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Abstract

We propose a dynamic-epistemic analysis of perceptual knowledge placing struc-
tured observational events at center stage. Our starting point is the specific entan-
glement of epistemic accessibility with the relation of ‘closeness’ or similarity, that is
claimed in the so-called Margin of Error principle. While we find the standard formu-
lation of this principle to be defective, we think that it contains valuable intuitions for
a joint logic of closeness and uncertainty, whose contours we develop. In particular, our
analysis explains how imprecise observation can lead to higher-precision knowledge.

1 Introduction

Perceptual knowledge and its inherent imprecision are an essential feature of human cognition
and action. In our daily lives, but also with measurement regimes in the exact sciences, each
observation comes with a margin of error or imprecision.1 This ubiquitous imprecision is
reflected in the vocabulary of natural language which contains many hedges that serve us well
in communication. Moreover, there is the striking fact that by piling up single observations
that are imprecise, we can usually reach any desired degree of precision and certainty.

These phenomena give rise to questions for logicians interested in information flow and
information-driven agency. What is the nature of observational events with imprecision,
and how do they increase our information? How are the ranges of epistemic options that
determine knowledge related to the closeness structure of perceptual or other spaces where
observation takes place? What is the resulting logic for reasoning with, and about, impreci-
sion? Such questions have been historically neglected by epistemic logicians2.

One of the few formal epistemologists who did take seriously the vagueness of perception
and put it at the very center of his philosophical reflection is Timothy Williamson. His
epistemic view on vagueness and its logic is one of the leading approaches to this topic in
the literature, and led him to an extensive investigation of ‘inexact knowledge’ over the
years [29, 32], including his celebrated Margin of Error argument purporting to show that
epistemic introspection fails for perception-based knowledge.

1The term ‘imprecision’ seems preferable, as there is no possibly blameworthy ‘error’ involved.
2Closely related topics, such as the Sorites paradox, fuzzy sets, rough sets, many-valued logics, etc., were

explored by logicians engaged in studying vagueness and ambiguity in natural language and science, [11].
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In this paper, we start with a brief analysis of this argument, also known as the Epistemic
Sorites paradox, since it contains valuable triggers for a further study of imprecise obser-
vation. Our discussion fits within the tradition of ‘signal-based’ solutions to the paradox,
following in the steps of Bennet [4], Mott [21], Halpern [17], Dutant [13] and Spector [26].
Such approaches focus on the fact that knowledge is not uniquely determined by the objec-
tive value of the ontic feature under observation, as a prima facie reading of the Epistemic
Sorites might suggest, but it also depends on the subjective signals perceived by the observer,
or the subjective comparisons made by him against given benchmarks. The conclusion of
this analysis is that the Margin-of-Error principle is not tenable in its standard form.

At this stage, we encounter a fork in the road. One further path leads toward the dialectics
of epistemological discussion of the Epistemic Sorites, on which there is a rich literature. We
might explore to which extent our analysis presupposes epistemic introspection, or whether
our rejection of Margin-of-Error rests on even more deeply hidden debatable philosophical
assumptions. While these are important issues, we do not pursue them in this paper.

Instead, we choose another road at the fork: a study of what lies implicitly behind the
signal-based approach, namely various types of observational events, and the ways in which
these events update information. To the best of our knowledge, this dynamic-epistemic road
has been taken only once before, in the recent, still unpublished paper Cohen [10]. However,
we will give our own version of the epistemic dynamics involved, and with that framework
in place, we explore a new logic for reasoning about knowledge and perceptual closeness. In
particular, this logic can take on board various modifications of the Margin-of-Error principle
that we do think are true as regulating imprecise observation and knowledge.

The eventual test that we see for the dynamic framework of this paper is whether it
makes intuitive sense, and generates a logic that can link up with what we take to be the
most sophisticated current account of imprecise observation, namely, Measurement Theory.

2 An intuitive problem

It seems that our intuitions about the fundamental imprecision of perceptual evidence are
incompatible with the well-known epistemic KK Principle Kϕ → KKϕ saying that agents
know that they know when they know (the Positive Introspection law of epistemic logic). The
following ingenious example was proposed in [32] as an argument against the KK Principle.

Example 1, Tree in the distance. Looking through the window, Mr Magoo can see a
tree far off. Suppose that in fact the tree is 666 inches tall. But, given his poor eyesight
and limited ability to judge heights, Mr Magoo cannot tell the tree’s height to the nearest
inch just by looking. For all he knows, it can be 665, 666 or 667 inches tall. More generally,
he cannot tell apart any height of m inches from a height of m + 1 or m − 1 inches: these
heights are perceptually indistinguishable to him. But on the other hand, Mr Magoo can
see the tree, so he definitely does know, just by looking, that the tree is not 0 inches tall.

A surprising argument The preceding description seems natural and uncontroversial.
Moreover, in this scenario, the following Margin of Error statement seems quite plausible:
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“For all natural numbers m, if the tree is in fact m+ 1 inches tall,
then Mr Magoo does not know that it is not m inches tall”

which we can write formally as

pm+1 → ¬K¬pm holds for all m (MoE)

or equivalently as the implication

K¬pm → ¬pm+1, for all m. (1)

Moreover, Mr Magoo is aware of the limits of his eyesight, so he knows this statement:

K(K¬pm → ¬pm+1), for all m. (K-MoE)

Then, if we assume Closure of Knowledge (embodied in the distribution law of epistemic
logic, whose debatability is not the issue here), a surprising chain of reasoning starts with

KK¬pm → K¬pm+1 (2)

If we now apply just one concrete instance of Positive Introspection, we obtain

K¬pm → K¬pm+1. (3)

Continuing by induction, we can then show that

K¬p0 → K¬pm for all m. (4)

But this conclusion seems absurd. Since we agreed that in our situation K¬p0 holds (since
Mr Magoo can see the tree), it follows that the tree can have no height at all for Mr. Magoo.
Introspection implies the existence of heightless trees.

This is the gist of Williamson’s argument [32], and his conclusion is that, since MoE
is correct, the KK principle Kϕ → KKϕ fails for perceptual knowledge. In other words,
perception and well-known epistemic principles are at odds. While we have no special wish
to defend KK, there is an issue here of whether this particular quandary is convincing.

A spate of follow-up work, such as [28, 25, 10], has tried to elucidate more general philo-
sophical intuitions that might underwrite the Margin of Error principle MoE.3 In contrast,
other authors [4, 21, 17, 13, 8, 9, 26] have found the Margin of Error principle defective, and
proposed alternative analyses in the earlier-mentioned line of carefully analyzing the ‘signals’
provided by imperfect observation. There is a sequence of responses by Williamson to these
criticisms, some of which are mentioned below. Still, to us, the signal-based approach cap-
tures an important insight about perception, and we now proceed to analyze more precisely
what is going on, with the aim of learning more about the logic of perceptual observation.

3One such general intuition is ‘perceptual robustness’ or ‘safety’: if I know a fact based on perception in
some world w, then I must also know it in worlds that are close to w.
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3 Analyzing observational events

3.1 Margin of Error Principle: Weak and Strong Version

The MoE principle seems natural, but let us look at what it says exactly. What is the
relevance of the 1-inch differences in the story? The intuition is that an agent’s perception
has a minimal margin of error or ‘tolerance’ ε > 0. This seems to pose a fundamental limit to
her powers of discrimination: no perceptual observation by this agent can have an accuracy
that goes beyond ε. We can formulate this as a “weak” version of MoE:

“If the agent’s minimal margin of error is ε, then features of the world whose
values differ by less than or equal to ε cannot be told apart by the agent by any
direct comparison: they are perceptually indistinguishable.”

While the weak version seems to us incontrovertible, it is easy to slip from here into the
following, much more contentious, epistemic statement of a general nature:

“If the agent’s minimal margin of error is ε, then for every possible value x of
the observed feature, if x is actual, then the agent does not know that the value
is not x+ ε or x− ε (or anything in between).”

Our first theme is how this ‘strong version’ of MoE fares when observations are made,
providing a starting point for exploring the role of observations in perceptual knowledge.4

3.2 Single Observations

Once he observes the tree, Mr Magoo gains information: he can now exclude some values.
If his margin of error is ε inches, then in principle he may be able to narrow his estimate to
an interval of radius equal to ε: this is a most accurate or best observation consistent with
his perceptual limitations. One way this can happen is if he gives a ‘best guess’ y, a point
estimate of the tree’s height as it appears to him5. Knowing his own margin of error ε, he
can then give [y − ε, y + ε] as his best estimate. To be concrete, suppose his point estimate
is y = 665 inches, and his margin of error at this distance is ε = 25 inches. Then he is sure
that the height is in the interval [640, 690], but he cannot rule out any of these values.

At this point, we notice a tension. The above scenario complies with the weak version
of MoE, but it is incompatible with strong MoE. This is because, if m = 666 then the
general version of MoE tells us that Mr Magoo cannot know that the tree is not m + ε =
666 + 25 = 691 inches. But he does know this, since 691 6∈ [640, 690]. Thus, the epistemic
situation after just one observation refutes the strong version of MoE.

4Note that ‘strong’ MoE is the general version of Margin-of-Error that underlies Williamson’s argument.
5Bennet calls this point estimate y the “precisification”, while Spector [26] identifies it with the “subjective

signal” perceived by the agent. In the next sections of this paper, we will use the term “apparent value” for
y, distinguishing it from the actual value of the feature under observation.
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MoE as a ‘Centering Fallacy’ Strong MoE implies that the margin of error interval for
the actual value is contained in any measured interval. Hence, even if we allow observations
other than point estimates, [33], any best observation is an interval centered at the actual
value. Say, an agent knows the margin ε = 25, and observation told him that m ∈ [640, 690].
He knows this is a best observation, as its radius equals the margin of error. So, K-MoE
says the actual value is the center (640 + 690)/2. This is obviously unwarranted.

One might call this the ‘Centering Fallacy’: the assumption that actual values always
lie at, or near, the center of measured intervals. Clearly, this symmetry assumption is not
generally warranted in statistics: conclusions from measurement about the location of the
actual value come with probability only, and they also depend on the type of probability
distribution assumed. In our qualitative setting, the same is true: as we have seen, the actual
value may lie close to the border of the measured interval. In fact, this is one of the crucial
features that accounts for the beneficial epistemic effects of repeated observations.

The agent, or a device? The use of measurement theory in the preceding analysis suggests
that one can trade perceptual imprecision for measurement imprecision. Margin of Error is
not only about deficiencies of epistemic agents: equally well, the agent’s perception may be
totally accurate, while some measuring device is to blame.

Example 2, The scale. I step on a digital scale to measure my weight: it shows exactly 82
kilograms. But I know the scale has a certain tolerance, say 0.1 kilograms: if I measure the
same weight twice in a row, sometimes the scale gives results that differ by at most 0.1 kg.
So, after I measure my weight once, I conclude that the weight is 82± 0.1, i.e. in the range
[81.9, 82.1]. But the same principles MoE and K-MoE can be stated in this case, such as:
“I know (given the scale’s error margin) that, if my weight is i + 0.1 kilograms, then using
the scale I cannot know that it is not in fact i kilograms.” Formally, this is

K(pi+0.1 → ¬K¬pi), or equivalently, K(K¬pi → ¬pi+0.1) for all i.

Now, for any introspective agent who knows himself to have non-zero weight, again the
conclusion follows that he has no weight at all. Thus, the existence of an inaccurate apparatus
would seem to imply that no perceptually perfect agent using it can ever be introspective.

But the earlier counter-example reappears in this new setting. Once again, the Centering
Fallacy is the culprit: if say, the correct value of my actual weight is in fact 81.9 kg, then
the scale may just show 82, as in the story above. Given the scale’s tolerance, I then know
that my weight is in the range [81.9, 82.1], and thus I am able to exclude 81.8, despite this
being close enough (within the margin 0.1) to the actual weight.

These points about observation and centering are not new. In various forms, they were
raised by Mott [21], Halpern [17], Spector [26], and others. Now there is an issue of whether
these outcomes stem essentially from our simple view of observational events.

Observations with variable margins In [32, 33], Williamson has emphasized higher-level
imprecision, which characterizes inexact knowledge (obtained by perception, memory, etc.),
in contrast with exact, but imprecise knowledge (obtained by measurements). According to
this view, the above analysis only applies to cases of the second type, but not to the first.
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One’s knowledge of one’s perceptual limitations is inexact, and itself subject to the Margin
of Error principle: analyses assuming that individuals know the interval estimate fall short.

There are many issues of how to phrase these intuitions precisely, but certainly, it makes
sense to consider perceptual events with arbitrarily large errors.6 Still, without analyzing
observations with varying accuracy in detail here, we merely note that MoE still fails.

First, in discrete settings, the two approaches are equivalent, and all earlier points apply.
In infinite continuous settings, there may indeed be no best observation, but despite the
errors, we can approximate the actual value with indefinite accuracy by using better and
better observations. The important topic of repeated observations will return below. 7

Are perceptions radically different from measurements? Although we are sympa-
thetic to the idea that there are various types of knowledge, with different properties de-
pending on their sources, we see no fundamental barrier between inexact informal estimates
and imprecise results of measurements. The reality is rather gradual progression from rough
estimates by eye (based on mental comparisons) to a more systematic use of benchmarks,
and then all the way to scales and other measurement devices. So, if the MoE principle
were valid for inexact human perception, it would also apply to the knowledge obtained from
imprecise measurements. The second is just a systematic elaboration of the first.

3.3 Benchmarks

The role of benchmarks is worth high-lighting, since they play an important role in many
natural forms of perception. We show this in some variations on the earlier scenario of Mr
Magoo seeing a tree, but other cases would do just as well: our points are general, and not
exclusively addressed to the dialectics of the earlier epistemological argument.

Example 1, revisited. Suppose the tree is indeed 666 inches tall. Does Mr Magoo know
that it is not 639 inches tall, as claimed in our ‘best observation’ analysis? This depends
on what heights are available to him as benchmarks. Suppose he also sees another tree, 639
inches tall. He perceptually compares the two, and as the difference is larger than his margin
of error, he can distinguish them. Alternatively, there is no other tree around, but Mr Magoo
has a clear and distinct memory of a past tree seen from the same distance, which was in
fact 639 inches tall. The memory is so vivid that he can easily compare the two perceptions
mentally, tell them apart, and conclude that the observed tree is not 639 inches tall.

6In [31], such scenarios are described using ‘variable margin frames’. Then P is known in w iff there
exists some δ > 0 such that P is true in all worlds within a ε+ δ distance from w. In such a model, a margin
ε wide is just not enough to ensure the ‘safety’ needed for knowledge, but anything wider will do. So there
is no notion of ‘best observation’, but only better and better observations with smaller and smaller δ’s.

7Let δ > 0 be any desired degree of accuracy. In the continuous case, there is an observation accurate
enough to narrow down to an interval of radius ε + δ. Let y be the center of this interval. Suppose the
actual world x differs from y by more than the quantity δ; then the modified MoE (together with his
knowledge of the minimal margin ε) tells him that the values x ± ε should be epistemically possible. But
(since |y − x| ≥ δ), at least one of these values x± ε falls outside the interval estimate (y − ε− δ, y + ε+ δ),
and it is thus epistemically impossible. The agent can conclude that the actual world x must be within a
distance δ from y: he has pinpointed the real value with an accuracy better than his margin of error.
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Example 1, digitalized and synchronized. Mr Magoo is given a box of 5000 photos of
trees of all heights, photographed from the same distance, and arranged in a sequence in
such a way that each successive ones differ by an inch or so, and hence they are so close
that they are perceptually indistinguishable. (Recall that his accuracy is 25 inches from this
distance, so two trees are similar if they differ by at most 25 inches.) He currently looks at
the photo of a 666-inch high tree. He then sets it side by side with another photo, far away
in the sequence, that happens to be of a tree exactly 639 inches high. He can easily tell them
apart: so now he knows that the first (666-inch tall) tree is not 639 inches tall.

It might be objected that the original scenario of seeing the tree involved no explicit
benchmarks, and was perhaps just about raw impressions or sense data. But it is hard
to understand MoE, and the successive steps in the earlier argument, without thinking of
comparisons and benchmarks. More generally, all observations tend to be structured : there
is structure in the space of values, and there is structure to basic acts of observation.

From comparisons to measurements We can now link the earlier-mentioned ‘inexact’
knowledge based on rough perceptual comparisons to exact but imprecise knowledge based
on measurements, and show how one leads to the other. In measurement, we have explicitly
given benchmarks, arranged regularly in a scale. One looks for some benchmark y such that
y is indistinguishable from the actual value x of the feature under observation. Several such
matching items y may exist, but we can assume that each observation produces at most one
salient match y. This y may be called the appearance or the apparent value of the observed
feature. After the observation, a world is epistemically possible only if the given feature in
that world is some x′ indiscernible from the apparent value y.

But perception need not be quantitative. We now turn to single or repeated observations
without numerical point or interval estimates. With such qualitative events, our analysis of
MoE becomes more simple and compelling, without depending on a ‘best estimate’ version.

3.4 Qualitative Perceptual Comparisons

No quantitative notion of distance, intervals, signals or point estimates need to be assumed in
a general account of perception. All we need is a notion of ‘closeness’ between worlds, a notion
of epistemic possibility, and acts of perceptual comparison, as the primary observational basis
for rough, inexact perceptual judgments. We develop this more general perspective in terms
of a few basic general notions, providing a concrete illustration afterwards.8

Closeness Perception takes place in spaces with a natural binary relation ≈ of similarity
(or ‘closeness’) between possible worlds, or values of an observed feature. So far, these values
were real numbers or objects in some other metric space, where x ≈ y was given by |x−y| ≤ ε
(or maybe |x−y| < ε), for some margin ε > 0. But we can be more general: any reflexive and
symmetric relation ≈ will do. We think of this similarity relation as a qualitative measure
of how ‘close’ two worlds (or values) are to each other, in some objective sense.

8The numbers in the qualitative examples to come are essentially just names of possible worlds.
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Knowledge and epistemic possibility We also assume a notion of factual perceptual
knowledge K. This comes with an epistemic accessibility relation ∼ (also called epistemic
possibility, or uncertainty), understood as follows: world s is epistemically accessible from
world w iff, whenever w is actually the case, the agent does not know that s is not the case.
This relation must be reflexive (by factivity), but nothing else needs to be assumed about
it, making our discussion independent from epistemic assumptions of introspection.

Known margin: ability to compare The qualitative analogue of the assumption that
the margin of error is known is that agent has the ability to compare two possible states, or
values of an observed feature, whenever these values are presented to him, and to decide if
they are “similar” or not. In other words, the similarity relation ≈ is known to the agent.

Closeness as perceptual indistinguishability In this setting, we can call two states, or
values of an observed feature, perceptually indistinguishable iff the observer has the same
subjective impression when observing w in isolation as when observing w′ in isolation, or
when the comparison set is just {w,w′}. Thus, the agent cannot tell the difference by
comparing them directly only against each other, without comparison with a third state.

If an agent’s powers of discrimination are limited, closeness implies perceptual indistin-
guishability. The converse may fail in skeptical scenarios such as Brain-in-a-Vat, or when the
actual error is much larger than the minimum margin. But our focus will be on “normal”,
non-skeptical scenarios of perception, and then the converse implication holds, too.

Does closeness imply possibility? Prima facie, it might seem reasonable to go further,
and also identify the closeness relation ≈ with the epistemic accessibility relation ∼, espe-
cially in non-skeptical scenarios of high accuracy. Or at least, one might propose a similar
implication to the one claimed just now for perceptual indistinguishability, namely:

‘if two states are close, then they are epistemically accessible from each other’.

In fact, this is precisely the semantic content of the general Margin of Error principle, in
its qualitative version – for instance, when viewed as an axiom of modal logic. But this seems
premature. As we will see, epistemic accessibility is not based only on a simple comparison
between the two states in isolation, but on a coherent set of comparisons and assessments
against the available benchmarks. Assessing whether two states w and w′ are epistemically
indistinguishable, even with exclusively perceptual knowledge, depends on the full informa-
tion state of the observer. This information state may be determined by many factors: the
nature of the current observation, memory of past observations, and the availability of other
states w′′ that play the role of yardsticks or benchmarks for the current perception.

These notions underlie qualitative scenarios without any essential use of numbers.

Example 3, Color cards. I have cards in colors c1, ..., c100, each of a shade close to the
next shade, perceptually indistinguishable: if I compare only cards cn and cn+1 side by side,
I cannot tell the difference. But I can of course tell the difference between c1 and c100. So
there is a number k ≥ 1 such that any cn is indistinguishable from cn+1, . . . , cn+k (by direct
one-by-one comparisons), but distinguishable from cn+k+1: this k is my accuracy level. Say,
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k = 4. Then I can definitely tell apart cards cn, cm when compared side by side if and only
if |m− n| > 4, while I cannot tell the difference when comparing cards with |m− n| ≤ 4.

The reader can easily use examples like this to re-check all our earlier points.

3.5 Repeated Observations

Precise knowledge from imprecise observations So far, our scenarios mostly concerned
one single observation. But the surprising fact about imprecise observations is that, when
repeated, they may well pinpoint the actual world with high accuracy. This is one more way
of seeing that closeness and epistemic uncertainty can easily come apart.

Example 1, enhanced by a third comparison. Mr Magoo looks at two successive
photos in the sequence, one of a 666-inch high tree and the other one of a 665-inch high
tree. He obviously cannot tell them apart by a direct comparison: they are so close as to be
perceptually indistinguishable. But next, he looks through the sequence of other photos, and
he stumbles upon one of a 640-inch high tree. He compares it side by side with the second
photo (of the 665-inch tree): they seem to match, the difference of 665 − 640 = 25 inches
is too small for him to tell the difference. He then compares the third photo against the
first (of the 666-inch tree): now there is a mis-match, since the difference of 666− 640 = 26
inches is large enough to be (barely) discernible. Mr Magoo has broken his own margin of
error: he now knows how to tell apart two trees differing only by one inch.

Likewise, in the qualitative scenario of the Color Cards, I can use observations up to my
accuracy level to cut down my information state to subintervals of {1, . . . , 100}.
Example 4, Repeated imprecise observations. Suppose we observe discrete values with
a margin of error of 1, and our first observation has yielded the interval {3, 4, 5}. If we now
observe a new interval, say, {2, 3, 4}, then our new information state is the intersection of
these intervals: {3, 4}. After this, it depends. If we observe, say, what appears to be 3,
then the interval for this is {2, 3, 4}, and no gain no more information than {3, 4}. But if we
observe, say, what appears to be 2, then the interval for this is {1, 2, 3}, and by intersection
with {3, 4}, we obtain {3}. We have found the actual world.

What is interesting here is that we could not improve from {3, 4} by observing one of
these two points themselves. The separation has to come by observing some value further
out. As in soccer, scores often come from the wings, not through the center.

Whether we find the actual world here depends on what observations are available. There
are interesting further issues here, if we can freely choose observations, or have another person
elicit them. Suppose our repertoire is all direct comparisons with benchmarks as discussed
before. How many imprecise observations are needed to get to the truth? This is a matter of
information theory: we have a total interval of values {0, . . . , n}, and subintervals of size k
matching the precision level of available measurements. The comparison tells us either that
the object is similar to the benchmark, in which case we are inside an interval of length k, or
that it is dissimilar, and we are in a set of size n− k. This gives our repertoire of questions
that we can ask, and now we can calculate how many questions are needed in given cases.
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Example 5, Best questions. As an illustration, suppose that we have obtained a pos-
itive match with object 4 at precision level ±2, resulting in the interval {2, 3, 4, 5, 6}. We
might now try to match with an object inside, say 5, but in the worst case, this gives a
positive match and we have 5 remaining possibilities. From an information-theoretic point
of view, it is best to choose observations that cut the current interval into roughly halves
– corresponding to the standard log2 bit measure of information content. Significantly, and
this reflects an earlier point, what we need for this optimal information flow are comparisons
with objects outside of the interval. If we compare with the outside object 7, then a positive
match will leave the subinterval {5, 6}, while a mismatch will leave {2, 3, 4}.

Precise results exist for choosing the optimal questions toward the truth for a given
interval size and observation quality, but our point here is just that imprecise observation
can lead to precise knowledge in ways that can be analyzed completely.

We end by stating some general features behind the preceding points.

Comparisons and benchmarks revisited As already mentioned, perceptual observations
are not neutral, context-free interactions. They come in a context of available benchmarks,
and given an unknown object and a benchmark, we can elicit a comparison. Suppose I observe
some feature of the world (say, the color of a card), either by direct perception or using a
measurement device. The actual value x = cn of that feature is the object of the observation.
Now, with one color or a number of colors in mind as benchmarks, I try to identify which
of these (if any) corresponds to the card. In the simplest case with only one benchmark y,
I merely check whether the actual feature is indistinguishable from the benchmark: we can
get either a positive result (a ‘match’), or a negative result (a ‘mismatch’). In the general
case, there may be more such steps before we have located the observed feature.

Information state after observation The result of a comparative observation is captured
by the agent’s information state, which is usually represented as a set of possible worlds.
In simple scenarios of perceptual knowledge, this is often just a set of possible values of the
relevant observed feature. In case of a match with benchmark y, the resulting information
state is {x′ : x′ ≈ y}: this reflects the fact that, after a positive observation, a world is
epistemically possible only if the given feature in that world is some x′ similar to y. For
instance, this set can be an open or closed interval [y − ε, y + ε], or even just a discrete set
of possible values y1, . . . , yk. In case of a mismatch, the result is negative: we learn that the
observed state x can be distinguished from y, so the information state is {x′ : x′ 6≈ y}.

Having discussed imprecise observations in a semi-formal style, in the following section,
we show how the preceding examples can be modeled in a standard formal style. This is not
a matter of pedantry: we see this formal turn as a stepping stone toward a more general
logical theory of observation and measurement. As a side benefit, it will also allow us to find
more tenable versions of MoE that survive the counter-examples in this section.
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4 Imprecise observation with known margin

The simple models that follow here were implicit in our discussion so far, but we now highlight
their formal structure. Our first analysis uses well-known semantic tools: standard epistemic
logic plus a dynamic logic PAL of public announcement or public observation [23, 12, 5, 3].
In the next section, we enrich the models to circumscribe the available observations.

Epistemic similarity models We use epistemic perceptual models, i.e. structures

M = (W,≈,∼, V ),

where W is a set of possible worlds, ≈ is a reflexive and symmetric relation of closeness (or
“similarity”), ∼ is a reflexive relation of epistemic accessibility (representing “possibility” or
“uncertainty”), and V is a valuation map, associating some set of worlds V (p) ⊆ W to each
atomic sentence p ∈ P from a given set P . Here the atomic sentences denote ontic (i.e.,
non-epistemic) facts, so the valuation gives us a description of each world’s ontic features.

In using these models, we ignore deceptive perception. This excludes Brain-in-a-Vat
scenarios, Gettier cases such as fake trees having the same appearance as a real 666-inch
tree, or extremely far-off colors outside the visible spectrum. Our emphasis in analyzing
observation is on ordinary settings where the closeness relation w ≈ w′ matches perceptual
indistinguishability of agents – defined as before: the values x, x′ of the perceived feature in
the two worlds are indistinguishable by a direct perceptual comparison of these two values, in
the absence of any third benchmark. In contrast with closeness ≈, the epistemic possibility
relation ∼ is determined by the results of prior and posterior observations.9

It is convenient to introduce a bimodal logic over these models, with two modalities:

knowledge Kϕ what is true in all epistemic alternatives
closeness Cϕ what is true in all similar states

Cϕ says that ϕ is true in all worlds that are similar to the actual world, while Kϕ says
that is true in all the worlds that are compatible with all the agent’s perceptual observations.
It is useful to also introduce the dual ‘possibilistic’ modalities: 〈C〉ϕ, defined as ¬C¬ϕ, says
that the actual world is similar to some ϕ-world; while 〈K〉ϕ, defined as ¬K¬ϕ, says that
ϕ is epistemically possible: for all the agent knows, ϕ might well be the case.

Special case: epistemic metric models A special case close to the way we have discussed
our earlier examples occurs when similarity is given in terms of closeness in a metric space.
An epistemic metric model is a structure M = (W,d,∼, V, ε), where W , ∼ and V are as
above, while d is a metric10 on W , and ε ≥ 0 is a given real number (the “accuracy level”).
This gives rise to an epistemic similarity model, by putting:

w ≈ w′ iff d(w,w′) ≤ ε.

9A more general kind of models, that we would prefer eventually since it prejudges still fewer issues, would
use three independent relations: closeness ≈, epistemic possibility ∼, and perceptual indistinguishability.

10A symmetric function d : W×W → [0,∞) s.t.: d(w,w′) = 0 iff w = w′, and d(w,w′) ≤ d(w, s)+d(s, w′).
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Mathematical digression: distances in similarity models A rough notion of distanc
d between worlds can be defined in any epistemic similarity model, by putting:

d(w,w′) := the smallest integer n s.t. there is a chain w = w0 ≈ w1 ≈ . . . wn = w′,

if such a (finite) chain exists, and otherwise:

d(w,w′) := ∞.

While d need not be a metric, it is, if infinite distances are excluded. Call an epistemic
similarity model Archimedean if d(w,w′) <∞ for all worlds w,w′ ∈ W . Thus, the transitive
closure ≈∗ of similarity is the universal relation (every two worlds are related by some finite
chain of close worlds). Although not all models are Archimedean, our intended models will
typically be so, since Euclidean space satisfies Archimedes’ Postulate that small non-zero
numbers, if repeated a large number of times, can add up to arbitrarily large quantities.

Now we return to an earlier example, and represent it formally.

Example 3, Color cards, revisited: before the observation. A model for this example
(with accuracy level k = 4) can be obtained by taking atomic sentences P = {ci : 1 ≤ i ≤ N},
where ci says that “the real color of the new card is ci ”. We can take any set W of possible
worlds, together with a valuation V : P → P(W ) that ensures that every color is in principle
possible (i.e. V (ci) 6= ∅ for all i), but that in any world the newly chosen card has a unique
actual color (i.e. ∀w ∈ W∃!ci ∈ P s.t. w ∈ V (ci)). The second assumption allows us to
denote by c(w) the color of the chosen card in world w.

For the moment, we will use systematic ambiguity to simplify the notation, by identifying
the worlds w with the corresponding colors c(w), and thus taking W = P = {ci : 1 ≤ i ≤ N}
and V (ci) = {ci}.11 We define similarity ≈ ⊆ W × W between worlds/colors, using the
assumption that the accuracy level is k = 4:

cn ≈ cm iff |n−m| ≤ 4.

Finally, before the agent looks at the new card, no observation of the real world has yet been
made, so the epistemic possibility relation is the universal relation at this stage:

c ∼ c′ holds for all c, c′ ∈ W.

MoE semantically Next, in this setting, we can determine the semantic content of the
MoE principle stated syntactically in the original formulation. It says that for any world,
any close world is epistemically possible, or more formally:

c ≈ c′ ⇒ c ∼ c′

which is easily seen to be equivalent to

c→ ¬K¬c′, for all c ≈ c′.

11We later drop this identification when keeping track of a world’s history through product update.
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This can be made precise by standard modal frame correspondence on the form of MoE, but
the equivalence should be clear by itself. In our model of the situation before the observation,
this implication holds indeed for all colors, for the trivial reason that the epistemic relation
is the universal one. However, soon we will be questioning this implication.

The current setting supports new notions beyond the ones we employed so far.

Absolute indistinguishability As we saw, perceptual indistinguishability is only relative:
one may able to tell apart similar states by observing them against a third state as a bench-
mark. But in principle, there can be states that cannot be told be apart in this way. The
relation of absolute indistinguishability can be defined by putting, for all worlds x, y ∈ W :

x ∼= y iff ∀z ∈ W (x ≈ z ↔ y ≈ z).

In all our examples so far, this relation ∼= is trivial: only identical states were absolutely
indistinguishable, as is the case in all metric models based on Euclidean spaces Rn. But there
exist epistemic similarity models with distinct states that are absolutely indistinguishable.

Unlike the dubious semantic condition x ≈ y → x ∼ y underling the MoE principle, its
analogue in terms of our new absolute indistinguishability is a natural requirement (though
not one that is valid in all models): it is consistent to add the semantic condition

x ∼= y → x ∼ y

to our definition of similarity models, without trivializing knowledge.

Next we turn from the statics to the dynamics of observation.

Events with preconditions When perceptual events take place, the epistemic models must
be updated to represent the new state of information, in line with the standard semantic view
of information growth. So, we must identify the relevant perceptual events of observation
for our scenario. To keep things concrete, we continue with our cards example.

As a first stab, we choose to model acts of observing the new card by comparing its color
with some randomly chosen card from the deck. There are two possibilities: either we find a
match (i.e., we cannot tell the difference between the two), or a mismatch (we can definitely
tell them apart). These correspond to two different observing events:

positive result See : i the observed color matches ci
negative result See− : i the observed color is distinguishable from ci

We can model these observational events in PAL style as updates (also called “public
announcements”, though there is nothing ‘public’ to their use here.) Furthermore, these are
not updates !ci, !(¬ci) involving just the real values, as one might think at first sight: we
need to incorporate the margin for error. So the precondition of See : i is actually

pre(See : i) = 〈C〉ci =
∨
{c ∈ W : c ≈ ci} = ci−4 ∨ ci−3 ∨ . . . ci ∨ . . . ci+4,
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and similarly, the precondition for mismatches runs like this:

pre(See− : i) = C¬ci =
∨
{c ∈ W : c 6≈ ci} = c0 ∨ . . . ci−5 ∨ ci+5 ∨ . . . .

In terms of the formal language that we introduced, we thus identify the event See : i with
an update !〈C〉ci, and the event See− : i with an update !C¬ci.
Updating models by observation To represent the updates induced by observations, we
choose a link-cutting approach (rather than the more common worlds-deletion of PAL), since
it is convenient to keep around worlds even after they become epistemically impossible from
the perspective of the actual world.12 A link-cutting update !ϕ changes a current model
M simply by disconnecting all epistemic accessibility relations between ϕ-worlds and non-
ϕ-worlds. If ≡ϕ

M stands for “agreement on the truth-value of ϕ in M”, then in the updated
M|ϕ, everything stays the same except for the new epistemic accessibility relation:

c ∼ϕ c′ iff c ∼ c′ and c ≡ϕ
M c′

Remark Note that, in this sense, the updated model M|See : i is exactly the same as the
updated model M|See− : i, we just disconnect all the epistemic relations between worlds
c ≈ ci and worlds c 6≈ ci. So in a sense, the two events are ‘update-equivalent’. The only
difference comes from which of the two zones contains the real world. But informationally
speaking, as in our earlier discussion of repeated observations, this makes a big difference:
See : i narrows down the epistemic range (of worlds accessible from the actual one) to no more
than 9 possible worlds. In contrast, See− : i leaves open no less than 100-9=81 epistemic
possibilities! This reflects the fact that See : i is a maximally accurate observation: its error
margin is as small as the agent’s inherent level of perceptual acuity (hence, the apparent
value ci is really a best guess), while a negative observation See− : i is less informative.

What becomes of the original problem This semantic modeling makes our analysis in
Section 2 precise. We can check concretely what is true and false about relevant epistemic
assertions, contrasting the initial model with the new models that result after having made
successive observations. Since we tend to start with the universal epistemic relation, all
subsequent updated epistemic accessibility relations will be equivalence relations in S5-style:
so not only the KK principle of Positive Introspection is true throughout, but all the laws of
the modal logic S5, including even Negative Introspection. However, this is not an inevitable
consequence. For instance, if we start with a transitive non-symmetric relation ∼, we will
only get the modal logic S4. Since we have no strong opinion on this issue, the only constraint
imposed on our epistemic relation ∼ in our epistemic similarity models is reflexivity.

Finally, returning to the original issue at the start of this paper, after any single obser-
vation of the form See : i or See− : i, some instances of the Margin-of-Error principle MoE
will fail in some worlds. For example, after See− : 1, K¬c5 → ¬c6 is false at world c6, since
c5 has been eliminated although it is perceptually similar to c6. This can be seen even more

12This feature allows us to reason counterfactually about the perceptual similarities between colors that
have been eliminated, as distinguished from the new card.
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easily for the above semantic version of MoE: any observation disconnects some epistemic
links between some perceptually indistinguishable states. So, MoE is not a generally valid
principle for perception, and imperfect observation is perfectly compatible with assuming
epistemic introspection, or even stronger principles such as the negative introspection of S5.

5 Richer modeling: observational event models

Until now, observational events were introduced in an ‘external’ manner, so to speak, in the
form of specific updates and their corresponding dynamic modalities. But we may want to be
more explicit about the agent’s ‘potential knowledge’: that is, the total set of observations
which are actually available to her. We can do this by specifying an ‘event model’, in a
style that is by now standard in Dynamic Epistemic Logic [2, 12, 5, 3]. This allows us to
generalize, or when needed, to restrict the framework introduced in the previous section, and
to highlight additional features of perceptual observation.

Event models In addition to the static model M, we are now given an event model E =
(E, pre), consisting of a set E of observational events, together with a precondition map that
associates to each event e ∈ E some sentence pre(e), describing the condition of possibility of
the corresponding event: the observation e can happen in a world w ∈ W iff the precondition
pree is true in that world. In standard Dynamic Epistemic Logic, event models come with
epistemic possibility relations on events in E, similar to the epistemic relations on states in
M. But in our single-agent, ‘hard information’ framework, this is not necessary: we assume
that the observing agent knows what observation is performing. So our dynamic semantics
is an obvious generalization of the one in the previous section: any event e ∈ E will be
treated as an update !pre(e), that cuts all epistemic links between worlds which satisfy the
precondition pre(e) and worlds which do not satisfy it. Hence, in this simple single-agent
setting, pre(e) captures the information carried by observation e.13

Fewer benchmarks: restricting the event model In terms of observational event mod-
els, earlier informal points can now be made precise. For instance, in our Example 2 of
the color cards, the event model will consist of all possible updates of the form See : i and
See− : i. This incorporates the assumption underlying the card scenario that all the cards
in the deck are available as benchmarks. If instead one has fewer available benchmarks (as
in our other examples), the available observation events are fewer, and the agent’s potential
knowledge is more limited. We can formalize this by restricting the event model E, to allow
only some of the events See : i, See− : i: that is, only some ci are available as benchmarks.

More general comparison events Our observational events so far cover only two extreme
cases: See : i are the most accurate observations, in which the error matches the agent’s
inherent accuracy level, while See− : i are the most inaccurate ones (except for no-observation
actions skip). But we can also model observations that are less accurate than the inherent

13If we want to insist that these observations are external perceptions (that observe external ontic features
of the world, rather than self-perception by introspective acts), then we may restrict the preconditions pre(e)
to non-epistemic formulas (which do not contain knowledge operators K).
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accuracy, still centered at some apparent value i. For any integer n ≥ 1, we can have
an update Seen : i with pre(Seen : i) = 〈C〉nci =

∨
{c ∈ W : d(c, ci) ≤ n} the closed

ball or interval of radius n centered at i. The negative observation See−n : i is defined
likewise. In event models E such observations generalize the metric view of measurement
results as closed or open intervals [y − ε, y + ε]. Another option are relative comparison
events not centered at a point estimate, say, acts See :<i j of seeing that the observed
value is closer to a given benchmark i than is another benchmark j. The precondition is
pre(See :<i j) =

∨
{c ∈ W : d(c, ci) < d(cj, ci)}. This can represent perceptions like those

suggested in [33], e.g. “I know by eye that the building opposite is less than 200 feet high
without estimating its height” becomes See :<0 200.

Indistinguishability with respect to a set of observations Any set F ⊆ E of obser-
vations (where E is the set of all observational events of our fixed event model E) can be
thought of as a generalization of the notion of ‘scale’ (or set of benchmarks): it specifies
an “observational context”, in which the available observations are restricted to the events
in E. With each such context F , comes a notion of observational indistinguishability ∼=F ,
defined as inseparability of the two states by observations in F :

x ∼=F y iff ∀e ∈ F (x ∈ pre(e)↔ y ∈ pre(e)).

A dynamic-epistemic take on absolute and relative indistinguishability We can
now understand perceptual indistinguishability ≈ as a dynamic-epistemic notion, namely, a
kind of observational indistinguishability against a variable context (given by observing either
or both of the two states, but no others). More precisely, two states x, y are perceptually
indistinguishable iff the agent might make observation See : x in the state y (and vice-versa):

x ≈ y iff x ∼={See:x,See:y} y.

Similarly, absolute indistinguishability ∼= can be understood as observational indistinguisha-
bility ∼=See(W ) wrt the set See(W ) = {See : x|x ∈ W} of all possible observations against all
possible benchmarks. In this way, we find that absolute indistinguishability, that we intro-
duced as a static notion, also functions as a dynamic-epistemic notion: it sets the absolute
limits of what can be in principle discerned by perceptual observations.

A natural next theme is logical calculi for reasoning about the preceding models, and
what further insight these offer. So far, we had an epistemic similarity logic with a knowledge
modality K and a similarity modality C. In the following section, we go further.

6 Reasoning with knowledge and similarity

In this section, we explore some uses and properties of logics over our epistemic similarity
models. These logics have a double function. They allow us to explore what is valuable about
Margin of Error intuitions and our earlier special scenarios, but they also yield a platform
for linking up with other mathematical accounts of observation and measurement.
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6.1 Logics of imprecise observations

There are various logical languages for reasoning about knowledge, similarity and observa-
tions. For the basic language introduced above, a complete axiomatization is easily available.

A complete logic The complete dynamic-epistemic over arbitrary epistemic similarity mod-
els and arbitrary event models consists of the following:

• the axioms and rules of the standard KT proof system for the epistemic modality K,
saying that knowledge is closed under logical consequence, all validities are themselves
known, and knowledge is factive,

• the axioms and rules of the standard KTB proof system for the closeness modality C,
reflecting the fact that perceptual similarity is reflexive and symmetric,

• with atoms14 of the form ci (for various values of a given variable, e.g. ‘color’, ‘weight’,
etc), and a conventional accuracy level k = 1, we also have special axioms

ci → 〈C〉cj, for |i− j| ≤ 1,

and this generalizes straightforwardly to other atoms and accuracy levels,

• all standard instances of the usual recursion axioms of link-cutting public announce-
ment for all observational events e ∈ E, treated as updates !pre(e).

Of course, since we have shown that both Positive and Negative Introspection principles
are consistent with this setting, one can restrict our class of models to the ones in which ∼
is transitive, or even an equivalence relation, depending on one’s philosophical preferences,
and then get richer axioms for knowledge (e.g., the modal systems S4 or S5).

Enriched epistemic similarity logics We can also extend the modal C,K language to
reflect further constraints on models. For instance, the preceding logic has no meaningful
interaction between C and K: Kϕ does not imply Cϕ or vice versa, as we rejected both
implications in our analysis of observation. However, if our models are Archimedian in the
sense discussed above, this does impose a connection between the relations ≈ and ∼: namely,
that ∼ must be included in the transitive closure ≈∗. To capture this, we enrich the earlier
syntax with iteration C∗ϕ (the modality for the transitive closure of ≈), in which case the
Archimedian condition gives us the following validity in the logic:

C∗ϕ→ Kϕ.

It is also natural to add to the syntax dynamic modalities [See : i]ϕ, [See− : i]ϕ for our basic
positive/negative observations, or more generally formulas [e]ϕ, for observational events
e ∈ E, saying that “after observation e, the statement ϕ will be true”. The dual possibilistic

14In terms of modal syntax, the variables ci, cj , x, y serve as so-called “nominals” here.
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modality 〈e〉ϕ, defined as ¬[e]¬ϕ, then says that “it is possible to perform observation e in
the current state, in such a way that afterwards, ϕ becomes true”.15

Using dynamic modalities, our dynamic-epistemic take on perceptual indiscernability can
now be reflected in the valid equivalences

〈C〉ci ↔ 〈See : i〉true, C¬i↔ 〈See− : i〉true↔ [See : i]false,

which show that the static closeness modalities can be given a dynamic definition.

6.2 Principles of observation: Margin of Error reconsidered

Next, we use our logical framework to investigate whether we can make sense of the prima
facie appeal of the Margin of Error principle that makes the initial puzzle of the Epistemic
Sorites so intriguing. There are several ways of doing this, and we present a few. However,
our main intention here is not ‘looking back’. An equally informative way of reading the
remainder of this Section is as a further exploration of the logic of observation.

First, we look at some validities in our extended language that combine operators K and
C with the observational modalities [See : y]ϕ, [See−y]ϕ.

A provable weak version of K-MoE For start, here is a weak version of K-MoE, which
is a trivial consequence of the assumptions behind this setting:

I know that, if two colors cn and cm are perceptually distinguishable, then they
cannot be immediate successors in the sequence; i.e., there exists an intermediary
color ck, with k between n and m, distinct from both of them). Formally:

K(cn 6≈ cm ⇒ n 6= m+ 1) holds for all n,m.

This is just a statement about colors in general, but using the closeness modality C, we
can restate it as a statement about the (real color in the) actual world:

K(C¬cm ⇒ ¬cm+1) holds for all m. (!K-MoE)

This says that I know that, if I could perceptually distinguish (by direct comparison) the
color of the actual card from cm, then that color is not cm+1.

Contrast this with the original principle

K(K¬cm ⇒ ¬cm+1) holds for all m. (K-MoE)

It is easy to see that our weak version !K-MoE is provable in the above-mentioned
axiomatic system. But, to go from !K-MoE to K-MoE, we need the additional assumption

Kφ⇒ Cφ

15In particular, 〈e〉> means that “observation e can be performed” in the actual state (thereby being
equivalent to the sentence pre(e)), while [e]⊥ means that e cannot be performed.
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which in semantical terms corresponds to the condition that

w ≈ w′ ⇒ w ∼ w′ holds for all w,w′ ∈ W.

We already identified this in Section 2 as an unwarranted assumption underlying the failure
of MoE and K-MoE. Our present logical analysis confirms this diagnosis, while adding the
valid principle !K-MoE that may provide a partial explanation for the appeal of K-MoE.

Precision limits of single observations Here is another legitimate role for MoE-type
intuitions in our setting. Given our findings so far, their full impact cannot be directly on
the truth of static epistemic assertions, but it can well be in the dynamics : namely, on the
quality of available single observations. We could put this informally as follows:

MoE as minimal threshold. The accuracy of an observation should not be better
than the perceptual distance between adjacent points.

This seems quite plausible. In line with our discussion in Section 2, we phrase this as:

If a single (positive) observation results in an apparent value y, and if before the
observation there was an epistemic possibility x similar to y, then x is still an
epistemic possibility after the observation.

This feature of imprecise observations can be formalized using event modalities as

〈K〉x→ [See : y]〈K〉x, for all x ≈ y.

Using the closeness modality C and its possibilistic dual 〈C〉, this can be rendered as

〈K〉(x ∧ 〈C〉y)→ [See : y]〈K〉x,

or equivalently
〈See : y〉K¬x→ K(x→ C¬y).

This validity can in fact be proved syntactically in our dynamic-epistemic axiom system,
by making essential use of the recursion axioms for events See : y with their preconditions.

Uniform precision limits on observations Intuitively, the minimal threshold restriction
does not apply only to events See : y, but to all perceptions of a given agent. This would
give us a MoE-type restriction on event models E, namely that no single observation in
E can be more accurate than an observation of the form See : y. Formally, this requires
that all preconditions pre(e) of events e ∈ E satisfy: for every x ∈ pre(e), there exists some
y ∈ pre(e) with x ∈ {z : z ≈ y} ⊆ pre(e). This corresponds to the validity of

pre(e)→ 〈C〉Cpre(e).

This statement is not valid for all event models, but it can be a reasonable constraint
on “perceptually feasible” event models. Unlike MoE, this is not an explicitly epistemic
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assertion, but it has epistemic consequences. For instance, it follows from it that absolutely
indistinguishable states cannot be distinguished by observations :

x ∼= y → x ∼=E y.

Observational precision as a limit to knowledge However, the above dynamic formu-
lations only limit the potential increase of knowledge in the future. None of them binds
current knowledge: it is consistent to assume some a priori knowledge of distinctions that
go beyond observational indistinguishability. But it would be natural to constrain perceptual
knowledge within the limits of observability. The relevant condition is:

x ∼=E y → x ∼ y,

saying that states that are observationally indistinguishable by all observations are also
epistemically indistinguishable. If we combine this with the above dynamic variant of MoE
in terms of the “uniform precision” restriction on E, we obtain the implication

x ∼= y → x ∼ y,

saying that absolutely indiscernible states are epistemically indistinguishable. This is very
close to MoE, resembling the invalid implication x ≈ y → x ∼ y.

There are yet further valid ways of analyzing perceptual events in which intuitions of the
MoE variety play a role, but we defer these to an extended version of this paper.16

7 Comparison with Other Work

There is a large body of literature dealing with the Margin of Error argument, and an even
larger body dealing with related paradoxes involving vagueness ([11] is a good overview).
But we discuss here only the work that is closest to our setting.

Williamson [30] was the first to suggest modeling vagueness using a modal operator C
for clarity : this is the special case of our closeness operator C in the case of metric spaces.
Williamson also showed that the modal logic KTB is sound and complete for this semantics.
But he studied it in isolation, without pairing it with a separate epistemic operator – while
later on, in his definitive presentation of the Margin of Error principle [32], he reuses the
semantics of the clarity operator to model perceptual knowledge K.

Egré [14] and Arnesen [1] distinguish between perceptual indiscernibility and epistemic
uncertainty, introducing two operators similar to our modalities for closeness C and knowl-
edge K, and discussing variants of MoE in this setting. But they do not make a systematic
use of this distinction, nor argue for it using observational dynamics.

16For instance, consider the ‘robustness’ or ‘safety’ of knowledge some authors read in MoE. At first
sight, this may seem to correspond to the bridge law Kϕ→ CKϕ: ‘if we know something, we also know it
in the perceptual neighborhood of the current world’. But this fails in our models, as it implies the invalid
Kϕ→ Cϕ. There is indeed a sense in which knowledge is safe in our setting, but it is a different one.
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Bonnay and Egré [9] were the first to use a dynamic-epistemic logic to deal with the
Margin of Error argument. Their solution uses an elaboration of the bidimensional ‘centered
semantics’ introduced in [8]. This builds Introspection into the model, by keeping track of the
actual world, as distinct from the world of evaluation, and interpreting K operators by always
looking at the neighbors of the actual world (even with nested K’s), instead of neighbors
of the world of evaluation. This blocks the propagation of error inherent in Williamson’s
semantics for nested knowledge, and ensures the models are (positively and negatively)
introspective. In contrast, our semantics, though compatible with Introspection, is not
committed to it. Moreover, the two approaches are conceptually very different. Centered
semantics captures the idea that higher-level knowledge obeys different laws than those
governing perceptual knowledge. Bonnay and Egré argue that reflective knowledge is not
subject to the MoE principle – so that the KK Principle cannot be refuted in this way. But
they do seem to concede that MoE may be valid for perceptual knowledge. In subsequent
work [15], these authors combine epistemic logic with probabilities to analyze MoE.

As we stated at the outset, our objection against MoE was raised previously in different
forms by Mott [21], Halpern [17] and Spector [26], following insights by Bennet [4]. They
also analyzed the results of observations as intervals centered at the apparent value (cf.
Mott’s ‘point estimate’, Halpern’s ‘subjective estimate’, Spector’s ‘signal’).17 Their formal
solutions are different though. Mott’s analysis is mostly syntactic and semi-formal, without
a formal semantics. Halpern, following the ‘runs and systems’ approach from [16], uses a
bidimensional semantics, representing a world as a pair (s, I), where s is the ontic state (com-
prising the non-epistemic features of the world), and I is an information state (representing
the agent’s local state, that comprises all his information).18 He concludes that percep-
tual indistinguishability is transitive after all, against common-sense intuitions.19 Spector’s
formalism is somewhat related: starting from Halpern’s bidimensional semantics, he builts
a one-dimensional semantics (with worlds identified with ontic states, as in Williamson’s
model) for notions of ‘necessary knowledge’ (defined by quantifying universally over infor-
mation states) and ‘possible knowledge’ (which quantifies existentially).

It would be interesting to make a detailed comparison of our framework with those
of Halpern, Spector, and Bonnay & Egré. For now, we note that, in contrast to their
bidimensional approaches (with ‘thick’ worlds having inner structure), we model knowledge
and similarity in a standard Kripke semantics with ‘thin’ worlds identified with ontic states.
This is despite the fact that we agree with these authors’ analysis of perceptual knowledge

17Mott also raises another interesting type of objection to MoE, based on the propagation of imprecision
to knowledge about others and common knowledge.

18In our case, we could identify the information state I with the precondition of the corresponding obser-
vation event e, i.e. the range of ontic states consistent with this observation. This resembles the ‘Subset
Space Semantics’ of [20], especially in its specialization to an elegant ‘topo-logic’, where evidence sets in O
form a topology. This generalize our earlier use of intervals and balls.

19It seems to us that this conclusion is due to the lack of dynamics, or some other context-shifting device,
to capture the indexical nature of similarity. In our terms, Halpern’s point is that, if one fixes the context
(the current set of observations in our formalism), the observational indistinguishability relation is transitive.
But, as we saw, the intuitive notion of perceptual indistinguishability ≈ is an indexical observational relation
against a variable context (given by observing either or both of the two states, but no others).
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as being not fully determined by the ontic features of the world, but needing an additional
parameter: the perceived ‘signal’, or apparent value. But thick worlds, though interesting in
themselves, are not necessary for capturing this. Kripke semantics can already do it, via its
relational structure. Indeed, Williamson’s line of recovering epistemic relations from ontic
states is unusual in modal logic. The standard approach takes the relations as primitives that
cannot be reduced to or recovered from the states. As such, uncertainty relations can directly
store an agent’s information. So it is not surprising that in our dynamics new observations
only affect the epistemic relations, but leave unchanged the ontic states.

Finally, to us, the dynamic viewpoint on observation is the crux of the matter. Being
able to understand perceptual indiscernibility and epistemic uncertainty in dynamic terms,
as instances of observational indistinguishability, throws new light on these concepts. It
also allows us to rethink Margin-of-Error intuitions in terms of dynamic-epistemic principles
limiting perceptual observations. Unlike the above authors, we supplemented the critique
of MoE with positive proposals for substitute principles. These reformulations are for us a
small step towards a better understanding of the logic of inexact observations.

For this dynamic perspective, the relevant work that should be high-lighted is Cohen’s
[10], which proposes, like us, a dynamic-epistemic analysis of Williamson’s Margin of Error
argument that puts observational events at center place. Moreover, this analysis carefully
distinguishes between closeness and epistemic possibility, just as we have done. However,
whereas we have used only standard update mechanisms, this work claims that the semantics
of inexact observation requires introducing new forms of dynamic-epistemic update. More-
over, its analysis of tenable forms of MoE seems quite different from ours, based on intuitions
about ‘boosting’ which lead to new dynamic-epistemic principles of reasoning with interest-
ing epistemological content. Again, a further detailed comparison is needed before we can
assess the similarities and differences with our dynamic-epistemic approach more clearly.

8 Conclusions and further directions

We have given some simple, though hopefully illuminating, logical accounts of the functioning
of imprecise perception. In doing so, we hope to have dispelled some conceptual confusions,
and introduced useful distinctions. But we were not after discussing just one philosophical
puzzle, or in dissecting putative philosophical intuitions in a protracted debate. Rather, our
goal was understanding how imprecise observation works.

Imprecision is ubiquitous in observation, but even so, it can lead to precision. All of
science depends on inexact measurements, but in the long run, repeated observations against
different background contexts can lead to greater precision and more knowledge. As we
saw, the inherent margin of error of a given perceptual ability or measurement device is
not by itself an absolute barrier; the observational context, given by the set of available
benchmarks, plays an equally important role, and may allow us to indirectly tell apart
perceptually indistinguishable states. Our dynamic epistemic framework throws a new light
on the limits of perception, by allowing us to separate various types of (in)discernibility.

22



We end by sketching a few directions for further research based on what we presented.

Counterfactual knowledge: keeping track of the history Link-cutting semantics made
observations precise, but it did not keep track of the observational history of a world. Related
to that, in the updated models, worlds that are no longer epistemically possible (from the
standpoint of the actual world after an observation) could be compared as to perceptual
similarity, but they were all declared to be epistemically equivalent. This is because we did
not keep track of the alternative observations that might have been made at those words.
To address this, we can set up things in a more discerning style, by adopting the so-called
product update semantics, again a standard tool in Dynamic Epistemic Logic [2, 12]. Given
any initial state model (M) and any event model E, the updated model is now represents
as a product model MxE, with pair-worlds (w, e) which track the history: w is the old state
of world, and e is the intervening observational event.20 Only pairs (w, e) in which the old
state w satisfies the precondition of event e are allowed, since only they represent consistent
observational histories. For instance (c20, See : 16) is a consistent pair, while (c1, See : 16) is
not a consistent such pair (given the accuracy level k = 4). Since we assumed the observing
agent knows the result of his own observation, the new epistemic relation is given by:

(w, e) ∼ (s, f) iff both w ∼ s and e = f.

In such a product model, we can reason about what the agent would know if the state of the
world was different (and different observations were made).21

Knowability In the setting of event models E with many potential events, it is also nat-
ural to add an “arbitrary observation modality” quantifying over all possible sequences of
observations of the actual state. Roughly put, 2ϕ is equivalent to ∀e ∈ E : [e]ϕ.22 Its
possibilistic dual 3ϕ := ¬2¬ϕ, is equivalent to ∃e ∈ E : 〈e〉ϕ. The combination 3Kϕ
expresses “knowability” by observations: ϕ may come to be known after more observations.
Using this, we can formally check our earlier assertions about identifying the actual world
from suitable consecutive observations. For instance, in the full DEL model of Example 2,
where all colored cards are available as benchmarks (i.e. (See : i) ∈ E for all i), we have
cj → 3Kcj, expressing that the agent can eventually identify the color of the new card,
despite his inability to tell apart adjacent colors by a direct comparison.

Plausibility and belief Observations often come with an indication of the trust we place
in them. This trust can have to do with what we take to be the reliability of the source:
our eyes, glasses, other devices. In this setting, successive observations construct richer
epistemic plausibility models that support not just knowledge, but also belief as truth in all

20In a product model, possible worlds have a richer structure: we can no longer identify a world w with
its corresponding ontic features, e.g. the color c(w) of the chosen card. This is similar to bidimensional
semantics, except that the second component encodes the intervening events, not the information state.

21Note that the answer to this question is not uniquely determined by that initial different state of the
world, but it also crucially depends on the intervening event.

22In the Subset Space Semantics approach mentioned in the previous section, this operator corresponds
to the “effort modality” 2, quantifying over the agent’s potential future information states. It should also
be noted that modalities quantifying over events are used essentially in Cohen’s analysis of MoE in [10].
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most plausible worlds – and various update mechanisms are known, cf. [7, 3]. Still, our earlier
distinctions apply. Greater plausibility, too, is an epistemic-doxastic notion that is not at
all the same as greater perceptual prominence. Instead of updates, observations now trigger
doxastic upgrades that change the plausibility on worlds in the view of the new information.
For single observations, there is a natural MoE-style choice: make states that are closer to
the apparent value resulting from the observation to be more plausible than farther worlds,
while excluding as before the ones that are ‘too far’, i.e., perceptually distinguishable from
the apparent value. This will come with a natural notion of belief, according to which the
agent believes (without knowing) that the apparent value is the true object-value. This is
the plausibilistic analogue of a probabilistic “normal distribution” assumption.23 It is not
clear how to generalize this to repeated observations: some more structure might be needed,
so that one could perform some form of averaging over observational results.

Fuzzy boundaries in perception Events so far had sharp boundaries, observed intervals
had precise edges. One might also think, more in line with the literature on vagueness, that an
observation itself has fuzzy boundaries. Consider intervals [x−1, x+1] of length 2 as before,
but now assume that x itself is definitely in as an epistemic possibility, everything outside
of the interval is definitely out, but the boundary points x− 1 and x+ 1 are indeterminate.
This three-valued setting is attractive as it can refine our view of MoE. We might read it as
saying that there should never be abrupt transitions in a model from being ’in’ for one world
to being ‘out’ for an immediately adjacent world. This might be more compatible with our
preceding analysis than the original formulation of MoE. Moreover, technically, it is quite
feasible to combine our earlier updates with a three-valued epistemic logic, cf. [18], [27].24

Unknown margin What if the degree of precision of a perception is not known to the
agent? This higher-order uncertainty can make scenarios hard to fathom. Say, the agent is
unsure whether a measuring device has precision [i− 1, i+ 1] as in the above, or [i− 2, i+ 2],
but it must be one of the two. At first sight, a dynamic-epistemic approach can still model
this using uncertainty relations on events, but the details need to be worked out.

Non-factive evidence Finally, what if agents just make successive observations with no
level of precision specified at all, indeed possibly containing actual errors (i.e. wrong results,
rather than imprecise ones)? Then we may have to shift to the abstract evidence dynamics
of [6]. In its simplest version, observations give subsets of the domain of worlds, viewed
as pieces of evidence. Using this accumulated evidence, belief formation becomes the main
epistemic process for perceptual agents, not acquisition of knowledge.25 A study of imprecise
perception and measurement in this evidence setting remains to be undertaken.

23Of course, instead of plausibility, one could also work from the start with a subjective probability distri-
bution over worlds, and use a probabilistic update rule to model new expectations induced by observations.
The normal distribution is only one possible choice, but it is not generally warranted.

24However, it is not immediately clear how we should interpret the third indeterminate truth value. If it
is epistemic, it seems to involve a potential object-meta level confusion: we are modeling uncertainty with
formal means, but now we say that we are uncertain about the precise extension of the uncertainty relation
∼. And if indeterminacy is something else, then what is it?

25In this setting, not all observations need to be reliable, that is, the associated evidence set need not
contain the actual world. This is clear for instance, if we allow conflicting disjoint evidence sets.
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Dynamic logic of observation and measurement theory A more ambitious next task
is linking up between the logics of observation proposed here and Measurement Theory, the
best available mathematical account of error and imprecise observation. Such a linkage raises
non-trivial questions of how to deal with statistical averaging and other typical quantitative
devices in measurement that have no direct qualitative logical counterpart. This junction is
indeed our eventual goal, but we leave a serious attempt to future work.
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