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Abstract

This thesis studies several aspects of the topological semantics for evidence-
based belief and knowledge introduced by Baltag, Bezhanishvili, Özgün, and
Smets (2016).

Building on this work, we introduce a notion of generic models, topological
spaces whose logic is precisely the sound and complete logic of topological
evidence models. We provide generic models for the different fragments of
the language.

Moreover, we give a multi-agent framework which generalises that of
single-agent topological evidence models. We provide the complete logic of
this framework together with some generic models for a fragment of the lan-
guage. Finally, we define a notion of group knowledge which differs concep-
tually from previous approaches.
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When, in a given bedroom, you change the position of the bed,
can you say you are changing rooms, or else what?
(cf. topological analysis.)

– Georges Perec, Species of Spaces
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Introduction

The present Master’s thesis aims to take a further step towards bringing
together topology and epistemic logic. In particular, it focuses on a cer-
tain topological semantics (the dense interior semantics) defined on a certain
class of models based on topological spaces (topological evidence models), in-
troduced in Baltag et al. (2016).

Epistemic logics (meaning the family of modal logics which study that
which an epistemic agent believes or knows) found a modelisation in Hintikka
(1962) in the form of Kripke frames, i.e. sets of possible worlds connected by
(epistemic or doxastic) accessibility relations. Knowledge (K) and belief (B)
are thus modal operators which are interpreted via standard possible worlds
semantics.

Hintikka (1962) claims that the accessibility relation for knowledge must
be (minimally) reflexive and transitive. On the syntax level, this demand
translates to the fact that any logic for knowledge based on these frames
must contain the axioms of S4. And this, paired with the fact, famously
proven by McKinsey and Tarski (1944), that S4 is the logic of topological
spaces under a certain semantics, lays the ground for a topological treatment
of knowledge.

The semantics outlined in McKinsey and Tarski (1944) treats the “knowl-
edge” modality as the interior operator, which, if one thinks of the open sets as
“pieces of evidence”, adds an evidential dimension to the notion of knowledge
that one could not get within the framework of Kripke frames.

Under this interpretation, knowing a proposition amounts to having evi-
dence for it. This can be an undesirable property. Depending on the prop-
erties one appoints to knowledge, belief and the relation thereof, one can get
different epistemic logics, each with their axioms and rules. Following the
precepts of Stalnaker (2006), a logic that allows us to talk about knowledge
and belief, evidence (both “basic” and “combined”) and a notion of justifi-
cation is introduced in Baltag et al. (2016) and explored in depth in Özgün
(2017), along with a class of models for this logic based on topological spaces:
topo-e-models. The present pages study several aspects of this framework.

The novel contributions of this thesis can be sorted in two groups: on the
one hand, we introduce a notion of generic models over a language L, which
are topological spaces whose logic is precisely the sound and complete L-logic
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of topo-e-models, and provide several of these for the different fragments of
the language. On the other hand, we bring to the table a notion of multi-
agent topological evidence models which generalises the single-agent case and
differs substantially from prior approaches. In this sense, we provide the
several logics of multi-agent models and give some conceptual and theoretical
contributions for a notion of group knowledge in this framework.

This thesis is structured as follows: in chapter 1, we introduce the notion of a
topological space and provide the relevant technical results, leading up to the
introduction of the framework of topological evidence models that is studied
in the rest of the thesis.

Chapter 2 starts off by recalling the well-known theorem by McKinsey
and Tarski (1944) relating the logic S4 and the topological interior semantics
on R and, following this spirit, introduces the notion of a generic model. We
show that any dense-in-itself metrisable space such as R is a generic model for
the knowledge fragment of the logic of topo-e-models and that certain such
spaces, such as Q or the Cantor space, are generic models for other fragments.

In chapter 3 we introduce and explain our multi-agent models and provide
their sound and complete logics. More saliently, we show that the logic of
knowledge of these models is the fusion logic S4.2 + S4.2.

Chapter 4 is concerned with providing generic models for this multi-agent
logic. We show that the infinite quaternary tree T2,2 and the rational plane
Q×Q are examples of such models.

Chapter 5 is an account of the notions of distributed and common knowl-
edge. We introduce our proposal for the interpretation of distributed knowl-
edge within this framework and outline how it differs conceptually from pre-
vious attempts. We provide a sound and complete logic of distributed knowl-
edge and make some brief comments on common knowledge as well.

Finally, in chapter 6 we discuss the results obtained throughout the thesis,
address some shortcomings and point out some directions in which to take
the present work.
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Chapter 1

Preliminaries

The present chapter introduces the technical preliminaries, concepts, defini-
tions and results that will be used in the remainder of the thesis.

Section 1 introduces topological spaces, explains in which way these spaces
are suited to model knowledge via the interior semantics and talks about
McKinsey and Tarski’s (1944) result relating this semantics with a widely
accepted logic for knowledge.

In Section 2 we introduce several logics of knowledge and belief, and ex-
plain some of the shortcomings of the interior semantics, paving the way to
the introduction, in section 3, of the framework that will be studied through-
out the rest of the present thesis, namely that of topological evidence models
with the dense interior semantics.

1.1 Topology and the interior semantics

Let us start off by recalling some of the basic concepts of topology.

Definition 1.1.1 (Topological space). A topological space is a pair (X, τ),
where X is a set and τ is a collection of subsets of X with the following
properties:

i. X ∈ τ and ∅ ∈ τ ;

ii. τ is closed under binary intersections: U, V ∈ τ implies U ∩ V ∈ τ ;

iii. τ is closed under arbitrary unions: σ ⊆ τ implies
⋃
σ ∈ τ .

A set A ⊆ X is called open whenever A ∈ τ , closed whenever X\A ∈ τ
and clopen whenever it is closed and open.

The interior of a set A ⊆ X is the largest open set contained in A or
equivalently

IntA =
⋃
{U ∈ P(X) : U ∈ τ &U ⊆ A}.

The closure of A is the least closed set which contains A, or

ClA =
⋂
{U ∈ P(X) : X\U ∈ τ &A ⊆ U}.
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Note that the interior is always an open set, the closure is always a closed set
and, moreover, A is open if and only if A = IntA and closed if and only if
A = ClA. The following characterisation of interior and closure will be useful
in what follows:

x ∈ IntA iff ∃U ∈ τ(x ∈ U ⊆ A);
x ∈ClA iff ∀U ∈ τ(x ∈ U implies U ∩A 6= ∅).

Definition 1.1.2 (Bases and subbases). A collection of sets B ⊆ τ is a
basis of τ if every open set can be expressed as a union of elements of B or,
equivalently, if for every U ∈ τ and x ∈ U there exists B ∈ B with x ∈ B ⊆ U .

A collection S ⊆ τ is a subbasis of τ if the collection of finite intersections
of elements of S forms a basis or, equivalently, if for every U ∈ τ and x ∈ U
there exist S1, ..., Sn ∈ S with x ∈ S1 ∩ ... ∩ Sn ⊆ U .

1.1.1 Some examples of topological spaces

The following are some particular topological spaces that will be used in
subsequent chapters.

Example 1.1.3 (The real line). Let R be the set of real numbers. We can
define the natural topology on R, τR as the topology generated by the basis
of open intervals

B = {(a, b) : a, b ∈ R, a < b}.

Equivalently, U ⊆ R is an open set if, for each x ∈ U , there exists some ε > 0
such that (x− ε, x+ ε) ⊆ U .

Definition 1.1.4 (Subspace topology). Given a topological space (X, τ) and
a set Y ⊆ X, we can define the subspace topology τ |Y on Y as the set

τ |Y := {U ∩ Y : U ∈ τ}.

Note that (Y, τ |Y ) is trivially a topological space. We can use this in our next
example:

Example 1.1.5 (The (ir)rational numbers). The natural topology τQ on the
set of rational numbers Q is simply τR|Q or, equivalently, the topology gen-
erated on Q by the basis of open intervals {(a, b) : a, b ∈ R, a < b}, where
(a, b) = {x ∈ Q : a < x < b}.

The natural topology on the set of irrational numbers I can be defined in
an analogous manner.

Example 1.1.6 (The Baire space and the Cantor space). Let ωω be the
set of infinite sequences of natural numbers, and ω∗ be the set of finite such
sequences. For s ∈ ω∗ and α ∈ ωω we say s/α whenever s is an initial segment
of α, i.e., whenever s = 〈s1, ..., sn〉 with si = α(i) for 1 ≤ i ≤ n. For s ∈ ω∗,
let O(s) denote the set of sequences of natural numbers that have s as an
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initial segment, i.e. O(s) = {α ∈ ωω : s / α}. The Baire space B = (ωω, τB)
is the topological space that has ωω as its underlying set together with the
topology τB generated by the basis

BB = {O(s) : s ∈ ω∗}.

We can analogously define the Cantor space C on the set 2ω of countable
sequences of zeros and ones. The Cantor space has a nice visual representation
in the form of the infinite binary tree. This is a tree whose nodes are the finite
sequences of zeros and ones. It has the empty sequence as the root and each
node 〈i1, ..., in〉 ∈ 2∗ has exactly two successors, namely 〈i1, ..., in, 0〉 as its
left successor and 〈i1, ..., in, 1〉 as its right successor. The elements of the
Cantor space can be identified with branches of this tree, where a branch
is a countable collection of nodes {s0, s1, s2, ...} such that s0 is the empty
sequence (i.e. the root of the tree) and each sk+1 is an immediate successor
of sk. The basic open sets O(s) are identified with “fans”, each fan being the
subtree that spurs from one node. An open set is any union of some of these
fans. α ∈ 2ω is in a basic open set O(s) whenever the corresponding branch
“enters” the fan.

〈〉

〈0〉 〈1〉

〈0, 0〉 〈0, 1〉 〈1, 0〉 〈1, 1〉

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 1.1: The Cantor space C. The dashed line represents the fan corre-
sponding to O(s), where s = 〈0, 1, 1〉. The thick line represents a branch of
the tree, corresponding to an infinite sequence α = 〈0, 1, 1, 0, ...〉. As we can
see, the branch enters the fan and thus α ∈ O(s).

Example 1.1.7 (The binary tree T2). If we consider the nodes of the binary
tree in figure 1.1 instead of its branches to be the points of our space, we
can give it a topology by setting the basic open sets to be O(s), where s =
〈a0, ..., an〉 and t ∈ O(s) if t is a finite sequence of length greater than or equal
to n+ 1 with its n+ 1 first elements being a0, ..., an.
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1.1.2 Preorders and Alexandroff topologies

Let us show the relation existing between topological spaces and preordered
frames.

Definition 1.1.8 (Preordered frames). A preordered frame is a pair (X,≤)
where X is a set and ≤ is a preorder on X, i.e. a reflexive and transitive
binary relation defined on X.

A set U ⊆ X is an upwards closed set (or an upset for short) if for all
x ∈ U and all y ≥ x, we have that y ∈ U . It is downwards closed (or a
downset) if x ∈ U and y ≤ x imply y ∈ U .

The upwards- and downwards-closure of U are, respectively, the sets

↑≤U :={y ∈ X : x ≤ y for some x ∈ U};
↓≤U :={y ∈ X : y ≤ x for some x ∈ U}.

In the remainder of this text we will use the notation Up≤(X) to refer to
the collection of all upsets of (X,≤). For a point x ∈ X, we will write
↑≤x = ↑≤{x} and ↓≤x = ↓≤{x}. If there is no risk of ambiguity we will drop
the ≤ in the subindices and write, for instance, Up(X), ↑x.

A topology need not be closed under arbitrary intersection. If it is, (X, τ)
is called an Alexandroff space. There is a 1-to-1 correspondence between
preordered sets and Alexandroff spaces:

Lemma 1.1.9 (For details, see e.g. van Benthem and Bezhanishvili, 2007).
Let (X,≤) be a preordered set and τ≤ := Up(X). Then τ≤ is an Alexandroff
topology on X. Conversely, let (X, τ) be a topological space. The relation

x ≤τ y iff for all U ∈ τ(x ∈ U implies y ∈ U)

defines a preorder on X, called the specialisation preorder.
If ≤ is a preorder we have that ≤τ≤=≤ and, if τ is an Alexandroff topology,

τ≤τ = τ . Moreover, for any U ⊆ X

Intτ≤ U = {x : ↑≤x ⊆ U} & Clτ≤ U = ↓≤U.

For this reason, in the remainder of this thesis we will sometimes refer to
preordered sets (X,≤) as topological spaces and, in this context, we will use
the terms “open set” and “upset” interchangeably.

Before we proceed, let us use lemma 1.1.9 to look at p-morphisms from
a topological lens. Given two relational structures (W,R) and (V,R′) a
p−morphism is a map f : W → V that satisfies:

i. The forth condition: Rxy implies R′(fx)(fy);

ii. The back condition: R′(fx)v implies that there exists y ∈W such that
Rxy and fy = v.
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But what are the topological counterparts of these conditions if the relations
we are dealing with are preorders? It is straightforward to check that f
satisfies the forth condition if and only if the preimage of an R′-open set is
an R-open set. Similarly, the forth condition is satisfied if and only if the
image of an R-open set is an R′-open set. These properties of a function
f , in the more general context of topological spaces, are respectively called
continuity and openness. A map which is open and continuous is called an
interior map. In what follows, we will use the terms p-morphism and interior
map interchangeably when we are dealing with Alexandroff topologies.

Definition 1.1.10 (Continuous map, open map, homeomorphism). Let (X, τ)
and (Y, σ) be two topological spaces. A map f : X → Y is called continuous
if A ∈ σ implies f−1A ∈ τ , and open if A ∈ τ implies f [A] ∈ σ.

We call f an interior map if it is open and continuous, and we call f a
p-morphism if it is an interior map between Alexandroff spaces.

A bijective interior map is called a homeomorphism.

1.1.3 Interior semantics for modal logics

Let us work with a language L� that includes a modal operator � and can
be defined recursively as follows:

φ ::= p | ¬φ |φ ∧ φ |�φ,

where p ∈ Prop, a countable set of propositional variables.
Given a topological space (X, τ) along with a valuation V : Prop→ P(X)

assigning sets of worlds to propositional variables, we have ourselves a topo-
logical model X = (X, τ, V ) and we can define a notion of a formula φ being
true at a world x recursively as follows:

X, x �p iff x ∈ V (p);
X, x �¬φ iff X, x 2 φ;
X, x �φ ∧ ψ iff X, x � φ and X, x � ψ;
X, x ��φ iff ∃U ∈ τ(x ∈ U & X, y � φ for all y ∈ U).

By setting ‖ψ‖ to be the set of worlds in which ψ holds, this definition gives
us that ‖�φ‖ = Int ‖φ‖.

Note that, if we read �φ with the usual Kripke semantics on a relational
model M = (W,R, V ), i.e.

x ∈ ‖�φ‖ iff y ∈ ‖φ‖ for all y such that Rxy,

and if R happens to be a preorder on W , lemma 1.1.9 gives us that the set
of worlds in which a formula is true is the same as if we read it with the
interior semantics on (W,UpR(W ), V ). And conversely, if X = (X, τ, V ) is an
Alexandroff topological model and ≤τ is the specialisation preorder, then the
interior semantics on X coincides with the Kripke semantics on (X,≤τ , V ).
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This means that the interior semantics on topological spaces generalises
the Kripke semantics on preordered frames. If we are reading � as an epis-
temic operator, we can translate the semantics of Hintikka (1962) into this
topological framework, with the addition that having a topological space al-
lows us to have an evidential view of knowledge. Indeed, if we read � as a
knowledge modality, interpret the open sets in the topology to be pieces of
evidence the agent has, and we say that P entails Q whenever P ⊆ Q, then
the interior semantics defined above gives us that the agent knows φ whenever
she has a piece of evidence which entails φ.

Let us get more specific and revisit some of the examples in subsection
1.1.1.
Example 1.1.11. Let us suppose our epistemic agent is an underfunded or-
nithologist attempting to determine the weight of a certain bird. Her devices
of measurement are not particularly precise and produce results with a margin
of error of ±10g. Let us code the set of possible worlds with the positive real
numbers (0,∞), where at world x the weight of the bird is precisely x grams.
Now, suppose the actual world is x0 = 509 and the ornithologist obtains a
measurement of 500g ± 10g. Then the open interval (490, 510) is her piece
of evidence. With this, there are things she knows and things she does not
know. She does not know, for instance, the proposition “the bird is heavier
than 500g” to be true. She knows, however, that the bird is heavier than
400g. This proposition can be interpreted as the set of worlds P = (400,∞)
and she has a piece of evidence which includes the actual world and entails
this proposition: x0 ∈ (490, 510) ⊆ P .
Example 1.1.12. Let us equate a world with an infinite stream of data,
represented by a sequence of natural numbers. We are thus in our Baire space.
Our epistemic agent this time is a scientist, and her evidence comes in the
form of observations, which are finite streams of data that the scientist is able
to grasp. A world is compatible with her observation whenever the stream of
data is an initial segment of said world. If she observes s = 〈a1, ..., an〉, then
the set of worlds compatible with it (the corresponding piece of evidence in
our sense) is precisely the basic open set O(s).

In this setting, open sets correspond with verifiable propositions: if P
is an open set and the actual world x0 is in P , then there exist a basic
open set O(s) such that x ∈ O(s) ⊆ P , thus this scientist can potentially
make an observation, s, which will allow her to know P . Similarly, closed sets
correspond to refutable propositions and clopen sets to decidable propositions.
For more details on this interpretation, see Kelly (1996).

1.1.4 McKinsey and Tarski: S4 as a topological logic of knowl-
edge

Modelling knowledge as topological interior gives us an intuitive, evidence-
based idea of what knowledge amounts to. But what is the logic of topological
spaces?
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Definition 1.1.13 (S4). The logic S4 is the least set of formulas in the
language L� which contains all the propositional tautologies, is closed under
uniform substitution and the rules of modus ponens (from φ→ ψ and φ infer
ψ) and necessitation (from φ infer �φ) and contains the axioms:

(K) �(φ→ ψ)→ (�φ→ �ψ);

(T) �φ→ φ;

(4) �φ→ ��φ.

And the relevant result to this respect:

Theorem 1.1.14 (McKinsey and Tarski, 1944). S4 is sound and complete
with respect to topological spaces under the interior semantics.

This result sheds light on another reason why one would want to use the topo-
logical interior to model knowledge. The resulting logic S4 gives knowledge
some desirable (and in general philosophically accepted) properties. The (T)
axiom gives us factivity of knowledge: an agent only knows things which are
true. Axiom (4) gives us positive introspection: if an agent knows something,
she knows that she knows it.

Note that the soundness of these axioms corresponds to certain properties
of the topological interior: for instance, axiom (T) corresponds to the fact
that the interior of a set is contained in the set, axiom (K) to the fact that
interior distributes over finite intersections and axiom (4) to the idempotence
of the Int operator. Completeness can be derived from relational completeness
with respect to preordered frames plus lemma 1.1.9.

But McKinsey and Tarski proved something else. We do not need to
consider the class of all topological spaces to get the logic S4. There need not
be a straightforward conceptual interpretation of knowledge relative to every
possible topology. They showed that, instead, we can take some particular,
“natural” topological space used to model knowledge whose logic is S4.

Definition 1.1.15 (Dense-in-itself space). A topological space (X, τ) is dense-
in-itself if no singleton is an open set, i.e., if {x} /∈ τ for all x ∈ X.

Definition 1.1.16 (Metrisable space). Given a set X a metric on X is a
map d : X ×X → [0,∞) satisfying for all x, y, z ∈ X:

i. d(x, y) = 0 iff x = y;

ii. d(x, y) = d(y, x);

iii. d(x, z) ≤ d(x, y) + d(y, z).

A metric d on X induces a topology τd: we say that a set U ⊆ X is open if,
for every x ∈ U , there exists some ε > 0 such that d(x, y) < ε implies y ∈ U .

A topological space (X, τ) is metrisable if there exists a metric d on X
such that τ = τd.
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Remark 1.1.17. All the spaces presented as examples in subsection 1.1.1 are
both dense-in-itself and metrisable. The corresponding metric for R, Q and
I is d(x, y) = |x − y|, and clearly no singleton contains an open interval in
these spaces. The binary tree T2 clearly has no open singletons and it is a
regular space with a countable basis and thus metrisable. The fact that B
has these properties is a consequence of the fact that B is homeomorphic to
I. Similarly, C is homeomorphic to a dense-in-itself metrisable subspace of R
(for details on these claims, see Munkres, 2000; Engelking, 1989).

Theorem 1.1.18 (McKinsey and Tarski, 1944). S4 is the logic of any dense-
in-itself metrisable space.1

This is to say: whatever is provable in S4 is true at any world in any model
based on (for example) R with the interior semantics and, conversely, what-
ever is true of the topology of R is provable in S4.

We thus have a semantics based on evidence that allows us to talk about
knowledge and whose logic is a philosophically felicitous epistemic logic.
Moreover, we have some specific spaces which provide “nice” ways to con-
ceptualise knowledge and whose logic is still S4.

This semantics, however, is not the topic of this thesis. Instead, we will
be working with the dense interior semantics. Understanding the conceptual
reasons to move away from the interior and introducing this semantics is the
aim of the next section.

1.2 Topological accounts of belief and knowledge:
a pre-history

Before explaining and introducing the framework, let us bring forward some
of the logics that will be mentioned in this section and throughout the rest
of the thesis.

1.2.1 Logics for knowledge and belief

We will mention the axioms and rules of several logics and provide a class
of relational frames with respect to which they are sound and complete. For
details about these soundness and completeness results, see e.g. Blackburn,
De Rijke, and Venema (2001).

All of the logics in this subsection contain the propositional tautologies,
are closed under uniform substitution and the rules of modus ponens and
necessitation and moreover contain the following axioms:

• As introduced in the previous subsection, S4 has the additional axioms
1The original formulation of this theorem talked about dense-in-itself, metrisable, separa-

ble spaces. Later work (e.g. Rasiowa and Sikorski, 1970) dropped the separability condition.
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(K) �(φ→ ψ)→ (�φ→ �ψ);
(T) �φ→ φ;
(4) �φ→ ��φ.

S4 is sound and complete with respect to the class of finite rooted
preordered frames.

• S4.2 has the axioms and rules of S4 plus the axiom
(.2) 3�φ→ �3φ.

S4.2 is sound and complete with respect to the class of finite rooted
frames (W,≤) where ≤ is reflexive, transitive and weakly directed (i.e.
y ≥ x ≤ z implies that there exists t ∈W such that y ≤ t ≥ z).

• S5 has the axioms and rules of S4 plus the axiom
(5) ¬�φ→ �¬�φ.

It is sound and complete with respect to the class of finite frames (W,∼)
where ∼ is an equivalence relation.

• KD45 has the (K), (4) and (5) axioms plus
(D) �φ→ ¬�¬φ.

It is sound and complete with respect to the class of finite frames (W,≤)
where ≤ is reflexive, transitive and Euclidean (i.e. y ≥ x ≤ z implies
y ≤ z).

The following subsection is a recap of section 3.3 and chapter 4 in Özgün
(2017).

1.2.2 The road to the dense interior semantics

The relation between belief and knowledge has historically been a main focus
of epistemology. One would want to have a formal system that accounts for
knowledge and belief together, which requires careful consideration regarding
the way in which they interact.

Canonically, knowledge has been thought of as “true, justified belief”.
However, Gettier’s (1963) counterexamples of cases of true, justified belief
which do not amount to knowledge shattered this paradigm.

Epistemologists like Williamson (2002) and Stalnaker (2006) propose,
proverbially having dessert before dinner, to think of this issue from a “knowl-
edge first” perspective: instead of starting off with a notion of belief and
strengthening it to what amounts to some felicitous idea of knowledge, one
could start with some idea of knowledge and define belief from it.

Stalnaker (2006) argues that a relational semantics is insufficient to cap-
ture Gettier’s (1963) considerations and, trying to stay close to most of the
intuitions of Hintikka (1962), provides an axiomatisation for a system of
knowledge and belief. This system, Stal, has two modal operators, B and
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K, and on top of the S4 axioms and rules for K it adds the axioms in table
1.1:

(PI) Bφ→ KBφ;
(NI) ¬Bφ→ K¬Bφ;
(KB) Kφ→ Bφ;
(CB) Bφ→ ¬B¬φ;
(FB) Bφ→ BKφ.

Table 1.1: Extra axioms for Stal

In this logic, knowledge is an S4.2 modality, belief is a KD45 modality and
the following formula can be proven:

Bφ↔ ¬K¬Kφ.

Within this system, in the words of Baltag, Bezhanishvili, Özgün, and Smets
(2013), “believing p” is the same as “not knowing you don’t know p”. The
following can also be proven in Stal:

Bφ↔ BKφ.

Belief then becomes “subjective certainty”, in the sense that the agent can-
not distinguish whether she believes or knows p, and believing amounts to
believing that one knows.

An attempt to introduce belief in a topological framework was conducted
by Steinsvold (2006). Belief is seen as the dual of the derived set operator,

¬B¬P = d(P ) := {x : ∀U ∈ τ(x ∈ U implies ∃y ∈ (P ∩ U)\{x})}.

In other words, x ∈ BP if and only if there exists U ∈ τ such that x ∈
U ⊆ P ∪ {x}. Steinsvold proves that KD45 is sound and complete for this
semantics defined on DSO spaces (i.e. dense-in-itself spaces in which every
d(P ) is open, DSO meaning “derived sets are open”). A problem with this
approach is that the epistemic agent at world x will always believe a false
proposition, namely X\{x}. An even bigger problem is that, if one tries to
account for this notion of belief plus knowledge as interior in the same setting,
one gets the equivalence Kφ ↔ φ ∧ Bφ: knowledge amounts to true belief,
which clearly falls short.

Baltag et al. (2013) take a Stalnakerian stand and observe that, if knowl-
edge is interior and the principle Bφ↔ ¬K¬Kφ is to be accounted for, then
belief has to be modelled as the closure of the interior operator, i.e.

BP = Cl IntP.

Then Baltag et al. (2013) prove that the logic Stal is actually sound and com-
plete with this semantics for a particular class of topological spaces, namely
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extremally disconnected spaces, i.e. those spaces with the property that the
closure of an open set is an open set.

If one wants to take this setting to the realm of Dynamic Epistemic Logic
and introduce a notion of public announcement in it, one runs into a prob-
lem. Executing a public announcement amounts (semantically) to erasing
some possible worlds, therefore we would be dealing with subspaces of our
original space. And there is no guarantee that these subspaces of an ex-
tremally disconnected space will themselves be extremally disconnected. To
make this setting dynamic, one has to work with hereditarily extremally dis-
connected spaces, i.e., spaces with the property that any subspace of them
is extremally disconnected. Despite there is a theory of h.e.d. spaces, these
seem rather difficult to find “in the wild”, not particularly comfortable to
work with and none of the “natural” spaces provided above as examples are
h.e.d.

Enter Baltag et al. (2016). In this paper a new semantics is introduced,
improving on the idea of evidence models of van Benthem and Pacuit (2011)
which exploits the notion of evidence-based knowledge allowing to account
for notions as diverse as basic evidence versus combined evidence, factual,
misleading and nonmisleading evidence, etcetera. It is a semantics whose
logic maintains a Stalnakerian spirit with regards to the relation between
knowledge and belief, which behaves well dynamically and which does not
confine us to work with “weird” species of spaces.

This is the dense interior semantics, defined on topological evidence mod-
els.

1.3 The logic of topological evidence models

All the definitions and results in the present section appear in Baltag et al.
(2016).

Definition 1.3.1. A topological evidence model or topo-e-model is a tuple
(X, τ,E0, V ), where (X, τ) is a topological space, E0 is a subbasis for τ and
V is a valuation.

The elements e ∈ E0 represent the basic pieces of evidence the agent has, i.e.,
the evidence the agent has acquired directly through observation, measure-
ments, etc. A combined evidence or an argument is an evidence the agent
can piece together from her basic evidence, i.e. a nonempty finite intersection
e0 ∩ ... ∩ en of pieces of basic evidence. We say an agent has a basic piece of
evidence for a proposition P at world x whenever there exists some e ∈ E0
such that x ∈ e ⊆ P , and we denote the set of worlds in which this is true
as �0P . Similarly, we say that an agent has evidence for P at x if she has a
factive argument for P , i.e. if there is a combined evidence e0 ∩ ... ∩ en such
that x ∈ e0 ∩ ...∩ en ⊆ P . We denote the set of worlds in which this holds by
�P . Note that, since the combined evidence constitutes a topological basis,
�P is exactly the topological interior of P .
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We can make a distinction between an argument and a justification. A
justification is an argument which is sufficiently strong, in the sense that it
cannot be contradicted by any other argument. This takes us to the topolog-
ical notion of density.
Definition 1.3.2 (Density). Let (X, τ) be a topological space. A set U ⊆ X
is dense if U = ∅2 or ClU = X. In other words, a nonempty set U is dense
if and only if it has a nonempty intersection with every nonempty open set
in the topology.
Formally, a justification is simply a dense argument. This is where the notions
of knowledge and belief come in: we say that our agent believes P at x if she
has a justification for P , i.e., if there exists a dense piece of evidence U ⊆ P ;
we say that the agent knows P at x if she has a factive justification for P ,
i.e. if x ∈ U ⊆ P . Knowledge in this setting amounts to correctly justified
belief. We represent the set of worlds in which the agent believes/knows P
respectively by BP and KP . Note that

BP = X if IntP is dense and nonempty, ∅ otherwise;
KP = IntP if IntP is dense, ∅ otherwise.

Finally, we can think of the whole space X as the set of worlds which
are consistent with the agent’s information. In this sense, we can represent
a notion of infallible knowledge by a global modality [∀], in the sense that
an agent knows P infallibly whenever P holds in every world she considers
possible. So [∀]P = X if P = X, and [∀]P = ∅ otherwise.

To summarise,
Definition 1.3.3 (Dense interior semantics for topo-e-models). We have a
language that includes a countable set of propositional variables, the Boolean
connectives ∧ and ¬ and the modalities �0,�, B,K and [∀]. Given a topo-e-
model X = (X, τ,E0, V ), let τ+ be the collection of its dense open sets. We
define truth in x ∈ X recursively as follows:

X, x � p iff x ∈ V (p);
X, x � ¬φ iff X, x 2 φ;
X, x � φ ∧ ψ iff X, x � φ and X, x � ψ;
X, x � �0φ iff there exists e ∈ E0 such that x ∈ e ⊆ ‖φ‖;
X, x � �φ iff x ∈ Int ‖φ‖;
X, x � Bφ iff there exists U ∈ τ+\{∅} such that U ⊆ ‖φ‖

iff ∅ 6= Int ‖φ‖ ∈ τ+;
X, x � Kφ iff there exists U ∈ τ+ such that x ∈ U ⊆ Int ‖φ‖

iff x ∈ Int ‖φ‖ ∈ τ+;
X, x � [∀]φ iff X, y � φ for all y ∈ X.

Moreover we set 30,3, B̂, K̂, [∃] to be, respectively, the duals of these
modalities (i.e. 30φ ≡ ¬�0¬φ and so on).

2Although considering the empty set dense is not standard, we will do so in this thesis
for expositional clarity. Later we will define the topology of dense open sets and, for that,
it is convenient to include the empty set in the definition.
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One does not, in most cases, need to use all these modalities. Let us provide
several fragments that will be used throughout this thesis and point out what
the logic of each of them is.

The knowledge-only fragment LK . This is the fragment including only
the knowledge modality K. It has S4.2 as its logic. Similarly,

The belief-only fragment LB has KD45 as its logic.

The knowledge and belief fragment LKB. This is the fragment with
the K and B modalities. Its logic is precisely Stal, introduced in subsection
1.2.2.

The knowledge fragment L∀K . The logic of the fragment with the global
“infallible knowledge” modality [∀] plus the “defeasible knowledge” modality
K is Logic∀K , which is the least logic including all the propositional tautolo-
gies, the S4 axioms and rules for K, the S5 axioms and rules for [∀] plus the
axioms [∀]φ→ Kφ and [∃]Kφ→ [∀]K̂φ.

The combined evidence fragment L∀�. The logic of this fragment,
Logic∀� contains the S4 axioms and rules for �, the S5 axioms and rules
for [∀] plus the axiom [∀]φ→ �φ.

Note that the following equality holds in topo-e-models:

‖Kφ‖ = ‖�φ ∧ [∀]3�φ‖.

Indeed, �φ takes care of the “interior” part and [∀]3�φ takes care of the
“density” part. The following equality also holds (recall subsection 1.2.2):

‖Bφ‖ = ‖K̂Kφ‖.

We see that K and B can actually be defined in this fragment.

The evidence fragment L��0∀. The logic of the fragment including the
[∀], � and �0 modalities is Logic∀��0 , including the propositional tautologies,
the axioms and rules of S5 for [∀] and of S4 for � plus the axioms:

4�0 �0φ→ �0�0φ;
Universality [∀]φ→ �0φ;
Factive evidence �0φ→ �φ;
Pullout (�0φ ∧ [∀]ψ)→ �0(φ ∧ [∀]ψ);

and the monotonicity rule: from φ→ ψ, infer �0φ→ �0ψ.
Remark 1.3.4. Unless we are dealing with a fragment which includes the �0
modality, having a designated subbasis does not play a role in the semantics.
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For this reason, whenever a notion of basic evidence is not involved, we will
refer to models of the form (X, τ, V ) as topo-e-models, with the understanding
that they can be turned into a topo-e-model in the sense of definition 1.3.1
by setting E0 = τ .
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Chapter 2

Generic spaces for the logic
of topo-e-models

McKinsey and Tarski’s (1944) theorem stating that S4 is the logic of any
dense-in-itself metrisable space (such as the real line R) under the interior
semantics has a rather interesting implication. Not only do we have com-
pleteness with respect to the class of topological spaces, but moreover we
have a space which gives a somewhat “natural” way of capturing knowledge
yet it is “generic” enough so that its logic is precisely the logic of topological
spaces. Whatever is not provable in the logic of knowledge S4 will find a
refutation in R and whatever is true in S4 will hold in every model based on
the topology of the real line.

Translating this idea to the framework of topo-e-models is the aim of this
chapter. We wish to find topological evidence models which capture the logics
presented in the preceding chapter, that is, special spaces whose logic under
the dense interior semantics is exactly the logic of topo-e-models. Let us start
this by formalising the idea of “generic”.

Definition 2.0.1 (Generic models). Let L be a language and (X, τ) a topo-
logical space. We will say that (X, τ) is a generic model for L if the sound
and complete L-logic over the class of all topological evidence models is sound
and complete with respect to the family

{(X, τ,E0) : E0 is a subbasis of τ}.

If �0 is not in the language, then a generic model is simply a topological
space which is sound and complete with respect to the corresponding L-logic.

Since McKinsey and Tarski’s theorem appeared in 1944, a number of sim-
plified proofs of this result have been published. (For an overview, see van
Benthem and Bezhanishvili, 2007.) The present chapter builds on one such
proof, contained in Bezhanishvili, Bezhanishvili, Lucero-Bryan, and van Mill
(2018), which uses the well-known fact that S4 is sound and complete with
respect to finite rooted preorders (see e.g. Blackburn et al., 2001) and then
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constructs an interior map from a dense-in-itself metrizable space (X, τ) onto
any such frame. That is, a surjective map f : (X, τ) � (W,≤) which is con-
tinuous and open. It can be proven that given such a map and a valuation
V on (W,≤), if we define V f (p) := {x ∈ X : fx ∈ V (p)} it is the case that,
for any formula φ in the language of S4, x � φ on (X, τ, V f ) if and only if
fx � φ on (W,≤, V ). Completeness is then a straightforward consequence,
for if φ /∈ S4, then there is a model based on a finite rooted preorder (W,≤, V )
refuting φ and thus we can refute φ on (X, τ, V f ).

In the first section of this chapter we present an adaptation of this result
to the dense interior semantics: namely, we prove that S4.2K is the logic of
any dense-in-itself metrisable space if we read K as according to the semantics
defined in 1.3.3. In section 2 we add belief and prove completeness of any
such space with respect to Stal. In section 3 we consider fragments of the
logic which include the universal modality and show that, despite R is not a
generic model for them, Q is. In section 4 we provide a sufficient condition for
a dense-in-itself metrisable space to be a generic model for these fragments
and show that many of the examples provided in the previous chapter are
generic models.

2.1 S4.2 as the logic of R

This section is devoted to the proof of this result, our analogue to McKinsey
and Tarski’s theorem:

Theorem 2.1.1. S4.2K is the logic of any dense-in-itself metrisable space
if we read K as dense interior. That is, for any formula in the language of
S4.2K , S4.2K ` φ if and only if (X, τ) � φ with the dense interior semantics.

Before tackling this proof, some preliminaries are needed.
Given a topological space (X, τ) define τ+ to be the collection of dense

open sets in (X, τ):

τ+ = {U ∈ τ : ClU = X} ∪ {∅}.

Lemma 2.1.2. (X, τ+) is an extremally disconnected topological space and,
for any valuation V : P → P(X) and any formula φ in the modal language
LK we have that ‖φ‖(X,τ,V ) under the dense interior semantics coincides with
‖φ‖(X,τ+,V ) under the interior semantics.

Proof. First, let us see τ+ is a topology. X and ∅ are dense, hence they are
in τ+. Now, if U, V ∈ τ+, then U, V ∈ τ and they are dense. Due to the
density of V , for any nonempty W ∈ τ we have that V ∩W is a nonempty
open set, and hence (U ∩ V ) ∩W = U ∩ (V ∩W ) 6= ∅. Thus U ∩ V is dense
in τ and as a consequence U ∩ V ∈ τ+. Finally, take σ ⊆ τ+\{∅}. For any
nonempty W ∈ τ , we have that W ∩

⋃
σ =

⋃
U∈σ(U ∩W ), which is a union

of nonempty sets (by density of each U ∈ σ) and hence nonempty. Therefore,⋃
σ ∈ τ+.
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The fact that (X, τ+) is extremally disconnected is a consequence of the
fact that every open set in τ+ is dense, hence ClU = X ∈ τ+ for all nonempty
U ∈ τ+ and of course Cl∅ = ∅ ∈ τ+.

The last item is a straightforward subformula induction. The only case
that might be more involved is the one with the K operator. Note that,
for A ⊆ X, we have Intτ+ A = Intτ A if Intτ A is dense and Intτ+ A = ∅
otherwise. Hence, x ∈ ‖Kφ‖(X,τ,V ) under the dense interior semantics if
and only if x ∈ Intτ ‖φ‖(X,τ,V ) and Intτ ‖φ‖(X,τ,V ) is dense, if and only if
x ∈ Intτ+ ‖φ‖(X,τ+,V ) if and only if x ∈ ‖Kφ‖(X,τ+,V ) under the interior
semantics. �

Corollary 2.1.3. For any topological space (X, τ), it is the case that (X, τ+) �
S4.2 under the interior semantics.

Now, we will be using in this proof the known result that S4.2 is sound and
complete with respect to the class of finite rooted frames (W,≤) in which ≤
is a reflexive, transitive and weakly directed relation. Let us make an obser-
vation about this class of frames. If a frame is rooted and weakly directed,
for every pair of points x, y ∈ W , and given that x ≥ r ≤ y where r is the
root of W , weak directedness grants us the existence of some z such that
x ≤ z ≥ y. But this means that, for every pair of points x and y, the set
↑x ∩ ↑y is nonempty, and thus for every pair of nonempty upsets U and V
we have that U ∩ V 6= ∅. This means that every nonempty upset is dense in
such a frame, and therefore that the topology of upsets τ := Up(W ) coincides
with τ+. This fact, paired with the previous lemma, immediately gives us
this result:

Corollary 2.1.4. Let F = (W,≤) be a reflexive, transitive and weakly directed
rooted frame. Then the dense interior semantics on (W,Up(W )) coincides
with the interior semantics on it, which in turn coincides with the standard
Kripke semantics on (W,≤). In other words, in any model based on such a
frame

x � Kφ if and only if y � φ for all y ≥ x.

Completeness will follow from this result:

Lemma 2.1.5. Let (X, τ) be some topological space and (W,≤, V ) a finite,
rooted, reflexive, transitive and weakly directed Kripke model. Moreover let

f : (X, τ+) � (W,Up(W ))

be an onto interior map and define

V f (p) := {x ∈ X : fx ∈ V (p)}.

Then for every x ∈ X we have that (X, τ, V f ), x � φ under the dense interior
semantics if and only if (W,≤, V ), fx � φ under the Kripke semantics.
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Proof. We proceed by induction on the structure of φ. If φ is a propositional
variable, the result follows from the construction of V f . The induction step
for the Boolean connectives ¬ and ∧ is straightforward.

Now suppose the result holds for φ and let x � Kφ for some x ∈ X. This
means that there exists some U ∈ τ+ with x ∈ U ⊆ ‖φ‖X . But then f [U ]
is an open set in (W,Up(W )) which contains fx and, for every y ∈ f [U ], we
have y = fz for some z ∈ ‖φ‖X and thus, by induction hypothesis, y � φ.
Therefore fx � Kφ.

Conversely if fx � Kφ we have that there exists an open set U ∈ Up(W )
such that fx ∈ U ⊆ ‖φ‖W . But then by continuity f−1U is an open set in τ+

(thus an open dense set in τ) which contains x and moreover, by induction
hypothesis, it is contained in ‖φ‖X , thus x � Kφ. �

So let us take R with the natural topology and any finite rooted S4.2 model
and construct such a map1. Completeness will follow. Later we will generalise
this result to any dense-in-itself metrisable space.

For the construction, we will use the following fact:

Lemma 2.1.6 (Bezhanishvili et al., 2018). If F = (W,R) is a finite rooted
preorder, and (X,σ) is a dense-in-itself metrizable space, there exists a con-
tinuous, open and surjective map f : (X,σ)→ (W,UpR(W )).

Now, let F = (W,≤) be a finite rooted S4.2 frame. Let us find an open,
continuous and surjective map f̄ : (R, τ+)→ F.

Note that F has a final cluster, i.e., a set A ⊆ W with the property that
w ≤ a for all w ∈ W,a ∈ A. Indeed, let r ∈ W be the root and let x, y ∈ W
be any two maximal elements (which exist, on account that F is finite). Since
r ≤ x and r ≤ y, by directedness, there is a z such that x ≤ z ≥ y. But by
maximality of x and y, we have that z ≤ x and z ≤ y, hence, by transitivity,
x ≤ y and y ≤ x: the maximal elements of F form a final cluster.

Now, if F consists only of this final cluster (i.e. W = {w1, ..., wn} with
wi ≤ wj for all i, j), its topology of upsets is the set {∅,W}. In this case
we partition R in n dense sets {A1, ..., An} with ClAi = R, Ai ∩ Aj = ∅ for
i 6= j and A1 ∪ ... ∪ An = R. Trivially, mapping each a ∈ Ai to wi gives us
the desired f̄ .

Now suppose F contains more points than just those in its final cluster,
Note that, if C is this cluster, W\C with the restriction of ≤ forms a finite
rooted S4 frame. Call this frame F′. Let us take a proper subset A ⊆ R which
is closed, nowhere dense2 and dense-in-itself (for example, the Cantor set3).
By lemma 2.1.6, we have that there exists an interior map f : (A, τA) → F′,
where τA is the subspace topology, i.e. τA = {A ∩ U : U ∈ τ}. Now, if

1We wish to thank Guram Bezhanishvili for the idea of this construction.
2A nowhere dense set is a set with the property that Int Cl A = ∅. Note that if a set is

nowhere dense and closed, its complement is dense.
3The Cantor set is the subset of R that one obtains by taking the closed interval [0, 1]

and removing its middle third, only to then do the same to the two remaining intervals
and, recursively, removing the middle third of the 2n intervals that one gets in step n ad
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the final cluster of F is C = {w1, ..., wn} let us partition R in n dense sets
{A1, ..., An} and set A′i = Ai ∩ (R\A). Note that A′i is nonempty for all i and
that {A′1, ..., A′n} constitutes a partition of R\A. Set

f̄(a) =
{
wi, a ∈ A′i;
f(a), a ∈ A.

Let us see that this f̄ is the desired map.
Surjectivity is trivial. For continuity, take an open set U in F. Note that

U contains C (because it is an upset) and that U\C is an upset in F′. Hence
f−1(U\C) is an open set in τA, i.e., it equals V ∩ A for some V ∈ τ . Then
f̄−1(U) = f̄−1(C) ∪ f̄−1(U\C) = (R\A) ∪ (V ∩ A) = (R\A) ∪ V . This set is
open in τ (for it is the union of two opens) and dense (for it contains R\A
which is dense), hence f̄−1(U) = (R\A)∪V ∈ τ+ and this gives us continuity.
For openness, take a dense open set U ∈ τ+. It has a nonempty intersection
with each of the A′i, hence f̄ [U ∩ (R\A)] = C. On the other hand f̄ [U ∩A] is
an upset in F′, let us call it V . Hence, f̄ [U ] = V ∪C, which is an upset in F.

This proof can be very easily extended to an arbitrary dense-in-itself
metrizable space, just by making use of the partition lemma:

Lemma 2.1.7 (Partition lemma). Let X be a dense-in-itself metrizable space
and F a nonempty closed discrete subspace of X. Then, for each n ≥ 1,
there is a partition of X {G,U1, ..., Un} such that G is a dense-in-itself closed
nowhere dense subspace of X containing F and each Ui is an open set with
the property that there is a discrete subspace Fi of Ui such that ClFi = Fi∪G.

Proof. See Bezhanishvili et al. (2018). �

Theorem 2.1.8. Given any dense-in-itself metrisable space and a finite rooted
S4.2 frame F = (W,R), there exists a continuous, open and surjective map
f̄ : (X, τ+) � (W,≤).

Proof. Suppose A = {w1, ..., wn} is the final cluster of F. If W = A, then
let A1, ..., An be dense sets partitioning4 X and map x ∈ Ai to wi, as above.
Otherwise, take {G,U1, ..., Un} as in 2.1.7 and consider the continuous, open
and surjective map f : (G, τG)→ F′ which exists as per 2.1.6 and just extend
it to f̄ : (X, τ+)→ F mapping each x ∈ Ui to wi. This is clearly surjective. It
is open, for given U ∈ τ+, U has nonempty intersection with each of U1, ..., Un,
hence f̄ [U ] = f [U ∩ G] ∪ A, which is an upset in F′ together with the final

infinitum. In other words, the Cantor set is C =
⋂
n∈ω Cn, where C0 = [0, 1] and

Cn+1 = {x/3 : x ∈ Cn} ∪ {(x + 2)/3 : x ∈ Cn}.

As a subspace of R, the Cantor set is isomorphic to the Cantor space defined above.
4Hewitt (1943) proves that such partition exists in any dense-in-itself metrisable space

for n = 2. The fact that a dense subspace of X is dense-in-tself and metrisable, plus the
fact that a dense subset of a dense subset of X is itself a dense subset of X, allow us to
apply it recursively to get the partition for any n.
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cluster A, i.e. an upset in F. It is continuous, for given an upset V in F, this
upset is either ∅ (in which case f̄−1(∅) = ∅ ∈ τ+) or it equals V ′ ∪ A for
some upset V ′ in F′. But then

f̄−1(V ) = f−1(V ) ∪ f̄−1(A) = f−1(V ) ∪ (X\G),

which, as reasoned above, is a dense open set. �

We now have enough to prove the main theorem in this section:

Proof of theorem 2.1.1. Soundness follows immediately from 2.1.3. For com-
pleteness, take some formula φ such that φ /∈ S4.2. Then there exists some
finite rooted S4.2 model (W,≤, V ) and some w ∈W refuting φ. But then we
can construct an open, continuous an surjective map f : (X, τ) � (W,≤) as
above and, by defining V f (p) = {x ∈ X : fx ∈ V (p)} and taking some x ∈ X
such that fx = w, lemma 2.1.5 gives us that x refutes φ. �

Similar results of soundness and completeness for particular spaces relative
to the fragments considered in section 1.3 can be obtained. Let us see some
in the following sections.

2.2 Adding belief

The logic Stal introduced in 1.2.2 is the logic of topo-e-models for the belief
and knowledge fragment. Recall that the formula Bφ ↔ K̂Kφ is provable
in Stal. In particular, for any formula φ in the language LKB, there exists a
formula ψ in the language LK such that `Stal φ ↔ ψ (indeed, we get ψ by
substituting every instance of B in φ with K̂K).

And thus we have the following:

Theorem 2.2.1. Stal is sound and complete with respect to any dense-in-
itself metrizable space with the dense interior semantics.

Proof. Soundness follows from the fact that Stal is sound with respect to topo-
e-models. For completeness, suppose φ /∈ Stal and take ψ in the language LK
such that `Stal φ↔ ψ. Then ψ /∈ S4.2, hence there is a valuation on (X, τ+)
making ψ false at some x ∈ X. By soundness and the fact that `Stal φ↔ ψ,
we conclude that φ is false at x as well. �

2.3 The global modality [∀] and the logic of Q

Three fragments including the global modality [∀] will be considered in the
present section: the knowledge fragment (the one which includes the K and
[∀] modalities), the factive evidence fragment (including � and [∀]) and the
evidence fragment (including [∀], � and �0).
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First let us observe something about the basic evidence fragment. Recall
that the logic of this fragment, Logic∀�, consists of S5∀ plus S4� plus the
axiom [∀]φ→ �φ.

This logic is not complete with respect to R. Consider the following
formula:

[∀](�p ∨�¬p)→ ([∀]p ∨ [∀]¬p) (Con)

It is the case that (Con) is not derivable in the logic yet it is always true in
R. More generally,

Proposition 2.3.1 (Shehtman, 1999). A topological space (X, τ) satisfies
(Con) if and only if it is connected. Moreover adding (Con) to Logic∀� gives us
a complete axiomatisation of any dense-in-itself metrisable connected space.

We could add (Con) to our logic but we have no conceptual use for it. Instead,
we will show completeness of this fragment (plus the other two mentioned
above which include the global modality) with respect to a dense-in-itself,
metrisable yet disconnected space, namely Q.

2.3.1 The knowledge fragment L∀K
Lemma 2.3.2 (Goranko and Passy, 1992). Logic∀K is sound and complete
with respect to finite models of the form (X,≤, V ) where X is a finite set, ≤
is a preorder with a final cluster5, where K is read as the Kripke modality for
≤ and [∀] is read as a universal modality in the model.

In order to prove completeness it suffices to show the following

Theorem 2.3.3. For every finite frame (W,≤) where ≤ is reflexive, transitive
and has a final cluster, there exists a surjective dense-interior map

f : (Q, τQ)→ (W,Up≤(W )).

For the remainder of this subsection, let (W,≤) be such a frame. We have
the following:

Lemma 2.3.4. Each finite cofinal preorder is a p-morphic image of a fi-
nite disjoint union of finite rooted S4.2 frames, via a dense-open and dense-
continuous p-morphism.

Proof. Let x1, ..., xn be the minimal elements of M . Now,for 1 ≤ i ≤ n take
M ′i = ↑xi × {i}. Define an order on M ′ = M ′1 ∪ ... ∪M ′n by: (x, i) ≤ (y, j)
iff i = j and x ≤ y. M ′1, ...,M ′n are pairwise disjoint finite rooted S4.2 frames
(with A×{i} as a final cluster) and (x, i) 7→ x is a p-morphism from M ′ onto
M . It is easy to see that this mapping is dense-open (for every nonempty
open set is dense in M) and dense-continuous (for the preimage of a nonempty
M -open set is a M ′-open set which contains all the final clusters, and thus is
dense). �

5In the sense that there exists A ⊆ X with x ≤ y for all x ∈ X, y ∈ A.
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With this:

Proof of Theorem 2.3.3. Let M1, ...,Mn be a family of pairwise disjoint of
finite rooted S4.2 frames whose union M = M1 ∪ ... ∪Mn has (W,≤) as a
p-morphic image.

Take z1, ..., zn−1 ∈ R\Q and consider the intervals A1 = (−∞, z1), An =
(zn−1,∞) and Ai = (zi−1, zi) for 1 < i < n. Now, each Ai, as a subspace, is
homeomorphic to Q (and thus a dense-in-itself metrisable space). From each
(Ai, τ |Ai) we can find a dense-open, dense-continuous and surjective map fi
onto Mi. Then f = f1 ∪ ... ∪ fn is a dense-interior map onto M which, when
composed with the p-morphism given by the previous corollary, gives us the
desired map. �

With a very similar proof to that of 2.1.5, we see that, for every x ∈ Q and
every formula φ, x � φ if and only if fx � φ. Completeness is an immediate
consequence of this.

Corollary 2.3.5. Logic∀K is the logic of Q.

2.3.2 The factive evidence fragment L∀�
Goranko and Passy (1992) show that Logic∀� is sound and complete with
respect to finite relational models of the form (X,≤, V ) where ≤ is a preorder.

Thus to prove completeness of this logic with respect to Q it suffices to
find a suitable open and continuous map from Q onto any such finite frame.
And indeed,

Theorem 2.3.6. Let (W,≤) be any finite preordered frame. Then there exists
a open, continuous and surjective map f : (Q, τQ)→ (W,Up≤(W )).

Proof. The proof of this result is very similar to that of 2.3.3, so we will just
present a sketch here. If M is a maximal connected subset of W , then M can
be written as B1 ∪ ...∪Bn, where each Bi is a rooted upset (indeed, just take
x1, ..., xn to be the minimal points of M and Bi = ↑xi). But we have once
again that M is the p-morphic image of a collection of n pairwise disjoint
rooted preorders. Indeed, define M ′ = {〈x, i〉 : x ∈ Bi} and 〈x, i〉 ≤ 〈y, j〉
iff i = j and x ≤ y, and we have that the map 〈x, i〉 7→ x defines an onto
p-morphism. So the whole frame (W,≤) is the p-morphic image of a finite
number of pairwise disjoint finite rooted preorders, B1, ..., Bm, each of which
is the image of Q under an open and continuous map fm : Q → Bm. As
before, this means that there is such a map from Q to W . �

Again, noting that if we define V f (p) = {x ∈ Q : fx ∈ V (p)} we get x � φ
in (Q, τQ, V f ) if and only if fx � φ in (W,≤, V ), completeness follows:

Corollary 2.3.7. Logic∀� is the logic of Q, where � is read as topological
interior and [∀] is read as a global modality.
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2.3.3 Adding basic evidence: the evidence fragment L∀��0

Let us now account for basic evidence. We take the fragment consisting of
the modal operators �, [∀] and �0. Recall that we interpret formulas of this
fragment on topo-e-models (X, τ,E0, V ), where E0 is a subbasis for (X, τ),
like this: x ∈ ‖�0φ‖ if and only if there exists e ∈ E0 with x ∈ e ⊆ ‖φ‖.

The logic of this fragment is Logic∀��0 , as seen in section 1.3. Baltag
et al. (2016) prove that this logic is sound and complete with respect to finite
models of the form (X,≤, EX0 , V ), where ≤ is a preorder and EX0 is a subbasis
for Up(X) with X ∈ E0.

Suppose that φ /∈ Logic∀��0 . Let us find a subbasis EQ0 for (Q, τQ), where
τQ is the natural topology on Q and a valuation V such that (Q, τQ, EQ0 , V )
refutes φ.

Now, we know that there exists a model (X,≤, EX0 , V ) and a point x ∈ X
refuting φ. By theorem 2.3.6, we also know that there exists a map f : Q� X
which is surjective, continuous and open. Let us define

EQ0 := {e ⊆ Q : f [e] ∈ EX0 }.

Let us see that this is a subbasis forQ. First, seeing asX ∈ EX0 and f [Q] = X,
we have that Q ∈ EQ0 , thus

⋃
EQ0 = Q.

Now, suppose p ∈ U ∈ τQ. Let us see that there exist eq1, ..., eqn ∈ E
Q
0 such

that x ∈ eq1 ∩ ...∩ eqn ⊆ U . Now, we have that fp ∈ f [U ] which is an open set.
Since EX0 is a subbasis for (X,≤) this means that there exist ex1 , ..., exn ∈ EX0
with fp ∈ ex1 ∩ ... ∩ exn ⊆ f [U ]. Now set

eqi := f−1exi \{y /∈ U : fy ∈ f [U ]}.

The fact that eqi ∈ EQ0 follows from the fact that f [eqi ] = exi . Indeed, if
y ∈ f [eqi ] then y ∈ ff−1exi = exi and conversely if y ∈ exi , then either y ∈ f [U ]
(in which case y = fz for some z ∈ U and thus z ∈ f−1exi and therefore
z /∈ {z′ /∈ U : fz′ ∈ f [U ]}, which implies z ∈ eqi ) or y /∈ f [U ] (in which case
y = fz for some z by surjectivity and z /∈ {z′ /∈ U : fz′ ∈ f [U ]}, thus z ∈ eqi ).
In either case, y ∈ f [eqi ].

Finally, note that eq1 ∩ ... ∩ eqn ⊆ U . Indeed, for any x ∈ eq1 ∩ ... ∩ eqn we
have that fx ∈ ex1 ∩ ... ∩ exn ⊆ f [U ], and thus by the definition of the eqi ’s it
cannot be the case that x /∈ U .

So for p ∈ U ∈ τQ we have found elements eq1, ...e
q
n ∈ EQ0 such that

p ∈ eq1 ∩ ... ∩ eqn ⊆ U , and therefore EQ0 is a subbasis.
We set a valuation on (Q, τQ, EQ0 ) as follows:

V Q(p) = {x ∈ Q : fx ∈ V (p)}.

Let us show the following result, from which completeness follows.

Lemma 2.3.8. For any formula φ in the language and any x ∈ Q, we have
that (Q, τQ, EQ0 , V Q), x � φ if and only if (X,≤, EX0 , V ), fx � φ.
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Proof. This is again an induction on formulas; the only induction step that
requires some attention is the one referring to �0.

Let x � �0ψ. This means that there exists some e ∈ EQ0 with x ∈ e
and y � ψ for all y ∈ E. But then fx ∈ f(e) ∈ EX0 and by the induction
hypothesis we have fy � ψ for all fy ∈ f(e) and thus fx � �0ψ. Conversely, if
fx ∈ e′ ⊆ ‖ψ‖X for some e′ ∈ EX0 , we have that x ∈ f−1e′ ∈ EQ0 and fy � ψ
for each y ∈ f−1e′ and thus, by induction hypothesis, y � ψ. Therefore
x � �0ψ. �

Corollary 2.3.9. Logic∀��0 is sound and complete with respect to the class
of topo-e-spaces

{(Q, τQ, EQ0 ) : EQ0 is a subbasis of (Q, τQ)}.

To summarise the results in this section:

Theorem 2.3.10. (Q, τQ) is a generic model for the fragments LK , L∀�,
L∀K and L∀��0.

2.3.4 A condition for generic models

Let us generalise the results in the previous section. While we saw that every
dense-in-itself metrisable space is a generic model for S4.2, this result “breaks”
when we add the universal modality [∀]. For example, the logic of R is not
Logic∀K , whereas the logic of Q is.

One can easily see that the only part in the proof of theorem 2.3.3 which
uses a special property of Q which R does not have is that in which we
partition Q in n subspaces which are homeomorphic to Q itself. And it is
straightforward that, given a dense-in-itself metrisable space which admits
such partition, the proofs in the previous section will work mutatis mutandis.
Let us then give a necessary and sufficient condition for such a space to have
this property.

Definition 2.3.11 (Sum of topological spaces). Given two topological spaces
(X, τ) and (Y, σ), their sum is the topological space (X, τ) ⊕ (Y, σ), whose
underlying set is the disjoint union of X and Y , i.e.

X ⊕ Y = X × {1} ∪ Y × {2}

and whose topology is

τ ⊕ σ = {U × {1} ∪ V × {2} : U ∈ τ, V ∈ σ}.

We will say that a topological space (X, τ) is idempotent whenever (X, τ)
is homeomorphic to (X, τ)⊕ (X, τ).

The following holds:

Lemma 2.3.12. A topological space (X, τ) is idempotent if and only if it can
be partitioned in n subspaces homeomorphic to itself for each n ≥ 1.
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Proof. If (X, τ) admits a partition in two subspaces homeomorphic to itself,
since these are disjoint their union (which is X) is the same as their sum,
which is homeomorphic to X ⊕X.

Conversely, if (X, τ) is idempotent we can reason recursively to find that
X is homeomorphic to the sum X1 ⊕ ...⊕Xn where each Xi is a copy of X.
Let f : X1 ⊕ ... ⊕ Xn → X be a homeomorphism. Then {f [X1], ..., f [Xn]}
constitutes a partition of X in n subspaces, each of them homeomorphic to
X. �

And thus, we have our general result:

Corollary 2.3.13. Any dense-in-itself idempotent metrisable space is sound
and complete with respect to Logic∀K , Logic∀� and Logic∀��0.

All the spaces introduced in the preliminaries, except for R and T2, are dense-
in-itself, metrisable and idempotent spaces. And thus:

Theorem 2.3.14. The rational numbers Q, the irrationals I, the Cantor
space C and the Baire space B are all examples of generic spaces for the
fragments LK , L∀�, L∀K and L∀��0.

2.4 A condition for generic models

Let us generalise the results in the previous section. While we saw that every
dense-in-itself metrisable space is a generic model for S4.2, this result “breaks”
when we add the universal modality [∀]. For example, the logic of R is not
Logic∀K , whereas the logic of Q is.

One can easily see that the only part in the proof of theorem 2.3.3 which
uses a special property of Q which R does not have is that in which we
partition Q in n subspaces which are homeomorphic to Q itself. And it is
straightforward that, given a dense-in-itself metrisable space which admits
such partition, the proofs in the previous section will work mutatis mutandis.
Let us then give a necessary and sufficient condition for such a space to have
this property.

Definition 2.4.1 (Sum of topological spaces). Given two topological spaces
(X, τ) and (Y, σ), their sum is the topological space (X, τ) ⊕ (Y, σ), whose
underlying set is the disjoint union of X and Y , i.e.

X ⊕ Y = X × {1} ∪ Y × {2}

and whose topology is

τ ⊕ σ = {U × {1} ∪ V × {2} : U ∈ τ, V ∈ σ}.

We will say that a topological space (X, τ) is idempotent whenever (X, τ)
is homeomorphic to (X, τ)⊕ (X, τ).
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The following holds:

Lemma 2.4.2. A topological space (X, τ) is idempotent if and only if it can
be partitioned in n subspaces homeomorphic to itself for each n ≥ 1.

Proof. If (X, τ) admits a partition in two subspaces homeomorphic to itself,
since these are disjoint their union (which is X) is the same as their sum,
which is homeomorphic to X ⊕X.

Conversely, if (X, τ) is idempotent we can reason recursively to find that
X is homeomorphic to the sum X1 ⊕ ...⊕Xn where each Xi is a copy of X.
Let f : X1 ⊕ ... ⊕ Xn → X be a homeomorphism. Then {f [X1], ..., f [Xn]}
constitutes a partition of X in n subspaces, each of them homeomorphic to
X. �

And thus, we have our general result:

Corollary 2.4.3. Any dense-in-itself idempotent metrisable space is sound
and complete with respect to Logic∀K , Logic∀� and Logic∀��0.

All the spaces introduced in the preliminaries, except for R and T2, are dense-
in-itself, metrisable and idempotent spaces. And thus:

Theorem 2.4.4. The rational numbers Q, the irrationals I, the Cantor space
C and the Baire space B are all examples of generic spaces for the fragments
LK , LKB, L∀�, L∀K and L∀��0.
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Chapter 3

Going multi-agent

The present work so far has only accounted for sentences which refer to the
epistemic state of a single agent. Given this, introducing several epistemic
agents into the framework seems like a very obvious direction in which to
steer this ship.

There have been some approaches to a multi-agent logic derived from
the framework in Baltag et al. (2016). One of them was the subject of a
recent ILLC Master’s thesis (Ramı́rez, 2015), in which a two-agent logic with
distributed knowledge was defined. However, the semantics of this approach
seems to come with some conceptual problems which will be discussed later
in section 5.2.

Another approach is present in Özgün (2017). This approach generalises
the one-agent case and is devoid of the aforementioned conceptual issues, yet
it uses the semantics of subset space logic: sentences are evaluated at a pair
(x, U) where x is a world and U is some neighbourhood of x.

The system introduced in the present chapter and expanded upon in
the subsequent ones generalises the one-agent models while maintaining the
underlying ideas to the single-agent case, where sentences are evaluated at
worlds.

After some discussion in section 1, we present in section 2 the semantics
for this framework. We will limit ourselves to two agents for simplicity in
the exposition. In the final chapter we will discuss how to easily extend
these results to any finite number of agents. Section 3 contains a proof of
completeness for the fragment of the language which only accounts for the
knowledge of the agents, LK1K2 . We will show that the logic of this fragment
is the fusion logic S4.2K1 + S4.2K2 . In section 4 we consider other fragments
of the logic.

3.1 The problem of density in the two-agent case

A first idea when attempting to incorporate a second epistemic agent would
be to simply add a second topology to the single-agent framework and read
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things in the same way. That is, we could interpret sentences on bitopological
spaces (X, τ1, τ2) where τ1 and τ2 are topologies defined on X, and we say,
for i = 1, 2, that x ∈ Kiφ if and only there is a set U ∈ τi which is dense in
τi such that x ∈ U ⊆ ‖φ‖.

There are two flagrant issues with this. One has to do with the interpre-
tation of the density condition in the original framework. For an agent to
know p we want her to have a piece of evidence for p (x ∈ Int ‖p‖) which is
consistent with every other piece of evidence she has (Int ‖p‖ is dense). But
these pieces of evidence have to be contained in some set of worlds which are
consistent with the agent’s information, and we are equating these sets for
both agents. This is made more explicit if we define the density condition in
terms of the interior operator �i and the global modality [∀]: the τi-interior
of ‖p‖ being dense amounts to [∀]3i�ip being true in the model. And, as
discussed in section 2.3, this global modality evaluates in all worlds which the
agent considers possible. That is, adopting this semantics requires assum-
ing that the same worlds are compatible with both agents’ information, and
therefore that their infallible knowledge coincides. This is clearly undesirable.

The second issue is even more salient. Since our original logic for the
single-agent framework was S4.2K and we do not want to throw into the mix
any sort of interaction between the agents, one would expect the logic for the
two-agent framework to be the fusion logic S4.2K1 + S4.2K2 , which simply
contains the axioms and rules of S4.2 for each Ki. This is however not the
case: consider the formula

φ ≡ K̂1K1p→ K2K̂1K1p.

Now, φ is not derivable in S4.2K1+S4.2K2 yet it is valid in bitopological models
with the above semantics. Indeed, if x � K̂1K1p then for every τ1-open τ1-
dense set U , if x ∈ U then there exists y ∈ U such that y � Kiφ, i.e., there
exists some τ1-open τ1-dense set Uy with y ∈ Uy ⊆ ‖p‖. In particular, since
x ∈ X and X is a dense open set, there exists some dense open set U ⊆ ‖p‖.
But then take any x0 ∈ X and any τ1-open τ1-dense set V including x. We
have that V ∩ U 6= ∅ thus there exists some y ∈ V with y ∈ U ∩ V ⊆ ‖p‖,
whence y � Kip and thus x0 � K̂iKip. This means that ‖K̂1K1p‖ = X and
thus K2K̂1K1p holds everywhere. So not only is the logic for these models
different from S4.2K1 + S4.2K2 , as one would expect, but, whatever this logic
is, it includes a formula expressing that, if one agent considers it to be possible
that she herself knows p, then the other agent knows this fact.

Our proposal to eliminate these complications involves making explicit
which worlds are compatible with an agent’s information at world x. This is
done via the use of partitions, and it will be outlined in the next section.

3.2 Topological-partitional models

In order to specify which worlds an agent considers possible, we can define
the topologies which encode the evidence of the agents on a common space
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X, but we restrict, for each agent and at each world x ∈ X, the set of worlds
epistemically accessible to the agent at x. We can still speak about density,
but locally. A straightforward way to this is through the use of partitions.

Definition 3.2.1. A topological-partitional model is a tuple

M = (X, τ1, τ2,Π1,Π2, V )

where V is a valuation, τi is a topology defined on X and Πi is a partition of
X with the property that Πi ⊆ τi.

The worlds which are compatible with agent i’s information at x ∈ X are
now precisely the worlds in the unique cell of the partition Πi which includes
x. The concept of justification comes now in the form of a local notion of
density:

Definition 3.2.2. For x ∈ X, let Πi(x) be the unique π ∈ Πi with x ∈ π.
For U ⊆ X, let Πi[U ] = {π ∈ Πi : π ∩ U 6= ∅} = {Πi(x) : x ∈ U}.

A set U ⊆ X is locally dense in π ∈ Πi whenever π ⊆ Clτi U or equivalently
when every nonempty open set contained in π has nonempty intersection with
U .

We will say that a nonempty set U is locally dense in Πi (or simply locally
dense if there is no ambiguity) if Clτi U =

⋃
Πi[U ]. Equivalently, U is locally

dense if for every π ∈ Πi[U ] and every τi-open set V ⊆ π, we have V ∩U 6= ∅.

With this we can define a semantics for two-agent knowledge:

Definition 3.2.3 (Two-agent locally-dense-interior semantics). Let

M = (X, τ1, τ2,Π1,Π2, V )

be a topological-partitional model and let x ∈ X. As usual, we have ‖p‖ =
V (p), ‖φ ∧ ψ‖ = ‖φ‖ ∩ ‖ψ‖ and ‖¬φ‖ = X\‖φ‖. For i = 1, 2 set:

X, x � Kiφ iff x ∈ Intτi ‖φ‖
& Intτi ‖φ‖is locally dense in Πi(x).

Two remarks about this semantics:
Remark 3.2.4. That this is a generalisation of the one-agent case is a fairly
obvious fact. If we have a topological model (X, τ, V ) we can turn it in a
truth-preserving manner into a topological-partitional model for one agent
(X, τ,Π, V ) by simply setting Π = {X}. Conversely, if (X, τ,Π, V ) is a
topological-partitional model for one agent, take x ∈ X and set π = Π(x) ∈ Π;
we can easily see that:

(X, τ,Π, V ), x � φ iff (π, τ |π, V |π), x � φ.
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Remark 3.2.5. It is a routine check that, given a topological-partitional model
(X, τ1, τ2,Π1,Π2) and a nonempty set U ⊆ X, the following conditions are
equivalent:

1. U is locally dense in Πi;

2. U is locally dense in π for each π ∈ Πi[U ];

3. For each π ∈ Πi[U ], U ∩ π is dense in the subspace topology

τi|π := {V ∩ π : V ∈ τi}.

And for x ∈ X and φ ∈ LK1K2 the following conditions are also equivalent:

1. x ∈ ‖Kiφ‖;

2. There exists a Πi-locally dense open set U such that x ∈ U ⊆ ‖φ‖;

3. There exists an open set U ∈ τi which is locally dense in Πi(x) such
that x ∈ U ⊆ ‖φ‖.

4. There exists an open set V ⊆ Πi(x) which is dense in the subspace
topology τi|π such that x ∈ V ⊆ ‖φ‖.

With this in mind, let us see an analogue of lemma 2.1.2: consider a topological-
partitional model (X, τ1, τ2,Π1,Π2, V ) and set

τ∗i := {U ∈ τi : U is Πi-locally dense} ∪ {∅}.

The following holds:

Lemma 3.2.6. (X, τ∗i ) is an extremally disconnected topological space and
the locally-dense-interior semantics on (X, τ1, τ2,Π1,Π2, V ) coincides with the
interior semantics on (X, τ∗1 , τ∗2 , V ).

In particular, given a topological-partitional model (X, τ1,2,Π1,2, V ) in which
every τi-open set is Πi-locally dense, the locally-dense-interior semantics and
the interior semantics coincide.

Proof. The last two statements are immediate consequences of the previous
remark, whereas the proof of the first is completely analogous to that of
lemma 2.1.2. �

One last remark before moving on:
Remark 3.2.7. Demanding each element π ∈ Πi to be open might seem like
a very strong condition. For example, a connected space such as R does not
admit any such partition other than the trivial one Πi = {R}. We could
instead do the following:

i. Define topological-partitional models to have arbitrary partitions;
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ii. Define U ⊆ X to be locally dense at π ∈ Πi whenever U ∩ π is dense in
the subspace topology τi|π;

iii. Set x ∈ ‖Kiφ‖ if and only if there exists U ∈ τi locally dense in Πi(x)
with x ∈ U ∩Πi(x) ⊆ ‖φ‖.

As it turns out, these models can be turned in a truth-preserving manner into
topological-partitional models of the kind defined above. Indeed, let τ̄i be the
topology generated by {U ∩ π : U ∈ τi, π ∈ Πi}. Then clearly Πi ⊆ τ̄i and it
is a straightforward check that (X, τi,Πi), x � φ under this semantics if and
only if (X, τ̄i,Πi), x � φ under the semantics defined in 3.2.3.

For this reason, we will limit ourselves to the study of models with open
partitions.
Let us see an example before moving on:

Example 3.2.8. We have four possible worlds, X = {x11, x01, x10, x00} and
two agents, Alice and Bob, represented by a and b. Let us consider two
propositions, p, which stands for “the house is on fire” and q, standing for “the
fire sprinklers went off”. Let V (p) = P = {x11, x10} and V (q) = {x11, x01}.
The actual world is x11, in which the house is on fire and the fire sprinklers
have gone off.

Alice has an app on her phone which lets her know infallibly whether the
fire sprinklers have gone off or not. That is, at q-worlds she only considers
q-worlds possible, and at ¬q-worlds, she only considers ¬q-worlds possible.
In addition to this, at p-worlds she has fallible evidence that her house is on
fire, in the form of a neighbour texting her about the smoke. At ¬p-worlds
she does not receive this evidence.

At all worlds except x01, Bob installed the fire sprinklers and he (infallibly)
knows them to be infallible: if they have gone off, then there is a fire. Thus the
only worlds consistent with his information at these three worlds are those in
which q → p holds. He is not as confident when it comes to the fire detector,
which lets him know whether a house he has worked on is on fire or not: in
p-worlds he has fallible evidence for p and in ¬p-worlds he has it for ¬p.

Let π1 = {x11, x01}, π2 = {x01, x00}, π3 = {x11, x10, x00}, π4 = {x01}. Al-
ice’s and Bob’s partitions are respectively Πa = {π1, π2} and Πb = {π3, π4}.
Their topologies τa and τb are generated respectively by {π1, π2, P} and
{π3, π4, P,X\P}. (See figure 3.1.)

At the actual world x11, Alice knows her house is on fire: indeed, {x11} is
a τa-open set, locally dense in π1 and contained in P , thus Kap holds. Bob
does not know this fact: any τb-open set contained in P is not locally dense,
because it has empty intersection with the open set {x00}, thus ¬Kbp holds
at x11.

3.2.1 Connected components as equivalence classes

Many of the topological spaces considered in the present thesis come from
preorders. As it turns out, preorders come equipped with open partitions in
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Figure 3.1: The topology and partition of Alice (left) and Bob (right). The
dotted areas are the proper open subsets of the cell of each partition which
includes the actual world. We can see that x11 is in a π1-locally dense open
set but not in a π3-locally dense one.

the form of their connected components.

Definition 3.2.9. Let (X, τ) be a topological space. A set U ⊆ X is said to
be connected if it does not contain a proper clopen subset.

A connected component of (X, τ) is a maximal connected subset of X.

The following result can be found in any topology textbook (see e.g. Munkres,
2000):

Lemma 3.2.10. The connected components of (X, τ) coincide with the equiv-
alence classes of the equivalence relation: x ∼ y if and only if there is a
connected subset of X containing x and y.

The connected components thus give us a straightforward way to define a
partition on a topological space. It might however not be the case that the
elements of the partition are open sets, thus defining a topological-partitional
model this way might not be possible. As the following lemma shows, this
is not a problem if the topological space is a preorder (i.e. an Alexandroff
space).

Lemma 3.2.11. Let (W,≤) be a preordered set. Then:

i. The connected components on (W,Up(W )) are open and they coincide
with the equivalence classes under the reflexive, transitive and symmet-
ric closure of ≤, i.e. the following equivalence relation: x ∼ y if and
only if there exist x0, ..., xn ∈ X with x0 = x, xn = y and xk ≤ xk+1 or
xk ≥ xk+1 for 0 ≤ k ≤ n− 1.

ii. If (W,≤) is an S4.2 frame (i.e. if ≤ is a weakly directed preorder) we
have: x ∼ y if and only if there exists some z ∈W such that x ≤ z ≥ y.
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iii. If (W,≤) is a forest (i.e. if ≤ is the reflexive and transitive closure of
some relation ≺ such that every element has at most one ≺-predecessor),
then x ∼ y if and only if there exists some z ∈W such that x ≥ z ≤ y.

Proof. (i). Clearly the equivalence class of x is both upward and downward
closed, thus every equivalence class is a clopen set. Moreover, it does not
contain proper clopen subsets, for if ∅ 6= U ⊆ [x]∼ is a clopen set, then take
y ∈ U and z ∈ [x]∼. Since there is a path of ≤ and ≥ from y to z and U is
both an upset and a downset, we have that z ∈ U , thus [x]∼ is connected.
And of course it is maximal, for every proper superset of [x]∼ contains [x]∼
as a proper clopen subset.

(ii). From right to left it is trivial. From left to right, let us take a
path {x0 = x, x1, ..., xn = y} such that xk ≤ xk+1 or xk+1 ≤ xk for all
0 ≤ k ≤ n − 1. By transitivity, we can assume that ≤ and ≥ alternate,
i.e., for each 1 ≤ k ≤ n − 1 we have that either xk−1 ≤ xk ≥ xk+1 or
xk−1 ≥ xk ≤ xk+1. Now, set y0 = x0 and yn = xn. For each 1 ≤ k ≤ n − 1,
if yk−1 ≤ xk ≥ xk+1, then set yk = xk and, if yk−1 ≥ xk ≤ xk+1 we have
that, since yk−1 and xk+1 are both successors of xk and ≤ is a directed
relation, there must exist some t ∈ X such that yk−1 ≤ t ≥ xk+1. In this
case set yk = t. What we get at the end of this process is a path of the form
x = y0 ≤ ... ≤ yk ≥ ... ≥ yn = y, and by setting z = yk we obtain the desired
result.

(iii). If ≤ is the reflexive and transitive closure of ≺, we can also define ∼
on W in terms of ≺: x ∼ y if there are x0 = x, x1, ..., xn = y with xk ≺ xk+1
or xk � xk+1 for all k. The proof goes exactly as in the previous item, noting
that xk−1 ≺ xk � xk+1 implies xk−1 = xk+1. �

Note that item (ii) entails that each upset in a directed preorder is ∼-locally
dense. Indeed, take x and y in the same equivalence class. Item (ii) gives us
that ↑x ∩ ↑y 6= ∅, thus every pair of nonempty upsets contained in the same
connected component has nonempty intersection.

This fact plus the last item in lemma 3.2.6 have an immediate consequence:

Corollary 3.2.12. Let (X,≤1,≤2,∼1,∼2, V ) be a model in which each ≤i is
a weakly directed preorder and ∼i is the equivalence relation given by: x ∼i y
if and only if there exists z ∈ X such that x ≤i z ≥i y. Then the locally-
dense-interior semantics on this model coincide with the Kripke semantics on
(X,≤1,≤2, V ).

3.3 The fusion logic S4.2K1 + S4.2K2

The logic S4.2K1 + S4.2K2 is the logic that simply includes the axioms and
rules of S4.2 for both modalities K1 and K2. As advanced in the introduction
to this chapter, we have the following:

Theorem 3.3.1. S4.2K1 +S4.2K2 is the logic of topological-partitional models
for two agents.
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Proof. Checking soundness is completely analogous to the one-agent case (see
Baltag et al., 2016).

Completeness (plus the finite model property of S4.2K1 + S4.2K2) follow
from corollary 3.2.12 and the following fact:

Lemma 3.3.2. S4.2 + S4.2 is sound and complete with respect to the class
of finite frames of the form (W,≤1,≤2) where each ≤i is a directed preorder.

Now take φ /∈ S4.2K1 +S4.2K2 . Then φ is refuted on some birelational weakly
directed preorder (W,≤1,≤2, V ) and therefore, as per corollary 3.2.12, it is re-
futed on the topological-partitional model (W,Up≤1(W ),Up≤2(W ),Π1,Π2, V ),
where Πi is the set of ≤i-connected components. �

3.4 Other fragments

Let us now consider other fragments of the logic. For this we add to our
language the infallible knowledge modalities [∀]i, the evidence modalities �i,
and the belief modalities Bi, for i = 1, 2, and their respective duals [∃]i, 3i

and B̂i. We read these on topological-paritional models (X, τ1,2,Π1,2, V ) as
follows:

x ∈ ‖[∀]iφ‖ iff Πi(x) ⊆ ‖φ‖;
x ∈ ‖�iφ‖ iff x ∈ Intτi ‖φ‖;
x ∈ ‖Biφ‖ iff Intτi ‖φ‖ is locally dense in Πi(x).

Analogously to the one-agent case, we can check that the following equalities
hold:

‖Kiφ‖ = ‖�iφ ∧ [∀]i3i�iφ‖
‖Biφ‖ = ‖K̂iKiφ‖

We can also tweak our models to be able to talk about basic evidence:

Definition 3.4.1. A topological-partitional evidence model (topo-part-e model
for short) is a tuple

M = (X, τ1, τ2,Π1,Π2, E
0
1 , E

0
2 , V )

where (X, τ1,2,Π1,2, V ) is a topological-partitional model and each E0
i is a

subbasis for τi.
We define basic evidence modalities �0

i (with dual 30
i ) on topo-part-e

models by:

x ∈ ‖�0
iφ‖ iff there exists e ∈ E0

i with x ∈ e ⊆ ‖φ‖.

Much like in the one-agent framework, we are interested in looking at frag-
ments of this logic. We will focus on the knowledge fragment LKi∀i , the
knowledge-belief fragment LKiBi , and the factive evidence fragment L�i∀i .
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3.4.1 The factive evidence fragment L�i∀i

The logic for this fragment is Logic�i∀i , which is the least logic which includes

• the axioms and rules of S4 for �i;

• the axioms and rules of S5 for [∀i];

• the axiom [∀i]φ→ �iφ for i = 1, 2.

Soundness for topological-partitional models is a rather simple check: the
S4 rules for the topological interior hold, for IntP ⊆ P ∩ Int IntP and so do
the S5 rules for [∀]i, which are defined via equivalence relations. The fact
that each equivalence class is open takes care of the axiom [∀]iφ→ �iφ.

For completeness, we can use the Sahlqvist completeness theorem (see
Blackburn et al., 2001) and note that the axioms of Logic�i∀i are Sahlqvist
formulas and thus canonical and the canonical Kripke model for this logic
is of the shape (X,≤1,≤2,∼1,∼2), where each ≤i is a preorder (as per the
S4 axioms) and each ∼i constitutes an equivalence relation (as per the S5
axioms). Moreover, the axiom [∀i]φ → �iφ grants us that x ≤i y implies
x ∼i y and thus that the ∼i-equivalence classes are ≤i-open sets. In other
words, this canonical model is a topological-partitional model.

Therefore if φ /∈ Logic�i∀i , then φ will be refuted in the canonical model,
whence we have a topological-partitional model refuting it. And thus, we
have completeness.

Theorem 3.4.2. Logic�i∀i is sound and complete with respect to topological-
partitional models. �

3.4.2 The knowledge fragment LKi∀i
The logic of the fragment with all the knowledge modalities, K1,K2, [∀]1 and
[∀]2 is LogicKi∀i , the least logic including the axioms and rules of S4 for each
Ki, S5 for each [∀]i plus the following axioms for i = 1, 2:

(A) [∀]iφ→ Kiφ;
(B) [∃]iKiφ→ [∀]iK̂iφ.

Note that the .2 axiom for Ki is derivable from (A) and (B).
Soundness is a routine check, whereas for completeness we can again resort

to Sahlqvist. The canonical model is of the shape (X,≤1,≤2,∼1,∼2) where
each ≤i is a weakly directed preorder and each ∼i is an equivalence relation.
Moreover the Sahlqvist first order correspondent of axiom (A) gives us that
x ≤i y implies x ∼i y and axiom (B) tells us that, if x ∼i y, then there
exists some z such that x ≤i z ≥i y. These two facts, together with item
(ii) of lemma 3.2.11, imply that the ∼i-equivalence classes are exactly the
≤i-connected components. And thus the Kripke semantics on this model co-
incide with the locally-dense-interior semantics on the topological-partitional
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model (X, τ1, τ2,Π1,Π2) where τi = Up≤i(X) and Πi are the ≤i-connected
components. Completeness follows.

Theorem 3.4.3. LogicKi∀i is sound and complete with respect to topological-
partitional models. �

3.4.3 The knowledge-belief fragment LKiBi
The logic of the knowledge-belief fragment is Stal1 + Stal2, i.e. the logic
that consists of adding together the axioms and rules of Stal (introduced in
subsection 1.2.2) for K1 and B1 and for K2 and B2. Explicitly, the S4 axioms
and rules for Ki plus the axioms, for i = 1, 2, in table 3.1.

(PIi) Biφ→ KiBiφ;
(NIi) ¬Biφ→ Ki¬Biφ;
(KBi) Kiφ→ Biφ;
(CBi) Biφ→ ¬Bi¬φ;
(FBi) Biφ→ BiKiφ.

Table 3.1: Extra axioms of Stal1 + Stal2.

Now, it is easy to check that these axioms are sound. For completeness,
let us note that, in an analogous manner to the one-agent case (subsection
1.2.2) we have:

i. Stal1 + Stal2 ` Biφ↔ K̂iKiφ for i = 1, 2;

ii. S4.2K1 + S4.2K2 is contained in Stal1 + Stal2.

Thus if a formula φ in the language LKiBi is not provable in Stal1 + Stal2, we
can rewrite it as per (i.) into a formula in the language LKi which, by (ii.),
is not provable in S4.2K1 + S4.2K2 . By completeness of the latter, there is a
topological-partitional countermodel for φ, and completeness of Stal1 + Stal2
follows.
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Chapter 4

Generic models for two
agents

So far so good. We have a multi-agent logic for the class of topological-
partitional models. However, we can get something else. In the spirit of
chapter 2, we want to find a generic model for the two-agent logic S4.2K1 +
S4.2K2 , that is, a single topological-partitional model whose logic is precisely
S4.2K1 + S4.2K2 .

In the first section we find such a space in the quaternary tree T2,2, drawing
on a similar result by van Benthem, Bezhanishvili, ten Cate, and Sarenac
(2006) for S4+S4 with the Kripke semantics, finding a suitable partition and
showing completeness. In section 2 we will account for the fact that there
exists a surjective interior map onto the quaternary tree from Q×Q with two
particular topologies and show that there exists a partition on Q×Q which
makes it into a generic model.

4.1 The quaternary tree T2,2

The quaternary tree T2,2 is a full infinite tree with two relations R1 and R2
such that each node of the tree has exactly four successors, two of them being
R1-successors and the other two being R2-successors, as it appears in figure
4.1.

By setting T to be the set of points of T2,2 and ≤i to be the reflexive
and transitive closure of Ri for i = 1, 2, we can see T2,2 = (T,≤1,≤2) as a
birelational preordered frame. As it turns out, the logic of this frame (under
the Kripke semantics) is S4 + S4.

4.1.1 Completeness of S4 + S4: defining an interior map

The following result is proven in van Benthem et al. (2006):

Theorem 4.1.1. T2,2 is sound and complete with respect to S4 + S4.
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Figure 4.1: The quaternary tree T2,2. R1 and R2 are represented respectively
by the continuous and the dashed lines.

The proof of this result goes along the lines of the proofs in chapter 2, by
building a p-morphism from T2,2 onto any rooted finite birelational preordered
model (W,≤1,≤2, V ). We will use this p-morphism in the next subsection.
Let us sketch its construction here.

Let w ∈W and let v1, ..., vn be an enumeration of w’s ≤i-successors. The
finite ≤i plug for w is a binary branching tree whose root is labelled by w and
has two successors, the left one labelled by w and the right one being a leaf
labelled by v1. The left successor is itself related to two points, the right one
being a leaf labelled by v2 and the left one being labelled by w and having
itself two successors, etcetera. Repeating this process n times until we run
out of successors gives this finite ≤i plug, drawn in in figure 4.2.

w

w

w

w

w

v1

v2

v3

vn

Figure 4.2: Finite ≤i plug for w ∈W .

Now we do the following construction: we start with a single node, which
we label with the root r of W . Then on that node we “plug” (in the sense
that we “make sprout” from it) the ≤1 finite plug for r and the ≤2 finite plug
for r (see fig. 4.3). In each successive step, for each node, if it is labelled by
w, we make sprout from it the ≤1 and ≤2 finite plugs for w if we have not
done it in a previous step.

What we obtain in the limit by repeating this process recursively is pre-
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Figure 4.3: First step of the construction, with v1, ..., vn being the ≤1-
successors of r and w1, ..., wm being its ≤2-successors.

cisely the quaternary tree T2,2 with each of its nodes labelled by some element
in W . We thus have a (surjective) map

label : T2,2 �W

assigning to each point its label. Two remarks about this map:

• If a node x ∈ T2,2 is labelled by w, every node which x sees via ≤i is by
construction labelled by some ≤i-successor of w. This takes care of the
forth condition of the p-morphism:

x ≤i y implies labelx ≤i label y.

• If a point w ∈W has v as a ≤i-successor, any node labelled by w in the
tree has a successor labelled by v. This takes care of the back condition
of the p-morphism:

labelx ≤i v implies ∃y(x ≤i y& label y = v).

Thus, label is a surjective map which is continuous and open in both
topologies. If we now define a valuation on T2,2 by

V T2,2(p) = {x ∈ T2,2 : labelx ∈ V (p)},

we can refute in T2,2 any formula which is refuted in W . Completeness of
S4 + S4 follows.

4.1.2 Completeness of T2,2 with respect to S4.2K1 + S4.2K2

Let us now bring this to our realm. We want to think of T2,2 as a topological-
partitional model. For this, we turn to its connected components.

As per item (iii) of lemma 3.2.11, we know that the connected components
are given by the equivalence relation: x ∼i y if and only if there exists a z
such that x ≥i z ≤i y. Note that for each x ∈ T2,2 and i = 1, 2, the set of
≤i-predecessors of x forms a finite chain (and in particular, there is a least
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predecessor x0 of x, which does not have any ≤i predecessors other than
itself). These two facts give us the following characterisation:

Lemma 4.1.2. The ≤i-connected components of T2,2 are exactly the upsets
of the form ↑ix0, where x0 does not have any ≤i-predecessors other than itself.

Now, let (W,≤1,≤2, V ) be a finite model whose underlying frame is a rooted
birelational weakly directed preorder. We can define a map label : T2,2 � W
and a valuation V T2,2 as above. Let σi be the topology of ≤i-upsets of W
and ≡i be the equivalence relation determining the connected components.
Recall that W = (W,σ1,2,≡1,2, V ) is a topological-partitional model in which
every σi-open set is ≡i-locally dense. Moreover, we have:

Lemma 4.1.3. For x ∈ T2,2, w ∈ W and i = 1, 2, let [x]∼i and [w]≡i be
the respective equivalence classes (i.e. the respective connected components
containing x and w). The following holds:

i. For any x ∈ T2,2, label[x]∼i ⊆ [labelx]≡i.

ii. Let x0 ∈ T2,2 and let U be a (locally dense) σi-open set such that
labelx0 ∈ U ⊆ [labelx0]≡i. Then

U ′ :=
⋃
{↑ix : x ∼i x0 & labelx ∈ U}

is a locally dense upset such that x0 ∈ U ′ ⊆ [x0]∼i.

Proof. (i). Set y ∼i x. Then there is some z such that y ≥i z ≤i x and thus,
since the map label preserves order, we have that label y ≥i label z ≤i labelx
and thus label y ≡i labelx.

(ii). U ′ is an upset because it is a union of upsets and x0 ∈ U ′ ⊆ [x0]∼i
by construction. Let us see that it is locally dense. Take some z ∈ T2,2
such that ↑iz ⊆ [x0]∼i . Now, label(↑iz) is an open set (by opennes of label)
and label(↑iz) ⊆ label[x0]∼i ⊆ [labelx0]≡i . By local density of U there exists
some a ∈ U ∩ label(↑iz). That is, for some z′ ≥i z we have label z′ = a and
label z′ ∈ U , thus by construction z′ ∈ ↑iz ∩ U ′ and thus ↑iz ∩ U ′ 6= ∅. �

As a consequence:

Proposition 4.1.4. For any x ∈ T2,2 and any formula φ in the language,
T2,2, x � φ if and only if W, labelx � φ.

Proof. This is once again an induction on the structure of formulas in which
the only involved case is the induction step corresponding to the Ki modali-
ties.

Suppose x � Kiφ. Then there exists some locally dense open set U with
x ∈ U ⊆ [x]∼i such that y � φ for all y ∈ U . But then

labelx ∈ labelU ⊆ label[x]∼i ⊆ [labelx]≡i ,
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this last inclusion given by (i) of the previous lemma, and labelU is a locally
dense open set in W : it is open because label is an open map and it is locally
dense because every open set in W is locally dense. Moreover, for every
label y ∈ labelU we have by induction hypothesis that label y � φ. Thus
labelx � Kiφ.

Conversely, suppose labelx � Kiφ. Then there exists a (locally dense)
σi-open set U with labelx ∈ U ⊆ [labelx]≡i such that w � φ for all w ∈ U .
But then by part (ii) of the previous lemma

U ′ :=
⋃
{↑iz : z ∼i x& label z ∈ U}

is a locally dense upset such that x ∈ U ′ ⊆ [x]∼i . Now take y ∈ U ′. We
have that y ≥i z for some z ∈ [x]∼i with label z ∈ U . But since label is order
preserving we have that label y ≥i label z and thus label y ∈ U , which means
that label y � φ and thus, by induction hypothesis, y � φ. This means that
U ′ ⊆ ‖φ‖T2,2 and thus x � Kiφ. �

Completeness is now an immediate consequence.

Corollary 4.1.5. The quaternary tree (T2,2,≤1,≤2,∼1,∼2) is a generic model
for S4.2K1 + S4.2K2.

4.2 Completeness for Q×Q
In the present section we will show that it is possible to define two topologies
and two equivalence relations on the product space Q×Q which make it into
a generic topological-partitional space for S4.2K1 + S4.2K2 .

These topologies will be the vertical and horizontal topologies, which can
be defined on a product X × Y and, in a way, “lift” the topologies of the
components.

Definition 4.2.1. Let (X, τ) and (Y, σ) be two topological spaces. A set
U ⊆ X×Y is said to be horizontally open if, for every (x, y) ∈ U , there exists
V ∈ τ such that x ∈ V and V × {y} ⊆ U . The horizontal topology τH is the
topology defined on X ×Y by the horizontally open sets or, equivalently, the
topology on X × Y generated by the basis

BH = {U × {y} : U ∈ τ, y ∈ Y }.

Similarly, the vertical topology τV is the topology on X × Y generated by the
basis

BV = {{x} × V : x ∈ X,V ∈ σ}.

In particular, if we take both components to be Q with the natural topology,
we obtain our bitopological space (Q×Q, τH , τV ). An important result about
this space is the following:

Theorem 4.2.2 (van Benthem et al., 2006). S4 + S4 is the logic of (Q ×
Q, τH , τV ) under the interior semantics.
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Figure 4.4: Q×Q with a vertically open set and a horizontally open set

Now the idea is to be able to define some partition on Q×Q which will give
us the desired completeness result. Note that we cannot shelter ourselves
in the connected components this time, for the connected components in
(Q × Q, τH , τV ) are the singletons, which are not even open sets. The main
aim of this section is to show that such a partition exists.

Now, let (X, τ1, τ2) be a bitopological space and

Y = (Y, σ1, σ2,∼1,∼2, V )

be a topological partitional model. Moreover, let

f : (X, τ1, τ2) � (Y, σ1, σ2)

be a surjective map which is open and continuous in both topologies. Define
two equivalence relations ≡1 and ≡2 on X by:

x ≡i y if and only if fx ∼i fy.

Define a valuation on X by V f (p) = {x ∈ X : fx ∈ V (p)}. The following
holds:

Proposition 4.2.3. X = (X, τ1, τ2,≡1,≡2, V
f ) is a topological evidence model

and, for every formula φ in the language and every x ∈ X we have that
X, x � φ if and only if Y, fx � φ.

Proof. Checking that X is a topological partitional model amounts to checking
that each equivalence class is an open set. Let [x]≡i be the equivalence class
under ≡i of some x ∈ X. Note that, by definition of ≡i, the image of this
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class coincides with the equivalence class of fx, i.e. f [x]≡i = [fx]∼i . Indeed,
if fx ∼i fy then y ∈ [x]≡i and thus fy ∈ f [x]≡i and conversely if y ∈ f [x]≡i
then y = fx′ for some x′ ≡i x which means that y = fx′ ∼i fx. Now,
[fx]∼i is an equivalence class and thus an open set and, since f is continuous,
f−1f [x]≡i is also an open set. So it suffices to show that f−1f [x]≡i = [x]≡i .
And indeed, if z ∈ f−1f [x]≡i then fz ∈ f [x]≡i = [fx]∼i which means that
fz ∼i fx and thus z ≡i x.

The second result is an induction on formulas. For the propositional
variables and the induction steps corresponding to the Boolean connectives
the result is straightforward. Now suppose that for some φ it is the case that,
for all x, X, x � φ if and only if Y, fx � φ, and let X, x � Kiφ. This means that
there exists some open set U ∈ τi such that x ∈ U ⊆ ‖φ‖X and U is locally
dense in [x]≡i , i.e., for every nonempty open set V ⊆ [x]≡i , it is the case that
U∩V 6= ∅. But then we have that fx ∈ f [U ], f [U ] is an open set (by openness
of f) which is contained in f‖φ‖X (and thus, by induction hypothesis, in ‖φ‖Y)
and f [U ] is locally dense in [fx]∼i . Indeed, suppose V is an open set contained
in [fx]∼i . then f−1V is an open set contained in f−1[fx]∼i = [x]≡i which
implies that there exists some z ∈ f−1V ∩ U and thus some fz ∈ V ∩ f [U ].
Conversely, suppose Y, fx � Kiφ. There is an open set U ⊆ ‖φ‖Y which
includes fx and which is locally dense on [fx]∼i . Then f−1U is an open set
including x which is contained in f−1‖φ‖Y = ‖φ‖X and moreover it is locally
dense on [x]≡i : indeed, if V is an open set contained in [x]≡i , then fV is an
open set contained in [fx]∼i and thus there exists some y ∈ fV ∩ [fx]∼i . But
then y = fz for some z ∈ V and z ∈ V ∩ f−1[fx]∼i = V ∩ [x]≡i , whence
X, x � Kiφ. �

Now, the proof of theorem 2.3.3 in van Benthem et al. (2006) uses complete-
ness of T2,2 with respect to S4 + S4 and shows that there exists an onto map
f : Q × Q → T2,2, open and continuous in both τH and τV . The previous
proposition plus this fact grants us the existence of a partition which makes
Q×Q a generic model for S4.2K1 + S4.2K2 .

Corollary 4.2.4. Let f : Q × Q → T2,2 be some onto interior map. Define
(x, y) ≡fH (x′, y′) if and only if f(x, y) and f(x′, y′) belong to the same ≤1-
connected component and (x, y) ≡fV (x′, y′) if and only if their images are
in the same ≤2 connected component. Then S4.2K1 + S4.2K2 is sound and
complete with respect to the topological-partitional space

(Q×Q, τH , τV ,≡fH ,≡
f
V ).
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Chapter 5

Distributed and common
knowledge

We have so far a multi-agent framework whose logic simply combines the
axioms of the single-agent logic for each of the agents.

Of course, one would like to go beyond this. The reason why having
multiple agents in the same framework is desirable goes further than the
possibility of modelling what each of them individually knows: we want to be
able to consider concepts like what the group knows, what they would come
to know after exchanging information, what they know each other to know,
and know each other to know each other to know, etcetera.

In the present chapter we consider the notions of distributed and common
knowledge applied to this framework. The first section presents both concepts
and comments on their relational semantics, which will inspire the topological
semantics introduced later. In section 2, we discuss earlier approaches to dis-
tributed knowledge in the dense-interior framework to subsequently motivate
and present our own, complete with an axiomatisation. Section 3 is a first
approach to a notion of common knowledge in this setting.

5.1 Knowledge of the group in a relational setting

A very basic way to account for the knowledge of a group is via a notion
of “everybody knows that”. That is, via a modal Eφ which holds whenever
all the epistemic agents know that φ. Eφ is veridical (in the sense that φ
holds when Eφ does) but it is not introspective: it would be undesirable if
all agents knowing φ were to entail that all agents know they all know it. It
may well be the case that one agent is not aware of some other knowing φ.

This notion seems rather weak and moreover our current framework al-
ready has the expressive power to account for it. Indeed, we can just have Eφ
as an abbreviation for K1φ ∧K2φ. A notion directly related to this is that
of common knowledge. One of the most standard ways1 to think of common

1For other ways, see Barwise (1988). This will be discussed below.
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knowledge is, loosely speaking, as an infinite conjunction

Cφ =
∧
n∈ω

Eφ,

where E0φ = φ, En+1φ = EEnφ. In other words, φ is common knowledge
if it is true and everybody knows that it is true and everybody knows that
everybody knows, etcetera. As it is put in Fagin, Halpern, Moses, and Vardi
(2004), we can read Cφ as “every fool knows that φ”.

A much weaker notion is that of distributed knowledge. We can think of it
as whatever the group knows implicitly, or whatever would become known if
all the agents were to share their information. Not only does the group know
φ if one agent in the group knows it, but the group also knows things that
no individual agent knows yet can be derived from the information of several
agents. For example, if agent 1 knows p to be the case, and agent 2 knows
p→ q to be the case, then together they know q, even if individually no one
does.

In relational semantics, if A is a finite group of agents and, for each a ∈ A,
Ka is the Kripke modality corresponding to some relation Ra, then we can
think of D as the Kripke modality corresponding to the relation

⋂
a∈ARa and

C as the one corresponding to (
⋃
a∈ARa)∗, the reflexive and transitive closure

of
⋃
a∈ARa. (See van Ditmarsch, van der Hoek, and Kooi, 2007.)

Let us put aside common knowledge for a moment and focus on what this
relational definition of distributed knowledge means. Dφ holds at a world w
if φ holds at every world which is reachable by every agent. As van Ditmarsch
et al. (2007) put it,

The idea being that if one agent considers t a possibility, given s,
but another does not, the latter could ‘inform’ the first that he
need not consider t.

Now, how do we cash this out topologically?

5.2 Distributed knowledge

We have seen that, in a relational setting, distributed knowledge is the modal-
ity of the intersection of the relations. Topologically, if we read knowledge as
interior and limit ourselves to Alexandroff topologies, the interior semantics
in a bitopological Alexandroff space (X, τ1, τ2) correspond to the Kripke se-
mantics on some preorder (X,≤1,≤2) such that τi = Up≤i(X). If distributed
knowledge is the modality corresponding to the preorder ≤1 ∩ ≤2, what is
its topological counterpart? The answer resides in the join topology.

Definition 5.2.1. Given two topologies τ1 and τ2, the join of τ1 and τ2 is
the least topology containing both τ1 and τ2. More explicitly,

τ1 ∨ τ2 := {U ∩ V : U ∈ τ1, V ∈ τ2}.
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It is routine to check that (i). τ1 ∨ τ2 is a topology, (ii). it contains τ1 and τ2
and (iii). any topology containing τ1 and τ2 is a superset of it. And so is the
following lemma:

Lemma 5.2.2. If ≤1 and ≤2 are perorders on X,

Up(≤1 ∩ ≤2) = Up(≤1) ∨Up(≤2).

Distributed knowledge as the interior in the join topology makes sense if we
look at knowledge from an evidential perspective: under this view, the group
knows p whenever agent 1 and agent 2 have each a piece of evidence which,
when combined, result in a piece of evidence for p.

Although our framework is not as simple, we will be using the join topol-
ogy to talk about distributed knowledge in this section.

5.2.1 A problematic approach

So what exactly amounts to distributed knowledge in our framework? A very
direct way to translate the ideas in the previous section would be this: we
say that Dφ holds at w whenever agent 1 and agent 2 have each a piece of
evidence which, when put together, constitute a justification for w.

Now, we know that a justification is a piece of evidence which cannot be
contradicted by any other potential evidence. In the multi-agent framework
presented, this potential contradictory evidence is limited to the set of worlds
that the agent considers compatible with the world of evaluation x. That is,
agent i knows φ whenever she has an evidence for φ which cannot be trumped
by any piece of evidence contained in Πi(x). In this spirit, we can narrow our
scope of what amounts to a justification to the set of worlds that both agents
consider compatible with their information at x, namely Π1(x) ∩Π2(x).

Formally, x ∈ ‖Dφ‖ if and only if there exist U1 ∈ τ1, U2 ∈ τ2 such that
x ∈ U1 ∩ U2 ⊆ ‖φ‖ and Clτ1∨τ2(U1 ∩ U2) ⊇ Π1(x) ∩ Π2(x). Note that this
notion corresponds to the interior in the topology (τ1 ∨ τ2)∗ of locally dense
τ1 ∨ τ2-open sets, where “local density” is measured in terms of the partition
Π = {π1 ∩ π2 : πi ∈ Πi}.

The trouble with this intuitive approach is that distributed knowledge, if
defined like this, does not satisfy the axioms that one would come to expect.
For example, it might be the case that something which is known by one
agent is not known by the group.

Example 5.2.3 (Example 5.5.3 from Özgün, 2017). Let X = {x10, x11, x01},
P = {x10, x11}, Q = {x11, x01}, and let x10 be the actual world. Let τm be
the topology generated by {P,Q}, i.e.

τm = {X,∅, P,Q, {x11}}.

Let τd be the topology {X,∅, {x10, x01}}. Finally, let Πm = Πd = {X} and
set V (p) = P , V (q) = Q.
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We have that (X, τm, τd,Πm,Πd, V ) is a topological partitional model in
which Kmp holds at the actual world x10. Indeed, P is a τm-dense open set
such that x10 ∈ P ⊆ ‖p‖. However, if we read distributed knowledge in terms
of the join topology, Dp does not hold: the join topology is

τd ∨ τm = {X,∅, P,Q, {x10, x01}, {x10}, {x01}, {x11}}

and no piece of evidence contained in P is dense in this topology, for it will
have empty intersection with {x01}.

x11

x01

x10

Figure 5.1: The continuous line represents the evidence of agent m, whereas
the dashed line represents the evidence of agent d. The singleton sets {x01}
and {x10} become open in the distributed topology.

This is of course an issue and two attempts at solving it are presented in the
remainder of this subsection.

Ramı́rez (2015) acknowledges the problem and proposes the following se-
mantics: models are now of the shape

(X, τ1, τ2, τ,Π1,Π2, V ),

where (X, τ1,2,Π1,2, V ) is a topological-partitional model in our sense and
τ is a topology which contains both τ1 and τ2. The language includes the
modalities K1,K2 and D and modal sentences are read as follows:

x ∈ ‖Kiφ‖ iff there is some U ∈ τi such that
x ∈ U ⊆ ‖φ‖ and Clτ |Πi(x) U = Πi(x);

x ∈ ‖Dφ‖ iff there exist U1 ∈ τ1 and U2 ∈ τ2 such that
x ∈ U1 ∩ U2 ⊆ ‖φ‖ and
Clτ |Π1(x)∩Π2(x)(U ∩ V ) = Π1(x) ∩Π2(x).

Ramı́rez (2015) then provides a complete logic for these models, which
includes axioms that one might desire such as Kiφ → Dφ and K̂iKiφ →
KiD̂φ.
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There seem to be two issues with this. The first is formal: it does not seem
very clear how this semantics generalises the single-agent case. The second
one is conceptual: by considering closure in the τ topology, which contains
the join τ1 ∨ τ2, we are effectively demanding that each agent’s evidence for
a proposition is compared to not only the evidence she has, but whatever
evidence the other agent has which happens to be contained in her set of
compatible worlds. It seems as if what each agent knows is not independent
from the other agent’s knowledge, and thus it is not clear how one would,
within this framework, remove distributed knowledge from the mix in order
to simply consider a model for two-agent private knowledge while maintaining
this “distributed” topology τ .

Another way to confront the fact that individual knowledge does not
amount to distributed knowledge is to simply preserve the intuitive semantics
presented in the previous subsection and deny it is an issue at all. Precisely
one of the strengths of the definition of knowledge developed in Baltag et al.
(2016) is its defeasibility, meaning that something which is known can stop be-
ing known when the agent is presented with evidence, even if factual, which
trumps the evidence that made her come to know it. Özgün (2017) talks
about misleading evidence, which is (loosely speaking) a piece of true, factual
evidence that produces some fake evidence when added to the information
the agent has.

The following informal example makes this clear:

Example 5.2.4. Morwenna is an epistemic agent who wonders about the
attendance to a certain party which is going on while she writes her thesis.
All the evidence she has is that two people, Jonathan and Hana, were planning
on attending this party. Both people informed her of this fact individually.
In particular, she has evidence that Hana is attending the party and this does
not contradict any other evidence she has. As it turns out, Hana is indeed
attending the party and, by our account, Morwenna knows this fact: she has
a correctly justified belief in it.

Dean is another epistemic agent who has evidence that Hana and Jonathan
have to take care of an injured rabbit. In fact he has evidence that, if either
of them is at the party, the other one will not be, as one has to stay home
looking for the animal.

Now, if Dean and Morwenna were to put their evidence together, then
Morwenna’s evidence that Hanna is at the party is no longer a justification,
since it’s defeated by one of Dean’s pieces of evidence. And thus, even if
Morwenna knows this fact, the group {Dean,Morwenna} does not.

(Note that example 5.2.3 above is the formalisation of this story.)

This was the subject of an essay for the course Dynamic Epistemic Logic by
Ethan Lewis and myself. In it, we gave a simpler version of the multi-agent
semantics which included interior operators for each agent, a “distributed
evidence” modality �D and global modalities for the partitions Π1, Π2 and
Π = {π1 ∩ π2 : πi ∈ Πi}. The knowledge modalities were defined from this
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and a complete logic was provided. However, the logic of this fragment does
not seem to contain any axioms relating Ki and D, which is rather strange.

The idea of distributed knowledge discussed so far (and this is indirectly
present in Ramı́rez (2015) and the aforementioned essay) reflects what the
group could come to know if they put their evidence together and acted, in
a way, as a collective agent. This is more an account of implicit evidence of
the group rather than its implicit knowledge.

Is this the account of distributed knowledge we want? Halpern and Moses
(1992) seem to have a different idea:

[I]t is also often desirable to be able to reason about the knowledge
that is distributed in the group, i.e., what someone who could
combine the knowledge of all of the agents in the group would
know. Thus, for example, if Alice knows φ and Bob knows φ⇒ ψ,
then the knowledge of ψ is distributed among them, even though
it might be the case that neither of them individually knows ψ.
(. . . ) [D]istributed knowledge corresponds to what a (fictitious)
‘wise man’ (one that knows exactly what each individual agent
knows) would know.

The desired interpretation of ‘distributed knowledge’ here is that of a ‘wise
man’ who has the information of what each agent knows, as opposed to what
evidence they have, and whose knowledge stems from what they actually
know. Thus, from this lens, one might want to keep misleading evidence out
of the equation, and consider that a proposition known by one agent is known
by this hypothetical wise man and thus constitutes distributed knowledge of
the group.

There seem to be good reasons to stick to a notion of distributed knowl-
edge which disregards the idea of ‘putting evidence together’ and which is
based solely on the knowledge of the agents, whose logic would contain ax-
ioms like K1φ → Dφ. In the next subsection we present a way to have such
a notion.

5.2.2 Our proposal: the semantics

We again have a language with two modal operators K1 and K2 for the
knowledge of each agent plus an operator D for distributed knowledge.

Definition 5.2.5 (Semantics for distributed knowledge). Let

X = (X, τ1, τ2,Π1,Π2, V )

be a topological-partitional model. We read ‖p‖, ‖φ∧ψ‖ ‖¬φ‖ and ‖Kiφ‖ as
usual, using the locally-dense-interior semantics of definition 3.2.3, whereas
D is read as follows:

x ∈ ‖Dφ‖ iff there exist U1 ∈ τ1, U2 ∈ τ2 such that
Ui is Πi-locally dense and x ∈ U1 ∩ U2 ⊆ ‖φ‖.
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Conceptually, what we are demanding here is that each agent has a justifica-
tion which, when combined together, entail φ. While the semantics defined
in the previous subsection amounted to reading distributed knowledge as the
interior in the topology (τ1 ∨ τ2)∗, what we are doing here is reading it as
interior in τ∗1 ∨ τ∗2 .

5.2.3 The logic of distributed knowledge

Let LogicKiD be the least set of formulas containing:

• The S4.2 axioms and rules for K1 and for K2;

• The S4 axioms and rules for D;

• The axioms Kiφ→ Dφ for i = 1, 2.

Theorem 5.2.6. LogicKiD is sound and complete with respect to topological-
partitional models.

We will dedicate the present subsection to showing this fact.

Soundness. That every topological-partitional model satisfies the S4.2 ax-
ioms for Ki can be proven exactly as in section 3.2. That D satisfies the
S4 axioms is a consequence of D being read as Intτ∗1∨τ∗2 . And for the two
extra axioms, if x � Kiφ, then there exists Ui ∈ τ∗i with x ∈ Ui ⊆ ‖φ‖. Let
j 6= i and, by taking Uj = X, which is a Πj-locally dense τj-open set, we get
x ∈ Ui ∩ Uj ⊆ ‖φ‖ and thus x � Dφ.

Completeness. We will use maximal consistent sets. A maximal consistent
set is a set T of formulas in the language which is consistent (i.e. there are
no φ1, ..., φn in T such that φ1 ∧ ... ∧ φn → ⊥ is derivable in the logic) and
maximally so (i.e. no proper superset of T is consistent).

The following is true for any maximal consistent set T (see e.g. Blackburn
et al., 2001):

i. T is closed under logical equivalence.

ii. For each formula φ in the language, either φ ∈ T or ¬φ ∈ T .

iii. φ ∧ ψ ∈ T if and only if φ ∈ T and ψ ∈ T .

iv. φ ∨ ψ ∈ T if and only if φ ∈ T or ψ ∈ T .

Moreover,

Lemma 5.2.7 (Lindenbaum’s lemma). Given a consistent set of formulas Γ
in the language, Γ can be extended to a maximal consistent set.
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Let X be the set of maximal consistent sets over the language. We define Ri
and RD on X as follows: given T, S ∈ X,

TRiS iff Kiφ ∈ T implies φ ∈ S for all φ in the language;
TRDS iff Dφ ∈ T implies φ ∈ S for all φ in the language.

Note that RD ⊆ Ri for i = 1, 2. Indeed, if TRDS and Kiφ ∈ T , then Dφ ∈ T
as per the axiom Kiφ→ Dφ and thus φ ∈ S.

A labelled path over X is a path

α = T0
i1−→ T1

i2−→ ...
in−→ Tn,

where T0, ..., Tn ∈ X and i1, ..., in ∈ {R1, R2, RD}. Given S ∈ X and a path
α = T0

i1−→ T1
i2−→ ...

in−→ Tn, we define

lastα := Tn and α
i−→ S := T0

i1−→ T1
i2−→ ...

in−→ Tn
i−→ S.

Now, let T be the smallest set of labelled paths over X such that:

i. T0 ∈ T ;

ii. For i = 1, 2, if α ∈ T and (lastα)RiT , then α
Ri−→ T ∈ T ;

iii. If α ∈ T and (lastα)RDT , then α
RD−−→ T ∈ T .

For i = 1, 2, D we define the following relations on T : α ≺i β if and
only if α = T0

i1−→ ...
in−→ Tn and β = T0

i1−→ ...
in−→ Tn

Ri−→ S for some
T0, ..., Tn, S ∈ X. In other words,

≺i= {〈α, α
Ri−→ S〉 : 〈lastα, S〉 ∈ Ri}.

We have thus given T the structure of a forest. Indeed, every α ∈ T
has at most one predecessor under ≺1 ∪ ≺2 ∪ ≺D. Now let us define three
preorders on T : let ≤1 be the reflexive and transitive closure of ≺1 ∪ ≺D,
that is,

α ≤1 β iff there exist α0 = α, α1, ..., αn = β

with αk ≺1 αk+1 or αk ≺D αk+1.

Similarly we define ≤2 to be the reflexive and transitive closure of ≺2 ∪ ≺D
and ≤D to be the reflexive and transitive closure of ≺D. Note that by con-
struction ≤D=≤1 ∩ ≤2.

Now let us see what the ≤1- and ≤2-connected components look like. By
part (iii) of lemma 3.2.11, we know that the connected components of the
topology of upsets of ≤i (i = 1, 2) are given by the equivalence relation:

α ∼i β iff there exists γ such that α ≥i γ ≤i β.
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But then we have a path γ = γ0 ≺i1 γ1 ≺i2 ... ≺in γn = α with i1, ..., in ∈
{i,D}, thus for every k = 0, ..., n− 1 we have

(last γk)Ri(last γk+1) or (last γk)RD(last γk+1).

Now, since RD ⊆ Ri and Ri is transitive, this gives us (last γ)Ri(lastα). Sim-
ilarly, we get that (last γ)Ri(lastβ). Therefore we have the following result:

Lemma 5.2.8. If α and β belong to the same ≤i-connected component on
T , then lastα and lastβ belong to the same Ri-connected component in X.

Moreover, there is an alternative characterisation of the connected compo-
nents, similar to that in lemma 4.1.2, which we will find useful:

Lemma 5.2.9. The ≤i-connected components correspond to upsets of the
form ↑iα0, where α0 has no ≤i-predecessors other than itself.

Proof. Clearly, if β, γ ∈ ↑iα0 then β ∼i γ and conversely, since the set of
≤i-predecessors of any point in this tree-like structure forms a finite chain,
let α0 be the least ≤i-predecessor of some α. Then for every β ∈ [α]∼ we
have that there exists some γ with α ≥i γ ≤i β and thus α0 ≤i γ ≤i β. �

We have given T the structure of a topological-partitional space and by defin-
ing V T (p) = {α ∈ T : p ∈ lastα} we have a topological-partitional model and
we can prove the following:

Lemma 5.2.10 (Truth lemma). For every α ∈ T and φ in the language,
α � φ if and only if φ ∈ lastα.

Proof. This is again an induction on formulas in which the base case for the
propositional variables follows from the definition of V T and the induction
steps for the Boolean connectives are routine.

Now, suppose the result holds for φ and Kiφ ∈ lastα. We need to define
a locally dense open set Ui such that α ∈ Ui ⊆ [α]∼i and with the property
that, for every β ∈ Ui, φ ∈ lastβ, which will give us, by induction hypothesis,
that Ui ⊆ ‖φ‖. By lemma 5.2.9, we have that [α]∼i = ↑iαi for some αi ∈ T .
In other words, every β ∈ [α]∼i is of the form

β = αi
Ri or RD−−−−−−→ Ti

Ri or RD−−−−−−→ ...
Ri or RD−−−−−−→ Tn.

Let us now partition [α]∼i in two sets:

VD :={β ∈ [α]∼i : αi ≤D β};
Vi :={β ∈ [α]∼i : αi ≤i β&αi �D β}.

Note that the elements in VD are of the form

β = αi
RD−−→ T1

RD−−→ ...
RD−−→ Tn,
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the elements in Vi are of the form

β = αi
r1−→ T1

r2−→ ...
rn−→ Tn with rk ∈ {Ri, RD} and at least one rk = Ri,

and each element in [α]∼i is in exactly one of Vi, VD. Let us define Ui as
follows:

Ui := {β ∈ VD : (lastα)RD(lastβ)} ∪ {γ ∈ Vi : (lastα)Ri(last γ)}.

The following holds:

i. α ∈ Ui by construction.

ii. Ui is an upset. Take any β ∈ Ui. If β ≺i γ then γ = β
Ri−→ S for

some S ∈ X and we clearly have γ ∈ Vi and (lastα)Ri(lastβ)RiS, thus
(lastα)RiS. If β ≺D γ then β = γ

RD−−→ S and, if β ∈ VD we then
have that γ ∈ VD and (lastα)RD(lastβ)RDS (thus (lastα)RD(last γ))
whereas if β ∈ Vi we have that γ ∈ Vi and similarly (given that RD ⊆
Ri), (lastα)RiS. In any case γ ∈ Ui.

iii. Ui is locally dense. Take any β ∈ [α]∼i . By lemma 5.2.8, we have that
lastβ and lastα are in the same Ri-connected component and, since Ri
is an S4.2 relation, part (ii) of lemma 3.2.11 gives us that there exists
some S ∈ X with (lastα)RiS and (lastβ)RiS and thus we have that
β

Ri−→ S ∈ Vi with (lastα)Ri last(β Ri−→ S) so β Ri−→ S ∈ Ui ∩ ↑iβ.

iv. For every β ∈ Ui, we have φ ∈ lastβ. Indeed, given that Kiφ ∈ lastα
and that (lastα)Ri(lastβ), we have that φ ∈ lastβ.

Thus α � Kiφ, as we intended to prove.
Conversely, if α � Kiφ, there exists some locally dense open set Ui with

α ∈ Ui ⊆ [α]∼i ∩ ‖φ‖. But then if lastαRiS we have that α ≺i α
Ri−→ S, thus

since Ui is an upset we have α Ri−→ S ∈ Ui, which means α Ri−→ S ∈ ‖φ‖ and
by induction hypothesis φ ∈ S. Hence we have that every Ri-successor of
lastα contains φ, which gives Kiφ ∈ lastα.

Now suppose Dφ ∈ lastα. Define U1 and U2 as above. They are locally
dense open sets contained respectively in [α]∼1 and [α]∼2 . Moreover, α ∈
U1 ∩ U2 by construction. We simply need to see that U1 ∩ U2 ⊆ ‖φ‖. First
let us note the following: if β ∈ [α]∼1 ∩ [α]∼2 = ↑1α1 ∩ ↑2α2, then β is
simultaneously of the form

β = α1
R1 or RD−−−−−−→ T1

R1 or RD−−−−−−→ ...
R1 or RD−−−−−−→ Tn

and of the form

β = α2
R2 or RD−−−−−−→ S1

R2 or RD−−−−−−→ ...
R2 or RD−−−−−−→ Sm.
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The only way for both this things to be true is if β is of the form

β = α2
RD−−→ S1

RD−−→ ...
RD−−→ Sm

and α2 is of the form

α2 = α1
R1 or RD−−−−−−→ T1

R1 or RD−−−−−−→ ...
R1−−→ Tn

or vice versa. Let us assume the former without loss of generality. In partic-
ular we have that, if β ∈ U1 ∩U2, then β ∈ V [2]

D and hence (lastα)RD(lastβ).
And since Dφ ∈ lastα, this entails that φ ∈ lastβ and thus that β ∈ ‖φ‖. We
have thus proven that α � Dφ.

For the converse, if α � Dφ then α ∈ U1 ∩ U2 ⊆ ‖φ‖ for some ≤i-locally
dense Ui ⊆ [α]∼i . But then if (lastα)RDS we have α ≤D α

RD−−→ S and since
≤D=≤1 ∩ ≤2 and U1 and U2 are respectively a ≤1 and a ≤2-upset, we have
that α RD−−→ S ∈ U1∩U2 and thus α RD−−→ S � φ which by induction hypothesis
gives φ ∈ S. This entails Dφ ∈ lastα. �

Completeness follows from this: if φ /∈ LogicKiD, then {¬φ} is consistent
and can be extended as per Lindenbaum’s lemma to some maximal consintent
set T0 ∈ X. We then unravel the tree around T0 as discussed above and we
have ourselves a topological-partitional model rooted in α = T0 with α 2 φ
as per the truth lemma.

5.3 Common knowledge

In the context of epistemic logic, one can think of common knowledge as that
which “every fool knows”. This informal definition can be formally cashed
out in several intuitive ways when one is modelling an epistemic situation.
Barwise (1988) presents a comparison of three approaches to common knowl-
edge:

(1) The iterate approach. A fact φ is common knowledge for a group of
agents when φ is true, all agents know that it is true, all agents know
that all agents know that it is true, etc. If we have two relevant agents,
a and b, and Eψ is short for Kaψ ∧Kbψ, then Cφ corresponds to the
infinite conjunction

φ ∧ Eφ ∧ EEφ ∧ EEEφ ∧ ...

(2) The fixed-point approach. This is an approach in which common knowl-
edge refers back to itself. The idea here is that, if φ is the proposition
which expresses “it is common knowledge for agents a and b that p”,
then φ is equivalent to “a and b know (p and φ)”.
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(3) The shared environment approach. According to this approach, a and b
have common knowledge of p whenever there exists a “situation” s such
that the following are facts of s: (i) p; (ii) a knows s; (iii) b knows s.

Barwise (1988) goes on to argue that, despite the fact that the first ap-
proach is the most “orthodox account” of common knowledge in the field of
logic, being the approach considered in such influential works as Lewis (1969)
and Halpern and Moses (1990), and despite the fact that early literature con-
sidered this approach equivalent to the fixed point one, (1) and (2) offer in fact
distinct accounts and the fixed point approach provides “the right theoretical
analysis of the pretheoretic notion of common knowledge”.

One thing to note is that (1) and (2) are in fact equivalent approaches if
one is modelling an epistemic situation within a relational framework. If Ki

is the Kripke modality corresponding to some relation Ri, then we will read
C in both cases as the Kripke modality corresponding to the reflexive and
transitive closure of the union of their relations, RC = (R1 ∪ R2)∗. That is,
Cφ will be true at x just in case φ is true at any world that can be reached
from each via a path of R1’s and R2’s. However, as shown in van Bethem
and Sarenac (2004) this equivalence disappears once we are working in a
topological setting. If one is working topologically, one has to make a choice.

Our proposal amounts to reading the common knowledge modality C as
the interior in the intersection topology τ∗1 ∩ τ∗2 . More explicitly:

Definition 5.3.1 (Semantics for common knowledge). Let

X = (X, τ1, τ2,Π1,Π2, V )

be a topological-partitional model. We read ‖p‖, ‖φ ∧ ψ‖, ‖¬φ‖ and ‖Kiφ‖
as in definition 3.2.3 and:

X, x � Cφ iff there exists U ∈ τ1 ∩ τ2 locally dense in Π1 and in Π2
such that x ∈ U ⊆ ‖φ‖.

This amounts to the following: there is common knowledge of φ at x whenever
there exists a common factive justification for φ.

Let us point out two things about this approach. The first one is that
it matches rather well with the notion of distributed knowledge given in the
previous section. If D and C correspond, respectively, to the meet and join of
the corresponding accessibility relations on Kripke model, in this setting they
are made to correspond to the join and meet, respectively, of the τ∗i topologies.
Moreover, much like distributed knowledge, this notion of common knowledge
corresponds directly with the relational definition when we are dealing with
a topological-partitional model stemming from two S4.2 relations: if R1 and
R2 are S4.2, τi is the topology of Ri-upsets and Πi is the set of Ri-connected
components, then τ∗1 ∩ τ∗2 contains exactly the upsets of (R1 ∪R2)∗.

The second observation is that, in the spirit of Barwise (1988), this defi-
nition is precisely the fixed point account of common knowledge. As pointed
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out in van Bethem and Sarenac (2004) and expanded upon in Bezhanishvili
and van der Hoek (2014), the fixed point approach can be expressed in the
notation of mu-calculus as

Cφ = νp(φ ∧ Ep),

where p is a propositional variable which does not appear in φ. We read

‖νpψ‖ =
⋃
{U ∈ P(X) : U ⊆ ‖ψ‖V Up },

where V U
p is the valuation assigning U to p and V (q) to q 6= p.

In particular,

‖Cφ‖ =
⋃
{U ∈ P(X) : U ⊆ ‖φ ∧ Ep‖V Up }.

Now, ‖φ∧Ep‖V Up = ‖φ‖V Up ∩‖K1p‖V
U
p ∩‖K2p‖V

U
p . Since p does not appear in

φ, we have that ‖φ‖V Up = ‖φ‖. On the other hand, ‖Kip‖V
U
p = Intτ∗i ‖p‖

V Up =
Intτ∗i U .

Thus a set U is contained in ‖φ∧Ep‖V Up if and only if U is a τ∗1 -open and
τ∗2 -open subset of ‖φ‖. And thus,

‖Cφ‖ =
⋃
{U ∈ P(X) : U ∈ τ∗1 ∩ τ∗2 &U ⊆ ‖φ‖} = Intτ∗1∩τ∗2 ‖φ‖,

which is precisely our account of common knowledge.
Some theorems in the logic of topological-partitional models with common

knowledge are the following:

i. The S4.2 axioms for Ki;

ii. the S4 axioms for C;

iii. the fixed point axiom Cφ→ E(Cφ ∧ φ);

iv. the induction axiom C(φ→ Eφ)→ (Eφ→ Cφ).

Proposition 5.3.2 (Soundness). All the theorems above are valid on topological-
partitional models with the semantics of definition 5.3.1.

Proof. That i., ii. and iii. hold for topological-partitional models is a very
straightforward check. Item iv. is more involved. It amounts to checking
that, on any such model, and for any P ⊆ X,

C(¬P ∨ (K1P ∩K2P )) ∩ P ⊆ CP.

Now, let x ∈ C(¬P ∨ (K1P ∩K2P )). By the semantics of 5.3.1 this means
that there exists some U ∈ τ∗1 ∩ τ∗2 such that

x ∈ U ⊆ ¬P ∪ (Intτ∗1 P ∩ Intτ∗2 P ).

Call V := U ∩ Intτ∗1 . Now, V is a τ∗1 -open set. Note that V ⊆ U ∩ Intτ∗2 and
U ∩ Intτ∗2 ⊆ V and thus V is also a τ∗2 -open set. Moreover, V includes x and
it is contained in P . Thus there exits some V ∈ τ∗1 ∩ τ∗2 with x ∈ V ⊆ P ,
hence x ∈ CP . �
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Whether the preceding list of formulas constitutes a complete axiomatisa-
tion of the logic of common knowledge for topological-partitional models is a
question that remains open.
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Chapter 6

Discussion

The work contained in this Master’s thesis is a dive into several aspects of the
dense interior semantics defined on topological evidence models, furthering
the results in Baltag et al. (2016).

Whenever it was possible, we found particular spaces whose logic is pre-
cisely the epistemic logic introduced in the aforementioned paper. These
spaces provide a “natural” or (as we referred to it) “generic” model in which
to study epistemic concepts such as knowledge, belief, evidence and justifica-
tion, which interact with each other following the considerations in Stalnaker
(2006). We showed that any dense-in-itself metrisable space, such ar R, is a
generic model for the knowledge-only fragment of this logic and that some of
these spaces, such as Q, are a generic model for several other fragments of
the language of topological evidence logic.

We then introduced a second agent in topo-e-models, obtaining a multi-
agent semantics for these models, along with a brief conceptual and theoretical
study of notions of “group knowledge” for this group of agents. We showed
how this semantics generalises the single agent case and we provided a com-
plete logic for our two-agent models. Moreover, mirroring the single-agent
case, we found generic spaces with respect to which the logic is sound and
complete: the quaternary tree T2,2 and the rational plane Q×Q.

In the process of writing this thesis some questions remained unanswered,
and other questions (which are out of the scope of the present work but
nonetheless quite interesting) sprung.

In the first section of this chapter we show that the results in this thesis
are easily generalisable to any finite number of agents. In the second section
we will comment on some of the loose ends and pose some questions which
could constitute relevant lines of future research.

6.1 Generalising to any number of agents

The results included in the “multi-agent” part of this thesis have been limited,
for the sake of simplicity, to the two-agent case. It is however very easy to
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generalise these results to any finite number of agents n. Let us outline this
generalisation:

Our topological partitional models for n agents are now of the form
(X, τ1, ..., τn,Π1, ...,Πn, V ), where X is a set, V is a valuation, each τi is
a topology on X and each Πi is a τi-open partition of X.

Note that sections 3.3 and 3.4, which study the logics of different frag-
ments, at no point require that n = 2 in their proofs. Thus, the logic of the
different fragments of these n-agent topological partitional models is exactly
the logic of the respective fragment for the two-agent case, where i now ranges
over {1, ..., n}. For instance, the logic of the K1, ...,Kn fragments is the fusion
logic S4.2K1 + ...+S4.2Kn , i.e., the axioms and rules of S4.2 for each operator.

The results of chapter 5 work similarly for n agents, using when necessary
the join and meet topologies of τ1, ..., τn. Here, τ1 ∨ ... ∨ τn is the topology
{U1∩ ...∩Un : Ui ∈ τi}, and we read D as interior in τ∗1 ∨ ...∨τ∗n. In particular,
the logic of distributed knowledge has the same axioms and rules as LogicKiD,
as defined in subsection 5.2.3, with 1 ≤ i ≤ n.

The only part in the multi-agent discussion in which we used the fact that
n = 2 is chapter 4, when talking about the spaces T2,2 and Q × Q. We can
generalise the quaternary tree to n agents via the 2 × n-ary tree T2×n, i.e.,
the infinite branching tree with n relations R1, ..., Rn such that every node
has exactly 2n successors: a left Ri-successor and a right Ri-successor for
each 1 ≤ i ≤ n. Now, arguing analogously to section 4.1 we can unravel any
finite frame with n S4.2 relations into T2×n, and this construction comes along
with an onto p-morphism which gives us completeness of T2×n with respect
to S4.2K1 + ... + S4.2Kn . For more details about T2×n and this unravelling,
see appendix A in Sarenac (2006).

For the other space, instead of taking Q × Q with the vertical and hori-
zontal topology, we consider Qn and define n topologies τ1, ..., τn on it, where
τk is the topology generated by

Bk = {{x1}×...×{xk−1}×Uk×{xk+1}×...×{xn} : Uk ∈ τQ &xi ∈ Q for i 6= k}.

We can define and open subspace of (something homeomorphic to) Qn by
Y =

⋃
k∈ω Yk, where Y0 = {(0, ..., 0)} and

Yk+1 = Yk ∪ {(x1, ..., xi ± 1/3k, ..., xn) : (x1, ..., xi, ..., xn) ∈ Yk & 1 ≤ i ≤ n}.

Now, if we are working in one dimension (that is to say, Y0 = {0} and
Yk+1 = Yk ∪ {x ± 1/3k : x ∈ Yk}), this space Y is homeomorphic to Q. Let
us call this one-dimensional space (X, τ). We can see that, working again on
n dimensions, Y is an open subspace of Xn. We can define an interior map
f : Y → T2×n as follows:

We map (0, ..., 0) to the root r of the tree. Now, suppose we have mapped
all points in Yk to some nodes in the tree and take x ∈ Yk+1\Yk. Then either
x = (x1, ..., xi − 1/3k, ..., xn) for some (x1, ..., xn) ∈ Yk, in which case we map
x to the left Ri-successor of f(x1, ..., xn), or x = (x1, ..., xi + 1/3k, ..., xn), in
which case we map it to its right Ri-successor.
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An argument similar to the proof in van Benthem and Bezhanishvili (2007)
for the case n = 2 shows that this is indeed a surjective continuous and open
map thus completeness (for a certain equivalence relation) follows.

6.2 Open questions

Completeness of Logic∀��0 with respect to Q with a particular
subbasis

While in chapter 2 we showed several of the logics in the introduction to be
sound and complete with respect to singleton classes of models, we failed to
provide a single topo-e-model for the fragment involving the basic evidence
modality. Instead, we showed that the corresponding logic is sound and com-
plete with respect to the class of topological evidence models based on (Q, τQ)
with arbitrary subbases.

There were attempts in the writing of this thesis to find one particular
subbasis for Q that would give us a topological evidence model whose logic
is precisely Logic∀��0 . This needs to be a subbasis which is not a basis
(for otherwise �φ ↔ �0φ would be a theorem of the logic). One obvious
candidate is perhaps the most paradigmatic case of subbasis-which-is-not-a-
basis, namely

S = {(a,∞), (−∞, b) : a, b ∈ Q}.

This does not work. To show why, let us find a formula that is consistent
in the logic yet it cannot be satisfied by any model based on Q with the afore-
mentioned subbasis. Consider the following formula, with three propositional
variables p1, p2, p3:

γ =
∧

i=1,2,3
(�0pi ∧ [∃]�0¬pi)

∧
i 6=j∈{1,2,3}

[∃](�0pi ∧ ¬�0pj).

First of all, note that, in any topo-e-model, ‖�0φ‖ is a union of elements
in the subbasis. Indeed, for all x ∈ ‖�0φ‖, there is an ex in the subbasis with
x ∈ ex ⊆ ‖φ‖. But then ‖�0φ‖ =

⋃
x∈‖�0φ‖ ex. In particular, in the topology

of Q with the subbasis E0 as defined above, we have that ‖�0φ‖Q is always
of the form

‖�0φ‖Q = (−∞, a) ∪ (b,∞)

for some a, b ∈ R ∪ {−∞,∞} (here, we call (−∞,−∞) = (∞,∞) = ∅ and
(−∞,∞) = Q).

Moreover, if the set ‖�0φ ∧ [∃]�0¬φ‖Q is nonempty, then ‖�0φ‖Q is of
the form (a,∞) of or the form (−∞, a) for some a ∈ R. Indeed, suppose x
satisfies [∃]�0¬φ. Then there exists a y and an e ∈ E0 with y ∈ e ⊆ ‖¬φ‖.
Let us assume without loss of generality that e = (b′,∞) for some b′. Then
‖�0φ‖ cannot be of the form (−∞, a) ∪ (b,∞) with b 6= ∞, for otherwise
take z > b, b′ and we have z � φ ∧ ¬φ. So ‖�0φ‖ = (−∞, a). Similarly, if
e = (−∞, a′), then ‖�0φ‖ = (b,∞) for some b.
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With all this:

Lemma 6.2.1. γ is not satisfied in any model based in Q with the aforemen-
tioned subbasis.

Proof. Suppose γ is satisfied in such a model. By the previous observation,
the first conjunct gives that ‖�0pi‖ needs to be of the form (a,∞) or (−∞, a)
for some a ∈ R ∪ {∞,−∞}. By the second conjunct, the sets ‖�0pi‖ and
‖�0pj‖ need to be incomparable for i 6= j. But of course, at least two of
the sets ‖�0pi‖ have to be of the same form (either (−∞, ai) and (−∞, aj)
or (ai,∞) and (aj ,∞)), hence obviously it cannot be the case that the three
sets are incomparable: contradiction. �

Lemma 6.2.2. γ is consistent in the logic.

Proof. We use the fact (see Baltag et al., 2016) that the logic is complete
with respect to quasi-models of the form (X,≤, E0, V ), where ≤ is a preorder
and E0 is a collection of ≤-upsets. [∀] is read globally, � is read as the Kripke
modality for ≤ and we read x ∈ ‖�0φ‖ if and only if there is some e ∈ E0
with x ∈ e ⊆ ‖φ‖.

Let (X,≤) be the following poset:

x1 x2 x3

z

y

and call ei = {xi, z} for i = 1, 2, 3. Let E0 = {e1, e2, e3, {y}, X} and V (pi) =
ei for i = 1, 2, 3. It is clear that (X,≤, E0, V ) is a quasi-model and that
z � �0pi, xi � �0pi ∧ ¬�0pj and y � �0¬pi.

Thus z � γ and γ is therefore consistent in the logic. �

Since every model based on Q with E0 as a subbasis makes ¬γ true yet
0Logic∀��0

¬γ, incompleteness follows.
My (unfounded) conjecture here is that no particular subbasis will give

us completeness. Proving this result if this conjecture is true, or otherwise
finding such a subbasis if false, would be an interesting line of future work.

Common knowledge

As we mentioned in section 5.3, whether the list of theorems provided consti-
tutes a complete axiomatisation of the logic of common knowledge is an open
question.

68



Strong completeness

Kremer (2013) shows that S4 is strongly complete with respect to any dense-
intself metrisable space with the interior semantics.

Is S4.2 strongly complete with respect to R with the dense interior seman-
tics? What about the other logics and their respective generic models?

Other generic models for the two-agent logic

We have provided two generic models for the logic S4.2K1 + S4.2K2 .
What are some other generic models for this logic? One would speculate

that, for instance, the binary Cantor space (i.e. the topological space of
branches through T2,2) should be such a model, generalising the single-agent
case.

Proving this would be an interesting line of research, and so would be
finding generic models for some of the other multi-agent logics provided in
section 3.4, as well as for the logic of distributed knowledge in section 5.2.

Dynamic topo-e-models

As discussed in the preliminaries, one of the advantages of the framework of
topo-e-models over other Stalnakerian approaches is that they behave well
dynamically. Baltag et al. (2016) consider several dynamic extensions of the
language L∀��0 , including modalities for public announcements, evidence ad-
dition, evidence upgrade and feasible evidence combination, and give complete
logics for each of these extensions.

This thesis has been exclusively concerned with “static” models. Com-
bining these dynamic results with the results in this thesis is a very obvious
and very interesting line of future research. In particular, finding the multi-
agent logic with public announcements, accounting for a notion of private
announcements or even finding generic models for any of these extensions are
very relevant (and probably quite fruitful) lines of research.
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