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1 Introduction: quantifiers and neighborhoods

Hajnal Andréka and Istvan Németi have long been leaders in the algebraic study
of the foundations of logic. In particular, the high abstraction levels provided
by their expertise in algebra, with a judicious influx of model-theoretic ideas
from modal logic, have led to new perspectives on well-established core systems
of the field such as first-order predicate logic. A case in point are the decidable
guarded fragment and the generalized first-order semantics found in Andréka
et al. (1998). In a recent paper Andréka et al. (2017), triggered by work of Aldo
Antonelli on weak first-order logics, this abstraction was taken one step further,
viewing existential and universal quantifiers as arbitrary generalized quantifiers
that can be parametrized to objects or tuples of objects in a model.

The authors of the latter paper suggest that this generalized quantifier per-
spective can be fruitfully compared to neighborhood semantics in modal logic,
a generalization of the standard modal semantics with accessibility relations
Rst between points, that is finding ever more uses. A neighborhood model is a
structure M = (W, N, V') with W a non-empty set of worlds, V' a valuation map-
ping proposition letters to subsets of W, while the neighborhood relation NsX
is a binary point-to-set relation connecting each point s to its neighborhoods
X. Thus, a neighborhood relation is exactly the same as a point-parametrized
unary generalized quantifier, in a precise sense to be explained below.

In this small piece, we explore this suggested analogy a little bit further
by comparing three topics at the interface of generalized quantifier theory in
linguistics and modal neighborhood logic. The attraction in pursuing this in-
terface is not just technical, but also involves a meeting of different cultures.
Intuitions about modal logic are often epistemic, temporal, or computational
(van Benthem and Blackburn, 2007), whereas many of the intuitions underly-
ing generalized quantifier theory involve connections with appealing empirical
observations about natural language (Peters and Westerstahl, 2006).



Incidentally, the above structural connection can be viewed in two ways. As
described so far, a neighborhood frame (W, N) has the type

{e, ((e,t), 1)

where e is the type of entities, ¢ of truth values, and (a,b) of all functions
from a-type entities to b-type ones. That is, N is a relation between entities
and sets of entities, or, equivalently, a function from entities to sets of sets of
entities (its family of ‘neighborhoods’). Next, a unary generalized quantifier on
a domain W is simply a sets of subsets of W. Thus, it is exactly what we
will call a uniform neighborhood frame, meaning that N is a constant function.
Ordinary neighborhood frames are then point-parameterized unary generalized
quantifiers.! Now, this type is isomorphic to another, viz.:

{{e;1), (e, 1))

This shift to a new, though equivalent, type makes our quantifiers (point-
parameterized or not) into functions on the power set of the domain of primitive
entities: shifting (W, N) to (W, F'), where

F(X)={seW:Ns, X}

Taking this functional setting would bring our study closer to algebraic seman-
tics for modal logics, involving a Boolean algebra with additional operators
about which less or more can be assumed (monotonicity, intersection closure,
and other special properties are well-known extras that will return later on in
this article), cf. Blackburn et al. (2001); Venema (2006) for details and refer-
ences on modal algebra. We will shift to the functional perspective occasionally
in what follows, but the relational one will be our main vehicle.

The three topics that we will highlight in this paper concern basic features
of the two realms to be connected. The first topic is the well-known locality of
modal logics, where evaluation takes place in a local environment of the current
point, viewed in tandem with the equally well-known conservativity of quanti-
fiers in natural language, that come with restrictions to relevant subdomains of
a whole model. The second topic is the role of fundamental invariance relations
in both fields that constrain permissible denotations: notions of bisimulation
in modal logic, and of permutation or isomorphism invariance for quantifiers.
Our third topic concerns the core business of much of modal logic: finding new
complete axiomatic systems for specific generalized quantifiers, now taking in-
spiration from generalized quantifier theory. In each case, we show how to make
the comparison, point out which analogies are fruitful and which ones less so,
we state a number of new observations, referring to current literature for deeper
developments, and we end with an assessment and further ways to go.

L Admittedly, point-parameterized generalized quantifiers have not been studied much in
the GQ literature, and in this paper we mostly restrict attention to standard generalized
quantifiers, i.e. to uniform neighborhood frames.

2This equivalence can be derived formally in categorical logics such as the Lambek Calculus.



In all of this, our main emphasis is on raising new kinds of questions, though
we back them up by some new observations throughout.

We assume that the reader knows the basics of both fields to be connected.
For a survey of generalized quantifier theory in logic and linguistics, we refer
to Peters and Westerstahl (2006), and for an up-to-date introduction to modal
neighborhood semantics, to the recent textbook Pacuit (2017).

2 Locality and conservativity

We start by recalling a few basic notions. The language of modal propositional
logic has formulas constructed using proposition letters, Boolean connectives,
and modal operators O,<. In relational models M = (W, R,V), a formula
Oy is true at point s (written M, s |= ) if ¢ is true at all ¢ with Rst — and
O is the existential dual. The same modal language can also be interpreted
over neighborhood models M = (W, N, V'), where Oy is now true at point s if
Ns,{t € W | M,t = ¢}. In this case, we speak of modal neighborhood logic —
whose semantics also has an alternative ‘monotone’ version, explained below.

2.1 Locality in modal semantics

Standard modal logic satisfies locality, which is often taken to be a characteristic
property of modal languages in general, cf. Blackburn et al. (2001). Technically,
evaluating a modal formula ¢ at a point s in a model M = (W, R, V) yields
the same truth value as evaluating ¢ at s in any submodel of M that contains
s and is closed under taking R-successors. This locality property extends to
generalized topological semantics (van Benthem and Bezhanishvili, 2007): a
modal formula ¢ is true at s in M iff ¢ is true at s in any restriction M|O
of the model M to an open set O containing s. Here a topological frame is a
neighborhood frame (W, N') where, for some topology on W, we have Ns, X iff
for some open set Y, s €Y C X3

Now both facts are instances of a more general observation in Bonnay and
Westerstahl (2018). First, we need some definitions. Let M = (W, N, V) be a
neighborhood model, and let A be a subset of W. The submodel

M|A = (A, Na,Va)

arises by restricting the domain of M to A, letting the new neighborhoods for
a point s be {X NA: Ns, X}, cf. van Benthem and Pacuit (2011).

Modal formulas need not preserve their truth values in passing to arbitrary
submodels, but there exist special submodels where they do. A generated sub-
model of M is a submodel M|A satisfying the following equivalence:

for all s € A and all X, Ns, X iff Nys, XN A

3In the above-mentioned functional version of neighborhood models, a topological frame
would be of the form (W, F'), where F is the interior function of the topology.




Fact 1
If M|A is a generated submodel of M, then for all s € A and all formulas o,
M, s =@ iff M|A, s = .

Proof. By a straightforward induction on modal formulas. To show how the
above definition works, here is the inductive case for the modal operator 0. We
let [elm ={s € W: M,s = ¢}. For s € A, we have the following equivalences:

M|A,s |=0¢ iff Nas, []aqa
iff Nys,[¥Jm N A (induction hypothesis)
iff Ns, [¢¥]m (generated submodel)
iff M,s = 0.

O

Now, it is easy to see that in the case of the relational semantics, the above
notion of generated submodel is exactly the usual one. Likewise, in the topo-
logical semantics, the subsets which yield generated submodels are precisely the
open sets. Thus, these two are special instances of our Fact.

It is time to highlight a distinction between two versions of the semantics for
modal neighborhood logic. The proof above uses the precise semantics, where

M, s =0p iff Ns,[p]m

However, there is also a monotone semantics, with the truth condition

M, s =™ Oy iff there is X such that Ns, X and X C [o],

In the topological semantics for modal logic, and in the standard relational
semantics, the two versions are equivalent. But in general, when the families
{X C W | Ns, X} need not be closed under supersets, = and =" may differ.
Interestingly, though, the distinction does not matter for the current topic:

Fact 2
Invariance for generated submodels holds under the monotone semantics as well.

Proof. An analogous inductive argument goes through for =" too. O

While the precise semantics is the absolute minimum needed for algebraic
semantics, there are some technical complications in its theory (cf. Pacuit, 2017),
while also, the monotone semantics is the one that occurs in most applications.
Hence we will use the latter in the sequel, unless explicitly indicated otherwise.

In standard relational semantics, there is a smallest local environment for
which the above invariance holds, namely, the smallest generated submodel
whose domain consists of the point s and all points reachable from it in a finite
number of R-steps. This is no longer true in the topological semantics, where



open sets can decrease without limit, and a fortiori, this uniqueness does not
hold in neighborhood semantics. More precisely, given (W, N) and s € W, let

A® = ﬂ{A CW:se€ Aand (A,N4) is a generated subframe of (W, N)}

If (A°, N4-) is itself a generated subframe of (W, N), then it is the smallest
such subframe containing s. But it need not be generated subframe of (W, N):

Counter-example. Consider the neighborhood frame (N, N), where for n > 0,
Nn, X holds iff n € X, but N0, X holds iff 0 € X and X is co-finite. Since
for all k, the set of X C N such that Nk, X holds is a filter, even the minimal
normal modal logic K is sound for (N, N), but it is easily checked that (A%, N 40)
is not a generated subframe according to the above definition.

Indeed, imposing the existence of smallest neighborhoods in topological se-
mantics takes us back to relational semantics. This is the well-known sense in
which relational models correspond to special topological ‘Alexandrov spaces’
(cf. van Benthem and Bezhanishvili, 2007). But here is a slightly different take in
our current terms. In relational semantics, let R, denote the set of R-successors
of s. The following fact can be found in Bonnay and Westerstahl (2018):

Fact 3

If (W, N) is a topological neighborhood frame such that for all s € W, (A%, N s)
is a generated subframe of (W, N), then (W, N) is in fact a relational frame, in
the sense that there is a unique relation R C W?2 such that Ns, X iff R C X.

Thus, neighborhood modalities may have a variety of local environments in
a model — and under special circumstances, even a smallest one.

2.2 Conservativity and domain restriction for quantifiers

A binary quantifier on a domain W is a binary relation between subsets of W.
These appear in English as the interpretations of determiner phrases, such as
“every”, “no”, “most”, “exactly four”, “all but three”, “more than two-thirds
of the”, and of adverbs like “always”, “usually”, “never”. Other languages may
use different linguistic constructions for these purposes, but it is a well-attested
empirical fact that quantifiers across human languages all satisfy the following
equivalence (cf. Peters and Westerstahl, 2006):

QAB iff QA(ANB) Conservativity

The appeal of conservativity, and perhaps even an explanation of its ubiquity,
stems from its role in facilitating efficient ‘local’ processsing: in understanding
an expression, we can restrict attention to various smaller relevant subdomains.
This processing restriction can also occur with unary generalized quantifiers
Q@ B (think of expressions like “everyone”, “someone”), where @) merely denotes
some family of subsets of the whole domain of individuals.



Now, this resembles what we saw for modal logic. Barwise and Cooper
(1981) say that a unary quantifier @ lives on a set A (which can be taken to be
a subset of the domain) if for all subsets B of the domain, @Q B iff @ BNA. In
these terms, a binary quantifier )’ is conservative iff for every subset A of the
domain, the restriction of Q' to A (the unary quantifier obtained by fixing the
first argument to A) lives on A. This is exactly the clause we used in defining
generated submodels. The domains of such models are live-on sets.

But there is more to the comparison. In the modal case, the restriction to the
local environment A is drastic: we ignore W — A and evaluate all formulas inside
the submodel M|A. Thus, we perform what in logic is called a relativization of
the model. But this is not the intent of Conservativity. When we say

All fans wore a cap,

we are merely saying that all fans were fans who were cap wearers, not that all
fans wore a cap that was itself a fan: the embedded quantifier “a cap” can look
outside of the domain of fans.*

Even so, “a cap” will impose its own form of conservativity: both quantifiers
impose restrictions on arguments of the transitive verb“x wears y”, where x gets
restricted to fans, and y to caps. The analogue for modal logic might be iterated
modalities referring to different points with different neighborhoods, where live-
on sets can be different at different points. But of course, the basic modal
language has no explicit syntactic counterpart for binary relational atoms.?

One way of highlighting the difference between the two frameworks focuses
on the binary nature of linguistic quantifiers @ AB. Its immediate reflection in
a modal neighborhood language would not be a unary modality O¢ but rather
a binary modality Oy referring to a binary neighborhood relation Ns, XY in
a straightforward manner. Such binary modalities have been little used so far,
though they occur with weak implicational logics, cf. de Jongh and Shirmoham-
madzadeh (2018). In an implicational setting, we often think of an antecedent ¢
as restricting attention to the submodel (not necessarily generated) consisting of
all points in the model satisfying ¢, while the consequent 1 is evaluated in that
set by reference to the whole model. Indeed, several types of conditional satisfy
Conservativity, such as classical entailment saying that  is true in all p-worlds,
or counterfactual entailment saying that ¢ is true in the closest p-worlds to
the current one. ¢ But Conservativity can fail for more complex assertions. A
temporal conditional ¢ = 1 saying that after every instance of ¢, there will be
a later instance of 1, supports no valid implication to ¢ = (¢ A ).

Thus, it seems of interest to determine what the conservativity constraint
means in a modal language, or indeed, any logical language. Can we tell from
the syntactic logical form of a statement when this behavior occurs? We give two

4The difference between relativization and conditionalization is ubiquitous. For a discussion
in the setting of dynamic-epistemic logics of model update, cf. van Benthem (2011).

5For non-iterated modalities, however, the relativizations of unary quantifiers are exactly
the binary quantifiers satisfying Conservativity and the Extension property to be defined later.

6 A generalized quantifier perspective on conditionals was proposed in van Benthem (1984).



versions of such a result, which may be viewed as model-theoretic preservation
theorems of a somewhat unusual kind.

First consider the language of propositional logic. Say that a formula ¢(p, q)
with perhaps also other proposition letters beyond p, q, is p-conservative in q if
it satisfies the following validity:

F o q) < ¢p,pAq)

Fact 4
A formula 6 is p-conservative in q iff it can be defined by a formula of the form
eV (pA(q)), where ¢ contains no occurrences of ¢, and p does not occur in .

Proof. Obviously, formulas of this form are p-conservative in ¢q. Conversely, if
0 is p-conservative in g, consider any disjunctive normal form 6’ of 6. Applying
the valid equivalence 6'(p,q) < 6'(p,p A q), we replace ¢ by p A ¢ throughout.
In this way, disjuncts where the literal —p occurs together with ¢ become con-
tradictions and can be dropped up to logical equivalence. Next, in disjuncts
where the literal —p occurs together with —¢, the new conjunct —(p A ¢) can be
dropped, since it already follows from —p, leaving no occurrence of ¢. Finally,
all disjuncts in which p appeared remain the same up to logical equivalence
after the substitution. The resulting, still equivalent, formula is easily seen to
be logically equivalent to a disjunction of a g-free formula plus a formula where
we can put p in front, followed by a p-free disjunction. O

We can extend this style of analysis to richer logical languages. A very simple
illustration, still allowing for the use of normal forms, is this. Say that a formula
in monadic first-order logic is P-conservative in @ if replacing occurrences of a
subformula Qx by Pz A Qx, for any variable x, results in an equivalent formula.

Fact 5

A formula 6 in monadic first-order logic is P-conservative in @ iff it is definable
by a Boolean combination of (a) Q-free formulas, (b) formulas 3z (PxAt)) where
¢ is P-free and has no other free variables than x, and (c) for each variable u,
a formula as in Fact 4 (with p replaced by Pu, q by Qu, etc.).

Proof. Again, the direction from the special forms to Conservativity is obvious.
In the other direction let, for simplicity, the relevant unary predicates be just
P,Q,R. A ‘state description of 2’ is a formula of the form (—=)Pz A (=)Qz A
(=)Rx. 0 is equivalent to a Boolean combination of atomic formulas Pz, Qy, etc.
and formulas of the form 3z sd(x), where sd(z) is a state description of x; we can
assume that the bound variable is the same in each. Treating all these as atoms,
write the formula in disjunctive normal form; we obtain a formula 6" equivalent
to 6 which is still P-conservative in Q). Now replace all occurrences of Qu, for all
variables u, by Pu A Qu. In each disjunct of the normal form, we can apply the
same argument as for Fact 4, both inside the quantified conjuncts and among
conjuncts which are state descriptions sd(u). In particular, inspecting the four



relevant types of object: (a) Jx(PzAQz A...) and (b) Jz(Px A —-Qx A ...) are
unchanged up to logical equivalence after the substitution, (¢) Jz(—~Pzx A Qz A
...) becomes the contradictory Jx(—Pxz A Px A Qz A ...) and can be dropped,
and the final substitution (d) Jz(-Pxz A =(Pxz A Qz) A ...) is equivalent to
Jz(—Px A1) with ¢ Q-free, yielding a Q-free formula overall. o

More challenging cases for determining the precise syntactic impact of con-
servativity would be the language of basic modal logic over relational models, or
all of first-order logic. For the latter, we conjecture that it suffices to mark each
occurrence of a quantifier by a unique bound variable, and then to make sure
that each occurrence of an atom @Qx has its variable governed by a relativized
quantifier 3z(Pz A ...) or Vz(Pz — ...). 7 This syntactic class allows any
Q-free formulas, and it is closed under all Booleans and quantifiers.

However this may be, our simple observations may already have shown how
notions from generalized quantifier theory can generate new types of model-
theoretic question in the modal and first-order realm.

Coda and Caveat. Generalized Quantifier Theory also has other intuitions
concerning locality. Let us view a quantifier @) as a functor assigning to each
model M a set Qg of subsets of the domain. Then the following well-known
constraint on how the functor @) assigns its values says intuitively (in the binary
case) that a quantifier @ AB only cares about the two sets it is comparing:

FEaxtension
For all models M, N with A U B included in both domains,
OMAB iff Qx AB

Here we hit a difficulty in comparing the two sides of this paper, namely,
generalized quantifier theory and neighborhood semantics for modal logic. The
Extension constraint is harder to phrase in modal logic, or in logical systems in
general. It requires a regimented class of models where the structure assigned to
models is constrained. This is not the thinking in modal neighborhood seman-
tics, where models can have arbitrary neighborhood relations. Instead, Exten-
sion says that, when models are related in some way (by the submodel relation,
or perhaps another important cross-model relation), the quantifier structures
in these models have to be similar. 8 The intuition underlying this condition
seems to be a coherence constraint: all models in the class are compatible, and
are fragments of one big supermodel. This is not normally assumed in modal
logic, where validity is a case-by-case notion. ?

“In the modal case, without explicit variable binding, this description requires more care.
The syntactic governing has to be done at the right level of modal operator depth, and there
are further combinatorial complexities. For instance, the modal formula O(pV ) AO(gV r) is
p-conservative in ¢ since it is equivalent (in the normal modal logic K) to O(r V (p A q)).

8To find analogues for this in the modal realm, one might require, say, that accessibility
relations should be the same in the overlap of any two models in one’s model class.

9Tt might be of interest, however, to see what restrictions like this mean in the setting of
modal logics for model-changing operations, cf. Aucher et al. (2018).



It should be noted, however, that on the generalized quantifier side, Exten-
sion does have a clear syntactic counterpart. Say that a sentence ¢ = ¢(P,...)
is P-restricted if for all M, M = ¢ & M|PM |= . This is stronger than
P-conservativity: a P-restricted sentence is P-conservative in all other unary
predicate symbols @ occurring in it, not just a specific one. Now it is immediate
that ¢ is P-restricted iff it is equivalent to (") (the relativization of 3 to P)
for some P-free sentence 1 (just replace Pz by = x in ¢ and relativize).

We leave this topic open-ended here, though the mismatch will return with
our next topic. A deeper connection may well have to be category-theoretic.

3 Invariance and simulation

3.1 Modal logic and invariance

Like many logical systems, modal logic allows for a semantic invariance analysis
of its expressive power, (Blackburn et al., 2001). The basic notion of structural
invariance that fits the expressive power of the modal language on neighborhood
models comes in several varieties. We will couch the following discussion in terms
of the monotone truth condition stated above for Oy:

Let M = (W,N,V) and M’ = (W', N’,V’). A binary relation Z C W x W'
is a bisimulation between M and M’ if (a) if sZt, then s € V(p) & t € V/(p)
for all atoms p, (b) if sZt and Ns, X, then there is a set Y with N'¢,Y such
that Vy € Y 3z € X xZy; and vice versa starting from sZt and N't,Y.

Fact 6
Modal formulas are invariant for bisimulation.

The proof is by induction on modal formulas, where the inductive case for O
mirrors exactly the back-and-forth clause of bisimulation. The fact explains our
earlier observation about generated submodels. The identity is a bisimulation
between the full model M and the generated submodel M|A.

In logic, invariance is connected with definability and the genesis of language
(van Benthem (2002)). Once we have invariant structure, the issue arises of
languages expressively complete for defining it.'® A typical result in this vein
is the theorem saying that the first-order formulas in a signature with binary R
and unary P, @, ... having one free variable x that are invariant for bisimulation
on relational models are precisely those definable in the basic modal language.
For an exposition of this result and the literature around it, see Blackburn et al.
(2001). The theorem was lifted to the neighborhood setting in Pauly (2001),
using two-sorted first-order models with point and set objects, with an abstract
neighborhood relation N and membership relation E.!!

10Bisimulation is not the only structural relation between models for which this makes sense.
One can also use isomorphism, potential isomorphism, or many other equivalence relations.
11Here we work in Henkin-style, without assuming that the set objects are a full power set.



Fact 7

The formulas in a two-sorted first-order language for points and sets that are
invariant for bisimulation are precisely those that are definable in the modal
propositional language with the monotone neighborhood semantics.

Remark. The above result is not the only way of phrasing the issue. Given that
bisimulation is also about preserving relational structure, one may ask for a
richer notion of invariance with respect to relations, not just properties of points.
For standard relational models, one such additional requirement is ‘safety for
bisimulation’ (van Benthem, 1998), whose definition we forego here. The point
is that, in such an extended language, we can now determine which definable
operations on relations preserve bisimulation, and the answer for the first-order
language is: the operations of regular algebra without iteration. Bisimulation-
safe operations on neighborhood relations have been studied in Pauly (2001).

Remark. The above analysis extends to the precise neighborhood semantics
for the modal language. In particular, the above notion of bisimulation can
be modified to deal with the precise semantics for Oy defined earlier. But the
solution involves several non-trivial subtleties: cf. Hansen et al. (2009), and the
detailed explanations and references in Pacuit (2017). 2 13

3.2 Invariance and generalized quantifiers

Prima facie, the same thinking applies to the realm of generalized quantifiers.
There is a standard constraint on quantifiers which seems exactly in the same
spirit, namely invariance for permutations or even isomorphism between models:

Isomorphism Invariance

If F is a bijection between the domains of two models M and N,
then for all A, B, QuAB iff QuF[A]F[B].

In logic, isomorphism invariance is basic, but also permissive, many notions
pass this test. So, what if we make the test stricter, replacing isomorphism by
the rougher relation of bisimulation (cf. van Benthem and Bonnay (2008) for a
systematic study)? Do we get a much narrower class of generalized quantifiers?
Here is one way of formulating the constraint, where we lift the relation of
bisimulation to a function between sets:

Bisimulation Invariance

If Z is a bisimulation between the domains of models M, N/,
then for all sets A,BC M and C,D C N,
(a) QmAB iff QuZ[A]Z[B], (b) QnCD it QuZ~'[C]Z~'[D]. ™

12The solution is not just a symmetric version of the above back-and-forth clause between the
two matching neighborhoods. The latter rather fits the language of ‘instantial neighborhood
logic’, van Benthem et al. (2017).

13For an analysis of a related challenge to bisimulation, cf. Baltag and Cina (2018).

14We use the double clause since the maps Z an Z~! induced by the relation Z (i.e. Z[A] =
{c:3a € AaZc} and Z71[C] = {a: 3c € C aZc}) are not in general inverses.

10



This condition seems plausible, and it suggests an elegant functional refor-
mulation of the notion of bisimulation between neighborhood models. What it
says is that the bisimulation relation Z, viewed as a function, and the neighbor-
hood relation corresponding to a unary quantifier @), viewed as a function from
sets to sets by the type shift of Section 1, commute. The match is not precise, as
will be clear by spelling out some details, but here is an intriguing point where
we find a connection with co-algebra, cf. Hansen et al. (2009), Jacobs (2016).
We do not pursue this line here, however, because there is also a problem.

Our aim was to classify generalized quantifiers as linguistic constructions
in terms of invariance. But in the preceding scenario, the neighborhood rela-
tion corresponding to the quantifier is not a logical construction, but a relation
among objects and individuals. Its invariance is the starting point, the same
way in which ‘structure-preserving’ transformations of models take the invari-
ance of the relevant atomic structure for granted. What one studies then is
which further constructions over this base vocabulary define invariant notions.

The difference that gets in the way of a direct comparison is as with our dis-
cussion of Extension. The Isomorphism constraint assumes a functor assigning
quantifiers to domains, a setting different from that of modal logic and model
theory.!> Even with this tension, several interesting things can be asked about
generalized quantifiers on the analogy with modal logic.

One issue is the earlier notion of safety. Given generalized quantifiers that
satisfy some invariance across models, say, with respect to some notion of bisim-
ulation, which operations on these quantifiers give rise to new defined quanti-
fiers supporting invariance for that bisimulation? In this perspective, attention
would shift to algebras of generalized quantifiers, on the analogy of algebras of
neighborhood relations (cf. van Benthem, 2014).

A different, but also quite natural, way of connecting the modal and gen-
eralized quantifier perspectives runs via the extensive existing model theory of
generalized quantifier languages such as EL(Q): first-order logic with a gener-
alized quantifier Q added (Mundici, 1985; Vadnénen, 1999; Peters and West-
erstahl, 2006). Modal perspectives make sense here, although there does not
seem to be a full-fledged study of modal fragments of generalized quantifier log-
ics. Coming at the same fragments from a different direction, modal logicians
have added specific generalized quantifiers to the basic modal repertoire, such
as counting quantifiers for numbers of successors in ‘graded modal logic’. In the
next section, we will encounter some formalisms that lie more in the latter vein
of introducing quantifiers into modal logic.

It might have seemed that invariance and definability are the most obvious
meeting point between modal neighborhood logic and generalized quantifier
theory, but what we have mainly done is discussing obstacles. This may just be
a sign of our not having found the key to unlocking the correct analogy — but
at this stage, we are happy to hand over this challenge to the reader.

150f course, this is a natural setting, witness the extensive literature on permutation in-
variance and logicality (e.g. Bonnay (2008), Feferman (1999), van Benthem (2019)).
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Coda. There are also possible comparisons of expressive power that do not run
into the above considerations. For instance, generalized quantifier theory also
has characterizations of special families of quantifiers through different combi-
nations of properties. An example is the result in van Benthem (1986) that
the classical quantifiers in the Square of Opposition are exactly those that have
the three basic properties of Conservativity, Double Monotonicity (the quan-
tifier allows for either upward or downward monotonicity inference in both of
its arguments), and Variety (the quantifier is not constant in truth value on
non-empty domains). This type of characterization does not seem to have been
considered so far for capturing repertoires of modal operators.

4 Modal logics of quantifiers

Modal neighborhood semantics is used for very general purposes, where neighbor-
hood structures can be topologies or more abstract algebraic structures validat-
ing only very weak logics close to the minimal logic of one or more algebraic
operators added to Boolean algebra. But with neighborhood relations viewed
as quantifiers, new concrete questions arise, that we will sample here. In what
follows, for convenience, we restrict ourselves mostly to uniform neighborhood
relations without any dependence on points. Also, we reverse our earlier bias,
and concentrate mostly on the precise semantics for modal neighborhood logic.

4.1 Modal logic of permutation-invariant quantifiers

Much of modal logic is about axiomatizing reasoning with various modalities.
Starting with the basic property of permutation invariance that makes quanti-
fiers ‘count’, what sort of modal propositional logics arise when neighborhood
relations are to be permutation invariant?

This task is related to completeness for standard logics with permutation
invariant generalized quantifiers added. With uniform neighborhood relations,
the modal setting is the special case of logics PL(Q), that is, classical monadic
predicate logic with just one unary generalized quantifier variable added (no
identity, and no V or 3), whose interpretation ) on a domain W is such that

if AeQ,|Al=|B|and W — A = |W — B|, then B € Q. 16

Richer logics with predicates of any arity have been investigated in Anapoli-
tanos and Vadndnen (1981), but in what follows, we look at our simpler case.

The minimal modal logic E (in the basic modal language) of arbitrary neigh-
borhood frames just adds one inference rule to classical propositional logic:'”

(RE)  If ¢ < 1, then - Op > Ot

16With parametrized Ns, X, the language becomes slightly richer, with point-dependent
quantifiers. But as said above, we will ignore this extension here.

17That is, E is the set of formulas containing all classical tautologies, and closed under the
rules of Uniform Substitution, Modus Ponens, and (RE), and this is exactly the set of formulas
valid in all neighborhood frames; cf. Pacuit 2017.
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On uniform models, formulas of the form Oy or G are either true at all
states or at none. Reduction principles like the following now become valid:'®

(R1) DO(pAOq) < (OgADp)V (-OgADL)
(R2) O(pVvOgq) <+ (QgAOT)V (=Og A Op)
(R3) O(pAOY) < (O-p AOL)V (O ADp)
(R4) O(pV oY)« (O Ap) V (OCyp AOT)

Let EU be E with (R1) — (R4) added. Using these, in EU all formulas are
equivalent to formulas of modal depth < 1. The following result is folklore.

Fact 8
EU is the logic of all (finite) uniform neighborhood frames.

Now, what about validity when we require that the uniform neighborhood
frames be permutation invariant? With the precise semantics, nothing happens.

Fact 9
Under the precise semantics, EU is the logic of all uniform and permutation
invariant neighborhood frames.

Proof. Suppose Fey . By the above, there is a finite uniform model M =
(W,Q,V), with W = {s1,...,s,} and M,s; = ¢ for some j. Here @) can be
any subset of P(W); we have no further information about its structure. What
we need is a model where the quantifier is given by a set of numbers, where two
sets of the same cardinality are either both in or both out. But there is a trick
to achieve this. We assign numbers of objects to each state, standing for the
number of points satisfying the corresponding state description, noting that the
resulting numbers for disjoint unions are just the sums of those for the atoms
inside. Here is the precise formulation:

Lemma 10
There is a function f: P(W) — N such that (a) f(§) =0, (b) f is injective, and
() f is additive (i.e. if X NY =0, then (X UY) = f(X) + f(¥)).19

This can be proved by induction on n. The base case is trivial. If such an f is
given for W = {s1,...,8,}, with f(W) = N, and s is a new state, then for any
new set Y = {s}UX, let f'(Y)=N+1+ f(X), and f'(X) = f(X) for all old
X. In particular f'({s}) = N + 1. Then f’ is as desired.

Getting back to the proof of Fact 9, let W’ be the union of pairwise disjoint sets
S1,...,Sn, where |S;| = f({s;}). Let M' = (W', Q", V'), where X € Q" iff for

18To see this, one can use the fact that the following schemes are valid on uniform frames:
P[OY] < (B A@[T]) V (~0¢ A p[L])
P[OY] & (OY A @[T V (=OY Ap[L])

19This is really a fact about finite Boolean algebras: for any such algebra A, there is an
injective additive function f from its domain to natural numbers, with f(0) = 0.
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some X € Q, |[Y| = f(X), and V'(p) = U, ey (p) 9i- Finally, let p: W' — W
map each s € S; to s;. Then we have, for s € W/,

(a) seV'(p) iff p(s) € Vi(p)
and, using the additivity and injectivity of f, for X C W,
(b) plX]eQ iff Xe€Q

Together, (a) and (b) tell us that p is a bounded morphism (in the neighborhood-
semantic sense, see Pacuit 2017) from M’ onto M, from which it follows that
if s is such that p(s) = s;, we have M', s £ .20 O

4.2 Imposing more conditions

Next, what happens if we impose further conditions on neighborhood relations,
such as the upward monotonicity and intersection closure leading to the filter
structure that is typical for standard modal logic over relational models? Indeed,
the logic K is sound for an arbitrary neighborhood frame (W, N) if and only if
(W, N) is a filter frame: that is, for each s € W, the set {X | Ns, X} is a filter.
In particular, when W is finite, all filters are principal, and then the condition
is exactly that (W, N) is a relational frame. In this case, adding permutation
invariance to uniformity changes the picture significantly:

Fact 11
The logic of finite uniform filter frames is K45. Adding permutation invariance
changes the logic to being either S5 or the trivial logic KO 1.

Proof. On any uniform neighborhood frame, in the presence of K the axioms
(R1) — (R4) are equivalent to .4 4+ .5. For the converse we may, by the above,
restrict attention to ordinary relational frames. If F/k45 o, there is, by the usual
completeness theorem, a relational model M = (W, R, V) and s € W such that
R is transitive and euclidean and M,s & ¢. Then M[s],s = ¢, with M]|s]
the rooted submodel of M generated by s. Since R transitive and euclidean, it
follows that M(s], seen as a neighborhood model, is in fact uniform.

For the second claim, note that there are only two permutation invariant
principal filters on P(W): either P(W) itself or {W}. The logic of the former
is KO, that of the latter (since accessibility is the universal relation) is S5. O

But perhaps the most interesting question concerns the intermediate case of
uniform frames (W, Q) where @ is only required to be closed under supersets.?!
We can think of this as the logic of “enough”, read as the existence of a set of
witnesses of at least the threshold value associated with enough. This appears
to be a harder case, and we only have some observations to offer.

20The style of proof in here is like that of the more general result in Anapolitanos and
Véadnanen (1981), and injective additive functions on Boolean algebras also occur in the anal-
ysis of the logic of comparative sizes in Ding et al. (2018).

21Rather than restricting to special neighborhood frames that are ‘monotone’ in this sense,
we could also use the monotone semantics for the modal language over arbitrary frames.
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First, the minimal modal logic is now the system EM, which is like E except
that the rule (RE) has been replaced by

(RM) If k¢ — 1), then F Op — Oy

However, if permutation invariance is also required, we do get new validities:

Fact 12
If the propositional formula « is incompatible with 3, and ¢ with 1, then

O(aVB)AB(pVY) = BlaVe) VOB VY)
is valid for uniform monotone permutation invariant frames.

Remark: This principle is not valid without the monotonicity requirement.??
Proof. If the atomic symbols are pq,...,pg, each formula can be seen as a
disjunction of conjunctions of the form pj A ... A p}, where p} is p; or —p;.
List these conjunctions in some order, and name them 1,...,2*. Then each
propositional formula can be identified with a set A C {1,...,2*}. Now the
above result will follow by repeated applications of the following

Claim Let Aj, Ay be disjoint subsets of {1,...,2*}. Take n; € Ay, ny € Ay,
and let ™ swap ny and no but nothing else. Then:

): DA1 AN DAQ — \:\T((Al) vV DW(AQ)

Suppose that M = (W, Q, V) is permutation invariant and uniform, that @ is
monotone, and that M | OA; A OAy (or rather M, s = OA; A OAg, but, by
uniformity, we can forget about s for boxed formulas). So there are X,Y €
Q with X = [A1Jm and Y = [A3]m. By assumption, X NY = 0. Let
X; =XN[{jHm and Y; =Y N[{j}]m, and let z; = |X;| and y; = |Y;|, for
j=1,...,2% (x; and y; may be finite or infinite). Thus, X = J X; and
Y= iea,Yj- We need only distinguish two cases.

Case 1: z,, < yn,. Let Z be like X, except that X,,, is replaced by a set U of
Zn, members of Y,,,. It follows that |Z| = | X|, and Z C [r(A;1)]m. Moreover,
W —Z| = |W — X|. (If h is a permutation of W which swaps X,,, and U (but
nothing else), then Z = h(X).) By permutation invariance, Z € @, and so by
monotonicity, M | Om(Ay).

jEAL

Case 2: Ty, > Yp,. Then we swap Y, with y,, members of X,, , and similarly
obtain M |= On(Az). This proves the Claim and thereby our Fact. O

However, so far, we have not been able to determine the complete modal
logic for the monotone quantitative case.

Open problem: What is the complete modal logic of “enough”?

22Consider the case a = pAg, 8 = pA—q, ¢ = —pAgq, ¥ = ~pA—q. Then the antecedent of our
formula is equivalent to OpAO-p and the consequent to OgVO—g, but this implication is clearly
not valid if the quantifier @ is not monotone: for example, let |V (p)| = 3, |V (q)| = |W| =5,
and let Q ={X CW:|X|=2or |X| =3}

15



Remark. A natural addition to all of the above logics is a universal modality
U, and hence an existential modality E. The resulting system corresponds to
monadic predicate logics PLT(Q), where in addition to Q, we have the usual
quantifiers V and 3 with their standard interpretation (though still no identity).
In this setting, uniformity is expressible by a single formula:

a frame (W, N) is uniform iff O¢ <> UOy is true in that frame.

It is straightforward to give extensions of our earlier completeness results to this
extended language, but we ignore details here.

4.3 Modal logics of specific quantifiers

Finally, instead of axiomatizing reasoning about classes of quantifiers, one can
also look at the modal logic of specific cases. For a concrete example, consider
the quantifier P1 “precisely one”. In the extended modal neighborhood language
with an additional universal modality we have:

Fact 13
The complete modal logic of P1 is axiomatized by E plus, for disjoint ¢, ),

(a) Pl V) < (Plo A=E() A=) V (Pl A=E(p A=)
(b) Plp — Ey

Proof. It suffices to consider a consistent normal form of depth 1, since these
still exist for the present language with uniform quantifiers. Quantifiers P1 will
only occur then in front of purely propositional formulas, that can be brought
in disjunctive normal form.

Next, by repeated applications of the first axiom, we end up with a Boolean
combination of cases (a) P1 attached to exactly one state description, (b) exis-
tential modalities over state descriptions, and (c¢) proposition letters. Bringing
this Boolean combination in disjunctive normal form again, by the consistency,
there must be at least one conjunction remaining, and such conjunctions con-
sist of a state description, followed by a list of quantified statements of the form
(m)P1lsd, (—)E sd for each state description sd. Here the second axiom makes
sure there are no contradictions of the form Ply A —FEp.

Finally, it is easy to see by direct inspection that the conjunction can be
satisfied semantically, reading off, for each state description, whether it needs
to hold nowhere, in just one point, or in at least two points. O

“Precisely one” is of course just one case?3, similar logics can be written for

any finite cardinality. For a logic of all finite cardinalities in a similar proposi-
tional language, cf. Pratt-Hartmann (2009) on the ‘numerical syllogistic’.

Coda: Numerical transposition. Despite the modal propositional guise of
the above logics, they can also be viewed numerically, as fragments of additive
arithmetic. We briefly explain how this perspective works in our setting.

23 A similar analysis would work for the binary quantifier “Precisely one A is B”.
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As an illustration, consider the earlier completeness of the neighborhood
logic of an arbitrary permutation-invariant quantifier under the precise seman-
tics. Now perform the following transposition on the satisfiability problem for
a given modal formula in its normal form of modal depth 1:

Assign unique variables over natural numbers to each atomic state descrip-
tion, record the sums of these values that are to be in  according to the normal
form as a finite list of additive terms tq,...,txs, and those for the ones outside
of @ as a complement list s1, ..., S,. Next, to find a satisfying model for all of
this, it suffices to solve this system of inequalities in the natural numbers: all
numerical terms for the s; must have values different from all those for the ;.

The reason for the adequacy of the equational procedure is this. If such
values exist, then we can use them for the right multiplicities of the atoms, just
as we did in the final part of the earlier modal completeness proof.?*

Whether these systems of inequalities have a solution is decidable, via stan-
dard equation solving mechanisms. Indeed, looking at what is needed, this is
only a small universal fragment of Presburger Arithmetic, which is decidable
even in its full first-order version. Thus, another take on the topics in this sec-
tion is that we are really axiomatizing small fragments of arithmetic in logical
style. In particular, we conclude that all logics discussed here are decidable. 2°

5 Conclusion

In this exploratory paper, we have explored a suggested analogy between gen-
eralized quantifiers and modal neighborhood logics a bit further. We found
interesting similarities in semantic notions of locality, new questions concern-
ing modal logics for specific classes of quantifiers, and delicate but intriguing
problems concerning the role of invariances in both realms.

Even so, we only scratched the surface, ignoring more general linguistic con-
structions such as polyadic or branching quantifiers and quantifier-like modal
constructions, possible junctions between the model theory of generalized quan-
tifier logics and modal logics, or possible counterparts in generalized quantifier
theory for the rich theory of translations between modal logics.

One suggestive analogy ignored in this article concerns ‘fine structure’. Much
of modal logic is about semantic fine-structure, and the balance of expressive
power and complexity in logic design. But equally well, generalized quantifier
theory has sought to parametrize into easier and harder quantifiers, using de-
finability in formal languages, or more computationally, devices such as ‘seman-
tic automata’ (van Benthem, 1986)). Whether this congeniality can be made
into a useful semantic interface remains to be seen. In addition to expressive
fine-structure, however, there is also deductive fine-structure. Modal logics are

24]f special conditions have to hold for the quantifier Q, such as monotonicity, then this can
be worked into the method by adding suitable further inequalities closing off the ¢-list upward.

25 A similar reduction to additive arithmetic applies to propositional logics with modalities
for quantitative probabilities, cf. van Benthem (2017).
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often much simpler deductive subsystems of larger proof engines for first-order
or higher-order logic. Generalized quantifier theory, too, has looked at deduc-
tive fine-structure of natural language, for instance, in the form of simple fast
‘natural logics’ inside more complex reasoning with quantifiers (cf. Moss, 2015).
The two views of deductive fine-structure are not the same, and it would be of
interest to export, for instance, natural logic thinking to the modal realm.

This paper is largely a set of pointers. Much remains to be done, but the
glimpses we have shown may entice the reader to go further on the road ahead.
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