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Abstract

In this paper, we study the game-theoretic and computational repercus-
sions of Henkin’s partially ordered quantifiers [19]. After defining anga
theoretic semantics for these objects, we observe that tuning the parameter
of absentmindedness gives rise to quantifier prefixes studied in [28}eln
interest of computation, we characterize the complexity cldSsiiPterms
of partially ordered quantifiers, by means of a prodfatent from Gottlob’s
[17]. We conclude with some research questions at the interface of logic,
game theory, and complexity theory.
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1 Settingthe stage

Henkin's partially ordered quantifier prefixes were inigahtroduced as a math-
ematical exercise [19], but have ever since been the subidisely discussion
in various disciplines. In linguistics, Hintikka [20] and Bése [4] argued that
partially ordered obranchingquantifiers should be added to the linguist’s tool-
box to give certain natural language expressions theiecblogical form. Sandu
and Hintikka [21, 23, 33] imported the idea of a partial degence relation be-
tween quantifiers in first-order logic, resulting independence Friendly logic
Independence Friendly logic has congenially been givemaagécs in terms of
games with imperfect informatioMhe partiality of information—i.e., imperfect
information—present in these games can be seen to reflepattial ordering of
the quantifiers.

In this paper we aim to show some of the repercussions of H&néxercise
from a game-theoretic and (finite) model-theoretic anglem@ theory has pene-
trated logic successfully, providing an interactive andlgariented viewpoint on
concepts in logic. The game-theoretic viewpoint allowsaisdmpare logics in
terms of the interaction, goals and knowledge.

In Section 2, we introduce logics with Henkin quantifiers aedall their
model-theoretic behavior.

In Section 3, we show that Henkin quantifiers are played byhageith a
limited number of memory cells, whereas first-order logiglayed by Eloise
enjoying an infallible faculty of memory.

In Section 4, we give a finite model-theoretic account of Hermjuantifiers.
Finite model theory is the model-theoretic face of compiettieory, and provides
a neat algorithmic view on Henkin quantifiers.

Section 5 concludes the paper.

2 Logic

Henkin’s novelty in the theory of quantification is nowaddyswn under the
header oHenkin quantifier A Henkin quantifier is a two-dimensional object of
the form
VX1 ... VX Hyl
V%1 ... ¥Xk dYn
wherex; = X1, ..., Xx. Henceforth, a string of variables is referred to by usirg th
obvious symbol boldfaced.
With every Henkin quantifier (1) is associateddisnensions randk. In the
interest of space, we abbreviate the Henkin quantifier (1j*y. If no con-



fusion threatens, we may also skip the variables and thgergeindicating the
dimensions, and simply writelX andH. To identify a Henkin quantifier without
referring to its dimensions, we writg,.

The two-dimensional way of representation aims to convay tie variable
yi depends orx; and onx; only. This is formalized by means of the notion of
Skolem functionthat underlies its semantics. Letbe the satisfaction relation
properly defined for the formula(x, y) on the structur@l. Then,k= is extended in
the following way: 2 £ HX ¢(x, y) iff there exisk-ary functionsfy, ..., f, on the
universe ofll such that

AWE VX1... VX, (X1, ..., Xn, F2(X1), ..., Fa(Xn)).

Note that the quantifielflgx has the same semantics as the quantifierand that
H? is elementary definable for eveiry 1.

In this paper, we are interested in two logics featuring Hieakiantifiers. The
first one, denoted, contains all strings of the forrX v, wherey is first-order
andn andk are arbitrary integers. The second logic’s formulae areegead by
the following grammar:

¢ = Yl-gloVve|Ixe | HE g,

wherey is first-order andh andk are arbitrary integers. Let us refer to the latter
logic by H*.

For a thorough introduction to the logiesandH* and their model-theoretic
behavior, we refer the reader to [27].

The set of free variabldgreg(¢) in theH*-formula¢ is inductively defined by
the clauses that define the set of free variables(y), for first-ordery, plus the
clause

Free(HﬁXn- o XnkY1 - - - Yn ¢) = Freg¢) — {(Xi1, ..., Xak Y1, - - - » Yn)-

An H*-formula without free variables is calledsantence The satisfaction rela-
tion for formulae with free variables is defined in the stadda&ay using assign-
ments.

As an illustration of the expressive power ldf consider the following sen-
tence:
( Yxy dy:

V3 3y2 )321322323 (¢1 AN ¢2 A\ ¢3),

U

where

(X1 = X2) = (Y1 =Y2)
R(X1, X2) = (Y1 # ¥2)

A\ Gi=2)

ie{1,2} je{1,2,3}

b1
b2
b3



Let ® be a graph whose edges intergRetThen by definition® [ £ iff for two
unary functionsf; and f, on the universe ob, (1) f; andf; are the same; (2) i,
andx, are joined by an edge, thei(x;) # f2(x2); and (3) the range of, and f,
is restricted tay, 2, z3. All in all, we see thatff, (or f, for that matter) is a withess
of ® E (iff itis a3-coloringof 6.

The semantics for Henkin quantifiers overtly mentions fiomd, that reflect
the (in)dependence relation between the universal anteexigl quantifiers car-
ried by the Henkin quantifier. Bearing this in mind, it is qusteaightforward to
show that the truth condition of any sentence fridnsan be expressed in second-
order, existential logic, symbolicall;. It is a milestone result in the theory of
partially ordered quantification that the converse holds@ When it comes to
expressive powetd andX; are equivalent, cf. [10, 44]. It was shown [10] that
every H*-sentence is equivalent to a sentenc&jrand a sentence ifi;. This
finding renderdd* translatable inta\;. Mostowski [29] showed that the converse
does not hold: there is a sentencélisthat has no equivalent id*. These results
invariably apply to structures of arbitrary cardinality. dase one restricts oneself
to finite ordered structures, a very nice computational attarization oH* can
be given, see [17] and also Section 4 of the current pubtinati

3 Games

There is a respectable tradition in logic to give game-teégo@ccounts of con-
ceptsinlogic. An early case in point are Lorenzen-stijgdogue gamesThey are
typically two-player games between Proponent and Opporieislogue games
aim to give a game-theoretic underpinning of the concepta@dfp That is, a for-
mulag¢ is provable in a logical system if, and only if, the Proponieas a way of
playing the dialogue game @f for the logical system at hand that wins against
every way of playing by Opponent. In the game-theorist'dgrare, we say that
Proponent has winning strategy

So-calledyame-theoretic semantiegs introduced by Hintikka giving a game-
theoretic account of truth. For instance, consider a togrfrant of first-order
logic, containing only strings of the form

QX1 ... Qn¥n R(X),

whereQ; € {3,¥}. Being a fragment of first-order logic, Tarski-semantics is
properly defined for this toy language. But the Tarskian &ati®n relation can
also be given a game-theoretic face, yielding games bet&kese and Abelard.
To this end, le®l be a structure that interprets the predida&nd let thesemantic



gamefor a formulag from the toy language o start from the positiorg, ).
The proceedings of this game are determined by the follogarge rules:

e If the position is(dx ¢, A), Eloise picks an objed; from the universe of
A, and the game continues @s ).

e If the position is(Vx; ¢, ), Abelard picks an obje&; from the universe of
A, and the game continues @s ).

e If the position is(R(Xy, .. ., X,), 2), the game ends. Eloise wins if the tuple
(aq,...,a,) that was built up during the game stands in faeelation inl;
otherwise Abelard wins.

The adequacy of the semantic games for the toy languagepiatly cast
as follows. For every formulag and suitable structur¥, A E ¢ iff Eloise has a
winning strategyin the semantic game @fon 2. As the reader acknowledges if
we extend the toy language with connectives, negationsatstehas to extend
the set of game rules (and possibly tweak the current onepiotain adequacy
of the game-theoretic semantics with respect to the newdbgystem.

By this token it becomes clear that classes of semantic ganwesdsnot be
conceived of as objects floating in limbo. Just as one can ecenjhe properties
of two logical systems by means of model-theoretic means,cam compare the
semantic games they give rise to. Again, Lorenzen’s digdaggmes are a case in
point. A lively debate was held about the viability of theldgue games for first-
order logic in contradistinction to the dialogue games fasBver’s intuitionistic
logic. Some held the conviction that dialogue games foritiotistic logic are
‘more natural’ than the ones for first-order logic, and tolis tas an argument in
favor of Brouwer’s system, cf. [41].

From the same viewpoint, the move from first-order logic tddpendence
Friendly logic can be appreciated. From a purely game-#teoangle, Hintikka
and Sandu [21, 23, 33] generalized the semantic games fisofder logic so as to
incorporate imperfect information. In our view, this vemgament may count as
a motivation for Independence Friendly logic in itself. Wieagctly is the influx
of the imperfect information in semantic games for Indeeg Friendly logic
is a hard question, and definitely a topic for future reseafchwe pointed out,
the idea of partial dependence relation over quantifieradependence Friendly
logic has its precursor in Henkin’s work. So from this andta it is worthwhile
to develop at least some understanding of the game-thefaie& of Henkin quan-
tifiers, involving imperfect information.

For the sake of simplicity let us restrict ourselvestdormulae in which the
first-order part is atomic. On this assumption, the gamesrtde the semantic



game of theH-sentence

HiXa1 - - XakY1 - - - Yo R(X,Y)
are simply the ones for the semantic game for
VX1.. . VXY ... Y Xnr - - YXdYn R(X, Y).

But as the latter sentence is a sentence from our toy langtleggame seems to
have become a game with perfect information as before.

How can this be?

On second thought, it turns out that we have been a bit caredesn introduc-
ing the semantic games for the toy language. Surely we gavgldlyers eloquent
names, but omitted to specify the players are such that tmarsiec games in
which they participate would actually be modeled as gameis pérfect infor-
mation It would have made little sense, for instance, to declaat te think
of Eloise as a cauliflower. It's not that cauliflowers cannetrbgarded as game-
theoretic agents, witness the literature on evolutionamye theory. Rather, had
we done so modeling the semantic game of a formula from th&atayuage as a
game with perfect information would be counterintuitive say the least.

To be on the safe side, we’d better postulate that Eloiserasallible faculty
of memory.

The imperfect information in semantic games fbisentenceslX R(x) can be
seen to be brought into being by assuming that each agenkaeyk memory
cells. Henceforth, we shall assume that agents govern thesaory cells in a
first in first outmanner. In unison, these assumption imply that when thetagen
deciding on an object fof, it knows only the objects picked up over thprevious
rounds, that is, the objects assignedio. . ., xix. Furthermore, | postulate that
this agent is noabsentmindedthat is, it knows in which round of the game it
is. This postulate implies that when choosing an object sigastoy; the agent
knows that the object selected will be assigneg tand not to, sayy;,; ory;_;.

In this manner, everii-sentences = H R(x) and structurél give rise to a se-
mantic game that would be modeled asatensive game with imperfect informa-
tion, call it Semgamé'(¢, A). An extensive game with imperfect information is a
rigorous mathematical obje¢N, H, P, (J;)icn, W), well-known from game theory
[30]. N is the set oblayers H is the set ohistories—all permissible sequences
of actions in the gameR is theplayer functiondeciding which playeP(h) € N is
to move at histonh. J; is a partition of the histories in which playeis to move,
modeling the imperfect informationV is thewin function that decides who has
won when the game has come to an end.

In the context ofp and?, the setH equals

A,
0<i<((n-k)+n)



whereA is the universe ofl. With every historyh € H of length (f-k) + n)—i.e.,
terminal history—we straightforwardly associate an assignment funcjao the
variablesxs, ..., Xak Y15 - - - » Yn-

Semgamé' (¢, A) can be regarded as a tree structuregame tree—defined
by the prefix relation oid. The game tree is decorated By

The setJ; contains all sets of histories that are indistinguishabledur k-
cell, non-absentminded agent (first in first out, remembdie particulars of
the agent at hand uniquely determifie That is,h,h’ € | € J; if, and only
if, h andh’ are equally long (nhon-absentmindedness) and thekladements
of h andh’ coincide k-cell and first in first out). ClearlWV(h) = Eloise it
(@n(X11), - - - » @(XaK), An(Ya), - - -, n(Yn)) is anR-tuple inA.

Any functionS : J; — Alis a strategy for playerin Semgamé'(g, ). Say
that a strategy for playaris winning if i following the strategy at each ok
moves only results in terminal historiasuch thaw(h) =i,

Let¢ = HX R(x) and let be a structure interpreting. Let Seragamé'(¢, )
be the extensive game with imperfect information modelirggemantic game of
¢ onA played by e&k-memory cell agent.

Proposition 1. For everyH-sentence) = HX R(x) and structurel interpreting
R, a non-absentminded agent with k memory cells has a winniagegy in the
semantic game Sem-ganie, %) iff A E ¢.

Proof. The proof is straightforward once one notices that a sefi8&alem func-
tionsfy, ..., f, witnessing E ¢ encodes a winning strategy 8emgamé'(¢, ),
and vice versa. ]

It was observed in [27, pg. 223] that maHysentences appearing in the liter-
ature express the existencearsfesingle function on the universe. The sentence
{ that expresses 3-colorability of graphs we discussedegaslia case in point.

In the same vein many other interestiHgsentences sit in a certain fragment of
H, that was studied in [28]. This particular fragment is defitiy thefunction
quantifier F¥, that binds the variables, . . ., Xa, Y1, - - - » Yn, just like the Henkin
guantifier with dimensiona andk. (We will adhere to the same notational con-
ventions as with Henkin quantifiers.) The lodgtds defined to be the language
containing all strings (sentences) of the form

FE X XnY1e Yo RX4s - o X Vs - 5 Vi) (2)

wherex; = X,..., Xk as before and is an atom. As regards its semantics, any
formula (2) is true on a structuf® interpretingR iff there existone single kary
function f on the universe ofl such that

A E VXR(Xq,...,Xn, F(X1),..., F(Xn)).



Henkin quantifiers dfer from function quantifiers in that the former allow for
multiple functionsfy,..., f,, whereas function quantifiers allow for only one.
For a model-theoretic comparison of logics with Henkin gifeans and function
quantifiers see [18, 28].

From a game-theoretic point of view, we show that the movenftdenkin
quantifiers to function quantifiers resembles to imposingeatmindedness on
our k-cell agent playing according to the game rules of the seimaatme of
¥xAy: ... VXY, R(X, y) on . So in particular the game rules for the sentence

[ Y% dnn
l// - (VXZ 3)& ) R(X’y)’

where
RX,Y) = (Xx=X —Yy1=Y2) A(Yr =X — Yo = X1) A (X1 # Y1).

on the structur& would be equal to the ones féx; Ay, Yx,y, R(X,y). (The sen-
tencey characterizes the finite structures whose universes hareardinality,
see [35].) Considering an absentminded 1-cell agent, wenaeduiring neither of
his rounds it knows whether the object it choses will be am=igoy; or y,; it is
aware of the last action though. So in particulaa, i, c are three dferent objects
from the universe o, it cannot tell apart the historigg, b, c) and(c). On the
other hand it can distinguiste) from (a) and{c, b, a).

Just as we had withl, if ¢ is anF-sentence leBemgamé (¢, A) be the ex-
tensive game with imperfect information that models an atmeded agent with
k memory cells in the latter game. In particularSemgamé (y, B) there is an
information partition containing botka, b, c) and(c), but not{a) and{c, b, a).
Generally speaking, in these extensive games with impeirfiéarmation forF,
two historiesh andh’ sit in the same information patrtition, if the ldstlements
in handh’ coincide. However as we saw beforeandh’ need not be of equal
length.

Proposition 2. For everyF-sentence = FX R(x) and structurel interpreting R,
an absentminded agent with k memory cells has a winning syrateége semantic
game Sem-garh@s, ) iff A & ¢.

The reader may wonder, what's next? Well, in the same veimuaerestrict
the agent’s powers to an even greater extent and supplyhtaviixed array of
actions. Recall that in the semantic gamesHoandF the agents pick up their
actions from the universe of the structure at hand, that heeunded cardinality.
If we consider the agent to be non-absentminded and in pxiesesf a fixed
and finite number of actions, it is capable of ‘playing Hengunantifiers with
restricted quantifiers’, see [5, 34, 35]. To the best of mywKiedge the logic that



is played by absentminded agents with a limited number of angroells and a
fixed number of actions has not been studied.

In semantic games fdtl, thek-cell agent is supposed to recall only the last
variables. This undoubtedly is an assumption without teical backing. Hin-
tikka and Sandu [21, 23, 33] overcome this needless rasetriby introducing the
/ item in first-order logic, to indicate knowledge of a varlolr absence thereof.
The resulting system is the Independence Friendly logic pokes of earlier. In
this logic, the sentence

VX1 (Ay1/{X})V%(y2/{*2}) R(X,Y)

gives rise to games in which Eloise does not kngwhen deciding foy,; but she
recollects it when she is to decide fgr Given the syntactic formation rules of In-
dependence Friendly logic, one infers rather straightfodly that everypattern
of ignoranceconcerning objects previously played can be accounted Toat
is, if we have a first-order formula in whose semantic games the occurrence
of Ax triggers a move for Eloise informed aboxi, . .., X,, then the/ item al-
lows one to limit the knowledge of Eloise to any subsepaf. . ., x,}. From this
game-theoretic perspective Independence Friendly loglg is the imperfect in-
formation generalization of first-order logic. But note tkame sentences from
Independence Friendly logic give rise to games that are twaadtually play, as
they violateperfect recal) cf. [8, 40, 41]. A perfect information approach to
Independence Friendly logic was pursued in [38].

Even more delicate flows of information were studied inBaetial Informa-
tion logic by Parikh and Vaananen [32] whose formulae give rise to ifeger
information games in which Eloise may be partially infornsdabut the previous
actions. In semantic games for the first-order formisay R(x, y), for instance,
Eloise knows the object assignedxo In Partial Information logic, the formula
Yx(3y// (X)) R(x,y) typically gives rise to a semantic game in which Eloise is no
aware ofx, but she is cognizant of(x). So in case the functiof maps every
object onx itself Eloise is aware ok after all. Butf may just as well return
1if xis even and 0 otherwise. In this mannerPifis a predicate, the formula
x = YX(Ay/P(X)) (x # y) gives rise to games in which Eloise does not knowut
she knows whether Abelard chosB-@bject. The formulg can thus be seen true
on any structure in which there isRxobject and a norf®-object. Under specific
conditions on the nature of the functions appearing at tjigthand side of thg
device, Partial Information logic is a decidable fragmefrfirst-order logic.

It has been pointed out by various authors [22, 24, 41] thaargenot really
interested in the actual game playing of semantic gameshélends we employ
them it is very much indferent what strategy is used, for instance, and whether
the game is actually played in a platonic universe. Insteadm interested in the



statements we can truthfully ma&boutthese games, in particular in the existence
of winning strategies. There is one viewpoint from whiclsttifference becomes
clear, that we will highlight. There is a discrepancy betwége complexity of
the players and the complexity of the statements we maket v, or—more
precisely—the expressive power of the logic required taespthe winning con-
ditions of Eloise. We saw that Eloise enjoys an infallibleutly of memory in the
semantic games for first-order logic, or the toy fragmentebg Yet, ipse facto,
it takes the first-order sentengao express whether Eloise has a winning strategy
in the semantic game @fon any structure. On the other hand, we hired an agent
with a limited number of memory cells to play the semantic garfiorH. As was
pointed out in [10, 44], here we have to resort to the expregsdwer of full=}!

Note that such a discrepancy does not always occur. Fomestdimit at-
tention to O-cell agents, i.e., agents that don’t see anlgef bpponent’s actions.
Then, Henkin quantifiers that are playable by such an agehtlike

Ay,
Ay,

and are clearly defined by the first-order prefix . .. Ay,.
There is no a priori reason to stick to expressive power asitigge measure of
complexity. Van Benthem [39] takes up the axiomatizationarhg models with

imperfect information, and needgtraaxioms to enforce perfect information. Yet
the axiom system seems to get more simple wheall agents are considered.

4 Computation

Fagin [11] gave birth to the area of descriptive complexigyealing an intimate
connection between model theory and the theory of compmatDescriptive
complexity concerns itself with connecting up logical laages and complexity
classes. This enterprise departs from the insight that evilny logical sentence
there is a computational cost associated to verifying iisss#ic value on an arbi-
trary finite structure; and the other way around, that théqaars of a computing
device can be described in logic. The hope is that hard quesstiom complexity
theory (think of P versus NP and NP versus coNP) can be solyesdjbarating
the logics they are associated with, see also Section 5.

In this section we will take up the descriptive complexitybsis ofH*. This
will give us an algorithmic view on Henkin quantifiers. Fwgtimore it gives some
insight in the way partially ordered quantifiers manifegrtiselves in the theory
of computation. A more general variant of Theorem 7 from #aistion appeared



in an excellent paper by Gottlob [17]. The references we osead build on any
of Gottlob’s results nor on his main referendeén independent proof, that is.
The descriptive complexity dfl* was raised as an open problem in [5].

First we give a recap of the basics of finite model theory arstigtive com-
plexity.

Let o be a finite set of relation symbols—vacabulary—each of which comes
with an integer, itsrity. Every vocabulary contains the binary relation symbol

Let ao-structurel be an object of the formA, (R")r.,), WhereA is the uni-
verse ofll andRY C A?, for a the arity ofR. The symbol= is rigidly evaluated
as the identity relation. & € o, then<" shall be a linear order oA, andl is
called alinear ordered structurelf A is finite, 2 is called &finite structure Here
and henceforth, all discussion will be restricted to finitestures unless indicated
otherwise.

Sometimes when we writd we actually meanhe binary encoding ofl. We
refer the reader to Immerman'’s textbook [26], in which a diedeaccount is given
of how one can encode structures in binary. For our endsffites to take notice
of the fact that the length of the binary encoding ef-atructurel, symbolically
121]], is of sizeA°, for some constart depending ofar.

Let X be a class ofr-structures. ApropertyIl overX is a function assigning
a truth valuell() e {false true} to every structur@l from X. LetL be a logic,
i.e., a set of sentences, for which the satisfaction reigtas defined. Every
L -sentence defines a propertii, on X, where

IT,(2A) = true iff AE @,

for every2 € X. We say thaty andL expresdl;. So the sentencgexpresses the
graph-property of 3-colorability.

LetL andL’ be two languages over the same vocabulary. Then, Wwrite- L’
to indicate that every property ové& expressible irL is expressible ih.’. Define
=4 and<y in the standard way.

Let C be a complexity class [14, 31]. We say thataptures at leas€C over
XK, if each C-decidable property ové can be expressed by a sentence ftom
the vocabulary ofr. We say that theuery complexityf L overX is in C, if for
every sentence in L in the vocabularyr, the propertyll, overX is decidable in
C. Here it should be borne in mind, that the size¢a$ constant. The complexity
of I1, is measured solely by the size of the structures. FinaljyilsatL captures
C overX, if L captures at least C ové¢ and the query complexity df overX
isin C.

Following the reviewer’s suggestion we tag presented grobélready published results, that
differ from the ones given in the literature, with our name.



Descriptive complexity began witkagin’s Theoremin which the complexity
class NP is captured.

Theorem 3 ([11]). Over graphs¥; capturesNP.

The result can be extended so as to hold for arbitrary strestef. [26]. Blass
and Gurevich [5] drew upon the connection with Henkin qu&rs and obtained
thatH captures NP. This result is readily obtained in virtue offted thatH = X2,
due to [10, 44]. The remainder of this section is dedicatdt¢alescriptive com-
plexity of H*.

For future reference, we lay down an easy Prenex normal fesult:

Proposition 4. EveryH*-sentencep is equivalent to arH*-sentence of the fol-
lowing form:

ilH(l)Xl A= = H(n)Xn lﬂ,

where; € {—, ==} andy is first-order.

Proof. A standard inductive proof $ices, the only non-trivial case being the
conjunction. ButHu)x ¢1(X) A He)y ¢2(y) is easily seen to be equivalent to
HyXHe)z (¢1(X) A ¢2(2)), wherez is a string of variables none of which appear in
X. m|

Our main observation concerns the computational compgi@fitH*, that is
associated with the complexity clas8”B This denotes the class of properties
decidable in deterministic polynomial time with the helpaof NP-oracle that can
be asked a polynomial number of queries in parallel only orntiee action of
querying the oracle takes only one time step. Furth&?,d@ntains those prob-
lems decidable in deterministic polynomial time with an Biacle. Some grasp
a complexity class best by its complete problems, thatsspribblems to which
every problem in the complexity class can be reduced (by sweha polynomial
time, many one reduction). Wagner [42] showed that the gm@pperty of having
an odd chromatic number i§'Rcomplete. Denote the class of graphs with an odd
chromatic number by tb-coLor.

Theorem 5 ([17]). The query complexity ¢i* is in PP,

Proof (M. Sevenster)lt suffices to show that for aH*-sentence in the vocab-
ulary o, deciding whethes is true on a finiter-structurel can be done in .

2Gottlob’s [17] theorem is cast in terms of LOGSPA¥Ethat is, the class of problems decid-
able in logarithmic space with an NP-oracle. Recall that ISBECE'® = PP, due to [43].



First we describe an algorithm that computes whethés true on2. There-
after we observe that this algorithm can be implemented amiad machine that
works in PP,

As for the algorithm, due to Proposition 4 we may assume withass of
generality thaty has the form:

£1H@X1 . . . £n HiyXn ¥(X),

wherey is a first-order formula over the variablgs= xi,...,X,. Let the al-
gorithm start & by writing down all variable assignments A%, and label every
such assignmemtwith trueif (2, a) = ¥(x), andfalseotherwise. Note that conse-
guentlyy’s truth conditions ol are completely spelled out. Singas first-order
this can be done in LOGSPACE.

Puti = nandy;,; = ¢. For everyi from n through 1, proceed as follows for
iiH(i)Xi in ¢:

e Write down all assignments ixv-%i-1,
e Forevery assignmeate A*-*-1 ask the oracle whethe¥, a) = HX; xi:1-

e Labela with true if the answer of the oracle was positive agd= —— or
the answer was negative ard= —; otherwise label ifalse

ments fully specify the truth conditions gf(xs, ..., Xj_1); that is, lety; be
the formula that holds of an assignmenon 2 if and only if a is labeled
true.

Finally, upon arriving anh = 0, if the empty assignment is labelade the algo-
rithm accepts the input; otherwise, it rejects it.

By means of an elementary inductive argument this algoritamlze shown
correct.

Apart from consulting the oracle, this algorithm runs inyyamial determin-
istic time: enumerating all assignments ouéterations takes at most|A¥| steps,
which is clearly polynomial in the size of the inpyj?)||, because the number of
variables inx is constant. Sincél captures NP it is dticient (and necessary)
to employ an NP-oracle. This renders the algorithm Y, Bince the number of
gueries are bounded by the polynomially manfedent assignments. Yet, this re-
sult can be improved, since per iteration the oracle can leasty be consulted in
parallel. So the algorithm needs a constant numbarmpafrallel queries to the NP-
oracle. (Recall that the size ¢fis constant.) In [6] it was shown that a constant
number of rounds of polynomially many queries to an NP-&a&slequivalent to
one round of parallel queries. Therefore, the algorithsisifP'". O



LetH* be thefirst-order closureof H. That is, the closure dfl under boolean
operations and existential quantification (but not undepliegtion of Henkin
guantifiers). More formallyH* is generated by the following grammar:

¢ = Yl-¢lovelIxe,

wherey ranges over thél-formulae. The first-order closure of (fragments of)
¥1 was taken up in [2]. In this publication, the authors obseha the first-
order closure ok captures [, on linear ordered structures. Siride= 1, the
following result follows directly.

Proposition 6. Over linear ordered structures}* capturesP?,

Itis readily observed from the languages’ grammars thatyesentence i ™*
is a sentence ik* as well. Therefore, for every class of structuédH* <4 H*.
This is actually the last step we have to make to establisimgia result.

Theorem 7 ([17]). Over linear ordered structure$)* capturesP\".

Proof (M. Sevenster)Let L denote the class of linear ordered structures. By The-
orem 5 we have thati*'s query complexity is in [, also overL. It remains to

be proved therefore that* captures at least¥P. To this end, lefl be an arbitrary
PNP-decidable property ovet. In virtue of Proposition 6, we obtain that there
is a sentence from H* that expresseH over L. As we concluded right before
this theorem, for every class of structut€s H* <4 H*. So in particular it is
the case thatl* <, H*. Whence[l is expressible irH* as well, and the claim
follows. ]

We wish to warn the reader who is about to jump to conclusidiesibparal-
lel computation and partially ordered quantification. Atedly, the complexity
class PP is based on parallel Turing machines and it is captured hyon linear
ordered structures. However, this does not mean that vegitysingleH-formula
Hx ¢ can be done by parallel means, as this requires ‘simply’ amfdEhine. The
parallel way of computing comes irffect only when we compute the semantic
value of severaH-formulae at the same moment in time. For instancExit(y)
is anH-formula with one free variablg, then verifying all of

(W ag) EHxpy) ... (Wam E HX¢(Y)

for objectsay,...,an € A, can be done in one round of parallel queries to an
NP-oracle. Itis this principle that underlies the fact tHats query complexity is
in PP,

On the other hand, it is noteworthy that the very fact that lgnmomial num-
ber of parallel queries $ilice is due to the fact thad*-formulae do only contain



first-order variables. This, namely, makes iffiazient to spell out all variable as-
signments, simply being tuples of objects, and to compwddimula’s semantic
value with respect to this list. By contrast, if one wisheseafy a second-order
formula likeAXYY3Z ¢ on a structure, spelling out variable assignments amounts
to checking triples oSubset®f tuples of objects. Interestingly, full second-order
logic captures th@olynomial Hierarchy whereasH* ‘gets stuck’ at BP. In this
sense Theorem 5 provides the computational upper-bourattdity ordered, yet
first-order, quantification.

One way to appreciate the fact that the logits andH* coincide on linear
ordered structures is by means of thenkin depttof H*-formulae:

hd(¢) = 0, for first-orderg
hd(-=¢) = hd(¢)
hd(¢ vy) = maxhd(¢), hd(y)}
hd(@x¢) = hd(¢)
hd(H*x ¢) = hd(¢) + 1,

readingH%x; ... X, as3ax; ... Ix,.

Clearly everyH*-sentence has a Henkin depth of at most one. Therefore,
by Theorem 7 we get that for eveky*-sentencep there exists amd*-sentence
¥, such thathd(y) < 1 and on the class of linear ordered structugesnd y
define the same property. Puttdrently, on linearly ordered structures granting
Henkin quantifiers to nest does not yield greater expregsivweer. Gottlob proves
an even stronger normal form fét* on linear ordered structures. In Gottlob’s
terminology, arH*-sentence is in Stewart normal formif it is of the form

X (Hay ¢1(X,y) A ~Hxz ¢2(X, 2)) .,

where ¢, and ¢, are first-order. This normal form is inspired by the work of
Stewart [36, 37], hence the name. Clearly the Henkin deptiverfyeformula in
Stewart normal form is at most one. Gottlob proves that orclass of linear or-
dered structures for evely*-sentence there exists ahl*-sentence in Stewart
normal form, that expresses the same property.

This result cries out for anfiactive translation procedure froRr into H* of
course, but unfortunately we cannot provide it. The trai@iehinges on finding
a way of reducing the number of Henkin prefixes in a quantifieck It gives
some insight in the problem to show that

Yu, dvq VX1 Elyl
( Yu, v, )( YXo 3y2 )¢ (3)



is equivalent to
Yu, v
Yu, v,
Yu; Yu, VX Hy]_
Yu; Yu, VX Hyz

. (4)

see also [5]. But the real challenge is to find a way to handlatiags appearing
in between Henkin prefixes, making use of the finiteness osth&ture and its
linear order.

Dawar, Gottlob, and Hella [7] raise the question whetiecaptures [¥ over
unorderedstructures. Surprisingly, it turns out thdt does not capture in the
absence of a linear order, unless thegponential Boolean Hierarchgollapses,
amongst other hierarchies. In complexity theory the cslapf this hierarchy is
considered to be highly unlikely.

Further still, a study by Hyttinen and Sandu [25] impliesttbssentially one
has to make use of the finiteness of the structures. Consigléodical languages

Hf = H
Hy first-order closure oH}
H. . {Hx ¢ | ¢ € H.}.

Clearly the Henkin depth of any sentence frekhis k, and{ J, Hy = H*. The au-
thors prove that on the standard model of arithmetic thedaggH}, , has strictly
stronger expressive power thei, for everyk > 1.

For the sake of concreteness, consider the propestydoLor over graphs.
By Theorem 7, the similar property over linear ordered graphexpressible in
H* (andH*). Alinear ordered grapth is a structuréG, R®, <®) such thatG, R®)
is a graph and"” is a linear order oi. We claim that: expresses fb-coLor 0N
linear ordered graphs, whefes

Ax; A%, (EVE'\KXz) A SUC(Xl, X2) A COLORXZ) A ﬂCOLOF{Xl))

In &, EVENIs the predicate that holds for exactly those objects treeaen with
respect to<, and SUC holds for every pair of objectg;, X, such thatx, is the
immediate<-successor ok;. EVENandSUCare clearly expressible iB; and
consequently ifd. Intuitively, COLORNholds for all objects< such that the graph
at hand isn-colorable, whera is the number of objects-precedingx. Formally,
we defineCOLORYX) as follows:

( Yy dz

v 3)M=M*@=@AWWMQQ¢EA@K@A@<&
Y2 %



in spirit akin toZ. We leave it for the reader to check thatndeed expresses
Obb-coLor. Itis readily observed th@tcan be cast astd*-sentence, thatis not in
Stewart normal form. Yet by the Prenex normal form resulbp®sition 4, we can
extract the Henkin quantifiers froEBVENX,), SUQ Xy, X,) andCOLORx,), and
obtain an equivalent formula of the fory;)xH)yH(s)z . . .. By merging these, as
we got from (3) to (4), we get an equivalent formula with onenkia quantifier
Heyu. ... The formula that results after replaciHgyu . . . in £ is in Stewart normal
form.

5 Concluding remarks

As we hoped to have shown, Henkin’s idea has exciting maaifess in game
theory, model theory, and computational complexity. Edd¢hese manifestations
shows a dierent face of the Henkin quantifier: interaction in the aloseof full
information, expressive power on formal structures, agor@hmic verification.
Our results provide another instance when the disciplinestake are strongly
intertwined. Our Propositions 1 and 2 are cases in point. Botithedly, our ap-
proach was not highly systematic. We meandered from noardivendedness to
absentmindedness, and from partially ordered quantidicaty Partial Informa-
tion logic. Improving our understanding of the sparklingerfiace of logic and
game theory is definitely worthwhile.

For instance what kind of game-theoretic underpinning cargive forH*?
What does its game-theoretic semantics look like? And camytom inspire us to
define aninteractive protoco[16] kind of computing device that compute¥™P
After all, interactive protocols are games with imperfefbrmation.

An intriguing question was raised in [15] related to the @émtodel theory of
Carnap’s first-order modal logi€. It is shown that even over finite structures,
C < H*, but what complexity class is actually captured®ys left as an open
question. To this problem we may add the issue of developiggnae-theoretic
foundation forC.

Finally we mention a game-theoretic gap that needs to bd fii¢he interest
of logic and descriptive complexity. We used the computatioesult saying that
every constant series of parallel queries can be reducedete@ssion of parallel
gueries [6]. The logical face of this theorem is flaness resutholding that over
linear ordered structuresH*-sentence of arbitrary Henkin depth has an equiva-
lentH*-sentence of Henkin depth at most one. The question arisaswduld be
the game-theoretic face of the aforementioned flatnes# resparticular in the
realm ofmodel comparison gamesla Ehrenfeucht and Fraissé [9, 13]. Model
comparison games are typically used to prove that some gyoijgenot express-
ible in alogic. As such they are tools par excellence to sgpadP from coNP, for



instance. Although considerable progress has been maalg lese lines [2, 12]
the big questions from complexity theory are still unan®delA fertile approach
to prove non-expressibility results is to simplify modehgearison games, in or-
der to develop a library of intuitive tools for separatingiles, cf. [1, 3]. Along
these lines the flatness result concerning Henkin quarstifirety give rise to less
complicated, but powerful, games.
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