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Abstract

We construct the ezponential graph of a proof 7 in (second order) lin-
ear logic, an artefact that displays the interdependencies of exponentials.
Within this graph superfluous exponentials are defined, the removal of
which is shown to yield a correct proof > with essentially the same set
of reductions.

Applications to intuitionistic and classical logic are obtained by means
of reduction-preserving embeddings: a given proof is embedded into linear
logic, then the removal-procedure is applied to it, resulting in a least (i.e.
optimally) exponentiated linearization of the original proof.

The last part of the paper puts things the other way round, and defines
families of linear logics in which exponential dependencies are ruled by a
given graph. We sketch some work in progress and possible applications.
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1 Introduction

An exponential “!”, “?” in a linear proof is superfluous if we can remove it

and obtain a proof that (1) is still correct, and (2) has the same dynamics as
the original one. If we can get rid of an exponential in a linear proof, we know
that the subproof introducing it (by a L? or a R! rule) will endure no non-
linear handling (erasure or duplication) during normalization: “the fewer the
ezponentials, the more the information”.

We characterize the superfluous exponentials in a given linear derivation w
and show that removing them determines a lattice of linear derivations with
top m and as bottom a unique normal form #”. So there is a sole best result
with respect to this removal method. Moreover our lattice has the property
that all its elements have the same behaviour under reduction. Even better, in
the ‘mono’ fragment of linear logic where modalities (i.e. exponentials occurring
in a row) are required to be in {!,7,!?,?!}, no significant further improvement
is possible: any ‘subexponentiation’ of 7 will have an associated ‘exponential
graph’ containing that of #”. (Because each expomential in #n” is imperative
one might think that for each subproof determined by an R! or a L? rule (a
‘box’ in terms of proofnets) at least one normalisation strategy exists, in the
course of which it will be duplicated or erased. This is not the case: even
when ‘logically necessary’, exponentials can be ‘computationally superfluous’
(see Danos et al.(1993)). In other words, our logical linearity analysis is but an
approximation of the real linearity of proofs, which is likely to be revealed only
by the tautological process of normalizing the proof).

In order to apply these results to intuitionistic and classical logic (formu-
lated as suitable sequent calculi, as in Girard(1993) and Joinet(1993)), we need
translations into linear logic such that reductions can be simulated by reduc-
tions of the image. A necessary condition for this to hold, is that the ‘skeleton’
of the original proof is preserved by the translation. Such translations we will
call decorations.

Because of their plethoric use of exponentials uniform translations are bound
to give only ‘universal linearity information’ about proofs. So we apply the
internal machinery constructed to get proof-by-proof embeddings, displaying
the hidden structure of ‘specific linearity information’ in a given derivation.

As was pointed out to us by J.-Y. Girard, the exponential graph suggests
the study of ]inear logic in an extended language, containing a set of distinct
exponentials ! 1 ? whose logical interaction is determined by a binary relation R.
In the last section we briefly indicate some of the joint work in progress on these
extended (“multicolored”) systems of linear logic.

Finally, let us observe that the notions and techniques introduced are not
typical of linear logic, but might be set to work within the framework of Gentzen-
style proof theory for modal logics in general.



2 Strips: an ‘exponential removal’ theory

Terminological conventions

Our object of study will be the full system of second-order classical linear logic,
as introduced in Girard(1987). More precisely, we will consider derivations in
the two-sided sequent calculus CLL2 which can be found in the appendix.

We will use the following terminology in order to distinguish between the
occurrences of formulas in a given rule, e.g. L—o:

I'h= A4, A B,F2=>A2
I‘lar27A — B = AI)AZ

The formula A — B is called the main formula of the rule with main con-
nective —o; the occurrences 4 and B in the premisses will be referred to as the
active formulas; all other occurrences are said to be passive, and we distinguish
in the obvious way between an up and a down occurrence of a given passive
formula. In the case of second-order rules, e.g. LV, and RV>

ATIT=A . T=AAY]
VXAX],T= A I = A VXA[X]

the active occurrences are A[T], A[Y]. We refer to T,Y as the abstracted formu-
las.

We will encounter derivations that contain repetitions of sequents. We will
in such cases speak of an application of the repetition rule, where all occurrences
of formulas are said to be passive.

In the sequel the rules for the exponentials will have our special interest. We
recall the ezponential conteztual or promotion rules L? and R! (in analogy with
the proofnet formulation of linear logic also to be referred to as the boz rules):

IT',C =?7A I'=C,7A
e and —————.
IT',7C =7A T'=IC,7A
Observe that in these rules the formulas in the context do play an important
role, in the sense that applicability of the rules depends crucially on their being

‘exponentiated’. We therefore call them side-active.

Besides the two constraints originating in the modal condition imposed on
formulas in the structural and contextual exponential rules of the linear sequent
calculus (in the sequel we will refer to the structural and the conteztual con-
straint), there is, as in any sequent calculus, another, fairly obvious, one: in
writing down rules and derivations we implicitly demand the identity of some
of the (sub)formulas occurring in the sequents appearing in it. In the sequel
we will refer to the identity constraint. E.g. the occurrences of the contextual



formulas IT' and 7A in the premiss and conclusion of a promotion rule are oc-
currences of identical formulas. This implicit identity relation is made explicit
in the following

2.1. DEFINITION. We call occurrences of (sub)formulas in a proof identified
whenever they are the corresponding occurrences of the same! (sub)formula in

- the two formulas in an axiom;

- the cut formulas in a cut;

- the abstracted formulas in a second-order rule;

- an active formula and the corresponding subformula of the main formula in
a logical or exponential rule (in the case of LYs and R3; rules a strict subformula
of an abstracted occurrence, has no “correspondent” in the conclusion sequent

of the rule);
- the up and down occurrences of passive or side-active formulas in a rule (this
includes the implicit contextual contraction in additive binary rules). a

Let us denote by “~” the reflexive, symmetric and transitive closure of the
identification relation. Note once more that all elements of a ~-equivalence class
are occurrences of the same (sub)formula (up to substitution).? In the sequel we
will only deal with classes containing at least one formula whose main connective
is an exzponential. We denote the set of such classes in a proof 7 by £(=).

The exponential graph

Let E be a subset of £(w). The domain of E is the union of the classes it
contains. By a strip we mean the operation of simultaneous deletion in 7 of all
external exponentials in the domain of E. The resulting pseudo-proof (which
need in general not be a proof) is denoted by m — E. The corresponding instance
of a rule 7 in w — F is written as r — F.

Each formula B in 7 ‘re-appears’ in m — F, though maybe slightly modified.
To be precise it is modified if and only if some formula !4 or 74 in one of the
classes in E is a subformula of B in 7. If we want to specify the changes we will
write B — E, though mostly we will continue to denote this, possibly modified,
formula by B.

Take some box rule r in 7, with its main occurrence in some class e and a
side-active occurrence in some class €’: we say that e binds €’ (via r) and write
this as e ~q e’. The transitive closure of the relation ~; will also be called
binding, and is denoted by ~. (Par abus de langage we will sometimes write
s~ ' and s ~ s’ also for proper subsets of classes.)

!Exactly the same or, in case of quantifier rules, the same up to substitution.
’In general the converse does not hold, of course.



This defines a directed graph, the ezponential graph G(m) of w, with as vertices
the classes in £(7), and an arrow from e to €' if and only if e ~; €. If an
occurrence of an element of a class e is main formula in a structural rule in
m, then we label the corresponding vertex of the exponential graph by “s” (for
‘source’).

2.2. DEFINITION. A set E C &(w) is called saturated (or said to satisfy the
saturation condition), in case for all ¢’ € E, if e ~ €' for some e € (), then
also e € F. If no class in FE is labeled “s” then we will say that E verifies
the no sources condition. If E satisfies both the saturation and the no sources
condition, we say that it is not relevantly ezponentiated (abbreviated by nre) in
7. A redexis any non-empty set E that is nre and minimal, i.e. no proper subset
of F is nre. O

2.3. THEOREM. (Stripping preserves correctness) Let m be a proof, r a rule in
w, and F nre in w; r — E is still a correct rule, and hence w — E is a proof.
More precisely, either r — E and r are instances of the same rule, orr — E is a
repetition rule.

ProorF: First observe that, whatever rule r, because only classes are stripped,
all identity constraints are obviously still satisfied by r — E.> Now, if r is a
box rule, by the saturation condition, the (eventual) contextual constraint for
r — E will also be satisfied. And finally, if » is a stuctural rule, by the no sources
condition, so is the structural constraint for r — E. (Clearly r — E is a repetition
rule only when r introduces an exponential that is stripped, i.e. when r is an
exponential rule whose main formula is in the domain of E.) a

2.4. REMARK. We will in the sequel adopt the convention that all occurrences
of the repetition rule in 7 — F are eliminated. So possible repetitions of sequents
are identified.

2.5. LEMMA. Let Ey,FE5 be nre in w. Then so are E1 N Fs, E1 U FEs. O

So £(7) contains a largest nre subset, which we denote by Emax (7). It is the
largest saturated subset of £(7) that contains no vertices labeled “s”.

2.6. LEMMA. &(m — E) = E(m)\E, and the exponential graph of m — E is a full
subgraph of that of «.

PRrRoOOF: For the first claim, observe that any class not in F remains a class in
7w — E, while all classes in # — F are classes in 7. For the second claim, note

30f course ~-classes are defined precisely for that purpose!



that for €', e in £(w)\E we have that €’ ~j ein 7 — E if and only if e’ ~j e in
. O

2.7. LEMMA. If E,E' are nre in 7, and E' is a subset of E, then E\E' is nre
inw—FE'.

PROOF: As no class in F is labeled “s”, the same holds for E\E'. As E is nre
in m and E' C E, the only possible elements of £(r) that bind elements of E\ E’
are in E'. So E\E' is saturated in £(7 — E'). a

2.8. LEMMA. Suppose F; is nre in w. Then Fs is nre in w — F, if and only if
F1U E5 is nre in .
PROOF: (=) As E; and E, are nre, none of their elements is labeled by “s”.
Let ¢’ € £(r) bind an element of F1. Then €’ in E; by saturation. If it binds an
element of F, and it is not an element of E1, then € € £(r — E}), so €' € E»,
by saturation of Es.

(<) By lemma 2.7. |

2.9. PrRoOPOSITION. Let Ry, Ry be distinct redexes in w. Then Ry is a redex in
m — Rj.

PROOF: Observe that, by lemma 2.5, R; N Ry = (), from which the claim easily
follows, using lemma 2.6. O

2.10. COROLLARY. Let Ry, Ry be distinct redexes in w. Then (m — R;) — Ry is
a correct linear derivation. Moreover it is equal to (m — Rp) — R;. 0O

Now define a reduction [> on linear derivations by « > 7 — R, for R a redex
in . Given some derivation =, clearly the number of potential redexes in 7 is
finite. So all >-reduction-sequences are finite, ending in a >-normal form. As
by the above > is locally (1-1) confluent, in fact for each © we obtain a unique
D>-normal form, which we will denote by 7”.

Thus > defines a complete lattice of linear derivations with top 7, bottom
n°, and m; > ; if and only if there is a (possibly empty) D>-reduction-sequence
leading from 7; to ;.

We will refer to the lattice obtained as the “ [>-lattice of 7”.

2.11. LEMMA. IfFE isnrein «, then © >7—F and Emax(m — E) = Emax(7)\E.

ProoF: The first claim is shown by induction on the size of E, the second claim
using lemma’s 2.7, 2.8. a



2.12. THEOREM. 7” = m—FEmax(7), and the exponential graph of n” is precisely
the union of all directed paths in the graph of m starting from a vertex labeled

({7
.

s
PrROOF: By lemma 2.11, 7 > © — Emax(nm), so @ — Emax(w) > n°. But as
Emax(m—FEmax(7)) = 0 in fact 7— Emax(7) = 7°. The second claim is immediate
by 2.6 and the fact that we obtain the exponential graph of 7> by removing all

saturated subgraphs of the graph of 7 that do nof contain a vertex labeled “s”.
O

Consequently we have shown:

“A class e remains in ©° if and only if the corresponding class in w
has a structural cause.”

The mono-stable fragment of CLL;

Let us call derivations 7 in linear logic ‘mono’ if the only modalities prefixing
the skeleton of each formula appearing in 7 are among ‘!, ‘7", ‘17 and ‘7!".
Observe that the collection of all first-order ‘mono’-derivations is closed under
cut-elimination. To get the same property in the second-order case, abstraction
on externally modalized formulas should be prohibited. This defines a proper
fragment of second-order linear logic: the mono-stable fragment. For ‘mono’-
derivations we are able to strengthen theorem 2.3, in the sense that we now also
have the converse:

2.13. THEOREM. Let m be ‘mono’, and E C &(r). Then w — F is a correct
linear derivation if and only if E is nre.

ProoF: (=) If F is not nre and 7 is ‘mono’, then the strip defined by E
will result in a derivation # — E in which there is either an application of a
structural rule on a non-exponentiated (not properly exponentiated) formula, or
an application of an exponential contextual rule where the context contains (a)
non-exponentiated (not properly exponentiated) formula(s). So # — E can not
possibly be correct. O

In general we can not be sure of the left-to-right direction: ‘good’ exponen-
tials may be hidden (more or less directly) behind the ‘stripped’ ones, e.g. in
case we strip in ‘!’ or 1?777777D.

Theorem 2.13 tells us that the minimum 7> of the [>-lattice of a ‘mono’-
derivation 7 is a minimum in a very strong sense: for no E C £(n”) the strip
defined by F can possibly result in a derivation that is linearly correct.

This does not mean that for a ‘mono’-derivation , it is impossible to remove
any more exponentials in 7”: what can’t be done is remove one or more entire



classes, but one still has the possibility to lower as much as possible the L! and
R? rules that are left, in order to introduce them just before they are needed.
If we apply this lowering of dereliction rules to 7” we obtain derivations (7”)’.
Clearly all of them have the same exponential graph. They also will be identified
in their proofnet representation. In other words, the difference between them is

negligible.

3 Strips and normalization

3.1. DEFINITION. Let ¢ be a cut rule in a proof . We will denote by [c]
the particular kind of elementary normalization step to be performed in order
to eliminate the cut (following the standard normalization procedure for linear
sequent calculus, see e.g. Troelstra(1992) for an exhaustive treatment of the first
order case).

3.2. REMARK. The nature of [c] depends on:
- the rules 74 and r4 surmounting ¢ (in the left, respectively the right premiss);
- the status in 74 and 74 (main, passive, side-active) of the cutformula.

Accordingly we distinguish four kinds of elementary normalization steps:
permutation steps, logical steps, structural steps, axiom steps.

We recall steps that in the sequel ask for a non trivial treatment, namely
those where r; or r4 is a box rule whose main formula is the cutformula; also
we display the configuration where ry and 74 are second-order rules introducing
the cutformula. (For each we will show only one among the possible cases.)

- If the cutformula is side-active in an exponential contextual rule surmount-
ing ¢, we denote the associated reduction step by [cc] (‘commutative cut’) being
of the following form*:

1

T T2 x
2

: : [ec] T 7T A
T =, A IA1A= BIA" i el :
IT =7T,14 4,!A = B,?A!

T =70 1A IA,IA =B, 7A/
= R IT,!A = B, 0", 7A/
IT,!A =B, 717, 7A A BT A

- If the cutformula is main in a dereliction rule, we denote the associated
reduction step by [de] which is of the following form:

*Thanks! We gladly acknowledge the use of Dirk Roorda’s ‘exptrees’-macros for the type-
setting of proof trees.



™ ™2
™1 T2

T A AA=A
T =14 14,A = A/
IT, A =717, A/
- If the cutformula is main in an instance of a contraction rule, we denote
the associated reduction step by [co] which is of the following form:

T =T, 4 AA= A
IT,A =77, A

!

5
™1 : ™2
™1 T2 )
: T =T, A :
. =>':fr' A s iA N [cd IT=7TV,A IT=,1A !4,14,A= A’
_ 2 al ek T =714 1A,IT, A =T, A’

T=T,14  14,A= A
IT,A =T, A/

IT,IT, A =717, 7T, A/

T,A =T, A’
- If the cutformula is main in an instance of a weakening rule, we denote the
associated reduction step by [w] which is of the following form:

T Ty T2
: : [w] -
T=T'A A=A ~ A=A
T =M 14 14 A= A :
IT,A =T, A T, A =T, A’

- If the cutformulas are main in Vs-rules, we denote the associated reduction
step by [V2], which is of the following form:
™ T2
m[T/X] 2

: : [Va]
=T A[X]  A[T/X),A=A" ™

T=TI,VXA[X] VXA[X],A= A
IA=T,A

=T A[T/X] A[T/X],A= A’
I,A=TA

Let 1 be an elementary normalization step. Any occurrence of a (sub)formula
F (resp. any instance of arule 7) in p(7) comes, in the obvious way, from a unique
occurrence of a (sub)formula (resp. a rule) in 7. Let us denote by p, this lifting
application.



3.3. LEMMA. (Lifting of classes) For any elementary normalization step p in a
proof w, ., respects classes. Le., if F, G are occurrences of subformulas in p(m)
and F ~yr) G, then p,(F) ~r pi(G). O

Hence each class e in pu() is mapped by p4 to a class €’ of w (so p.(e) C €').
Note however, that this mapping is neither one-to-one, nor onto, in general.

3.4. LEMMA. (Lifting of binding) For any elementary normalization step p in a
proof 7, u, respects binding. Le., if e, ¢’ are classes in p(r) and e ~ € in p(7),
then py(e) ~ py(e’).

ProoF: (Recall that ~ is but the transitive closure of ~j.) Suppose p is
[cc], and e ~; €' via the box rule permuted by p with the cut rule. Either
px(€) ™1 py(e') or thereis in 7 a class € (namely the class of the cutformulas)
such that p,(e) ~1 €’ and €’ ~q py(e’). In all other cases pi(e) ~i1 px(e’) (in
particular, note that for ' =!T" or 71" in [V2], there will be no binding involving
T in m[T/X)). ]

Let E be a set of classes in a proof w, and suppose u is an elementary
normalization step of w. Let us denote by p(E) the set of classes in p(7) mapped
by g« to a class in E. This makes sense, precisely because p, respects classes.

3.5. LEMMA. Let 7 be a proof, i an elementary normalization step in , and
E a subset of £(w). If E is saturated, then so is u(E).

PRrROOF: Take a class e in u(F) such that ¢’ ~ e for some class €’ in £(u(m)). By
lemma 3.4, p.(e') ~ pi(e). Because e € p(E), by definition py(e) is contained
in a class of E. Hence, by saturation of F, the same holds for p.(e'), and, again
by definition, €' € u(E). a

3.6. LEMMA. Let 7w be a proof, p an elementary normalization step in ©, and
E a subset of E(w). If E is nre, then so is p(E).

ProoOF: By lemma 3.5, u(F) is saturated. Now suppose there is a class e in
p(E) labeled “s”. If an occurrence of a formula F' is main in a contraction (resp.
weakening) rule in p(w), observe that either this already is the case for p.(F)
in m, or p is [co] (resp. [w]), and p.(F) is side-active in the box rule to be
duplicated (resp. erased). So either p,(e) is also labeled “s”, or there is in £()
a class €/ labeled “s” such that ¢/ ~; e, contradicting the hypothesis that F
satisfies the no sources condition. O

3.7. DEFINITION. Let 7 be a proof, F an nre set of classes in 7, 4 an elementary

normalization step performable in 7. The equivalent of x in m — F, denoted by
i, is defined as follows:
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- i = [¢d] (the empty operation) if u is either [de] with active formulas in the
domain of F, or a permutation step where the cut is permuted upwards from
the conclusion to the premiss of an exponential rule with main formula in the
domain of E.

- it = p in all other cases. O

Let r be a rule in a proof m, and p an elementary normalization step of .
We denote by p(r) the set of instances of rules in p(7) mapped by u, to 7.

3.8. REMARK. Let 7 be a proof, c a cut in w. If r is a rule in 7 that is neither
¢, nor ry,74, then any rule r’ € [c](r) is an instance (in [c](7)) of the same rule
as 7.

3.9. LEMMA. Let 7 be a proof, E nre in w, i an elementary normalization step
in . If G is an occurrence of a (sub)formula in p(7), then G—u(E) = p(G)—E.

ProoF: For any subformula !F' of G we have that !F is stripped in G — u(F) if
and only if !F € u(F) if and only if u,(1F) € E if and only if u,(!F) is stripped
in IL*(G) - .E. D

3.10. THEOREM. (Stripping preserves normalization). Let p be an elementary
normalization step in a proof w, and E nre in w. Then p can be applied to w if
and only if i can be applied to m — E, and ji(r — E) = p(n) — p(E).

PROOF: (Sketch®) For the first half of the claim we have to check that whenever
b # [id], stripping does not change the nature of a given cut in 7, i.e. [c—E] = [c],
which is immediate by remark 3.2 and theorem 2.3.

For the second half, we have to verify that, whatever p, for any rule r in the
proof tree 7, it holds that u(r) — u(F) = a(r — E)

Let ¢ be the cut to which u is applied.

- If r is neither ¢, nor 74,74, then for any rule v’ € p(r), by lemma 3.9 and
remark 3.8, 7’ — u(FE) and p(r') — E (i.e. r — E)) are instances of the same rule in
respectively p(r) — p(E) and 7 — E. Now, again by remark 3.8, rules in j(r — F)
remain instances of the same rule.

- Let 7 be ¢ or one of r4,74. We consider just the case that p is [de] with
cutformula in E. Then u(F) is E minus the class consisting of the two active
formulas of c¢. Neither of 74,7y have an equivalent in either 7 — E (by remark
2.4) or u(r). Remains the case that r in fact is c. Let ¢ be the (unique) rule in
p(c). Then ¢ — p(E) = — (B\{41,42}) = c— E, so we are done. a

5 A detailed proof would consist in a case-by-case inspection of all possible appearances of
an instance of the cut rule in m. We refer the reader to section 5 for an alternative, intuitive,
argument supporting the claim.
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3.11. COROLLARY. Let 7 be a proof, E nre in 7, and p an elementary normal-
ization step in w. Then p(w) > j(r — E).
Proor: By theorem 3.10 and lemma 2.11 a

3.12. REMARK. Note that the converse of lemma 3.6 does not hold: F C
E(p(m)) might very well be nre, while p,(F) C £(r) is not.

A typical example is the class of a main formula in a box rule to be duplicated
by [co], which might become nre after duplication.

3.13. THEOREM. Let pg...p1 be a reduction-sequence in w. Then

P - pa(m”) > (pk - oo pa ()

PRrOOF: By iteration of corollary 3.11 we find pg...p1(7w) D> fpg...g1(7>). We
conclude that fig ... i1 (7) is in the D>-lattice of uy ... p1(7), where (p ... p1(7))>
is the bottom-element. O

We established an important property of the [>-lattice of a derivation 7 that
intuitively can be expressed as follows:

“Derivations in the D>-lattice of m have, essentially, the same set of
reductions.”

Writing r to denote a reduction sequence in 7, the content of the above can
be visualised in the following diagram:

In remark 2.13 we observed that if w is not ‘mono’, it may be possible to strip
sets of classes in w that are not nre, and still get a derivation that is linearly
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correct. However, the result of such a strip is likely to have a behaviour under
reduction quite different from that of 7, and in general theorem 3.10 will no
longer hold.

4 Application to intuitionistic and classical logic

In Danos et al.(1993) we introduced the concept of linear decoration of a given
proof in one of the standard sequent formulations for intuitionistic or classical
logic, being a derivation in linear logic having the same skeleton as the proof
of departure. Le., if we delete all exponentials, replace the linear connectives
by their non-linear counterparts and eliminate possible repetitions of sequents,
then ‘what we get is what we got’.

There exist uniform translations of intuitionistic as well as of classical logic
into linear logic, which are also decorations for the standard sequent-calculi,
though not all uniform translations automatically define a decoration.

Here we will strengthen the concept of decoration as follows:

4.1. DEFINITION. Let L be a sequent calculus and o a procedure for cut elimi-
nation in L. A decoration § for L is said to be a strong decoration (with respect to
o) if and only if any elementary normalisation step in o, transforming a deriva-
tion 7 in L into 7', can be simulated by one or more elementary steps in the
standard procedure for linear sequent calculus, leading from §(7) to 6(«'). O

In other words, 6 is a strong decoration if and only if the following diagram
commutes:

]

T — e §(r)

Hy l i By

'}T'——» 6(7TI)

4.2. DEFINITION. We will say that § is a ‘mono’ decoration if §(7) is a ‘mono’
derivation for any proof 7 in L. O

Now if 7 is an L-derivation, we apply the decoration in order to obtain a linear

derivation §(w). We strip §(), and get the minimum §(7)” in the D>-lattice.
Using the results of the previous sections, we have the following:
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4.3. THEOREM. If§ is a strong ‘mono’ decoration for L, then §(m)” is an optimal
linear version of 7, with essentially the same set of reductions. O

Note that for any decoration é of intuitionistic or classical sequent calculus
there exists a normalization strategy, say oy, such that 6 is strong with respect to
oy: it suffices to define o) as the reflection of the procedure in linear logic. But
e.g. in the case of standard versions of classical sequent calculus and uniform
translations as the one defined (for the propositional fragment) by

for atoms take p® :=lp ; then put

(AAB)° = I(74°@17B°)
(AV B)® := Y74°p?B°)
(A— B)® := !(7A° - 7B°),

it is not obvious how one should formulate the corresponding strategy o; directly,
and independent of specific derivations w. Moreover, in general, the decoration
of a proof will not be ‘mono’.

In Joinet(1993) linear translations (comparable to the one above) are defined
that do take us into the ‘mono-stable’ realm of linear logic. Though these do
not define decorations of the standard sequent calculus formulations of classical
logic, they are easily seen to impose certain restrictions on the structure of
classical derivations, that can be built into non-standard sequent formulations,
for which these translations then are decorations. Also, by construction, we find
o7 as a ‘natural’ procedure of cut-elimination, so that in fact we obtain strong
decorations. To these calculi, complete for classical second-order logic (and
baptized LKT, LKQ in Joinet(1993)), consequently our ‘optimal linearization’
analysis can be applied.

The description in Danos et al.(1993) of the construction of a non-standard
sequent calculus (ILU) for intuitionistic implicational logic may serve as an il-
lustration of the principle also behind the calculi LKT and LKQ: the linear
translation (-)® which is the identity on atoms and maps an implicational for-
mula A D B to !A® — !B® defines a decoration of the usual sequent calculus
for intuitionistic implicational logic, while Girard’s well-known translation (-)*
(mapping A D B to !A* — B*) does not. This is related to the fact that in the
standard formulations application of the rule L D is allowed also when the active
formula B in the right premiss has been main formula in a structural rule. Note
that these instances of L D have no equivalent in the natural deduction formula-
tion of intuitionistic logic, which suggests that the collection of derivations that
do not use it in such cases is complete. This indeed is so and a non-standard
sequent calculus formulation (which consequently is closer to natural deduction
and the simply typed lambda calculus than the standard one) is obtained by a
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straightforward abstraction of the structure of linear derivations of sequents of
the form IT'® = A®.

The systems LKQ and LKT are similarly based upon (dual) decompositions
of classical implication, resp. as !4 —o?!B and !?74A —?B.% As expected, our
theorem 4.3 applies to each of these systems.

ILU is the neutral fragment of intuitionistic implicational logic in Girard’s
system of Unified Logic LU (Girard(1993)), and indeed our methods are not
limited to merely this fragment. If we decorate negative atoms IV as 7N, positive
atoms P as ! P, and follow the linear definitions of the classical and intuitionistic
connectives, we get a strong ‘mono’ decoration. As a result theorem 4.3 applies
to all of non-linear LU, which besides e.g. ILU includes Girard’s system of
classical logic LC (Girard(1991)).7

(Note an important difference between LC and systems like LKT, LKQ,
ILU, being that unlike the latter, it is not based upon an underlying direct linear
translation of classical(intuitionistic) logic, but passes, through the concept of
polarity, via an intermediate language.)

5 Multicolor linear logic

As is well known, the sequent calculus rules for the exponentials, unlike those for
the other connectives, do not imply their uniqueness modulo linear equivalence:
if we introduce a unary connective i, with the same rules as the exponential !,
then neither !4 = iA, nor iA =!A4 are derivable. Given a linear proof, this
suggests the possibility, pointed out to us by J.-Y. Girard, to use a distinct
exponential as main connective for each class in £(7); or, otherwise said, use
a different colour for each vertex in the exponential graph of 7. The binding
relation then gives rise to a natural notion of interprovability between some (or
all) of our colours, in the form of promotional constraints. The idea is easily
formalized:

Let R be some binary relation (on some index-set); extend the language of
linear logic by indexed exponentials |,?. We define the sequent calculus R-CLL
by adding to the non-exponential fragment of CLL

- for all indexed exponentials !, ? the usual dereliction rules;

- structural permissions restricted to specified sets of indices WR and CR, i.e.

structural rules of weakening(contraction) for !,? iff a € WR(CR);

ala

8We recover ILU by the usual intuitionistic restriction of LKT to single-conclusion sequents.
LKT appears to be closely related to the natural deduction system for classical logic studied
in Parigot(1992). A more detailed account will be given in Danos et al.(199 ).

"This, by the way, gives us an indirect proof of cut elimination for these systems.

15



- the following promotion rules (subject to the restriction that zRz;, 2Ry; for
all z;,y;) :
z!1G'1, . .,:{lGn = A,y?lDl, . .y:-'an
1Gr,.y 1G> 14,7Ds,... ! Dy
zllGla e ,z!nGn,A = ;-’lDl, .. .y’;’an
2G1,.. ., VG TA= 1Dy, P Dy

!
Tn

R!

L?

5.1. PROPOSITION. R is reflexive iff ¢ = !¢ and 7¢ = 7¢ are cutfree derivable
in R-CLL, for any formula ¢, any index a. O

5.2. PROPOSITION. R-CLL enjoys cut-elimination iff (1) R is transitive and (2)
WR and CR are upwardly closed (i.e. if i € WR(CR) and iRj, then j € WR(CR)).
PROOF: (<) Observe that (1) implies correctness of [cc], (2) correctness of [w]
and [co].

(=) Suppose aRb and bRc. Then the following is a derivation in R-CLL:

p=>p p=p

!
p=p [p=p

1 1] !
P=>,D ,p=.P

lp=lp

But obviously there is no cut-free proof of ! p = ! p in case (a,c) ¢ R.
Similarly we obtain contradicitions in case i € Wg,iRj and j € WR or
t € CR,tRj and j & CR, e.g. using the following derivations:

p=p Ip=p ip=p

g-p:p g=>q EP,£P=>P®P

p=lp lna=g b=lp lp=pep
Ipa=g h=pep

O

We get the standard calculus by taking the relation I = {(-,-)} on a one-
point index set {-}. So CLL = I-CLL. This reflects the fact that all modalized
formulas in linear logic obtain full structural permissions.

The characterization of superfluous exponentials in the exponential graph of
a linear derivation 7 boils down to the identification of those modalized formulas
in the proof for which there is purely logical evidence that at no point (during
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normalization) they will use the ‘talents bestowed upon them’. Using the above,
we then can reformulate their remowval as the interpretation of the proof 7 as
a II-CLL-proof, where II denotes the reflexive closure of the relation § — -,
distinguishing the usual expontials !,? from the ‘no-permission’ exponentials
:',, E, which correspond to the superfluous exponentials in 7.
Observe that a linear derivation 7 and its interpretation II(7) as a deriva-
tion in II-CLL have ezactly the same set of reductions. Now obviously an
¢-exponentiated formula during reduction will never be cutformula in a [w] or
[co] reduction-step, which thus provides us with alternative evidence for theorem
3.10.
An even more refined analysis can be obtained by interpreting 7 in IV-CLL.

Here IV denotes the reflexive, transitive closure of the relation
w c
0

and we distinguish four types of exponentials corresponding to the four possi-
ble structural permissions occurring in a linear logic proof. An optimal four-
colouring of a given linear derivation = is easily obtained from G(w) if we dis-
tinguish w(eakening) and c(ontraction) as source-labels. It is not difficult to see
that the results of sections 2 and 3 extend in an obvious way to the rewriting of a
CLL-derivation which removes superfluous exponentials and moreover replaces
14 by 1&A for all w-coloured vertices of G(r).

Derivations in R-CLL where R is an order (i.e. transitive and non-reflexive)
correspond to linear derivations having an exponential graph that is acyclic. If
U is a universal orderS, then any derivation with an acyclic exponential graph
can be interpreted as a derivation in /{-CLL. Note that (1) it is easy to check
whether or not a given derivation has an acyclic exponential graph (so is an
U-CLL-derivation) and (2) that acyclicity of G(=), intuitively, prohibits the
occurrence of auto-duplication effects during normalization. This in turn implies
the interesting fact that it is possible to generalize the so-called ‘approximation
theorem’ for linear derivations in normal form (Girard(1987)) to the class of

81.e. U is a countable order into which any finite order X can be embedded, and having
the property that for each such embedding ¢ of X, and for each finite extension Y of X, there
exists an embedding v of Y whose restriction to X equals ¢.
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all U-CLL-derivations. Moreover, it seems not unlikely that (a suitable variant
of) U-CLL will precisely characterize the class of polynomial time computable
functions, and thus provide an alternative for the system BLL of bounded linear
logic studied in Girard et al.(1992). We hope to return to this question in the
near future.
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Appendix: CLL,

Identity axiom and cut rule:

T'=>AA AT = A

Ax A=A cut T T = A A

Rules and axioms for the constants:

(no LT) RT TI'=>T,A
I'=>A

Logical rules:

L I=A4 BI=A R DiA=B,A

T,T,A—B=A,A T=A4-B,A

L A= A T',B= A’ R I'=s A B A

PTT T, ApB = A, A ®T= 4pB,A
L A=A  TLB=A re I A4A T=BA

T,A&B= A T,4A&B= A T = A&B,A

Rules for the first order quantifiers (y not free in ', A):

T, Alt/z) = A gy = 4ly/a), A

Ly 'Vt A= A I'=sVzA A

Rules for the second order quantifiers (¥ not free in T, A):

LV TVA[T/X]) = A RY I'= A, AlY/X]
2 TVXA=A 2 T=>AVXA
Exponential structural rules:
Wi ' A W2 I'= A ol TJAJJA= A C7I‘=>?A,?A,A
‘T,'JA=> A "T=74,A T A= A T I's74,A

Exponential contextual rules:

T,A=7A R! T = A,7A

L? o T2 et e Rk
IT,7A = 7A T = I4,7A

Exponential dereliction rules:

R?M LI.I"_A_.?A
‘"T=74,A ‘T,J A=A

Linear negation is defined by A+ = A —o L; the rules and axioms for 1,0,®,®, 3,3,
are obtainable in the obvious (‘De Morgan’) way from those for L, T, p, &,V, V.
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