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Abstract

We present the concept of a disjunctive basis as a generic framework for normal forms in
modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness
for modal fixpoint logics, where they played a central role in the proof of a generic completeness
theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here
we investigate it more thoroughly in its own right. We show that the presence of a disjunctive
basis at the “one-step” level entails a number of good properties for a coalgebraic mu-calculus,
in particular, a simulation showing that every alternating automaton can be transformed into an
equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint
logic, its fixpoint-free fragment and its one-step fragment, and a Uniform Interpolation result, for
both the full mu-calculus and its fixpoint-free fragment.

We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are
related to Moss’ coalgebraic “nabla” modalities. Nabla formulas provide disjunctive bases for
many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal
forms even when nabla formulas fail to do so, our prime example being graded modal logic.

Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases,
and provide a partial solution.

Keywords Modal logic, fixpoint logic, automata, coalgebra, graded modal logic, Lyndon theorem,
uniform interpolation.

1 Introduction

The topic of this paper connects modal µ-calculi, coalgebra and automata. The connection between
the modal µ-calculus, as introduced by Kozen [12], and automata running on infinite objects, is
standard [8]. Many of the most fundamental results about the modal µ-calculus have been proved
by making use of this connection, including completeness of Kozen’s axiom system [22], and model
theoretic results like expressive completeness [11], uniform interpolation and a Lyndon theorem [3].

The standard modal µ-calculus was generalized to a generic, coalgebraic modal µ-calculi [20], of
which the modal basis was provided by Moss’ original coalgebraic modality [16], now known as the
nabla modality. From a meta-logical perspective, Moss’ nabla logics and their fixpoint extensions are
wonderfully well-behaved. For example, a generic completeness theorem for nabla logics by a uniform
system of axioms was established [13], and this was recently extended to the fixpoint extension of the
finitary Moss logic [4]. Most importantly, the automata corresponding to the fixpoint extension of
Moss’ finitary nabla logic always enjoy a simulation theorem, allowing arbitrary coalgebraic automata
to be simulated by non-deterministic ones; this goes back to the work of Janin & Walukiewicz on
µ-automata [10]. The simulation theorem provides a very strong normal form for these logics, and
plays an important role in the proofs of several results for coalgebraic fixpoint logics.

The downside of this approach is that the nabla modality is rather non-standard, and understanding
what concrete formulas actually say is not always easy. For this reason, another approach to coalgebraic
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modal logic has become popular, based on so called predicate liftings. This approach, going back to
the work of Pattinson [18], provides a much more familiar syntax in concrete applications, but can
still be elegantly formulated at the level of generality and abstraction that makes the coalgebraic
approach to modal logic attractive in the first place. (For a comparison between the two approaches,
see [14].) Coalgebraic µ-calculi have also been developed as extensions of the predicate liftings based
languages [2], and the resulting logics are very well behaved: for example, good complexity results
were obtained in op. cit. Again, the connection between formulas and automata can be formulated in
this setting [6], but a central piece is now missing: so far, no simulation theorem has been established
for logics based on predicate liftings. In fact, it is not trivial even to define what a non-deterministic
automaton is in this setting.

This problem turned up in recent work [5], by ourselves together with Seifan, where we extended
our earlier completeness result for Moss-style fixpoint logics [4] to the predicate liftings setting. Our
solution was to introduce the concept of a disjunctive basis, which formalizes in a compact way the
minimal requirements that a collection of predicate liftings Λ must meet in order for the class of
corresponding Λ-automata to admit a simulation theorem. Our aim in the present paper is to follow
up on this conceptual contribution, which we believe is of much wider significance besides providing a
tool to prove completeness results.

Exemplifying this, we shall explore some of the applications of our coalgebraic simulation theorem.
Some of these transfer known results for nabla based fixpoint logics to the predicate liftings setting;
for example, we show that a linear-size model property holds for our non-deterministic automata (or
“disjunctive” automata as we will call them), following [20]. We also show that uniform interpolation
results hold for coalgebraic fixpoint logics in the presence of a disjunctive basis, which was proved for
the Moss-style languages in [15]. Finally, we prove a Lyndon theorem for coalgebraic fixpoint logics,
generalizing a result for the standard modal µ-calculus proved in [3]: a formula is monotone in one
of its variables if and only if it is equivalent to one in which the variable appears positively. We also
prove an explicitly one-step version of this last result, which we believe has some practical interest
for modal fixpoint logics: It is used to show that, given an expressively complete set of monotone
predicate liftings, its associated µ-calculus has the same expressive power as the full µ-calculus based
on the collection of all monotone predicate liftings.

Next to proving these results, we compare the notion of a disjunctive basis to the nabla based
approach to coalgebraic fixpoint logics. The connection will be highlighted in Section 7 where we
discuss disjunctive predicate liftings via the Yoneda lemma: here the Barr lifting of the ambient
functor (on which the semantics of nabla modalities are based) comes into the picture naturally. This
is not to say that disjunctive bases are just “nablas in disguise”: it is a fundamental concept, and
in some cases it is the right concept as opposed to nabla formulas. As a clear example of this, we
consider graded modal logic, which adds counting modalities to modal logic. While we will see that
this language has a disjunctive basis, at the same time we will prove that no such basis can be based
on the nabla modalities.

2 Preliminaries

We assume that the reader is familiar with coalgebra, coalgebraic modal logic and the basic theory of
automata operating on infinite objects. The aim of this section is to fix some definitions and notations.

First of all, throughout this paper we will use the letter T to denote an arbitrary set functor, that
is, a covariant endofunctor on the category Set having sets as objects and functions as arrows. For
notational convenience we sometimes assume that T preserves inclusions; our arguments can easily be
adapted to the more general case. Functors of coalgebraic interest include the identity functor Id, the
powerset functor P, the monotone neighborhood functor M and the (finitary) bag functor B (where
BS is the collection of weight functions σ : S → ω with finite support). We also need the contravariant
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powerset functor P̆.
A T-coalgebra is a pair S = (S, σ) where S is a set of objects called states or points and σ : S → TS

is the transition or coalgebra map of S. A pointed T-coalgebra is a pair (S, s) consisting of a T-coalgebra
and a state s ∈ S. We call a function f : S′ → S a coalgebra homomorphism from (S′, σ′) to (S, σ) if
σ ◦ f = Tf ◦ σ′, and write (S′, s′)→ (S, s) if there is such a coalgebra morphism mapping s′ to s.

With X a set of proposition letters, a T-model over X is a pair (S, V ) consisting of a T-coalgebra
S = (S, σ) and a X-valuation V on S, that is, a function V : X→ PS. The marking associated with V
is the transpose map V [ : S → PX given by V [(s) := {p ∈ X | s ∈ V (p)}. Thus the pair (S, V ) induces
a TX-coalgebra (S, (V [, σ)), where TX is the set functor PX× T.

We will mainly follow the approach in coalgebraic modal logic where modalities are associated (or
even identified) with finitary predicate liftings. A predicate lifting of arity n is a natural transformation

λ : P̆n ⇒ P̆T. Such a predicate lifting is monotone if for every set S, the map λS : (PS)n → PTS
preserves the subset order in each coordinate. The induced predicate lifting λ∂ : Pn ⇒ PT, given by
λ∂S(X1, . . . , Xn) := TS \ λS(S \X1, . . . , S \X1), is called the (Boolean) dual of λ. A monotone modal
signature, or briefly: signature for T is a set Λ of monotone predicate liftings for T, which is closed
under taking boolean duals.

Given a signature Λ, the formulas of the coalgebraic µ-calculus µMLΛ are given by the following
grammar:

ϕ ::= p | ⊥ | ¬ϕ | ϕ0 ∨ ϕ1 | ♥λ(ϕ1, . . . , ϕn) | µx.ϕ′

where p and x are propositional variables, λ ∈ Λ has arity n, and the application of the fixpoint
operator µx is under the proviso that all occurrences of x in ϕ′ are positive (i.e., under an even
number of negations). We let MLΛ and µMLΛ(X) denote, respectively, the fixpoint-free fragment of
µMLΛ and the set of µMLΛ-formulas taking free variables from X.

Formulas of such coalgebraic µ-calculi are interpreted in coalgebraic models, as follows. Let S =
(S, σ, V ) be a T-model over a set X of proposition letters. By induction on the complexity of formulas,
we define a meaning function [[·]]S : µMLΛ(X) → PS, together with an associated satisfaction relation

 ⊆ S×µMLΛ(X) given by S, s 
 ϕ iff s ∈ [[ϕ]]S. All clauses of this definition are standard; for instance,
the one for the modality ♥λ is given by

S, s 
 ♥λ(ϕ1, . . . , ϕn) if σ(s) ∈ λS([[ϕ1]]S, . . . , [[ϕn]]S). (1)

For the least fixpoint operator we apply the standard description of least fixpoints of monotone maps
from the Knaster-Tarski theorem and take

[[µx.ϕ]]S :=
⋂{

U ∈ PS | [[ϕ]](S,σ,V [x7→U ]) ⊆ U
}
,

where V [x 7→ U ] is given by V [x 7→ U ](x) := U while V [x 7→ U ](p) := V (p) for p 6= x. A formulas ϕ is
said to be monotone in a variable p if, for every T-model S = (S, σ, V ) and all sets Z1 ⊆ Z2 ⊆ S, we
have [[ϕ]](S,σ,V [p 7→Z1]) ⊆ [[ϕ]](S,σ,V [p 7→Z2]).

Well-known examples of coalgebraic modalities include the next-time operator © of linear time
temporal logic, the standard Kripkean modalities 2 and 3, the more general modalities of monotone
modal logic, and the counting modalities 3k and 2k of graded modal logic, which can be interpreted
over B-coalgebras using the predicate liftings k and k given by

kS : U 7→
{
σ ∈ BS |

∑
u∈U σ(u) ≥ k

}
kS : U 7→ {σ ∈ BS |

∑
u 6∈U σ(u) < k

}
.

A pivotal role in our approach is filled by the one-step versions of coalgebraic logics. Given a
signature Λ and a set A of variables, we define the set Bool(A) of boolean formulas over A and the set
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1MLΛ(A) of one-step Λ-formulas over A, by the following grammars:

Bool(A) 3 π ::= a | ⊥ | > | π ∨ π | π ∧ π | ¬π
1MLΛ(X, A) 3 α ::= ♥λπ | ⊥ | > | α ∨ α | α ∧ α | ¬α

where a ∈ A and λ ∈ Λ. We will denote the positive (negation-free) fragments of Bool(A) and 1MLΛ(A)
as, respectively, Latt(A) and 1ML+

Λ (A).
We shall often make use of substitutions: given a finite set A, let ∨A : PA→ Bool(A) be the map

sending B to
∨
B, and let ∧A : PA→ Bool(A) be the map sending B to

∧
B, and given sets A,B let

∧A,B : A×B → Bool(A ∪B) be defined by mapping (a, b) to a ∧ b.
A monotone modal signature Λ for T is expressively complete if, for every n-place predicate lifting

λ and variables a1, . . . , an there is a formula α ∈ 1MLΛ({a1, . . . , an}) which is equivalent to ♥λa. We
will also be interested in the following strengthening of expressive completeness: we say that Λ is
Lyndon complete if, for every monotone n-place predicate lifting λ and variables a1, . . . , an, there is a
positive formula α ∈ 1ML+

Λ ({a1, . . . , an}) equivalent to ♥λa.
One-step formulas are naturally interpreted in the following structures. A one-step T-frame is a

pair (S, σ) with σ ∈ TS, i.e., an object in the category E(T) of elements of T. Similarly a one-step
T-model over a set A of variables is a triple (S, σ,m) such that (S, σ) is a one-step T-frame and
m : S → PA is an A-marking on S. Morphism of one-step frames and of one-step models are defined
in the obvious way.

Given a one-step model (S, σ,m), we define the 0-step interpretation [[π]]0m ⊆ S of π ∈ Bool(A)
by the obvious induction: [[a]]0m := {v ∈ S | a ∈ m(v)}, [[>]]0m := S, [[⊥]]0m := ∅, and the standard
clauses for ∧,∨ and ¬. Similarly, the one-step interpretation [[α]]1m of α ∈ 1MLΛ(A) is defined as a
subset of TS, with [[♥λ(π1, . . . , πn)]]1m := λS([[π1]]0m, . . . , [[πn]]0m), and standard clauses for ⊥,>,∧,∨
and ¬. Given a one-step modal (S, σ,m), we write S, σ,m 
1 α for σ ∈ [[α]]1m. Notions like one-step
satisfiability, validity and equivalence are defined in the obvious way.

A (Λ, X)-automaton, or more broadly, a coalgebra automaton, is a quadruple (A,Θ,Ω, aI) where A
is a finite set of states, with initial state aI ∈ A, Θ : A× PX → 1ML+

Λ(X, A) is the transition map and
Ω : A → ω is the priority map of A. Its semantics is given in terms of a two-player infinite parity
game: With S = (S, σ, V ) a T-model over a set Y ⊇ X, the acceptance game A(A,S) is the parity game
given by the table below.

Position Player Admissible moves Priority

(a, s) ∈ A× S ∃ {m : S → PA | (S, σ(s),m) 
1 Θ(a, X ∩ V [(s))} Ω(a)
m : S → PA ∀ {(b, t) | b ∈ m(t)} 0

We say that A accepts the pointed T-model (S, s), notation: S, s 
 A, if (aI , s) is a winning position
for ∃ in the acceptance game A(A,S).

Fact 2.1 There are effective constructions transforming a formula in µMLΛ(X) into an equivalent
(Λ, X)-automaton, and vice versa.

3 Disjunctive formulas and disjunctive bases

In this section, we present the main conceptual contribution of the paper, and define disjunctive bases.
We then immediately consider a number of examples.

Definition 3.1 A one-step formula α ∈ 1ML+
Λ (X, A) is called disjunctive if for every one-step model

(S, σ,m) such that S, σ,m 
1 α there is a one-step frame morphism f : (S′, σ′)→ (S, σ) and a marking
m′ : S′ → PA such that:
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(1) S′, σ′,m′ 
1 α;
(2) m′(s′) ⊆ m(f(s′)), for all s′ ∈ S′;
(3) |m′(s′)| ≤ 1, for all s′ ∈ S′. �

Definition 3.2 Let D be an assignment of a set of positive one-step formulas D(A) ⊆ 1ML+
Λ(A) for all

sets of variables A. Then D is called a disjunctive basis for Λ if each formula in D(A) is disjunctive,
and the following conditions hold:

(1) D(A) is closed under finite disjunctions (in particular, it contains > =
∨
∅).

(2) D is distributive over Λ: for every one-step formula of the form ♥λπ there is a formula δ ∈
D(P(A)) such that ♥λπ ≡1 δ[∧A]. (3) D admits a binary distributive law : for any two formulas α ∈ D(A)
and β ∈ D(B), there is a formula γ ∈ D(A×B) such that α ∧ β ≡1 γ[θA,B ]. �

Disjunctive bases for weak pullback preserving functors It is not hard to prove that disjunc-
tive formulas generalize the Moss modalities, which are tightly connected to weak pullback preservation
of the coalgebraic type functor. (Due to space limitations we refer to [13] for the details on the syntax
and semantics of the Moss modalities.) In many interesting cases this suffices to find a disjunctive
basis.

Proposition 3.3 Let Λ be a signature for a weak-pullback preserving functor T. If Λ is Lyndon
complete, then it admits a disjunctive basis.

Proof. Let D∇(A) be the set of all (finite and infinite) disjunctions of formulas of the form ∇β, with
β ∈ TA. Such disjunctions can be regarded as n-ary predicate liftings, where |A| = n, so we can apply
expressive completeness and treat them as one-step formulas in 1ML+

Λ(A). As mentioned, it is easy to
verify that all formulas of the form ∇β are disjunctive, and since disjunctivity is closed under taking
disjunctions, all formulas in D∇(A) are disjunctive. It remains to show that D∇(A) is a basis for Λ.

It remains to prove that any formula α ∈ 1ML+
Λ(A) is equivalent to a (possibly infinite) disjunction

of formulas of the form ∇Γ[χA], with Γ ∈ TPA. Note that any such formula can be written as
∇Γ[χA] = ∇(TχA)Γ (where we remind the reader that the substitution χA : P → Latt(A) is the
function mapping a set B ⊆ A to its conjunction

∧
B). This means that it suffices to prove, for an

arbitrary formula α ∈ 1ML+
Λ(A):

α ≡1
∨
{∇(TχA)Γ | PA,Γ, id 
1 α}, (2)

where (PA,Γ, id) denotes the canonical one-step A-model on the set PA.
For a proof of the left-to-right direction of (2), assume that S, σ,m 
1 α. It is easy to derive

from this that PA, (Tm)σ, id 
1 α, so that Γ := (Tm)σ ∈ TPA provides a candidate disjunct on the
right hand side of (2). It remains to show that S, σ,m 
1 ∇(TχA)(Tm)σ, but this is immediate by
definition of the semantics of ∇.

For the opposite direction of (2), let Γ ∈ TPA be such that PA,Γ, id 
1 α. In order to show that
∇(TχA)Γ �1 α, let (S, σ,m) be a one-step model such that S, σ,m 
1 ∇(TχA)Γ. Without loss of
generality we may assume that (S, σ,m) = (PA,∆, id) for some ∆ ∈ TPA.

By the semantics of ∇ it then follows from PA,∆, id 
1 ∇(TχA)Γ that (∆, (TχA)Γ) ∈ T(
0). But
since (B,χA(C)) ∈ 
0 implies that C ⊆ B, we easily obtain that (Γ,∆) ∈ T(⊆).

Claim 1 Let (S, σ,m) and (S′, σ′,m′) be two one-step models, and let Z ⊆ S × S′ be a relation such
that (σ, σ′) ∈ TZ, and m(s) ⊆ m′(s′), for all (s, s′) ∈ Z. Then for all α ∈ 1ML+

Λ(A):

S, σ,m 
1 α implies S′, σ′,m′ 
1 α.

Finally, it is easy to see that the claim is applicable to the one-step models (PA,Γ, id) and (PA,∆, id),
and the relation ⊆. Hence it follows from PA,Γ, id 
1 α that PA,∆, id 
1 α. qed

5



Graded modal logic Our main motivating example to introduce disjunctive bases is graded modal
logic. The bag functor does preserve weak pullbacks, and so its Moss modalities are disjunctive, and
the set of all monotone liftings for B does admit a disjunctive basis as an instance of Proposition 3.3.
Note, however, that this proposition does not apply to graded modal logic, since the signature ΣB

is not expressively complete; this was essentially shown in [17]. It was observed already in [1] that
very simple formulas in the one-step language 1MLΣB

are impossible to express in the (finitary) Moss
language; consequently, the Moss modalities for the bag functor are not suitable to provide disjunctive
normal forms for graded modal logic. Still, the signature ΣB does have a disjunctive basis.

Definition 3.4 We say that a one-step model for the finite bag functor is Kripkean if all states have
multiplicity 1. Note that a Kripkean one-step model (S, σ,m) can also be seen as a structure (in the
sense of standard first-order model theory) for a first-order signature consisting of a monadic predicate
for each a ∈ A: Simply consider the pair (S, Vm), where Vm : A → PS is the interpretation given by
putting Vm(a) := {s ∈ S | a ∈ m(s)}. We consider special basic formulas of monadic first-order logic
of the form:

γ(a,B) := ∃x(diff(x) ∧
∧
i∈I

ai(xi) ∧ ∀y(diff(x, y)→
∨
b∈B

b(y)))

It is not hard to see that any Kripkean one-step B-model (S, σ,m) satisfies:

S, σ,m 
1 γ(a,B) implies S, σ,m′ 
1 γ(a,B) for some m′ ⊆ m with Ran(m′) ⊆ P≤1A. (3)

We can turn the formula γ(a,B) into a modality ∇(a;B) that can be interpreted in all one-step

B-models, using the observation that every one-step B-frame (S, σ) has a unique Kripkean cover (S̃, σ̃)

defined by putting S̃ :=
⋃
{s×σ(s) | s ∈ S}, and σ̃(s, i) := 1 for all s ∈ S and i ∈ σ(s) (where we view

each finite ordinal as the set of all smaller ordinals). Then we can define, for an arbitrary one-step
B-model (S, σ)

S, σ,m 
1 ∇(a;B) if S̃, σ̃,m ◦ πS 
1 γ(a,B), (4)

where πS is the projection map πS : S̃ → S. It is then an immediate consequence of (3) that ∇(a;B)
is a disjunctive formula. �

Theorem 3.5 The collection DB provides a disjunctive basis for the signature ΣB.

As far as we know, this result is new. The hardest part in proving it is actually not to show that the
language DB is distributive over ΣB or that it admits a distributive law (these are easy exercises that
we leave to the reader), but to show that formulas in DB(A) can be expressed as one-step formulas
in 1ML+

ΣB
(A). The reason that this is not so easy is subtle; by contrast, it is fairly straightforward

to show that formulas in DB(A) can be expressed in 1MLΣB
(A), using Ehrenfeucht-Fräıssé games, see

e.g. Fontaine & Place [7]. However, a proper disjunctive basis as we have defined it has to consist of
positive formulas, and this will be crucial for applications to modal fixpoint logics1.

Proposition 3.6 Every formula ∇(a;B) ∈ DB is one-step equivalent to a formula in 1MLΣB
(A).

Our main tool in proving this proposition will be Hall’s Marriage Theorem, which can be formulated
as follows. A matching of a bi-partite graph G = (V1, V2, E) is a subset M of E such that no two
edges in M share any common vertex. M is said to cover V1 if DomM = V1.

1The same subtlety appears in Janin & Lenzi [9], where the translation of the language DB into 1ML+
ΣB

is required

to prove that the graded µ-calculus is equivalent, over trees, to monadic second-order logic. Proposition 3.6 in fact fills
a minor gap in this proof.
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Fact 3.7 (Hall’s Marriage Theorem) Let G be a finite bi-partite graph, G = (V1, V2, E). Then G
has a matching that covers V1 iff, for all U ⊆ V1, |U | ≤ |E[U ]|, where E[U ] is the set of vertices in V2

that are adjacent to some element of U .

Proof of Proposition 3.6 We will show this for the simple case where B is a singleton {b}. The
general case is an immediate consequence of this (consider the substitution B 7→

∨
B).

Where a = (a1, . . . , an), define I := {1, . . . , n}. For each subset J ⊆ I, let χJ be the formula

χJ := 3|J|
∨
i∈J

ai ∧2n+1−|J|(
∨
i∈J

ai ∨ b),

and let γ be the conjunction γ :=
∧
{χJ | J ⊆ I}. What the formula χJ says about a Kripkean

(finite) one-step model is that at least |J | elements satisfy the disjunction of the set {ai | i ∈ J}, while
all but at most n − |J | elements satisfy the disjunction of the set {ai | i ∈ J} ∪ {b}. Abbreviating
∇(a;b) := ∇(a;{b}), we claim that

γ ≡1 ∇(a;b), (5)

and to prove this it suffices to consider Kripkean one-step models.
It is straightforward to verify that the formula γ is a semantic one-step consequence of ∇(a;b).

For the converse, consider a Kripkean one-step model (S, σ,m) in which γ is true. Let K be an index
set of size |S| − n, and disjoint from I. Clearly then, |I ∪ K| = |I| + |K| = |S|. Furthermore, let
ak := b, for all k ∈ K. To apply Hall’s theorem, we define a bipartite graph G := (V1, V2, E) by setting
V1 := I ∪K, V2 := S, and E := {(j, s) ∈ (I ∪K)× S | aj ∈ m(s)}.

Claim 1 The graph G has a matching that covers V1.

Proof of Claim We check the Hall marriage condition for an arbitrary subset H ⊆ V0. In order to
prove that the size of E[H] is greater than that of H itself, we consider the formula χH∩I . We make
a case distinction.

Case 1: H ⊆ I. Then χH∩I = χH implies 3|H|
∨
i∈H ai. This means that at least |H| elements of

S satisfy at least one variable in the set {ai | i ∈ H}. By the definition of the graph G, this is just
another way of saying that |H| ≤ |E[H]|, as required.

Case 2: H ∩K 6= ∅. Let J := H ∩ I, then the formula χH∩I = χJ implies the formula

2n+1−|J|(
∨
j∈J

aj ∨ b).

Now, if s ∈ S satisfies either b or some aj for j ∈ J , then by the construction of G we have s ∈ E[H].
We now see that |S \ E[H]| ≤ n− |J |. Hence we get:

|E[H]| ≥ |S| − (n− |J |) = |S| − n+ |J |.

But note that H = J ∪ (H ∩K), so that we find

|H| ≤ |J |+ |H ∩K| ≤ |J |+ |K| = |J |+ (|S| − n),

From these two inequalities it is immediate that |H| ≤ |E[H]|, as required. J

Now consider a matching M that covers V1. Since the size of the set V1 is the same as that of V2,
any matching M of G that covers V1 is (the graph of) a bijection between these two sets. Furthermore,
it easily follows that such an M restricts to a bijection between I and a subset {s1, ..., sn} of S such
that ai ∈ m(si) for each i ∈ I, and that b ∈ m(t) for each t /∈ {u1, ..., un}. Hence ∇(a;b) is true in
(S, σ,m), as required. J

This concludes the proof of Theorem 3.5.
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An example without weak pullback preservation There are also functors that do not preserve
weak pullbacks, but do have a disjunctive basis. As an example of this, consider the subfunctor P2/3

of P3 given by:
P2/3S = {(Z0, Z1, Z2) | Z0 ∩ Z1 6= ∅ or Z1 ∩ Z2 6= ∅}.

While it is easy to show that this functor does not preserve weak pullbacks, The signature ΣP3 (regarded
as a set of liftings for P2/3 rather than P3) still admits a disjunctive basis.

A non-example Finally, we provide an example of a signature that does not admit any disjunctive
basis:

Proposition 3.8 The signature Σ consisting of the box- and diamond liftings for M does not have a
disjunctive basis.

Proof. Let L be the standard relation lifting for the monotone neighborhood functor. Given two
one-step models X, ξ,m and X ′, ξ′,m′ over a set of variables A, we write u � u′ if m(u) ⊆ m′(u′) for
u ∈ X and u′ ∈ X ′, and we say that X ′, ξ′,m′ simulates X, ξ,m if (ξ, ξ′) ∈ L(�). A straightforward
proof will verify the following claim.

Claim 1 If X ′, ξ′,m′ simulates X, ξ,m then for every one-step formula α ∈ 1ML+
Λ(A), X, ξ,m 
1 α

implies X ′, ξ′,m′ 
1 α.

Given a set A, let ηA : A→ PA denote the map given by the unit of the powerset monad, i.e. it is
the singleton map ηA : a 7→ {a}. Furthermore, recall that ∧A is the subsitution mapping B ∈ PA to∧
B.

Claim 2 Let α be any one-step formula in 1MLΛ(PA) and let (X, ξ,m) be a one-step model with
m : X → PA. Consider the map ηPA : PA → PPA, so that ηPA ◦m is a marking of X with variables
from PA.

1. If X, ξ, ηPA ◦m 
1 α then X, ξ,m 
1 α[∧A].

2. If X, ξ,m 
1 α[∧A] and the empty set does not appear as a variable in α, and furthermore m(u)
is a singleton for each u ∈ X, then X, ξ, ηPA ◦m 
1 α.

Proof of Claim For the first part of the proposition, it suffices to note that [[B]]1ηPA◦m ⊆ [[
∧
B]]1m

for each B ∈ PA, and the result then follows by monotonicity of the predicate lifting corresponding to
the one-step formula α.

For the second part, it suffices to note that under the additional constraint that m(u) is a singleton
for each u ∈ X and the empty set does not appear as a variable in α, we have [[

∧
B]]1m ⊆ [[B]]1ηPA◦m

for each B ∈ PA that appears as a variable in α. To prove this, suppose that u ∈ [[
∧
B]]1m. Since B

appears in α it is non-empty, and since m(u) is a singleton, say m(u) = {b}, it follows that we must
in fact have B = {b}. Hence:

B ∈ {{b}} = {m(u)} = ηPA(m(u))

so u ∈ [[B]]1ηPA◦m as required. J

Now, let A = {a, b, c} and consider the formula ψ = ∇{{a, b}, {c}}. If 1MLΛ admits a disjunctive
basis, then there is a disjunctive formula δ in 1MLΛ(PA) such that ψ = δ[∧A].

So suppose δ ∈ 1MLΛ(PA) is disjunctive, and suppose that ψ = δ[∧A]. We may in fact assume
w.l.o.g. that the empty set does not appear as a variable in δ, since otherwise we just use instead the
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formula δ[>/∅], which is still disjunctive (this is easy to prove). We have δ[>/∅][∧A] = δ[∧A] since
∧A(∅) =

∧
∅ = >.

With this in mind, consider the one-step modelX, ξ,m whereX = {x1, x2, x3}, ξ = {{x1, x2}, {x3}, X}
and m(x1) = {a}, m(x2) = {b} and m(x3) = {c}. It is easy to see that X, ξ,m 
1 ψ, so by assumption
X, ξ,m 
1 δ[∧A]. But since the marking m maps every element of X to a singleton, item 2 of Claim 2
gives us that X, ξ, ηPA ◦m 
1 δ.

Now, define a new one-step modelX, ξ, h where as beforeX = {x1, x2, x3} and ξ = {{x1, x2}, {x3}, X}
but where the marking h : X → PPA (with respect to variables in PA) is defined by setting
h(x1) = {{a}}, h(x2) = {{a}, {c}} and h(x3) = {{c}}. It is a matter of simple verification to
check that X, ξ, h in fact simulates X, ξ, ηPA ◦m, so by Proposition 1 we get X, ξ, h 
1 δ.

Since δ is disjunctive, there should be a one-step model X ′, ξ′, h′ and a map f : X ′ → X such that:
X ′, ξ′, h′ 
1 δ, Mf(ξ′) = ξ, h′(u) ⊆ h(f(u)) for all u ∈ X ′ and h′(u) is at most a singleton for each
u ∈ X ′. By monotonicity of δ we can in fact assume w.l.o.g. that h′(u) is precisely a singleton for each
u ∈ X ′: if h′(u) = ∅, just pick some element e of h(f(u)) (since h(v) is non-empty for each v ∈ X)
and set h′(u) = {e}. The resulting marking still satisfies all the conditions above.

But this means that we can define a marking n : X ′ → PA by taking each n(u) for u ∈ X ′ to be
the unique B ⊆ A such that h′(u) = {B}. Clearly, h′ = ηPA ◦n, so by the first part of Claim 2, we get
X ′, ξ′, n 
1 δ[∧A], hence X ′, ξ′, n 
1 ψ, i.e. X ′, ξ′, n 
1 ∇{{a, b}, {c}}. But from the definition of the
marking h, the condition that h′(u) ⊆ h(f(u)) for all u ∈ X ′ and from the definition of n it is clear
that, for all u ∈ X ′, we have n(u) = {a} or n(u) = {c}. So to finally reach our desired contradiction,
it suffices to prove the following.

Claim 3 Let X, ξ,m be any one-step model such that X, ξ,m 
1 ∇{{a, b}, {c}}. Then either there is
some u ∈ X with {a, c} ⊆ m(u), or there is some u ∈ X with b ∈ m(u).

Proof of Claim Suppose there is no u ∈ X with b ∈ m(u). Then there is some set Z ∈ ξ such that
every v ∈ Z satisfies a. Furthermore there must be some B ∈ ξ such that every l ∈ B is satisfied by
some member of Z. The only choice possible for this is {c}, hence some member of Z must satisfy
both a and c. J

This finishes the proof of Proposition 3.8. qed

4 Disjunctive automata and simulation

We now introduce disjunctive automata, which serve as a coalgebraic generalization of non-deterministic
automata for the modal µ-calculus.

Definition 4.1 A (Λ, X)-automaton A = (A,Θ,Ω, aI) is said to be disjunctive (relative to a disjunctive
basis D) if Θ(c, a) ∈ D(A), for all colors c ∈ PX and all states a ∈ A. �

Definition 4.2 Let A be a Λ-automaton and let (S, sI) be a pointed T-model. A strategy f for ∃ in
A(A,S)@(a, s) is separating if for every s in S there is at most one state a in A such that the position
(a, s) is f -reachable (i.e., occurs in some f -guided match). We say that A strongly accepts (S, sI),
notation: S, sI 
s A if ∃ has a separating winning strategy in the game A(A,S)@(a, s). �

Disjunctive automata are very well behaved. For instance, the following result, which can be proved
using essentially the same argument as in [20], states a linear-size model property.

Theorem 4.3 Let A = (A,Θ, aI ,Ω) be a disjunctive automaton for a set functor T. If A accepts
some pointed T-model, then it accepts one of which the carrier S satisfies S ⊆ A.
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The main property of disjunctive automata, which we will use throughout the remainder of this
paper, is the following.

Proposition 4.4 Let A be a disjunctive Λ-automaton. Then any pointed T-model which is accepted
by A has a pre-image model which is strongly accepted by A.

Proof. Let S = (S, σ, V ) be a pointed T-model, let sI ∈ S, and let f be a winning strategy for ∃
in the acceptance game A := A(A,S)@(aI , sI); without loss of generality we may assume that f is
positional. We will construct (i) a pointed T-model (X, ξ,W, xI), (ii) a tree (X,R) which is rooted at
xI (in the sense that for every t ∈ X there is a unique R-path from xI to x) and supports (X, ξ) (in
the sense that ξ(x) ∈ TR(x), for every x ∈ X), (iii) a morphism h : (X, ξ,W ) → (S, σ, V ) such that
h(xI) = sI . In addition (X, ξ,W, xI) will be strongly accepted by A.

More in detail, we will construct all of the above step by step, and by a simultaneous induction
we will associate, with each t ∈ X of depth k, a (partial) f -guided match Σt of length 2k + 1; we will
denote the final position of Σt as (at, st), and will define h(t) := st.

For the base step of the construction we take some fresh object xI , we define ΣxI
to be the match

consisting of the single position (aI , sI), and set h(xI) := sI .
Inductively assume that we are dealing with a node t ∈ X of depth k, and that Σt, at and st are as

described above. Since Σt is an f -guided match and f is a winning strategy in A, the pair (at, st) is a
winning position for ∃ in A. In particular, the marking mt : S → PA prescribed by f at this position
satisfies

S, σ(st),mt 

1 Θ(V [(st), at).

Now by disjunctiveness of the automaton A there is a set R(t) (that we may take to consist of fresh
objects), an object ξ(t) ∈ TR(t), an A-marking m′t : R(t)→ PA and a map ht : R(t)→ S, such that2

|m(u)| = 1 and m′t(u) ⊆ mt(ht(u)) for all u ∈ R(t), (Tht)ξ(t) = σ(st) and

R(t), ξ(t),m′t 

1 Θ(V [(st), at).

Let au be the unique object such that m′t(u) = {au}, define su := ht(u), and put Σu := Σt ·mt ·(au, su).
With (X,R, xI) the tree constructed in this way, and observing that ξ(t) ∈ R(t) ⊆ X, we let ξ be

the coalgebra map on X. Taking h : X → S to be the union (xI , sI) ∪ {ht | t ∈ X}, we can easily
verify that h is a surjective coalgebra morphism. Finally, we define the valuation W : X → PX by
putting W (p) := {x ∈ X | hx ∈ V (p)}.

It remains to show that A strongly accepts the pointed T-model (X, xI), with X = (X, ξ,W ); for
this purpose consider the following (positional) strategy f ′ for ∃ in A(A,X). At a position (a, t) ∈
A × X such that a 6= at ∃ moves randomly (we may show that such a position will not occur);
on the other hand, at a position of the form (at, t), the move suggested by the strategy f ′ is the
marking m′t. Then it is obvious that f ′ is a separating strategy; to see that f ′ is winning from
starting position (aI , xI), consider an infinite match Σ of A(A,X)@(aI , xI) (finite matches are left
to the reader). It is not hard to see that Σ must be of the form Σ = (a0, x0)m′x0

(a1, x1)m′x1
· · · ,

where Σ− = (a0, h(s0))mx0(a1, h(s1))mx1 · · · is an f -guided match of A. From this observation it is
immediate that Σ is won by ∃. qed

We now come to our main application of disjunctive bases, and fill in the main missing piece in
the theory of coalgebraic automata based on predicate liftings: a simulation theorem.

Theorem 4.5 (Simulation) Let Λ be a monotone modal signature for the set functor T and assume
that Λ has a disjunctive basis. Then there is an effective construction transforming an arbitrary Λ-
automaton A into an equivalent disjunctive Λ-automaton sim(A).

2To simplify our construction, we strengthen clause (3) in Definition 3.1. This is not without loss of generality, but
we may take care of the general case using a routine extension of the present proof.
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Proof. Assume that D is a disjunctive basis for Λ, and let A = (A,Θ,Ω, aI) be a Λ-automaton.
Our definition of sim(A) is rather standard [21], so we will confine ourselves to the definitions. The
construction takes place in two steps, a ‘pre-simulation’ step that produces a disjunctive automaton
pre(A) with a non-parity acceptance condition, and a second ‘synchronization’ step that turns this
nonstandard disjunctive automaton into a standard one.

We define the pre-simulation automaton of A as the structure pre(A) := (A],Θ],NBTA, RI), where
the carrier of the pre-simulation pre(A) of A is the collection A] of binary relations over A, and
the initial state RI is the singleton pair {(aI , aI)}. For its transition function, first define the map
Θ? : A× PX→ 1ML+

Λ(A×A) by putting, for a ∈ A and c ∈ PX:

Θ?(a, c) := Θ(a, c)[θa],

where θa : A → Latt(A × A) is the tagging substitution given by θa : b 7→ (a, b). Now, given a state
R ∈ A] and color c ∈ PX, take Θ](R, c) to be an arbitrary but fixed formula in D(A]) such that

Θ](R, c)[∧A×A] ≡
∧

a∈RanR

Θ?(a, c).

Clearly such a formula exists by our assumption on D being a disjunctive basis for Λ.
Turning to the acceptance condition, define a trace on an A]-stream ρ = (Rn)0≤n<ω to be an

A-stream α = (an)0≤n<ω with Riaiai+1 for all i ≤ 0. Calling such a trace α bad if max{Ω(a) |
a occurs infinitely often in α} is odd, we obtain the acceptance condition of the automaton pre(A) as
the set NBTA ⊆ (A])ω of A]-streams that contain no bad trace.

Finally we produce the simulation of A by forming a certain kind of product of pre(A) with Z, where
Z = (Z, δ,Ω′, zI) is some deterministic parity stream automaton recognizing the ω-regular language
NBTA. More precisely, we define sim(A) := (A] × Z,Θ′′,Ω′′, (RI , zI)) where:

- Θ′′(R, z) := Θ](R)[(Q, δ(R, z)/Q | Q ∈ A]] and
- Ω′′(R, z) := Ω′(z).

The equivalence of A and sim(A) can be proved by relatively standard means [21]. qed

5 Lyndon theorems

Lyndon’s classical theorem in model theory provides a syntactic characterization of a semantic prop-
erty, showing that a formula is monotone in a predicate P if and only if it is equivalent to a formula
in which P occurs only positively. A version of this result for the modal µ-calculus was proved by
d’Agostino and Hollenberg in [3]. Here, we show that their result holds for any µ-calculus based on a
signature that admits a disjunctive basis.

We first turn to the one-step version of the Lyndon Theorem, for which we need the following
definition; we also recall the substitutions ∧A and ∨A defined in section 2.

Definition 5.1 A propositional A-type is a subset of A. For B ⊆ A and a ∈ A, the formulas τB and
τa+
B are defined by:

τB :=
∧
B ∧

∧
{¬a | a ∈ A \B}

τa+
B :=

∧
B ∧

∧
{¬b | b ∈ A \ (B ∪ {a})}

We let τ and τa+ denote the maps B 7→ τB and B 7→ τa+
B , respectively. �

Proposition 5.2 Suppose Λ admits a disjunctive basis. Then for any formula α in 1MLΛ(A) there is
a one-step equivalent formula of the form δ[∨PA][τ ] for some δ ∈ D(PA).
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Proof. Let’s first check that everything is correctly typed: note that we have ∨PA : PA→ Bool(PA)
and so δ[∨PA] ∈ 1MLΛ(PA), and τPA : PA→ Bool(A). So δ[∨PA][τ ] ∈ 1MLΛ(A), as required.

For the normal form proof, first note that we can use boolean duals of the modal operators to push
negations down to the zero-step level. Putting the resulting formula in disjunctive normal form, we
obtain a disjunction of formulas of the form ♥λ1

π1∧...∧♥λk
πk, where π1, ..., πk ∈ Bool(A). Repeatedly

applying the distributivity of D over Λ and the distributive law for D, we can rewrite each such disjunct
as a formula of the form δ[σ] where δ ∈ D({1, ..., k}) and σ : {1, ..., k} → Bool(A) is defined by setting
i 7→ πi. Now, just apply propositional logic to rewrite each formula πi as a disjunction of formulas in
τ [PA], and we are done. qed

Theorem 5.3 (One-step Lyndon theorem) Let Λ be a monotone modal signature for the set func-
tor T and assume that Λ has a disjunctive basis. Any α ∈ 1MLΛ(A), monotone in the variable a ∈ A,
is one-step equivalent to some formula in 1MLΛ(A), which is positive in a.

Proof. By Proposition 5.2, we can assume that α is of the form δ[∨PA][τ ] for some δ ∈ D(PA). Clearly
it suffices to show that :

δ[∨PA][τ ] ≡1 δ[∨PA][τa+]

One direction, from left to right, is easy since δ[∨PA] is a monotone formula in 1MLΛ(PA), and [[τB ]]0m ⊆
[[τa+
B ]]0m for each B ⊆ A and each marking m : X → PA.

For the converse direction, suppose X, ξ,m 
1 δ[∨PA][τa+]. We define a PA-marking m0 : X →
PPA by setting m0(u) := {B ⊆ A | B �a m(u)}, where the relation �a over PA is defined by B �a B′
iff B \ {a} = B′ \ {a}, and a /∈ B or a ∈ B′. We claim that X, ξ,m0 
1 δ[∨PA]. Since δ[∨PA] is a
monotone formula, it suffices to check that [[τa+

B ]]0m ⊆ [[B]]0m0
for each B ⊆ A. This follows by just

unfolding definitions.
Since δ was disjunctive, so is δ[∨PA], as an easy argument will reveal. So we now find a one-step

frame morphism f : (X ′, ξ′)→ (X, ξ), together with a marking m′ : X ′ → PPA such that |m′(u)| ≤ 1
and m′(u) ⊆ m0(f(u)) for all u ∈ X ′, and such that X ′, ξ′,m′ 
1 δ[∨PA]. We define a new A-
marking m′′ : X ′ → PA on X ′ by setting m′′(u) = B, if m′(u) = {B}, and m′′(u) = m(f(u)) if
m′(u) = ∅. Note that, for each B ⊆ A, we have [[B]]0m′ ⊆ [[τB ]]0m′′ , so by monotonicity of δ[∨PA] we get
X ′, ξ′,m′′ 
1 δ[∨PA][τ ].

If we compare the markings m′′ and m ◦ f , we see that m′′(u) �a m(f(u)) for all u ∈ X ′. If
m′(u) = ∅, then in fact m′′(u) = m(f(u)) by definition of m′′. If m′(u) = {B}, then m′′(u) = B ∈
m′(u) ⊆ m0(f(u)), hence B �a m(f(u)) by definition of m0. Since δ[∨PA][τ ] was monotone with
respect to the variable a it follows that X ′, ξ′,m ◦ f 
1 δ[∨PA][τ ] and so X, ξ,m 
1 δ[∨PA][τ ] by
naturality, thus completing the proof of the theorem. qed

A useful corollary to this theorem is that, given an expressively complete set Λ of predicate liftings
for a functor T, the language µMLΛ has the same expressive power as the full language µMLT. At first
glance this proposition may seem trivial, but it is important to see that it is not: given a formula ϕ of
µMLT, a naive definition of an equivalent formula in µMLΛ would be to apply expressive completeness to
simply replace each subformula of the form ♥λ(ψ1, ..., ψn) with an equivalent one-step formula α over
{ψ1, ..., ψn}, using only predicate liftings in Λ. But if this subformula contains bound fixpoint variables,
these must still appear positively in α in order for the translation to even produce a grammatically
correct formula! We need the stronger condition of Lyndon completeness for Λ. Generally, we have
no guarantee that expressive completeness entails Lyndon completeness, but in the presence of a
disjunctive basis, we do: this is a consequence of Theorem 5.3.

Corollary 5.4 Suppose Λ is an expressively complete set of monotone predicate liftings for T. If Λ
admits a disjunctive basis, then Λ is Lyndon complete and hence µMLΛ ≡ µMLT.
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Proof. The simplest proof uses automata: pick a modal Λ′-automaton A, where Λ′ is the set of all
monotone predicate liftings for T, and apply expressive completeness to replace each formula α in the
co-domain of the transition map Θ with an equivalent one-step formula α′ using only liftings in Λ.
This is formula still monotone in all the variables in A since it is equivalent to α, so we can apply
the one-step Lyndon Theorem 5.3 to replace α′ by an equivalent and positive one-step formula β in
1MLΛ(A). Clearly, the resulting automaton A′ will be semantically equivalent to A. qed

We now turn to our Lyndon Theorems for the full coalgebraic modal (fixpoint) languages. Let
(µMLΛ)Mp and (MLΛ)Mp denote the fragments of respectively µML and MLΛ, consisting of the formulas
that are positive in the proposition letter p.

Theorem 5.5 (Lyndon Theorem) There is an effective translation (·)Mp : µMLΛ → (µMLΛ)Mp , which

restricts to a map (·)Mp : MLΛ → (MLΛ)Mp , and satisfies that

ϕ ∈ µML is monotone in p iff ξ ≡ ξMp .

Proof. By the equivalence between formulas and Λ-automata and the Simulation Theorem, it suffices
to prove the analogous statement for disjunctive coalgebra automata.

Given a disjunctive Λ-automaton A = (A,Θ,Ω, aI), we define AMp to be the automaton (A,ΘM
p ,Ω, aI),

where

ΘM
p (c, a) :=

{
Θ(c, a) if p ∈ c
> if p 6∈ c.

Clearly AMp is a disjunctive automaton as well, and it is routine to show that AMp is equivalent to a
formula in µMLΛ that is positive in the variable p.

We claim that A is monotone in p iff A ≡ AMp . Leaving the direction from right to left to the
reader, we prove the opposite implication. So assume that A is monotone in p. Since it is easy to see
that AMp always implies A, we are left to show that AMp implies A, and since AMp is disjunctive, by
Proposition 4.4 and invariance of acceptance by coalgebra automata it suffices to prove the following:

S, sI 
s AMp implies S, sI 
 A, (6)

for an arbitrary T-model (S, sI).
To prove (6), let f be a separating winning strategy for ∃ in AM := A(AMp ,S)@(aI , sI). Our aim

is to find a subset U ⊆ V (p) such that S[p 7→ U ], si 
 A; it then follows by mononotonicity that
S, sI 
 A. Call a point s ∈ S f -accessible if there is a (by assumption unique) state as such that the
position (as, s) is f -reachable in AM . We define U as the set of accessible elements of V (p), and let
VU abbreviate V [p 7→ U ]. We claim that

if s is f -accessbible then S, σ(s),ms 

1 Θ(V [U (s), as), (7)

where ms is the A-marking provided by f at position (as, s). To see why (7) holds, note that for
any f -accessbible point s, the marking ms is a legitimate move at position (as, s), since f is assumed
to be winning for ∃ in AM . In other words, we have S, σ(s),ms 
1 ΘM

p (V [(s), as). But then (7) is

immediate by the definitions of ΘM
p and U .

Finally, it is straightforward to derive from (7) that f itself is a (separating) winning strategy for
∃ in the acceptance game A(A,S) initialized at (aI , sI). qed

Remark 5.6 Observe that as a corollary of Theorem 5.5 and the decidability of the satisfiability
problem of µMLΛ [2], it is decidable whether a given formula ϕ ∈ µML is monotone in p. �
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6 Uniform Interpolation

Uniform interpolation is a very strong form of the interpolation theorem, first proved for the modal
µ-calculus in [3]. It was later generalized to coalgebraic modal logics in [15]. However, the proof
crucially relies on non-deterministic automata, and for that reason the generalization in [15] is stated
for nabla-based languages. With a simulation theorem for predicate liftings based automata in place,
we can prove the uniform interpolation theorem for a large class of µ-calculi based on predicate liftings.

Definition 6.1 Given a formula ϕ ∈ µMLΛ, we let Xϕ denote the set of proposition letters occurring
in ϕ. Given a set X of proposition letters and a single proposition letter p, it may be convenient to
denote the set X ∪ {p} as Xp. �

Definition 6.2 A logic L with semantic consequence relation |= is said to have the property of uniform
interpolation if, for any formula ϕ ∈ L and any set X ⊆ Xϕ of proposition letters, there is a formula
ϕX ∈ L(X), effectively constructible from ϕ, such that

ϕ |= ψ iff ϕX |= ψ, (8)

for every formula ψ ∈ L such that Xϕ ∩ Xψ ⊆ X. �

To see why this property is called uniform interpolation, it is not hard to prove that, if ϕ |= ψ,
with Xϕ ∩ Xψ ⊆ X, then the formula ϕX is indeed an interpolant in the sense that ϕ |= ϕX |= ψ and
XϕX
⊆ Xϕ ∩ Xψ.

Theorem 6.3 (Uniform Interpolation) Let Λ be a monotone modal signature for the set functor
T and assume that Λ has a disjunctive basis. Then both logics MLΛ and µMLΛ enjoy the property of
uniform interpolation.

Following D’Agostino & Hollenberg [3], we prove Theorem 6.3 by automata-theoretic means. The
key proposition in our proof is Proposition 6.5 below, which refers to the following construction on
disjunctive automata.

Definition 6.4 Let X be a set of proposition letters not containing the letter p. Given a disjunctive
(Λ, Xp)-automaton A = (A,Θ,Ω, aI), we define the map Θ∃p : A× PX→ D(A) by

Θ∃p(c, a) := Θ(c, a) ∨Θ(c ∪ {p}, a),

and we let A∃p denote the (Λ, X)-automaton (A,Θ∃p,Ω, aI). �

Proposition 6.5 Let X ⊆ Y be sets of proposition letters, both not containing the letter p. Then for
any disjunctive (Λ, Xp)-automaton A and any pointed T-model (S, sI) over Y:

S, sI 
 A∃p iff S′, s′I 
s A for some Yp-model (S′, s′I) such that S′�Y , s′I → S, sI . (9)

Proof. We only prove the direction from left to right, leaving the other (easier) direction as an exercise
to the reader. For notational convenience we assume that X = Y.

By Proposition 4.4 it suffices to assume that (S, sI) is strongly accepted by A∃p and find a subset
U of S for which we can prove that S[p 7→ U ], sI 
s A. So let f be a separating winning strategy
for ∃ in A(A∃p,S)@(aI , sI) witnessing that S, sI 
s A∃p. Call a point s ∈ S f -accessible if there is a
state a ∈ A such that the position (a, s) is f -reachable; since this state is unique by the assumption
of strong acceptance we may denote it as as. Clearly any position of the form (as, s) is winning for ∃,
and hence by legitimacy of f it holds in particular that

S, σ(s),ms 

1 Θ∃p(V [(s), as),
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wherems : S → PA denotes the marking selected by f at position (as, s). Recalling that Θ∃p(V [(s), as) =
Θ(V [(s), as) ∨Θ(V [(s) ∪ {p}, as), we define

U := {s ∈ S | s is f -accessible and S, σ(s),ms 6
1 Θ(V [(s), as)}.

By this we ensure that, for all f -accessible points s:

s 6∈ U implies S, σ(s),ms 

1 Θ(V [(s), as) (10)

while s ∈ U implies S, σ(s),ms 

1 Θ(V [(s) ∪ {p}, as) (11)

Now consider the valuation VU := V [p 7→ U ], and observe that by this definition we have V [U (s) = V [(s)
if s 6∈ U while V [U (s) = V [(s) ∪ {p} if s ∈ U . Combining this with (10) and (11) we find that

S, σ(s),ms 

1 Θ(V [U , as)

whenever s is f -accessible. In other words, f provides a legitimate move ms in A(A,S)@(as, s) at any
position of the form (as, s). From this it is straightforward to derive that f itself is a (separating)
winning strategy for ∃ in A(A,S[p 7→ U ])@(aI , sI), and so we obtain that S[p 7→ U ], sI 
s A as
required. qed

The remaining part of the argument follows by a fairly standard argument going back to D’Agostino
& Hollenberg [3] (see also Marti et alii [15]), with a twist provided by the fact that the ‘bisimulation
quantifier’ here refers to pre-images rather than to bisimilar models.

Proposition 6.6 Given any proposition letter p, there is a map ∃p on µMLΛ, restricting to MLΛ, such
that X∃p.ϕ = Xϕ \ {p} and, for every pointed (S, sI) over a set Y ⊇ Xϕ with p 6∈ Y:

S, sI 
 ∃p.ϕ iff S′, s′I 
 ϕ for some Yp-model (S′, s′I) such that S′�Y , s′I → S, sI . (12)

Proof. Straightforward by the equivalence between formulas and Λ-automata, the Simulation Theo-
rem, and Proposition 6.5. qed

Proof of Theorem 6.3 With p1, . . . , pn enumerating the proposition letters in Xϕ \ X, set

ϕX := ∃p1∃p2 · · · ∃pn.ϕ.

Then a relatively routine exercise shows that ϕ |= ψ iff ϕY |= ψ, for all formulas ψ ∈ µMLΛ such that
Xϕ ∩ Xψ ⊆ X. Finally, it is not difficult to verify that ϕY is fixpoint-free if ϕ is so; that is, the uniform
interpolants of a formula in MLΛ also belong to MLΛ. J

7 Yoneda representation of disjunctive liftings

It is a well known fact in coalgebraic modal logic that predicate liftings have a neat representation via
an application of the Yoneda lemma. This was explored by Schröder in [19], where it was used among
other things to prove a characterization theorem for the monotone predicate liftings. Here, we apply
the same idea to disjunctive liftings. We shall be working with a slightly generalized notion of predicate
lifting here, taking a predicate lifting over a finite set of variables A to be a natural transformation
λ : P̆A → P̆◦T. Clearly, one-step formulas in 1MLΛ(A) can then be viewed as predicate liftings over A.

Definition 7.1 Let λ : P̆A → P̆ ◦T be a predicate lifting over variables A = {a1, ..., an}. The Yoneda
representation y(λ) of λ is the subset

λPA(truea1 , ..., truean) ∈ PTPA

where trueai = {B ⊆ A | ai ∈ B}. We shall write simply λ ⊆ TPA instead of y(λ). �
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Definition 7.2 Given a set A, let A> be the set A∪ {>}. Let εA ⊆ A> ×PA be the relation defined
by aεAB iff a ∈ B, and >εAB for all B ⊆ A. Let ηA : A> → PA be defined by ηA(a) = {a}, and
ηA(>) = ∅. �

In the remainder of this section we assume familiarity with the Barr relation lifting T associated
with a functor T; see [13] for the definition and some basic properties.

Definition 7.3 A predicate lifting λ ⊆ TPA is said to be divisible if, for all α ∈ λ there is some
β ∈ TA> such that (β, α) ∈ T(εA) and TηA(β) ∈ λ. �

Proposition 7.4 Any disjunctive lifting over A is divisible, and if T preserves weak pullbacks the
disjunctive liftings over A are precisely the divisible ones.

Proof. Suppose λ ⊆ TPA is disjunctive, and pick α ∈ λ. Then PA,α, idPA 
1 λ, so since λ is
disjunctive there are some one-step model (X, ξ,m) and map f : X → PA with m : X → PA,
m(u) ⊆ f(u) for all u ∈ X, Tf(ξ) = α, and |m(u)| ≤ 1 for all u ∈ X. We define a map g : X → A>

by setting g : u 7→ > if m(u) = ∅, g : u 7→ a if m(u) = {a}. We tuple the maps f, g to get a map
〈f, g〉 : X → A> × PA. In fact, since m(u) ⊆ f(u) for all u ∈ X, we have 〈f, g〉 : X → εA. Let
π1 : εA → A> and π2 : εA → PA be the projection maps. We have the following diagram, in which
the two triangles and the outer edges commute (i.e., m = ηA ◦ g).

PA

X

m //

f

77

g
&&

〈f,g〉
// εA

π2

OO

π1

��
A>

ηA

gg
Now apply T to this diagram and define β ∈ TA>

to be T(π1 ◦ 〈f, g〉)(ξ) = Tg(ξ). First, we have
(β, α) ∈ T(εA), witnessed by T(〈f, g〉)(ξ) ∈ TεA. We
claim that TηA(β) ∈ λ. But since X, ξ,m 
1 λ
and m = ηA ◦ g, naturality of λ applied to the
map g : X → A>, gives A>, β, ηA 
1 λ. Another
naturality argument, applied to ηA : (A>, β, ηA) →
(PA,TηA(β), idPA) gives PA,TηA(β), idPA 
1 λ, i.e.,
TηA(β) ∈ λ.

For the converse direction, under the assumption that T preserves weak pullbacks, suppose that
λ is divisible, and suppose X, ξ,m 
1 λ. We get Tm(ξ) ∈ λ and so we find some β ∈ TA> with
β(TεA)Tm(ξ) and TηA(β) ∈ λ. Pick some β′ ∈ TεA with Tπ2(β′) = Tm(ξ) and Tπ1(β′) = β. Let
R, g1, g2 be the pullback of the diagram X → PA← εA, shown in the diagram.

X
m // PA

R

g1

OO

g2
// εA

π2

OO

π1

��
A>

ηA

gg
By weak pullback preservation there is ρ ∈ TR with
Tg1(ρ) = ξ and Tg2(ρ) = β′. The map g1 : (R, ρ)→
(X, ξ) is thus a cover, and we have a marking m′ on
R defined by ηA ◦ π1 ◦ g2 (follow the bottom-right
path in the previous diagram). It is now routine
to check that R, ρ,m′ 
1 λ, and |m′(u)| ≤ 1 and
m′(u) ⊆ m(g1(u)) for all u ∈ R, so we are done.qed

For the moment, we leave the question open, whether a similar characterization of disjunctive
predicate liftings can be proved without weak pullback preservation open. We also leave it as an open
problem to characterize the functors that admit a disjunctive basis.

References

[1] J. Bergfeld. Moss’s coalgebraic logic: Examples and completeness results. Master’s thesis, Insti-
tute for Logic, Language and Computation, University of Amsterdam, 2009.

16
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A Graph games

For reader unfamiliar with the theory of infinite games, we provide some of basic definitions here,
referring to [8] for a survey.

Definition A.1 A board game is a tuple G = (G∃, G∀, E,W ) where G∃ and G∀ are disjoint sets, and,
with G := G∃ ∪ G∀ denoting the board of the game, the binary relation E ⊆ G2 encodes the moves
that are admissible to the respective players, and W ⊆ Gω denotes the winning condition of the game.
In a parity game, the winning condition is determined by a parity map Ω : G → ω with finite range,
in the sense that the set WΩ is given as the set of G-streams ρ ∈ Gω such that the maximum value
occurring infinitely often in the stream (Ωρi)i∈ω is even.

Elements of G∃ and G∀ are called positions for the players ∃ and ∀, respectively; given a position
p for player Π ∈ {∃,∀}, the set E[p] denotes the set of moves that are legitimate or admissible to Π at
p. In case E[p] = ∅ we say that player Π gets stuck at p.

An initialized board game is a pair consisting of a board game G and a initial position p, usually
denoted as G@p. �

Definition A.2 A match of a graph game G = (G∃, G∀, E,W ) is nothing but a (finite or infinite)
path through the graph (G,E). Such a match ρ is called partial if it is finite and E[lastρ] 6= ∅, and full
otherwise. We let PMΠ denote the collection of partial matches ρ ending in a position last(ρ) ∈ GΠ,
and define PMΠ@p as the set of partial matches in PMΠ starting at position p.

The winner of a full match ρ is determined as follows. If ρ is finite, then by definition one of the
two players got stuck at the position last(ρ), and so this player looses ρ, while the opponent wins. If
ρ is infinite, we declare its winner to be ∃ if ρ ∈W , and ∀ otherwise. �

Definition A.3 A strategy for a player Π ∈ {∃,∀} is a map χ : PMΠ → G. A strategy is positional if
it only depends on the last position of a partial match, i.e., if χ(ρ) = χ(ρ′) whenever last(ρ) = last(ρ′);
such a strategy can and will be presented as a map χ : GΠ → G.

A match ρ = (pi)i<κ is guided by a Π-strategy χ if χ(p0p1 . . . pn−1) = pn for all n < κ such that
p0 . . . pn−1 ∈ PMΠ (that is, pn−1 ∈ GΠ). Given a strategy f , we say that a position p is f -reachable
if p occurs on some f -guided partial match. A Π-strategy χ is legitimate in G@p if the moves that it
prescribes to χ-guided partial matches in PMΠ@p are always admissible to Π, and winning for Π in
G@p if in addition all χ-guided full matches starting at p are won by Π.

A position p is a winning position for player Π ∈ {∃,∀} if Π has a winning strategy in the game
G@p; the set of these positions is denoted as WinΠ. The game G = (G∃, G∀, E,W ) is determined if
every position is winning for either ∃ or ∀. �

When defining a strategy χ for one of the players in a board game, we can and in practice will
confine ourselves to defining χ for partial matches that are themselves guided by χ.

Fact A.4 (Positional Determinacy) Let G = (G∃, G∀, E,W ) be a graph game. If W is given by a
parity condition, then G is determined, and both players have positional winning strategies.
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