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1. INTRODUCTION !

This work should be considered as part of the general investigation into
the arithmetical system IAg+Q1. We will present a refinement to 1Ag+Q1
of a result given in [deJongh-Montagna, 1988], on witness comparison
formulas having only provable fixed points in PA.

Briefly, let us introduce the arithmetical system and some of its prop-
erties: 1Ao+Q4 (Cf. [Paris-Wilkie, 1987]) is a set of axioms expressing the
elementary arithmetic properties of the basic symbols 0, ', +, *, < (in the
following we will refer to the obvious first order language containing
these symbols as §) together with the bounded induction schema IAg
(defined in §):

Vx.z (@(x,0) A Vysz. (p(xy) = @(x)y')) — Vysz ¢(x,z)) (Pe Ao)

plus an $-sentence expressing Vx3dy ®wi(x)=y where ®w1(x):= x¥ and |-| is
the length function for the binary representation of x.

We note that by the following result of [Verbrugge,1989]

If NP£CO-NP then
IA0+Q4 ¥ VDb,c(3a (Prf(a,c) A Vz<a —Prf(z,b)) —
Pr("3aPrf(a,c) A Vza-Prf(z,b)"))

it seems highly unlikely that the principle of X;-completeness , i.e.
@ > Pr("@") for peXy

is provable in IAp+Q¢. However, it can be shown that IAq+Q proves
Svejdar's principle (Cf.[Svejdar,1983]): i.e.

|Ag+Q1FPr("¢@")—>Pr("3a(Prf(a,” y " )aVz<a-Pri(z,"¢")) - y7) (for all @,y)
(Cf. [Verbrugge,1989]) and
lAg+Q1F Pr("C(S) - s'") - Pr("s'")

where C(S)= /X\\{s — Pr("s") :seS.}, S is a finite set of

1 Prerequisites: the reader is supposed to be familiar with [Smorynski,1985]; knowledge of [de Jongh-
Montagna,1988] will be helpful.



ri-sentences and s' is a Zi-sentence (Cf. [Visser,1989]). In the following
this last principle will be called Visser's principle.

In [Paris-Wilkie,1987], [Buss,1986] and [Verbrugge,1989] ample motiva-
tion for the general study of IAg+Qqis given; therefore we will turn our
attention directly to the more specific aim of this paper.

In [Parikh,1971] it is shown that for each primitive recursive function g,
there is a £{-formula s such that PA + s and

9(nz.Pripa(z," Prea("s™) 7)) < pz.Pripa(z,"s™) (*)

The result is based on the fact that (*) has only provable fixed points.

In [deJongh-Montagna, 1988] Parikh's result is analyzed in the modal
context R (Cf. [Guaspari-Solovay, 1979]) when g is the identity function;
a characterization is given for pairs of modal formulas B(p) and C(p)

*

such that for each arithmetical interpretation *,

if PA F p* & (OB(p)<OC(p))* then PA + p*: OB(p)< OC(p) has only
provable fixed points in PA. In [deJongh-Montagna, 1989] the result is
extended to arbitrary g which are provably recursive in PA.

Our aim is to refine the positive part of the proof of [deJongh-Montagna,
1988], the part in which it is shown that the formulas specified do in-
deed have only provable fixed points in PA, to a weaker modal system in
which the X-completeness axiom (i.e. the corresponding modal version of
the Xqi-completeness principle) does not hold.

In section 3, it is shown that the modal version of Visser's principle: i.e.

(V) O(C(S) —» s') —» Os'

where C(S)= /A\{s -» Os : seS},
S is a finite set of X-formulas
s'is a X-formula,

playing the role of a weak version of X-completeness, suffices to obtain
the refined theorem we are looking for.

What is provable in the weak modal system including Visser's schema, is
clearly provable in 1Ap+Qq under every arithmetical interpretation;
therefore, it follows that PA has no witness comparison formulas having
only provable fixed points which the system IAp+Q ¢ does not already
have.



Based on the result obtained in section 3, in section 4 we present a
counterexample to show that the modal version of Svejdar's principle
(Sv) OA - O(OB<XOA - B) for all formulas A,B

does not imply Visser's schema: the result will give an insight to under-
stand why Svejdar's schema cannot play much of a role in the study of
formulas having only provable fixed points.

In an appendix we give some proofs, mainly due to Visser [1989], of
modal principles derivable from Visser's principle.

2. MODAL SYSTEMS AND KRIPKE SEMANTICS

In this section we will briefly introduce the modal systems that we are
going to work with, together with the associated Kripke-semantics.

Formulas of our system are built up from propositional atoms using the

boolean connectives A, v, -, —», <, T, L, a unary modality O and binary

witness comparisons <, X, where < and < are applicable only to those

formulas having 0O as principal connective. The following definition will

introduce the list of modal systems.

Def 2.1:

(@) B~ (Basic System) is the modal system L (Prl in [Smorynski, 1985])
(including its rules: modus ponens and necessitation) to which the
following order axioms are added (Cf. [deJongh, 1987]):

(O1) OA - (OA<OB v OB< OA)

(02) OAXOB — OA

(03) OAXOBAOBXOC — OAXOC
(04) OA<OB « (OAXOB A ~(OB<OA))

(b) Z- (Cf. [Svejdar, 1983]) is the system B- plus Svejdar's schema:
(Sv) OA - O(@OB<XOA - B) for all formulas A,B

(c) BV~ is the system B~ plus Visser's schema:
V) O(C(S) » s') —» Os'

where C(S) = /X\{s » Os : se S}, S is a finite set of =-formulas
and s' is a X-formula



(d) B, BV, Z are respectively the systems B, BV~ and Z~ with the rule
OE:

OA/A (for all formulas A)

added.

Let A(p) be some formula of B of the form OB(p)<XOC(p). As in [deJongh-
Montagna,1988] we take BC-, BVC™ and ZC" to be the systems B~, BV~
and Z respectively, plus the axiom ¢ & A(c) (analogous notation is used
for the systems B, BV and Z). Since a different system is defined for
different choice of A it would be more appropriate to name the systems
BC(A)", BVC(A)" and ZC(A)". But, as it will always be clear in the sequel
which formula A is intended, we will refrain from doing so, in order not
to unnecessarily complicate the notation.

Def 2.2: a model for B~ is a finite, tree-ordered Kripke-model for L in
which witness comparison formulas are treated as atomic formulas and
in which every instance of (01)-(04) is forced at each node.

Def 2.3: models for BV-, Z  are Kripke-models for B~ where respec-
tively (V), (Sv) is forced at each node.

It is appropriate to remark that, just as is pointed out in
[Verbrugge,1989] for the system Z-, also for BV~ the forcing for witness
comparison formulas in BV~-Kripke-models is not persistent, i.e. it does
not necessarily hold that if jiFOA< OB (resp.j FOA<OB) and jRk then
kIiFOA<OB (resp. kiFOA<OB).

Def 2.4: a Kripke-model is A-sound if its root satisfies OB — B for
every subformula B of A.

Theorem 2.5: let A be a modal formula; then
(i) Fgy A = A is valid in every A-sound Kripke model for BV~

(ii) Fz A & A is valid in every A-sound Kripke model for Z-
Pf: (i) left to the reader; (ii) in [Svejdar,1983]. 3



Corollary 2.6: let A be a modal formula.

(i) FgycA = A is valid in every A-sound Kripke model for BV~
where ¢ & A(c) is forced at every node.

(i) F2c A = A is valid in every A-sound Kripke model for Z~
where ¢ & A(c) is forced at every node.

Pf: left to the reader. .

3. WITNESS COMPARISON FORMULAS HAVING ONLY PROVABLE FIXED
POINTS IN BV

Theorem 3.3 of [deJongh-Montagna,1988] reads:

If B(p) and C(p) are L-formulas (i.e. do not contain witness com-
parisons), possibly containing propositional variables other than p,
then A(p) = OB(p) < OC(p) has only provable fixed points in R iff
(i) FB(T)

(i) +,.O%@OB(L) » OC(1)) -» Ok+11L | for some k

(O*D abbreviates DAOD)

Our aim is to obtain a characterization for a witness comparison formula
to have only provable fixed points in BV. The result presented in this
section constitutes a refinement of the theorem proved by de Jongh and
Montagna; the proof that we present is syntactical and based on a differ-
ent approach characterized by the proof of the following theorem:
Theorem 3.1: Let B(p) and C(p) be L-formulas. If

(i) FLB(T)

(i) =, OYOB(L) » OC(1)) -» Ok+1L | for some K,

then A(p) = OB(p)<OC(p) has only provable fixed points in BV.

Some preparatory lemmas are needed. In the following we assume that
(i) and (ii) of theorem 3.1 hold, the systems BC-, BVC~ and BVC refer to
the A(p) of this theorem. Some results already proved by Visser (Cf.
[Visser,1989]) for his principle and used in the proof of the following
lemmas are given in the appendix.



Lemma 3.2: Fge-0O%—-c —» Ok+11

Pf:
1. Fg-O-c »0O(c e 1)

= O*(OB(c) & OB(L) A (OC(c) & OC(L)))
— (O%OB(c) - OC(c)) — Ok+11) (by (b) and the Substitution Lemma
(Cf. [Smoryniski, 1985]))
2. Fge-O*-c » O*OB(c) —» OC(c)) (by obvious properties of <)
3. Fpe-O%—c — Ok+1L (by 1 and 2). .

Lemma 3.3: +  Oc — OB(c)

Pf:

1. FLc - B(T) (by ()

2. + Oc - 0OB(T)

3. F Oc->0O(ceT)

4. +_0Oc - OB(c) (by 2 and 3). ¢

Lemma 3.4: | O%*c —» O*B(c)
Pf:
1. F_c - B(T) (by (1))
2. F O%c - 0O*B(T)
3. F O¢c—>0O% ceT)
— (O*B(c) « O*B(T))
4. + O%%c - 0O*B(c) (by 2 and 3). 3

Lemma 3.5: | Ok+11 —» (OC(L) —» B(1))

Pf: We claim that, if + O%*0OB —» OC) —» Ok+1L, then

k. Ok1L -5 (@OC — B), where B,C are arbitrary L-formulas.

For suppose not, then a model M exists such that

MEDO*OB -» OC) - Ok+1L and w IFOk+11L A OC, wik B, for some node w
in M. Take the submodel of M generated by w and add a tail of nodes be-
low w of such a length that the new model gets a root x of level greater
than or equal to k+1 (end nodes are counted as having level 0). Clearly
none of the nodes added below w can force OB but all of them force
O*0OB — OC). By hypothesis, x IFOk+1L and this gives a contradiction,
which proves our claim.

By the claim and (ii) it follows that: F | Ok+11L—»(OC(L)—>B(L)).



Lemma 3.6: Fpge-0O*—c —» O*B(c)

Pf:
1. F_O%*c - (OC(c) < OC(L)) A (B(c) & B(L))
2. Fge-O**—c — (OC(c) — B(c)) (by lemma 3.2 and lemma 3.5)
3. Fpge- =¢ = (OB(c) —» OC(c) (by obvious properties of <)
4. Fge-0O*-c — (OB(c) — B(c)) (by 2 and 3)
5. Fge-O*—c —» O(OB(c) - B(c))
— OB(c) (by formalized L6b)
6. - B(c) byd)

Lemma 3.7: ‘+pgy-O0AvOOB-—> O@*Y(OA<OB)v O%OB<OA))

Pf:
1. OOAvOOB- O(OA<0OBv OB<xOA)
-»0O(0A<OB->0O(OA<0OB)AOBKOA->DO(OBLOA) —»
—->(O*(OA<0OB)vO*(@AOB<OA)))
- O0(@O%OA<OB) v OYOB<OA)) (by (V) ¢

Corollary 3.8: Fpgy-OAv OB - O(OA<OB - O(OA<0OB))
Pf: Trivial. o

Lemma 3.9: Fpgyc-Ok+2c - OnOB(c)  for each 0<n<k+1
Pf: by downward induction on n:

n=k+1: F | Ok+2c — Ok+10c
— Ok+10B(c) by lemma 3.3;

n<k+1: recall that by induction hypothesis we have
F gve- Ok+2¢c — OM+10B(c), i.e.
F BVC- Ok+2¢c — DnDDB(C), SO,

1. Fpgy-0Ok+2c - (ON+10OB(c) -
- On+1(O*(@B(c)xOC(c)) v O*@OC(c)< OB(c)))
(by lemma 3.7)
2. Fpgye-0Ok+2c » (ON+10OB(c) —» On+1(O*c v O*—c))
— (On+10OB(c) —» O"+1B(c))  (by lemma 3.4 and lemma 3.6)
— O1B(c) (by modus ponens with the induction hypothesis).

We are now ready to prove theorem 3.1:



Pf (theorem 3.1):
1. Fgyc- Ok+2¢c —» OB(c) (by lemma 3.9 where n=0)
— OB(c)xOC(c) v OC(c)< OB(c) (by obvious properties of <)
2. Fgyc-O(@OB(c)xOC(c)) vO(@C(c)<OB(c)) » O*cv O*-c
— OcvO*-c
— Ok+1c v Ok+1 1L

(by lemma 3.2)
3. FBve: Ok+1c (by 1,2)
4, I_BVC C (by OE) ¢

The refinement that we were looking for is an immediate consequence of
theorem 3.1:

Theorem 3.10: Let B(p) and C(p) be L-formulas; then

A(p) = OB(p) < OC(p) has only provable fixed points in BV
i ff

(i) F B(T)

(i) F,O*OB(L) - OC(L)) —» Ok+1L , for some k.

Pf: (=) If ¢ is a fixed point for A(p) then F gyc ¢, therefore F rc ¢ and by
lemma 2.3 in [deJongh-Montagna, 1988]

Fgr- O%(c & A(c)) » Ok+1c  for some k. Now apply theorem 3.3 in
[dedJongh-Montagna,1988].

(<) by theorem 3.1. .

By theorem 3.10 and theorem 3.3 (Cf. [deJongh-Montagna,1988]) it fol-
lows that the formulas of the form A(p) = OB(p)<OC(p) having only
provable fixed points in R are exactly the formulas having only provable
fixed points in BV. In other words, to obtain the formulas having only
provable fixed points we do not need the strong X-completeness schema
(i.,e. A>OA, for every X-formula A) but we can replace it by the weaker
(V).

Although theorem 3.10 is formulated with iffone should note that, un-
like with R and PA, A(p) = OB(p)<X0OC(p) having only provable fixed
points in 1Ag+Q for all arithmetical interpretations does not imply that
A(p) has only provable fixed points in BV, since arithmetic completeness
even of L is unknown for IAg+Q4 (see [Verbrugge,1989]). At the present,



theorem 3.9 does imply that each formula of R having only provable fixed
points in PA has only provable fixed points in 1Ag+Q¢ when arithmetical
interpretations are restricted to sentences. The restriction to sentences
is essential; otherwise Visser's principle loses its validity (see [Visser,
1989]).

4. INDEPENDENCE OF VISSER'S AND SVEJDAR'S SCHEMAS

In this section we will prove that Svejdar's schema does not imply
Visser's schema. To show that, consider the formula O3p< 0O2p having
only provable fixed points in R, as proved in [deJongh-Montagna,1988]. By
theorem 3.9 it follows that this formula has only provable fixed points
in BV. On the other hand?, notice that O03p< O2p cannot have only prov-
able fixed points in Z because by Svejdar's faithful interpretation of
OA< OB as "there exists a proof of A using axioms with smaller Gddel
numbers than any proof of B" (Cf. [Svejdar,1983]) that would mean that
for the fixed point ¢ in PA, O2¢ would have a proof in PA using less ax-
ioms than any proof of Oc would use. This is impossible because being a
provable X-sentence, Oc wouldn't need any but the axioms of Q and we
could take those as the zero base of our interpretation. This proves our
claim.

At this point it may be of interest to remark that the formula O2p< Op
has only provable fixed points in Z. The following argument is due to
Visser: In BC- it is provable that O2c—»0O(0Oc<X0O2cvO2¢c< Oc). Thus, in
ZC-,O2c—»0Oc is provable, from which with Léb, immediately ¢ follows.
Under the same arithmetical interpretation used in the previous argu-
ment, the result is not very surprising: it is well known that there are
theorems provable in PA and not in Q. From these observation we can see
that Svejdar's schema can hardly be useful in studying formulas having
only provable fixed points. Recall also that in the proof of theorem 3.9,
the schema (Sv) is not used.

2 the argument was suggested to the author by F.Montagna.
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APPENDIX: SOME THEOREMS PROVED BY (V)

In [Visser,1989] the following theorems, proved using the principle (V),
are pointed out:

(V1) O WS-oOWs*

(V2) O(@A - WS)AO(WS*> A) > OA

(V3) O(C(S) - (A—>s") » OA - Os'

(v4) 0O(C(S) —» (Os' »s") —» Os'
where S is a finite set of =-formulas, C(S) = /X\{s — Os : se S},
S*={sAOs:seS}and s a Z-formula .

We will give the proof of them in the modal system BV™:

(V1):
1. O WS - 0O(C(S) » WaO+*Ss)

2. 0O(C(S) » WO+S)» O(WwWnO+*s) (by (V))

3. O WS ->O(wo+s) (by 1 and 2)

(V2):
1. O(OA - WS) - O@OA » O WS)

- O(O0A - O(WDO*S)) by (v1))
2. O(WO*S - A) » O(O WDO*S -» OA)

3. O(OA - WS)AO(WDO*S— A) » O(OOA —» OA) (by 1 and 2)
— O0OA (by formalized L&b)
-0 S
- O(WoO*s) (by (V1))
- OA
(V3):

1. O(C(S) - (A—>s")) » O(A - (C(S) » s"))
— OA - O(C(S) » s)
- OA - Os' (by (V)
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(V4):
1. O(C(S) —» (Os' —s')) - O(O(C(S) —» (Os' —»s")))
- O(@0Os' -»0s" (by (V3))
- O0s' (by formalized L6b)
- O(C(S) —» Os")
— O(C(S) —» )
- Os' (by (V)
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