w/ ¤ f;g.
But, as v … sPa.w/, fvg … SPa .w/, and therefore there must be some u ¤ v such that
fug 2 SPa .w/. By adjustment we know fug 2 P . Given fvg 2 P and fug 2 P we
know P \ ffvg; fugg# D ffvg; fugg#. Therefore, as SPa .w/ \ ffvg; fugg# D fug#

we know S
ffvg;fugg#

a .w/ D fug#, for SPa .w/ \ ffvg; fugg# D S
P\ffvg;fugg#

a .w/, by
condition minimality This entails s

ffvg;fugg#

a .w/ D fug. However, as u 2 jP j we
know v 2 s

ffvg;fugg#

a .w/, which contradicts the fact that s
ffvg;fugg#

a .w/ D fug.

Corollary 5.1.5.
v 2 sPa.w/ iff v 2 .sa.w/ \ jP j/ and 8u 2 .sa.w/ \ jP j/; v 2 s

ffvg;fugg#

a .w/.

Proof. It is simple to repeat the steps of the previous argument to include the additional
constraint on the choice of u.

Lemma 5.1.6. For an icdmM and its corresponding plausibility modelM ];
sa.w/ D �a.w/.

Proof. From left to right suppose v 2 sa.w/. By introspectionwhenceS
Q
a .w/ D S

Q
a .v/,

for any Q. And, by safety and adjustment we know fvg 2 S
ffvgg#

a .v/, we know fvg 2

S
ffvgg#

a .w/, whence v 2 s
ffvgg#

a .w/. By definition of �wa this means v �wa v, whence by
definition of �a.w/ we have v 2 �a.w/.

From right to left suppose v 2 �a.w/. Then we know v �wa v, for �wa is reflexive.
In turn this means v 2 s

ffvgg#

a .w/, whence v 2 sa.w/, by definition.

Corollary 5.1.7. Given an arbitrary icdmM and a corresponding ipmM ],
sPa.w/ D Min�wa

.�a.w/ \ jP j/

Proof. Expanding definitions we have v 2 Min�wa
.�a.w/\ jP j/ iff v 2 .�a.w/\ jP j/

and 8u 2 .�a.w/\ jP j/; v 2 s
ffvg;fugg#

a .w/. By lemma 5.1.6 we know �a.w/ D sa.w/.
Therefore, v 2 Min�wa

.�a.w/\jP j/ iff v 2 .sa.w/\jP j/ and 8u 2 .sa.w/\jP j/; v 2

s
ffvg;fugg#

a .w/ iff v 2 sPa.w/, by corollary 5.1.5.

Lemma 5.1.8. Given an arbitrary icdmM and a corresponding ipmM ];
SPa .w/ D Min�wa

.˙a.w/ \ P /:

Proof. Left to right
Let t 2 SPa .w/ be arbitrary. By definition we know t 2 P , and t 2 ˙a.w/, for
˙a.w/ D

S
Q2I S

Q
a .w/, and t 2 SPa .w/. Furthermore, as t 2 SPa .w/ we know

t � sPa.w/, and therefore by corollary 5.1.7 we know t � Min�wa
.�a.w/ \ jP j/.
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Right to left
Let t 2 Min�wa

.˙a.w/\P / be arbitrary. From thiswe infer t � Min�wa
.�a.w/\jP j/,

and so we know t � sPa.w/, by corollary 5.1.7. We know, then, that t 2 ˙a.w/, and
t 2 P . We now show that t 2 SPa .w/.

By the fact that t 2 ˙a.w/, t 2 Sa.w/ D
S
Q2I S

Q
a .w/. Therefore t 2 S

Q
a .w/

for some Q 2 I . And, by success we know S
Q
a .w/ � Q, and so it is also the case

that t 2 Q and we have established already that t 2 P . If t D ; then it is trivially
the case that t 2 SPa .w/, so let us assume t ¤ ;. Given this assumption we know
S
Q
a .w/ \ P ¤ f;g, as t 2 S

Q
a .w/ and t 2 P , and so by minimality we know t 2

S
Q\P
a .w/ D S

Q
a .w/ \ P .

Consider now SPa .w/ \ Q. We know that t � sPa.w/, and it follows that for all
v 2 t; fvg 2 SPa .w/, given sPa.w/ D

S
SPa .w/. Thismeans that SPa .w/\Q ¤ f;g, as

each v 2 t is such that fvg 2 Q, by the fact that issues are downward closed. Therefore,
by minimality we know S

P\Q
a .w/ D SPa .w/ \ Q. But then, as t 2 S

P\Q
a .w/, t it

must also be the case that t 2 SPa .w/.

We are now ready to prove theorem 5.1.1, by showing that for any finite icdm, M ,
the mappingM 7! M ] preserves the interpretation of ICDL.

Proof of theorem 5.1.1. Let M be an arbitrary icdm and M ] an arbitrary plausibility
model constructed from M , given by the mapping defined above. We claim is that
M; s � � iffM ]; s � �, for all s � W and formulas �.

Proof is via induction on the complexity of �.

b1) � ´ p for some propositional letter p. As each transformation between the
models does not affectW nor the valuation function V , it is immediate thatM; s � p

iffM ]; s � p.

b2) � ´ ?. Trivial, using similar reasoning as above.

Induction Cases
Induction hypothesis:

i1) � ´  ^ �. This follows from the support clauses for conjunction, which allow
us to apply the induction hypothesis to simpler formulas.

i2) � ´ ‹f˛1; : : : ; ˛ng. This follows in an analogous way to the case for conjunction.

i3)� ´  ! �. The process is similar to the previous two cases. The only aspect that
changes is we must assume for some arbitrary t � s thatM; t �  impliesM; t � �.
Yet, we know by the induction hypothesis that for all formulas of a lower complexity
than  ! � that for all s � W ,M; s � � iffM ]; s � �. Therefore we can apply the
induction hypothesis to t also.

i4) � ´ C '.
M;w � C

 
a ' iff 8t 2 S

 
a .w/;M; t � '. By the induction hypothesis M; t � '

iff M ]; t � '. And, by lemma 5.1.8, t 2 S
 
a .w/ iff t 2 Min�wa

.˙a.w/ \ ŒŒ ��/.
Therefore, t 2 S

 
a .w/ andM; t � ' iff t 2 Min�wa

.˙a.w/ \ ŒŒ ��/ andM ]; t � '.
So, 8t 2 S

 
a .w/;M; t � ' iff 8t 2 Min�wa

.˙a.w/ \ ŒŒ ��/;M ]; t � ' This is the
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case iffM ]; w � C
 
a '. By this we have establishedM;w � C

 
a ' iffM ]; w � C

 
a '.

So, we haveM; s � C
 
a ' iffM ]; s � C

 
a ', by the support clause for C a ' in both

semantics.

5.2 From Inquisitive Plausibility Models to icdms
Theorem 5.2.1 (From ipms to icdms). Any imp can be transformed into an icdm, pre-
serving the interpretation of ICDL.

As in the proof of theorem 5.1.1 we first define a method to transform a given ipm
into an icdm, before proving that the method of transformation does indeed give rise
to an icdm. However, unlike the transformation of icdms to ipms we need not assume
the ipm chosen is finite.

Definition 5.2.2 (Map from ipms to icdms).
Given an arbitrary inquisitive plausibilitymodel,M D hW; f�aga2A; f˙aga2A; V i,

we define a mapM 7! M [, whereM [ D hW; fSPa ga2A;P2I ; V i is constructed in the
following way:

1. W [ ´ W

2. SPa .w/ ´ Min�wa
.˙a.w/ \ P /

3. V [ ´ V

Lemma 5.2.3. For every ipmM ,M [ is an icdm.

Proof. Let, M D hW; f�aga2A; f˙aga2A; V i be an arbitrary ipm, and take M [ D

hW; fSPa ga2A;P2I ; V i as defined above.

Safety
Suppose w 2 jP j for some P 2 I . Then, fwg 2 P by fact 1.2.4 and, by factiv-
ity, we know fwg 2 ˙a.w/. From this it follows that w 2 jP \ ˙a.w/j. So, as
Min�wa

.P \ ˙a.w// D }.Min�wa
jP \ ˙a.w/j/ \ P \ ˙a.w/ by corollary 3.3.11

we know Min�wa
.P \˙a.w// ¤ f;g, whence SPa .w/ ¤ f;g, by definition.

Adjustment SPa .w/ D Min�wa
.˙a.w/ \ P /, and so SPa .w/ � P .

Introspection

Let us assume v 2 sPa.w/, to show is S
Q
a .w/ D S

Q
a .v/. We can observe that fvg 2

sPa.w/ and therefore we know fvg 2 ˙a.w/, whence v 2 �a.w/.

Now, to show S
Q
a .w/ D S

Q
a .v/, it is sufficient to show Min�wa

.˙a.w/ \ Q/ D

Min�va
.˙a.v/\Q/. But, by introspection conditions 1. and 2. on plausibility model

this is immediate.

Minimality

Assume SPa .w/ \Q ¤ f;g. We show S
P\Q
a .w/ D SPa .w/ \Q.

First, we establish that Min�wa
.�a.w/\ jP \Qj/ D Min�wa

.�a.w/\ jP j/\ jQj, on
the basis of our assumption.
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Let u 2 Min�wa
.�a.w/\jP \Qj/ be arbitrary. Therefore, for all v 2 .�a.w/\jP \

Qj/, u �wa v. Let v0 2 Min�wa
.�a.w/ \ jP j/ \ jQj be arbitrary. Observe we know

such a v0 exists, for we have assumed SPa .w/\Q ¤ f;g. Clearly v0 2 �a.w/\jP \

Qj, and therefore u �wa v
0. As we know v0 2 Min�wa

.�a.w/\ jP j/ this entails u 2

Min�wa
.�a.w/ \ jP j/, from which it follows that u 2 Min�wa

.�a.w/ \ jP j/ \ jQj.

Let u 2 Min�wa
.�a.w/ \ jP j/ \ jQj be arbitrary. Therefore, u 2 jP j and u 2 jQj,

whence either u 2 Min�wa
.�a.w/\ jP \Qj/, or for all v 2 Min�wa

.�a.w/\ jP \

Qj/; v <wa u. However, the latter cannot be the case. For, v 2 jP j, and therefore
v 2 .�a.w/\jP j/. So, as v <wa u it must be the case that u … Min�wa

.�a.w/\jP j/.
This means, u 2 Min�wa

.�a.w/ \ jP \Qj/.

We are now ready to establish S
P\Q
a .w/ D SPa .w/ \Q.

1. SP\Q
a .w/ � SPa .w/ \Q

Suppose t 2 S
P\Q
a .w/. By definition of S

P\Q
a .w/ we infer t 2 P;Q;˙a.w/.

Furthermore, t � Min�wa
.�a.w/ \ jP \ Qj/. By the above this entails that t �

Min�wa
.�a.w/ \ jP j/ \ jQj. From this it follows that t 2 }.Min�wa

.�a.w/ \

jP j// \˙a.w/ \ P \Q, therefore t 2 SPa .w/ \Q.

2. SPa .w/ \Q � S
P\Q
a .w/

Suppose t 2 .SPa .w/ \Q/. By definition of SPa .w/ we infer t 2 P;˙a.w/ and t �

Min�wa
.�a.w/ \ jP j/. Furthermore, t 2 Q, and so t � jQj. Therefore, t �

Min�wa
.�a.w/\jP j/\jQj, fromwhich it follows that t � Min�wa

.�a.w/\jP\Qj/.
Therefore, t 2 Min�wa

.˙a.w/ \ .P \Q//, whence t 2 S
P\Q
a .w/.

Success
Assume S

Q
a .w/\P ¤ f;g. We want to show SPa .w/ ¤ f;g. By definition S

Q
a .w/ D

Min�wa
.˙a.w/\Q/. Therefore we know that there exists some t ¤ ; in S

Q
a .w/\P ,

whence by the former intersected set t 2 ˙a.w/, and so t � �a.w/. Likewise, t 2 P ,
so t � jP j. Putting these two facts together we infer t � .�a.w/\ jP j/, but as t ¤ ;

this means there must exist some v 2 Min�wa
.�a.w/ \ jP j/, and in turn this means

that Min�wa
.˙a.w/ \ P / ¤ f;g, whence SPa .w/ ¤ f;g.

We now show the transformationM 7! M [ preserves the interpretation of ICDL.

Proof of theorem 5.2.1. LetM be an arbitrary icdm and takeM [, the icdm constructed
fromM , given by the mapping defined above. We claimM; s � � iffM [; s � �, for all
s � W and formulas �.

Proof is via induction on the complexity of �. We prove only the considers modality,
with the others established analogously to the proof of theorem 5.2.1.

i4) � ´ C
 
a '.

It is immediate through the transformation that S
 
a .w/ D Min�wa

.˙a.w/ \ ŒŒ ��/,
And, through the induction hypothesis we know thatM; s � � iffM [; s � �, for all
formulas � of a lower complexity than C '. Therefore, for all t 2 Min�wa

.˙a.w/ \

ŒŒ ��/, M [; t � � iff for all t 2 S
 
a .w/, M; t � � This holds for ', in particular.

Therefore,M [; s � C
 
a ' iffM; s � C

 
a '.
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Theorem 5.2.4 (Soundness of ICDL wrt. ipms).
ICDL is sound with respect to inquisitive plausibility models.

Proof. Immediate, given ICDL is sound with respect to icdms by theorem 4.3.1, and that
we can transform any ipm into an icdm, preserving the interpretation of ICDL by theo-
rem 5.2.1.

For, any would-be inquisitive plausibility countermodel can be transformed into an
inquisitive conditional-doxastic countermodel preserving the interpretation of ICDL by
theorem 5.2.1.

5.3 The Entertains Modality Is Not Definable in ICDL

Proposition 5.3.1. The entertains modality cannot be defined in ICDL.

Proof. Consider the following ipms for a single agent:

M 1
D hW; f�wa gw2W ; f˙

1
a g; V i andM 2

D hW; f�wa gw2W ; f˙
2
a g; V i

where:

1. W D fw; vg, for bothM 1 andM 2

2. w <wa v and w <va v
3. ˙1

a .x/ D ffw; vgg# and˙2
a .x/ D ffwg; fvgg#, for x 2 fw; vg

4. V D fhw; fpgi; hv;;ig

These models have the following pictorial representation:

p :p

(a)M1

p :p

(b)M2

A simple inspection shows that bothM 1 andM 2 are in fact ipms. Furthermore, by
the mapping defined in section 5.2,M 1 andM 2 give rise to the same icdm.2 Therefore,
by theorem 5.2.1M 1; w � ' iffM 2; w � ', for all w 2 W;' 2 LICDL.

Yet, M 1 and M 2 disagree with respect to the entertains modality. For, we have
M 1; w ² Ea‹p, yetM 2; w � Ea‹p. Therefore,Ea‹p is not equivalent to any formula
in ICDL.

From an icdm perspective, to obtain the correct interaction between an agent’s epis-
temic state map and their conditional state maps we would require the following frame
condition schema (presuming icdms were equipped with epistemic states):

˙a.w/ \ }.sPa.w// D S ŠPa .w/

corresponding to the following equivalence on ipms.

˙a.w/ \ }.Min�wa
jP j/ D Min�wa

.˙a.w/ \ ŠP /

The expression of this property is natural. However, we have not been able to find ap-
propriate axioms to enforce this property on the canonical model.

2Note there are five distinct issues to consider when constructing state maps given the models defined;
ffw;vgg#; ffwg; fvgg#; ffwgg#; ffvgg#; and f;g. So, the corresponding icdm can easily be sketched.
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After establishing the completeness of ICDL in chapter 6 we will turn to inquisitive
plausibility logic in chapter 7, whichwill allow for an indirect axiomatisation of ICDLwith
the entertains modality. Inquisitive plausibility logic will be shown sound and complete
with respect to inquisitive plausibility models, thus ensuring that inquisitive plausibility
logic contains inquisitive conditional-doxastic logic.
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Chapter 6

Completeness of ICDL

6.1 Introduction
Our approach to weak completeness is a blend of the proof of strong completeness of
IEL with respect to iems from Ciardelli (2014b) and the proof of weak completeness of
PDL with respect to pdlms from Blackburn, Rijke, and Venema (2002, §4.8).

Indeed, the standard route to completeness, via constructing a canonicalmodel with
worlds corresponding to maximally consistent sets of declaratives cannot be taken. For,
in order for the canonical model to be an icdm it must be the case that at state map is
associated to every downward closed set of states. However, as the size of At may be
countably infinite this means the set of maximally consistent sets of declaratives will
be uncountable. Letting W denote this set, it is immediate that the set }.W / must be
uncountably infinite, and therefore as this set corresponds one-onewith the set of declar-
atives by taking the downward closure of each element, there are at least uncountably
many issues. Yet, there are countably many formulas of InqD, and so there uncountably
many potential inquisitive propositions for which no corresponding formula of InqD
exists. This leaves us without syntactic resource to characterise the state maps which
correspond to these propositions. Therefore, we will work with finite fragments of InqD
to construct canonical models, leading to weak completeness.

A second limitation arises when transferring the completeness of ICDL with respect
to icdms to ipms, as we will use canonical icdms to create canonical ipms. However, and
as observed in chapter 5, only finite icdms can be transformed to ipms.

These limitations combined put strong completeness beyond the scope of this thesis.
Instead, our approach to completeness will build models with respect to finite frag-

ments of ICDL. For, given a finite fragment there will be finitely many maximally con-
sistent sets of declaratives, whence there will only be finitely many possible issues with
respect to the model.

We begin this chapter with a number of definitions, lemmas, and theorems in or-
der to generate the finite fragment of interest given a finite set of formulas, and to con-
struct maximally consistent sets of declaratives from this fragment which we term nu-
clei, which are in turn used to construct atomswhich are used as worlds in our canonical
model construction.

Section 6.2.1 then shows how every issue over a set of atoms can be characterised
by using the fragment of ICDL used to generate the atoms. Section 6.3 then defines the
canonical model construction with respect to an arbitrary finite fragment, and shows
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thismodel is an icdm. Finally, section 6.4 outlines a number of results for ICDL, including
completeness and the failure of compactness for ICDL.

6.2 Foundations for the Canonical Model
Definitions, lemmas, and theorems from Ciardelli (2014b)

In order to build maximally consistent sets of declaratives with respect to a fragment
of ICDL to act as possible worlds we establish a connexion between declaratives and in-
terrogatives. The following definition associates to each formula a set of ‘resolutions’ in
the language of ICDL, repeated from section 3.2 while the following facts, lemmas, corol-
laries, and theorems outline the essentials of the relationship between a formula and its
resolutions.

We begin by recalling the definition of resolutions for ICDL.

Definition 3.3.4 (Resolutions for ICDL). The set R.'/ of resolutions for a given formula
' is defined inductively by:

– R.˛/ D f˛g

– R.‹f˛1; : : : ; ˛ng/ D f˛1; : : : ; ˛ng

– R.� ^ �/ D f˛ ^ ˇ j ˛ 2 R.�/ and ˇ 2 R.�/g

– R.' ! �/ D f
V
˛2R.'/.˛ ! f .˛// j f W R.'/ ! R.�/g

Fact 6.2.1. For any formula ', R.'/ is finite.

Definition 6.2.2 (Resolutions of a set). Given a set of formulas ˚ , we define the resolu-
tion of ˚ as the set R.˚/ containing sets of declaratives � satisfying:

1. 8˛ 2 �; 9' 2 ˚ such that ˛ 2 R.'/

2. 8' 2 ˚; 9˛ 2 � such that ˛ 2 R.'/

Lemma 6.2.3. For any ', ' a` ‹R.'/.

Proof. Follows lemma 1 of Ciardelli, Groenendijk, and Roelofsen (2015).

Corollary 6.2.4. If ˛ 2 R.'/, then ˛ ` '.

Corollary 6.2.5. For any interrogative �;� ` Š�.1

Lemma 6.2.6. If  1; : : : ;  n ` ' then C �a  1; : : : ; C �a  n ` C
�
a '.

Theorem 6.2.7 (Resolution Theorem for ICDL).
˚ `  iff every resolution of ˚ derives some resolution of  . Formally;

˚ `  if and only if 8� 2 R.˚/; � ` ˛ for some ˛ 2 R. /.

Proof. See Ciardelli (2014b, p. 109). While a number of cases need to be added to the
proof, the axioms introduced are declaratives, and so these are straightforward.

Corollary 6.2.8 (Split).
For a set of declaratives �; � ` ' implies � ` ˛ for some ˛ 2 R.'/.

1Recall Š� ´ ::�.
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Finite fragments of ICDL

Definition 6.2.9 (Subformulas). Let F be a set of formulas, we define sub.F / to be the
smallest set satisfying the following conditions:

1. If ' ı  2 F then '; 2 sub.F / for ı 2 f^;!g.
2. If ‹f˛1; : : : ; ˛ng 2 F , then ˛1; : : : ; ˛n 2 sub.F /.
3. If C a ' 2 F , then '; 2 sub.F /.

Definition 6.2.10 (F). We define five successive sets based on a set of formulas F .

1. We define F I to be the smallest set satisfying the following:
(a) F � F I,
(b) if ' 2 F I and  2 sub.'/, then  2 F I,
(c) if ' 2 F I, and ˛ 2 R.'/, then ˛ 2 F I,
(d) if ˛ 2 F I, then �˛ 2 F I.2

2. We define F II to be the smallest set satisfying the following:
(e) F I � F II,
(f) if ˛1; : : : ; ˛n 2 F I and are distinct then ˛1 ^ � � � ^ ˛n 2 F II.

3. We define F III to be the smallest set satisfying the following:
(g) F II � F III,
(h) if ˛1; : : : ; ˛n 2 F II and are distinct then ˛1 _ � � � _ ˛n 2 F III.

4. We define F IV to be the smallest set satisfying the following:
(i) F III � F IV,
(j) if ˛1; : : : ; ˛n 2 F III and are distinct then: ‹f˛1; : : : ; ˛ng 2 F IV,
(k) if ˛1; : : : ; ˛n 2 F III and are distinct then :.‹f˛1; : : : ; ˛ng/ 2 F IV.

5. We define F to be the smallest set satisfying the following:
(l) F IV � F,

(m) if ˛ 2 F IV, then �˛ 2 F.

The construction of F is tortuous but motivated as follows.
F I takes the declarative counterpart to F , and closes it under subformulas, resolu-

tions and their quasi-negations. F II introduces conjunctions of these resolutions. Note
in particular that for eachmaximally consistent subset of F I, there will be a conjunction
of all the elements in that set, which will in turn characterise the set. F III then allows us
to take disjunctions of those characteristic conjunctions, with these we will be able to
characterise sets of maximally consistent sets. F IV introduces basic interrogatives con-
structed from arbitrary declaratives in F III. This allows us to characterise issues, as for
any collection of states S1; : : : ; Sn there will be characteristic formulas γS1 ; : : : ;γSn ,
whence ‹fγS1 ; : : : ;γSng will collect together those states, and their downward closure.
Furthermore, :.‹fγS1 ; : : : ;γSng/ will give a syntactic account of relative-pseudo com-
plement in terms of negation, as opposed to the characteristic formula for the relative-
pseudo complement of the issue. Finally, F then ensures that F will be closed under
pseudo-negations with respect to declaratives, which will prove useful in establishing a
number of results.

2Recall �˛ ´ ˇ if ˛ is of the form :ˇ; and :˛ otherwise.
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The ability to characterise issues means that, given an agent, we will be able to define
state maps for each issue the agent can conditionalise on via the characteristic formula
for that state map. Moreover, we will use such characteristic formulas and their nega-
tions in conjunction with the axiomatisation of ICDL to show that the canonical models
we construct are in fact icdms.

Proposition 6.2.11. F has the following properties:

1. F is complete with respect to declaratives, in the sense that ˛ 2 F iff �˛ 2 F.
2. if F is finite then F is finite.
3. if ' 2 F and  2 sub.'/, then  2 F.
4. if ' 2 F, then ˛ 2 F for all ˛ 2 R.'/.

Proof.

1 Immediate by clause 5m and the fact that ��˛ D ˛.

2 As F is finite it contains only a finite number of formulas.
Moreover, the set resolutions to a formula ' are inductively constructed from resolu-
tions to subformulas of ', which must terminate in resolutions to basic interrogatives.
Therefore, as every resolution is a declarative, the only interrogatives present in F I

will be those found in the subformulas of the elements of F . So, closing a formula un-
der resolutions will introduce no interrogatives as the subformulas to a resolution not
found in the original formula. Therefore, as there are only finitely many subformulas
of any given formula, there can be only finitely many interrogatives in F I.
Furthermore, this means that the closure of F under subformulas, resolutions, and
then subformulas again is also closed under resolutions, as the second closure under
subformulas will introduce at most only new declarative which are their own resolu-
tions. Clearly each operation introduces only a finite number of formulas, and there-
fore closing F under both resolutions and subformulas results in a finite set. As this
set is finite, there must be only finitely many declaratives, and therefore only finitely
many pseudo-negations need to be added to achieve the conditions of F I, from which
we can conclude that F I is finite if F is.
Clearly, then, if F I is finite then there are only finitely many distinct ˛i , and thus
finitely many possible conjunctions of those ˛i . Therefore, clause 2f introduces only
finitely many formulas. The same reasoning holds for clause 3h, and so F III is finite.
Therefore, so too must it be the case that F IV is finite, for there are only finitely many
˛i 2 F III. Finally, the same reasoning applies to F, as there will be only finitely many
declaratives in F IV.

3 Proof is by cases, and at each case we look solely at the new formulas introduced by
the closure procedure for F.

a. ' 2 F I

Suppose  2 sub.'/. Then, by clause 1b we know  2 F I. As F I � F II � F III �

F IV � F,  2 F.
b. ' 2 F II

Either ' 2 F I or ' is of the form ˛1 ^ � � � ^ ˛n for distinct ˛1; : : : ; ˛n 2 F I.
Any subformula of the latter is either an element of F I, or a conjunction of distinct
˛i ; : : : ; ˛k 2 F I, where 1 � i � k � n. As ˛i ; : : : ; ˛k 2 F I are distinct clause 2f
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ensures ˛i ^ � � � ^ ˛k 2 F II, and by the previous case we know that F I is closed
under subformulas, whence F II must be too.

c. ' 2 F III

Either ' 2 F II or ' is of the form ˛1 _ � � � _˛n for distinct ˛1; : : : ; ˛n 2 F II. Given
˛1_ � � � _˛n ´ :.�˛1^ � � � ^ �˛n/ D .�˛1^ � � � ^ �˛n/ ! ?, we need to show
that ? 2 F and any formula of the form �˛i ^ � � � ^ �˛k 2 F for 1 � i � k � n.
By clauses 1c and 1d we know there exists some ˛ 2 F I, and that :˛ in F I. As
:˛ ´ ˛ ! ?, by clause 1b we know, as ? 2 sub.˛ ! ?/, so ? 2 F I.
As ˛i ; : : : ; ˛k 2 F I we know �˛i ; : : : ;�˛k 2 F I by clause 1d. Therefore, by
clause 2f �˛i ^ � � � ^ �˛n 2 F II � F.

d. ' 2 F IV

Either ' 2 F III or ' has the form ‹f˛1; : : : ; ˛ng, or :.‹f˛1; : : : ; ˛ng/, with distinct
˛1; : : : ; ˛n 2 F III.
If ' ´ ‹f˛1; : : : ; ˛ng, then ˛1; : : : ; ˛n 2 F III, and so any 2 sub.'/ 2 F III which
we have established is closed under subformulas.
If ' ´ :.‹f˛1; : : : ; ˛ng/ then we know ‹f˛1; : : : ; ˛ng 2 F, by clause 4j, and thus
by the previous reasoning that sub.‹f˛1; : : : ; ˛ng/ � F, and by prior reasoning we
know ? 2 F IV.

e. ' 2 F

Either ' 2 F IV or ' is of the form �˛ for some ˛ 2 F IV. But as �˛ is either of the
form :ˇ or ˇ, with ˇ 2 F IV. So, as ˛ 2 F IV we know that  2 sub.˛/,  2 F IV,
and as ? 2 F IV by prior reasoning, for any  2 sub.�˛/,  2 F IV � F.

4 By clause 1c we know that if ' 2 F I, then ˛ 2 F I for all ˛ 2 R.'/. Furthermore,
for any clause that introduce declaratives, as R.˛/ D f˛g, we know the property is
preserved by these.
Therefore, we only need to concern ourselves with clause 5. However, this clause
only introduces basic interrogatives, and as the resolutions of a basic interrogative
are its declarative components, for any ‹f˛1; : : : ; ˛ng 2 F IV � F III, ˛i 2 F III, whence
f˛1; : : : ; ˛ng � F.

In order to construct a finite canonical model we will isolate the declarative part of
F. To do so we introduce the following notation, with ‘D’ relating to ‘declaratives’ just
as F relates to ‘formulas.’

Definition 6.2.12 (D). D ´ f˛ j ˛ 2 Fg.

From D we will build complete theories of declaratives relative to F , and these will
function as the set of worlds. However, not all properties of proposition 6.2.11 carry over
to D. For example, the formulaCpa ‹fq; rg is a declarative, but contains an interrogative
as a subformula. Still, property 1b follows in a modified form, taking only declarative
subformulas.

Proposition 6.2.13. D has the following properties:

1. D is complete with respect to declaratives, in the sense that ˛ 2 D iff �˛ 2 D.
2. if F is finite then D is finite.
3. if ˛ 2 D and ˇ 2 sub.˛/, then ˇ 2 D.
4. if ' 2 F, then ˛ 2 D for all ˛ 2 R.'/.
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Proof.

1. ˛ 2 D iff ˛ 2 F iff �˛ 2 F iff �˛ 2 D, by proposition 6.2.11 and the definition
of D.

2. Immediate, as D � F, and we have by proposition 6.2.11 that F is finite.
3. If ˛ 2 D then ˛ 2 F, whence if ˇ 2 sub.˛/ then ˇ 2 F by proposition 6.2.11,

and thus as ˇ is a declarative, ˇ 2 D by definition of D.
4 If ' 2 F then by proposition 6.2.11 we know that ˛ 2 F for all ˛ 2 R.'/,

whence ˛ 2 D for all ˛ 2 R.'/ by definition of D.

These observationswill be important in constructing our complete theories of declar-
atives relative to F . First, we define complete theories of declaratives simpliciter.

Definition 6.2.14 (Complete theory of declaratives). A set of declaratives � is a com-
plete theory of declaratives (CTD) if it is the smallest set satisfying the following condi-
tions:

1. � is consistent. I.e. � ° ?

2. � is complete, in the sense that for every declarative ˛, either ˛ or �˛ 2 � .

We observe Lindenbaum’s lemma, which we will appeal to later.

Fact 6.2.15 (Lindenbaum’s lemma). If� is a consistent theory of declaratives, then� �

� for some complete theory of declaratives � .

We now turn to constructing a canonical model relative to a set of formulas F . Our
approach is loosely modelled on the proof of weak completeness for PDL as found in
Blackburn, Rijke, and Venema (2002).

Definition 6.2.16 (Nuclei). For a set of formulas F we define a set of declaratives N to
be an nucleus over F if it is a maximally consistent theory of declaratives in D. So, N
is an nucleus over F if a) A is a set of declaratives, b) A is consistent, c) A � D, and
d) if A � B � D, then B is inconsistent. Let Nu.F / be the set of all nuclei over F .

Lemma 6.2.17. Nu.F / D f� \ D j � is a complete theory of declaratives:g

Proof. We split the proof into two cases, establishing each set is a subset of the other.
From left to right suppose N 2 Nu.F /. Then, N is a consistent theory of declara-

tives, by definition, and so can be extended to some complete theory of declaratives� by
Lindenbaum’s lemma. We now want to showN D � \ D, but this is immediate given
that N is a complete theory of declaratives with respect to D, as for any ˛ 2 .� � N/,
˛ … D.

From right to left, let � \ D be arbitrary. By definition � is a maximally consistent
set, and trivially � \ D � D. Therefore, � \ D is a consistent subset of D. To see that
it is maximal with respect to the other consistent subsets of D suppose there is some
˛ 2 D such that � \ D [ f˛g is consistent yet ˛ … � \ D.

However, by proposition 6.2.13 if ˛ 2 D then �˛ 2 D, whence ˛ … � . And so, by
definition 6.2.14 we know �˛ 2 � . So, �˛ 2 � \ D, contradicting the assumption
that � \ D [ f˛g is consistent.

Therefore, as � \ D is a consistent subset of D and is maximal with respect to the
other consistent subsets of D, � \ D 2 Nu.F /.

Remark 6.2.18. This an adaptation of the ‘heavy handed’ approach from Blackburn, Ri-
jke, and Venema (2002, p. 242), the finitary proof given for the case of PDL does not
straightforwardly carry over to ICDL. For our purposes, this approach is sufficient.
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We have defined our nuclei to be maximally consistent subsets of D. However, in
order to show that the canonical model over F is an icdm it seems we need further
syntactic structure.3 In order to do this we extend each nucleus to an atom in a manner
analogous to the construction of amaximally consistent set of formulas in Lindenbaum’s
lemma (Cf. Blackburn, Rijke, and Venema (2002, p. 199)).

Definition 6.2.19 (Atoms). Let ˛1; : : : ; ˛i ; : : : be an enumeration of the declaratives of
LICDL. We define an atom A relative to a nucleus N as the union of a chain of LICDL-
consistent sets as follows:

A0 D N

AnC1 D

�
An [ f˛ng; if An ` ˛n
An [ f:˛ng; otherwise

A D
S
n�0An:

While nuclei would seem to give us insufficient syntactic structure, atoms give us an
abundance. And, while we will not require the full structure of atoms, their definition
is simpler than carefully crafting sets of formulas that we do need for nuclei.

The complication remains in taking a finite set of formulas relative to a fragment of
ICDL and expanding these to any consistent set of declaratives relative to ICDL (giving
up maximally consistent sets of declaratives), before then restricting these maximally
consistent sets relative to the finite fragment (giving us nuclei), and then enlarging the
sets again to a greater fragment of ICDL (giving us atoms). However, the construction of
atoms differs from the construction of maximally consistent sets by constraining which
declaratives are added to the nuclei.

For, given a nucleusN and declarative ˇ such thatN ° ˇ andN ° :ˇ then there
would be two maximally consistent sets, corresponding to extensions of N [ fˇg and
N [ f:ˇg. However, there will only be one atom; either the extension ofN [ fˇg or of
N [ f:ˇg.4 Moreover, as there are a finite number of nuclei over F, this ensures there
are a finite number of atoms over F.

We denote by At.F / the set of atoms over F .

Proposition 6.2.20. Let A be an atom, then:

1. A is consistent.
2. If A \ D D B \ D, then A D B .
3. For any declaratives ˛ 2 LICDL; A ` ˛ or A ` :˛.

Proof.

1 Straightforward.

2 Suppose A \ D D B \ D. Then A0 D B0, which establishes the base case. For the
induction case suppose An D Bn. Then An ` ˛ iff Bn ` ˛ for any ˛ 2 LICDL, and so
AnC1 D BnC1, by the construction of AnC1 and BnC1.
3The issue comes in particular for formulas of the form :C

 
a :', for '; 2 F. For, axioms 4.ii and 5

both have antecedents of this form, yet we are not guaranteed these are elements of F, nor is it obvious that
formulas of this kind would follow from the elements of each nucleus …

4If ˇ is the first formula in the enumeration we can be sure that the atom is an extension of N [ fˇg.
However, ifˇ occurs after so formula it may be the case that the partial atom entailsˇ , whence the complete
atom will entail ˇ even ifN does not.
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3 Let ˛i in the enumeration of the declaratives of LICDL be arbitrary. As atoms are con-
sistent then it is the case that either A ` ˛i or A ° ˛i . By construction of A, if A ° ˛i
then we know :˛i 2 A, whence A ` :˛i .

Lemma 6.2.21. If f˛1; : : : ; ˛ng � F and f˛1; : : : ; ˛ng is consistent, there is an atom
A2At.F / such that f˛1; : : : ; ˛ng � A.

Proof. f˛1; : : : ; ˛ng is a consistent set of declaratives, so long as it is consistent. There-
fore by fact 6.2.15 there is some CTD � such that f˛1; : : : ; ˛ng � � . We now apply
lemma 6.2.17 to infer N D � \ D is an nucleus containing ˛. Therefore, by defini-
tion 6.2.19 there is an atom extendingN .

Proposition 6.2.22 (Deduction of declaratives).
For a set of formulas F and every A in At.F /, if A ` ˇ, then ˇ 2 A.

Proof. Let A 2 At.F / be arbitrary and suppose for some ˇ that A ` ˇ but ˇ … A.
By the former fact in conjunction with the fact that atoms are consistent by proposi-
tion 6.2.20 we know that A ° :ˇ and therefore we know that :ˇ … A. However, as ˇ
is a declarative itmust occur in the enumeration of the declaratives of ICDL, whichmeans
that every atom contains either ˇ or :ˇ by construction. So, we have contradicted our
assumption that A is an atom.

Proposition 6.2.23 (Disjunction property for Atoms). If ˛1 _ � � � _ ˛n 2 A, for some
atom A, then ˛i 2 A for some i � n.

Proof. As ˛1_� � �_˛n 2 A,A ` ˛1_� � �_˛n. Therefore,A ` :.�˛1^� � �^�˛n/. So,
suppose toward a contradiction thatA ° ˛i for i � n. We know by proposition 6.2.20.3
that A ` ˛i or A ` :˛i , and so it must be the case that A ` :˛i for all i � n. So,
A ` �˛i for all i � n, given that we know �˛ a` :˛ by proposition 1.2.29. Therefore,
by the introduction rule for conjunction we know that A ` �˛1 ^ � � � ^ �˛n, but this
contradicts the consistency of A, whence A ` ˛i for some i � n

6.2.1 Syntactic Characterisation of Atoms, States, and Propositions.
Before giving the recipe to construct a canonical model relative to F we establish some
properties about the set of atoms. Let us assume a fixed F . By A;B; : : : we denote
atoms, S; T; : : : sets of atoms, and by P;Q : : : non-empty downward closed subsets of
}.At.F //. Given the recipe to construct the canonical model, below, atoms correspond
to possible words, S; T; : : : to states, and P;Q; : : : to issues.

Lemma 6.2.24. If A�F 0 D B�F 0 , then A D B .

Proof. Suppose A�F 0 D B�F 0 . We establish a series of sublemmas, corresponding to
restrictions of A and B .

1. If ˛ 2 F I, then ˛ 2 A iff ˛ 2 B

Immediate, given our assumption that A�F 0 D B�F 0 .
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2. If ˛ 2 F II, then ˛ 2 A iff ˛ 2 B

Suppose ˛ 2 F II. Then, either ˛ 2 F I or ˛ 2 F II � F I. The previous sublemma
establishes the claim holds if the former is the case. Suppose, then, that ˛ 2 F II � F I.
Therefore, ˛ is of the form ˛1 ^ � � � ^ ˛n where each ˛i 2 F I.
Suppose ˛ 2 A. Then, by closure under deduction of declaratives in F (proposi-
tion 6.2.22), it must be the case that ˛i 2 A, for each i . Then, by the previous sub-
lemma we can infer ˛i 2 B for each i . So, again by the fact that B is complete and
consistent with respect to F it must be the case that ˛1 ^ � � � ^ ˛n 2 B . The converse
is established analogously.

3. If ˛ 2 F III, then ˛ 2 A iff ˛ 2 B

Suppose ˛ 2 F III and ˛ 2 A. As before, the case where ˛ 2 F II follows from the
previous sublemma. Therefore, let us assume ˛ 2 F III � F II. So, ˛ is of the form
˛1 _ � � � _ ˛n where each ˛i 2 F II. However, atoms have the disjunction property
(proposition 6.2.23), and therefore ˛i 2 A for some i . So, as ˛i 2 F II and ˛i 2 A we
have by the previous sublemma that ˛i 2 B . Finally, the fact that B is complete and
consistent guarantees that ˛1 _ � � � _˛n 2 B . The converse is established analogously.

4. If ˛ 2 F IV, then ˛ 2 A iff ˛ 2 B

Note the operation for F IV only introduces declaratives of the form :.‹f˛1; : : : ; ˛ng/.
So, from left to right, if :.‹f˛1; : : : ; ˛ng/ 2 A then A ` :.‹f˛1; : : : ; ˛ng/, whence
as A is consistent this means A ° ‹f˛1; : : : ; ˛ng. So, by theorem 6.2.7 we know that
A ° ˛i for all i � n, as R.‹f˛1; : : : ; ˛ng/ D f˛1; : : : ; ˛ng. Therefore, ˛i … A, but
we know each ˛i 2 F III, whence by the previous case we know that ˛i … B , and
therefore B ° ‹f˛1; : : : ; ˛ng by theorem 6.2.7 again. So, B ` :.‹f˛1; : : : ; ˛ng/ by
proposition 6.2.20, whence :.‹f˛1; : : : ; ˛ng/ 2 B .
The right to left direction is established analogously.

5. If ˛ 2 D, then ˛ 2 A iff ˛ 2 B

Suppose ˛ 2 F � F IV and ˛ 2 A. This means ˛ is of the form �ˇ, for some ˇ 2 F IV.
As atoms are consistent, this means ˇ … A. So, from the previous sublemma ˇ … B .
Therefore, by the fact that atoms are complete by proposition 6.2.20, it must be the
case that �ˇ 2 B . The converse is established analogously.

6. As we have shown that for all ˛ 2 F, ˛ 2 A iff ˛ 2 B it follows immediately that
for all ˛ 2 D, ˛ 2 A iff ˛ 2 B . Therefore, we now know that A \ D D B \ D, and
therefore by proposition 6.2.202 we know that A D B .

By the previous lemma we can associate to every atom a canonical formula, defined
by taking the conjunction of the restriction of A to F I, and by the following definition
this is used to build canonical formulas for states.

Definition 6.2.25. γA ´
V
˛2A�F 0

˛

The following lemma establishes that γA is indeed canonical.

Lemma 6.2.26. γA 2 B () B D A
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Proof. Suppose γA 2 B . Therefore, as B is closed under deduction of declaratives by
proposition 6.2.22 it must be the case that ˛i 2 B for all ˛i 2 A�F 0 , so A�F 0 �

B�F 0 . Conversely, if ˛ … A�F 0 , then �˛ 2 A�F 0 , whence �˛ 2 B�F 0 by the previous
inference, and so ˛ … B�F 0 Therefore, as A�F 0 D B�F 0 by lemma 6.2.24 we know
A D B .

From right to leftwe begin by observing thatA D B impliesA�F 0 D B�F 0 . Second,
we observe γA 2 F II, by the fact that each conjunct of γA is an element of F I. Therefore,
by closure of atoms under deduction of declaratives in F, we know γA 2 B .

Lemma 6.2.27. For any atom A, γA 2 F II.

Proof. By definition 6.2.25 γA ´
V
˛2A�F 0

˛. And, by definition 6.2.10 clause 2f if
˛1; : : : ; ˛n 2 F I and are distinct then˛1^� � �^˛n 2 F II, whence

V
˛2A�F 0

˛ 2 F II.

From atoms we move to states. These are canonically defined by taking the disjunc-
tion of the canonical formula for every atom in the state.

Definition 6.2.28. γS ´
W
A2SγA, where γ; ´ ?.

For canonicity we require S and its substates derive the associated formula. This
weakening follows from the fact that states in ICDL are persistent, and so states cannot be
uniquely characterised. To show that γS is indeed canonical for S we begin by showing
that an atom derives γS just in case it is an element of S .

Lemma 6.2.29. A ` γS iff A 2 S .

Proof. From left to right supposeA ` γS . Then,A `
W
B2SγB , by definition of γS . So,

we know that
W
B2SγB 2 A by proposition 6.2.22. From this we know that γB 2 A for

some B 2 S by proposition 6.2.23. And, by lemma 6.2.26 we know A ` γB iff B D A,
whence A 2 S .

From right to left supposeA 2 S . This means we have γA as a disjunct of
W
B2SγB .

However, we know A ` γA, and therefore it follows that A `
W
B2SB , which is equiv-

alent to A ` γS .

Lemma 6.2.30. For any state S , γS 2 F III.

Proof. First note that as there are only finitely many atoms, each state S is of a finite size.
By definition 6.2.28 γS ´

W
A2SγA, and by lemma 6.2.27 we know γA 2 F II. By

definition 6.2.10 clause 3h if ˛1; : : : ; ˛n 2 F II and are distinct then ˛1_ � � � _˛n 2 F III,
therefore γA1 _ � � � _ γAn 2 F III for A1; : : : ; An 2 S , and so γS 2 F III.

From this we observe the intersection of all the atoms in a state derive its canonical
formula.

Corollary 6.2.31.
T
S ` γS , where

T
; ´ D.5

Proof. If S D ; then
T
S D D. Clearly, D ` ?, as D contains ˛ and �˛ for all ˛ 2 F.

So, assume S ¤ f;g. Then, we know by lemma 6.2.29 that A ` γS for all A 2 S .
And, γS 2 F, for by lemma 6.2.30 γS 2 F III � F. Therefore, by proposition 6.2.22
we have γS 2 ATherefore, as

T
S D f˛ j ˛ 2 A for all A 2 Sg we know γS 2

T
S ,

whence
T
S ` γS .

5We have defined
T
S D f˛ 2 D j 8A 2 S;˛ 2 Ag. So, on this basis we define

T
; ´ f˛ 2 D j

8A 2 ;; ˛ 2 Ag D D.
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By the previous lemma and its corollary we are ready to show that γS is canonical
in the required sense.

Lemma 6.2.32.
T
T ` γS () T � S

Proof. From left to right suppose
T
T ` γS and let A 2 T be arbitrary. As

T
T � A,

we know A ` γS . Therefore, A 2 S , by lemma 6.2.29.
From right to left suppose T � S . From this assumption we infer,

T
S �

T
T . By

corollary 6.2.31 we know
T
S ` γS , and so

T
T ` γS .

Using canonical formulas for states, we can syntactically characterise issues. Like
atoms and states, each issue can be identified with a unique characteristic formula, and
thus an inquisitive proposition, defined as follows.

Definition 6.2.33. χP ´ ‹fγS j S 2 P g

Lemma 6.2.34.
T
S ` χP () S 2 P

Proof. From left to right suppose
T
S ` χP . As

T
S is a set of declaratives, then by

corollary 6.2.8 we know
T
S ` ˛ for some ˛ 2 R.χP /. But then by definition of χP ,T

S ` γT for some T 2 P . Therefore, S � T , by 6.2.32. But then S 2 P as T 2 P

and P is downward closed by definition.
From right to left suppose S 2 P . We know by corollary 6.2.31 that

T
S ` γS .

Therefore,
T
S ` ‹fγS j S 2 P g. So,

T
S ` χP , by definition.

Proposition 6.2.35. Given a set of formulas F , then for every issue P over At.F / there
is a formula � in F such that S 2 P iff

T
S ` �.

Proof. By definition 6.2.33, χP ´ ‹fγS j S 2 P g. By lemma 6.2.30, γS 2 F III, as so
by 6.2.10 clause 4j, χP ´ ‹fγS j S 2 P g 2 F.

Remark 6.2.36. Note also that as χP D ‹fγS j S 2 P g and each γS 2 F III by
lemma 6.2.30 we also know by clause 4k, that :χP D :.‹fγS j S 2 P g/ 2 F.

6.3 The Canonical Model
Definition 6.3.1 (Canonicalmodel overF ). LetF be a finite set of formulas. The canon-
ical model over F is the tuple: MF D hAt.F /; fSPa ga2A;P2I ; V i, defined as follows:

– At.F / is the set of atoms over F

– V.A/ D fp 2 At j p 2 Ag

– For every issue P 2 I , SPa .w/ is the set of states S � At.F / defined by:

S 2 SPa .A/ ()
\
S ` ' whenever A ` CχP

a '

Lemma 6.3.2. 8S � At.F / and 8˛ 2 F;
T
S ` ˛ () ˛ 2

T
S .

Proof. Our reasoning closely follows Ciardelli (2014b, p. 111). The right to left direction
is immediate. For the left to right direction suppose

T
S ` ˛. Then as for any A 2 S

we have
T
S � A we know that A ` ˛. We have assumed ˛ 2 F, and therefore by

proposition 6.2.22 we must have ˛ 2 A, and so ˛ 2
T
S .

Lemma 6.3.3. For A 2 At.F /, ' 2 F, if A ° C
χP
a ' then 9S 2 SPa .A/ W

T
S ° '.
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Proof. Our reasoning closely follows Ciardelli (2014b, pp. 111–112).
Suppose A ° C

χP
a '. Define AC

χP
a ´ f� j A ` C

χP
a � and � 2 Fg. We now

claimAC
χP
a ° '. Suppose toward a contradiction thatAC

χP
a ` '. Thismeans we have

�i 2 AC
χP
a such that �1; : : : ; �n ` '. Therefore, we can apply lemma 6.2.6 to infer

C
χP
a �1; : : : ; C

χP
a �n ` C

χP
a '. However, we know that A ` C

χP
a �1; : : : ; C

χP
a �n, and

therefore A ` C
χP
a ', contrary to our initial assumption.

AsAC
χP
a ° ' we know by lemma 6.2.7 that there must be a resolution� ofAC

χP
a

which does not entail any resolution ˛ of '. Therefore, for any ˛ 2 R.'/ we have a
consistent set of declaratives � [ f�˛g. Furthermore, we know � [ f�˛g � F, for
we have assumed ' 2 F, and so each of its resolutions and their pseudo-negations is in
F, and AC

χP
a � F, by construction, guaranteeing� 2 F. Therefore there exists some

atom A˛ such that� [ f�˛g � A by lemma 6.2.21.
Consider now the state S ´ fA˛ j ˛ 2 R.'/g. As � � A˛ for all A˛ 2 T

we know � �
T
S . Suppose A ` C

χP
a � for some � 2 F. Then � 2 AC

χP
a , by

definition, and since� is a resolution of AC
χP
a it must contain some resolution ˇ of �.

As ˇ 2 � �
T
T it follows that

T
S ` �, by corollary 6.2.4. This means that

T
S ` �

whenever A ` C
χP
a �, which entails S 2 SPa .A/.

Suppose toward a contradiction that
T
S ` '. Then by corollary 6.2.8 we haveT

S ` ˛ for some ˛ 2 R.'/. As
T
S � A˛ we know that

T
S contains no such

resolution of ', given Aa contains �˛ and is consistent. Therefore
T
S ° '.

Lemma 6.3.4 (Support lemma). For a set of formulas F and the canonical model over
F ,MF , for any S � At.F / and any ' 2 F,

MF ; S � ' ()
\
S ` '

Proof. Our proof follows Ciardelli (2014b, pp. 112–1123), and proceeds via induction
on the complexity of '. Complications arise, and therefore we prove the lemma in full.

B1) � ´ p, for some proposition letter p 2 F

MF S � p iff p 2 V.A/ for all A 2 S iff p 2
T
S iff

T
S ` p.

B2) � ´ ?

From left to right,MF ; S � ? iff S D ; iff
T
S D D. Therefore,

T
S ` ?.

From right to left, if
T
S ` ? then it must be the case that S D ;, as if there is some

A 2 S then
T
S � A. So, were it the case that

T
S ` ?, it would follow that A ` ?.

Yet, we know that atoms are consistent, whence S D ;, and soMF ; S � ?.

We now suppose the claim holds for all formulas  of a lower complexity than '.

I1) � ´  ^ �

MF ; S �  ^ � iffMF ; S �  andMF ; S � �. As  ^ � 2 F, and F is closed
under subformulas we know  ; � 2 F. Therefore, by the induction hypothesis we
haveMF ; S �  ^ � iffMF ; S �  andMF ; S � � iff

T
S `  and

T
S ` �.

Moreover, it is the case that
T
S `  and

T
S ` � iff

T
S `  ^ �, by the rules

governing conjunction, whenceMF ; S �  ^ � iff
T
S `  ^ �.
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I2) � ´  ! �

Suppose
T
S °  ! �. So, by the introduction rule for implication

T
S; ° �.

Therefore, by theorem 6.2.7 there is some resolution of
T
S[f g which doesn’t derive

�. As
T
S is a set of declaratives this resolution will be of the form

T
S [ f˛g, where

˛ 2 R. /. Therefore, there must exist a resolution ˛ of  such that
T
S; ˛ ° �.

Let T D fA 2 S j ˛ 2 Ag. As T ¤ ;, then by definition we have ˛ 2 T , whence by
corollary 6.2.4 we have

T
T `  . Therefore,

T
T ` ‹R. /, and so by the induction

hypothesis we haveMF ;
T
T �  .

Toward a contradiction suppose
T
T ` �. As

T
T is a set of declaratives it follows

by corollary 6.2.8 that
T
T ` ˇ for some ˇ 2 R.�/. By lemma 6.3.2 this means

ˇ 2
T
T , and so ˛ ! ˇ 2

T
T . Consider now any A 2 S � T . By definition of T

this means ˛ … A0, so �˛ 2 A0. Therefore, �˛ 2
T
.S �T /, so ˛ ! ˇ 2

T
.S �T /.

As ˛ ! ˇ 2
T
.S � T / and ˛ ! ˇ 2

T
T we know ˛ ! ˇ 2

T
S , therefore,T

S ` ˛ ! ˇ, thus
T
S; ˛ ` ˇ. Since ˇ is a resolution of � this means

T
S; ˛ ` �.

This contradicts our assumption that
T
S; ˛ ° �. Therefore,

T
T ° � and so by the

induction hypothesis we know MF ; T ² �. But then S has a substate of T which
supports  but not �, which shows thatMF ; S ²  ! �.
Conversely, suppose

T
S `  ! �. Let T � S be arbitrary. If MF ; T �  

then by the induction hypothesis
T
T `  . As T � S ,

T
S �

T
T . And sinceT

S `  ! � this means
T
T `  ! �. So, it follows that

T
T ` �. This implies

MF ; T � �, by the induction hypothesis. Therefore, as T � S was arbitrary we have
shownMF ; S �  ! �.

I3) � ´ ‹f˛1; : : : ; ˛ng

If MF ; S � ‹f˛1; : : : ; ˛ng, then MF ; S � ˛i for some i , and ‹f˛1; : : : ; ˛ng 2 F
implies ˛i 2 F for all i . Therefore, by the induction hypothesis we have

T
S ` ˛i ,

whence
T
S ` ‹f˛1; : : : ; ˛ng.

Conversely, suppose
T
S ` ‹f˛1; : : : ; ˛ng. As

T
S is a set of declaratives it follows

from corollary 6.2.8 that
T
S ` ˛i for some i . Therefore, by the induction hypothesis

we haveMF ;
T
S � ˛i , and soMF ;

T
S � ‹f˛1; : : : ; ˛ng.

I4) � ´ C
 
a �

We begin by showing that  a` χQ for some issue Q in MF . From this it will
follow that C a ' a` C

χQ
a ' by the rule of replacement of equivalents, from which

this induction step will follow by definition of S
Q
a .A/ and lemma 6.3.3.

By the induction hypothesis we know that for any state S ,
T
S `  iffMF ; S �  ,

given is a subformula of C a �. Let ŒŒ ��MF D Q for an issueQ over At.F /. Recall
by lemma 6.2.34 that for any issue P in MF there is a corresponding formula χP
such that

T
S ` χP iff S 2 P . Therefore, we can infer that

T
S ` χQ iff S 2 ŒŒ ��

iffMF ; S �  . For ease of comprehension let us write χ for χQ, whence we haveT
S ` χ iffMF ; S �  , etc.

We now show that  a` χ .

Let R. / D f˛1; : : : ; ˛ng and let R.χ / D fˇ1; : : : ; ˇmg. As C a � 2 F, we know
 2 F, and χ 2 F by construction, so by proposition 6.2.11 we know that ˛i and
ǰ 2 F, as are �˛i and � ǰ .

Suppose  ° χ . Then, by theorem 6.2.7 we know that for some i � n, we have
˛i ° ˇ1; : : : ; ˛i ° ˇm. This implies that for j � m the sets f˛i ;� ǰ g are consistent,
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whence each f˛i ;� ǰ g is a consistent theory of declaratives and can be extended to
an atom Aj by lemma 6.2.21.
Consider now the state T D fA1; : : : ; Amg. As ˛i 2 Aj for all j we know that
˛i 2

T
T , whence

T
T ` ˛i , and by corollary 6.2.4 ˛i `  , whence

T
T `  . By

the induction hypothesis this means thatMF ; T �  .
However, we also have that

T
T ° χ . For , suppose otherwise. Then

T
T ` χ and

so by corollary 6.2.8 we have that
T
T ` ǰ for some j , but then it must be the case

that Aj ` ǰ , which we know to be impossible as Aj contains � ǰ and is consistent.
But then this implies thatMF ; T ²  , by the fact that

T
S ` χ iffMF ; S �  ,

established above. But this contradicts our prior observation thatMF ; T �  . Thus,
we have established ` χ . By an analogous argumentwe establishχ °  , whence
 a` χ . By lemma 4.4.4 it then follows that C a � a` C

χ 
a �.

Now, suppose
T
S ` C

 
a �. Since C a � a` C

χ 
a �, we also have

T
S ` C

χ 
a �.

For an arbitrary A 2 S , we know
T
S � A, and so A ` C

χ 
a �.

As we have assumed C a � 2 F, we know � 2 F. By definition of S
 
a .A/ we know

that, as A ` C
χ 
a �, for all T 2 S

 
a .A/,

T
T ` �. Still, by the induction hypothesis

we know
T
T ` � iffMF ; T � �. Therefore, for any T 2 S

 
a .A/;M

F ; T � �. But
thenMF ; A � C

χ 
a �, and as A was arbitrary this holds for all A 2 S , soMF ; S �

C
χ 
a �. And, since a` χ and our system is sound we know ŒŒ �� D ŒŒχ ��, whence
MF ; S � C

 
a �.

Conversely, suppose
T
S ° C

 
a �. Reasoning by the fact that C a � a` C

χ 
a � we

infer
T
S ° C

χ 
a �. Since

T
S ° C

χ 
a � and Cχ 

a � 2 D there must be some A 2 S

such that Cχ 
a � … A.

So, by lemma 6.3.3 there exists some state T 2 S
 
a .A/ such that

T
T ° �. By the

induction hypothesis we infer MF ; T ² � and so we know it is not the case that
MF ; T � � for every T 2 S

 
a .A/. Therefore, for any atom A 2 S we can infer that

MF ; A ² C
 
a �, which entailsMF ; S ² C

χ 
a �, whenceMF ; S ² C

 
a �.

A number of important results follow from the support lemma. We begin by giving
the semantic parallel to proposition 6.2.35, establishing that there is a corresponding
inquisitive proposition to every issue over At.F /.

Corollary 6.3.5. For any P 2 IMF ; P D ŒŒχP ��.

Proof. S 2 P iff
T
S ` χP by lemma 6.2.34. By corollary 6.3.4 this is case iffMF ; S �

χP iff S 2 ŒŒχP ��.

Corollary 6.3.6. For P;Q 2 IMF W MF ; S � χP ^ χQ iffMF ; S � χ.P\Q/.

Proof. For suppose S 2 ŒŒχ.P\Q/��. Then S 2 .P \ Q/, by corollary 6.3.5, whence
S 2 P and S 2 Q. By the same lemma we then know that S 2 ŒŒχP �� and S 2

ŒŒχQ��. Therefore, MF ; S � χP and MF ; S � χP , whence MF ; S � χP ^ χQ,
thus S 2 ŒŒχP ^ χQ��. As each step appealed to is an equivalence, the converse is also
established.

We further observe that, by generalising reasoning of induction steps for the con-
siders modality in the support lemma, for every inquisitive formula  2 F,  is inter-
derivable with the formula that characterises the corresponding inquisitive proposition
over At.F /, and a slight generalisation.
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Corollary 6.3.7. For  2 F:

i. C 'a  a` χ 
ii. C 'a  a` C

'
a χ 

Proof. i follows by same reasoning as the induction step for the considers modality in
the support lemma and ii follows from lemma 6.2.6.

Corresponding to, and as a consequence of, corollary 6.3.7.i we have the following
semantic property of our canonical models.

Corollary 6.3.8. For  in F, ŒŒ ��MF D ŒŒχ ��MF .

Proof. S 2 ŒŒ ��MF iffMF ; S �  iff
T
S `  , by the support lemma, which is the

case iff
T
S ` χ , by 6.3.7.i This is the case iffMF ; S � χ , by the support lemma, iff

S 2 ŒŒχ ��MF .

The last corollary we state generalises the support lemma slightly, to instances of the
considers modality not necessarily part of F.

Corollary 6.3.9. For a set of formulas F and the canonical model over F ,MF , for any
atom A 2 At.F /, and issues P;Q 2 IMF :

1. A ` C
χQ
a χP iffMF ; A � C

χQ
a χP

2. A ` C
χQ
a :χP iffMF ; A � C

χQ
a :χP

Proof. We prove the former case, with the latter being established analogously.
From left to right suppose A ` C

χQ
a χP , then by definition S 2 S

Q
a .A/ impliesT

S ` χP . As χP 2 F we know by the support lemma that MF ; S � χP impliesT
S ` χP , and so S 2 S

Q
a .A/ iffMF ; S � χP . Therefore,MF ; A � C

χQ
a χP .

From right to left suppose A ° C
χQ
a χP . We know that χP 2 F, so by our as-

sumption and lemma 6.3.3 we know 9S 2 S
Q
a .A/ such that

T
S ° χP , whence by the

support lemmaMF ; S ² χP . So, for some S 2 S
Q
a .A/,MF ; S ² χP . Therefore, it

follows thatMF ; A ² C
χQ
a χP .

Finally, the three following lemmas establish important properties of MF that we
will appeal to in order to show that it satisfies the condition of minimality.

Lemma 6.3.10. For P;Q 2 IMF : CχP^χQ
a ' a` C

χ.P\Q/
a '.

Proof. Our method of proof generalises the induction step for the considers modality
in the support lemma.

We first show that χ.P\Q/ a` χP ^ χQ.
Let R.χP / D f˛1; : : : ; ˛ng, R.χQ/ D fˇ1; : : : ; ˇmg, and R.χ.P\Q// D f1; : : : ; lg.
As χP ;χQ;χ.P\Q/ 2 F we know that ˛i ; ǰ ; k 2 D, as are �˛i ;� ǰ ;�k .

Suppose χP ^χQ ° χ.P\Q/. By definition 1.2.25 we have R.χP ^χQ/ D f˛^ˇ j

˛ 2 R.χP / and ˇ 2 R.χQ/g. So, by theorem 6.2.7 we know that for some i � n; j �

m, we have ˛i ^ ǰ ° 1; : : : ; ˛i ^ ǰ ° l . This implies that for k � l the sets
f˛i ^ ǰ ;�kg are consistent. While we cannot be sure that ˛i ^ ǰ 2 D, by the
fact that f˛i ^ ǰ ;�kg is consistent we know f˛i ; ǰ ;�kg is consistent. Moreover,
f˛i ; ǰ ;�kg � D. Therefore, as f˛i ; ǰ ;�kg is a consistent theory of declaratives it
can be extended to an atom Ak by lemma 6.2.21.

Consider now the state T D fA1; : : : ; Akg. As ˛i ; ǰ 2 Ak for all k � l we know
that ˛i ; ǰ 2

T
T , whence

T
T ` ˛i and

T
T ` ǰ . By corollary 6.2.4

T
T ` χP and
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T
T ` χQ, whence by the support lemmaMF ; T � χP andMF ; T � χQ. Therefore,

MF ; T � χP ^ χQ.
However, we also have

T
T ° χ.P\Q/. For, suppose otherwise. Then

T
T `

χ.P\Q/ and therefore by corollary 6.2.4 we have that
T
T ` k for some k, yet then

it must be the case that Ak ` k for all Ak 2 T which we know to be impossible as
each Ak contains �k and is consistent. So,

T
T ° χ.P\Q/ By the support lemma this

entailsMF ; T ² χ.P\Q/. Yet, we know thatMF ; S � χP ^χQ iffMF ; S � χ.P\Q/

by corollary 6.3.6, and therefore we have derived a contradiction.
Conversely, suppose χ.P\Q/ ° χP ^χQ. So, reasoning as before we have, by defini-

tion 1.2.25 and theorem 6.2.7, we know that for some k � l , we have k ° ˛i^ ǰ for all
i � n; j � m. This implies that for i � n; j � m the set fk ;�.˛i ^ ǰ /g is consistent.
Therefore, for each pairing of i; j either fk ;�˛ig or fk ;� ǰ g is consistent.6

Therefore, as either fk ;�˛ig or fk ;� ǰ g is consistent set of declaratives either
fk ;�˛ig or fk ;� ǰ g can be extended to an atom by lemma 6.2.21.

Clearly there exists an injective mapping f W .i; j / 7! N , and therefore by the rea-
soning above we can associate to each f .i; j / an atom Af .i;j / such that either �˛i or
� ǰ 2 Af .i;j /, whence as atoms are consistent either ˛i … Af .i;j / or ǰ … Af .i;j /.

Consider now the state T D fAf .1;1/; : : : ; Af .n;m/g. As k 2 Af .i;j / for all i; j
we know that k 2

T
T , whence

T
T ` k , and so by corollary 6.2.4 we know

T
T `

χ.P\Q/, whence by the support lemma we knowMF ; T � χ.P\Q/.
We also have

T
T ° χP ^ χQ. For, suppose otherwise. Then

T
T ` χP ^ χQ,

whence
T
T ` χP and

T
T ` χQ, by the elimination rule for conjunction. But then

by corollary 6.2.4 we have
T
T ` ˛i for some i � n and

T
T ` ǰ for some j � m.

However, it must then be the case thatAf .i;j / ` ˛i andAf .i;j / ` ǰ for everyAf .i;j / 2

T . Yet, it then follows that Af .i;j / (taking the indices i; j to be fixed by ˛i and ǰ )
that ˛i … Af .i;j / or ǰ … Af .i;j /, as Af .i;j / is consistent. We know the former to be
impossible, and therefore

T
T ° χP ^ χQ. Therefore, by the support lemma we know

MF ; T ² χP ^χQ. However, we know thatMF ; S � χP ^χQ iffMF ; S � χ.P\Q/

by corollary 6.3.6, and therefore we have derived a contradiction.
Given we have established χ.P\Q/ a` χP ^ χQ it then follows by the rule of re-

placement of equivalents that CχP^χQ
a ' a` C

χ.P\Q/
a '.

Finally, we establish an important lemma for showing the canonical model satisfies
the condition of minimality.

Lemma 6.3.11. For P;Q;R 2 IMF , .P \Q/ � R iff P � ŒŒχQ ! χR��.

Proof. From left to right suppose .P \Q/ � R.
Let S 2 P be arbitrary, and let T � S be arbitrary such thatMF ; T � χQ. Given

that S 2 P we know via corollary 6.3.5 thatMF ; S � χP . From this, and as T � S ,
we know via persistence thatMF ; T � χP , whenceMF ; T � χP ^χQ. So, observing
that ŒŒχ.P\Q/��MF D ŒŒχP ^ χQ��MF by corollary 6.3.6, we infer MF ; T � χ.P\Q/,
and therefore by corollary 6.3.5, T 2 .P \Q/. It then follows via our initial assumption
that T 2 R. So, via corollary 6.3.5 we knowMF ; T � χR.

6For suppose the sets fk ;�˛i g or fk ;� ǰ g are inconsistent. Then γk ` :�˛i and γk ` :� ǰ .
So, γk ` :�˛i ^ :� ǰ .

Now, :�˛ a` ˛ for any declarative ˛. For, suppose ˛ is of the form ˇ . Then �˛ D :ˇ , whence
:�˛ D ::ˇ . So, as ˇ a` ::ˇ , we know that ˛ a` :�˛. And, if ˛ is of the form :ˇ then �˛ is of
the form ˇ . So, :�˛ D :ˇ . As ˛ is either of the two preceding forms we then know that ˛ a` :�˛.
Therefore we know that γk ` ˛i ^ ǰ . But then we know fγk ; ˛i ^ ǰ g is a consistent set, which
contradicts the fact that fγk ;�.˛i ^ ǰ /g is a consistent set.
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Now, as T � S was arbitrary such that MF ; T � χQ and from this we inferred
thatMF ; T � χR, we have shown thatMF ; S � χQ ! χR and so S 2 ŒŒχQ ! χR��.
Therefore, given S 2 P was arbitrary we have established P � ŒŒχQ ! χR��.

Conversely, suppose P � ŒŒχQ ! χR��, and let S 2 .P \ Q/ be arbitrary. As
S 2 .P \ Q/; S 2 P and S 2 Q. Therefore, using the latter observation S 2 ŒŒχQ��

by corollary 6.3.5 and so MF ; S � χQ. Furthermore, as S 2 P we know by our
initial assumption that S 2 ŒŒχQ ! χR��, whenceMF ; S � χQ ! χR. Therefore, as
MF ; S � χQ we know MF ; S � χR. So, we know that S 2 R by corollary 6.3.5.
Therefore, we have shown that .P \Q/ � R.

Lemma 6.3.12.
For S � At.F /, and P;Q 2 IMF : if

T
S ` χP ! χQ thenMF ; S � χP ! χQ.

Proof. Suppose
T
S ` χP ! χQ. Let T � S be arbitrary, and supposeMF ; T � χP .

Then, by the support lemma we know
T
T ` γT . As T � S we know

T
S �

T
T ,

whence
T
T ` χP ! χQ. So,

T
T ` χQ and thereforeMF ; T � χQ by the support

lemma. By this we have shownMF ; S � χP ! χQ.

With the support lemma and the above properties, lemmas, and corollaries estab-
lished we can show that each canonical model over F , for some F , is an icdm.

Lemma 6.3.13. For every P 2 IMF , SPa .A/ is an issue.

Proof. Let A 2 At.F /; P 2 IMF be arbitrary.
First, we observe SPa .A/ is non-empty. For, by definition of SPa .A/; S 2 SPa .A/ iffT
S ` ' whenever A ` C

χP
a ', for ' 2 F. Furthermore, we have defined

T
; to be F,

whence
T

; ` ' for any '. Therefore, ; 2 SPa .A/.
Second, we observe that SPa .A/ is downward closed. For, suppose S 2 SPa .A/ and

T � S . So,
T
S ` ' whenever A ` C

χP
a '. But then, as T � S ,

T
S �

T
T .

Consequently,
T
T ` ' whenever

T
S ` ', which means

T
T ` ' whenever A `

C
χP
a ', and so T 2 SPa .A/.

Lemma 6.3.14. The state maps of any canonical model over a set of formulas F satisfy
conditions safety through to minimality.

Proof.

Safety: if A 2 jP jMF then SPa .A/ ¤ f;g.
Let A be an arbitrary atom such that A 2 jP j. From this we know fAg 2 P , and so
by corollary 6.3.5, A ` χP . Therefore, by proposition 6.2.20 A ° :χP . By axiom 2,
` C

χP
a :χP ! :χP , and so we know that A ° C

χP
a :χP . So, by corollary 6.3.9 we

know thatMF ; A ² C
χP
a :χP , whence it must be the case that SPa .A/ ¤ f;g.

Introspection: if B 2 sPa.A/, then S
Q
a .A/ D S

Q
a .B/.

Suppose B 2 sPa.A/. First we establish thatMF ; A � C
χQ
a ' iffMF ; B � C

χQ
a ',

for any issueQ over At.F /.
As B 2 sPa.A/ we know that fBg 2 SPa .A/.
Now, suppose M;A � C

χQ
a χR. Then, by corollary 6.3.9 we know A ` C

χQ
a χR By

axiom 4.i we have have ` C
χQ
a χR ! C

χP
a C

χQ
a χR, whence A ` C

χP
a C

χQ
a χR.
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As A ` C
χP
a C

χQ
a χR then S 2 SPa .A/ implies

T
S ` C

χQ
a χR. Therefore, as fBg 2

SPa .A/ we know that B ` C
χQ
a χR. Now, by corollary 6.3.9 it follows thatMF ; B �

C
χQ
a χR.

Conversely, supposeM;A ² C
χQ
a χR. By corollary 6.3.9 it follows thatA ° C

χQ
a χR.

Therefore, we know that A ` :C
χQ
a χR by proposition 6.2.20, from which it follows

that A ` C
χP
a :C

χQ
a χR by axiom 4.ii

Reasoning as before, given A ` C
χP
a :C

χQ
a χR and fBg 2 SPa .A/ we know that

B ` :C
χQ
a χR, whence B ° C

χQ
a χR, and soMF ; B ² C

χQ
a χR by corollary 6.3.9.

Therefore,M;A � C
χQ
a χR iffM;B � C

χQ
a χR.

By the basic lemmawe haveM;A � C
χQ
a χR iffS

Q
a .A/ � ŒŒχR��, and by corollary 6.3.5

this means M;A � C
χQ
a χR iff S

Q
a .A/ � R. As this for any arbitrary issue R over

At.F / we know that S
Q
a .A/ � P iff S

Q
a .B/ � P , for any P 2 I .

Therefore, as S
Q
a .A/;S

Q
a .B/ are issues over At.F / we know S

Q
a .B/ � S

Q
a .A/, and

by analogous reasoning S
Q
a .A/ � S

Q
a .B/, whence S

Q
a .A/ D S

Q
a .B/.

Adjustment: SPa .A/ � P .
First, given corollary 6.3.5 we know that for any P 2 I , P D ŒŒχP ��MF . Let P 2 I
be arbitrary.
By definition S 2 SPa .A/ ()

T
S ` ' whenever A ` C

χP
a ' and ' 2 F. As

` C
χP
a χP by axiom 3, it must be the case that for all S 2 SPa .A/ that

T
S ` χP . So,

by the support lemmaMF ; S � χP , for all S 2 SPa .A/. Therefore, for any arbitrary
S 2 SPa .A/, we have S 2 ŒŒχP ��, and so SPa .A/ � ŒŒχP ��, whence SPa .A/ � P by our
initial observation.

Success: SPa .A/ ¤ f;g, if S
Q
a .A/ \ P ¤ f;g.

Assume S
Q
a .A/ \ P ¤ f;g. So, S

Q
a .A/ \ ŒŒχP �� ¤ f;g, by corollary 6.3.5. There-

fore,MF ; A ² C
χQ
a :χP . For otherwiseMF ; A � CχQ:χP , whence by the basic

lemma, S
Q
a .A/ � ŒŒ:χP ��, contradicting our assumption.

AsMF ; A ² C
χQ
a :χP we know by corollary 6.3.9 that ; A ° C

χQ
a :χP .

By proposition 3.4.1 we know that ` CχP:χP ! CχQ:χP , and therefore it must
be the case that A ° CχP:χP , which meansMF ; A ² CχP:χP by corollary 6.3.9.
However, by the basic lemma we know that if MF ; A ² C

χP
a :χP then SPa .A/ ª

ŒŒ:χP ��. Therefore, it cannot be the case that SPa .A/ D f;g, for f;g � R for all issues
R over At.F / and ŒŒχP �� is such an issue.

Minimality: S
P\Q
a .A/ D SPa .A/ \Q, if SPa .A/ \Q ¤ f;g.

Suppose SPa .A/ \Q ¤ f;g. By corollary 6.3.5 this entailsMF ; A � :C
χP
a :χQ.

AsMF ; A � :C
χP
a :χQ we know thatMF ; A ² C

χP
a :χQ. So, by corollary 6.3.9

we know that A ° C
χP
a :χQ, whence A ` :C

χP
a :χQ by proposition 6.2.20.

Aswe knowA ` :C
χP
a :χQ it follows thatA ` CχP ' ! C

χP^χQ
a ' by lemma 4.4.3,

theorem 2.
It is trivially the case that SPa .A/ � SPa .A/, we know SPa .A/ � ŒŒχSPa .A/

��, by corol-
lary 6.3.5. Therefore, by the basic lemma we know MF ; A � C

χP
a χSPa .A/

. So, by
corollary 6.3.9we knowA ` C

χP
a χSPa .A/

, whenceA ` C
χP^χQ
a χSPa .A/

by lemma4.4.2,
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using rule (Cw1.). From lemma 6.3.10 it then follows thatA ` C
χ.P\Q/
a χSPa .A/

. There-
fore, by corollary 6.3.9 we know MF ; A � C

χ.P\Q/
a χSPa .A/

, whence S
P\Q
a .A/ �

SPa .A/.

We know by axiom 3 thatA ` C
χP^χQ
a .χP ^ χQ/. From reasoning analogous to the

above this allows us to infer thatMF ; A � Cχ.P\Q/.χP ^ χQ/, whenceMF ; A �
Cχ.P\Q/χQ. Therefore, by the basic lemma we infer that S

P\Q
a .A/ � Q.

So, as S
P\Q
a .A/ � SPa .A/ and S

P\Q
a .A/ � Q, we know S

P\Q
a .A/ � SPa .A/ \Q.

For the converse direction we use axiom 5.
We know S

.P\Q/
a .A/ � ŒŒχ

S
.P\Q/
a .A/

��, using reasoning analogous to that found in the
previous direction. So,MF ; A � C

χ.P\Q/
a χ

S
.P\Q/
a .A/

. By corollary 6.3.9 this entails
A ` C

χ.P\Q/
a χ

S
.P\Q/
a .A/

, and so via lemma 6.3.10 we haveA ` C
χP^χQ
a χ

S
.P\Q/
a .A/

.
Therefore, as we have assumed that A ` :C

χP
a :χQ it follows by axiom 5 that A `

C
χP^χQ
a χ

S
.P\Q/
a .A/

! CχP .χQ ! χ
S
.P\Q/
a .A/

/, by the rules of modus ponens
and conjunction elimination. So, by the prior observation we have A ` CχP .χQ !

χ
S
.P\Q/
a .A/

/, by modus ponens again. Therefore, S 2 SPa .A/ implies
T
S ` χQ !

χ
S
.P\Q/
a .A/

. From this and lemma 6.3.12 we know that if S 2 SPa .A/ thenMF ; S �
χQ ! χ

S
.P\Q/
a .A/

. Therefore, SPa .A/ � ŒŒχQ ! χ
S
.P\Q/
a .A/

��MF . From lemma6.3.11
it follows that SPa .A/ \Q � S

P\Q
a .A/.

So, we have established that if SPa .A/ \Q ¤ f;g, then SPa .A/ \Q D S
P\Q
a .A/.

6.4 Results
Theorem 6.4.1 (Completeness of ICDL with respect to icdms).

If for all icdmsM D hW; fSPa ga2A;P2I ; V i,M �  , then `  .

Proof. Suppose °  . By theorem 6.2.7 we know that ° ˛i for all ˛i 2 R. /. We claim
�˛i is consistent. For suppose not, then ` :�˛i . Since ˛i is a declarative :�˛i a` ˛i ,
which entails ` ˛i . Let F D f g, and construct the canonical model over F . As
 2 F we know �˛i 2 F, and as each �˛i is consistent it can be extended to an atom
Ai by lemma 6.2.21. Take S D fA1; : : : ; Ang. We claim thatMF ; S ²  . For suppose
not. Then, by the support lemma

T
S `  . So, by theorem 6.2.7

T
S ` ˛i for some

˛i 2 R. /. As
T
S � Ai this entails Ai ` ˛i . But, Ai is consistent and contains �˛i

by construction, and so this is not possible. Therefore MF ; S ²  . So, there exists
some icdm modelM and state s � W such thatM; s ²  .

Theorem 6.4.2 (Weak completeness for plausibility models). ICDL is weakly complete
with respect to ipms.

Proof. Suppose ° ', then by theorem 6.4.1 we know there is a finite icdmM such that
M ² '. By theorem 5.1.1 this can be transformed into an ipm M ] preserving the
interpretation of ICDL, and therefore M ] ² '. So, M ] witnesses that there is some
plausibility modelM (i.e.M ]) such thatM ² '.

Theorem 6.4.3 (Decidability of ICDL). ICDL is decidable
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Proof. Theorem 6.4.2 establishes that ICDL has the finite model property, therefore we
can test for the validity of any given formula by constructing two Turing machines.

One to enumerate the ICDL-validities using the proof system of ICDL and the other
to generate all the finite models. Either a proof of the formula can be derived, or a
countermodel constructed. Therefore, one of the machines must halt in finite time.

Theorem 6.4.4 (ICDL is not compact). There exists a set of formulas� in the language of
ICDL such that every finite subset of� is satisfiable, but� is not.

Proof. Our method of proof follows Veltman (1985, pp. 104–105).
Let p1; : : : ; pn; : : : be countably many distinct atomic formulas and define 'k and

 k for k 2 N in the following way:

'k ´ C
p1_���_pkC1
a :.p1 _ � � � _ pk/

 k ´ :.Cp1_���_pkC1.p1 _ � � � _ pk//

Observe for an arbitrary k 2 N ,Cp1_���_pkC1
a :.p1_� � �_pk/ ensures it is the case

that Min�wa
ŒŒ.p1 _ � � � _ pkC1/�� � .}.W / � ŒŒp1 _ � � � _ pk ��/, and therefore it is the

case that Min�wa
ŒŒ.p1 _ � � � _ pkC1/�� \ ŒŒp1 _ � � � _ pk �� D f;g.

However, it is also the case that Min�wa
ŒŒ.p1 _ � � � _ pkC1/�� � ŒŒp1 _ � � � _ pkC1��,

whence it must be the case that Min�wa
ŒŒ.p1 _ � � � _ pkC1/�� � ŒŒpkC1��.

Moreover :.Cp1_���_pkC1.p1 _ � � � _ pk// ensures Min�wa
ŒŒ.p1 _ � � � _ pkC1/�� ¤

f;g.
Therefore, given Min�wa

ŒŒ.p1 _ � � � _ pkC1/�� � .ŒŒpkC1�� � ŒŒp1 _ � � � _ pk ��/ and
Min�wa

ŒŒ.p1 _ � � � _ pkC1/�� ¤ f;g, we obtain the following constraints:

Min�wa
ŒŒ.p1 _ p2/��� .ŒŒp2�� � ŒŒp1��/

Min�wa
ŒŒ.p1 _ p2 _ p3/��� .ŒŒp3�� � ŒŒp1 _ p2��/

Min�wa
ŒŒ.p1 _ p2 _ p3 _ p4/��� .ŒŒp4�� � ŒŒp1 _ p2 _ p3��/

:::

Thus closer and closer worlds are generated by the conjunction of 'k and  k , as k 2 N
increases. For, ifw satisfies'k^ k therewould need to exist aworldu such thatu <wa v
for v 2 Min�wa

ŒŒ.p1 _ � � � _ pkC1/�� in order for w to be able to satisfy 'kC1 ^  kC1,
Therefore, the set f'k ^ k j k 2 Ng is unsatisfiable by the fact that �wa is required

to be well-founded.
It remains to be shown that each finite subset can be satisfied. To do so we take the

greatest k in the subset and construct an ipmM D hW; f�wa ga2A;w2W ; f˙aga2A; V i

such thatW D fw1; : : : ; wkg, wjC1 <
w
a wj , and V.pj / D fwj g, for all j � k. Clearly

this will satisfy the finite subset.

Corollary 6.4.5. CDL is not compact.7

Proof. As we made no appeal to issues in the proof of theorem 6.4.4 the same reasoning
can be applied to CDL, using conditional belief in place of considers.

7We assume this is a known result, but we have been unable to find work in which it is explicitly stated.
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Chapter 7

Inquisitive Plausibility Logic

In order to axiomatise belief revision with both local and global issues we enrich the
base language of IEL with two modal operators, familiar from logics of preference, E�

a

and E—
a . The logic defined is based on the work of Boutilier, and is closely connected

to his logic CO (1994, pp. 100–101), with a slight variation in axiomatisation in order to
enrich the logic to a multi-agent setting with issues for each agent and in order to adapt
it to our method of proving completeness.

We term this logic inquisitive plausibility logic on the basis of a natural interpretation.
From standpoint of the previous chapters IPL is primarily of interest for the fact that it is
an extension of ICDL with sufficient expressive power to ensure the correct relation be-
tween entertains and considers modalities, thus affording us an indirect axiomatisation
of ICDL with the entertains modality. Still, the logic also has a broader interest given
the motivating ideas of IEL and ICDL, by having sufficient power to express additional
properties of an agent’s epistemic and conditional doxastic goals. Aspects of this per-
spective will be sketched after the basic semantic notions have been established, and the
connexion with ICDL shown.

7.1 Inquisitive Plausibility Logic
Logic Language

We begin by enriching the language of IEL sans the K modality, to obtain the language
of inquisitive plausibility logic, IPL.

Definition 7.1.1 (Syntax of IPL). Let At be a set of atomic formulas:

1. For any p 2 At; p 2 LŠ

2. ? 2 LŠ

3. If ˛1; : : : ; ˛n 2 LŠ then ‹f˛1; : : : ; ˛ng 2 L‹

4. If ' 2 Lı and  2 Lı then ' ^  2 Lı, where ı 2 fŠ; ‹g

5. If ' 2 LŠ [ L‹ and  2 Lı then ' !  2 Lı, where ı 2 fŠ; ‹g

6. If ' 2 LŠ [ L‹, then Ea' 2 LŠ, for a 2 A

7. If ' 2 LŠ [ L‹, then E�
a ' 2 LŠ, where � 2 f�;—g

8. Nothing else belongs to either LŠ or L‹

As with InqD and ICDL resolutions of formulas play a key role in our theorising about
IPL. Just as with ICDL, IPL differs from InqD only by the introduction of further declara-
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tives, as so no additional clause is required to define the resolutions of formulas contain-
ing IPL modalities.

Definition 3.3.4 (Resolutions for ICDL). The set R.'/ of resolutions for a given formula
' is defined inductively by:

– R.˛/ D f˛g

– R.‹f˛1; : : : ; ˛ng/ D f˛1; : : : ; ˛ng

– R.� ^ �/ D f˛ ^ ˇ j ˛ 2 R.�/ and ˇ 2 R.�/g

– R.' ! �/ D f
V
˛2R.'/.˛ ! f .˛// j f W R.'/ ! R.�/g

Semantics

As with inquisitive conditional-doxastic logic, inquisitive plausibility models are the pri-
mary semantic structures used to interpret IPL. We restate the definition of these.

Definition 3.3.1 (Inquisitive plausibility models).
An inquisitive plausibility modelM for a set At of atomic formulas and a set A of

agents,1 is a tuple: hW; f�wa ga2A;w2W ; f˙aga2A; V i, where:

1. W is a set of possible worlds
2. �wa is a well-preorder over a subset ofW
3. ˙a.w/ is an issue over �a.w/, where �a.w/ ´ fv j 9u W v �wa ug

4. V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas
true at w

And the following conditions are satisfied:
Factivity w 2 �a.w/; for all w 2 W

Introspection 1 if v 2 �a.w/; then˙a.w/ D ˙a.v/

Introspection 2 if v 2 �a.w/; then x �va y if and only if x �wa y

Just as with our original account of plausibility models it is the interpretation of
binary relation on worlds that distinguishes our understanding of these, where v �wa u

reads ‘at world w agent a considers v at least as plausible as u.’
We define the semantics clauses for the introduced modalities as follows.

Definition 7.1.2 (Support conditions for IPL modalities).

1. M;w � E�
a ' iff 8t 2 ˙�

a .w/;M; t � '

2. M;w � E
—
a ' iff 8t 2 ˙

—
a .w/;M; t � '

where:
a. ˙�

a .w/ ´ }.��
a .w// \˙a.w/, and ��

a .w/ ´ fv j v �wa wg

b. ˙—
a .w/ ´ }.�

—
a .w// \˙a.w/, and �—

a .w/ ´ fv 2 �a.w/ j v —wa wg

We make four initial observations.

Proposition 7.1.3.

1. For all v; u 2 �a.w/; v �wa u or u �wa v.
2. v 2 �

—
a .w/ iff w <wa v, where x <wa y ´ x �wa y and y —wa x.

3. ��
a .w/ \ �

—
a .w/ D ;.

1We assume the set of agents is finite. However, modalities for common knowledge, belief and so on
will not be explored in this thesis, and so there is no technical need for this assumption.
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4. ��
a .w/ [ �

—
a .w/ D �a.w/

Proof.

1. Let v; u in �a.w/ be arbitrary. Now, as<wa is a well-preorder we know that for every
set s � fv j 9u W v �wa ug D �a.w/ there exists v 2 s such that v �wa u for all
u 2 s. So, as fv; ug � �a.w/ by assumption, it must be the case that either v �wa u

or u �wa v.

2. From left to right suppose v 2 �
—
a .w/. Then, v 2 �a.w/ and v —wa w. So, by the

previous observation we know that w �wa v, whence w <wa v.
From right to left ifw <wa v thenw �wa v, and as �wa is a well-preorder we know the
relation is reflexive, whence v �wa v, which ensures that v 2 �a.w/. Furthermore, as
w <wa v we know v —wa w, and so from this and the previous observation we know
that v 2 �

—
a .w/.

3. Suppose v 2 ��
a .w/ and v 2 �

—
a .w/. Then, v �wa w and v —wa w, and immediate

contradiction.

4. The left to right direction is immediate by the definitions of ��
a .w/ and �

—
a .w/.

From right to left let v 2 �a.w/ be arbitrary. We know that w 2 �a.w/ by the condi-
tion of factivity on ipms. Therefore, we know that v;w 2 �a.w/. So, by the first item
of this proposition we know v �wa w or w �wa v. If v �wa w, then v 2 ��

a .w/ by
definition. So, the only other case that remain is if w �wa v and v —wa w, and then
v 2 �

—
a .w/ by definition.

So, E�
a quantifies over the intersection of an agent’s inquisitive state at w with the

powerset of the worlds that are at least as plausible as w—and thus all possible issues
over the worlds that are at least as plausible as w. So, we obtain the restriction of an
agent’s inquisitive state to the worlds they consider at least as plausible as the current
world of evaluation. Therefore,E�

a evaluated atw reads ‘when the issues that the agent
a entertains atw is restricted to the worlds the agent considers at least as plausible asw,
' is supported.’

Just as the language of IPL is bisected into declaratives and interrogatives we may
choose to split our interpretation of the entertains modality according to whether it
scopes over a declarative or an interrogative. For a declarative under the scope of the
E�
a modality allows us to directly describe the worlds at least as plausible as the world

of evaluation, as the following proposition shows.

Proposition 7.1.4. M;w � E�
a ˛ iff 8v 2 ��

a .w/;M; v � ˛, for � 2 f�;—g.

Proof. We prove the case for E�
a . The case of E—

a is established analogously.
From left to right suppose M;w � E�

a ˛, and let v 2 ��
a .w/ be arbitrary. By

the latter assumption we know that v 2 �a.w/, whence fvg 2 ˙a.w/, and clearly
fvg 2 }.��

a .w//, whence fvg 2 E�
a w. By the former assumption we have that 8t 2

˙�
a .w/;M; t � ˛. Therefore,M;v � ˛, whence 8v 2 ��

a .w/;M; v � ˛.
From right to left suppose that 8v 2 ��

a .w/;M; v � ˛, and let t 2 ˙�
a .w/ be arbi-

trary. As t 2 ˙�
a .w/ we know that t � ��

a .w/ and therefore that 8u 2 t; u 2 ��
a .w/.

So, 8u 2 t;M; u � ˛, by the former assumptionmade. Therefore, by proposition 1.2.15
we know thatM; t � ˛, whence 8t 2 ˙�

a .w/;M; t � ˛.

79



So, we can read E�
a ˛ evaluated at a world w straightforwardly as ‘at all the worlds

the agent a considers at least as plausible as w, ˛ is the case.’ This allows us to restrict
the clumsy reading of the E�

a modality above to interrogatives.
For interrogatives a more elegant reading seems unavailable. For example, reading

E�
a � evaluated at w as ‘agent a entertains � over the worlds a considers at least as

plausible as w’ relies on assuming that the attitude of entertaining is always (implicitly)
related to an issue over an agent’s epistemic state. The information states contained in
E�
a w, for example, are merely restrictions of˙a.w/ to worlds at least as plausible as w.

These worlds do not, as in the case of the considers modality, have any clear doxastic
interpretation, connecting the issue over them to the agent’s beliefs or otherwise.

However, and importantly, we show below that the considers modality of ICDL can
be defined in the language of IPL.Thus ICDL can be considered as a fragment of IPL, or IPL
as a conservative extension of ICDLwith respect to conditional-doxastic formulas, as we
one will be able to translate any formula of ICDL into a semantically equivalent formula
of IPL.

Similarly, E—
a quantifies over intersection of an agent’s inquisitive state at w with

the powerset of the worlds that are considered strictly less plausible than w—but note
those still considered possible, as these are derived from the agent’s epistemic state—as
is shown in the following proposition.

As noted above, an important aspect to IPL (and fundamental to its motivation with
regards tomodelling doxastic states) is the definability of the considers modality of ICDL
in terms of E�

a , which we now show.

Definition 7.1.5 (IPL conditional belief). C a ' ´ Ea. ! hE�
a i. ^E�

a . ! '///2

This definition parallels the definition for conditional preference given by Liu (2011,
p. 39). In order to establish the semantic adequacy of the definition we begin with the
following lemma.

Lemma 7.1.6. If w 2 j'j then Min�wa
.ŒŒ'�� \˙a.w// � ˙�

a .w/.

Proof. Suppose w 2 j'j and let t 2 Min�wa
.ŒŒ'�� \ ˙a.w// be arbitrary. We know

w 2 �a.w/ by the condition of factivity on ipms. Furthermore, as w 2 j'j and w 2

�a.w/ then Min�wa
j'j D fv1; : : : ; vng such that vi 2 j'j and vi �wa w for i � n.

From this it follows that Min�wa
j'j � ��

a .w/, by definition of ��
a .w/. Furthermore, as

t 2 Min�wa
.ŒŒ'�� \ ˙a.w// this means that t � Min�wa

j'j by corollary 3.3.11, and so
t � fv1; : : : ; vng, whence t 2 }.��

a .w//. And, as t 2 Min�wa
.ŒŒ'��\˙a.w// it follows

immediately that t 2 ˙a.w/. So, t 2 .}.��
a .w// \˙w/ D ˙�

a .w/.

We now show that the defined considers modality satisfies the support clause for the
considers modality on inquisitive plausibility models.

Proposition 7.1.7. M; s � C
 
a ' iff 8w 2 s;8t 2 Min�wa

.ŒŒ �� \˙a.w//;M; t � '

Proof. We prove M;w � C
 
a ' iff 8t 2 Min�wa

.ŒŒ �� \ ˙a.w//;M; t � ', with the
desired result following immediately from this by proposition 1.2.15, as the formula
C
 
a ' abbreviates—and which we work with—is a declarative.

From left to right suppose M;w � Ea. ! hE�
a i. ^ E�

a . ! '///. So, we
know that 8t 2 ˙a.w/;M; t �  ! hE�

a i. ^E�
a . ! '//.

2We write h�i' for :�:' for � 2 fE
�
a ;E

—
a ;Eag to aid legibility.
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We want to show that 8t 2 Min�wa
.ŒŒ �� \ ˙a.w//;M; t � '. Therefore, let t 2

Min�wa
.ŒŒ �� \˙a.w// be arbitrary. By this assumption it follows that t 2 ˙a.w/ and

t 2 ŒŒ ��. So,M; t � hE�
a i. ^E�

a . ! '//, by our previous observation concerning
˙a.w/. Restated, this readsM; t � :E�

a :. ^E�
a . ! '//.

By the above it follows that for all v 2 t; 9t 0 2 ˙�
a .v/ such that M; t 0 ² :. ^

E�
a . ! '//, whence via proposition 1.2.15 and fact 1.2.16 we have some u 2 t 0

such that M;u �  ^ E�
a . ! '/. By the latter conjunct we know that 8t 00 2

˙�
a .u/;M; t

00 �  ! ', and by the former conjunct we know that u 2 j j.
Given thatu 2 j jwe know itmust be the case thatMin�ua

.ŒŒ ��\˙a.u// � ˙�
a .u/

by lemma 7.1.6. So, then 8t 000 2 Min�ua
.ŒŒ ��\˙a.u//we haveM; t 000 � ', as we know

that 8t 00 2 ˙�
a .u/;M; t

00 �  ! '.
Now, we know u 2 t 0 and t 0˙�

a .v/, whence u 2 ��
a .v/. From this it follows that

u 2 �a.v/ and so ˙a.u/ D ˙a.v/ by the condition of introspection 1. on ipms. Fur-
thermore, v 2 t and t 2 Min�wa

.ŒŒ �� \ ˙a.w//, whence t 2 ˙a.w/, from which
it follows that v 2 �a.w/. So, by the condition of introspection 1. on ipms we know
˙a.v/ D ˙a.w/. Therefore, ˙a.u/ D ˙a.w/, and �a.u/ D �a.w/. As u 2 �a.u/

by the condition of factivity on ipms it follows from the previous observations that
u 2 �a.w/.

As u 2 �a.w/ it follows that x �ua y iff x �wa y by the condition of introspection
2. on ipms, and we have observed that ˙a.w/ D ˙a.u/. Therefore, Min�ua

.ŒŒ �� \

˙a.u// D Min�wa
.ŒŒ �� \˙a.w//. So, 8t 2 Min�wa

.ŒŒ �� \˙a.w//;M; t � '.
Conversely, suppose M;w ² Ea. ! hE�

a i. ^ E�
a . ! '///, then 9t 2

˙a.w/;M; t ²  ! hE�
a i. ^E�

a . ! '//. From this we infer that for some t 0 � t

it is the case thatM; t 0 �  whileM; t 0 ² hE�
a i. ^E�

a . ! '//. The latter abbrevi-
atesM; t 0 ² :E�

a :. ^ E�
a . ! '//, and from this we infer via proposition 1.2.15

and fact 1.2.16 that for some world v 2 t 0;M; v � E�
a :. ^ E�

a . ! '//, whence
8t 00 2 ˙�

a .v/;M; t
00 � :. ^E�

a . ! '//.
We know by lemma 7.1.6 that Min�va

.ŒŒ �� \ ˙a.v// � ˙�
a .v/. Therefore, by per-

sistence we know that 8t 00 2 Min�va
.ŒŒ �� \ ˙a.v//;M; t

00 � :. ^ E�
a . ! '//.

As Min�va
.ŒŒ �� \ ˙a.v// � ŒŒ �� by definition, it then follows by the previous obser-

vation that 8t 00 2 Min�va
.ŒŒ �� \ ˙a.v//;M; t

00 � :E�
a . ! '/, by persistence and

proposition 1.2.15.
Now, as v 2 t 0 was arbitrary and we have inferred that M; t 0 �  , we know via

persistence that fvg 2 ŒŒ ��. Furthermore, we know fvg 2 ˙a.v/ by the condition of
factivity on ipms, and that v �va v by the fact that �va is a well-preorder. From these
facts it follows that Min�va

.ŒŒ �� \ ˙a.v// ¤ f;g, for ŒŒ �� \ ˙a.v/ ¤ f;g and so this
can be restricted to its minimal elements.

So, let t 000 2 Min�va
.ŒŒ ��\˙a.v// such that t ¤ ; be arbitrary. We knowM; t 000 �

:E�
a . ! '/. So, by proposition 1.2.15, we know that 8u 2 t 000;M; u � :E�

a . !

'/. As we have observed that t 000 ¤ ;, let u 2 t 000 be arbitrary.
From the above, we know that M;u � :E�

a . ! '/ and so there exists some
t IV 2 ˙�

a .u/ such thatM; t IV ²  ! '. Therefore, for some tV � t IV we haveM; tV �
 while M; tV ² '. From this and proposition 1.2.15 we know that for some x 2

tV;M; x ² '. Whence, as worlds behave classically, M;x � :' and by persistence
M;x �  , asM; tV �  .

As x 2 tV and tV 2 ˙�
a .u/ we infer that x 2 ��

a .u/. So, x �ua u. Furthermore,
u 2 t 000, t 000 2 Min�va

.ŒŒ �� \ ˙a.v//, and M;v �  . So, it follows immediately that
u �va v. And, by the latter observation we know u 2 �a.v/, whence y �ua z iff y �va z,
so by the former observation x �va u.

We know u 2 Min�va
.ŒŒ �� \ ˙a.v// and so by corollary 3.3.12 we know u 2
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Min�va
j j. So, as x �va u and M;x �  , we know that x 2 Min�va

j j. Further-
more, as x �va u we know x 2 �a.v/, whence fxg 2 ˙a.v/ and asM;x �  we know
fxg 2 ŒŒ ��. Therefore, by corollary 3.3.12 we know that fxg 2 Min�va

.ŒŒ �� \ ˙a.v//.
So, given thatM;x � :' we know that 9t 2 Min�va

.ŒŒ �� \˙a.v//;M; t ² '.
Finally, as v 2 �a.w/ we can observe via the conditions of introspection 1. and 2.

on ipms that Min�va
.ŒŒ �� \ ˙a.v// D Min�wa

.ŒŒ �� \ ˙a.w//, whence it follows that
9t 2 Min�wa

.ŒŒ �� \˙a.w//;M; t ² '.

Given we have chosen to continue to interpret the binary relation on worlds as that
of plausibility, the reading of the considersmodality outlined in 3 carries over to IPL, and
we obtain corresponding formulas to define belief and knowledge, following the results
established in chapter 3 section 3.4.2.

Naturally the interpretation of the considers modality differs when preference is
used to interpret the binary relation between worlds, however much of the investiga-
tion into the considers modality from chapter 3 carries over mutatis mutandis. Indeed,
C
 
a ' when interpreted on ipms can be read as ‘agent a considers ' conditional on  ,’

so long as the conditionalisation process is now understood to rely on the preferences
and not the doxastic state of the agent. This highlights the extent to which considers
is, for better or worse, a technical notion in this thesis, for while we can derive a corre-
sponding definition for conditional belief, the term is intuitively at odds with preference
relations. Still, the distinction between the considers and conditional belief modalities
may be used to distinguish conditionalising on  given certain background assump-
tion and conditionalising on  only, corresponding to the former and latter modalities
respectively.

Furthermore, we observe that not only can one definewhat issues remain openwhen
an agent entertains only the worlds taken as most plausible or preferable, but given the
expressive power of IPL one can identify the unique issues open at the most preferable
worlds, e.g. one can define considering ' only given  .

C a ' ^ C a E
—
a :'

In turn this shows the considerable expressive power of IPL, for one can now has the pos-
sibility of a syntactic representation of the most plausible worlds for an agent, by letting
 D >. From this a formula for the ‘second most’ plausible worlds can be constructed,
by letting  D :', where ' is consider only given >, and so on. In this way a full
syntactic characterisation of an agent’s plausibility ordering may be constructed.

Indeed, if one is aiming to model certain pragmatic phenomena the ability to ex-
press the fact that an agent has full or partial knowledge of another agent’s plausibility
ordering, or at least that the agent has some understanding of another agent’s doxastic
state seems desirable. One may, for example, hope to capture a notion of relevance by
pairing together the structure of a speakers own epistemic state with what that agent
takes to be the broader doxastic state of their interlocutor.

We leave the potential applications of IPL aside in this thesis, pausing only to note
that the plausibility ordering for each agent can be lifted from worlds to propositions,
following the work of Girard (2008) and Liu (2011).

7.1.1 Binary Operators
One may hope to induce a plausibility relation on worlds from a plausibility relation on
propositions, in an analogous way to how the plausibility ordering used to describe (part
of) an agent’s doxastic state on ipms could be given qualitatively via icdms. To this end
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we briefly explore the definability of binary plausibility operators between propositions
in IPL.

This allows us to look for representation of such terms as ‘agent a holds ' to be at
least as plausible as  .’ As the plausibility relation on ipms is between worlds the binary
operators lifted from this relation holds between declaratives, for these are the formu-
las which characterise what does and does not hold at any given world. These binary
operators defined with respect to declaratives can then be lifted to interrogatives via
the ability to characterise interrogatives in terms of their resolutions. We make suggest
some avenues to pursue at the end of this section, but leave a complete development to
later work.

Our presentation follows Girard (2008, Ch. 4).

Definition 7.1.8 (Binary plausibility operators). The following seven binary plausibility
operators given below are defined following Girard (2008, p. 60).3

M;w � ˛ �99
a ˇ iff 9v; 9u WM;v � ˛ &M;u � ˇ & v �wa u

M;w � ˛ �89
a ˇ iff 8v; 9u WM;v � ˛ ) M;u � ˇ & v �wa u

M;w � ˛ <99
a ˇ iff 9v; 9u WM;v � ˛ &M;u � ˇ & v <wa u

M;w � ˛ <89
a ˇ iff 8v; 9u WM;v � ˛ ) M;u � ˇ & v <wa u

M;w � ˛ <88
a ˇ iff 8v;8u WM;v � ˛ &M;u � ˇ ) v <wa u

M;w � ˛ �88
a ˇ iff 8v;8u WM;v � ˛ &M;u � ˇ ) v �wa u

M;w � ˛ �98
a ˇ iff 9v;8u WM;v � ˛ &M;u � ˇ ) u �wa v

To aid in establishing the definability of these operators in IPLwe establish a number
of lemmas.

Lemma 7.1.9. M;w � hEai' iff 9v 2 �a.w/;M; v � '

Proof. From left to right suppose M;w � hEai'. Expanding, this reads: M;w �
:Ea:'. From this it follows thatM;w ² Ea:', and so, 9t 2 ˙a.w/;M; t ² :'. By
proposition 1.2.15 this entails that for some v 2 t;M; v ² :', whenceM;v � '. And,
as v 2 t and t 2 ˙a.w/, it is immediate that v 2 �a.w/.

From right to left the reasoning is analogous in the converse direction.

Lemma 7.1.10. M;w � hE�
a i' iff 9v W v �wa w andM;v � '

Proof. The proof is analogous to lemma 7.1.9.

Lemma 7.1.11. M;w � hE
—
a i' iff 9v W w <wa v andM;v � '

Proof. The proof is analogous to lemma 7.1.9, with the aid of proposition 7.1.3 to inter-
change v —wa w and w <wa v.

Proposition 7.1.12. The plausibility operators of definition 7.1.8 can be defined in IPL.
M;w � ˛ �99

a ˇ ´ hEai.ˇ ^ hE�
a i˛/

M;w � ˛ �89
a ˇ ´ Ea.˛ ! hE�

a iˇ/

M;w � ˛ <99
a ˇ ´ hEai.hE

�
a i˛ ^ hE

—
a iˇ/

M;w � ˛ <89
a ˇ ´ Ea.˛ ! hE

—
a iˇ/

M;w � ˛ <88
a ˇ ´ Ea.˛ ! E�

a :ˇ/

M;w � ˛ �88
a ˇ ´ Ea.ˇ ! E

—
a :˛/

M;w � ˛ �98
a ˇ ´ hEai.˛ ^E

—
a :ˇ/

3Note, Girard defines eight binary operators. Here, we omit the operator ˛ >98
a ˇ , defined by

9v;8u W M;v � ˛ &M;u � ˇ ) u <wa v. Seven, naturally, a more perfect number than eight.
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Proof.

M;w � hEai.ˇ ^ hE�
a i˛/ iff 9v; 9u W M;v � ˛ &M;u � ˇ & v �wa u

From left to right supposeM;w � hEai.ˇ^hE�
a i˛/. Therefore, 9u 2 �a.w/;M; u �

ˇ ^ hE�
a i˛, by lemma 7.1.9. Moreover,M;u � ˇ ^ hE�

a i˛ iffM;u � ˇ andM;u �
hE�

a i˛. So, by lemma 7.1.10 and the latter conjunct, 9v �ua u;M; v � ˛. As u 2

�a.w/ we infer by the condition of introspection 2. on ipms that 9v �wa u;M; v � ˛.
So, we have shown 9v; 9u W M;v � ˛ &M;u � ˇ & v �wa u.
From right to left the reasoning is analogous in the converse direction.

M;w � Ea.˛ ! hE
—
a iˇ/ iff 8v 2 �a.w/; 9u W M;u � ˛ ) M;u � ˇ & v �wa u

From left to right, suppose M;w � Ea.˛ ! hE�
a iˇ/. So, 8t 2 ˙a.w/;M; t �

˛ ! hE�
a iˇ. Therefore, by persistence we know that 8v 2 �a.w/;M; v � ˛ !

hE�
a iˇ. So, as worlds behave classically, if M;v � ˛ then M;v � hE

—
a iˇ, whence

by lemma 7.1.11 we have that 9u W M;u � ˇ and v �va u. As before, we know v 2

�a.w/ and so by introspection 2. on ipms this entails that 9u W M;u � ˇ and v �wa u.
Therefore, ifM;v � ˛ then 9u W M;u � ˇ and v �wa u.
From right to left the reasoning is analogous in the converse direction.

M;w � hEai.hE
�
a i˛ ^ hE

—
a iˇ/ iff 9v; 9u W M;v � ˛ &M;u � ˇ & v <wa u

From left to right suppose M;w � hEai.hE
�
a i˛ ^ hE

—
a iˇ/. So, by lemma 7.1.9 we

know that 8x 2 �a.w/ thatM;x � hE�
a i˛^ hE

—
a iˇ. Let x 2 �a.w/ be arbitrary. As

M;x � hE�
a i˛ ^ hE

—
a iˇ we knowM;x � hE�

a i˛ andM;x � hE
—
a iˇ.

By the former conjunct and lemma 7.1.10 we know that 9v W v �xa x and by the latter
conjunct and lemma 7.1.11 we know that 9u W x <xa u and M;u � ˇ. So, we can
infer that v <xa u. And, as x 2 �a.w/ this implies that v <xa u by the condition of
introspection 2. on ipms.
From right to left suppose 9v; 9u W M;v � ˛ & M;u � ˇ & v <wa u. Let v; u
instantiate their respective quantifiers. Then, v <wa u. From this we know that v 2

�a.w/ and therefore by the condition of introspection 2. on ipms we know v <va u.
So, as v �va v andM;v � ˛ we know by lemma 7.1.10 thatM;v � hE�

a i˛. Similarly
by the fact that v <va u andM;u � ˇ we know by lemma 7.1.11 thatM;v � hE

—
a iˇ.

So, M;v � hE�
a i˛ ^ hE

—
a iˇ. And, as v 2 �a.w/ we know by lemma 7.1.9 that

M;w � hEai.hE
�
a i˛ ^ hE

—
a iˇ/.

M;w � Ea.˛ ! hE
—
a iˇ/ iff 8v; 9u W M;v � ˛ ) M;u � ˇ & v <wa u

From left to right suppose M;w � Ea.˛ ! hE
—
a iˇ/. Let v 2 �a.w/ be arbitrary,

and suppose M;v � ˛. So, as M;w � Ea.˛ ! hE
—
a iˇ/ we know that 8t 2

˙a.w/;M; t � ˛ ! hE
—
a iˇ, and by persistence this entails M;v � ˛ ! hE

—
a iˇ,

whence we infer thatM;v � hE
—
a iˇ. So, by lemma 7.1.11 we know that 9u; v <va u

and M;u � ˇ. As before, we use the fact that v 2 �a.w/ to observe via the condi-
tion of introspection 2. on ipms and the previous fact that v <wa u, whence the result
follows.
From right to left the reasoning is analogous in the converse direction.
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M;w � Ea.˛ ! E�
a :ˇ/ iff 8v;8u W M;v � ˛ &M;u � ˇ ) v <wa u

From left to right supposeM;w � Ea.˛ ! E�
a :ˇ/. So, 8t 2 ˙a.w/;M; t � ˛ !

E�
a :ˇ.

Now, suppose for an arbitrary v; u 2 �a.w/;M; v � ˛ and M;u � ˇ. From the
above observation and our assumption that M;v � ˛ we infer M;v � E�

a :ˇ. So,
8t 0 2 ˙�

a .v/;M; t
0 � :ˇ.

Now, suppose u �wa v. Using the condition of introspection 2. on ipms and the fact
that v 2 �a.w/ we infer u �va v. Therefore, fug 2 ˙�

a .v/, whenceM;u � :ˇ. This
contradicts our inference thatM;u � ˇ, and thereforewe infer thatu —wa v. However,
as v; u 2 �a.w/ we know by this and proposition 7.1.3 that v �wa u, whence v <wa u.
From right to left supposeM;w ² Ea.˛ ! E�

a :ˇ/. Then 9t 2 ˙a.w/;M; t � ˛

whileM; t ² E�
a :ˇ. So, as worlds behave classically it must be the case that for some

v 2 t;M; v � hE�
a iˇ So, by lemma 7.1.10 we have some u �va v such thatM;u � ˇ.

By the fact that v 2 �a.w/ and the condition of introspection 2. on ipms it follows that
u �wa v, whence v 6<wa u.

M;w � Ea.ˇ ! E
—
a :˛/ iff 8v;8u W M;v � ˛ &M;u � ˇ ) v �wa u

From left to right supposeM;w � Ea.ˇ ! E
—
a :˛/, so 8t 2 ˙a.w/;M; t � ˇ !

E
—
a :˛. So, suppose for arbitrary v; u 2 �a.w/;M; v � ˛ and M;u � ˇ. Then

M;u � E
—
a :˛, whence v … �

—
a .u/, and so v �ua u. As u 2 �a.w/ this entails, via

the condition of introspection 2. on ipms, that v �wa u.
From right to left suppose 8v;8u W .M; v � ˛ &M;u � ˇ/ ) v �wa u butM;w ²
Ea.ˇ ! E

—
a :˛/. Then M;w � hEai.ˇ ^ hE

—
a i˛/, and so, by lemma 7.1.9, for

some u 2 �a.w/;M; u � ˇ ^ hE
—
a i˛, whence by lemma 7.1.11, for some v W u <ua

v;M; v � ˛, but then u �wa v, via the fact that u 2 �a.w/ and the condition of
introspection 2. on ipms, and we have a contradiction.

M;w � hEai.' ^E
—
a : / iff 9v;8u W M;v � ˛ &M;u � ˇ ) u �wa v

From left to right supposeM;w � hEai.˛^E
—
a :ˇ/. Then by lemma 7.1.9, for some

v 2 �a.w/;M; v � ˛ ^ E
—
a :ˇ. For an arbitrary u 2 �a.w/ suppose u � ˇ, then

u … �
—
a .v/ on pain of contradiction.

As u … �
—
a .v/we know that u �va v, and by the fact that v 2 �a.w/ and the condition

of introspection 2. this entails u �wa v.

From right to left suppose M;w ² hEai.˛ ^ E
—
a :ˇ/. Therefore, as worlds behave

classically we knowM;w � Ea:.˛ ^ E
—
a :ˇ/ So, for all t 2 ˙a.w/;M; t � :.˛ ^

E
—
a :ˇ/.

Now, suppose 9v;8u W M;v � ˛ & .M; u � ˇ ) u �wa v/. Let v instantiate
the existential quantifier. Then, as v 2 �a.w/ we know via persistence that M;v �
:.˛^E

—
a :ˇ/. So, asM;v � ˛ we knowM;v ² E

—
a :ˇ. From this we inferM;v �

:E
—
a :ˇ, which can be rewritten asM;v � hE

—
a iˇ. From the latter observation and

lemma 7.1.11 we know that for some u W v <va u;M; u � ˇ. So, by the fact that
v 2 �a.w/ and the condition of introspection 2. on ipms we infer that v <wa u. This
contradicts our assumption that 9v;8u W M;v � ˛ & .M; u � ˇ ) u �wa v/.
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Using the preceding definitions binary plausibility operators can be defined with
respect to interrogatives in a number of ways. For example, we may identify that � is a
more plausible interrogative to � by observing that for every resolution to � there is a
more plausible resolution to�. To capture this wemay say� <98

a � iff 8ˇ 2 R.�/9˛ 2

R.�/ W ˛ <88
a ˇ, which is captured by the formula

V
ˇ2R.�/

W
˛2R.�/.˛ <

88
a ˇ/, etc.

7.2 Inquisitive Plausibility NeighbourhoodModels
As with EL, IEL, CDL, and ICDLwe define a class of neighbourhood models termed inquis-
itive plausibility neighbourhood models (ipnms) to which IPL corresponds, and as with
the inquisitive variations of these logics it is to this class of models that we prove sound-
ness and completeness, before showing that every ipnm can be transformed into an ipm.
And, while in the case of ICDL this proved to be of more interest than a mere technical
tool, here we regard ipnms and strictly inferior as an interpretation of IPL than ipms, and
so we will not explore an interpretation.

Definition 7.2.1 (Inquisitive plausibility neighbourhood models).
An Inquisitive plausibility neighbourhoodmodel is a tuple: hW; f˙�

a g; f˙
—
a g; f˙ag; V i,

where:

– W is a set of possible worlds
– V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas

true at w
– Each˙�

a for � 2 f�;—; �g is a mapW ! ˘ associating to each world an issue
in accordance with the following conditions:

1. if v 2 ��
a .w/, then˙�

a .v/ � ˙�
a .w/, where ��

a .w/ ´
S
˙�
a .w/

2. if u 2 �
—
a .w/, then˙—

a .u/ � ˙
—
a .w/, where �—

a .w/ ´
S
˙

—
a .w/

3. w 2 ��
a .w/

4. ��
a .w/ \ �

—
a .w/ D ;

5. ��
a .w/ [ �

—
a .w/ D �a.w/

6. if v 2 �a.w/, then˙a.w/ D ˙a.v/, where �a.w/ ´
S
˙a.w/

7. ˙�
a .w/ D .}.��

a .w// \˙a.w//

8. ˙—
a .w/ D .}.�

—
a .w// \˙a.w//

Conditions 1–8 are intended to ensure that any ipm can be translated into an ipnm,
and any finite ipnm can be transformed into an ipm, preserving the interpretation of IPL,
following the methods of chapter 5. This will be established in section 7.5.

The conditions have the following readings.

1. If v is at least as plausible asw, then any issue over the worlds at least as plausible
v can be obtained from the issue over the worlds at least as plausible as w.

2. Similar to 1, if u is less plausible than w, then any issue over the plausible worlds
at w can be obtained from the issue over the plausible worlds at u.

3. The plausibility relation is reflexive.
4. No world is both plausible and implausible.
5. The plausibility relation is over an agent’s epistemic state.
6. Agents have both positive and negative introspection.
7. An issue over the plausible worlds at some world w is obtained from restricting

the agent’s epistemic issue to those worlds at least as plausible as w.
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8. An issue over the implausible worlds at someworldw is obtained from restricting
the agent’s epistemic issue to those worlds at least as plausible as w.

Lemma 7.2.2.

1. v 2 ��
a .w/ iff˙�

a .v/ � ˙�
a .w/.

2. If v; u 2 �a.w/, then either u 2 ��
a .v/ or u 2 �

—
a .v/.

Proof.

1. From left to right it precisely condition 1. From right to left, by condition 3 we know
v 2 ��

a .v/, and so if˙�
a .v/ � ˙�

a .w/ it is immediate that v 2 ��
a .w/.

2. Let v; u 2 �a.w/ be arbitrary. So, by condition 6 on ipnms we know that˙a.w/ D

˙a.v/ D ˙a.u/. By condition 3 we know that u 2 ��
a .u/, whence fug 2 ˙�

a .u/ D

˙�
a .v/, and so u 2 �a.v/. So, by condition 5 we know it must be the case that u 2

��
a .v/ or u 2 �

—
a .v/.

The support conditions for IPL on ipnms mirror those of IPL on ipms, given our du-
plication of notation.

Definition 7.2.3 (Support conditions for IPL modalities on ipnms).

1. M;w � E�
a ' iff 8t 2 ˙�

a .w/;M; t � '

2. M;w � E
—
a ' iff 8t 2 ˙

—
a .w/;M; t � '

where:
a. ˙�

a .w/ ´ }.��
a .w// \˙a.w/, and ��

a .w/ ´ fv j v �wa wg

b. ˙—
a .w/ ´ }.�

—
a .w// \˙a.w/, and �—

a .w/ ´ fv 2 �a.w/ j v —wa wg

7.3 Axioms and Rules of IPL
The following 11 axiom schemas and rule of inference augment the base system of InqD
to provide a sound and complete logic with respect to ipms.

Definition 7.3.1. Axioms and rules of IPL

1. Ea.' !  / ! .Ea' ! Ea /

2. E�
a .' !  / ! .E�

a ' ! E�
a  /

3. E—
a .' !  / ! .E

—
a ' ! E

—
a  /

4. E�
a ' ! E�

a E
�
a '

5. E—
a ' ! E

—
a E

—
a '

6. i. Ea' ! EaEa' and ii. :Ea' ! Ea:Ea'

7. Ea' ! .E�
a ' ^E

—
a '/

8. .E�
a ' ^E

—
a  / ! Ea.

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//

9. E�
a ˛ ! ˛

10. .E�
a ' ^E

—
a :˛/ ! Ea.˛ ! '/

11. .E—
a ' ^E�

a :˛/ ! Ea.˛ ! '/
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In conjunction with the rules of inference of InqD we add necessitation for enter-
tains:4

;....
'

Ea'

Unlike ICDL, the axioms of IPL do not have a straightforward epistemic interpreta-
tion, and indeed our choice of axioms are made on the basis of their corresponding
semantic property on ipnms, and not ipms, leading to additional obscurity. In what fol-
lows we briefly overview some basic properties of the axioms, however their role is best
understood by their function in constructing the canonical model for IPL and showing
the regular model for IPL is an ipnm as in lemma 7.4.8.

Axioms 1, 6.i, and 6.ii axiomatise the basic properties of the entrains modality fa-
miliar from IEL, with factivity following from the conjunction with axioms 7 and 3 (We
give an explicit proof in proposition 7.3.2, below.) Axioms 2 and 3 mirror axiom 1 in
ensuring that the plausibility modalities, like the entertains modality, are monotonic
operators.

Axioms 7 and 8 constrain the plausibility modalities to range over propositions en-
tertained by an agent, while axioms 9, and 4 ensure the plausibility relation is reflexive
and transitive.

Finally axioms 10 and 11 describe the interaction between the entertains modality
and the plausibility modalities in specific contexts—in effect ensuring that the inquis-
itive states of an agent relativised to aspects of the plausibility relation are determined
solely by the agent’s general inquisitive state.

We also pause to note factivity of the entertains modality.

Proposition 7.3.2. All instances of the schema Ea˛ ! ˛ are axioms of IPL.

Proof. We give the proof in a condensed form, abbreviating applications of implication
elimination on a conditional to immediate derivations of the consequent from the an-
tecedent of the relevant conditional.

ŒEa˛�
1

E�
a ˛ ^E

—
a ˛

.Ax.7/

E�
a ˛

.^e/

Ea˛Ea
.Ax.9/

Ea˛ ! ˛
.!i;1/

Theorem 7.3.3 (Soundness of IPL wrt. ipnms). IPL is sound with respect to ipnms.

Proof. As in theorem 4.3.1 we observe that each axiom of IPL is a declarative, and so
by proposition 1.2.15 soundness can be established via appeal to truth conditions. This
observation allow us to sidestep many unnecessary repetitions and complications.

1Ea.' !  / ! .Ea' ! Ea /

SupposeM;w � Ea.' !  / andM;w � Ea'. Then, 8t 2 ˙a.w/;M; t � ' !  

and 8t 2 ˙a.w/;M; t � ', whence 8t 2 ˙a.w/;M; t �  , and soM;w � Ea .
4Observe that necessitation for the two plausibility modalities follows from necessitation for the enter-

tains modality and axiom 7
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2.E�
a .' !  / ! .E

�
a ' ! E

�
a  /

Analogous to the previous axiom.

3.E—
a .' !  / ! .E

—
a ' ! E

—
a  /

Analogous to the previous axiom.

4.E�
a ' ! E

�
a E

�
a '

Suppose M;w � E�
a ' while M;w ² E�

a E
�
a '. By the former we infer that 8t 2

˙�
a .w/;M; t � '. By the latter, as worlds behave classically, we infer that M;w �

:E�
a E

�
a '. So, 9t 0 2 ˙�

a .w/ such thatM; t 0 ² E�
a ', whenceM;w � :E�

a '. By
persistence this means that for some world v 2 t 0;M; v � :E�

a ', whence 9t 00 2

˙�
a .v/ such that M; t 00 ² '. So, by proposition 1.2.15 this means that there’s some

world u 2 t 00 such thatM;u ² '. As worlds behave classically we can inferM;w �
:'. However, as t 0 2 ˙�

a .w/ and v 2 t 0 we know that fvg 2 ˙�
a .w/ as ˙�

a .w/

is an issue and hence is downward closed. And, as u 2 t 00 and t 00 2 ˙�
a .u/ fug 2

˙�
a .v/. So, we can infer by the previous observation and condition 1 on ipnms that

fug 2 ˙�
a .w/. But then it must be the case thatM;u � ', a contradiction.

5.E—
a ' ! E

—
a E

—
a '

Analogous to the previous axiom.

6.iEa' ! EaEa' and 6.ii :Ea' ! Ea:Ea'

Each follows the proof of positive/negative introspection for IEL.

7.Ea' ! .E
�
a ' ^E

—
a '/

Suppose M;w � Ea'. Then, 8t 2 ˙a.w/;M; t � '. Therefore, as .}.��
a .w// \

˙a.w// � ˙a.w//, we know that 8t 2 .}.��
a .w// \˙a.w//;M; t � '. Therefore,

for all t 2 ˙�
a .w/;M; t � ', whenceM;w � E�

a '. The reasoning is analogous for
E

—
a , and thereforeM;w � E�

a ' ^E
—
a '.

8. .E�
a ' ^E

—
a  / ! Ea.

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//

Suppose M;w � E�
a ' ^ E

—
a  . Therefore, 8t 2 ˙�

a .w/;M; t � ' and 8t 0 2

˙
—
a .w/;M; t

0 �  . So, by theorem 6.2.7 we know that 8t 2 ˙�
a .w/;M; t � ˛

for some ˛ 2 R.'/ and 8t 0 2 ˙
—
a .w/;M; t

0 � ˇ for some ˇ 2 R. /. So,
for an arbitrary v 2 ��

a .w/ we know fvg 2 ˙�
a .w/, whence M;v � ˛ for some

˛ 2 R.'/. So, M;v � .
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//. Similarly, for an arbitrary

u 2 �
—
a .w/ we know fug 2 ˙

—
a .w/, whence M;u � ˇ for some ˇ 2 R. /. So,

M;u � .
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//.

Therefore, as �a.w/ D ��
a .w/[ �

—
a .w/ by condition 5 on ipnms we know that for all

v 2 �a.w/;M; v � .
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//. By proposition 1.2.15 this means

that for all t 2 ˙a.w/;M; t � .
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//, as 8t 2 ˙a.w/; t �

�a.w/. So,M;w � Ea.
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//.

9.E�
a ˛ ! ˛

SupposeM;w � E�
a ˛. Then, it is the case that 8t 2 ˙�

a .w/;M; t � ˛. We know
by condition 3 that w 2 ��

a .w/, whence fwg 2 ˙�
a .w/, and so it is immediate that

M;w � ˛.
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10. .E�
a ' ^E

—
a :˛/ ! Ea.˛ ! '/

SupposeM;w � E�
a '^E

—
a :˛, whileM;w ² Ea.˛ ! '/. From this it follows that

8t 2 ˙�
a .w/;M; t � ', 8t 0 2 ˙

—
a .w/;M; t

0 � :˛ and 9t 00 2 ˙a.w/;M; t
00 � ˛

whileM; t 00 ² '.
By the fact thatM; t 00 ² ' we know that t 00 ¤ ;. So, there is some v 2 t 00 such that
M;v ² ' by proposition 1.2.15, while by persistence M;v � ˛. Furthermore, as
˙

—
a .w/ � ŒŒ:˛�� by the support condition for E—

a , we know �—
a .w/ � j:˛j, whence

t 00 \ �
—
a .w/ D ;. However, as t 00 2 ˙a.w/ we know that t � �a.w/. So, as �a D

��
a .w/ [ �

—
a .w/ by condition 5 on ipnms, we know it must be the case that t 00 �

��
a .w/. Therefore, as ˙�

a .w/ D }.��
a .w// \ ˙a.w/ we can infer t 00 2 ˙�

a .w/. So,
as 8t 2 ˙�

a .w/;M; t � ' we knowM; t 00 � ' via persistence, a contradiction.

11. .E—
a ' ^E

�
a :˛/ ! Ea.˛ ! '/

Analogous to the previous axiom.

7.4 Completeness
We are in a position to establish completeness for ipnms. The method taken to establish
completeness of IPL with respect to ipnms follows that of ICDL with respect to icdms,
from chapter 6.

7.4.1 Preliminaries
We will not restate the preliminaries for completeness for ICDL from chapter 6, as these
straightforwardly carry over to IPL. We note only the adjustment required to adapt the
definition of the finite fragment of ICDL to that of IPL, arising from a difference in the
modal operators between the two languages, in the definition of a subformula.

Definition 7.4.1 (Subformulas). Let F be a set of formulas, we define sub.F / to be the
smallest set satisfying the following conditions:

1. If ' ı  2 F then '; 2 sub.F / for ı 2 f^;!g.
2. If ‹f˛1; : : : ; ˛ng 2 F , then ˛1; : : : ; ˛n 2 sub.F /.
3. If E�

a ' 2 F , then ' 2 sub.F /, for � 2 f�;—; �g.

As in ICDL to establish completeness for IPLwe begin by taking a finite set of formulas
F from IPL which then close under successive operations.

As definition 6.2.10 makes no reference to ICDLwe apply the same method to define
the finite fragment of IPL, F, via successive closures on a finite set of formulas F .

The fragment of IPL, F, is then used as a basis for the construction of nuclei and then
atoms of the canonical model, as in ICDL.

As the syntactic characterisation of atoms, states, and propositions for fragments of
ICDL makes no specific reference to the language of ICDL, nor to F, the definitions and
lemmas established in section 6.2.1 carry over to the fragment of IPL, as do the relevant
lemmas of section 6.3.
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7.4.2 Constructing the Canonical Model
Definition 7.4.2 (Canonical model for IPL over F ). The canonical model for IPL is the
tuple: MF D hW; f˙�

a ga2A; f˙
—
a ga2Af˙aga2A; V i, defined as follows:

– W is the set of complete theories of declaratives of IPL.
– V.A/ D fp 2 At j p 2 Ag

– For � 2 f�;—; � g,˙�
a .A/ is the set of states S � W defined by:

S 2 ˙�
a .A/ ()

\
S ` ' whenever A ` E�

a '

7.4.3 The Support Lemma
Lemma 7.4.3. For A 2 At.F /, ' 2 F, if A ° E�

a ' then 9S 2 ˙�
a .A/ W

T
S ° ', for

� 2 f�;—; �g.

Proof. Analogous to lemma 6.3.3.

Lemma 7.4.4 (Support lemma for the canonical model over F ). For a set of formulas
F and the canonical model over F ,MF , for any S � At.F / and any ' 2 F;

MF ; S � ' ()
\
S ` '

Proof. Proof of the support lemma for IPL differs from the the support lemma for ICDL
only with respect to modal formulas, therefore we consider only these steps.

I4) � ´ Ea'

From left to right supposeMF ; S � Ea'. Then 8A 2 S;8T 2 ˙a.A/;M
F ; T � ',

whence by the induction hypothesis we have 8A 2 S;8T 2 ˙a.A/;
T
T ` '. So, by

lemma 7.4.3 we have 8A 2 S;A ` Ea', whence
T
S ` Ea'.

From right to left suppose
T
S ` Ea , so 8A 2 S;A ` Ea . Therefore, as T 2

˙a.A/ ()
T
T ` � whenever Ea� 2 A we can infer by the induction hypothesis

that 8T 2 ˙a.A/;M; T �  , whenceM;A � Ea for all A 2 S , whenceM;S �
Ea .

I5) � ´ E�
a '

Analogous to the case for the entertains modality.

I6) � ´ E
—
a '

Analogous to the case for the entertains modality.

It is certainly not clear that the canonical model for IPL is an ipnm, as it appears
plausible that for someA;B 2 At.F /,B 2 ��

a .A/\�
—
a .A/—it is certainly possible for

some formula ' thatA ` hE�
a i'^h—ai', whence it seems thatA ` hE�

a iγB^h—aiγB
cannot be excluded. We therefore define a transformation of any given canonical ipnm
into a regular ipnm.

Definition 7.4.5 (Regular IPL model over F ). Given the canonical IPL model over F

M D hW; f˙�
a ga2A; f˙

—
a ga2Af˙aga2A; V i

we define the regular model for IPL as the tuple:

M 0
D hW 0; f˙ 0�

a ga2A; f˙
0—
a ga2Af˙ 0

aga2A; V
0
i

91



such that for everyB 2 ��
a .A/\�

—
a .A/we create two copies,B� andB— distinguished

by adding some set-theoretic element outside of IPL to B to obtain B� and omitting it
from B—.

We omitB fromW 0 in place ofB�; B—, which are then defined to belong to ��
a .A/

and �—
a .A/ respectively, for any A such that B 2 ��

a .A/ \ �
—
a .A/ and with ˙a.A/,

˙�
a .A/, and ˙

—
a .A/ modified accordingly. We then define ˙�

a .B
�/ as ˙�

a .B/ with
B� in place of B , and ˙—

a .B
—/ as ˙—

a .B/. With both B� and B— in place of B we
then revise the valuation function V 0 accordingly, following the definition of V from
the canonical model.

The rest of the canonical model remains unchanged.

Lemma 7.4.6 (Support lemma for the regular model over F ). For a set of formulas F

and the regular model over F ,MF , for any S � At.F / and any ' 2 F;

MF ; S � ' ()
\
S ` '

Proof. Inherited from the canonical model. For, it is straightforward to see that the
changes made to the canonical modal are purely cosmetic—duplicating certain atoms,
which the fragment of IPL cannot distinguish between, to ensure the intersection of cer-
tain sets are indeed empty.

Corollary 7.4.7. For all ' 2 F, any S � At.F /, and � 2 f�;—; �g:\
S ` E�

a ' iffMF ; S � E�
a '

Proof. If S D ; the result is trivial, so we assume S D fA1; : : : ; Ang for Ai 2 At.F /.
From left to right suppose

T
S ` E�

a '. Then, as S D fA1; : : : ; Ang we know thatT
S � Ai for i � n, whence Ai ` E�

a ' for all i � n.
Therefore, by definition ofE�

a ' we know that T 2 ˙�
a .Ai / iff

T
T ` '. Therefore,

as ' 2 F we know by the support lemma that
T
T ` ' iff MF ; T � ', whence

we infer MF ; Ai � E�
a '. As Ai was arbitrary this holds for all i � n, and so via

proposition 1.2.15 we can infer thatMF ; S � E�
a '.

As each inference appealed to used one direction of an equivalence the left to right
direction follows easily from the same reasoning in reverse.

Lemma 7.4.8. The regular model is an ipnm.

Proof.

1 ifB 2 �
�
a .A/ and T 2 ˙

�
a .B/, then T 2 ˙

�
a .A/

Suppose B 2 ��
a .A/ and T 2 ˙�

a .B/. As T 2 ˙�
a .B/ we know that

T
T `  

whenever B ` E�
a  . And, as B 2 ��

a .A/, whence fBg 2 ˙�
a .A/, which means that

B `  whenever A ` E�
a  . Our task is to show that

T
T ` � whenever A ` E�

a �,
so suppose A ` E�

a �. By axiom 4 it follows that A ` E�
a E

�
a �, whence B ` E�

a �,
and so

T
T ` �.

2 ifB 2 �
—
a .A/ and T 2 ˙

—
a .B/, then T 2 ˙

—
a .A/

Analogous to the previous case, using axiom axiom 5.
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3A 2 �
�
a .A/

Suppose A … ��
a .A/. ThenMF ; A � E�

a :γA.
For, if ˙�

a .A/ D f;g thenMF ; A � E�
a ' for any '. And, if ˙�

a .A/ ¤ f;g then, as
we know thatA … ��

a .A/, and γA 2 B iffB D A by lemma 6.2.26, it must be the case
thatMF ; B � :γA for all B 2 ��

a .A/. So, by proposition 1.2.15MF ; S � :γA for
all S 2 ˙�

a .A/, whence MF ; A � E�
a :γA. Therefore, by corollary 7.4.7 we know

that A ` E�
a :γA.

So, by axiom 9 we have ` E�
a :γA ! :γA. Therefore, as A ` E�

a :γA we have that
A ` :γA by modus ponens. However, we know by IPL counterpart to lemma 6.2.26
and proposition 6.2.22 that A ` γA. A contradiction.

4 ��
a .A/ \ �

—
a .A/ D ;

By construction.

5 ��
a .A/ [ �

—
a .A/ D �a.A/

From left to right assume B 2 ��
a .A/[ �

—
a .A/. Then it is either the case that B `  

wheneverA ` E�
a  orB `  wheneverA ` E

—
a  . Without loss of generality let us

suppose the latter is the case. To show B 2 �a.A/ it is sufficient to show that B ` �

whenever A ` Ea�.

By axiom 7, ` Ea� ! .E�
a � ^ E

—
a �/, whence A ` Ea� ! .E�

a � ^ E
—
a �/. So,

if A ` Ea� then A ` E
—
a �, whence B ` �. Therefore, it is the case that B ` �

whenever A ` Ea�.

From right to left suppose B 2 �a.A/, while B … ��
a .A/ [ �

—
a .A/. So, B … ��

a .A/

and B … �
—
a .A/, whence fBg … ˙�

a .A/ and fBg … ˙
—
a .A/.

So, B `  whenever A ` Ea , but for some �1; �2, A ` E�
a �1 and A ` E

—
a �2, yet

B ° �1 and B ° �2.
However, by axiom 8 it follows that A ` Ea.

W
˛2R.�1/

W
ˇ2R.�2/

.˛ _ ˇ//, whence
B ` .

W
˛2R.�1/

W
ˇ2R.�2/

.˛_ˇ//. AsB is an atom it has the disjunction property by
proposition 6.2.23. So, B ` ˛ _ ˇ, for some ˛ 2 R.χ1/ and ˇ 2 R.χ2/. Appealing
again to the fact that B has the disjunction property we know that B ` ˛ for ˛ 2

R.χ1/ or B ` ˇ for ˇ 2 R.χ2/. Therefore, by theorem 6.2.7 we know that either
B ` χ1 or B ` χ2, a contradiction.

6 ifB 2 �a.A/, then˙a.A/ D ˙a.B/

This comes via the introspection axioms for the entertains modality, paralleling the
proof for introspection with respect to considers on icdms.

7˙�
a .A/ D .}.�

�
a .A// \˙a.A//

From left to right, if T 2 ˙�
a .A/ then T � ��

a .A/, and so T 2 }.��
a .A//. Further-

more,
T
T `  whenever A ` E�

a . Suppose A ` Ea then by axiom 7 and the
elimination rule for conjunction, A ` E�

a  , whence
T
T . So,

T
T `  whenever

A ` Ea , and so T 2 ˙a.A/. Therefore, T 2 }.��
a .A// \˙a.A/.

From right to left, let T 2 }.��
a .A// \˙a.A/ be arbitrary.

We begin by establishing that A ` E
—
a :γT . For, as T 2 ˙a.A/ we know

T
T `  

whenever A ` Ea , and as T 2 }.��
a .A// we know T � ��

a .A/. Therefore, by
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condition 4 on ipnms, proved to be satisfied byMF above, we know T \ �
—
a .A/ D ;,

whence T … }.�
—
a .A//. So, as˙—

a .A/ � }.�
—
a .A// it follows that T … ˙

—
a .A/.

As B ` γT iff B 2 T by lemma 6.2.29, this means that 8B 2 �
—
a .A/; B ° γT ,

whence B ` :γT , as B is a maximally consistent set of declaratives. By the support
lemma, then, as :γT 2 D, we know that for all B 2 �

—
a .A/;M

F ; B � :γT . So, by
lemma 1.2.15 we know that for all T 2 ˙

—
a .A/;M

F ; T � :γT , and so MF ; A �
E

—
a :γT . Therefore, by the support lemma we know A ` E

—
a :γT .

We now show that ifA ` E�
a ' then

T
T ` '. For, supposeA ` E�

a ' for an arbitrary
' 2 F . By the previously established fact thatA ` E

—
a :γT and the introduction rule

for conjunction we have A ` E�
a ' ^ E

—
a :γT So, as an instantiation of axiom 10 we

haveA ` .E�
a '^E

—
a :γT / ! Ea.γT ! '/, fromwhichwe inferA ` Ea.γT ! '/.

Therefore, if S 2 ˙a.A/ then
T
S ` γT ! '.

As we know
T
T 2 ˙a.A/ this means that

T
T ` γT ! ', whence as

T
T ` γT

by lemma 6.2.32 we know that
T
T ` '. Therefore, we have show that if A ` E�

a '

then T 2 ˙�
a .A/. And, as T was an arbitrary element of }.��

a .A// \ ˙a.A/ this
establishes }.��

a .A// \˙a.A/ � ˙�
a .A/.

8˙—
a .A/ D .}.�

—
a .A// \˙a.A//

Proof is analogous to the previous condition using axiom 11.

Theorem 7.4.9 (Completeness of IPL wrt. ipnms.). IPL is weakly complete with respect to
ipnms.

Proof. As with completeness of ICDL with respect to icdms, theorem 6.4.1.

7.5 Connexions Between ipms and ipnms
We now turn to establishing soundness and completeness of IPL with respect to ipms.
This follows the same strategy as chapter 5, by defining transformations between the
class of ipnms and the class of ipms that preserve the interpretation of IPL.

7.5.1 From ipnms to ipms
Theorem 7.5.1 (From ipnms to ipms). Any finite ipnm can be transformed into an ipm
preserving the interpretation of IPL.

Definition 7.5.2 (Map from ipnms to ipms).
Given an arbitrary ipnm,M D hW; f˙�

a g; f˙
—
a g; f˙ag; V i we define a mapM 7!

M ], whereM ] D hW ]; f�wa ga2A;w2W ] ; f˙aga2A; V
]i is constructed in the following

way:

1. W ] ´ W

2. v �wa u if v; u 2 �a.w/ and v 2 ��
a .u/

3. ˙]
a ´ ˙a

4. V ] ´ V

Lemma 7.5.3. For every finite ipnmM ,M ] is an ipm.
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Proof. Note in the following �]a.w/ ´
S
˙
]
a.w/.

Factivity:w 2 �
]
a.w/; for allw 2 W

We know thatw 2 ��
a .w/, by condition 3 on ipnms. Furthermore, from this it follows

thatw 2 �a.w/, by condition 5. So, asw 2 �a.w/ andw 2 ��
a .w/ we havew �wa w,

by definition of �wa , whence w 2 �
]
a.w/.

Introspection 1: if v 2 �
]
a.w/; then˙

]
a.w/ D ˙

]
a.v/

Suppose v 2 �
]
a.w/. Then v �wa u for some u. So, it must be the case that v 2 �a.w/

and v 2 ��
a .u/. And, as v 2 �a.w/ we know that˙a.w/ D ˙a.v/ by condition 6 on

ipnms, but then˙]
a.w/ D ˙

]
a.v/ by definition.

Introspection 2: if v 2 �
]
a.w/; then x �va y if and only if x �wa y

Suppose v 2 �
]
a.w/, then v �wa u for some u, and so v 2 �a.w/ and v � u. By the

former observation we note that by condition 6 on ipnms, �a.w/ D �a.v/.
Now from right to left, if x �wa y this means that x; y 2 �a.w/ and x 2 ��

a .y/.
So, as x; y 2 �a.w/ and �a.w/ D �a.v/ we know that x; y 2 �a.v/. Therefore, as
x; y 2 �a.v/ and x 2 ��

a .y/ we have x �va y by definition of �va.
For the left to right direction the argument proceeds analogously.

We begin by showing the ordering defined is a well-preorder.

Transitivity
Suppose x �wa y and y �wa z. This means that x; y; z 2 �a.w/ and x 2 ��

a .y/ and
y 2 ��

a .z/.
Now, as x 2 ��

a .y/we know˙�
a .x/ � ˙�

a .y/, and as y 2 ��
a .z/we know˙�

a .y/ �

˙�
a .z/ by condition 1 on ipnms. Therefore, by transitivity of the subset relation we

know that ˙�
a .x/ � ˙�

a .z/. Furthermore, by condition 3 we know that x 2 ��
a .x/,

whence fxg 2 ˙�
a .x/, from which it follows by the previous observation that fxg 2

˙�
a .z/, and so x 2 ��

a .z/. Therefore, x �wa z by definition of �wa .

Reflexivity Follows as a corollary of factivity established above.

For every set s� fv j 9u W v�wa ug there exists v 2 s such that v�wa u for all u2 s

Suppose for some set s � fv j 9u W v �wa ug that for every v 2 s there exists some
u 2 s such that v —wa u.
Let v 2 s be arbitrary, and instantiate u such that v —wa u. As v —wa u it must be the
case that either v; u … �a.w/ or v … ��

a .u/.
So, as v 2 s we know that 9x W v �wa x, and so by definition of �wa this means that
v; x 2 �a.w/ and v 2 ��

a .x/. Analogous reasoning applies to u, and therefore we
know that v; u 2 �a.w/. From this it follows that v … ��

a .u/. And, as v; u 2 �a.w/

it follows by condition 6 on ipnms that �a.v/ D �a.w/ D �a.u/, and therefore we
know that v 2 �a.u/ and u 2 �a.v/.

Now, as v 2 �
—
a .u/ we know that ˙�

a .v/ � ˙�
a .u/ by condition 2. From this it

follows that u … �
—
a .v/. For, suppose otherwise. Then, as u 2 �

—
a .v/ we know fug 2

˙
—
a .v/, and therefore fug 2 ˙

—
a .u/, which entails u 2 �

—
a .u/. However, we know by
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condition 3 on ipnms that u 2 ��
a .u/ and by condition 4 that ��

a .u/ \ �
—
a .u/ D ;.

Therefore, we have derived a contradiction.
So, as u … �

—
a .v/while u 2 �a.v/we know by condition 5 that u 2 ��

a .v/. Therefore,
by definition of �wa we have that u <wa v, and furthermore we know u ¤ v as v �wa v

by the fact that �wa is reflexive, as established above.
As v 2 s was arbitrary we have shown that for any v 2 s there exists some u ¤ v

such that u <wa v. Yet, we know that s is finite as W is finite. Therefore, for some
y it must be the case that there is no z such that z <wa y, whence we have derived a
contradiction.

We now show the remaining properties required forM ] to be an ipm are satisfied.

˙
]
a.w/ is an issue over � ]a.w/, where �

]
a.w/ ´ fv j v �wa u for some ug

We have defined˙]
a.w/ as˙a.w/, and as˙a.w/ is an issue over �a.w/, it will suffice

to show that �]a.w/ D �a.w/.

So, from left to right suppose v 2 �
]
a.w/. Then, v �wa u for some u. So, given the

definition of �wa it must be the case that v; u 2 �a.w/ and v 2 ��
a .u/ for some u,

whence by the former conjunct v 2 �a.w/. Therefore, �]a.w/ � �a.w/.
Conversely, if v 2 �a.w/ then by condition 3 that v 2 ��

a .v/, and therefore as v 2

�a.w/ and v 2 ��
a .v/ it follows by definition of �wa that v �wa v, whence v 2 �

]
a.w/.

Therefore, �a.w/ � �
]
a.w/.

Lemma 7.5.4. Given an arbitrary ipnmM and a corresponding ipmM ]:

1. ˙�
a .w/ D ˙

];�
a .w/

2. ˙—
a .w/ D ˙

];—
a .w/

Proof. Recall˙�
a .w/ D .}.��

a .w// \˙a.w// and˙—
a .w/ D .}.�

—
a .w// \˙a.w//,

while ˙];�
a .w/ ´ }.�

];�
a .w// \ ˙

]
a.w/ and ˙];—

a .w/ ´ }.�
];—
a .w// \ ˙

]
a.w/. So,

as ˙]
a.w/ D ˙a.w/, showing both ��

a .w/ D �
];�
a .w/ and ��

a .w/ D �
];�
a .w/ will be

sufficient to establish the lemma. Furthermore, recall �];�a .w/ ´ fv 2 �
]
a.w/ j v �wa

wg and �];—a .w/ ´ fv 2 �
]
a.w/ j v —wa wg.

1 From left to right suppose v 2 ��
a .w/. Then by condition 5 on ipnms we know that

v 2 �a.w/, and be analogous reasoning using condition 3 we know w 2 �a.w/.
So, as v;w 2 �a.w/ and v 2 ��

a .w/, then v �wa w by definition of �wa , whence
v 2 �

];�
a .w/.

Conversely, if v 2 �
];�
a .w/ then it must be the case v �wa w. So, v 2 �a.w/ and

v 2 ��
a .w/.

2 We know by lemma 7.5.3 that �a.w/ D �
]
a.w/, and by the previous case we know

��
a .w/ D �

];�
a .w/, so itmust be the case that .�a.w/���

a .w// D .�
]
a.w/��

];�
a .w//.

Therefore, as .�a.w/ � ��
a .w// D �

—
a .w/ by condition 5 on ipnms, and .�]a.w/ �

�
];�
a .w// D fv j v —wa wg D �

];—
a .w/ we have that �—

a .w/ D �
];—
a .w/.
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Proof of theorem 7.5.1. LetM be an arbitrary ipnm and takeM ], the ipm constructed
fromM , given by the mapping defined above. We claimM; s � � iffM ]; s � �, for all
s � W and formulas �.

Proof is via induction on the complexity of �, and here we consider only the cases
unique to IPL, with the others established as in the proof of theorem 5.2.1.

i5) � ´ E
�
a '

By lemma 7.5.4 we know that˙�
a .w/ D ˙

];�
a .w/. So,M; s � E�

a ' iff 8w 2 s;8t 2

˙�
a .w/;M; t � ' iff (by the induction hypothesis and noted lemma) 8w 2 s;8t 2

˙
];�
a .w/;M ]; t � ' iffM ]; s � E�

a '.

i6) � ´ E
—
a '

Analogous to the previous case.

i7) � ´ Ea'

Immediate.

7.6 From ipms to ipnms
Theorem 7.6.1 (From ipms to ipnms). Any finite ipm can be transformed into an ipnm
preserving the interpretation of IPL.

Definition 7.6.2 (Map from ipms to ipnms).
Given an arbitrary ipm, M D hW; f�wa ga2A;w2W ; f˙aga2A; V i we define a map

M 7! M [, whereM [ D hW [; f˙
�;[
a g; f˙

—;[
a g; f˙ [

ag; V
[i is constructed in the follow-

ing way:

1. W [ ´ W

2. ˙�;[
a .w/ D }.��

a .w// \˙a.w/

3. ˙—;[
a .w/ D }.�

—
a .w// \˙a.w/

4. ˙ [
a ´ ˙a

5. V [ ´ V

Lemma 7.6.3. Any modelM [, defined as in definition 7.6.2, is an ipnm.

Proof. Note ��;[
a .w/ ´

S
˙

�;[
a .w/ D ��

a .w/ \ �a.w/ D ��
a .w/, �

—;[
a .w/ ´S

˙
—;[
a .w/ D �

—
a .w/\�a.w/ D �

—
a .w/, and� [a.w/ ´

S
˙ [
a.w/ D �a.w/\�a.w/ D

�a.w/.
Therefore, ��;[

a .w/ D ��
a .w/, �

—;[
a .w/ D �

—
a .w/, and � [a.w/ D �a.w/.

1. If v 2 �
�;[
a .w/, then˙�;[

a .v/ � ˙
�;[
a .w/

Suppose v 2 �
�;[
a .w/. So, by the observations above we know v 2 ��

a .w/. Therefore,
v �wa w. By expanding definitions, to show that˙�;[

a .v/ � ˙
�;[
a .w/ is to show that

.}.��
a .v//\˙a.v// � .}.��

a .w//\˙a.w//. To do this we show 1.˙a.v/ D ˙a.w/

and 2. ��
a .v/ � ��

a .w/. From these two facts the result is immediate.

1. As v �wa w we know that v 2 �a.w/, and therefore by introspection 1 on ipms
we know that˙a.v/ D ˙a.w/.
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2. By definition, ��
a .v/ D fx j x �va vg and ��

a .w/ D fy j y �wa wg. Fur-
thermore, we know that v �wa w, so v 2 �a.w/, whence by the condition of
introspection 2 on ipms we know that x �va y iff x �wa y.
So, let u 2 ��

a .v/ be arbitrary. Then u �va v, whence u �wa v, by the previous
observation. And, as v �wa w it follows by the transitivity of the ordering that
u �wa w, whence u 2 ��

a .w/.

2. If u 2 �—;[.w/, then˙—;[
a .u/ � ˙

—;[
a .w/

Suppose u 2 �—;[.w/. Therefore, we know that u 2 �a.w/ but u —wa w, whence
w <wa u.
Following the strategy of the previous condition we observe that by expanding def-
initions it suffices to show that }.�—

a .u// \ ˙a.u/ � }.�
—
a .w// \ ˙a.w/. And,

analogously to before we show 1.˙a.u/ D ˙a.w/ and 2. �—
a .u/ � �

—
a .w/. For from

these two facts the result is immediate.

1. As u 2 �a.w/ we know by introspection 1 on ipms we know that ˙a.u/ D

˙a.w/.
2. We have established that ˙a.u/ D ˙a.w/, and so by the condition of intro-

spection 2 on ipms we know that x �ua y iff x �wa y. Now, let v 2 �
—
a .u/ be

arbitrary. From this we know v —ua u, whence v —wa u. So, as v —wa u we know
by proposition 7.1.3 that u �wa v, whence u <wa v. We now have w <wa u and
u <wa v. And, as �wa is a well-preorder it is transitive, so the preceding implies
w <wa v, whence v —wa w, and so v 2 �

—
a .w/.

3.w 2 ��;[.w/

We observed above that ��;[
a .w/ D ��

a .w/. Therefore, as w �wa w by the fact that
�wa is a well-preorder and hence reflexive, we knoww 2 ��

a .w/, and sow 2 �
�;[
a .w/.

4. ��;[.w/ \ �—;[.w/ D ;

As before, we observed above that ��;[
a .w/ D ��

a .w/ and �
—;[
a .w/ D �

—
a .w/, there-

fore we need only observe that ��
a .w/ \ �

—
a .w/ D ;. This is established in proposi-

tion 7.1.3.

5. ��;[.w/ [ �—;[.w/ D � [a.w/

Follows the same reasoning as the previous condition.

6. If v 2 � [a.w/, then˙ [
a.w/ D ˙ [

a.v/

Suppose v 2 � [a.w/. Then, following the above observations, we know v 2 �a.w/,
whence ˙a.v/ D ˙a.w/, by introspection 1. Therefore, ˙ [

a.v/ D ˙ [
a.w/, by defini-

tion.

7.˙�;[
a .w/ D .}.��;[.w// \˙ [

a.w//

By definition of the transformation˙�;[
a .w/ D .}.��.w// \˙a.w//. However, we

also know �
�;[
a .w/ D ��

a .w/ by the above observation, and ˙ [
a.w/ D ˙a.w/ by

definition of the transformation. Therefore, the condition is immediate.

8.˙—;[
a .w/ D .}.�—;[.w// \˙ [

a.w//

Analogous to the previous case.
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Proof of theorem 7.6.3. As in lemma7.6.3 the proof, proceeding as in theorems 5.1.1, 5.2.1,
and 7.5.1, is trivial given the transformation defined in 7.6.2 and therefore is omitted.

7.7 Results
Theorem 7.7.1 (Soundness of IPL wrt. ipms.). IPL is sound with respect to ipms.

Proof. We know by theorem 7.3.3 that IPL is sound with respect to ipnms, and by theo-
rem 7.6.1 that any ipm can be transformed into an ipnm. Therefore, using the reasoning
of theorem 5.2.4 we can infer that IPL is sound with respect to ipms.

Theorem 7.7.2 (Completeness of IPL wrt. ipms). IPL is weakly complete with respect to
ipms.

Proof. As with completeness of ICDL with respect to ipms, theorem 6.4.2, using theo-
rem 7.5.1.

Theorem 7.7.3 (Compactness of IPL). IPL is not compact.

Proof. Consider the set of formulas fhE
—
a i?; hE

—
a ip0; hE

—
a i.:p0 ^ p1/; : : : g. Clearly

any finite subset is satisfiable, yet the whole set cannot be satisfied on any ipnm.

Our final important result is the decidability of IPL, and by implication ICDL enriched
with the entertains modality.

Theorem 7.7.4 (Decidability of IPL). IPL is decidable.

Proof. Follows the proof of theorem 6.4.3.

Corollary 7.7.5. ICDL enriched with the entertains modality is axiomatisable.

Proof. We are able to translate any formula in the enriched language to a formula of
IPL, whence we can determine whether or not it is a theorem of IPL and hence of the
extension of ICDL.

7.8 Additional Observations
Givenwehave established completeness of IPLwith respect to ipnmswe canuse semantic
reasoning to prove some additional theorems of IPL.

Proposition 7.8.1 (Further theorems of IPL). The initial three theorems of IPL are notable
as being adaptations of axioms of CO. (Cf. Boutilier (1994, p. 101) axioms S. and H. and
K0. respectively.) The final theorem partially characterises the interaction between the two
plausibility modalities.

1. ' ! E
—
a hE�

a i'

2. .hE�
a i.E�

a ' ^E
—
a  / _ h—ai.E

�
a ' ^E

—
a  // !

.E�
a .

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ// ^E

—
a .

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ///

3. E—
a ? ! .E�

a ' ! Ea'/

4. hE
—
a i' ! E�

a hE
—
a i'
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Proof. We show each theorem is valid on an arbitrary state in an arbitrary ipnm. All but
the first theorems are declaratives, and therefore we use proposition 1.2.15 to simply the
proofs.

1. ' ! E
—
a hE

�
a i'

Suppose M; s � ' but M; s ² E
—
a hE�

a i'. The latter is shorthand for M; s ²
E

—
a :E�

a :', which by proposition 1.2.15 entails that for some v 2 s it is the case that
M;v ² E

—
a :E�

a :'. So, 9t 2 ˙
—
a .v/;M; t ² :E�

a :'. By proposition 1.2.15 it
follows that for some world u 2 t;M; u ² :E�

a :', whence we inferM;u � E�
a :'.

From this it follows that 8t 0 2 ˙�
a .u/;M; t

0 � :'.

Furthermore, as u 2 �
—
a .v/ we know that ��

a .v/ � ��
a .u/.

For, as u 2 �
—
a .v/ we know that �—

a .u/ � �
—
a .v/, by condition 2 on ipnms. Therefore,

if v 2 �
—
a .u/ it must be the case that v 2 �

—
a .v/. However, we know that v 2 ��

a .v/

by condition 3, and that ��
a .v/ \ �

—
a .v/ D ; by condition 4. This is a contradiction,

whence v … �
—
a .u/, but then asu 2 �

—
a .v/ and�a.v/ D ��

a .v/[�
—
a .v/ by condition 5

on ipnms it follows that u 2 �a.v/. So, by condition 6 we know �a.u/ D �a.v/.
So, using conditions 4 and 5 again, we can infer using the fact that v … �

—
a .u/, that

v 2 ��
a .u/. So, from this it follows via condition 1 that ˙�

a .v/ � ˙�
a .u/, whence

��
a .v/ � ��

a .u/.
We observed above that v 2 ��

a .v/, and so from this and the previous observation we
know that v 2 ��

a .u/. Now, we know that v 2 s, andM; s � ', whenceM;v � '

by persistence. But we also know that 8t 0 2 ˙�
a .u/;M; t

0 � :', and as v 2 ��
a .u/,

fvg 2 ˙�
a .u/, whenceM;v � :'. Thus we have derived a contradiction.

2. .hE�
a i.E

�
a ' ^E

—
a  / _ h—ai.E

�
a ' ^E

—
a  // !

.E
�
a .

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ// ^E

—
a .

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ///

Suppose it is the case thatM;w � hE�
a i.E�

a ' ^ E
—
a  / _ h—ai.E

�
a ' ^ E

—
a  /. As

worlds behave classically this entails that either M;w � hE�
a i.E�

a ' ^ E
—
a  / or

M;w � h—ai.E
�
a ' ^ E

—
a  /. Without loss of generality let us assume the former

is the case.
This is shorthand for M;w � :E�

a :.E�
a ' ^ E

—
a  /. So, 9t 2 ˙�

a .w/ such that
M; t ° :.E�

a ' ^ E
—
a  /. By proposition 1.2.15 it then follows that for some v 2

t;M; v � E�
a ' ^E

—
a  .

We now need to show:
i. .E�

a .
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ/// and ii. E—

a .
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ////

We know from the above reasoning that for some fvg 2 ˙�
a .w/;M; v � E�

a ' ^

E
—
a  . As fvg 2 ˙�

a .w/ it follows that v 2 ��
a .w/. So, by condition 5 on ipnms we

know v 2 �a.w/ and therefore by the condition of introspection 1 on ipnms we know
˙a.v/ D ˙a.w/. Using this we show M;w � Ea.

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ////.

From this and an application of axiom 7 the desired result will follow.
So, let t 2 ˙a.w/ be arbitrary. We know ˙a.w/ D ˙a.v/, and so t 2 ˙a.v/. Let
u 2 t be arbitrary, and note that as t 2 ˙a.v/; u 2 �a.v/. Now, as u 2 �a.v/ we
know it is the case that u 2 ��

a .v/ or u 2 �
—
a .v/ by condition 5 on ipnms. Without

loss of generality suppose u 2 ��
a .v/. Then, fug 2 }.��

a .v// \ ˙a.v/, whence
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M;u � '. So, by theorem 6.2.7 we know thatM;u � ˛ for some ˛ 2 R.'/, whence
M;u �

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ/.

As u 2 �a.v/was arbitrary we know 8u 2 �a.v/;M; u �
W
˛2R.'/

W
ˇ2R. /.˛_ˇ/.

So, by proposition 1.2.15 we have 8t � �a.v/;M; t �
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ/.

Therefore, via persistence and the fact that ˙a.v/ � }.�a.v// we know that 8t 2

˙a.v/;M; t �
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ/. So, given we have established ˙a.v/ D

˙a.w/ it is immediate thatM;w � Ea.
W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//

3.E—
a ? ! .E

�
a ' ! Ea'/

Suppose M;w � E
—
a ? and M;w � E�

a '. By the former assumption it must be
the case that ˙—

a .w/ D f;g, whence �—
a .w/ D ; and by condition 5 this entails

��
a .w/ D �a.w/ and so by condition 7 it follows that ˙�

a .w/ D ˙a.w/. So, as
˙�
a .w/ � ŒŒ'��,˙a.w/ � ŒŒ'��, whenceM;w � Ea'.

4. hE—
a i' ! E

�
a hE

—
a i'

Suppose M;w � hE
—
a i' while M;w ² E�

a hE
—
a i'. Then, by the latter M;w �

hE�
a iE

—
a :'. And, by the former, we have that 9t 2 ˙�

a .w/;M; t � ' and by the
previous inference we have that 9v 2 ��

a .w/,M;v � E
—
a :', whence 8t 0 2 ˙

—
a .v/,

M; t 0 � :'.
As v 2 ��

a .w/ we know by condition 1 on ipnms that˙�
a .v/ � ˙�

a .w/, whence it is
an easy argument to observe that ˙—

a .w/ � ˙
—
a .v/, given the conditions placed on

ipnms. Therefore 8t 0 2 ˙
—
a .v/,M; t 0 � :' while for some t 2 ˙

—
a .v/,M; t � ', so

given persistence we have derived a contradiction.
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Chapter 8

Conclusion

In this thesis we have introduced and axiomatised two extensions of propositional in-
quisitive semantics: inquisitive conditional-doxastic logic and inquisitive plausibility
logic. Moreover, we have shown both are sound and complete with respect to the same
class of models; inquisitive plausibility models, which allow for an intuitive interpreta-
tion of the two logics.

The primary focus of the thesis is conditional-doxastic logic. This generalises con-
ditional-doxastic logic, enabling the study of new propositional attitudes, grounded in
familiar assumptions about the process of conditionalisation. For as we observed in
chapter 3 (cf. corollary 3.3.11) the interpretation of conditionalisation captured by in-
quisitive conditional-doxastic logic occurs wholly at the level of declaratives. Therefore,
no additional assumptions about the process of conditionalisation are made with the
introduction of issues as our core semantic notion. We take the fact that the process of
conditionalisation captured by conditional-doxastic logic can be straightforwardly gen-
eralised to an inquisitive setting to be the core conceptual achievement of this thesis.

In chapter 3 we gave a preliminary (formal) analysis of the modal operator termed
‘considering,’ and of the behaviour of (conditional) belief when extended to issues on in-
quisitive plausibility models. With the formal properties of these modalities established,
we hope to explore their potential as formal represent propositional attitudes in future
work, and other applications of the logic. We would also like to look at axiomatising the
modalities under different assumptions about the semantic properties used to interpret
the modalities (e.g., lifting the assumption of negative introspection).

Moreover, as a generalisation of conditional-doxastic logic, inquisitive conditional-
doxastic logic forms a basis for extending the standard account of belief revision to an
inquisitive setting, where agents may conditionalise on both inquisitive content as well
as informative content.

However, the thesis has been largely technical, and we have not explored in any de-
tail the consequences of this result, nor in general applications of ICDL. Still, following
research presented by Ciardelli and Roelofsen (2014b) future work may build on ICDL
to model issues in epistemic change, allowing greater expressive power whenmodelling,
for example, the process of contraction—determining the information to give up when
conditionalising on information which is inconsistent with an agents’ current doxastic
state. Appendix A shows how to axiomatise public announcements with respect to ICDL.
One aspect of CDL not touched upon in detail is its relationship to the AGM principles
of belief revision (cf. Baltag and Smets 2006, §3). So, given the relationship between
CDL and AGM, and between CDL and ICDL, this suggests ICDL may be used as a seman-
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tic counterpart to syntactic theory of belief revision extended to interrogatives, akin to
AGM theory.

However, in chapter 5 we observed that there are limitations to ICDL, in particular,
while the logic is able to capture the issues agents consider when conditionalising on
information, it is unable to capture the issues an agent holds unconditionally as the en-
tertains modality of inquisitive epistemic logic is not definable in terms of the considers
modality of ICDL. So, in order to obtain a logic in which the interaction between the
issues an agent entertains, and those they consider conditional on further issues or in-
formation we explored inquisitive plausibility logic.

Inquisitive plausibility logic has sufficient expressive power to express both the en-
tertains modality of IEL and the considers modality of ICDL, while being sound and com-
plete to the same class of models as inquisitive conditional-doxastic logic. Moreover, we
observed how IPL allows the expression of binary plausibility (or preference) operators,
allowing one, for example, to express when an agent would prefer to resolve one inter-
rogative over the other. However, as in the case of ICDL we did not consider any specific
applications of IPL, which we leave to future work.

Furthermore, while inquisitive plausibility logic contained the expressive power we
desired with respect to inquisitive plausibility models, we did not show that IPL was the
weakest logic with this property. And, given significant distinction in expressive power
between IPL and ICDL it seems safe to conjecture that there are weaker logics between
IPL and ICDL whose axiomatisation leads to a more explicit account of the interaction
between the entertains and considers modality. We also leave this to future work.

Below in figure 8.1 we diagram the logics mentioned in this thesis, in terms of their
‘expressive power.’ Given the length of this thesis we have left proofs establishing that
logics with greater expressive power are conservative extensions of weaker logics with
respect to the language of those logics.

CPC

EL InqD

CDL

IEL

ICDL

IPL

Figure 8.1: The logics mentioned in this thesis, ordered by expressive power.
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Appendix A

Dynamics

We briefly show that ICDL and IPL can be extended to include dynamic modalities for
public announcements. The central formal innovations required and used in this ap-
pendix can be found in Ciardelli (2015, Chap. 8), in particular §8.3.

The core insight from the chapters of conditional doxastic logic—that the funda-
mentals of belief revision takes place at the level of declaratives—is shown to continue,
as the interrogative content of a proposition can be factored out of the revision process
in the case of ICDL, and equivalent rational applies to IPL. This suggests that ICDL and
IPL can be straightforwardly extended with other dynamic operations familiar from the
transition of dynamic epistemic logic, in particular soft upgrades.

A.1 Updates on ipms
Definition A.1.1 (Update). The update of an ipm M D hW; f�wa gw2W

a2A
; f˙aga2A; V i

with a formula ' is the model: M ' ´ hW ' ; f�wa gw2W
a2A

; f˙
'
a ga2A; V

'i, defined as
follows:

1. W ' D W \ j'jM

2. �wa D �wa \ .W ' �W '/

3. For every w 2 W ' ,˙'
a .w/ D ˙a.w/ \ ŒŒ'��M

4. V ' D V�W '

As in ipms �a.w/ ´ fv j v �wa u for some ug.

Proposition A.1.2. For any modelM , agent a, formula ', and world w 2 W ' we have:
�'a .w/ D �a.w/ \ j'jM

Proof. We observe fv j v �wa u for some ug D .fv j v �wa u for some ug \ j'jM /.
For, if v 2 fv j v �wa u for some ug then v 2 W \ j'jM and v 2 fv j v �wa
u for some ug, whence v 2 fv j v �wa u for some ug \ j'jM . Similarly, if v 2 fv j

v �wa u for some ug \ j'jM then v �wa v and v 2 W ' , whence hv; vi 2 W ' � W ' ,
and so v �wa v, establishing v 2 fv j v �wa u for some ug.

Proposition A.1.3. For any ipmM and any formula ',M ' is an ipm.
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Proof. First we observe that˙'
a .w/ is a non-empty downward closed set of states. This

is because˙'
a .w/ D ˙a.w/\ ŒŒ'��M , and the intersection of two non-empty downward

closed set of states is itself a non-empty downward closed set of states.
Second, that �wa is a well-preorder follows from the fact that �wa is a restriction of

the well-preorder �wa to the elements ofW ' .
We now show that ˙'

a .w/ is an issue over �'a .w/ D fv j v �wa u for some ug.
Observe fv j v �wa u for some ug D fv j v �wa u for some ug \ j'jM . Therefore,
as

S
˙a.w/ D fv j v �wa u for some ug, we know

S
˙a.w/ \ j'jM D fv j v �wa

u for some ug \ j'jM by proposition A.1.2. So,
S
˙
'
a .w/ D fv j v �wa u for some ug.

Factivity follows from the fact that �wa is a restriction of �wa to the elements ofW ' ,
as does introspection 2.

Finally we need to check that the updated maps ˙'
a satisfy the condition of intro-

spection 1. So, suppose v 2 �
'
a .w/. Therefore, v 2 �a.w/, by proposition A.1.2,

whence˙a.w/ D ˙a.v/. From this it follows that ˙a.w/ \ ŒŒ'��M D ˙a.v/ \ ŒŒ'��M ,
and so˙'

a .w/ D ˙
'
a .v/.

A.2 Inquisitive Dynamic Conditional-Doxastic Logic and
Inquisitive Dynamic Plausibility Logic

The languages of inquisitive dynamic conditional doxastic logic, denoted by LIDCDL, and
inquisitive dynamic plausibility logic, LIDPL, are given by enriching LICDL and LIPL re-
spectively by introducing dynamic modalities. These allow us to capture what is the
case after a public announcement of an arbitrary formula ' has been performed. We
begin by introducing the following clause:

– if ' 2 LŠ [ L‹ and  2 Lı, then Œ'� 2 Lı, where ı 2 fŠ; ‹g

With syntax in place we define the following support condition, and its correspond-
ing truth condition.

S: M; s � Œ'� iffM ' ; s \ j'jM �  

T: M;w � Œ'� iff w … j'jM orM ' ; w �  

Definition A.2.1 (Axioms and rules). We enrich both ICDL and IPL with the following
reduction axiom schemas.

1. Œ'�p $ .' ! p/

2. Œ'�? $ .' ! ?/

3. Œ'�‹f˛1; : : : ; ˛ng $ ‹fŒ'�˛1; : : : ; Œ'�˛ng

4. Œ'�. ^ �/ $ .Œ'� ^ Œ'��/

5. Œ'�. ! �/ $ .Œ'� ! Œ'��/

To ICDL we add the additional axiom schema

6. Œ'�C a � $ .' ! .C
'^Œ'� 
a Œ'��//

And to IPL we add the following axiom schemas

7. Œ'�Ea $ .' ! Ea.' ! Œ'� //

8. Œ'�E�
a  $ .' ! E�

a .' ! Œ'� //

9. Œ'�E—
a  $ .' ! E

—
a .' ! Œ'� //
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In addition to the above reduction axioms we add the rule of general replacement
of equivalents to ICDL/IPL.

' $  

� $ �Œ ='�

A.3 Results
Lemma A.3.1. For any updated ipmM ' , and formula  ;

M ' ; t �  iffM ' ; t \ j'jM �  

Proof. For all t � W ' ; t � j'jM , therefore t D t \ j'jM From this the result is
immediate.

Lemma A.3.2. For an ipmM , and its update with ',M ' , ŒŒ ��M' D ŒŒŒ'� ��M .

Proof. M ' ; s �  iff M ' ; s \ j'jM �  , by lemma A.3.1, iff M; s � Œ'� , by the
support condition for the update operator.

Corollary A.3.3. Given an ipmM , and its update with ',M ' , for all w 2 W ' ;
˙'
a .w/ \ ŒŒ ��M' D ˙'

a \ ŒŒŒ'� ��M D ˙a.w/ \ ŒŒ' ^ Œ'� ��M

Lemma A.3.4. Given an ipmM , and its update with ',M ' , for all w 2 W ' ;
Min�wa

.˙'
a .w/ \ ŒŒ ��M' / D Min�wa

.˙a.w/ \ ŒŒ' ^ Œ'� ��M /

Proof. By the previous corollary˙'
a .w/ \ ŒŒ ��M' D ˙a.w/ \ ŒŒ' ^ Œ'� ��M , and so

�
'
a .w/\j jM' D �a.w/\j'^Œ'� jM . From this it follows that�wa �.�'a .w/\j jM' / D

�wa �.�a.w/\j'^Œ'� jM /
. So, the fragment of an agent’s plausibility ordering Min�wa

and
Min�wa

consider is the same.

Definition A.3.5 (Resolutions). The resolutions of a formula ' of IDCDL or IDPL are de-
fined by augmenting the definitions of the resolutions for a formula of InqD (cf. def. 1.2.25)
with the following clause:

– R.Œ'� / D fŒ'�˛ j ˛ 2 R. /g

Proposition A.3.6 (Normal form for IDCDL/IDPL).
For ' 2 LIDCDL=IDPL, ' �‹f˛1; : : : ; ˛ng, for ˛1; : : : ; ˛n 2 R.'/.

Proof. Via induction on the complexity of a formula.
We detail only the step for the dynamic modality, following Ciardelli (2015, p. 319).

Let R. / D fˇ1; : : : ; ˇng.

M; s � Œ'� iffM ' ; s \ j'jM �  

iffM ' ; s \ j'jM �‹fˇ1; : : : ; ˇng

iffM ' ; s \ j'jM � ˇi for some 1 � i � n

iffM; s � Œ'�ˇi for some 1 � i � n

iffM; s �‹fŒ'�ˇ1; : : : ; Œ'�ˇng

Theorem A.3.7 (Soundness of the reduction axioms).
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Proof.

Atomic sentences
M;w � Œ'�p iffM;w ² ' orM ' ; w � p

iffM;w ² ' orM;w � p

iffM;w � ' ! p

Falsum
M;w � Œ'�? iffM;w ² ' orM ' ; w � ?

iffM;w ² '

iffM;w � :'

Interrogative operator
M; s � Œ'�‹f˛1; : : : ; ˛ng iffM ' ; s \ j'jM � ‹f˛1; : : : ; ˛ng

iffM ' ; s \ j'jM � ˛i for some 1 � i � n

iffM; s � Œ'�˛i

iffM; s � ‹fŒ'�˛1; : : : ; Œ'�˛ng

Conjunction
M; s � Œ'�. ^ �/ iffM ' ; s \ j'jM �  ^ �

iffM ' ; s \ j'jM � ' andM ' ; s \ j'jM �  

iffM; s � Œ'� andM; s � Œ'��

iffM; s � Œ'� ^ Œ'��

Implication
M; s � Œ'�. ! �/ iffM ' ; s \ j'jM �  ! �

iff for any t � s \ j'jM ; ifM ' ; t �  thenM ' ; t � �

iff for any t � s; ifM ' ; t \ j'jM �  thenM ' ; t \ j'jM � �

iff for any t � s; ifM; t � Œ'� thenM; t � Œ'��

iffM; s � Œ'� ! Œ'��

Ca modality
M; s � Œ'�C a � iffM ' ; s \ j'jM � C a �

iff 8w 2 s \ j'jM ;8t 2 Min�wa
.˙'

a .w/ \ ŒŒ ��M' /;M ' ; t � �

iff 8w 2 s \ j'jM ;8t 2 Min�wa
.˙'

a .w/ \ ŒŒ ��M' /;M ' ; t \ j'jM � �

iff 8w 2 s \ j'jM ;8t 2 Min�wa
.˙'

a .w/ \ ŒŒ ��M' /;M; t � Œ'��

iff 8w 2 s \ j'jM ;8t 2 Min�wa
.˙a.w/ \ ŒŒ' ^ Œ'� ��M /;M; t � Œ'��

iff 8w 2 s \ j'jM ;M;w � C '^Œ'� 
a Œ'��

iffM; s \ j'jM � C '^Œ'� 
a Œ'��

iffM; s � ' ! C '^Œ'� 
a Œ'��
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Ea modality Following Ciardelli (2015, p. 322) we split the proof into two steps.
First we establishM ' ; w � Ea iffM;w � Ea.' ! Œ'� /.

M ' ; w � Ea iff 8s 2 ˙'
a .w/;M

' ; s �  

iff 8t 2 ˙a.w/;8˛i 2 R.'/;M ' ; t \ j˛i jM �  

iff 8t 2 ˙a.w/;8˛i ;M
' ; t \ j˛i jM \ j'jM �  

iff 8t 2 ˙a.w/;8˛i 2 R.'/;M ' ; t \ j˛i jM � Œ'� 

iff 8t 2 ˙a.w/;8˛i 2 R.'/;M ' ; t � ˛i ! Œ'� 

iff 8t 2 ˙a.w/;8˛i 2 R.'/;M ' ; t � .˛1 ! Œ'� / ^ � � � ^ .˛n ! Œ'� /

iff 8t 2 ˙a.w/;8˛i 2 R.'/;M ' ; t �‹f˛1; : : : ; ˛ng ! Œ'� /

iff 8t 2 ˙a.w/;8˛i 2 R.'/;M ' ; t � ' ! Œ'� /

iffM;w � Ea.' ! Œ'� /

Second we establishM;w � Œ'�Ea iffM;w � ' ! Ea.' ! Œ'� /

M;w � Œ'�Ea iffM;w � ' ) M ' ; w � Ea 

iffM;w � ' ) M;w � Ea.' ! Œ'� /

iffM;w � ' ! Ea.' ! Œ'� /

E�
a modality Analogous to the case of the entertains modality.

E
—
a modality Analogous to the case of the entertains modality.

Corollary A.3.8. For any formula ' 2 IDCDL=IDPL there exists a provably equivalent
formula '� 2 IDCDL=IDPL.

Corollary A.3.9. IDCDL has the same expressive power as ICDL and IDPL has the same
expressive power as IPL.

TheoremA.3.10 (Completeness for IDCDL). IDCDL/IDPL is (weakly) complete with respect
to ipms, and by implication inquisitive conditional doxastic models.

Proof. Suppose �  , by corollary A.3.8 and the soundness of IDCDL/IDPL it follows
that �  �. The completeness of the derivation of IDCDL/IDPL for ICDL/IPL gives `  �,
therefore a second application of corollary A.3.8 gives us `  .

Corollary A.3.11 (Decidability). IDCDL/IDPL is decidable.
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Cheat Sheet

We restate a number of definitions, facts, propositions, lemmas, and corollaries used.

Models and support conditions
Definition 3.3.1 (Inquisitive plausibility models).

An inquisitive plausibility modelM for a set At of atomic formulas and a set A of
agents,1 is a tuple: hW; f�wa ga2A;w2W ; f˙aga2A; V i, where:

1. W is a set of possible worlds
2. �wa is a well-preorder over a subset ofW
3. ˙a.w/ is an issue over �a.w/, where �a.w/ ´ fv j 9u W v �wa ug

4. V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas
true at w

And the following conditions are satisfied:
Factivity w 2 �a.w/; for all w 2 W

Introspection 1 if v 2 �a.w/; then˙a.w/ D ˙a.v/

Introspection 2 if v 2 �a.w/; then x �va y if and only if x �wa y

Definitions 1.2.5, 3.3.9, and 7.1.2. LetM be an ipm and s an information state:

Common InqD conditions

1. M; s � p iff p 2 V.w/ for all w 2 s

2. M; s � ? iff s D ;

3. M; s � ‹f˛1; : : : ; ˛ng iffM; s � ˛1 or : : : orM; s � ˛n
4. M; s � ' ^  iffM; s � ' andM; s �  

5. M; s � ' !  iff 8t � s; ifM; t � ' thenM; t �  

ICDL conditions

6. M; s � Ka' iff 8w 2 s;M; �a.w/ � '

7. M; s � C
 
a ' iff 8w 2 s W 8t 2 Min�wa

.ŒŒ �� \˙a.w//;M; t � '

8. M; s � B
 
a ' iff 8w 2 s W 8t 2 Min�wa

ŒŒ ��;M; t � '

where:
a. Min�wa

j j ´ fv 2 j j j v �wa u for all u 2 j jg and
b. Min�wa

ŒŒ �� ´ fs 2   j s � Min�wa
j jg

1We assume the set of agents is finite. However, modalities for common knowledge, belief and so on
will not be explored in this thesis, and so there is no technical need for this assumption.
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IPL conditions

3. M; s � Ea' iff 8w 2 s W 8t 2 ˙a.w/;M; t � '

4. M; s � E�
a ' iff 8w 2 s W 8t 2 ˙�

a .w/;M; t � '

5. M; s � E
—
a ' iff 8w 2 s W 8t 2 ˙

—
a .w/;M; t � '

where:
a. ˙�

a .w/ ´ }.��
a .w// \˙a.w/, and ��

a .w/ ´ fv j v �wa wg

b. ˙—
a .w/ ´ }.�

—
a .w// \˙a.w/, and �—

a .w/ ´ fv 2 �a.w/ j v —wa wg

Definition 4.1.1 (Inquisitive conditional-doxastic models).
An inquisitive conditional-doxastic model for a set At of atomic formulas and a set

A of agents, is a tuple: hW; fSPa ga2A;P2I ; V i, where:

– W is a set of possible worlds
– I is the set of all issues overW
– V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas

true at w
– SPa is a map W ! I associating to each world an issue, SPa .w/, satisfying the

following conditions:
Safety if w 2 jP j then SPa .w/ ¤ f;g, where jP j ´

S
P

Introspection if v 2 sPa.w/, then S
Q
a .w/ D S

Q
a .v/

Adjustment SPa .w/ � P

Success SPa .w/ ¤ f;g, if S
Q
a .w/ \ P ¤ f;g

Minimality S
P\Q
a .w/ D SPa .w/ \Q, if SPa .w/ \Q ¤ f;g

Definitions 1.2.5, 4.1.2, and 4.1.3. LetM be an icdm and s an information state:

1. M; s � p iff p 2 V.w/ for all w 2 s

2. M; s � ? iff s D ;

3. M; s � ‹f˛1; : : : ; ˛ng iffM; s � ˛1 or : : : orM; s � ˛n
4. M; s � ' ^  iffM; s � ' andM; s �  

5. M; s � ' !  iff 8t � s; ifM; t � ' thenM; t �  

6. M; s � C
 
a ' iff 8w 2 s and 8t 2 S

 
a .w/;M; t � '

7. M; s � B
 
a ' iff 8w 2 s and 8t 2 .}.s

 
a.w// \ ŒŒ ��/;M; t � '

Definition 7.2.1 (Inquisitive plausibility neighbourhood models).
An Inquisitive plausibility neighbourhoodmodel is a tuple: hW; f˙�

a g; f˙
—
a g; f˙ag; V i,

where:

– W is a set of possible worlds
– V W W ! }.At/ is a valuation map, stating for each w 2 W the atomic formulas

true at w
– Each˙�

a for � 2 f�;—; �g is a mapW ! ˘ associating to each world an issue
in accordance with the following conditions:

1. if v 2 ��
a .w/, then˙�

a .v/ � ˙�
a .w/, where ��

a .w/ ´
S
˙�
a .w/

2. if u 2 �
—
a .w/, then˙—

a .u/ � ˙
—
a .w/, where �—

a .w/ ´
S
˙

—
a .w/

3. w 2 ��
a .w/

4. ��
a .w/ \ �

—
a .w/ D ;

5. ��
a .w/ [ �

—
a .w/ D �a.w/
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6. if v 2 �a.w/, then˙a.w/ D ˙a.v/, where �a.w/ ´
S
˙a.w/

7. ˙�
a .w/ D .}.��

a .w// \˙a.w//

8. ˙—
a .w/ D .}.�

—
a .w// \˙a.w//

Definitions 1.2.5 and 7.2.3. LetM be an ipnm and s an information state:

1. M; s � p iff p 2 V.w/ for all w 2 s

2. M; s � ? iff s D ;

3. M; s � ‹f˛1; : : : ; ˛ng iffM; s � ˛1 or : : : orM; s � ˛n
4. M; s � ' ^  iffM; s � ' andM; s �  

5. M; s � ' !  iff 8t � s; ifM; t � ' thenM; t �  

6. M; s � Ea' iff 8w 2 s W 8t 2 ˙a.w/;M; t � '

7. M; s � E�
a ' iff 8w 2 s W 8t 2 ˙�

a .w/;M; t � '

8. M; s � E
—
a ' iff 8w 2 s W 8t 2 ˙

—
a .w/;M; t � '

Definitions Relating to Models
Definition 1.2.3 (States and issues). LetM D hW;V i be an InqD model.

� An information state is a set s � W of possible worlds.2
� An issue is a non-empty set I of information states which is downward closed: if
s 2 I and t � s, then t 2 I .

� Given amodelM we denote by IM the set of all issues overW . We will suppress
the subscriptM when the set of possible worlds is given by context.

Definition 1.2.7 (Inquisitive propositions). For an InqD modelM and formula ',
ŒŒ'��M ´ fs j M; s � 'g denotes the proposition expressed by '.

Definition 1.2.13 (Truth set). We define the truth-set of a formula ' in a model M as
the set of all worlds inM in which ' is true: j'jM ´ fw 2 W j M;w � 'g.

Definition 1.2.20. For any issue P , ŠP ´ }.jP j/.

Definition 1.2.23 (Entailment).
˚ �  iff for any modelM and state s, ifM; s � ˚ thenM; s �  .

Definition 3.3.5 (Min�wa
P ). For any issue P , Min�wa

P ´ fs 2 P j s � Min�wa
jP jg,

where Min�wa
jP j ´ fv 2 jP j j v �wa u for all u 2 jP jg.

Properties of Models
Fact 1.2.6 ( Persistence). For all formulas ', ifM; s � ' and t � s, thenM; t � '.

Proposition 1.2.15. M; s � ˛ iff 8w 2 s;M;w � ˛.

Proposition 1.2.26. For anyM; s and ';M; s � ' iffM; s � ˛; for some ˛ 2 R.'/.

Resolutions
Definition 3.3.4 (Resolutions for ICDL). The set R.'/ of resolutions for a given formula
' is defined inductively by:

2Given a state s we write s# for its downward closure. For example, fw;vg# D ffw;vg; fwg; fvg;;g
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– R.˛/ D f˛g

– R.‹f˛1; : : : ; ˛ng/ D f˛1; : : : ; ˛ng

– R.� ^ �/ D f˛ ^ ˇ j ˛ 2 R.�/ and ˇ 2 R.�/g

– R.' ! �/ D f
V
˛2R.'/.˛ ! f .˛// j f W R.'/ ! R.�/g

Axioms and Rules

Conjunction Implication

'  

' ^  

' ^  

 ' 

' ^  

 

Œ'�....
 

.' !  /

.' !  / '

. /

Interrogative Kreisel-Putnam

ai

‹f˛1; : : : ; ˛ng

Œ˛1�....
' : : :

Œ˛n�....
' ‹f˛1; : : : ; ˛ng

‹fg˛1g'‹fg˛ng

˛ ! ‹fˇ1; : : : ; ˇng

‹f˛ ! ˇ1; : : : ; ˛ ! ˇng

Falsum Declarative double negation

?
'

::˛
˛

The natural deduction system of InqD.

Definition A.3.12 (Axioms and rules of ICDL).

Considers

1. C a .' ! �/ ! .C
 
a ' ! C

 
a �/

2. C 'a :' ! :'

3. C 'a '
4. i. C a ' ! C

�
a C

 
a ' and ii. :C

 
a ' ! C

�
a :C

 
a '

5. :C :' ! .C
 ^'
a � $ C

 
a .' ! �//

And when ICDL is enriched with B andK modalities:

Belief

6. B a ˛ $ C
 
a ˛

7. B a ' $
V
˛2R. /.:B

 
a :˛ !

W
ˇ2R.'/B

˛
aˇ/

Knowledge

8. Ka' $
W
˛2R.'/B

:˛
a ˛
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In conjunction with the rules of inference of InqDwe addNecessitation and Replace-
ment of Equivalents:

;....
'

C
 
a '

' $  

C
'
a � $ C

 
a �

;....
'

C
 
a '

Definition A.3.13. Axioms and rules of IPL

1. Ea.' !  / ! .Ea' ! Ea /

2. E�
a .' !  / ! .E�

a ' ! E�
a  /

3. E—
a .' !  / ! .E

—
a ' ! E

—
a  /

4. E�
a ' ! E�

a E
�
a '

5. E—
a ' ! E

—
a E

—
a '

6. i. Ea' ! EaEa' and ii. :Ea' ! Ea:Ea'

7. Ea' ! .E�
a ' ^E

—
a '/

8. .E�
a ' ^E

—
a  / ! Ea.

W
˛2R.'/

W
ˇ2R. /.˛ _ ˇ//

9. E�
a ˛ ! ˛

10. .E�
a ' ^E

—
a :˛/ ! Ea.˛ ! '/

11. .E—
a ' ^E�

a :˛/ ! Ea.˛ ! '/

In conjunction with the rules of inference of InqD we add Necessitation:
;....
'

Ea'

TheCanonical Model of ICDL
Lemma 6.2.3. For any ', ' a` ‹R.'/.

Definition 6.2.10 (F). We define five successive sets based on a set of formulas F .

1. We define F I to be the smallest set satisfying the following:
(a) F � F I,
(b) if ' 2 F I and  2 sub.'/, then  2 F I,
(c) if ' 2 F I, and ˛ 2 R.'/, then ˛ 2 F I,
(d) if ˛ 2 F I, then �˛ 2 F I.3

2. We define F II to be the smallest set satisfying the following:
(e) F I � F II,
(f) if ˛1; : : : ; ˛n 2 F I and are distinct then ˛1 ^ � � � ^ ˛n 2 F II.

3. We define F III to be the smallest set satisfying the following:
3Recall �˛ ´ ˇ if ˛ is of the form :ˇ; and :˛ otherwise.
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(g) F II � F III,
(h) if ˛1; : : : ; ˛n 2 F II and are distinct then ˛1 _ � � � _ ˛n 2 F III.

4. We define F IV to be the smallest set satisfying the following:
(i) F III � F IV,
(j) if ˛1; : : : ; ˛n 2 F III and are distinct then: ‹f˛1; : : : ; ˛ng 2 F IV,
(k) if ˛1; : : : ; ˛n 2 F III and are distinct then :.‹f˛1; : : : ; ˛ng/ 2 F IV.

5. We define F to be the smallest set satisfying the following:
(l) F IV � F,

(m) if ˛ 2 F IV, then �˛ 2 F.

Definition 6.2.12 (D). D ´ f˛ j ˛ 2 Fg.

Definition 6.2.16 (Nuclei). For a set of formulas F we define a set of declaratives N to
be an nucleus over F if it is a maximally consistent theory of declaratives in D. So, N
is an nucleus over F if a) A is a set of declaratives, b) A is consistent, c) A � D, and
d) if A � B � D, then B is inconsistent. Let Nu.F / be the set of all nuclei over F .

Definition 6.2.19 (Atoms). Let ˛1; : : : ; ˛i ; : : : be an enumeration of the declaratives of
LICDL. We define an atom A relative to a nucleus N as the union of a chain of LICDL-
consistent sets as follows:

A0 D N

AnC1 D

�
An [ f˛ng; if An ` ˛n
An [ f:˛ng; otherwise

A D
S
n�0An:

Lemma 6.2.21. If f˛1; : : : ; ˛ng � F and f˛1; : : : ; ˛ng is consistent, there is an atom
A2At.F / such that f˛1; : : : ; ˛ng � A.

Proposition 6.2.22 (Deduction of declaratives).
For a set of formulas F and every A in At.F /, if A ` ˇ, then ˇ 2 A.

Definitions 6.2.25, 6.2.28, and 6.2.33.

1. γA ´
V
˛2A�F 0

˛

2. γS ´
W
A2SγA, where γ; ´ ?.

3. χP ´ ‹fγS j S 2 P g

Lemma 6.2.34.
T
S ` χP () S 2 P

Definition 6.3.1 (Canonicalmodel overF ). LetF be a finite set of formulas. The canon-
ical model over F is the tuple: MF D hAt.F /; fSPa ga2A;P2I ; V i, defined as follows:

– At.F / is the set of atoms over F

– V.A/ D fp 2 At j p 2 Ag

– For every issue P 2 I , SPa .w/ is the set of states S � At.F / defined by:

S 2 SPa .A/ ()
\
S ` ' whenever A ` CχP

a '

Lemma 6.3.4 (Support lemma). For a set of formulas F and the canonical model over
F ,MF , for any S � At.F / and any ' 2 F,

MF ; S � ' ()
\
S ` '
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Mappings
Definition 5.1.2 (Map from icdms to ipms).

Given an arbitrary icdm,M D hW; fSPa ga2A;P2I ; V i, we define amapM 7! M ],
whereM ] D hW ]; f�wa ga2A;w2W ; f˙aga2A; V

]i is constructed in the following way:

1. W ] ´ W

2. v �wa u if v 2 s
ffvg;fugg#

a .w/

3. ˙a ´ Sa.w/, where Sa.w/ ´
S
Q2I S

Q
a .w/

4. V ] ´ V

Definition 5.2.2 (Map from ipms to icdms).
Given an arbitrary inquisitive plausibilitymodel,M D hW; f�aga2A; f˙aga2A; V i,

we define a mapM 7! M [, whereM [ D hW; fSPa ga2A;P2I ; V i is constructed in the
following way:

1. W [ ´ W

2. SPa .w/ ´ Min�wa
.˙a.w/ \ P /

3. V [ ´ V

Definition 7.5.2 (Map from ipnms to ipms).
Given an arbitrary ipnm,M D hW; f˙�

a g; f˙
—
a g; f˙ag; V i we define a mapM 7!

M ], whereM ] D hW ]; f�wa ga2A;w2W ] ; f˙aga2A; V
]i is constructed in the following

way:

1. W ] ´ W

2. v �wa u if v; u 2 �a.w/ and v 2 ��
a .u/

3. ˙]
a ´ ˙a

4. V ] ´ V

Definition 7.6.2 (Map from ipms to ipnms).
Given an arbitrary ipm, M D hW; f�wa ga2A;w2W ; f˙aga2A; V i we define a map

M 7! M [, whereM [ D hW [; f˙
�;[
a g; f˙

—;[
a g; f˙ [

ag; V
[i is constructed in the follow-

ing way:

1. W [ ´ W

2. ˙�;[
a .w/ D }.��

a .w// \˙a.w/

3. ˙—;[
a .w/ D }.�

—
a .w// \˙a.w/

4. ˙ [
a ´ ˙a

5. V [ ´ V
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