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Abstract

This thesis is a study of new models related to the Garden-hose model, in
search of new mathematical tools for a better understanding of the Garden-
hose complexity.

After providing a detailed introduction of the Garden-hose model, we intro-
duce an extension of the model that admits multiple parties. In addition to
proving several bounds on the complexity of functions in this new model, we
prove the complexity of the 1-bit, k-player equality function. We sketch the
applicability of the Multiparty Garden-hose model on a natural multidimen-
sional extension of the position-verification scheme that gave rise to the original
Garden-hose model.

Furthermore, we introduce the Leaky Garden-hose model, in which Alice
and Bob receive more information about the water flow. We prove some results
about this model, and define a family of intermediate models where all functions
have a complexity between the Garden-hose complexity and the Leaky Garden-
hose complexity, thus bridging the gap to the Garden-hose model.
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Motivation and Introduction

The subject of this thesis is the Garden-hose model, which has its origin in the
field of position-based cryptography. The goal of this recent field of research in
computer science is to use location as the key for secure communication. For
example, such a cryptographic system would allow the sender of a message to be
able to prove that he is at a specific geographical location. In the analysis of a
position-based quantum cryptographic scheme, a family of attacks was found in
Buhrman et al. [2011] that requires a number of EPR-pairs (a precious resource
in quantum communication). It was found that in order to lower bound the
number of EPR-pairs required in such an attack, there has to exist a function
for which there are no efficient strategies to compute it in the Garden-hose
model. This leads us back to the question “What is the Garden-hose model,
and how are function values computed within that model?”.

The Garden-hose model shares its main setting with the field of communica-
tion complexity, which is as follows. There is a publicly known Boolean function
in two variables f : {0, 1}n × {0, 1}n → {0, 1}, and two parties, Alice and Bob,
who each have access to the value of one variable, x and y respectively. Now,
suppose Alice and Bob are allowed to agree on a protocol before receiving their
inputs x and y. How much communication between Alice and Bob is necessary
before at least one of them is able to compute the value of f(x, y)?

The precise quantification of the necessary communication depends on the
model of communication. In communication complexity, communication con-
sists of sending bit strings back and forth, and it is quantified by the number of
bits exchanged. In the Garden-hose model communication is done differently.

In the Garden-hose model, Alice and Bob have a number of water pipes in
between them, with every pipe having two ends, each pipe end either being
accessible only to Alice, or only to Bob. Alice and Bob are both allowed to
connect pipe ends on their own side, depending on their individual input, and
according to the protocol which they have agreed upon beforehand. Alice then
connects a water tap to one of the pipes, as specified by the protocol, and turns
on the tap. The water will then flow from the tap into the pipes, redirected by
the connections made by Alice and Bob, and eventually it will spill from one of
the pipes: either on Alice’s side, or on Bob’s side. For the protocol to correctly
compute a function f(x, y), the value of the function has to correspond to where
the water spills.

In the Garden-hose model, communication is quantified by the minimum
number of water pipes necessary to ensure that, when using an optimal protocol,
f(x, y) always corresponds to where the water spills. Briefly relating the Garden-
hose model back to the family of attacks on position-based cryptography, the
water pipes correspond to EPR-pairs that Alice and Bob (the adversaries) have
to share in order to successfully execute the attack. We are interested in the
relationship between the number of water pipes necessary and the corresponding
function f , which is named the Garden-hose complexity of f .
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Chapter 1

An Introduction to the
Garden-hose Model

1.1 The Garden-hose Model

First introduced in Buhrman, Fehr, Schaffner, and Speelman [2013], the Garden-
hose model is a communication complexity model, meaning that here is a pub-
licly known Boolean function f(x, y) in two variables, and there are two parties,
Alice and Bob, who have access to the variables x and y respectively. The goal
for Alice and Bob is to compute the value of f , on inputs x, y.

In the Garden-hose model, Alice and Bob share a finite number of water
pipes located between them, which they can pairwise connect on their own side.
The pipe connections on Alice’s side are made depending on the input x that
Alice has, and similar for Bob having input y. The output of the model is
computed by opening the water tap and following the water until it spills from
some pipe end at some player’s side. This either happens at Alice’s side when
f(x, y) = 0, or it happens at Bob’s side if f(x, y) = 1.
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Figure 1.1: A possible combination of pipe connections.

Figure 1.1 above depicts an example where Alice and Bob share six water
pipes, depicted by the waving lines. The pipe connections are depicted by the
curved lines. Alice is always thought to be on the left side in these figures,
and Bob on the right side. Alice has made all connections labeled A, and Bob
connected his ends of the pipes with the edges labeled B. If we then follow the
water from the tap, we see that in this example the water flows to the fourth
pipe, then goes through pipe number two to the first pipe and ends up spilling
on Bob’s side.

1.1.1 Formal definition of the Garden-hose model

Formally, we define the Garden-hose model as a graph, on which certain edges
are connected. This formal definition is added for clarity, even though the
informal definitions of water pipes and pipe connections will be used in most
parts of this thesis.

Let Gm be the graph that describes the m pipes between Alice and Bob,
Gm being a balanced bipartite undirected graph on two independent sets both
of size m that is 1-regular. In simpler terms, it consists of m pairs of connected
vertices which share no other connections, as Figure 1.2 demonstrates for m = 6.
We will identify the left side as Alice’s side and the right side as Bob’s side.

7



Alice Bob

Figure 1.2: Graph G6.

Let m be the number of pipes between Alice and Bob, and let Em
A be the set

of all non-empty∗ sets of pairwise pipe connections that Alice is able to make.
This includes connecting an additional vertex w (the water tap) to one of the
pipes. Similarly, let Em

B be the set of all sets of pairwise pipe connections that
Bob is able to make†.

Formally, we will identify all possible sets of pairwise pipe connections with
the set of involutions of the symmetric group on m or m + 1 elements. Define
Em

A = {σ ∈ S(m + 1) : σ2 = id, σ(w) 6= w} where S(m + 1) is the symmetric
group on m+ 1 elements, the first m elements being the m pipes between Alice
and Bob, and the remaining element being the water tap w. Two pipes, e1 and
e2, are connected on Alice’s side by an involution π ∈ Em

A , if π(e1) = e2. Note
that the identity permutation is not in Em

A , since Alice has to connect the water
tap to some pipe. Similarly, define Em

B = {σ ∈ S(m+ 1) : σ2 = id}.
For example, labeling the three pipes simply with e1, e2, e3 and the water

tap with w we have:

E3
A = {(we1), (we2), (we3), (we1)(e2e3), (we2)(e1e3), (we3)(e1e2)}

Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. A Garden-hose
protocol P = (m,hA, hB) consists of the number of pipes m, corresponding
to the graph Gm, and two functions hA and hB , where hA : {0, 1}n → Em

A

describes which pipe connections are made when Alice has input x ∈ {0, 1}n,
and similar for hB : {0, 1}n → Em

B .
Consider the graph Gm, where additionally, on Alice’s side the vertices are

connected according to hA(x), with one of the vertices connected to an addi-
tional vertex w, the water tap, and on Bob’s side the vertices are connected
according to hB(y). Then compute the longest path within this graph with the
restraint that one of the endpoints of this path is vertex w. This path, which
we will call the water flow path, corresponds to the way the water will flow
when the tap is turned on. We will refer to all pipes that occur in the water
flow path to be wet pipes. Similarly, we will say these pipes became wet on
input (x, y). A dry pipe is a pipe that is not wet. If the other endpoint e,
which is not w, of this longest path is on Alice’s side, we say that the water

∗The water tap has to be connected to some water pipe.
†Which does contain the empty set.

8



spills at Alice’s side (from pipe e). It is easy to see that if this is not the
case, the other endpoint must be a vertex at Bob’s side, and then we say the
water spills at Bob’s side. Similarly, we call a pipe e a spilling pipe if for
some input (x, y) the water spills from pipe e.

Definition 1. A Garden-hose protocol P = (m,hA, hB) computes a Boolean
function f if, on input x, y ∈ {0, 1}n, and on pipe connections hA(x) and hB(y),
the water spills on Alice’s side if f(x, y) = 0 and on Bob’s side if f(x, y) = 1.

Notation. We will write GHspill(hA(x) ∪ hB(y)) = 0 if on pipe connections
hA(x) and hB(y), the water spills on Alice’s side. Similarly, GHspill(hA(x) ∪
hB(y)) = 1 if on pipe connections hA(x) and hB(y), the water spills on Bob’s
side.

It follows that a Garden-hose protocol P = (hA, hB) computes a binary
Boolean function f if GHspill(hA(x) ∪ hB(y)) = f(x, y) for all x, y ∈ {0, 1}n.

1.1.2 The Garden-hose complexity of functions

Definition 2. Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. The
Garden-hose complexity of f , GH(f), is defined to be the minimum number of
pipes needed for a Garden-hose protocol to compute f .

Consider the n-bit equality function EQn : {0, 1}n×{0, 1}n → {0, 1}, where
EQn(x, y) equals 1 if and only if x = y. The Garden-hose protocol depicted in
Figure 1.3 computes EQn using 3n + 1 pipes, and can be found in Speelman
[2011]. Write x as a series of bits x1x2 . . . xn, and write y as y1y2 . . . yn. For
each 1 ≤ i ≤ n, the dashed line labeled xi = 0 indicates a connection made
whenever xi = 0, similar for xi = 1 and for the yi.

The protocol works by checking the equality of x and y bit by bit. When
x = y then the water flows all the way to the bottom, always re-routed by Alice
to the next darker dashed line in Figure 1.3, and ends on Bob’s side, evaluating
EQn(x, y) correctly. When x 6= y then at the first pair of bits xi 6= yi Alice
does not connect the pipe where Bob sent the water to, and so the water spills
on Alice’s side. As this protocol uses 3n+1 pipes, we have shown the following.

Lemma 1 (Speelman [2011]). Let EQn : {0, 1}n × {0, 1}n → {0, 1} be n-bit
equality function. It holds that

GH(EQn) ≤ 3n+ 1

Recent research involving scientific computation has shown that there exist
more efficient protocols for the equality function: see Lemma 4 in Section 1.2.
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Figure 1.3: Garden-hose protocol for EQn.

1.2 The Configuration Matrix

Attempting to connect the Garden-hose model and classical communication
complexity, we consider a configuration matrix Mm as introduced in Chiu,
Szegedy, Wang, and Xu [2014]. This approach resembles the fooling set method
in communication complexity (a lower bound technique, described in Kushile-
vitz and Nisan [1997]); We will see that the number of pipes in an optimal
Garden-hose protocol computing equality is lower bounded by the smallest con-
figuration matrix that does not contain a permutation submatrix of the required
size.

In the configuration matrix Mm, each row and each column corresponds to a
possible set of pipe connections that Alice and Bob respectively can make when
sharing m pipes between them. Each entry (i, j) of the matrix is either 0 or
1 which is determined by taking each i and j to correspond to a unique set of
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pipe connections and letting entry (i, j) equal GHspill(i ∪ j). This means Mm

is of size |Em
A | × |Em

B |, and describes where the water comes out for all possible
combinations of sets of pipe connections of Alice and Bob.

Consider M3 and M4. We label the water tap with 0. The pipes are labeled
simply 1 to 3 (or 4) and we describe the rows and columns by a list of pipe
pairings. We have left out trivial combinations where all pipes are connected as
in this case the water can only come out at the other side. Moreover, the player
connecting all of its pipes will know so beforehand.

M3 =


12 13 23

01 1 1 0
02 1 0 1
03 0 1 1



M4 =



12 13 14 23 24 34

01 1 1 1 0 0 0
02 1 0 0 1 1 0
03 0 1 0 1 0 1
04 0 0 1 0 1 1
01,23 0 0 1 0 0 0
01,24 0 1 0 0 0 0
01,34 1 0 0 0 0 0
02,13 0 0 0 0 1 0
02,14 0 0 0 1 0 0
02, 34 1 0 0 0 0 0
03,12 0 0 0 0 0 1
03, 14 0 0 0 1 0 0
03, 24 0 1 0 0 0 0
04, 12 0 0 0 0 0 1
04, 13 0 0 0 0 1 0
04, 23 0 0 1 0 0 0


Lemma 2 (Chiu, Szegedy, Wang, and Xu [2014]). GH(EQn) ≤ m if and only
if Mm contains a permutation submatrix of size 2n.

Proof. (Chiu, Szegedy, Wang, and Xu [2014]) ( =⇒ ) GH(EQn) ≤ m means
EQn can be computed by using m pipes. Take such a protocol P = (m,hA, hB)
that computes EQn. In the configuration matrix Mm, the intersection of Al-
ice’s configurations {hA(x)|x ∈ {0, 1}n} and Bob’s configurations {hB(y)|y ∈
{0, 1}n} is a permutation submatrix, because the entry (hA(x), hB(y)) is 1 if
and only if x = y.

( ⇐= ) We take the permutation submatrix of size 2n. Then, we label the
rows with elements in {0, 1}n and label the columns with a permutation of
{0, 1}n, such that the intersection of the row labeled with x and the column
labeled y is 1 if and only if x = y. Finally, let hA(x) be the configuration
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indicated by the row labeled with x, and hB(y) be the configuration indicated
by the column labeled y. We claim (m,hA(x), hB(y)) is a protocol computing
EQn. This is proven by the configuration matrix Mm. We can simply look up
in Mm where the water spills on what combinations of sets of pipe connections,
and conclude that the water spills at Alice’s side if x 6= y, and on Bob’s side if
x = y.

This method allows us to compute GH(EQn) for very small n by brute-force
searching through Mm for increasingly bigger m. For example, from M4 we can
learn that the maximum size of a permutation submatrix in M4 is six. This
means that using four pipes is not enough to compute equality on a set of eight
elements, and we can conclude GH(EQ3) ≥ 5.

Leaving the proofs to be described in Chiu, Szegedy, Wang, and Xu [2014],
we present two of the results that this notion of a configuration matrix has lead
to.

Lemma 3 (Chiu, Szegedy, Wang, and Xu [2014]). If there exist m and k such
that Mm contains a permutation submatrix of size k, then it holds that

GH(EQn) ≤ m

log k
· n+O(1)

Proof sketch. The idea here is to show that one can build a protocol for equal-
ity out of smaller protocols that solve equality on smaller input sizes. Specifi-
cally, it is shown that if there exists a permutation submatrix in Mm of size k,
then there exists a permutation submatrix of size kt in Mm·t for every t ∈ N.

Lemma 4 (Chiu, Szegedy, Wang, and Xu [2014]).

GH(EQn) ≤ 28

log 313
· n+O(1) ≈ 1.359n+O(1)

1.3 Known Related Results

The field of communication complexity knows a number of ‘usual suspects’:
functions which are extensively studied for their simple definitions while achiev-
ing high complexity. Exemplary functions are those of equality, (distributed)
majority and inner product. We list definitions of these functions together with
several results of bounds on their Garden-hose complexity.

Additionally, in order to gain a better insight into the context of all results
in this thesis, we list a selection of general results on Garden-hose complexity.
Proofs of the results below are to be found in the cited sources.

• Equality: EQ(x, y) = 1 ⇐⇒ x = y

• Majority: MAJ (x, y) = 1 ⇐⇒
∑

i xi · yi ≥ d
n
2 e
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• Inner Product: IP (x, y) =
∑

i xi · yi mod 2

Lemma 5 (Klauck and Podder [2014]).

GH(MAJ ) ≤ O(n · log3 n)

Lemma 6 (Speelman [2011]).

GH(IP ) ≤ 4n+ 1

Lemma 7 (Buhrman, Fehr, Schaffner, and Speelman [2013]). Every Boolean
function f : {0, 1}n × {0, 1}n → {0, 1} has Garden-hose complexity of at most
2n + 1.

Proof sketch. Use 2n+1 pipes and label them each with an element in {0, 1}n,
with the exception of the last pipe which we will call the reserve pipe. Let
Z(y) = {a ∈ {0, 1}n : f(a, y) = 0}, group this set into pairs, and let Bob
connect all pipes labeled with elements of Z(y) in a pairwise manner according
to this pairing. If |Z(y)| is odd, connect the remaining pipe to the reserve pipe
2n + 1.

Although no function in particular is known to have exponential Garden-hose
complexity, it does exist.

Lemma 8 (Buhrman, Fehr, Schaffner, and Speelman [2013]). There exists a
Boolean function f : {0, 1}n × {0, 1}n → {0, 1} with exponential Garden-hose
complexity.

However, since separating P and L has been an open problem for decades,
the following lemma suggests functions with exponential Garden-hose complex-
ity to either be very hard to find, or not be in P.

Lemma 9 (Buhrman, Fehr, Schaffner, and Speelman [2013]). If f : {0, 1}n ×
{0, 1}n → {0, 1} is in P and GH(f) is superpolynomial, then P 6= L.

The following trick can be used in designing Garden-hose protocols, as it
allows to combine several protocols by using the spilling pipe of one protocol as
a water tap for another protocol. Recall that a pipe e is called a spilling pipe if
for some input (x, y) the water spills from pipe e.

Lemma 10 (One Spilling Pipe Lemma, Klauck and Podder [2014]). Every
Garden-hose protocol P computing a Boolean function f can be converted to a
protocol P ′ which also computes f , but with P ′ constructed such that for all
inputs x, y and corresponding pipe connections hA(x) and hB(y) it holds that:
at Alice’s side there is only one pipe from which the water can spill, and also
on Bob’s side there is only one pipe from which the water can spill. This means
that if the water spills at Alice’s side, it must spill from this one spilling pipe,
and similarly on Bob’s side. The number of pipes in such a protocol P ′ is at
most three times the number of pipes in P plus one.
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Lemma 11 (Buhrman, Fehr, Schaffner, and Speelman [2013]). Every Boolean
function f : {0, 1}n × {0, 1}n → {0, 1} has Garden-hose complexity of at most
2D(f)+1 − 1, where D(f) is the deterministic communication complexity of f .

A general lower bound on the Garden-hose complexity was shown in 2014.

Lemma 12 (Klauck and Podder [2014]). For all Boolean functions f : {0, 1}n×
{0, 1}n → {0, 1},

GH(f) ≥ N(f)− 1

where N(f) is the nondeterministic communication complexity of f .

As shown in Kushilevitz and Nisan [1997] it holds that N(IP ) ≥ n+1, which
results in the following corollary.

Corollary (Klauck and Podder [2014]).

GH(IP ) ≥ n

1.4 The Connection with Position-based Cryp-
tography

The goal of position-based cryptography is to use a geographical location as a
key for performing cryptographic tasks. An important example is the task of
position-verification, where a player, the prover, wants to prove to a group of
(honest) verifiers that he is at a specific location. It was shown in Chandran et al.
[2009] that if different attacking parties are allowed to collaborate, position-
verification cannot be done securely in the classical setting, and later it was
also shown in the quantum setting in Buhrman et al. [2011], assuming the
attackers have unbounded quantum resources. Here, not being able to securely
verify positions means that the attackers can prove that someone is at a specific
location, without any of the attackers located there.

However, as shown in Beigi and König [2011], the general attack that breaks
such a scheme uses an exponential number of EPR-pairs, which renders it prac-
tically impossible to execute. It seems that there exists a trade-off such that
more classical computation done by the honest prover results in more EPR-
pairs necessary to attack the scheme for the dishonest adversaries. In the intro-
duction of the Garden-hose model in Buhrman et al. [2013], the basic scheme

of position-based cryptography studied is PVf
qubit, which is situated in one-

dimensional space and consists of two verifiers V0 and V1 located far apart on a
one-dimensional line, with the prover P somewhere between the verifiers. The
job of the prover P is to deliver a proof of his location to the verifiers V0 and
V1.

The scheme PVf
qubit is as follows. Verifier V0 randomly chooses two n-bit

strings x, y ∈ {0, 1}n and privately sends y to V1. Verifier V0 also prepares an
EPR-pair 1√

2
(|0〉V |0〉P + |1〉V |1〉P ). The output of a publicly known Boolean
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function f{0, 1}n × {0, 1}n → {0, 1} then decides where V0 sends the qubit
in register V to; If f(x, y) = 0, it remains in register V with verifier V0, if
f(x, y) = 1, verifier V0 sends the qubit in register V privately to V1. The
verifiers V0 and V1 then send x and y to the prover, and V0 additionally sends
the qubit in register P to the prover. Everything is sent such that it arrives
at the prover at the same time. Note that this qubit in register P is entangled
with the other qubit, now located at Vf(x,y). In order to satisfyingly answer
the challenge presented by the verifiers, the prover has to correctly transmit the
qubit sent by V0 to verifier Vf(x,y). The response of the prover is verified by
checking whether the qubit arrives in time at Vf(x,y), together with performing
Bell measurements of the received qubit and the other qubit sent to Vf(x,y) by
V0, and checking whether it results in the correct outcome.

This verification uses the location of the prover to ensure an upper bound on
the response time necessary to answer the challenge. It takes a certain amount
of time for the input strings x and y to reach the prover, after which another
stretch of time is needed to send the qubit to the correct verifier, which together
upper bounds the response time of the honest prover. Any adversary trying to
prove to the verifiers that he is at a specific location has to be able to answer
the verifiers within this upper bound.

In an attempt to attack PVf
qubit, we assume two adversaries Alice and Bob

working together, trying to prove to the verifiers that they are at a location L
(this location L being the location of the honest prover P ), without either of
the two adversaries being there. We position Alice between V0 and L, and Bob
between L and V1. The goal for Alice and Bob is to re-route the qubit sent to
L to Vf(x,y), using the strings x, y that are also sent to L. This has to be done
in the same time that the honest prover would take to complete this task. It
follows from their locations that Alice is the first player to receive x and the
qubit sent by V0, and Bob is the first to receive y.

V0 Alice P Bob V1

Figure 1.4: The positioning of the verifiers V0 and V1, the prover P and the
adversaries Alice and Bob, in one-dimensional space.

What they want to achieve is a method such that if f(x, y) = 0, Alice holds
the qubit, and if f(x, y) = 1, Bob holds the qubit. This has to be achieved with-
out loss of time relative to the honest prover: if Alice and Bob first determine
f(x, y) in a classical communication complexity setting, their response time will
be longer than the upper bound on the time the honest prover will take. If
this can be done without losing time, the player in control of the qubit can
then transmit the qubit to Vf(x,y), and that qubit then can travel to the correct
verifier in the same time it would have taken the honest prover to achieve. The
quantum strategy which achieves this goal of attacking PVf

qubit has a one-to-one
correspondence to computing f in the Garden-hose model. This correspondence
was the original motivation for developing the Garden-hose model.
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To execute this attack, Alice and Bob share a number of EPR-pairs (pipes in
the Garden-hose model), which Alice and Bob each can ‘connect’ on their side by
performing Bell measurements, depending on x and y respectively. (Performing
such Bell measurements results in something called entanglement swapping and
works such that if Alice and Bob share two EPR-pairs, and Alice performs Bell
measurements on her two qubits of the two EPR-pairs, then Bob’s qubits of the
two EPR-pairs are entangled afterwards. A detailed introduction to quantum
computation can be found in Nielsen and Chuang [2010].) In the attack, Alice
teleports to Bob the qubit she receives from V0, using the EPR-pair (pipe)
that she wants to connect to the water pipe in the Garden-hose model. Then
after Alice and Bob perform Bell measurements ‘to connect their pipes’ (which
basically results in the qubit to be teleported back and forth), Alice sends x
together with the outcomes of her measurements to Bob. Simultaneously, Bob
sends y together with the outcomes of his measurements to Alice. If a Garden-
hose protocol exists for f , the qubit ends in the hands of the correct player,
and the strategy of the attack then allows Alice and Bob to also recover the
qubit and send it to the correct verifier within the required time. We leave the
details of how Alice and Bob recover the qubit to be explained in Buhrman
et al. [2013]. Unfortunately, this attack only proves that the number of pipes
necessary to compute a function f in the Garden-hose model is an upper bound
on the number of EPR-pairs needed. The exact number of EPR-pairs necessary
to attack PVf

qubit remains unknown and requires further investigation.
Even though the results on the Garden-hose model may not conclusively an-

swer the question whether practically secure position-based cryptography exists,
research has shown the model to have deep connections to established fields of
mathematics. This, in our opinion, justifies attention to the Garden-hose model
itself, as exemplified by the fact that the Garden-hose model has been linked to
the long-standing question whether P = L, in Buhrman et al. [2013]. (Lemma
9 in Section 1.3)
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Chapter 2

The Multiplayer
Garden-hose Model

2.1 Introducing the Multiplayer Garden-hose Model

We introduce a multiplayer version of the Garden-hose model. In this model
there are k players where each pair of players has a number of pipes located
between them. Naturally we allow more than one edge between a pair of vertices.
This forms an undirected multigraph on k vertices, where each edge corresponds
to a pipe and each vertex corresponds to a player.

For each 1 ≤ i ≤ k, player i is allowed to pairwise connect with hoses the
edges incident to vertex i. All players make their connections based on their
individual input value and the protocol that all players agreed upon. For each
vertex, it holds that all edges incident to that vertex are connected accord-
ing to some pairing, where we will identify such a pairing with an involution
(permutation) in the following way.

Let HCi be the set of possible combinations of the pipe connections that
player i can make†, and let Ei be the set of edges incident to player i. For
2 ≤ i ≤ k, we identify HCi with {σ ∈ Sym(Ei) : σ2 = id} where Sym(Ei) is
the symmetric group on Ei. Two edges e1,e2 ∈ Ei, are connected by player i
with an involution π ∈ HCi, if π(e1) = e2. Without loss of generality, we assume
player 1 is the one to connect the water tap w to one of the edges incident to
him. This means that HC1 = {σ ∈ Sym(Ei ∪ {w}) : σ2 = id, σ(w) 6= w}.
Note that player 1 has to connect the water tap to some pipe, so the identity
permutation is not in HC1.

Two edges e1 and e2 are ‘connected’ in the sense of the Garden-hose model
if they both are incident to a vertex i such that player i has connected e1 and
e2 with a pairing from HCi.

†This corresponds to Em
A or Em

B in the Garden-hose model. However, different notation is
chosen since the players can have a different number of pipes incident to them.
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We will write {{0, 1}n}k for the collection of k input values, each input an
n-bit string belonging to a single player.

Definition 3. A Multiplayer Garden-hose protocol P = (M,h1, h2, . . . , hk) for

an n-bit, k-player function f : {{0, 1}n}k → {0, 1} consists of the undirected
multigraph M describing how many pipes any two players share, and k functions
of the form hi : {0, 1}n → HCi describing which pipe connections are made
when player i has input x ∈ {0, 1}n.

Definition 4. The output of a protocol P equals i ∈ {1, 2, . . . , k} when run on

input x ∈ {{0, 1}n}k exactly when the water spills at player i when connections
are made as described by the protocol.

Definition 5. A Multiplayer Garden-hose protocol P computes a Boolean func-
tion f : {{0, 1}n}k → {0, 1}, if the set of outputs of P , when running P on all

inputs in the set {x ∈ {{0, 1}n}k | f(x) = 1}, is disjoint from the set of outputs

of P , when running P on all inputs in {x ∈ {{0, 1}n}k | f(x) = 0}.

That is, if the function has different outputs for two inputs x and y, then the
water must spill at different locations. From the location of the spilling water
one of the players learns the function value. This player is the one at whose side
the water spills.

We define the complexity of a function in the multiplayer model, similarly
to the Garden-hose complexity, as follows.

Definition 6. Let f : {{0, 1}n}k → {0, 1} be a Boolean function with k vari-
ables, each input variable of length n. The Multiplayer Garden-hose Complexity
of f is the minimum number of pipes needed for a Multiplayer Garden-hose pro-
tocol to compute f . This number is denoted by MPGH (f).

Note that all definitions are set up such that the following lemma holds.

Lemma 13. For all Boolean functions fkn : {{0, 1}n}k → {0, 1}, it holds that

MPGH (f2n) = GH(f2n)

Proof. Let P = (m,hA, hB) be an optimal Garden-hose protocol computing
f2n, using m pipes. Then P can be transformed into a Multiplayer Garden-hose
protocol P ′ computing f2n by taking P ′ = (M,h1, h2) where M is the multigraph
with two vertices and m pipes between them, and h1 = hA, h2 = hB .

Let us take a look at an example in Figure 2.1 for four players, Alice, Bob,
Charlie, and Dick (players 1, 2, 3 and 4 respectively), where Alice controls
the water tap. This is not a complete protocol computing a function, but an
instance where all players have connected the edges incident to their own vertex,
depending on their inputs. The example is just to see what connections are legal
and how the output is determined.

Formally, if we write σi for the involution corresponding to the pairing of
edges that player i has made, we note that σ1 = (tap, e1)(e3)(e4), σ2 = (e5),
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Figure 2.1: Multiparty Garden-hose example for four players. Pipes and hoses
that have become wet for this configuration are drawn in blue.

σ3 = (e2, e4)(e3, e5) and σ4 = (e1, e2). The water flow path will be (e1, e2, e4),
spilling at Alice from pipe e4. The output is 1, as Alice is player number 1.

In Section 1.3, in Lemma 10, we have seen that all Garden-hose protocols
can be transformed to a protocol that has only one spilling pipe for Alice, and
one for Bob. We show that this result can be translated to the Multiplayer
Garden-hose model in Lemma 14 below.

Recall that a pipe e is called a spilling pipe if for some input (x, y) the water
spills from pipe e. We use an analogous definition in the multiplayer model: a
pipe e is called a spilling pipe of player Pi if for some input (x1, . . . , xk) the
water spills from pipe e at player Pi.

Lemma 14 (Multiplayer One Spilling Pipe Lemma). Every Multiplayer Garden-
hose protocol P computing a Boolean function f with k inputs can be converted
to a protocol P ′ which also computes f , but with P ′ constructed such that for
all inputs x1, x2, . . . , xk and corresponding pipe connections h1(x1), . . . hk(xk) it
holds that: for every player Pi with 1 ≤ i ≤ k, there exists one pipe sei such that
if the water spills at some player Pi, it must spill from pipe sei. The number of
pipes in such a protocol P ′ is at most k+ 1 times the number of pipes in P plus
k − 1.

Proof. The proof here is similar to the proof of Lemma 10 given in Klauck and
Podder [2014]. Let P be a k-player protocol for computing the Boolean function

f : {{0, 1}n}k → {0, 1}. Name the players P1 up to Pk. Let EM be the edge set
of the multigraph M corresponding to P . We construct the multigraph M ′ of
P ′ by copying the structure of the original protocol k+1 times, such that for all
pairs of players Pi and Pj with 1 ≤ i < j ≤ k it holds that if in protocol P they
shared m pipes then in protocol P ′ they share m · (k + 1) pipes. In addition
to this, player P1, which is the player connecting the water pipe, will share one
extra pipe with every player. The total number of pipes is now (k + 1) times
the number of pipes in P , plus k − 1.
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We will label the pipes as follows. For all pairs of players (Pi, Pj), with
1 ≤ i < j ≤ k, we will label subsets of the set of pipes they share, with
their copy number. Let m(i, j) be the number of pipes that Pi and Pj share in
protocol P. We will label m(i, j) of the m(i, j)·(k+1) pipes between Pi and Pj in

P ′ with the labels (e
(i,j)
1 , C0), (e

(i,j)
2 , C0), . . . , (e

(i,j)
m(i,j), C0), another m(i, j) pipes

are labeled with (e
(i,j)
1 , C1), . . . , (e

(i,j)
m(i,j), C1), et cetera, until all m(i, j) · (k + 1)

pipes are labeled.
Thus we label m · (k + 1) pipes in P ′ with an index and their copy number,

such that for each copy we have a one-to-one correspondence between the pipes
in that copy and the pipes in M . The remaining pipes that are not yet labeled
after this step are the k − 1 pipes between P1 and the other players. (That is,
one between P1 and Pi for every player Pi not equal to P1, with 2 ≤ i ≤ k.)
Label these pipes with eiP1

for all 2 ≤ i ≤ k.
Next is the description of the pipe connections made by the players. Let

the players connect their pipes labeled with C0 the same as they would have
connected them in P , including the water pipe, which P1 connects to some pipe
labeled C0. Additionally, all players connect the pipes in copies C1 to Ck as
they would have connected them in P , but now player P1 does not connect the
water tap to any of the pipes.

For all 0 ≤ q ≤ k and all 1 ≤ i ≤ k, define the following set S
Cq

i of pipes in
copy Cq that correspond to spilling pipes for player Pi in protocol P .

S
Cq

i =
{
e ∈ Ei | e is labeled by (e(i,j)r , Cq) for some 1 ≤ r ≤ |Ei|,

∃x ∈ {{0, 1}n}k : the water spills from e(i,j)r at Pi in protocol P
}

Where in the second line in the definition above, e
(i,j)
r is taken to be∗ the pipe

that corresponds to pipe e
(i,j)
r in M .

Now, for every 1 ≤ i ≤ k, player Pi connects all the pipes (er, C0) ∈ SC0
i to

their counterpart (er, Ci) ∈ SCi
i in copy Ci. This means that for all 1 ≤ i ≤ k,

copy C0 is connected to copy Ci only by the spilling pipes of Pi.
Let ew denote the pipe that P1 connects to the water pipe in copy C0. If the

water spills at Pi in protocol P , then in protocol P ′, the water will flow through
the corresponding wet pipes labeled with C0 and then flow through some pipe
in the set SC0

i , corresponding to a spilling pipe for Pi in P . At that point the

water will be redirected to the related pipe in SCi
i and it will have the exact

same flow path as in C0 but backwards, going through the pipes in copy Ci,
before spilling from the pipe in copy Ci that corresponds to pipe ew in copy C0.

We now know that if the water spills at player Pi in protocol P , then the
water will spill at the side of P1 from the pipe corresponding to ew in copy
number Ci. Here is where the remaining k − 1 pipes come in.

All that is left, is for player P1 to connect the pipe corresponding to ew in
copy number Ci to the extra pipe eiP1

between P1 and Pi. In our construction

∗The protocol P ′ is such that in M ′ there are k + 1 copies of the graph M of protocol P ,
where all the pipes in every copy correspond to pipes in M .
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we then have se1 = (ew, C1) and sei = eiP1
for all 2 ≤ i ≤ k, as being the spilling

pipe for player P1 and all players Pi 6= P1. This protocol has only one spilling
pipe per player, and uses a total number of pipes of (k + 1) times the number
of pipes in P , plus k − 1.

2.2 A General Upper Bound

Similar to Lemma 7, we can show that all functions can be computed in the
Multiparty Garden-hose model in exponential time.

Lemma 15. For all Boolean functions f : {{0, 1}n}k → {0, 1}, it holds that

MPGH (f) ≤
k−1∑
i=1

2ni +
1

2
· 2nk < k · 2nk

Proof. Let f be a Boolean function with k n-bit variables. We construct a
protocol that computes f , using

∑k−1
i=1 2ni + 1

2 · 2
nk pipes. Name the players P1

up to Pk. Players P1 and P2 share 2n pipes. Players P2 and P3 share 2n · 2n
pipes (2n extra pipes for each pipe that P1 and P2 share). This continues, such
that for all 1 ≤ i < k, players Pi and Pi+1 share (2n)i pipes. Additionally, P1

and Pk share 1
2 · 2

nk pipes.
Let xi denote the input of player Pi. We will label all the pipes in the

following way. Label the 2n pipes between P1 and P2 each with a unique input
string in {0, 1}n. Label the 22n pipes between P2 and P3 each with a unique
input string in {0, 1}n × {0, 1}n. Label the 23n pipes between P3 and P4 each
with a unique string in {0, 1}n × {0, 1}n × {0, 1}n. Et cetera, labeling, for
all 1 ≤ i < k, the 2ni pipes between Pi and Pi+1 with a unique string in

i times︷ ︸︸ ︷
{0, 1}n × · · · × {0, 1}n.

Having described the structure of the multigraph, we then describe the pipe
connections made by the players. Player P1 connects the water tap to the pipe
labeled with his input x1. For every y ∈ {0, 1}n, player P2 connects the pipe be-
tween P1 and P2 that is labeled y, to the pipe labeled (y, x2). Similarly, for every

3 ≤ i < k, and for every y = (y1, . . . , yi−1) ∈
i−1 times︷ ︸︸ ︷

{0, 1}n × · · · × {0, 1}n, player Pi

connects the pipe labeled with y to the pipe labeled with (y1, y2, . . . , yi−1, xi).
This means that eventually the water will flow from Pk−1 to Pk through the
pipe labeled (x1, x2, . . . , xk−1).

Player Pk then decides where the water should spill. Before connecting his
pipes, Player Pk determines which set is smaller: I0 = {x ∈ {{0, 1}n}k : f(x) =

0} or I1 = {x ∈ {{0, 1}n}k : f(x) = 1}. Let z ∈ {0, 1} be such that Iz is the
smallest of the two sets I0 and I1. If I0 and I1 are both of size 2nk−1, pick
Iz = I0. Note that |Iz| ≤ 1

2 · 2
nk.
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Player Pk then connects all pipes between Pk−1 and Pk that are labeled with

a y = y1y2 . . . yk−1 ∈
k−1 times︷ ︸︸ ︷

{0, 1}n × · · · × {0, 1}n such that f(y1, y2, . . . , yk−1, xk) =
z, to one of the pipes between Pk and P1.

By construction, the water will follow the pipes labeled with the inputs
of the players, and it will spill at P1 if f(x1, . . . , xk) = z and at player Pk

otherwise. Note that z can be computed before knowing the inputs. The above
construction is thus a correct Multiplayer Garden-hose protocol for f , and note
that the total number of pipes, excluding the pipes between P1 and Pk, equals∑k−1

i=1 2ni. Adding the pipes between P1 and Pk, which adds another 1
2 · 2

nk

pipes, finishes the proof.

2.3 Position-based Cryptography in 3D

As we have seen in Section 1.4, the Garden-hose model models a class of attacks
on a one-dimensional position-verification scheme. While for obvious practical
reasons we are mainly interested in doing position-verification in 3-dimensional
space, a natural follow-up of the PVf

qubit scheme would be to extend the scheme
to k-dimensional space. In this section we will sketch the outline of such a
scheme and discuss the applicability of the Multiplayer Garden-hose model.

In the k-dimensional space of this extended scheme we place k + 1 verifiers,
such that the verifiers together form a convex hull of dimension k. We require
the prover to be situated within that convex hull. This is to allow verification
of the location of the prover by comparing the distance upper bounds to the
verifiers. The verifiers V0, V1, . . . , Vk then send k+ 1 n-bit strings x0, x1, . . . , xk
to the prover. Verifier V0 again prepares an EPR-pair 1√

2
(|0〉V |0〉P + |1〉V |1〉P ),

sends the qubit in register V to verifier Vf(x0,x1,...,xk) and sends the qubit in
register P to the prover. Everything is sent such that it all simultaneously
arrives at the prover. The prover then has to relay the qubit he received to
Vf(x0,x1,...,xk), using the information that was sent to him. Here, f is a publicly
known function in k + 1 variables that can take on k + 1 possible values.

Again, suppose there were k + 1 adversaries, P0, P1, . . . , Pk, working to-
gether to attack this scheme, then assuming the adversaries are using a number
of EPR-pairs between each pair of adversaries, such an attack corresponds to a
Multiparty Garden-hose protocol for f . However, the applicability of the Mul-
tiplayer Garden-hose model as defined in this thesis is limited to some degree
by two factors.

First, in the Multiplayer Garden-hose model we only consider functions of
the form f : {{0, 1}n}k → {0, 1}, whereas in the k-dimensional extension of

PVf
qubit, verifier V0 can send his qubit in register V to any of the other verifiers.

We could alter the scheme to restrict V0 by allowing V0 to only send the qubit
to himself or V1, which would mean that the water should only be allowed to
spill at one of two players, depending on the value of the function. This is a
valid solution except that we are now changing a cryptographic scheme in order
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for an attack to work. Typically one designs cryptographic schemes in order to
protect against possible attacks. A more elegant workaround is to redefine the
Multiplayer Garden-hose model such that it deals with more general functions
of the form f : {{0, 1}n}k+1 → {0, 1, 2, . . . , kl} with 1 ≤ kl ≤ k. Then if
f(x0, x1, . . . , xk) = i the water must spill at player Pi. In this case, the original
Multiplayer Garden-hose model is simply a special case of the general model, as
we can always restrict the number of players where the water can spill.

This can be done by connecting all open pipes on a player’s side to extra
dummy pipes. By connecting every spilling pipe of one player to an extra
dummy pipe which redirects the water to another player∗, we ensure that the
number of players where the water can spill is reduced by one. We can do this
for more than one player in order to reduce the number of spilling locations to
exactly the size of the codomain of f . Note that the total number of spilling
pipes, summing over all players, is upper bounded by twice the total number
of pipes†. Thus we can change any Multiplayer Garden-hose protocol P which
computes a Boolean function f (in the original definition), to a protocol P ′

which computes f such that there are only two players where the water can
spill, with protocol P ′ using at most three‡ times the number of pipes in P .

Second, with more than two adversaries it seems possible that more com-
plicated entangled states can be used: the attackers are not necessarily limited
to using only EPR-pairs between every pair of adversaries. The Garden-hose
model is already a special (although big) class of attacks, and it merely upper

bounds the number of EPR-pairs needed to break the scheme PVf
qubit. Since

the adversaries might also use entangled states other than EPR-pairs, the Mul-
tiparty Garden-hose model represents an even smaller class of attacks on the
k-dimensional extension of PVf

qubit. Nevertheless, the Multiparty Garden-hose
model does model a class of attacks on the natural k-dimensional extension
of PVf

qubit, which means it could prove a useful tool in the development of
practical implementations of secure position-based cryptographic schemes in
three-dimensional space.

2.4 The Multiplayer Equality Function

Let the n-bit, k-player equality function be the function EQk
n : {{0, 1}n}k →

{0, 1} where EQk
n equals one for inputs of the form {x}k where x ∈ {0, 1}n, and

zero otherwise. Before studying the complexity of the equality function in full
generality in Section 2.4.5, we will take a closer look at a special case: the 1-bit
equality function, starting with the double-circle protocol.

∗A player that is allowed to have spilling pipes.
†Note that every pipe can have water spilling from it on two sides.
‡Using the original pipes, plus at most two dummy pipes extra for every pipe that can be

a spilling pipe on two sides.
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2.4.1 Example protocol: the double-circle protocol

Consider the protocol depicted in Figure 2.2. The protocol is for k players with
a 1-bit input, computes EQk

1 , and is named the double-circle protocol.
In this protocol player 1 has control over the water tap, and all the players

are positioned in a circle. Every two players that are next to each other in the
circle share two pipes: one pipe on the outside of the circle, and one pipe on the
inside of the circle, with the exception of player 1 and player number k, who
only share one pipe. The water will flow clockwise, regardless of the input.

In this protocol player 1 connects the tap to the pipe going to player 2 on
the outside of the circle if his input equals 0, and he connects the water tap to
the other pipe going to player 2 (on the inside of the circle) if his input equals
1. For all the other players, with the exception of player k, the protocol is to
connect the two pipes on the outside of the circle if their input equals 0 and
leave the remaining two pipe endings open. If their input equals 1, the protocol
is to do the opposite, to connect the two pipes on the inside of the circle, and
to leave the pipes on the outside unconnected.

For player k, if his input equals 0 he connects the pipe that he shares with
player k − 1 on the outside of the circle to the pipe going to player 1. If the
input of player k equals 1, he will connect the pipe that he shares with player
k − 1 on the inside of the circle to the pipe leading back to player 1.

2.4.2 Analyzing the double-circle protocol

The protocol is such that if all the players have input 0, the water will flow
along all the pipes on the outside of the circle and it will spill at player 1. If all
players have input 1, the water will flow in a circle along the inner pipes and it
will again spill at player 1, hence the name.

If not all players have the same input, the water will spill at the location of
the first player i such that this player’s input is not the same as the input of
all the players that are closer to player 1 on the circle, counting anti-clockwise∗.
Note that this player is never player 1. The water only spills at player 1 if all
players have the same input.

This protocol uses 2k − 1 pipes to compute EQk
1 . It turns out a better

protocol is possible, as shown in Lemma 17.

∗That is, player 2 is closest to player 1, then player 3, then player 4, et cetera.
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Figure 2.2: Double-circle protocol computing EQk
1 .

2.4.3 An approach to proving optimality: a new proof
technique

In an attempt to prove the optimality of the double-circle protocol, one can try
to show that the following two properties must hold for every optimal protocol
computing EQk

1 .
The first property is that the number of pipes the water flows through on

input {0}k (i.e. when all players have input zero) must be greater than or equal
to k − 1. The same is true for the number of pipes the water flows through on
input {1}k. The second property is that the set of pipes that become wet on

input {0}k is disjoint from the set of pipes that become wet on input {1}k, with
the exception of the last pipe the water flows through.

The proof structure used here uncovers a new proof technique for Garden-
hose problems: show that in any optimal protocol some input sets A and B
exhibit a water flow path of significant length, and prove that the intersection
of their water flow paths is small.

In the case of EQk
1 , if these two properties hold, then at least 2k − 3 pipes

are necessary to compute EQk
1 . However, in this case the problem lies with the

25



second property. It turns out that these two sets∗ of pipes are only disjoint when
the following is true: whenever a pipe s is an element of both sets, the water
always flows in the same direction through pipe s. We prove this in Lemma 16.

Lemma 16. Let I0 be the set of pipes that become wet on input {0}k, and let

I1 be the set of pipes that become wet on input {1}k. The double-circle protocol
is optimal up to a constant, in the set of protocols computing EQk

1 that have the
following property: whenever a pipe s is an element of both sets I0 and I1, the
water always flows in the same direction through pipe s on every input.

Proof. Suppose, in protocol P , that the set of pipes that become wet on input
{0}k is not disjoint from the set of pipes that become wet on input {1}k. Suppose
there is a pipe that is in both sets, which is not the last pipe to become wet for
either of the two inputs {0}k and {1}k, for which the water flows in the same
direction on every input.

Let eC be the first† pipe that gets wet both on input {0}k and on input

{1}k. Without loss of generality we assume pipe eC is located between player i
and player j for some i and j such that i 6= j. Figure 2.3 depicts a schematic
view of the situation.

Tap P1

α

β

Pi Pj

σ

τ

Initial path on 0k

Initial path on 1k

Rest of path on 0k

Rest of path on 1k

ea

eb
eC

e0

e1

P1 has input 0

P1 has input 1

Figure 2.3: Schematic view of the water flow paths in protocol P .

Without loss of generality, player 1 has control over the water tap, and
he directs the water to one of two different‡ pipes according to his input. The
players (depicted by nodes in the figure) named α and β are the players incident
to the pipes ea and eb respectively, such that the water flows through pipe ea to
player i if everyone has input 0, and the water flows through pipe eb to player
i if everyone has input 1.

∗The set of pipes that become wet on input {0}k, and the set of pipes that become wet on

input {1}k.
†Meaning that on input {0}k, before flowing through pipe eC , the water flows through

a set of pipes EX , and on input {1}k, before the water flows through pipe eC , this set EX

remains dry.
‡Suppose they were the same, then an immediate improvement can be made by having

another player take control of the water tap.
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The two paths coincide on edge eC . From there, player j connects eC to
the pipe labeled e0 if his input is 0, and he connects eC to the pipe labeled e1
if his input is 1. Note that the players σ and τ are possibly the same player,
but we can assume that the two pipes labeled e0 and e1 respectively must be
two different pipes; Suppose they are the same pipe, then changing pipe eC to
be between player i and σ and leaving out pipe e0 would result in an identical
protocol with fewer pipes.

We will show that in the situation depicted in Figure 2.3, the protocol is not
optimal. An alternative protocol P ′ is depicted in Figure 2.4.

Tap P1

α

β

Pi Pj

σ

τ

Initial path on 0k

Initial path on 1k

Rest of path on 0k

Rest of path on 1k

ea

eb

e0

e1

P1 has input 0

P1 has input 1

Figure 2.4: Eliminating pipe eC from P , resulting in protocol P ′.

In Figure 2.4 pipe eC is removed, and pipes ea and eb are changed to be
incident to Pj . In this alternative protocol P ′, what is different is that player
Pj connects pipe ea to the pipe labeled e0 if he has input 0, and he connects eb
to the pipe labeled e1 if he has input 1. It is easy to see that on inputs {0}k

and {1}k, protocol P ′ behaves the same as P .

Now suppose there exists an input x ∈ {0, 1}k not equal to {0}k or {1}k
for which, in protocol P , the water comes out at pipe ea or eb, before being
channeled into pipe eC . The water will then end up at the same pipe in protocol
P ′ and eventually spill at the same location it would have spilled in protocol P .
Hence, P ′ is correct and uses fewer pipes than P , contradicting the optimality
of P .

2.4.4 The exact value of MPGH (EQk
1)

From Lemma 16 we know that if there exists a better protocol for EQk
1 , it must

use a construction such that, in some pipe that occurs in both water flows, the
water flows in the opposite direction for some input set. This hints towards the
following protocol.

Lemma 17. For k ≥ 3, it holds that

MPGH (EQk
1) ≤

⌈3k

2

⌉
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Figure 2.5: Protocol structure computing EQk
1 if k even.

P1Tap

P2

P3

P4

P5

P6
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1

Figure 2.6: Protocol structure computing EQk
1 if k odd.

Proof. The lemma is proven by the construction of a protocol with the correct
number of pipes, separating cases for k odd and k even. (Strictly speaking, we
construct a family of protocols: one for each k ≥ 3.) Consider the protocols
depicted in Figures 2.5 and 2.6. Note that by adding or removing vertical pairs
of players in the middle, these protocols work for all k number of players bigger
than two and even or odd respectively.

We start by proving the correctness of the protocol in Figure 2.5. It is easy
to see that the water spills at P8 if all players have the same input bit. To prove
that the water does not spill at P8 if not all players have the same input bit,
consider the possible ways the water can spill at P8.

If P8 has input zero and the water spills at P8, then the water must spill
from the pipe between P7 and P8 that is left open on the side of P8; Name
this pipe ex, as in Figure 2.5. Pipe ex only becomes wet when P7 has input 0.
Subsequently, when P7 has input 0, the pipe that P7 connects to pipe ex only
becomes wet when P6 has input 0. By repeating this argument we can follow
this trail all the way back to P1, concluding that for water to spill at P8 when
P8 has input 0, all players must have input 0. Analogously, the same argument
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holds for the case where P8 has input 1. This proves the correctness of the
protocol for even numbers of players.

Proving the correctness of the protocol in Figure 2.6 is done similarly. Here
the water spills at P6 if all players have input 0, and also when all players have
input 1, as is easily checked. Label the pipes between P6 and P7 in Figure 2.6
with ea, eb and ec. Suppose the water spills at P6 and P6 has input 0. Then the
only possible spilling pipes are the two rightmost pipes, pipe eb and ec. Since P6

has input 0, pipe ec is not connected to any pipe and thus will not spill water.
Pipe eb will only spill water if P7 has input 0, and backtracking from there leads
to pipe ea spilling water when all players have input 0.

Now suppose the water spills at P6, and P6 has input 1. The two pipes ea
and eb between P6 and P7 are possible spilling pipes in this case. Pipe eb will
only spill water if both P7 and P6 have input 0. So if the water spills at P6 and
P6 has input 1, it can only come out of pipe ea, which only happens when all
other players also have input 1.

In order to check the number of pipes, changing pipe ex to be between P8

and P1 results in all players being incident to exactly three pipes, making it easy
to see that for even k, the protocol in Figure 2.5 uses 3k

2 pipes. For odd k, the
protocol in Figure 2.6 uses two pipes for P1 and three extra pipes for every other

pair of players, summing up to a total of 2+ 3(k−1)
2 = 3k+1

2 = k+ k
2 + 1

2 = k+dk2 e
pipes.

Lemma 18. If k ≥ 3 is even, it holds that

MPGH (EQk
1) ≥ 3k

2

If k ≥ 3 is odd, it holds that

MPGH (EQk
1) ≥ k +

⌊k
2

⌋

Proof. Let P be an optimal protocol computing EQk
1 . We will prove that in

P , all players, with the exception of one player, are incident to three or more
pipes. The proof is by contradiction, separating two cases.

First suppose that in protocol P there is a player i who is incident to only
one pipe. Since there is only one pipe, it cannot be connected to another pipe.
Consider the location where the water spills on input 0k. If the water spills
at player i, then the water will also spill at player i when everybody else has
input 0 and player i has input 1. If it does not spill at player i, the water will
again spill at the same location as where it would spill if everybody else has
input 0 and player i has input 1. Basically, player i does not have any effect on
the water flow. Hence P is not a protocol computing EQk

1 and we see that all
players are incident to at least two pipes.

Suppose there are two players, A and B, that are incident to exactly two
pipes. Without loss of generality, assume that on input 0k the water will flow
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first to player A and then to player B. (If the water flow does not reach one
of the two at all, then changing this player’s input to 1 will not change the
spilling location and P would not be computing EQk

1 .) This means that player
A connects her two pipes on input 0, and disconnects them on input 1. (Player
A must do something different for different inputs, otherwise the water flow on
input 0k is the same as when everybody else has input 0 and player A has input
1.)

Now consider the water flow on input 1k. If the water flows towards player
A first, then the water will never reach player B, as player A has disconnected
her two pipes on input 1. So the water will flow through the pipes of player
B first. This means that the pipes of player B must be connected on input 1,
and be disconnected on input 0, so the water spills at player B on input 0k,
otherwise the water never reaches player A.

Because player B disconnects his pipes on input 0, and since the water will
flow through his pipes when everyone has input 1, the water also must∗ spill
at player B when everybody else has input 1 and player B has input 0. This
contradicts the assumption of P computing EQk

1 , as the water spills at player
B if all players have input 1, but the water spills again at player B if the only
player with input 0 is player B.

Note that if k is even, it can’t be the case that k − 1 players are incident
to exactly three pipes and one player is incident to exactly two pipes: the
sum of the degrees (number of incident pipes) of all vertices (players) would
be an odd number. This means the sum of the degrees has to increase by at
least one. Dividing the sum of the degrees by two, we conclude there must be
at least 3k

2 pipes if k is even. If k is odd, the total number of pipes equals
3(k−1)+2

2 = 3k
2 −

1
2 = k +

⌊
k
2

⌋
.

Combining Lemmas 17 and 18 results in the following theorem.

Theorem 1. For k ≥ 3, it holds that⌊3k

2

⌋
≤ MPGH (EQk

1) ≤
⌈3k

2

⌉

2.4.5 The complexity of n-bit, k-player equality

Using the result of Theorem 1, we are able to start to answer a bigger question:
“How many pipes are needed to compute n-bit, k-player equality?”.

An upper bound

An upper bound can be achieved by stringing together copies of the protocol
in Lemma 17. Figure 2.7 shows how this can be done for odd k. In the upper

∗This is only true because with just two pipes incident to him, player B has no influence
on the water flow before it flows through a pipe incident to him, ensuring that the water flow
will reach player B with the same preceding path when all players except B have input 1,
independent of the input of player B.
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copy, all players check their first input bit: all connections in the upper copy
are made according to all players’ first input bit. An extra pipe eX is added
between player k−1 and player 1. For input i ∈ {0, 1}, player k−1 additionally
connects pipe eb to eX if i = 0 and pipe ea to X if i = 1. Player 1 now uses the
water that spills from pipe eX as a water tap for use in the second copy. In the
lower copy, all players check their second input bit.

Note that this protocol now means that all players except players 1, k − 1
and k are incident to exactly six pipes. By repeating this process of stringing
together copies, such that in each copy another input bit location is checked to
be equal for all players, we arrive at a protocol for n-bit, k-player equality that
uses n · d 3k2 e+ (n− 1) pipes.

P1Tap

P2

P3

. . .

. . .

Pk−1

Pk

P1

P2

P3

. . .

. . .

Pk−1

Pk

ea eb ec

eX

e′a e′b e′c

1

0

0 01

01 10

1

1

0

1

0

0 01

01 10

1

Figure 2.7: Protocol structure computing EQk
2 if k odd.

Lemma 19. For k ≥ 3 it holds that

MPGH (EQk
n) ≤ n ·

⌈3k

2

⌉
+ (n− 1)

Proof. For odd k, expand the protocol that is depicted in Figure 2.7 by con-
necting n copies of the protocol in Lemma 17 using connective pipes like pipe
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eX in Figure 2.7. Similar to the correctness proof in Lemma 17, we can show
that the water only spills at player k− 1 if all players have the same input. For
each 1 ≤ l ≤ (n − 1), copy Cl checks whether all players agree on input bit l,
and if that is the case, the water gets transmitted to copy l + 1. Note that the
water spills at player k − 1 if all players have the same input bit for each bit
location 1 ≤ l ≤ (n− 1).

To complete the correctness proof, we claim that the water only spills at
player k − 1, and, specifically, only from a pipe in the n-th copy, if all players
agree on their entire input. This can be seen by noting that the water only flows
towards player k− 1 at copy number l if: all players agree on their input on all
bit locations lower than l, and all players except possibly player k−1 and player
k agree on input bit i. Three situations can occur if the water flows towards
player k − 1 at copy number l: the water spills before it reaches player k − 1;
Player k − 1 disagrees with some player on input bit location l, and the water
spills somewhere else; Or player k− 1 agrees with all other players on input bit
l, and the water gets redirected to copy l + 1.

For even k, we can analogously combine copies of the protocol for even k in
Lemma 17. On input 0, player k then connects the pipe where the water would
spill from if all players have input 0 to pipe eX , connecting two copies, and the
water tap is again replaced by pipe eX . Checking the correctness of this new
protocol is done in the same way.

A lower bound

Although finding the exact value of MPGH (EQk
n) is likely to be difficult, as is

shown by the complex nature of MPGH (EQ2
n) = GH(EQ), we can find a loose

lower bound by an analysis similar to the one used in Lemma 18.

Lemma 20. Let T (m) be the number of different combinations of pipe connec-
tions a player can make when incident to m pipes, and let L(m) be the least
m ∈ N such that T (m) ≥ 2n. Then it holds that

MPGH (EQk
n) ≥ 1

2
· k · L(n)

Proof. Let P be a protocol computing equality, and suppose there exist an
x, y ∈ {0, 1}n such that there is a player 1 ≤ i ≤ k that makes the same
combination of pipe connections on input x as he does on input y, according to
protocol P . Then if all players have input x, the water must spill somewhere
else than in the case where player i has input y but all other players have input
x. But since the pipe connections are the same in this case, this contradicts the
assumption that P is a protocol computing equality.

This means that all players must be allowed to have a unique combination
of pipe connections for each input in {0, 1}n, which asserts each player to be
incident to at least L(n) pipes.
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The number of different combinations of pipe connections on n pipes is equal
to the number involutions. This integer sequence T (n) for n ∈ N is known as
the ‘telephone numbers’, and can be found in Sloane and Plouffe [1995] and at
https://oeis.org/A000085.

The table below shows the first fifteen telephone numbers T (n) and the
values of L(n) for 1 ≤ n ≤ 15.

n T (n) 2n L(n)
1 1 2 2
2 2 4 3
3 4 8 4
4 10 16 5
5 26 32 6
6 76 64 6
7 232 128 7
8 764 256 8
9 2620 512 8
10 9496 1024 9
11 35696 2048 9
12 140152 4096 10
13 568504 8192 10
14 2390480 16384 11
15 10349536 32768 11

Comparing the upper and lower bounds of respectively Lemma 19 and
Lemma 20 for 1 ≤ n ≤ 15, we see a slowly widening gap in the table below.

lower bound upper bound

n 1
2 · k · L(n) n ·

⌈
3k
2

⌉
+ (n− 1)

1 k 1.5k
2 1.5k 3k + 1
3 2k 4.5k + 2
4 2.5k 6k + 3
5 3k 7.5k + 4
6 3k 9k + 5
7 3.5k 10.5k + 6
8 4k 12k + 7
9 4k 13.5k + 8
10 4.5k 15k + 9
11 4.5k 16.5k + 10
12 5k 18k + 11
13 5k 19.5k + 12
14 5.5k 21k + 13
15 5.5k 22.5k + 14
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2.4.6 Comparison to 2-player equality

By using the One Spilling Pipe Lemma (Lemma 10 from Section 1.3) we can
relate MPGH (EQk

n) to GH(EQn), shown in Lemma 21 below.

Lemma 21. For all k ∈ N

MPGH (EQk
n) ≤ (k − 1) · (3 ·GH(EQn) + 1)

Proof. Let P be an optimal protocol computing MPGH (EQ2
n). Let P ′ be a

protocol computing MPGH (EQ2
n) with only two spilling pipes as provided by

Lemma 10, meaning that there is a pipe a such that if x 6= y then the water
spills at Alice’s side from her end of pipe a, and there is a pipe b such that if
x = y then the water spills at Bob’s side from his end of pipe b. Note that
protocol P ′ uses at most 3 ·GH(EQn) + 1 pipes.

We construct a multiplayer protocol of the requested size such that the water
spills at player k if and only if all players have the same input. This is done
by setting up a string of copies of protocol P ′ between the players in a linear
pairwise fashion as shown in Figure 2.8.

P1Tap P2 P3 . . . PkP ′ P ′ P ′ P ′

Figure 2.8: Computing EQk
n using copies of an optimal protocol for EQ2

n.

Players P1 and P2 run protocol P ′, player P2 then uses his only spilling pipe
between P1 and P2 as a water tap for another copy op P ′ between P2 and P3.
Similarly, each player other than P1 and Pk uses their spilling pipe from a copy
of the protocol P ′ on the left as a water tap for the copy of P ′ on their right.

In this manner, first P1 and P2 check if they have the same input. If not,
then the water spills at player P1. If so, then the next couple P2 and P3 check
their input for equality. This continues in the same way up to player Pk.

If all players have the same input, the water spills at player Pk. If not, then
the water spills at the first player Pi

∗ such that the input of Pi+1 is not equal
to the input of player Pi. This uses a number of pipes exactly k − 1 times the
size of P ′.

Although no exact value for GH(EQn) = MPGH (EQ2
n) is known, several

bounds exist. The best current upper bound, from Lemma 4 in Section 1.2,
shows that GH(EQn) ≤ 28

log 313 · n + O(1) ≈ 1.359n + O(1). Together with

Lemma 21 this results in the following upper bound on MPGH (EQk
n).

Lemma 22. For all k ∈ N

MPGH (EQk
n) ≤ (k − 1) ·

(
3 · 28

log 313
· n+O(1)

)
∗That is, the player with the lowest index number.
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Recall Lemma 19 from Section 2.4.5, as repeated below, and note that it

implies that MPGH (EQk
n) ≤ n ·

(
3k+3

2

)
for all k ≥ 3.

Lemma 19. For k ≥ 3 it holds that

MPGH (EQk
n) ≤ n ·

⌈3k

2

⌉
+ (n− 1)

Comparing this with Lemma 22, we see that Lemma 19 provides the current
best upper bound on the n-bit, k-player equality function.
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Chapter 3

Leaking Pipes and Time
Bounds

In the first part of this chapter, we introduce a stronger version of the Garden-
hose model: the Leaky Garden-hose model. The second part of this chapter
revisits a model in which the time it takes for the water to spill is limited, a
model which was first introduced in Klauck and Podder [2014].

3.1 Leaky Garden-hose Model

We introduce the Leaky Garden-hose model. The Leaky Garden-hose model
has the same setting as the original Garden-hose model, but in this model, the
pipes are leaking; Alice and Bob are allowed to measure which pipes get wet
when running the protocol on input (x, y), which is coded in an m-bit string
LGHP (x, y), where m is the number of pipes used in the protocol. Each bit at
location 1 ≤ i ≤ m of LGHP (x, y) corresponds to whether pipe i became wet
or not. The m-bit string LGHP (x, y) is called the auxiliary output, as it will be
used to help compute the function value.

We say that the Leaky Garden-hose protocol P computes a function f if,
after the water spills somewhere, and after Alice and Bob learn LGHP (x, y), it
holds that for all inputs x, y, at least one player knows with certainty the value
of f(x, y).

In order to clarify the model, we will explicitly state the chronological struc-
ture. First, Alice and Bob agree on a protocol P = (m, fA, fB). Then Alice
and Bob receive their respective inputs x and y, and then connect their pipes
according to fA(x) and fB(y) respectively. After that, the water tap is turned
on and the water spills at either Alice or Bob. Then Alice and Bob measure
LGHP (x, y) (thus learning which pipes became wet), after which, as the final
step, at least one of them is able to compute f(x, y). This definition is in line
with the Multiplayer Garden-hose model, where after the water spills at some
player i, this player i is able to compute f . In both models at least one player
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learns the value of the function, while other players (possibly) do not.
As before, we define the Leaky Garden-hose complexity of a function as

follows, using the number of pipes as a complexity measure. Let f : {0, 1}n ×
{0, 1}n → {0, 1} be a Boolean function.

Definition 7. The Leaky Garden-hose complexity of f , LGH(f) is the min-
imum number of pipes needed for a Leaky Garden-hose protocol to compute
f .

Note that the Leaky Garden-hose model has no natural correspondence to
the position-verification scheme in Section 1.4. After Alice and Bob have re-
ceived the input value of the other player in scheme PVf

qubit, they both don’t
know which EPR-pairs were used (i.e. which pipes became wet). Moreover, in
the Garden-hose model the water has to spill at the correct player in order to
compute a function ∗, as opposed to Alice and Bob learning the value of the
function after executing the protocol. Nevertheless, even though a direct cor-
respondence is lost here, we believe that studying related models can improve
our understanding of the underlying mathematics of the Garden-hose model.

3.1.1 Complexity upper bounds

Lemma 23. For all Boolean functions f : {0, 1}n × {0, 1}n → {0, 1},

LGH(f) ≤ GH(f)

Proof. Let P = (m, fA, fB) be an optimal Garden-hose protocol that computes
f . We claim that protocol P is also a Leaky Garden-hose protocol that computes
f . This holds because f(x, y) can be computed using the parity of the Hamming
weight of LGHP (x, y). The water spills at Bob’s side when the number of wet
pipes is odd, and the water spills at Alice’s side when the number of wet pipes
is even.

In contrast to the existence of functions with exponential complexity in
the Garden-hose model, all functions have a complexity in O(n) in the Leaky
Garden-hose model.

Lemma 24. For all Boolean functions f : {0, 1}n × {0, 1}n → {0, 1},

LGH(f) ≤ 4n− 2

Proof. The protocol that shows this to be true can be seen in Figure 3.1: Bob
always redirects the water to the next set of two pipes, and except for the first
two pipes, Alice connects her pipes in parallel or crosswise, depending on the
values of x = x1, x2, x3, . . . , xn. That is, labeling the pipes from top to bottom

∗Corresponding to sending the qubit to the correct verifier in PVf
qubit.
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Tap

Parallel if x2 = 0

and crosswise otherwise

...

x1 = 0

x1 = 1

Figure 3.1: Leaky Garden-hose protocol, communicating x to Bob in 4n − 2
pipes

with a number between one and 4n − 2, the protocol describes the following
connections. Alice connects the water tap to pipe one if x1 = 0, and Alice
connects the water tap to pipe two if x1 = 1. Also, for all i ∈ N with i ≤ n− 1
it holds that: if xi+1 = 0 then Alice connects pipe 4i − 1 to pipe 4i + 2, and
pipe 4i to pipe 4i+ 1; If xi+1 = 1 then Alice connects pipe 4i− 1 to pipe 4i+ 1,
and pipe 4i to pipe 4i+ 2.

After the water flows, Bob learns which pipes get wet, and then Bob checks
for all pipes whether the wet pipes must have been connected in parallel or
crosswise on Alice’s side. Since these connections have a one-to-one correspon-
dence to x, Bob now knows both x and y, and he can compute f(x, y). This
protocol uses 4n− 2 pipes: two for the first bit of x and four for every next bit
of x, thus proving Lemma 24.
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3.1.2 Two example protocols for the equality function

Recall that because of Lemma 23, we know that for all Boolean functions f it
holds that LGH(f) ≤ GH(f). Towards a better understanding of the complex-
ity of functions in the Leaky Garden-hose model, we investigate LGH(EQ1)
and LGH(EQ2).

A simple protocol in Figure 3.2 shows that LGH(EQ1) = 1. Here, Alice
only connects the water pipe if x = 1. When the water flows, Bob sees whether
the water pipe becomes wet or not, learns Alice’s bit x from this, and is able
to compute EQ1(x, y) using one pipe. However trivial this may be, this shows
that for some n ∈ N it holds that LGH(EQn) < GH(EQn), as it is easy to see
that it is impossible to compute equality using only one pipe in the Garden-hose
model.

Tap
x = 1

Figure 3.2: Leaky Garden-hose protocol for 1-bit equality using one pipe.

Figure 3.3 shows a faulty protocol for 2-bit equality. Checking the correctness
of such a protocol can be done using a table such as in Figure 3.4. A crucial step
in this process is to check the following: in the case that there are two inputs
(x, y) and (x, y′) with y 6= y′ such that LGHP (x, y) = LGHP (x, y′), then Bob
should always be the one that has to know f(x, y) afterwards. Similarly, this
also has to hold for two inputs (x, y) and (x′, y) with x 6= x′: in this case Alice
should always have learned f(x, y). However, the protocol in 3.3 is incorrect for
another reason.

Tap e1

e2

x = 01

x = 10 ∨ x = 11
y = 11

Figure 3.3: Incorrect Leaky Garden-hose protocol for 2-bit equality.
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x y Wet pipes Who learns EQ(x, y)
00 00 None Bob
01 00 e1 Bob
10 00 e2 Bob
11 00 e2 Bob
00 01 None Bob
01 01 e1 Bob
10 01 e2 Bob
11 01 e2 Bob
00 10 None Bob
01 10 e1 Bob
10 10 e2 Bob
11 10 e2 Bob
00 11 None Bob
01 11 e1 Bob
10 11 e1,e2 Alice
11 11 e1,e2 Alice

Figure 3.4: Table used for checking the correctness of the protocol in Figure 3.3

As for the protocol computing 2-bit equality in 3.3, note that whenever Bob
sees that no pipes became wet, he learns x = 00, and if Bob sees that only e1
became wet, he learns x = 01. In both cases Bob is able to compute EQ(x, y).
If Bob sees that only e2 became wet, he knows x = 10 ∨ x = 11, but Bob
can not distinguish between the two cases, so Bob can not check whether x
equals y if y = 10. The function value (of equality) is not the same in the cases
(x = 10, y = 10) and (x = 11, y = 10), but in both cases only e2 became wet
and the input of Bob is y = 10. Hence this protocol is not correct.

A simple protocol that correctly computes EQ2 in the Leaky Garden-hose
model is the following.

Tap e1

e2

e3

x = 01

x = 10

x = 11

Figure 3.5: Correct Leaky Garden-hose protocol for 2-bit equality.

In the protocol of Figure 3.5, the pattern of wet pipes tells Bob exactly the
value of Alice’s input x.
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x y Wet pipes Who learns EQ(x, y)
00 00 None Bob
01 00 e1 Bob
10 00 e2 Bob
11 00 e3 Bob
00 01 None Bob
01 01 e1 Bob
10 01 e2 Bob
11 01 e3 Bob
00 10 None Bob
01 10 e1 Bob
10 10 e2 Bob
11 10 e3 Bob
00 11 None Bob
01 11 e1 Bob
10 11 e2 Bob
11 11 e3 Bob

Figure 3.6: Table used for checking the correctness of the protocol in Figure 3.5

An open problem at this point is whether there exists a Leaky Garden-hose
protocol for 2-bit equality that uses two pipes, or whether there exists a Leaky
Garden-hose protocol for 3-bit equality that uses only three or four pipes.

3.1.3 Intermediate models: bridging the gap

Since the Leaky Garden-hose model is more efficient than the original Garden-
hose model, the question arises whether there exist weaker versions of the Leaky
Garden-hose model that have a complexity between LGH(f) and GH(f). Such
weaker models could prove valuable in showing interesting relationships between
the Garden-hose model and the Leaky Garden-hose model, allowing a better
understanding of the underlying mathematics.

For example, one could consider a model where the auxiliary output is
the combination of where the water spills and a small part of the bit string
LGHP (x, y), such that Alice and Bob learn which pipes became wet, but only
for a limited number of pipes. The players thus receive less information about
the flow of the water after the water has spilled. We could define the s-Limited
Leaky Garden-hose model (for brevity of notation, the LLGHs model) in the
following way. Define a parameter s ∈ N ∪ 0 that denotes the number of pipes
that Alice or Bob are allowed to measure to have become wet or dry on input
(x, y). Alice and Bob can decide, each on their own, which pipes they will
measure, by requesting an s-bit substring of LGHP (x, y). For values of s big-
ger than the length of LGHP (x, y), Alice and Bob simply request the entire
string LGHP (x, y). Note that this means that for s ≥ LGH(f) it holds that
LLGHs(f) = LGH(f), as the s-Limited Leaky Garden-hose model then reduces
to the Leaky Garden-hose model by construction.
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Analogously to the Leaky Garden-hose model, we say a protocol P computes
a function f in the LLGHs model if, after the water spills somewhere on input
(x, y), and Alice and Bob each have learned an s-bit substring of LGHP (x, y),
either Alice or Bob is able to compute with certainty the value of the function
f(x, y). Their computation of f(x, y) can use the s-bit substring LGHP (x, y)
that they requested, the information of where the water has spilled (Alice’s or
Bob’s side) and their own input. We prove that the LLGHs model is indeed an
intermediate model.

Lemma 25. Let LLGHs(f) be the minimum number of pipes needed for a
protocol to compute f in the LLGHs model. Then it holds for all s ∈ N and all
Boolean functions f that

LGH(f) ≤ LLGHs(f) ≤ GH(f)

Proof. Note that in the LLGHs model, Alice and Bob are allowed to learn
at whose side the water spills. This means that any Garden-hose protocol can
be transformed to an s-Limited Leaky Garden-hose protocol using the same
number of pipes, thus showing LLGHs(f) ≤ GH(f).

Then, in order to conclude LGH(f) ≤ LLGHs(f), we prove that for all
Boolean functions f and all s′ ≤ s′′ ∈ N it holds that LLGHs′′(f) ≤ LLGHs′(f).
This is done by observing that each protocol in the LLGHs′ model can be
transformed to a protocol in the LLGHs′′ model: Alice and Bob simply request
the same s′-bit substrings of LGHP (x, y), and disregard the extra bits that they
are allowed to request, because of s′′ being greater than s′.

A model similar to the s-Limited Leaky Garden-hose model has not been
studied, and could provide new tools to create better bounds on the Garden-hose
complexity.

3.2 The Time Bounded Garden-hose Model

Introduced in Klauck and Podder [2014], the following Time Bounded Garden-
hose model is an adaptation of the Garden-hose model in which the time it takes
before the water spills is limited. The notion of time in a Garden-hose model is
defined in Klauck and Podder [2014] in the following way.

Definition 8. Let P be a Garden-hose protocol that computes a function
f(x, y). Define TP to be the maximum number of pipes that get wet in P,
maximizing over all inputs x, y.

Assuming the water flows equally fast in all pipes and all hoses, TP intuitively
describes the maximum time it takes for the water to flow through all the pipes
and to spill at either Alice’s side or Bob’s side.

This leads to the question of classifying functions not by the minimum num-
ber of pipes needed to compute a function, but according to how fast the ‘fastest’
protocol computes a function. That is, instead of looking at the Garden-hose
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complexity of a function f , we can examine the Garden-hose time-complexity of
a function f by minimizing TP over all protocols P that compute f . However,
each function f has a protocol that computes it with TP ≤ 2, as exhibited by
the protocol of Lemma 7 in Section 1.3. A different perspective yields more
interesting results: considering only those protocols P with a TP bounded by
some number k, what is the complexity of a function f?

Definition 9. Let GHk(f) be the complexity of an optimal Garden-hose pro-
tocol P for computing f , while restricting P such that for every input (x, y) it
must hold that TP ≤ k ∈ N.

It turns out a time-size hierarchy follows, as is shown in Theorem 27 in
Klauck and Podder [2014]. This roughly means that for some functions f , it
holds that decreasing the allowed time k dramatically increases the number of
pipes necessary to compute f . Details can be found in Klauck and Podder
[2014].

3.2.1 Connection with the s-Limited Leaky Garden-hose
model

Observe that the time complexity TP of a protocol is exactly equal to the Ham-
ming weight of LGHP (x, y), when maximizing over all input combinations x, y.
The maximum number of pipes that get wet equals the length of the longest
water path.

Remark. Let wt(x) denote the Hamming weight of a bit string x. For all pro-
tocols P = (m, fA, fB), it holds that

max
x,y∈{0,1}n

wt(LGHP (x, y)) = TP

Although the relation between the s-Limited Leaky Garden-hose model and
the Time Bounded Garden-hose model has not yet been studied in detail, our
intuition leads us to believe there are strong connections to be found between
LLGHs(f) and GHk(f) for s = k.
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Chapter 4

Open Problems

In our study of extensions of the Garden-hose model we have mostly focused on
the complexity of the equality function, as was also done in Chiu et al. [2014]
for the Garden-hose model. The reasoning behind this is that even though the
equality function is very simple in its definition, it elicits complex protocols.
And while the various results in this thesis have allowed us to compare the new
models with the Garden-hose model, this focus on equality has left behind an
opportunity for further investigation on the complexity of different functions in
the new models. For example, in Klauck and Podder [2014], the authors show
various results relating Garden-hose complexity and function composition. An
open question is whether those proofs can be translated to proofs about the
other models in this thesis. We list several other remaining open questions that
have arisen in this thesis below.

• What is the complexity of the n-bit, k-player equality function in the
Multiparty Garden-hose model? And similarly for the Leaky Garden-hose
model, what is the value of LGH(EQn) for n ≥ 3?

• Do there exist functions of exponential complexity in the Multiparty Garden-
hose model?

• Does the proof of Lemma 12 in Section 1.3 translate to a proof of the
statement MPGH (f) ≥ Nk(f)− 1? Here, Nk is the multiparty (number-
in-hand) nondeterministic communication complexity of f .

• In what ways can one use the proof technique suggested in Section 2.4.3?
Can one use this technique from the Multiparty Garden-hose model to
find new results in other models?

• What upper bounds hold for the complexity of functions in the s-limited
Leaky Garden-hose model?

• What connections exist between the s-Limited Leaky Garden-hose model
and to the Time Bounded Garden-hose model?
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• What other results about the Garden-hose model can we translate to re-
sults in the new models?
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