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Abstract

In this article we construct a free amatomplete ultrafilter on the sei;, using AD.

First we define for each V@, a game G(V). From the axiom AD we have that for eachwy, either the
first or the second player has a winning strategy in G(\& tWgn showin several lemma's, how to obtain
winning strategies in G(V) for several féifent constructions of V from other sets. Finalg show that the
collection{ V c w; | the first player has a winning strategy in Gf\has several closure properties
corresponding to the lemma's just proved, and that this set is in fact a freeamgplete ultrafilter

Introduction

An ultrafilter on a set X is a collection UR(X) of subsets of X satisfying:
- ForallvVou,ifV c W, then also W1 U.
- ForalVWDOU,VnWOU.
- For all V ¢ X, exactly one of \X\V 0O U.
An ultrafilter can be thought of as a partitioning of the subsets of X into 'big' subsets (those in U) and 'little’
subsets (those not in U).
For any x0 X, the collection |} ={V ¢ X | x0OV }is an ultrafilter, of a rather trivial type.
An ultrafilter is calledireeif it is not trivial, i.e. it does not contain any singletons of X.
An ultrafilter U is calledo-completeif it also satisfies:
- For all Vl’ V2, V3, ...0U, ﬂtiVi ou.
Ultrafilters are used in the study of certain classes of big ordinals, suchrasabkerablerdinals.

Aleph-Oneis the smallest cardinal strictly greater than Aleph-Zero, the cardinality of tNe set
Here we use the set; = { aOORD |a is finite or countably infinite }, which is a set of ordinals of
cardinality Aleph-One.
Alternatively, we could use the s@{Q)/~, whereQ is the set of rational numbers and ~ is defined by:
For V, W cQ, V~W iff V and W are non-emptyvell-ordered and ordésomorphic,
or both V and W are non-well-ordered or empty

It is well-known that in any two-player finite game G without any ties, hidden information or random
factors, one of the two players always has a winning stratégAxiom of Determinateneg#\D) holds

that this is also true for any countably infinite game G, i.e. any game G of countably infinite maximum
duration, with a countably infinite selection of moves each turn.

The game G(V) used in this article can be visualized thus:
Two players independently construct countably many countable ordinals.
They construct these ordinals as subsets of the set of rational ninbers
Each player has his own countably infinite collection of (initially empty) subs&s of
Each turn each player adds a finite number of points to finitely many of his own subsets.
'After’ playing countably infinitely many turns, each player has generated countably many
subsets of), each one representing a countable ordinal (or O, if the subset is not well-ordered).
The supremum of all the generated ordinals is obviously itself a countable ordinal.
Player A wins if this supremum is an ordinal inplayer B has won if it is not in.V

Hence player A tries to 'force' the supremiato V, and player B tries to forceautsideV.

The property 'A can force the supremum to be in V' is immediately suggestive of a 'bigness'. gkoderty

indeed the collection of all sets 8uch that player A can force' the supremum of the game to be an ordinal
in V, is shown in this article to have all the properties of the required ultrafilter
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Notes

Since each move can be described as a finite sequence of pairs of an integer and a rational, there are only
countably many possible moves at each turn, and AD applies. Hence, fortaeyoutcome of the game
can either be forced to be an ordinal jro¥it can be forced to be an ordinal outside V

A recurring theme in the proof of the lemma'’s below is that the result of any finite sequence of moves can
also be achieved by a single move, as the union of finitely many finite sets is itself a finite set. In a sense,
this move is equivalent to the original finite sequence, and any response to this move wilfialsasaf
response to the original sequence.

For technical reasons, it is necessary at some places in the proof to be able to react to one's own moves as if
they had been made by the opponent. Since the opponent cannot move in one's own subsets, it is necessary
to 'see' some of one's own subsets as if they belonged to the oppanéatilitéite this an 'index-structure'

(4, B) to the subsets-undeonstruction is explicitly defined and used. Note that this dogisnply that any

player can really add points to his opponents subsets.

In the proof of lemma 7 we will use AR; a weak form of AC which is derivable from AD.
Definitions

LetA4 andB be two countably infinite, disjoint sets.
For any subset V ab;, we can define a game;Gg(V) for two players, A and B:
A starts by naming a finite sef a (4 x Q)@ of pairs ¢, q), wherez14 and qIQ.
B names another finite sef b (B x Q)<® of pairs 6, r), wheres0B and 0Q.
A then names another finite set@(4 x Q)< of pairs g, q).
B then names another finite settd(B x Q)<® of pairs 6, r).
‘until’ ay, b, have been named for all natural numbers. k
Definel := 403, and theesultz :=[1{aq, by, &, by, &, by, ...} cIxQ
Define 1t P(Q)->ORD by m(R) := { the ordering type of (K) if (R,<) is well-ordered.
o otherwise.
Define M4 5: P xQ)->ORD by M(z) := supremum({t{ q | G, q)z }) |01 }).
Obviously T(R) and M 4(2) are countable ordinals for any Rwr z0 1 X Q.
If M4 3(z)0V, then A has won the game, otherwise B has won the game.
DefineVg z:=MN-V]={zcIxQ|N(z)0V}
Then the above becomes: ifia/ ; 4, then A has won the game, otherwise B has won.

When no confusion is possible, we will write G(YV)z) andV for G4 5(V), Mg 5(z) andV 4 .
Note thatll; 4 andV, 4 depend ofil1B only.

A strategyfor A is a function f which takes as argament a finite sequence of moves

ag, by, ..., &.1, be.1 (the moves ‘so fay and gives as result a movg (e ‘next’ move).

For instance, a strategy for A in the gamg &(V) is a function from the set of even-length sequences of
alternatingly finite sets of pairs,(q), and of pairs4( q), to the set of finite sets of paits ().

Player Aplays according ta strategy f if gef(<ay, by, ..., .1, B.1>) for all k.

A winning strategyor A in a game G is a strategy f such that, if A plays according to f, then A wins the
game no matter what sequence of movg®y ... player B plays.

In particular if f is a winning strategy for A in & »(V), then for any sequencg, b, ..., if g=f(<ay, by, ...,
3.1, b.1>) for all k, thenl{aq, by, &, by, &, bs, ..} O V.

Strategies and winning strategies for B are defined in a like manner

Proposition
{ VOP(y) | A has a winning strategy infGz(V) } is a free ands-complete ultrafilter onw;.
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First we need an auxiliary lemma:

Lemmal
If player A or B has a winning strategy in a gamg §&(V), then A resp. B has a winning
strategy in G, p(V) for any two disjoint countably infinite sesandD.
Proof Concept
We extend the bijective mappings->C andB<->D to a bijective mapping of all moves, games
and (winning) strategies fromGz(V) onto those of G (V).
Pr oof
SinceA, B, C and?D are countably infinite sets, there exist bijective funtions between them. and
Therefore there exist bijective functions betwgeandC, and betwee® and?D.
SinceA4 and3B are disjoint, as well as andD, the union of the above function is a bijective
function$: 42038 <->COD.
We extendp's domain to include moves by ¢({(z q) | j<k}) = {¢(1) q) | i<k},
and to include results by ¢({(z q) | j0w}) = {(])(l) q) | jOw}
It is clear thath is well-defined and remains bljectlve
It is also obvious that for any z c () X Q, Mg 3(2) =M H(d(2)).
and for any result z El{ay, by, &, ...}, $(z) = ﬁ{q)(al), o(by), 9(a), ...}

Now suppose that f is a winning strategy for player A in V).
Then for any sequencg,tb,, ..., if ak =f(<aq, by, ..., &.1, b.1>), then:
g((H{ay, by, &, by, . JHov
Deflne the strategy g for C 'nch(V ) by
g(<cy, dy, .., 4) = 0(f(<H ey, d-X(dy), .., 9 H(ch)>)).
Let d, dy, ..., be any sequence of moves g(V) and let ¢=g(<c,, dy, ..., 4..;>) for all k.
By defining q;( =¢" 1(05 b:=¢-1(dy), we have
A= ¢09 = 07400, G -, 6ea?)) =0 OO, 710, - 67 (0c0)>))
=f(<gy, by, ..., .>) for all
and hence:
N(z) =N(U{cy, dy, & &, ...} =N(@(Ufay, by, &, by, ..}) =N(L{ay, by, a, by, .. OV.
So g is a winning strategy for A in Gy (V).

Now suppose that f is a winning strategy for player B jn £&V).
Then for any sequence,a, .., if b.=f(<ay, by, ..., b1, 8>), then:
Mg g({ay, by, &, by, ...})) Dw\V.

Define the strategy g for D mchigV) by

g(<cy, dy, ..., §) = 0(f(<¢Ley), 9 L(dy), ..., 0Y(c)>)).
Let g, ¢, ..., be any sequence of moves ip &(V), and let g=g(<cy, dy, ..., G>) for all k.
By def|n|ng =" 1(cli b:=¢-1(dy), we have

¢-Ydy) = d-Ya(<cy, dy, ... ) =01 (F(<d(cy), dLdy), ... Hc)>))
—f(<a1 by, ..., §>) for all k

and hence:

N(z) =N(U{cy, dy, ¢ &, ..} =N((Ufay, by, &, by, ..}) =N(L{ay, by, a, by, ..}) Doy\V.
So g is a winning strategy for B inG,(V).

Note

This lemma justifies our use of the notation G(V) fo (V) when no confusion is possible.

Page3



An elementary construction of an ultrafilter on Aleph-One, using AD

The lemma's 2-7 correspond to properties of an ultrafilter

Lemma 2
If A has a winning strategy in the game G(V), and Ythen A has a winning strategy in G(W).
Proof Concept
Any winning strategy for A in G(V) is also a winning strategy for A in G(W).
Proof
Let f be a winning strategy for A in G(V).
Then for any sequencg,tb,, ..., if §=f(<ay, by, ..., &1, B.1>), then:
D{al_, by, &, by, ..} OV. _
Now consider f as strategy for A in G(W).
Then for any sequencg,lb,, ..., if §=f(<ay, by, ..., &1, B.1>), then:
z=0{ay, b, &, by, ..} OV cW, hence z7 W.
So fis a winning strategy for A in G(W).

Lemma3

If V is a singleton, then player B has a winning strategy in G(V).
Proof Concept

B constructs an ordinal greater than the ordinal.in V

Note: A cannot prevent this, since he cannot make méyeg With 603.
Pr oof

Suppose V={v}, Tw;.

Now v+1 is countable, therefore there exists a subsgts8ch that (Ss) has type v+1.

S is countable, so there exists a surjective functidirh> S.

Fix ap0B, and let f be defined by f(saby, ..., b1, a>) = {(6, h(k))}.

Then for any sequence, &, ..., if . =f(<ay, bl » Bt sk>) then:

2=0l{ay, by, 2, by, -} = {6S U Clfay, &, 2,
Hencell(z)=m(S)=v+1, and thefl(z)zv, M(z)OV.
So fis a winning strategy for B in G(V).
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Lemma4
If B has a winning strategy in the game G(V), then A has a winning strategyoiivea(
Proof Concept
Player A first plays &, and then plays according ®®tategy for G(V).
Pr oof
Suppose player B has a winning strategy in the game G(V).
By lemma 1 there exists a winning strategy f for B in the gapg; ).
Then for any sequencg, &, ..., in B x Q)<Y, if by =f(<ay, by, ..., .1, 8>) for all k, then:
O{ ay, by, &, by, 3, ..} 0 (@) 4= 0V (= P X QW).
Define the strategy g for A by:
9(<>):=0
g(<cy, dy,..., G >):=H(<dy, 0, ..., G, A>)
Let d;, d,, ..., be any sequence of movesax(@Q)<®, and let g=g(<cy, dy, ..., G.1, dc.1>) for all k.
By defining g:=dy, b:=c.1, we have:
a0 (B x Q)<wfor k=1
by = 1= 9(<q, 0y, ..., G, d>) = f(<dy, C,, ..., G, d>) = f(<q, by, ..., §>) for all k
and hence:
z=0{cy, dy, 0, th, C3, ...} =L{D, &, by, &, by, ...} ={ay, by, &, by, ..} D w\V.
So g is a winning strategy for A in G{\V).

Lemma5s
If A has a winning strategy in the game G(V), then B has a winning strategyoiivG(
Proof Concept
Player B plays according tdsstrategy for G(V), except that B's first move is a combination of
the opening move he should have made and the response to A's move.
A key notion in this and the next lemma's is that any finite sequence of moves is equivalent to
the single move corresponding to the finite union of the finite sets of the moves in the sequence.
Pr oof
Suppose player A has a winning strategy in the game G(V).
By lemma 1 there exists a winning strategy f for A in the gage,(¥/).
Then for any sequencg,tb,, ..., in @ x Q)<Y if g =f(<ay, by, ..., §.1, b.1>) for all k, then:
O{ ay, by, &, by, 3, by, .} 0V 4= V.
Define the strategy g for B by
g(<c>) = f(<>)f(<f(<>), ¢1)
(<, &y, G, ..., dq, G>) = f(<f(<>), ¢, f(<f(<>), ¢1>), ©, ..., Q1. G>)  for k=2.
Let ¢, ¢, ..., be any sequence of movesAn(Q)<®, and let g=g(<c,, dy, ..., g>) for all k.
By defining g:=f(<>), a:=f(<f(<>), ¢;>), g+1:=d, for k=2, b =c,, we have:
by O (4 x Q)<@for k=1.
ap = f(<>)
& = f(<f(<>), c;>) = f(<ay, by>)
& = 9(<Q, Oy, ..., Gep>) = (S(<>), @, (<A(<>), 61>), & U, oy Gog™
=f(<q, by, &, by, &, ..., h_1>) for k=2.
and hence:
z=0{cy, dy, 0 Oy, ..} =0fby, &0y, by, &, ...} = D{ay, by, &, by 85, .} OV
So g is a winning strategy for B in G{\V).
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Lemma6
If B has a winning strategy in G(V) and in G(W), then B has a winning strategy in\B}V
Proof Concept
Player B plays G(V) and G(W) simultaneously by alternating between using her strategies for
G(V) and G(W), and interpreting the moves she makes for G(V) as part of her opponents
moves when playing in G(W) (wt. the 'input’ the strategy gets), and vica versa.
In order to do this, we split the 'index’-geinto two index-set$; and3,,.
B plays all moves for G(V) i1, and all moves for G(W) iB,, interpreting the index-set not
used as part of the opponents index-set.
Pr oof
Suppose B has winning strategies in G(V) and in G(W).
Let (B4, By) be a partitioning o8 into two disjoint countably infinite sets.
DefineA; := (A0B)\B;.
Then for i=1,2 4; andB; are disjoint countably infinite sets, adg1B;=A03.
By lemma 1, there exist winning strategigsf for B in G5, 4,(V) and Gy, go(W).
For i=1,2, for any sequence, a, ..., in @; x Q)<v, if by =fi(<a, by, ..., §>) for all k, then:
U{ay, by, &, by, &, by, ..} O (V] ) g;, 5 = @1\

Define the strategy g for B by:
Lf(<cy, dg, eldylcs, dy, ..., Gy 3, Ok 2lCoK 1>)
g(<cy, Oy, ..., o 1) =0 if <...>is a proper sequence of movestwGg, 4,(V)
02 otherwise
[fp(<cy 0 0Cy, dy, Galld3MCy, ..., Gy.or Opk-100pk-10Co>)
g(<cy, dy, ..., by, &) =0 if <...>is a proper sequence of movestwGg, 5,(W
0 otherwise
(Here, a sequence of moves is called 'proper’ with respect to a gam&(\g), if it consists of,
alternatingly finite subsets ofl; x Q and of8; x Q. The strategies heed not be defined on improper
sequences, hence the extra clause in the definition of g.)

Let ¢, C,, ... be any sequence of movesdn(Q)<®, and let g=g(<¢;, dy, ..., ¢>) for all k.
Then for all k, gy.1 0 (B1 X Q)<®c (A, x Q)<W, andd,) O (B, X Q)< ¢ (A7 x Q).
Also, for any nzl, G, 0 (41 x Q)<® andc,, O (A, x Q)<®.
This, with the observation that unions of finitely many finite sets yield finite sets, implies:
- ¢ 0 (A x Q@
- CZk-ZDdZK-ZDCZK-l O (}lex Q)<(.\) for k=2.
- Cop10dyy 10Co, O (A5 x Q)<@for all k=1.
Therefore, for all k, the sequence <...> in the definition of g(<c6y_1>) resp. 9(<¢, ..., G>)
is a proper sequence of movestwGg, z,(V1) resp. G, ,(V>), and the first clause in the definition
of g always applies..

So by defining g=c;, 8:=Cyy_s0do.o0Co.1 for k=2, and R:=dy,_; we have:
by = 9(<c, dy, ..., by, Ck1>) = fr(<cq, di, Od0Cs, ..., By 3, Oy 0ok o0CoK ).
= fy(<ay, by, &, ..., .1, &>) for all k
and hence:
z= D{Cll dl’ (‘2' dz, Ce, } = D{Cl’ dl’ OZDdZDCSl d3! } = D{ali b11 aZ! bZ; } g @l\l

Also, by defining g=cy_.10dyy.10Co, b:=dy we have:
by = 9(<qy, dh, -, D1, Op) 1= Tp(<Cq 0d10C, Dy, G330y, -, Gk-10dak-10Co>)

=fy(<ay, by, ..., Bq, A>)
and hence:

z=0{cy, dy, &, Oy, C3, ...} = U{cy0d;0cy, dy, cgldglcy, ...} = U{ay, by, &, ...} 0.0 \W.
Hence z0 (w\V) n (@0\W) = o (VOW).
So g is a winning strategy for B in GQWV).
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Lemma 7
If (Vi)ioe, IS @ countable set of subsets®f and B has a winning strategy in G(Yor all i,
then B has a winning strategy in[Gg,,V)).
Proof Concept
Player B plays the games GJ\$imultaneously by using her strategies for each game in turn,
and in each game G() interpreting the moves made for other gamesjpislpart of her
opponents moves (with respect to the 'input' the strategy gets).
In order to do this, we split the ‘index'-ginto countably many index-ses;.
B plays all moves for G(\in B;, interpreting all the othij as part of the opponents index-set.
Pr oof
Suppose B has winning strategies in Gdr idw.
Let (B))io, be a partitioning of3 into countably infinite manglisjoint countably infinite sets.
DefineA; := (A0B)\B;.
Then for Dw, A; andB; are disjoint countably infinite sets, aAg18;=403.
By lemma 1 and AN, there exists a winning strategyfdr B in G, (V) for iDw.
For iDw, for any sequence aa, ... in @; x Q)<Y, if b=f,(<ay, by, ..., §>) for all k, then:
U{ay, by, a, by, &, by, ..} O (Vi) g5, 5 = 0\

Define the Strategy g for B by g(ﬁ(}jl, . 2k-l)*2i-l’ C(Zk-l)*2i>) =

0 C3*2i+;|_|]d3*2i.+1|:|...|] Cgxol, ..., QZk-S)*Zi’ C(2k-3)*2i+1Dd(2k-3)*2i+1D---DC(Zk-l)*2i>)
=0 if <...>is a proper sequence of movestwGy; 4(V)),

O (i.e. all moves are finite subsets of, alternatinglyx Q and3; x Q)

0z otherwise

Since for any Bl there are unique0, k=1 such that n=(2k-1)*2this is a proper definition.

Let ¢, C,, ... be any sequence of movesdn(Q)<®, and let g=g(<¢,, dy, ..., ¢>) for all k.
Now for any Dw, z =[{c, d, &, b, ...} O w\V;.
Proof:
Let iOc. _ _
For any 21, and any ml with (2k-3)*2+1 < m < (2k-1)*2'-1, there are unique@, 21 such
that m = (2I-1)*2and i, and then g, = d(2|_£)*21' 0 (B; x Q)<Wc (@; x Q)<w (because; c 4)).
Also for any nzl, G, 0 (A x Q)<®c (4; x Q)<w.
This and the observation that the union of finitely many finite sets is a finite sets yield:
- Cll:ld]_D...Ddzi_]_DCZi O (}Z[I X Q)<(,0_
- C(2k-3)*2i+1Dd(2k-3)*2i+1[|"'DC(Zk-l)*.Zi 0 A x Q)<w for all k=2. )
Therefore, for all k, the sequence <...> in the definition of g(<¢ Go_1)=i>) is a proper
sequence of movesm. Gy, 5 (V), and the first clause in the definition of g always applies.

So by defining a:= ¢;0d;0...0d,i_0c5i,
ak = C(2k-3)*2i,+1[|d(2k-3)*2i+1[|"'DC(Zk-l)*Zi for kZZ,
and by := dop.qy,
we have for all kbk = g(<Cl, dl’ . Zk-l)*zi-l’ C(Zk-l)*2i>)
= f|(< C/_L[ldlD dzi_]_DCZi, dzi, ('2i+1[|d2i+1|:|...Dd3*2i_1|:|C3*2i,
dgeoi, -y Qok-3)r2 Qak-3)2i+100(2k-3)2 +10---HC(2k-1)2>)
=fi(<ay, by, &, ..., R &)
and hence:
z=[{cq, dy, 0, O, C3, O, ...}
= D{Cl[ldl[]...[ldzi_l[]cai, d2i, 02i+1|:|d2i+l[|...Dd3*2i_1|]%*2i, %*zi, }
=W{ay, by, &, by, ..} O (V) g;, 5 = DV

Soz :D{Cl, dl’ Cy, dz, } O ﬂti@l\Mi = QlXEEOO\—/L
So g is a winning strategy for B in G(q,,V;)- -
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Proposition
U:={V OP(w) | A has a winning strategy in G(V) } is a free amdomplete ultrafilter or,.

Pr oof
Every move is one of countably many choices, sihc8 andQ are countably infinite, and
hence there are only countably many finite sets of pairs @A} Q resp. (b, r)0 B x Q.
Therefore, the Axiom of Determinateness applies.
By AD, for any V either player A has a winning strategy in G(V), or B has a winning strategy
Therefore:V 0 U <=> player A has a winning strategy in G(V),
and V 0 U <=> player B has a winning strategy in G(V).

Lemma's 2-7, therefore, can be translated to properties of U:
(2. IfVOoU, and VcW, then WO U.
(3): If Vis a singleton, then ¥ U.
(4): Ifvou, thenw\VOU.
(57): IfvouU, thenw\VOU.
(6): If V, WO U, then \OW O U.
(79: 1fV,0U foriow, thenl;;,V,0U.

From 4', 5" and 6' we can derive: (6") fWOU, then \nW O U.

From 4', 5" and 7' we can derive: (7") IftVU for i O w, thenn g,V O U.

Proof:
V,wou =>g (.01\V, OJl\W ou =>g' ((.Ol\V) D(wl\V) ou, =3 VnW= (A)l\((wl\V)D((A)l\V)) ou
Qiow: V; 0U =>5 0iow: wy\V; O0U =>2 ;5,01\V; DU =>4 N,V = 0\(Ug,w1\Vj) OU

2',4', 5" and 6" are the three defining properties of an ultrafilter
3'"and 7" imply that U is free ammdcomplete, respectively
So U is a free and-complete ultrafilterQ.E.D.

Examples
Examples of VO U are:

V = wy: trivial.
V={alw |a>w}
Strategy for G(V): construct the ordinat1.
V is co-countable.
Strategy for G(V): construct the ordinal sug{V)+1.
V={ wea|o0w }
Strategy for G(V): There exists an ordgomorphic bijection h8 x Q --> 4 x Qq.
Each turn player A copies the moves player B makes using the bijection h, and then adds
the points {0, 1, 2, ..., k} to each one of his non-empty sets (where k is the number of the
turn being played). The end-result is that for each sub%gttudt B has produced, A has
an ordetisomorphic subset followed by a 'tail' @fpoints.
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