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Abstract

I introduce the notion of effective truth defined in terms of game (di-
alogue) semantics and very much resembling recursive realizability. This
notion seems to me a natural alternative for the classical notion of truth
which satisfies the “constructivistic” demands. At the same time it serves
as a natural justification of “resource-conscious” effects reflected in sub-
structural logics, the logic corresponding to effective truth is a version of
linear logic.

The present paper is not a complete work, it is only the first part of
a bigger essay planned by the author. The reader will find here a lot of
definitions, examples and some philosophy, but no very serious theorems.
In particular, there is nothing said about the complexity of the logic of
effective truth, no axiomatization with a completeness theorem is given for
it. Preliminary results in this direction do exist, but they are not written
yet, and the author prefers to abstain from formulating theorems without
proofs; this job is reserved for the second part of the above-mentioned
work.

1 Introduction

The classical notion of truth has many times been criticized. This is what I, too,
am apparently going to do with it in the next few lines, and that is why I would

*Carried out under the NWO-Program of Support the Former Soviet Union. I am also highly
grateful to Dick de Jongh, for many things. ..



like to start with apologizing if the reader finds some of my arguments not very
original.

One of the most vulnerable to controversies point of logic is the existential
quantifier,

.. Jzg(z),

read as
... there exists x such that ¢(z),
or, sometimes, as
... there can be found xz such that ¢(z).

The two readings are usually perceived as synonyms, and still the difference
between them is crucial. “There exists” sounds metaphysically, whereas “can
be found” means something what deals with the reality. To leave alone the
philosophy on the right of “existence” of the classical notion of existence, it simply
has no practical meaning, as it can be demonstrated by the following maybe not
very serious example. Consider the sentence

For every disease there is a medicine which cures of this disease.

If there is no way of finding for each disease a cure of it but still we somehow know
that this sentence is true in the classical sense, we have no reason to be happier
than we would be in the case if it were false. Not in the least!! In general, truth
or falsity of a sentence can concern us only as far as this can spell something, can
somehow be reflected in the reality.

Of course “can be found” is a relative notion. Found by whom? If by God or
another almighty being, then, and in fact only then, “exists” is really a synonym
of “can be found”. But the most natural answer on the question by whom is by
a Turing machine.

This treatment of the existential quantifier, when existence means being pos-
sible to be found by a machine, is captured in the nonclassical concept of “truth”
which I suggest in this work and which will be called effective truth. The general
ideology of the semantics of effective truth is that sentences are considered as
certain tasks, problems which are to be solved by a machine, that is, by a subject

! A naive opponent could object: The classical truth of this sentence means that we can try
all the chemical stuffs, one by one, and sooner or later, one of them will work, so we do have a
reason to be happy. Then I would give two answers in the same naive manner: First, what the
opponent suggests already is a way of finding the medicine, and the second: in fact this way is
hardly a good way, because the pure sick man will, most likely, be poisoned and dye before we
reach the due medicine.



which has an effective strategy for doing this; effective truth means existence of
such a strategy.

The most convenient way of shaping this approach is to build all the semantics
in terms of games:

a task (problem) = the task (problem) of winning certain game with
established rules.

There are two players in our games: I, asserting a sentence, and my opponent
who tries to refute it. I am supposed to follow only effective (recursive) strategies,
whereas the opponent can use any strategy, he is meant to represent the blind
forces of nature, or the devil himself.

The universal quantifier will always mean the opponent’s move and the exis-
tential quantifier will mean my move. The above “medical” proposition can now
be understood as the game each play of which consists of two moves: the first
move is done by the opponent, who names an arbitrary disease d, and the second
move is mine, ] must name a medicine m; the play is won by me, if m really is a
cure of d. Effective truth of this proposition can now really be a reason to lead a
quiet life: I have an effective strategy (machine) such that, using it, I can always
find a cure of any disease sent to me by the devil.

The connective V will be treated in the same manner as the existential quan-
tifier. Say,

Ve(z € PV & P),

where P is a set, will be understood as the game each play of which, again,
consists of two moves: first the opponent chooses an object n, which leads to the
position n € PV n ¢ P, and then I choose between “left” and “right”, getting
thus one of the positions n € P or n ¢ P; the play is won, if n belongs to P and
I have chosen “left”, or n does not belong to P and I have chosen “right”. It
is clear that effective truth of this proposition means nothing but decidability of
the predicate x € P.

In general, decidability and other similar concepts are easily definable in terms
of effective truth. Moreover: in fact saying that a given sentence is effectively
true, we always assert that certain relation similar to decidability (but may be
much more sophisticated) holds, as, e.g., the binary relation expressed by the
formula Vz(z € PV z € Q). Effective truth of this sentence means that there is
an effective method of choosing for each individual a one of the two sets P, @
such that a belongs to this set.

In the above examples the operator V connects atomic formulas (games). In
a more general case, to win the game a; V a, means that after my choice of one
of the components «;, I must continue and win the game a;, whereas the other



component should be abandoned for ever. There is however one more natural sort
of disjunction, denoted by V. The position a;Va, does not oblige me to choose
one of the a; and reject the other. I can make a move in one of the components,
reserving at the same time the other, and switch any moment from a; to a; and
back; the task is, playing in fact simultaneously in the two components, to win
at least in one of them.

Exact definitions will be given in the main text (sections 2 and 3), but now, in
order to develop intuition, we continue discussing some more “naive” examples.

I am in prison, my prison cell has two doors locked from the outside, the left
door and the right door. My goal is to escape, and for that it is enough to pass
through one of the doors. I happen to know that tonight one of the doors has
been unlocked. Consider the proposition

The left door is unlocked or the right door is unlocked.

In order to escape it is enough for me to be able to “solve” this game (problem)
with “or” understood as V: it is not necessary to be able to calculate beforehand
exactly which door is unlocked, I can simply try both and one of them will turn
out to be unlocked. I write “solve” with quotation marks because in this game
there are no moves at all and, under our assumption that one of the doors is
really unlocked, it is trivially won.

Let us now slightly change the situation: the doors were not locked but mined,
and tonight someone has removed the mine from one of the doors. Yes, we need
now just V, and V will not do any more.

We treat negation — in the following way: the rules of the game - are the
same as of a, only with the roles of me and the opponent interchanged.

Example: Let C be a version of chess to win which for me means to win a
usual chess play within at most 100 moves, being the white player. Then ~C will
be the game to win which for me means not to loose within 100 moves a chess
play being the black player.?

Notice that the classical principle =—a = a does hold with our negation: after
interchanging the roles twice, each player comes to his initial role. That means
that all classical dualities work. In particular, V can be defined in terms of (3,
=) by Vza(z) = ~Jz-a(z).

As the game of chess has been mentioned, the temptation arises to discuss
one more example (which is however not very original). Consider the game

(GAVATON

2In this example C is not a proposition but a “pure” game, and the propositional connective
- is thus an operation on games. But this is normal because propositions are for us nothing
but games, and propositional connectives — operations on games.

4



C being defined as above. This is in fact a play on two chessboards, on the left
board I am the white player and on the right one — black. My task is to win
in the sense of usual chess (but with the within-100-moves amendment) on one
of the chessboards. As switching the components is my priority, I have to move
only in the case when the chess rules on the both boards oblige me to move, i.e.,
as soon as the opponent has to move at least on one of the chessboards, I can
wait until he makes this move.

I, being not very good at chess, still can win this game even if my opponent
is the world champion Kasparov, if I use the following strategy (solution): After
Kasparov makes his first move on the right chessboard (where he is the white
player), I repeat the same move on the left chessboard (where I am the white
player), then copy Kasparov’s answer on this move to the right chessboard and
so on. This winning strategy can be used for any game of the type aV—a, which
means that the principle aV-a is valid in our sense.

As for the game C'V =C, where at the very beginning I have to choose one of
the chessboards and then win just on it, I have no chance to defeat Kasparov.®

To each sort of disjunction corresponds its dual conjunction, so we have two
conjunctions A and A, «a A 8 formally defined as —=(—a V =3) and a A 3 as
=(=aV=p).

For example, if I play with Kasparov the game CV-C, from the point of
view of Kasparov this is the game -C A C. He has to win on both chessboards.
Besides, he has to move as soon as the chess rules oblige him to move on at least
one of the boards.

Paying tribute to linear logic, we shall call V additive disjunction, A additive
conjunction, ¥V multiplicative disjunction and A\ multiplicative conjunction.

The borrowing some terminology (though not notation) from linear logic is
not by accident. The logic of effective truth, i.e. the set of always effectively true
sentences (like aV—a, but not a V —a), called effective tautologies, turns out to
be an extension of Girard’s [3] linear logic (without exponentials and constants,
of course), in fact, a proper extension of linear logic + weakening (so called Affine
Logic), and the behaviour of our additive and multiplicative connectives is very
much similar to the behaviour of those in linear logic.

For a curious reader I give two principles valid in our semantics but not

derivable in Affine Logic, ¢ — 9 defined as ¢V :
. ((041 A ag)V (B A ,52)) — ((alvﬁl) A (azvﬁz));4

3However, taking into account that there is only a finite amount of all possible plays of C,
the game C' V =C has an effective solution (winning strategy for me), even if no contemporary
machine is strong enough to carry out this strategy. Still, a bit more carefully chosen example
would convince us that the game a V -« is not always effectively solvable.

4This formula is taken from [2].




o ((a1 Vag)V (B V ,32)) -
(@ V(81 V B2)) V (2 V(B1 V B2)) V (e V @2) V1) V (1 V 2) V).

The main intuition behind linear logic was that resources should be consciously
book-kept. This leads to rejection of such classically or intuitionisticly valid
principles as, e.g., @ = a A a: If I have one dollar, it does not imply that I have
one dollar and I have one dollar, because the latter conjunction can be understood
as I have two dollars. However this vague intuition had not been formalized as
a strict semantics, and linear logic and other “resource” logics originally have
been built proceeding from syntax rather than semantics, say, by taking the
classical sequential calculus and throwing away the rules like contraction which
are definitely unacceptable even from the indefinite “resource-counting” point of
view. But it well may be that together with these rejected rules, some “innocent”
principles, too, became underivable. Apparently I claim that though the logic of
effective truth is strictly stronger than any known contraction-free substructural
logic, it still has all rights to be considered as the logic most appropriate to the
“resource” ideology.

To be more correct, I believe that the “resource-consciousness” is not primary,
but it is an inseparable satellite and consequence of another approach which
could be called “dynamic”, and it is just the latter initially captured by the game
semantics. I mean the following:

Sentences in the classical logic are “static”, they are given one of the two values
0 or 1, once and for ever. That’s why a (sub)sentence, occuring more than once in
a derivation or in another sentence, is still in all reasonable senses the same in each
occurence; the amount of these occurences does not matter, contraction works
and the principle o - a A a is valid. As for the game semantics, sentences there
are treated as something dynamic; two different occurences of one and the same
sentence denote one and the same game, i.e. one and the same set of potential
plays, but in the process of carrying out this game, the two occurences can be
realized as different plays of one and the same game. This is just what makes,
say, a A a different from o, and “I have one dollar and (A) I have one dollar”
becomes equivalent to something like “I have two dollars” (each dollar can be
spent its own way) rather than “I have one dollar”. This is better to illustrate
appealing again to chess.

In the above example with the game CV-C my winning strategy consisted in
fact in providing that the two occurences of C' in CV~C were realized as one and
the same play. However, this trick fails to work with the game CV(-~C A -C),
which is a game on three chessboards (chessboards NN 1,2 and 3, corresponding
to the three occurences of C, in their order from the left to the right). Kasparov
can play different openings on the second and the third chessboards (where he is



the white player), and I can now only provide that the play on the first chessboard
coincides with the play on one of the chessboards N2 or N3, let it be N2. Then
Kasparov can win on the chessboards NN 1 and 3 and, though I will have won
on the chessboard N2, the whole play will be lost by me, because for winning
CV(~C A —~C) it was necessary for me to win on the first chessboard or to win
on both the second and the third chessboards.

I mentioned above that the logic of effective truth is a proper extension of
Affine Logic; on the other hand, it is strictly included in classical logic (the lan-
guage of the latter is meant to be augmented with ¥V and A, which are identified
with V and A, respectively). Unfortunately no further no further information on
this logic will be given in the present paper (see the abstract).

One more thing which is worth to be mentioned here is that as soon as we
remove the restriction on my strategies to be effective and allow any strategies, we
get classical logic, where the distinction between the additive and multiplicative
versions of disjunction and conjunction simply disappears. Thus, classical logic
and our variant of “linear logic” result from two special cases of one general
semantical approach.

In the end, some historical remarks. Apparently Lorenzen [6] was the first
to introduce a game semantics, in the late 50-s. He suggested that the meaning
of a proposition should be specified by establishing the rules of treating it in a
“debate” (game) between a proponent who asserts the proposition and an op-
ponent who denies it. The aim was to build a semantics for intuitionistic logic,
which was formally achieved, though, to my mind, the undertaking hardly can
be estimated as very successful and the semantics very “convincing”: together
with natural rules of linguistic games, Lorenzen had to introduce a number of
artificial supplementary rules in order to make the semantics work in general and
work for intuitionism in particular. Especially “unconvincing” was the treatment
of atoms. In fact that semantics was to describe logical validity rather than truth
(enough to mention that no notion of a model was used), and this circumstance
makes the approach vicious: logical validity cannot be primary, it must mean
nothing but truth in every particular situation (model), and without having a
notion of truth one has no right to speak about validity.

Subsequently Lorenz [5] systematicly investigated many variations of the above-
mentioned supplementary rules, actually remaining in the framework of the same
“vicious” approach.

The notion of effective truth introduced in the present paper, though de-
fined in Lorenzen- and Lorenz-style game-semantical terms, is in fact much more
similar to, say, Kleene’s [4] recursive realizability, specifically, in what concerns
the treatment of additive connectives and quantifiers (which are nothing but ad-
ditives, again). At the same time, because of the unconstructive treatment of



implication, the predicate of recursive realizability is nonarithmetical, whereas
the predicate of effective truth of an arithmetical sentence (which is allowed to
contain the additional connectives V and A) has the complexity £3. Maybe this
low complexity (= high constructivity) is the most remarkable feature that dis-
tinguishes effective truth from other alternatives to the classical notion of truth
presented so far.

To the comparative criticism of recursive realizability should be added that not
all the recursively realizable sentences are true in the classical sense (e.g. some
sentences of the form —Vz(¢(z) V —¢(z)) are recursively realizable!), whereas
effective truth is only a “strong version” of classical truth.

I elaborated this semantics some time before writing the present paper, and
gave a talk “The logic of effective truth”, with all the main definitions, at the
Logic and Computer Science Conference in Marseille (June’ 1992). At the same
conference I met Andreas Blass and studied that he had presented a game seman-
tics quite similar to mine (and just for the same language), discribed in [2], where
decidability of two fragments of the corresponding logic has been established:

1. The multiplicative propositional fragment, i.e. which uses only the connec-
tives =, V and A.

2. The fragment consisting of additive, i.e. V- and A-free, sequents.

However the question whether the unrestricted logic corresponding to the Blass’
semantics (or, at least the propositional fragment of it) is decidable, recursively
enumerable or even arithmetical, is open.

Together with relativeness of the two semantics, connected first of all with
similar treatments of the connectives, there are also considerable differences:

1. Our games are finite (or, at least, well-founded which means that each
play is finite), whereas Blass’ games are essentially infinite. E.g., even the proof
of nonvalidity of @ V —a in [2] uses a counterexample where o is an infinite
(undetermined) game, and the proof hopelessly fails as soon as « is interpreted
as a well-founded (to leave alone finiteness) game which is always determined in
the sense that one of the players has a winning strategy (though not necessarily
effective) in it. This infiniteness makes the things only second-order definable,
whereas all the metatheory of effective truth can be build in PA (arithmetic).

2. At the same time, Blass’ semantics does not demand the strategies to be
effective, this demand apparently would be unessential there. Thus, the earlier-
mentioned effect, — that classical logic and (a version of) linear logic are two
special cases, one corresponding to unrestricted strategies and the other to effec-
tive strategies,—does not work there.

3. Finiteness of the plays of our games makes definitions simpler and more
natural. E.g., a play is assumed to be lost by the player who has to move in the
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last position of the play, so we do not need the parameter which indicates which
plays are won by which player in a game.

4. The notion of effective truth is only a refinement of the classical notion of
truth, and it is based on the same traditional models for the traditional languages.
E.g., the standard model of arithmetic becomes now the unique game-theoretical
model where each atomic sentence « is a terminal position, with the opponent’s
obligation to move (which is though impossible to do), if a is true in the standard
model, and my obligation to move otherwise; the set of effectively true arithmeti-
cal sentences is a proper subset of the set of those true in the classical sense,
which means that effective truth is only “truth in a stronger sense”. E.g., if a is
the IIJ arithmetic sentence which asserts its own not being effectively true, then
a V —a is true but not effectively true.® As for Blass’ semantics, it hardly allows
to speak about “truth” in the standard model of arithmetic, for atoms are to be
interpreted as infinite games and in that case it is not clear which game should
be the natural interpretation of, say, a + b = ¢. That approach has no notion
which could be called “truth”, it only suggests the notion of “a game in which I
have a winning strategy”, these games having nothing to do with the traditional
interpretation of languages.

S.Abramsky and R.Jagadeesan [1] revised Blass’ game semantics by slightly
changing the game rules, and investigated the multiplicative fragment of the
corresponding logic, which does not validate weakening any more and is thus
closer to the original Girard’s linear logic, being still slightly stronger than the
latter. This fragment is shown to be decidable, though the questions on the
decidability of the whole logic, as well as of its full propositional fragment —
again left open. In my opinion this semantics is less natural than that of Blass,
at the same time remaining in the framework of the same infinite games, so the
above four clauses of comparative criticism concerns Abramsky and Jagadeesan’s
approach to the same extent as the approach of Blass.

2 Basic notions and facts on games

Definition 2.1 A net of games is a triple N = (W, [, R), where:

e W is a nonempty set, the elements of which are called positions of N.

5Indeed, if this additive disjunction were effectively true, a little analysis of our treatment of
V shows that then either @ or -« should be such. A further analysis of the situation convinces
us that none of this cases is possible: if « is effectively true, then it is classically false, and if
-« is effectively true, then a is classically true; this is a contradiction because effective truth
always implies classical truth.



e [is afunction W — {0, 1}, called the labelling function; for an element w of
W, (the value of) l(w) is called the label of w. Intuitively, /(w) = O means
that I have to move and /(w) = 1 that the opponent has to move.

e R is a binary relation (called the development relation) on W such that the
converse of R is well-founded, i.e. there is no infinite chain woRw;Rw;. ..
of positions. Intuitively, wRu means that the transfer from the position w
to the position v is a legal move. In this case u is called a development of w
(in N). R(w) usually denotes the set of all developments of w. By a legal
sequence of positions of N we will mean any sequence of positions of NV such
that each n + 1-th term of the sequence (if it exists) is a development of
the n—th term. Thus, the converse well-foundedness of R means nothing
but that each legal sequence of positions of N is finite.

Definition 2.2 A game is a quadruple (W, [, R, s), where N = (W,[, R) is a net
of games and s is an element of W. Usually, if N denotes a net (W, [, R) of games
and s € W, we use N(s) to denote the game (W,l, R,s). “A position of N(s)”
and “a position of N” are synonyms, and s is said to be the starting position of
N(s).

Convention 2.3 It is not a “legal move” to speak about a function without
specifying its type, as it is done very often in this paper (e.g., Definitions 2.4,
2.7, 2.8). Though sometimes the type of a function really does not matter or can
be seen from the context, and it would be awkward still to “invent” in each such
case a range and a domain for a function purely out of reasons of a correct style.

In order to avoid possible confusion caused by our irresponsible usage of the
notion of a function as such, let us fix a “large enough” universe U; namely, we
assume that the set of positions of any game we consider is included in U; for
safety we can suppose that all natural numbers (and maybe many other things)
are in U. Then

e by a function, if not specified otherwise, we will always mean a partial
function of the type U — U, ’

¢ by a finite function we will mean a function (in the above sense) defined
only for a finite number of arguments.

Definition 2.4 Let G = (W,[, R, s) be a game and f; and f; functions.

1. The G-play with my strategy fo and the opponent’s strategy f; is a sequence
P of positions of NV which we construct in the following way:

a) The first position of P is s.
b) Suppose w is the n-th position of P. Then:

10



o if l[(w) =1, fi(w) = v and wRu, then the n 4 1-th position of P is u;

o else w is the last position of P.
Notice that P is a legal sequence of positions of G and thus is finite.

2. A G-play is the G-play with my strategy f and the opponent’s strategy g
for some functions f and g.

Observe that a G-play is nothing but a legal sequence (wy, ..., w,) of posi-
tions of G such that w; = s.

3. A G-play with my strategy fo (resp. with the opponent’s strategy fi) is
the G-play with my strategy fo and the opponent’s strategy f; for some
function f; (resp. fo).

In other words, a G-play with my strategy fo (resp. with the opponent’s

strategy f1) is a G play (w;(= s),...,w,) such that for any 1 <7 < n with
l(w;) = 0 (resp. with {(w;) = 1), we have:

o if fo(w;) (resp. fi(w;)) = u for some u € D(w;), then i < n and
Wit1 = U,

e eclse 1 =n.

Definition 2.5 The length of a game N(s) = (W,[,R,s) is the least ordinal
number a such that for every w with sRw, @ > the length of N(w). Thus, if
s has no developments, the length of N(s) is 0.

Very roughly, the length of a game G is the maximal possible length of a
G-play.

Definition 2.6 Suppose G = (W,[, R, s) is a game, P a G-play and w the last
position of P. Then:

e if [(w) = 1, then we say that P is won by me and lost by the opponent,
e if [(w) = 0, then we say that P is lost by me and won by the opponent.

Simply the words “won” and “lost”, without specifying the player, will always
mean “won by me” and “lost by me”.

Thus, every play is either won or lost. Intuitively, a play is won if a position (the
last position) is reached where the opponent has to move (as the label of that
position is 1) but cannot, and in a lost play we have the dual situation: I have to
move but cannot.

11



Definition 2.7 Let G be a game.

e A solution to G (my winning strategy for G) is a function f such that any
G-play with my strategy f is won.

¢ Dually, an antisolution to G (the opponent’s winning strategy for G) is a
function g such that any G-play with the opponent’s strategy g is lost.

« ”

In order to stress that the relation “...is a solution to ...” applied later to
formulas interpreted as games, belongs to the family of relations of the type
“...realizes ...” which lead to diverse well-known concepts of realizability (see
[7]), we give another, equivalent definition of it:

Definition 2.8 A solution to the game N(s) = (W,[, R, s) is a function f such
that:

e if I(s) =1, then for all w € R(s), f is a solution to the game N(w);

e if I(s) =0, then f(s) = w for some position w such that w € R(s) and f is
a solution to the game N (w).

Note that this definition is correct because the development relation is converse
well-founded.

Fact 2.9 Definitions 2.7 and 2.8 of the notion of solution are equivalent.

Proof. Let us temporarily call the notion defined in 2.7 “solution-1” and that
defined in 2.8 “solution-2”. Fix the game N(s) = (W,[, R,s) and a function f.
We proceed by induction on the length of N(s).

Case I1: I(s) = 1.

Suppose f is not a solution-2 to N(s). Then there is w € R(s) such that f is
not a solution-2 to N (w). The length of N(w) is less than the length of N(s), so we
can use the induction hypothesis to N(w) and conclude that f is not a solution-1
to N(w). By definition it means that some N(w)-play (w:(= w),...,w,) with my
strategy f is lost. Note that then the sequence (s,ws, ..., w,) is a lost N(s)-play
with my strategy f, so f is not a solution-1 to the game N(s).

Suppose now that f is not a solution-1 to N(s), i.e. some N(s)-play with
my strategy f is lost. This play has the form (s, w, ), where w € R(s) and
4 is some (may be empty) legal sequence. Now notice that the sequence (w, )
is an N(w)-play with my strategy f, which, obviously, is lost, too. Thus f is
not a solution-1 to the game N(w) and, by the induction hypothesis, f is not a
solution-2 to N(w), either. Since w € R(s), we immediately have by definition
that f is not a solution-2 to N(s).
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Case 2: I(s) = 0.

Suppose f is a solution-1 to N(s). Then f(s) = w for some w € R(s)
(otherwise any N (s)-play with my strategy f would be just (s) and thus lost).
Consider an arbitrary function g. The N(w)-play with my strategy f and the
opponent’s strategy g is (w, @) for some (possibly empty) sequence @ of positions
and the N(s)-play with my strategy f and the opponent’s strategy g is (s, w, @).
The latter is won according to our assumption that f is a solution-1 to N(s), and
therefore the play (w, @) is won, too. Thus, for every function g, the N(w)-play
with my strategy f and the opponent’s strategy ¢ is won, and that means that
f is a solution-1 to the game N(w). Then, by the induction hypothesis, f is a
solution-2 to N(w). Since f(s) = w, we immediately get that f is a solution-2 to
N(s).

Suppose now f is a solution-2 to N(s). Then f(s) = w for some w € R(s)
such that f is a solution-2 to N(w). By the induction hypothesis, f is a solution-1
to N(w). Again, for an arbitrary function g, the N(w)-play with my strategy f
and the opponent’s strategy g has the form (w,#) and the N(s)-play with my
strategy f and the opponent’s strategy g is (s,w, ). Since f is a solution-1 to
N(w), (w,a) is won and, therefore, (s,w, ) is won. We conclude that f is a
solution-1 to N(s). &

Fact 2.10 A function f is a solution to a game G if and only if for any finite
function (see Convention 2.3) g, the G-play with my strategy f and the opponent’s
strategy g s won.

Proof. Taking 2.7 as the basic definition of solution, the “only if” direction
is trivial. For the “if” direction, suppose f is not a solution to G, i.e. there
is a function h such that the G-play P with my strategy f and the opponent’s
strategy h is lost. Let then g be the function which coincides with h for the
positions that participate in P and is undefined for any other object. Clearly the
G-play with my strategy f and the opponent’s strategy ¢ is the selfsame P. On
the other hand, since P (as well as any legal sequence of positions of G) is finite,
the function g is finite. Thus, g is a finite function such that the G-play with my
strategy f and the opponent’s strategy g is lost. &

Definition 2.11

e A game is said to be solvable, if it has a solution (there is a solution to it).

o A game is said to be effectively solvable, if it has an effective (recursive)
solution.

e In general, for a class I' of functions, a game is said to be I' -solvable, if it
has a solution in T'.

13



Definition 2.12 Let N = (W, [, R) be a net of games. We define a net of games
called the tracing version of N and denoted by N* = (W*,1*, R*) as follows:

o W™ is the set of all legal sequences of positions of NV;
o *((wy,...wpn)) =l (wy);
o (wi,...,wy) R*(uy ..., up) iff (wy,...,wn) = (U1, .., Upn_1).
And the tracing version of a game G = N(s) = (W,[, R, s) is the game
G = N*((s)) = (W, 1", ", (s)).
Theorem 2.13 Let G = (W,l, R, s) be a game.
1. G s solvable iff its tracing version is.

2. Suppose | is recursive and W, R are recursively enumerable. Then G 1is
effectively solvable iff its tracing version ts.

Proof. We prove here only the clause 2 of the theorem. The proof of the clause
1 is essentially the same but a bit simplier. Let W,[,R be as supposed.

(=): Suppose f is an effective solution to G. Let g be the function W* — W*
defined as follows:

o g((wy,...,wn)) = (wy,...,wn,u), if f(w,) = u, and is, say, undefined, if
f(wy) is undefined.

Note that g is effective. We claim that g is a solution to the game G*. Indeed,
suppose that

({(s),(s,w1), (s, w1, w2),..., (s, w1, wa,...,wn))

(possibly n = 0) is a lost G*-play with my strategy g. Then, as it is easy to
verify, (s, w;,ws,...,w,) is a lost G-play with my strategy f, which contradicts
with our assumption that f is a solution to G.

(«<): Suppose g is an effective solution to G* and M, is a machine that
calculates g.

e Let a good sequence mean a legal sequence (ws,...,w,) of positions of G
such that w; = sandforany 1 < i < m, if l(w;) = 0, then g((wy,...,w;)) =
(wi, ..., Wi, Wiy1).
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Observe that any position in a G*-play with my strategy g is a good sequence. In
view of our assumptions about W,[,R and g, it is also easy to see that the good
sequences can be recursively enumerated. So, let us fix a recursive list of good
sequences. '

Let now f be a partial recursive function the value of which for an element w
of W is calculated by the following machine M:

e First M; checks (from the beginning) the list of good sequences till the
moment when a good sequence (ty,...,t.) will be found such that t. = w.
Then M; simulates the machine M, with (¢1,...,t,) on the input of the
latter; if M, halts and gives the output (¢1,...,%,,u) for some u € R(w),
then M/ gives the output u.

The claim is that f is a solution to G. To show this, suppose, for a contra-
diction, that there is a lost G-play (wy,...,w,) with my strategy f. Let us first
verify by induction on ¢ that

for any 1 < ¢ < n, there is a good sequence with the last term w;. (1)

That is trivial for ¢ = 1 because w; = s and (s) is a good sequence. Suppose now
¢ > 1. Then, by the induction hypothesis, there is a good sequence (uy, ..., Umn)
with ©n, = w;_;. If I(u,,) = 1, then obviously (uy,. .., u,, w;) is a good sequence.
Suppose now that I(u,,) = 0, i.e. I(w;—1) = 0. Then, as (wi,...,w,) is a G-
play with my strategy f, we have w; = f(w;—1). According to the definition
of f, this means that for some good sequence (vy,...,vg) with wy = w;_1, we
have g((vi,...,v)) = (v1,...,vk, w;). Then, clearly, (vi,...,vs, w;) is a good
sequence, and (1) is proved.

Thus, by (1), there is a good sequence (ti,...,t.) with t. = w,. We may
suppose that (¢;,...,t.) is the first good sequence with the last term w, in the
list of good sequences.

Let h be a function such that for any 1 < ¢ < e, ifI(¢;) = 1, then G({t1,...,t;)) =
<t1, ‘oo 7ti7 ti+1>. Then

<<t1> ) <t17t2> PRI <t17t27 s vte>>

is an initial segment of the G*-play with my strategy g and the opponent’s strategy
h. Since I*({t1,...,t)) = 0 and g is a solution to G*, (t1,...,t.) cannot be the
last position of this play, i.e. we must have g((t1,...,t.)) = (¢1,...,t.,r) for some
r € R(t.) = R(wy,). But then, by the definition of f, we have f(w,) =r € R(w,),
which contradicts with our assumption that w, is the last position of a G-play
(namely of (wy,...,w,)) with my strategy f: at least, the position 7 must follow
w, in this play. The theorem is proved. &
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Lemma 2.14 Suppose N(s) = (W,l, R,s) is a game such that l(s) = 1 and for
each u € R(s), N(u) is solvable. Then N(s) is solvable.

Proof. For each u € R(s), let us fix a solution g, to N(u). We define a function f
and show that it is a solution to N*((s)), the tracing version of N (s); By Theorem
2.13, that will mean that there is a solution to N(s). So, for any u € R(s) and
V1, .+, Un,Unty such that v; = u and g,(v,) = vpy1, let

F{(s,v1,...,Un)) = (8,1, -, Vny Unt1) -

Any N*((s))-play with my strategy f looks like

({(s),(s5,v1) .., (S,v1,...,Un)),

where, unless n = 0, we have v; = u € R(s). It is easy to verify that if such a
play is lost, then (n # 0 and) (vi,...,v,) is a lost N(u)-play with my strategy
gu. But this is impossible because g, is a solution to N(u). &

Theorem 2.15 To any game there is either a solution or an antisolution, i.e.
ezactly one of the players has a winning strategy.

Proof. Before we start proving, note that almost all the definitions and facts
concerning games enjoy perfect duality: we can interchange everywhere “solution”
and “antisolution”, “I” and “the opponent”, “1” and “0”, “won” and “lost”.

Fix a game N(s) = (W,[, R, s).

First observe that both players cannot have winning strategies for N(s), for
otherwise the play corresponding to these two strategies should be simultaneously
won and lost, which is impossible.

Let h be the length of N(s). We may suppose that for every s # w € W,
sR'emsy (R*"*—the transitive closure of R), which means that the length of
N(w) for any such w is less than h.

By induction on < h lengths we are going to show that for an arbitrary
element w of W, one of the players has a winning strategy for N(w). Before
using induction, we consider four cases.

Case 1: l(w) = 0 and there is u € R(w) such that I have a winning strategy
g for N(u).

Let then f(w) = u and for any w # v € W, f(v) = g(v). Since w can never
appear in an N(u)-play (because of the converse well-foundedness of R), it is
clear that f is a solution to N(u), whence, by 2.8, f is a solution to N(w).

Case 2: l(w) = 1 and there is u € R(w) such that the opponent has a winning
strategy g for N(u).

Dual to the previous case: we can define an antisolution f to N(w).
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Case 3: l{(w) = 1 and for any u € R(w) there is a solution to N(u).

Then, by Lemma 2.14, there is a solution to N(w).

Case 4: l(w) = 0 and for any u € R(w) there is an antisolution to N(u).

Dual to the case 3, with the conclusion that there is an antisolution to N(w).

Now it remains to show that one of the above cases always takes place. Indeed,

Suppose [(w) = 0 and the case 4 is “not the case”, i.e. there is u € R(w) such
that N(u) has no antisolution. Since the length of N(u) is less than the length
of N(w), we can use the induction hypothesis to N(u) and conclude that I have
a winning strategy for N(u), i.e. we deal with the case 1.

Suppose now [(w) = 1 and the case 3 does not take place, i.e. there is
u € R(w) such that N(u) has no solution. Then, by the induction hypothesis,
there is an antisolution to N(u), which means that we deal with the case 2. &

3 Sentences as games

The language L which we consider in this section is that of classical first order
predicate logic (without identity, functional or individual constants) together with
the two additional binary connectives V and A.

More precisely,

Definition 3.1 The alphabet of the language L consists of:
o predicate letters:
P P).P},....Pl,Py P}, ... PP} P2 ..., ...
the upper index corresponds to the arity of the given predicate letter.

o Individual variables:
U1,03,03,....

e Propositional connectives: — (negation), V (additive disjunction), A (ad-
ditive conjunction), ¥V (multiplicative disjunction), A (multiplicative con-
junction).

¢ Quantifiers: 3 (existential quantifier), V (universal quantifier).
e Technical signs: , (comma), ( (left parenthesis), ) (right parentesis).

Definition 3.2

e aisan atom, ifa = Pl or a = P*(zy,...,z,), where (n > 1 and) z4,...,2,
are variables.
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e o is a negated atom, if a = =3 for some atom S.

Definition 3.3 Formulas of L are the elements of the smallest class F'm such
that, saying “a is a formula” for “a € Fm”, we have:

1. Atoms and negated atoms are formulas.

2. If o and § are formulas, then (o) V (8), (a) A (B), ()V(B), (a) A (B) are

formulas.

3. If a is a formula and « is a variable, then 3z(a) and Vz(a) are formulas.

We often omit some parentheses in formulas, if this does not lead to any confu-
sions.

Thus, in the formal language we prefer to restrict the scope of — only to atoms.
However, we introduce —a for complex formulas as an abbreviation defined as
follows:

Definition 3.4
o ~(ma) =g a
o ~(aVp) =g aA-p
°

a/\ﬁ) =df —lOé\/"'lﬁ

(
(
(@VB) =g ma A -p
(
(F=

°
J

o
J

a A B) =g ~aV-p

o

a) =g Vz-a
o =(Vza) =4 Jz—a.

We define a free occurence of a variable z in a formula in the usual way: such
an occurence is free, if it is not in the scope of an occurence of 3z or Vz.
A closed formula or sentenceis a formula without free occurences of variables.

Definition 3.5 Suppose D is a nonempty set (of “individuals”). A sentence
(resp. an atomic sentence) with parameters in D is a pair (a, f), where a is
a formula (resp. an atomic formula) and f is a function that assigns to each
variable occuring freely in o an element of D.

We can think of sentences with parameters in D as formulas in which the
free variables are “substituted by elements of D”, and write a(ay,...,a,) for

(a(z1,...,zn), ), If f(z1) = a1, ..., f(Zn) = an.
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Definition 3.6 A modelis a triple M = (Dyy, £ar, Ras) such that:

e D), is a nonempty set, called the domain of individuals;

e /)7 is a function {atomic sentences with parameters in Dy} — {0, 1}, called
the prelabelling function;

e Ry is a converse well-founded binary relation on {atomic sentences with
parameters in Dy}, called the predevelopment relation.

Definition 3.7 A model M is said to be elementary, if the relation R s is empty.
Definition 3.8 Let M be a model. We define Njyr = (W, lyr, Rar), the net of
L-games induced by M, as follows:

o Wy, is the set of all sentences of L with parameters in Djy.

. lM( ) = ¢y (a), if o is an atom;
u(aV B) =y (Fza) = 0;
M(a AB) =y (Vza) = 1,
M( a) =1 —lu(a);
lu(aVP) = maz{ly(a), i (B)};
. lM(a A B) = min{ly (), (8)}-

e PRy iff one of the following holds:

cacn»oowg—a

1. ¢, 9 are atoms and ¢R v,
2. ¢ =axf3, where x € {V,A}, and ¥ = a or ¢ = S;
3. ¢ = xza(z), where x € {3,V}, and ¢ = a(a) for some a € Dyy;
4. ¢ = na, aRpd for some o and ¥ = —d/.
5. ¢ = a* 3, where x € {V, A}, and:
- Iu(e) =lu(¢), aRyd for some o and ¥ = o' % 3, or

- Iy(B) = ly(9), BRyB' for some B’ and ¢ = ax .

The standard model of arithmetic defined below will serve as an example of
an elementary model.

Definition 3.9 We fix the three predicate letters PZ, P}, P§ and call them arith-
metical predicate letters; those formulas (sentences, atoms) which contain only
arithmetical predicate letters, we call arithmetical formulas (sentences, atoms),
and the fragment of our language L which allows only arithmetical formulas —
the arithmetical language.
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Definition 3.10 The standard model of arithmetic, denoted by S, is the follow-
ing elementary model (Ds, £s, D):

Dy is the set w = {0,1,2,...} of natural numbers;

for any nonarithmetical atomic sentence o with parameters in w, £s(a) = 0
(in fact we don’t care about the values of £g for nonarithmetical atoms), and for
any natural numbers k, [, m we have:

o ls(P2(k1) =1 < l=k;
o ls(Pik,I,m))=1 < m=k+]I;
o ls(P3k,,m))=1 < m=kxl.

In the sequel we will usually use the expressions b = a, ¢ = a+b, ¢ = a X binstead
of P%(a,b), P}(a,b,c), Pi(a,b,c), respectively.

Example. The sequence of the following sentences with parameters in w is
a legal sequence of positions of Ng, in fact a won play (for an explanation of the
notation Ng see Definition 3.8):

L. (0 =1V Yv3va(vy = v2)) A (Fv1Vua(vs + vg = v2) V2 = 3)
Vo1 Fvs(v; = v2) A (v vy + va = v2) V2 = 3)

Vo1 3va(v1 = v2) A (Vua(0 + v2 = v2) V2 = 3)

(124 = v2) A (Vva(0 + va = v9)V2 = 3)

124 = 124 A (Voa(0 + vy = 1) V2 = 3)

> ok w

124 =124 A (0 + 18 = 18V2 = 3).

Example. The standard model of arithmetic S is an example of an ele-
mentary model. We now describe a natural example of a nonelementary model
T= <DT,ZT7 RT>Z

¢ Dr =Dg =w.
e /7 coincides with £s for all atoms except those of the form P}(n), for which

we have: ¢p(P}(n)) = 1 if and only if n is the Godel number of an arith-
metical sentence which has the label 1 in the standard model;

o for any atomic sentences a and 8 with parameters in w, R if and only if,
for some m, n € w, the following holds: a = P}(m), 8 = P}(n), m and n are
the Godel numbers of some arithmetical sentences 7,, and v,, respectively,
and 7, is a development of 7,, in the standard model.
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Roughly, we have augmented the arithmetical language with an additional
predicate P}(z), which is interpreted as “z is the Godel number of a true arith-
metical sentence”.

The sequence of the following five sentences is a legal sequence of positions
of Nr; in fact it is a won play, though its first sentence is not true in 7", which
means that if the opponent had been a bit more “clever”, he could have won the
play. [a] below is the standard notation for the Gdel number of a:

L Yor(vy =5V P}(vy))

2. [0, 302(v1 = v3)] = 5V P([Vo,3va(v; = v2)])
3. P}{[Vui3ua(v; = v2)])

4. P}([30a(7 = v2)])

5. P([(7=17)]).

Identifying ¥V with V and A with A, we can think of our language L as the
language of classical predicate logic. A model in classical logic is understood as
a pair M = (Dur, Gur), where Dy is a nonempty set (domain of individuals) and
Gum is a function that assigns to each n-ary predicate letter P of the language
an n-ary relation G, on Djs. There is one-to-one correspondence brtween such
functions Gpr and functions £y of the type {atomic sentences with parameters in
Du} — {0, 1}, which is established by setting that for any n-ary predicate letter
P and any individuals ag,...,a, € Dy,

Gﬂ(al,...,an) = ZM(P(alﬁ"'7a’n)):1'

Thus, a classical model is nothing but a model in our sense but without a pre-
development relation. In view of this, we can think of each classical model
M = (D, 2y) as the elementary model M = (D, €y, D). In the sequel we
shall use “classical model” and “elementary model” as synonyms.

Definition 3.11 Let M be an elementary (classical) model and ¢ a sentence
with parameters in Dy;. Then C'Vy(9), the classical value of ¢ in M, is defined
by the following induction on the complexity of ¢:

o CVy(a) = Ly(e), if o is an atom;

° CVM("ICY) =1- CVM(Q),

21



CVM(Oé ) = CVM(OAV,B) - max{(CVM(a), CVM(ﬁ)},

Vg
Vi(a A B) = CViy(a A B) = min{CVi(a), CVi(B)};
Vu(Fza(z)) = maz{CViy(a(a)) : a € Dun};

(

C
o C
CVyu(Vea(z)) = min{CVy(a(a)): a € Dy}

As we see, from the point of view of classical values, V is the same as V and A
the same as A.

Theorem 3.12 Let M be an elementary model and ¢ a sentence with parameters
in Dyr. Then the classical value of ¢ in M is 1 if and only if the game Nypr(@) is
solvable.

Proof. (=:) Suppose CV(¢) = 1 and show, by induction on the complexity of
¢, that Npr(@) is solvable.

Case 1I: ¢ is an atom or a negated atom. Then Ry (¢) = @ and Iy (4) =
CV(¢) = 1. Obviously any (even empty) function is a solution to Nys(¢), because
the only possible Ny (¢)-play is ().

Case 2. ¢ = a; V ap. Then maz{CVy(a;1), CVy(a2)} = 1. We may suppose
that CVi(a;) = 1. Then, by the induction hypothesis, there is a solution g to
Nu(ai). Let f(¢) = a; and for any sentence v # ¢, f(v) = g(v). We claim that
f is a solution to Ny (¢). Indeed, suppose there is a lost Njs(@)-play with my
strategy f. It will look like (¢, 1, . ..,Vn) for some 71, ...,7v,, n > 1. Observe that
then (v1,...,7.) is a lost Njyr(e;)-play with my strategy g, which is impossible
because, according to our assumption, g is a solution to Nps(ay).

Case 3 ¢ = a; A az. Then CVyr(ay) = CVir(az) = 1 and, by the induction
hypothesis, both Np(a;) and Nps(as) are solvable. Now, since a; and ay are the
only developments of ¢, it follows by Lemma 2.14 that Nys(¢) is solvable.

Case 4: ¢ = a;Vas. Then maz{CVy(a1),CVir(az)} = 1. We may suppose
that CVis(a;1) = 1. By the induction hypothesis, there is a solution g to Njs(ay).

Let f be such a function that for any sentences 8y, 8] and Ss, if g(6:1) = 31,
then f(8:V5,) = V.

Roughly, to play an Njs(a; Vaz)-play with my strategy f means to play, using
the strategy g, only in the left component of the multiplicative disjunction and
to do nothing in the right component. Suppose there is a lost Njr(¢)-play

<ﬁ1v717 s 718nv7n>

(where 51Vy1 = a;Vas = ¢) with my strategy f. Let ky < ... < k,, be all
the numbers k in the interval 1 < k& < n such that By_1 # [k Intuitively,
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k € {ki,...,kn} means that the position 8V, has appeared as a result of
moving in the left component of the multiplicative disjunction; all the other
positions appear as a result of the opponent’s move in the right component and
they are not interesting for us. It is now easy to see that (o, Bk, , - - -, Ok, ) is a lost
N(a;)-play with my strategy g, which is impossible because g was my winning
strategy for this game. Thus no Nys(¢)-play with my strategy f can be lost, f is
a solution to Ny(¢).

Case 5: ¢ = oy A ay. Then CVir(eq) = CVu(ap) = 1. By the induction
hypothesis, there are solutions g; and g, to a; and a,, respectively.

Let f be such a function that for any sentences 1, 51, B> and (5,

o f(B1 A Bs) =Py APy, if ly(61) =0 and g1(81) = By;
o f(Br A B2) =01 A By, if ly(61) =1, ly(B2) = 0 and g2(82) = Bs.

Intuition: To use the strategy f in an Nyr(oy Aaz)-play means to use the strategy
g1 in the first component of the multiplicative conjunction and the strategy g, in
the second component. Suppose there is a lost Nys(4)-play

<ﬂ1v’71, e ,5nv’)’n>

(where 81 Ay = a; A ay = ¢) with my strategy f. As this play is lost, the label
of its last position 8, A v, is 0, i.e. one of the positions [,, 7, has the label 0.
We may suppose that {,/(3,) = 0. Let then k; < ... < k,, be all the numbers
k in the interval 1 < k < n such that By_1 # Bk. Thus, k € {ki, ..., kn} means
that the position (8;V~; has appeared as a result of moving in the left component
of the multiplicative conjunction. Now it remines to verify (what can be easily
done) that (ay, Bk, ..., Bk, ) is a lost Npr(ay)-play with my strategy g;, which is
impossible because g; was my winning strategy for this game. This contradiction
proves that f is a solution to Ny (9).

Case 6: ¢ = Jza(z). Similar to the case 2.

Case 7 ¢ = Vza(z). Similar to the case 3.

(<:) We have just showed that if CVjs(¢) = 1, then there is a solution to
Nys(9). In the dual way we can show that if CVy(¢) =0 (i.e., if CVy(¢) # 1),
then there is an antisolution to Nys(¢), which rules out solvability of Nps(p). &

Thus truth (in the classical sense) of a sentence in a classical (elementary)
model can be defined in terms of solvability of the corresponding game. It seems
quite natural to extend this notion (and use the same word “true”) to all models,
not restricting it to only elementary models, what is actually done in the first
clause of Definition 3.13; this extension is conservative in the sense that as soon
as a classical model is considered, the two notions of truth — the old and the
new — are equivalent.
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Definition 3.13 Let a be a sentence and M a model (not necessarily an ele-
mentary one).

e « is said to be true in M, if the game Njs(a) is solvable.
e «issaid to be effectively truein M, if the game Ny () is effectively solvable.

e In general, for a class I' of functions, « is said to be I'-true in M, if the
game Ny (a) is I'-solvable.

Fact 3.14 A sentence ¢ is true in all models if and only if ¢ is true in all
elementary models.

Proof.

The (=) direction is trivial.

(«<): Suppose M is a nonelementary model and ¢ is false (not true) in M.
Let M' = (Dpp, £apr, @) be the following elementary model:

® Dy = Dy
e for any atom «, {3 (a) = 1 iff Njs(a) is solvable.

We claim that ¢ is not true in M’. To prove this, by Theorem 3.12, it is enough
to show that CVjp(4) = 0. Suppose, for a contradiction, that CVy(¢) = 1. We
will be done if we prove that then

Nt (@) is solvable, (2)

because this contradicts with our assumption that ¢ is not true in M. We prove
(2) by induction on the complexity of ¢.

Case 1: ¢ is an atom. As CVy(¢) = 1, we have £3(4) = 1, which, by our
choice of M', means that Nys(¢) is solvable.

Case 2. ¢ is a negated atom —p. As CVip(—¢) = 1, we have £y (¢) = 0,
which, by our choice of M’, means that Njs(t)) is not solvable. Then, by Theorem
2.15, there is an antisolution g to Njs(¢). Let f be such a function that for any
atoms a and 3, if g(a) = 3, then f(—a) = —f. It is not hard to see that f is
then a solution to —.

Cases 3-8: ¢ is a complex formula. We can literally repeat the reasoning from
the proof of Theorem 3.12 (cases 2-7), only changing in the latter “CVj” for
“CVMI” )

(2) is thus proved and we are done. &

Having different notions of truth, we can define different notions of tautology:
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Definition 3.15 Let a be a sentence.
e « is said to be a tautology, if « is true in every model.
¢ o is said to be an effective tautology, if a is effectively true in every model.

o In general, for a class I' of functions, « is said to be a I'-tautology, if a is
[-true in every model.

In view of 3.11, 3.12, 3.13 (first clause) and 3.14, the set of tautologies in our sense
coincides with the set of classical tautologies, where the two sorts of disjunction,
as well as the two sorts of conjunction, are simply identified. This recursively
enumerable set is given by, say, the classical sequential calculus, in which the
rules for V are duplicated also for ¥ and the rules for A are duplicated also for
A. The continuation of the present work will be devoted to studying the set of
effective tautologies.
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