ML199610: Kanovei, Vladimir (1996) On a Dichotomy related to Colourings of Definable Graphs in Generic Models. [Report]
Text (Full Text)
ML199610.text.ps.gz Download (141kB) 

Text (Abstract)
ML199610.abstract.txt Download (996B) 
Abstract
We prove that in the Solovay model every OD graph G on reals satisfies one and only one of the following two conditions: (I) G admits an OD colouring by ordinals; (II) there exists a continuous homomorphism of G_0 into G; where G 0 is a certain F_sigma locally countable graph which is not ROD colourable by ordinals in the Solovay model. If the graph G is locally countable or acyclic then (II) can be strengthened by the requirement that the homomorphism is a 11 map, i. e. an embedding. As the second main result we prove that \Sigma^1_2 graphs admit the dichotomy (I) vs. (II) in setgeneric extensions of the constructible universe L (al though now (I) and (II) may be in general compatible). In this case (I) can be strengthened to the existence of a \Delta^1_3 colouring by countable ordinals provided the graph is locally countable. The proofs are based on a topology generated by OD sets.
Item Type:  Report 

Report Nr:  ML199610 
Series Name:  Mathematical Logic and Foundations (ML) 
Year:  1996 
Date Deposited:  12 Oct 2016 14:40 
Last Modified:  12 Oct 2016 14:40 
URI:  https://eprints.illc.uva.nl/id/eprint/1378 
Actions (login required)
View Item 