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Abstract

We prove ExpTime-completeness of the satisfiability problem for
(loosely) guarded first-order formulas with a bounded number of vari-
ables and an unbounded number of constants. Guarded fragments with
constants are interesting because of their connection to hybrid logic.

1 Introduction

The guarded fragment of first-order logic was first introduced by Andreka, Van
Benthem and Nemeti [1], who proved that it is decidable and that it has a
number of other desirable properties. Van Benthem [3] improved on this by
generalizing the guarded fragment to the loosely guarded fragment and showing
that the latter is still decidable.

Grädel [7] further improved on these results of Andreka, Van Benthem and
Nemeti in a number of ways. He generalized the guarded and loosely guarded
fragments by allowing constants to occur in the formulas (but not function
symbols of positive arity), and by allowing identity statements of the form x = x
or x = y as guards, and subsequently proved the following:

Theorem 1 (Grädel [7]) The satisfiability problem for loosely guarded formu-
las is 2ExpTime-complete. The same problem is only ExpTime-complete for
loosely guarded relational formulas with a bounded number of variables, and for
guarded relational formulas with a bound on the arity of the relation symbols.

With a relational formula, we mean a formula that contains no constants
(function symbols of positive arity were already excluded).

Furthermore, Grädel suggests in his paper that his results also work for
(loosely) ∀-guarded formulas, i.e., formulas of which only the universal quanti-
fiers are (loosely) guarded. However, the details are not spelled out.1
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1Marx [9] does explicitly state and prove the decidability of the satisfiability problem for
loosely ∀-guarded formulas.
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This note serves two purposes. Firstly, it formulates the precise results for
universally guarded formulas that may be obtained with Grädel’s techniques,
and it contains the details of the proofs. Secondly, and more importantly, we
improve Grädel’s results by showing that the qualification ‘relational’ in the
above theorem may be dropped.

Concretely, we prove the following.

Theorem 2 The satisfiability problem for loosely ∀-guarded formulas is
2ExpTime-complete. The same problem is only ExpTime-complete for loosely
∀-guarded formulas with a bounded number of variables and for guarded formulas
with a bounded arity.

To appreciate the additional value of Theorem 2, we must return to the
original motivation behind the guarded fragment. The guarded fragment was
invented in order to explain and generalize the large number of decidability and
low complexity results in modal logic. The key observation is that modal oper-
ators express a guarded form of quantification, where the accessibility relations
are the guards.

For explaining decidability results in modal logic, the first part of Theorem
1 often suffices. However, in order to explain low complexity, a more refined
analysis is needed. Consider for instance the global consequence problem for
modal formulas (does every model that globally satisfies φ globally satisfy ψ? ).
This is an ExpTime-complete problem. To understand why this problem is
in ExpTime, it suffices to observe that global truth of a modal formula φ can
be expressed by means of a guarded first-order formula with only two variables,
namely ∀x.(x = x→ STx(φ)).

2 This shows the importance of bounded variable
guarded fragments.

Recently there has been much interest in modal languages with nominals
[4, 10]. Nominals are special proposition letters that denote singleton sets.
From a first-order perspective, they correspond to constants. Thus, if we trans-
late formulas containing nominals into first order logic, then we arrive in the
two-variable guarded fragment with an unlimited number of constants. Clearly,
Theorem 1 will not allow us to prove, say, that the global consequence prob-
lem for modal formulas with nominals is in ExpTime. Theorem 2 does, and
it thereby broadens the application of guarded fragments to the field of hybrid
logic (this is the common name for the family of modal languages with nominals
and related machinery). A concrete example of a complexity result from the lit-
erature that follows immediately from Theorem 2 is the ExpTime-membership
of the satisfiability problem for the hybrid language H(@,3−1,E) [2].

2 Normal forms for (loosely) guarded formulas

We will consider first-order languages with arbitrarily many relation symbols of
any arity, constants and equality, but without function symbols of arity greater

2Here, ST refers to the well-known Vardi-style standard translation of modal formulas to
first-order formulas, that uses only two variables.

2



than zero. A first-order formula φ of such a language is called guarded if it is built
up from atomic formulas using the Boolean connectives and guarded quantifiers
of the form ∃x1 . . . xn.(π∧ψ) or ∀x1 . . . xn.(π → ψ), where π is an atomic formula
and the free variables of ψ all occur in π. A formula is called ∀-guarded if it is
built up from atomic formulas and negated atomic formulas using conjunction,
disjunction, ordinary existential quantifiers and guarded universal quantifiers.
Note that the guards π may be atomic equality statements. In particular, if
a guarded formula φ has only one free variable x, then ∃x.(x = x ∧ φ) and
∀x.(x = x → φ) are guarded formulas. These formulas are equivalent to ∃x.φ
and ∀x.φ, respectively.

The loosely guarded fragment is an extension of the guarded fragment. A
first-order formula φ is called loosely guarded if it is built up from atomic formu-
las using the Boolean connectives and loosely guarded quantifiers of the form
∃x1 . . . xn.(π ∧ ψ) or ∀x1 . . . xn.(π → ψ), where π is conjunction of atomic for-
mulas, such that every quantified variable xi co-occurs with every free variable
y 6= xi of ψ in some conjunct of π. A formula is called loosely ∀-guarded if it
is built up from atomic formulas and negated atomic formulas using conjunc-
tion, disjunction, ordinary existential quantifiers and loosely guarded universal
quantifiers. Note that if a loosely guarded formula φ has only one free variable
x, then ∃x.(> ∧ φ) and ∀x.(> → φ) are loosely guarded.

Grädel [7] proved his main decidability and complexity results for guarded
formulas using the following normal form.

Definition 1 A (loosely) ∀-guarded formula is in normal form if it is of the
form

∃~x.P~x ∧
∧

i∈I

∀~x.(πi(~x)→ ∃~y.φi(~x, ~y))

where, for each i ∈ I, the variables ~x, ~y are distinct, πi is a (loose) guard and
φi(~x, ~y) is a quantifier-free formula.

Grädel showed that every (loosely) guarded formula can be translated in
polynomial time into an equisatisfiable (loosely) ∀-guarded formula in normal
form. A slight variation of Grädel’s proof works for (loosely) ∀-guarded sen-
tences, thus turning it into a true normal form theorem for (loosely) ∀-guarded
formulas. To be sure, we will spell out the proof here for the case of (loosely)
∀-guarded formulas.

For any formula φ, let width(φ) be the maximal number of free variables
of a subformula of φ, i.e., width(φ) is the largest natural number n such that
φ has a subformula with n free variables.

Proposition 1 Every (loosely) ∀-guarded formula φ can be transformed in poly-
nomial time into an equisatisfiable (loosely) ∀-guarded sentence χ in normal
form. Moreover, width(χ) ≤ width(φ).

Proof: We first give the proof for ∀-guarded formulas, and then show how the
proof generalizes to loosely ∀-guarded formulas. Let φ be ∀-guarded, and assume
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without loss of generality that no equality sign occurs inside a guard in φ. If φ is
quantifier-free, then we are already done. Otherwise, there are two possibilities.

1. φ contains a subformula of the form χ(~x) = ∃y.ψ(~x, y), where ψ is
quantifier-free. Pick a new predicate Rχ of the appropriate arity, and
let φ[χ/Rχ] be the result of replacing χ(~x) in φ by Rχ(~x). Finally, let

φ′ = φ[χ/Rχ] ∧ ∀~x.(Rχ(~x)→ ∃y.ψ(~x, y))

Then φ′ is equi-satisfiable to φ, and one step closer to being of the required
form.

2. φ contains a subformula of the form χ(~x) = ∀~y.(π(~x, ~y)→ ψ(~x, ~y)), where
ψ is quantifier-free. Pick a new relation symbol Rχ with the appropriate
arity, and let φ[χ/Rχ] be the result of replacing χ(~x) in φ by Rχ(~x).
Finally, let

φ′ = φ[χ/Rχ] ∧ ∀~x~y.(π(~x, ~y)→ (Rχ(~x))→ ψ(~x, ~y))

Then φ′ is equi-satisfiable to φ, and one step closer to being of the required
form.

Repeating these steps, we eventually obtain a formula of the form φ′′(~x) ∧ η,
where φ′′(~x) is quantifier-free, and η is a conjunction of formulas of the form
∀~x(π(~x) → ∃y.ψ(~x, y)). As a final step, pick a new predicate P and let θ =
∃~x.P (~x)∧∀~x(P (~x)→ φ′′(~x)))∧η. Then θ is in normal form and equi-satisfiable
to the original formula φ.

A slight variation of this argument works for loosely ∀-guarded formulas.
Suppose φ is loosely ∀-guarded and contains a subformula of the form χ(~x) =
∀~y.(π(~x, ~y) → ψ(~x, ~y)), where ψ is quantifier-free. As before, we pick a new
relation symbol Rχ with the appropriate arity, but now we also pick a new binary
relation symbol Z. Also, the conjunct we add to φ is slightly different: instead of
∀~x~y.(π(~x, ~y) → (Rχ(~x)) → ψ(~x, ~y)), we add ∀~x~y.((π(~x, ~y) ∧

∧

z,z′∈{~x} Zzz
′) →

(Rχ(~x)) → ψ(~x, ~y)). This ensures that each two variables in ~x co-occur in
some atom of the guard, to guarantee that the universal quantifier is properly
loosely guarded. Finally, to ensure that the new formula is equi-satisfiable to
the original one, instead of replacing χ(~x) in φ by Rχ(~x), we it by Rχ(~x) ∧
∧

z,z′∈{~x} Zzz
′. The rest of the proof remains the same. 2

In the case of loosely guarded formulas, one can furthermore ensure that the
arity of the relation symbols occuring in the formula is bounded by the width.
For any formula φ, let maxarity(φ) denote the highest arity of a relation
symbol occuring in φ.

Proposition 2 Every loosely ∀-guarded formula φ can be transformed in
polynomial time into an equisatisfiable loosely ∀-guarded formula χ in nor-
mal form, such that width(χ) ≤ max{width(φ), 2} and maxarity(χ) ≤
max{width(φ), 2}.
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Proof: The proof proceeds in two steps. First, we will reduce the arity of the
relation symbols occuring in φ to two. Then, we will write the resulting formula
in normal form. The latter step might increase the arity of the relation symbols
again, but it will still be bounded by the width of the formula.

Let φ be any loosely ∀-guarded formula. For each n-ary relation symbol
R occurring in φ, with n > 2, introduce n + 1 new binary relation symbols,
R0, . . . , Rn. These relation symbols will be used to encode the tuples that stand
in the relation R: a tuple 〈d1, . . . , dn〉 will be thought to stand in the relation if
each pair 〈d`, dm〉 stands in the R0 relation (1 ≤ `,m ≤ n), and there exists is
an element e such that 〈e, d`〉 ∈ R` for 1 ≤ ` ≤ n.

Replace each subformula of φ of the form R(t1, . . . , tn) that is not inside a
guard by

∧

1≤`,m≤n

R0(t`, tm) ∧ ∃u.
∧

1≤`≤n

R`(u, x`)

If φ has a subformula of the form ∀~x(π → ψ), where the guard π con-
tains a conjunct of the form R(t1, . . . , tn), then replace that conjunct by
∧

1≤`,m≤nR0(t`, tm), and replace ψ by ∃u.(
∧

1≤`≤nR`(u, x`) ∧ >)→ ψ.
The resulting formula contains no relation symbols of arity greater than 2,

and it is satisfiable iff the original formula φ is satisfiable. Furthermore, the
width of the resulting formula is at most max(width(φ), 2}.

Finally, we apply Proposition 1 to bring the resulting formula into normal
form. Inspection of the proof of Proposition 1 shows that the arity of the relation
symbols added during the normal form translation is bounded by the width of
the input formula. Hence, we end up with a formula with the desired properties.

2

Incidentally, the constraints of bounded width and of bounded number of
variables in a first-order formula are equivalent, as proved in the following the-
orem.

Proposition 3 For k ∈ N, every first-order formula φ of width k can be trans-
formed in polynomial time into an equivalent formula containing k variables.

Proof: The proof is by structural induction on the input formula φ. If φ is an
atomic formula, then its width equals the number of variables occurring in it,
hence the claim holds. If φ is of the form ¬ψ or ∃x.ψ, then the claim follows
immediately from the induction hypothesis (note that, in the second case, we
may assume that x occurs in ψ). This leaves us with the case in which φ is a
conjunction.

Let φ be of the form ψ ∧ χ. By induction hypothesis, we may assume that
ψ and χ each have at most k variables. We may also assume that the only
variables occurring both in ψ and in χ are the ones that occur freely in ψ and
in χ. It follows that the set of all variables occurring in φ can be partitioned
into disjoint subsets X,Y, Z, U, V such that free(ψ) = X ∪Y , free(χ) = Y ∪Z,
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bound(ψ) \ free(ψ) = U and bound(χ) \ free(χ) = V . In other words,

φ(X,Y, Z) = ψ(X,Y ) ∧ χ(Y,Z)

(additional bound
variables U)

(additional bound
variables V )

Let W be a new set of variables, disjoint from X,Y, Z, U, V , such that |W | =
k−|X∪Y ∪Z|. By disjointness of the sets involved, |W ∪Z| = k−|X∪Y | ≤ |U |
and |W ∪X| = k − |Y ∪ Z| ≤ |V |. This means that we can safely replace the
(bound) variables U in ψ by the variables W ∪ Z, and replace the (bound)
variables V in χ by the variables X ∪W . The resulting formula is equivalent to
the original, but only contains variables in X ∪ Y ∪ Z ∪W , of which there are
only k many. 2

Another proof of Proposition 3: The proof is by induction on the quanti-
fier depth of the input formula α. We prove the existence of an equivalence-
preserving renaming translation that given a formula α of width at most w
returns a formula α′ using variables in {z1, . . . , zw}, where z1, . . . , zw do not ap-
pear in α. By renaming translation we mean a translation that only renames the
variables of the input formula. We do the proof by induction on the quantifier
depth qd(α) in the input formula α.

If qd(α) = 0, then α does not contain any quantifier. Hence, all the variables
of α are free. Since α has width at most w, the free variables of α are at most
w, and thus α uses at most w variables. We may replace the free variables of
α with variables in {z1, . . . , zw} obtaining an equivalent formula using variables
in {z1, . . . , zw}.

Suppose that qd(α) = n > 0. Consider all subformulas of α of the form
β = ∃x.γ, where γ does not contain any quantifier. Without loss of generality,
we assume that x is free in γ (otherwise, the existential quantifier is useless
and hence it can be removed). We have that free(β) = free(γ) \ {x}. Since
|free(γ)| ≤ w, we have that |free(β)| < w. Replace each free occurrence of
x in γ by a fresh constant cx and drop the quantifier ∃x from β. Call α1 the
resulting formula after this operation has been done for all the β’s. We have
that: (i) for each β we have |free(β)| < w, (ii) the width of α1 is at most w, and
(iii) the quantifier depth of α1 is n−1. By induction hypothesis, there exists an
equivalence-preserving renaming translation that transforms α1 into a formula
α2 using variables in {z1, . . . , zw}. Use this translation to get α′, restore in α′ the
removed quantifiers ∃x, and replace constants cx by x. The resulting formula,
say α3, is equivalent to α and, for each β, it holds that: (i) the variables of β are
in {x, z1, . . . , zw}, where x is some variable not occurring in {z1, . . . , zw}, (ii)
the free variables of β are in {z1, . . . , zw}, and (iii) |free(β)| < w. Hence, for
each β, there must be some zi ∈ {z1, . . . , zw} not occurring free in β. Replace
in β the quantifier ∃x by ∃zi and each free occurrence of x by zi. Let α4 be the
resulting formula after these renaming has been performed for all β’s. Notice
that α4 is equivalent to α3, and hence it is equivalent to α. Moreover, it uses
variables in {z1, . . . , zw}. Finally, α4 and α have the same length. 2
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Both proofs give rise to strategies that can be implemented as a recursive
procedure whose time complexity is quadratic in the length of the input formula.

We make an example illustrating the two strategies used in the proof of the
previous theorem. Let

α = ∃x1.(Rx1x2) ∧ ∃x3.(Rx3x4)

The width of α is two, but it uses four variables.
We show how to rewrite it into an equivalent formula with two variables

using the first strategy. Since the two conjuncts of α are already of the required
form, we only need to show that their conjunction can be written with only
two variables. To this end, we first collect the free variables occurring in the
conjuncts. These are x2 and x4. Since we cannot use more than two variables
in the final formula, we will only use these two. Finally, each of the quantified
variables occurring in the two conjuncts is renamed to one of the target variables
x2, x4, and more in particular, one that does not already occur freely in that
conjunct. Following this strategy, we obtain ∃x4.(Rx4x2)∧ ∃x2.(Rx2x4), which
is indeed of the required form and equivalent to the original formula.

We now show how to rewrite the above formula into an equivalent formula
using variables z1 and z2 only by taking advantage of the second strategy. First,
we fold the innermost quantifiers of α obtaining α1 = Rc1x2 ∧ Rc3x4, where
c1 and c3 are constants. The formula α1 has nesting degree zero and width
two. It is equivalent to α2 = Rc1z1 ∧Rc3z2. If we unfold the quantifiers we get
α3 = ∃x1.(Rx1z1)∧∃x3.(Rx3z2). By properly renaming variables x1 and x2 we
get the formula

α4 = ∃z2.(Rz2z1) ∧ ∃z1.(Rz1z2)

which is equivalent to α and uses only two variables.

3 Eliminating constants

Most results on guarded formulas have been stated only for relational first-
order languages, i.e., languages without constants. The results discussed in this
section show how the same techniques can be applied to formulas containing
constants.

Let ncons(φ) be the number of constants occurring in φ. Grädel [7] proved
the following.3

Proposition 4 Every (loosely) ∀-guarded formula φ can be transformed in poly-
nomial time into an equisatisfiable relational (loosely) ∀-guarded formula χ, such
that width(χ) ≤ width(φ) + ncons(φ).

For complexity reasons, we have a particular interest in formulas with a bounded
width. Unfortunately, for such formulas φ, Proposition 4 does not imply a bound

3Strictly speaking, Grädel’s proof for this proposition is flawed, since his translation does
not correctly handle formulas containing equality. However, this problem can easily be fixed.
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on the width of χ. We will now present another method to eliminate constants,
that allows us to circumvent this problem.

Proposition 5 Fix a natural number k ≥ 2. Every loosely ∀-guarded formula φ
of width at most k can be transformed in polynomial time into an equisatisfiable
relational loosely ∀-guarded formula χ of width at most k.

Proof: Consider any loosely ∀-guarded formula φ of width at most k. By
Proposition 2, we may assume that φ is in normal form and that maxarity(φ) ≤
k.

Let cons be the set of constants occurring in φ. For each n-place relation
symbol R occurring in φ, except for equality, and for each partial function f :
{1, . . . , n} ↪→ cons, introduce a new relation symbol Rf with arity n−|dom(f)|,
where dom(f) is the set of all k ∈ {1, . . . , n} for which f(k) is defined. For
example, if R is a ternary relation symbol and f = {(1, c), (3, d)}, then Rf

is a unary relation symbol, which we will also denote by Rc•d. The intended
interpretation of Rc•d(x) will be the same as R(c, x, d). Also, for each pair of
constants c, d, introduce a nullary relation symbol Ecd.

We will now eliminate all constants, with the help of these new relation
symbols. For any sequence of variables ~x, let T (~x) be the set of all partial
functions from {~x} to cons (including the empty function). Note that there are
(ncons+ 1)|~x| such functions. For each τ ∈ T (~x) and formula ψ, let ψτ be the
result of replacing each occurrence of a variable x ∈ dom(τ) by τ(x). Finally,
let φ∗ be obtained from φ by means of the following procedure.

1. Replace each subformula of the form ∀~x.ψ by
∧

τ∈T (~x) ∀~x.ψ
τ , and replace

each subformula of the form ∃~y.ψ by
∨

τ∈T (~y) ∃~y.ψ
τ . 4

2. Replace each atomic formula of the form R(c1, . . . , cn, x1, . . . , xm) by
Rc1...cn•...•(x1, . . . , xm) (and similarly for other permutations)

3. Replace each atomic formulas of the form c = d by Ecd, and replace each
atomic formula of the form x = c or c = x by ⊥.

Let χ be the conjunction of φ∗ with
∧

c∈cons

Ecc ∧
∧

c,d∈cons

Ecd → Edc ∧
∧

c,d,e∈cons

Ecd ∧ Ede → Ece

and all formulas of the form

∀x1 . . . xm.(Rc1...c`...cn•...•(x1, . . . , xm)→ (Ec`d → Rc1...d...cn•...•(x1, . . . , xm)))

(including all permutations the sequence c1, . . . , cnx1, . . . , xm). 5

4Note that this will only polynomially increase the length of the formula, due to the fact
that both the width and the quantifier depth of φ is bounded (keep in mind that φ is in normal
form).

5The number of such formulas is approximately nrel(φ) · (ncons(φ)maxarity(φ)), where
nrel(φ) is the number of relation symbols occurring in φ. This is polynomial in the length of
φ, given that maxarity(φ) ≤ k.
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Clearly, χ does not contain any constants, and is loosely ∀-guarded. Fur-
thermore, the length of χ is polynomial in the length of φ, and that χ can be
obtained from φ′ in polynomial time.

Finally, we claim that χ is satisfiable iff φ is satisfiable. One direction of
this claim is easy: a model for φ is easily turned into a model for χ. As for
the other direction, every model M satisfying χ can be turned into a model M ′

for φ in the following way: define an equivalence relation on the set cons by
putting c ∼ d iff M |= Ecd, extend the domain of M with one element for each
equivalence class, and extend the relations to the new elements in the obvious
way: ([c1], . . . , [cn], e1, . . . , em) ∈ R iff (e1, . . . , em) ∈ Rc1...cn•...•, and likewise
for other permutations. It is easily seen that the resulting model M ′ satisfies
φ. 2

Note that the translation used in the above proof is polynomial only provided
that the width of the input formula is bounded by a constant. Unlike Grädel’s
translation, it is in general exponential.

We will now proceed with the proof of Theorem 2, using the help of the
above results. As we already mentioned, Grädel [7] states his main results
only in terms of guarded or loosely guarded formulas. Nevertheless, the central
argument on which these results are based is formulated in terms of relational
loosely ∀-guarded formulas in normal form, cf. Definition 1. Specifically, Grädel
shows that the satisfiability problem for such formulas is 2ExpTime-complete,
and that it becomes ExpTime-complete if there is a bound on the width of the
(normal form) formula. Together with our above results, this allows us to prove
Theorem 2.

Proof of Theorem 2: The 2ExpTime-completeness of the satisfiability prob-
lem for loosely ∀-guarded formulas follows from Grädel’s result by Proposition 4
and Proposition 1. The ExpTime-completeness of the satisfiability problem for
loosely ∀-guarded formulas with a bounded number of variables follows from
Grädel’s result by Proposition 5 and Proposition 1 (if a formula φ contains at
most k variables, then, trivially, width(φ) ≤ k).

Finally, it is easy to see that the width of a guarded formula is bounded by
the arity of the relation symbols occuring in it. Note that, in general, this does
not hold for ∀-guarded formulas, nor for loosely guarded formulas. Indeed, by a
similar argument as used in the proof of Proposition 2, the satisfiability problem
for loosely guarded formulas with arity at most 2 is already as hard as the
satisfiability problem for loosely guarded formulas in general, i.e., 2ExpTime-
complete. 2

4 Connections with hybrid logic

As we already mentioned in the introduction, guarded fragments with constants
have important applications in the area of hybrid logic (cf. [4, 10] for an intro-
duction to hybrid logic). Many hybrid languages can be embedded into finite
variable guarded fragments with constants, and Theorem 2 allows us to derive
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ExpTime-membership results for such languages. As concrete examples, we
mentioned the global consequence relation for the hybrid language H (i.e., the
extension of the basic modal language with a countably infinite set of nominals)
and the satisfiability problem for the hybrid language H(@,3−1,E) [2].

Conversely, results from the hybrid logic literature may have applications to
guarded fragments with constants. Here, we will discuss one such application,
which concerns the interpolation property. When the guarded fragment was
introduced in [1], it was hoped that it has interpolation. Unfortunately, it was
shown in [8] that this is not the case. This negative interpolation result was
strengthened for guarded fragments with constants in [6], where the following
was shown:

Theorem 3 ([6]) Let F be any fragment of first-order logic with constants that
contains all atomic formulas, is closed under the Boolean connectives and is
closed under guarded quantification (i.e., if φ(~x~y) ∈ F and α(~x~y) is atomic then
∃~x(α(~x~y ∧ φ(~x~y) ∈ F ∀~x(α(~x~y → φ(~x~y) ∈ F ). Furthermore suppose that F
satisfies the following form of interpolation:

For all formulas φ(x), ψ(x) ∈ F with at most one free variable x,
if |= φ(x) → ψ(x) then there is a formula ϑ(x) ∈ F such that |=
φ(x)→ ϑ(x), |= ϑ(x)→ ψ(x), and all relation symbols and constants
occurring in ϑ occur both in φ and in ψ.

Then every first-order sentence φ is equivalent to a formula in F .

In other words, it is not possible to repair interpolation for the guarded fragment
by increasing its expressivity without ending up with full first-order logic. Note
the modal character of interpolation property used in Theorem 3: it applies
to formulas with at most one free variable. Also note that, while this result
applies to the loosely guarded fragment, it does not cover the universally guarded
fragment, or other fragments that are not closed under negation.

The proof given in [6] is based on results on hybrid logics.

5 Discussion

We finish by discussing two open questions. The first question is the following:

What is the complexity of the satisfiability problem for ∀-guarded
formulas with bounded arity?

Note that the answer to this question does not depend on the presence of con-
stants. Our conjecture is that this problem is ExpTime-complete.

A second interesting question would be the following question:

Classify, in the style of Börger et al. [5], the quantifier patterns π for
which the satisfiability problem for sentences consisting of a sequence
of quantifiers conform π followed by a guarded formula, is decidable.
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The satisfiability problem for π = ∃∗∀ is still decidable, as can be seen by
replacing the existentially quantified variables by constants and guarding the
universal quantifier by an identity statement of the form x = x. On the other
hand, π = ∀3 is already a conservative reduction class, as follows from results
of Grädel [7]. What about π = ∃∗∀2?

Acknowledgements

This paper benefited greatly from many discussions with Maarten Marx.

References
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