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Abstract

In this paper, we study the game-theoretic and computational repercus-
sions of Henkin’s partially ordered quantifiers [19]. After defining a game-
theoretic semantics for these objects, we observe that tuning the parameter
of absentmindedness gives rise to quantifier prefixes studied in [28]. Inthe
interest of computation, we characterize the complexity class PNP

q
in terms

of partially ordered quantifiers, by means of a proof different from Gottlob’s
[17]. We conclude with some research questions at the interface of logic,
game theory, and complexity theory.
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1 Setting the stage

Henkin’s partially ordered quantifier prefixes were initially introduced as a math-
ematical exercise [19], but have ever since been the subjectof lively discussion
in various disciplines. In linguistics, Hintikka [20] and Barwise [4] argued that
partially ordered orbranchingquantifiers should be added to the linguist’s tool-
box to give certain natural language expressions their correct logical form. Sandu
and Hintikka [21, 23, 33] imported the idea of a partial dependence relation be-
tween quantifiers in first-order logic, resulting inIndependence Friendly logic.
Independence Friendly logic has congenially been given a semantics in terms of
games with imperfect information. The partiality of information—i.e., imperfect
information—present in these games can be seen to reflect thepartial ordering of
the quantifiers.

In this paper we aim to show some of the repercussions of Henkin’s exercise
from a game-theoretic and (finite) model-theoretic angle. Game theory has pene-
trated logic successfully, providing an interactive and goal-oriented viewpoint on
concepts in logic. The game-theoretic viewpoint allows us to compare logics in
terms of the interaction, goals and knowledge.

In Section 2, we introduce logics with Henkin quantifiers andrecall their
model-theoretic behavior.

In Section 3, we show that Henkin quantifiers are played by agents with a
limited number of memory cells, whereas first-order logic isplayed by Eloise
enjoying an infallible faculty of memory.

In Section 4, we give a finite model-theoretic account of Henkin quantifiers.
Finite model theory is the model-theoretic face of complexity theory, and provides
a neat algorithmic view on Henkin quantifiers.

Section 5 concludes the paper.

2 Logic

Henkin’s novelty in the theory of quantification is nowadaysknown under the
header ofHenkin quantifier. A Henkin quantifier is a two-dimensional object of
the form
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, (1)

wherexi = xi1, . . . , xik. Henceforth, a string of variables is referred to by using the
obvious symbol boldfaced.

With every Henkin quantifier (1) is associated itsdimensions nandk. In the
interest of space, we abbreviate the Henkin quantifier (1) asHk

nxy. If no con-



fusion threatens, we may also skip the variables and the integers indicating the
dimensions, and simply writeHk

n andH. To identify a Henkin quantifier without
referring to its dimensions, we writeH(i).

The two-dimensional way of representation aims to convey that the variable
yi depends onxi and onxi only. This is formalized by means of the notion of
Skolem function, that underlies its semantics. Let|= be the satisfaction relation
properly defined for the formulaφ(x, y) on the structureA. Then,|= is extended in
the following way:A |= Hk

n φ(x, y) iff there existk-ary functionsf1, . . . , fn on the
universe ofA such that

A |= ∀x1 . . .∀xn φ(x1, . . . , xn, f1(x1), . . . , fn(xn)).

Note that the quantifierH0
1x has the same semantics as the quantifier∃x, and that

H0
i is elementary definable for everyi ≥ 1.

In this paper, we are interested in two logics featuring Henkin quantifiers. The
first one, denotedH, contains all strings of the formHk

n ψ, whereψ is first-order
andn andk are arbitrary integers. The second logic’s formulae are generated by
the following grammar:

φ ::= ψ | ¬φ | φ ∨ φ | ∃x φ | Hk
n φ,

whereψ is first-order andn andk are arbitrary integers. Let us refer to the latter
logic by H∗.

For a thorough introduction to the logicsH andH∗ and their model-theoretic
behavior, we refer the reader to [27].

The set of free variablesFree(φ) in theH∗-formulaφ is inductively defined by
the clauses that define the set of free variablesFree(ψ), for first-orderψ, plus the
clause

Free
(

Hk
nx11 . . . xnky1 . . . yn φ

)

= Free(φ) − {x11, . . . , xnk, y1, . . . , yn}.

An H∗-formula without free variables is called asentence. The satisfaction rela-
tion for formulae with free variables is defined in the standard way using assign-
ments.

As an illustration of the expressive power ofH, consider the following sen-
tence:

ζ =

(

∀x1 ∃y1

∀x2 ∃y2

)

∃z1∃z2∃z3 (φ1 ∧ φ2 ∧ φ3),

where

φ1 = (x1 = x2)→ (y1 = y2)

φ2 = R(x1, x2)→ (y1 , y2)

φ3 =
∧

i∈{1,2}

∨

j∈{1,2,3}

(yi = zj).



LetG be a graph whose edges interpretR. Then by definition,G |= ζ iff for two
unary functionsf1 and f2 on the universe ofG, (1) f1 and f2 are the same; (2) ifx1

andx2 are joined by an edge, thenf1(x1) , f2(x2); and (3) the range off1 and f2
is restricted toz1, z2, z3. All in all, we see thatf1 (or f2 for that matter) is a witness
of G |= ζ iff it is a3-coloringof G.

The semantics for Henkin quantifiers overtly mentions functions, that reflect
the (in)dependence relation between the universal and existential quantifiers car-
ried by the Henkin quantifier. Bearing this in mind, it is quitestraightforward to
show that the truth condition of any sentence fromH can be expressed in second-
order, existential logic, symbolicallyΣ1

1. It is a milestone result in the theory of
partially ordered quantification that the converse holds aswell: When it comes to
expressive power,H andΣ1

1 are equivalent, cf. [10, 44]. It was shown [10] that
everyH∗-sentence is equivalent to a sentence inΣ1

2 and a sentence inΠ1
2. This

finding rendersH∗ translatable into∆1
2. Mostowski [29] showed that the converse

does not hold: there is a sentence in∆1
2 that has no equivalent inH∗. These results

invariably apply to structures of arbitrary cardinality. In case one restricts oneself
to finite ordered structures, a very nice computational characterization ofH∗ can
be given, see [17] and also Section 4 of the current publication.

3 Games

There is a respectable tradition in logic to give game-theoretic accounts of con-
cepts in logic. An early case in point are Lorenzen-styledialogue games. They are
typically two-player games between Proponent and Opponent. Dialogue games
aim to give a game-theoretic underpinning of the concept of proof. That is, a for-
mulaφ is provable in a logical system if, and only if, the Proponenthas a way of
playing the dialogue game ofφ for the logical system at hand that wins against
every way of playing by Opponent. In the game-theorist’s parlance, we say that
Proponent has awinning strategy.

So-calledgame-theoretic semanticswas introduced by Hintikka giving a game-
theoretic account of truth. For instance, consider a toy fragment of first-order
logic, containing only strings of the form

Q1x1 . . .Qnxn R(x),

whereQi ∈ {∃,∀}. Being a fragment of first-order logic, Tarski-semantics is
properly defined for this toy language. But the Tarskian satisfaction relation can
also be given a game-theoretic face, yielding games betweenEloise and Abelard.
To this end, letA be a structure that interprets the predicateRand let thesemantic



gamefor a formulaφ from the toy language onA start from the position〈φ,A〉.
The proceedings of this game are determined by the followinggame rules:

• If the position is〈∃xi φ,A〉, Eloise picks an objectai from the universe of
A, and the game continues as〈φ,A〉.

• If the position is〈∀xi φ,A〉, Abelard picks an objectai from the universe of
A, and the game continues as〈φ,A〉.

• If the position is〈R(x1, . . . , xn),A〉, the game ends. Eloise wins if the tuple
〈a1, . . . ,an〉 that was built up during the game stands in theR-relation inA;
otherwise Abelard wins.

The adequacy of the semantic games for the toy language, is typically cast
as follows. For every formulaφ and suitable structureA, A |= φ iff Eloise has a
winning strategyin the semantic game ofφ onA. As the reader acknowledges if
we extend the toy language with connectives, negations, onealso has to extend
the set of game rules (and possibly tweak the current one) to maintain adequacy
of the game-theoretic semantics with respect to the new logical system.

By this token it becomes clear that classes of semantic games should not be
conceived of as objects floating in limbo. Just as one can compare the properties
of two logical systems by means of model-theoretic means, one can compare the
semantic games they give rise to. Again, Lorenzen’s dialogue games are a case in
point. A lively debate was held about the viability of the dialogue games for first-
order logic in contradistinction to the dialogue games for Brouwer’s intuitionistic
logic. Some held the conviction that dialogue games for intuitionistic logic are
‘more natural’ than the ones for first-order logic, and took this as an argument in
favor of Brouwer’s system, cf. [41].

From the same viewpoint, the move from first-order logic to Independence
Friendly logic can be appreciated. From a purely game-theoretic angle, Hintikka
and Sandu [21, 23, 33] generalized the semantic games for first-order logic so as to
incorporate imperfect information. In our view, this very argument may count as
a motivation for Independence Friendly logic in itself. Whatexactly is the influx
of the imperfect information in semantic games for Independence Friendly logic
is a hard question, and definitely a topic for future research. As we pointed out,
the idea of partial dependence relation over quantifiers in Independence Friendly
logic has its precursor in Henkin’s work. So from this angle alone it is worthwhile
to develop at least some understanding of the game-theoretic face of Henkin quan-
tifiers, involving imperfect information.

For the sake of simplicity let us restrict ourselves toH-formulae in which the
first-order part is atomic. On this assumption, the game rules for the semantic



game of theH-sentence

Hk
nx11 . . . xnky1 . . . yn R(x, y)

are simply the ones for the semantic game for

∀x11 . . .∀x1k∃y1 . . .∀xn1 . . .∀xnk∃yn R(x, y).

But as the latter sentence is a sentence from our toy language,the game seems to
have become a game with perfect information as before.

How can this be?
On second thought, it turns out that we have been a bit careless when introduc-

ing the semantic games for the toy language. Surely we gave the players eloquent
names, but omitted to specify the players are such that the semantic games in
which they participate would actually be modeled as games with perfect infor-
mation. It would have made little sense, for instance, to declare that we think
of Eloise as a cauliflower. It’s not that cauliflowers cannot be regarded as game-
theoretic agents, witness the literature on evolutionary game theory. Rather, had
we done so modeling the semantic game of a formula from the toylanguage as a
game with perfect information would be counterintuitive, to say the least.

To be on the safe side, we’d better postulate that Eloise has an infallible faculty
of memory.

The imperfect information in semantic games forH-sentencesHk
n R(x) can be

seen to be brought into being by assuming that each agent has exactly k memory
cells. Henceforth, we shall assume that agents govern thesememory cells in a
first in first outmanner. In unison, these assumption imply that when the agent is
deciding on an object foryi, it knows only the objects picked up over thek previous
rounds, that is, the objects assigned toxi1, . . . , xik. Furthermore, I postulate that
this agent is notabsentminded, that is, it knows in which round of the game it
is. This postulate implies that when choosing an object to assign toyi the agent
knows that the object selected will be assigned toyi and not to, say,yi+1 or yi−1.

In this manner, everyH-sentenceφ = Hk
n R(x) and structureA give rise to a se-

mantic game that would be modeled as anextensive game with imperfect informa-
tion, call it Sem-gameH(φ,A). An extensive game with imperfect information is a
rigorous mathematical object〈N,H,P, 〈Ii〉i∈N,W〉, well-known from game theory
[30]. N is the set ofplayers. H is the set ofhistories—all permissible sequences
of actions in the game.P is theplayer functiondeciding which playerP(h) ∈ N is
to move at historyh. Ii is a partition of the histories in which playeri is to move,
modeling the imperfect information.W is thewin function, that decides who has
won when the game has come to an end.

In the context ofφ andA, the setH equals
⋃

0≤i≤((n·k)+n)

Ai ,



whereA is the universe ofA. With every historyh ∈ H of length ((n·k) + n)—i.e.,
terminal history—we straightforwardly associate an assignment functionah to the
variablesx11, . . . , xnk, y1, . . . , yn.

Sem-gameH(φ,A) can be regarded as a tree structure—agame tree—defined
by the prefix relation onH. The game tree is decorated byP.

The setIi contains all sets of histories that are indistinguishable for our k-
cell, non-absentminded agent (first in first out, remember).The particulars of
the agent at hand uniquely determineIi. That is, h,h′ ∈ I ∈ Ii if, and only
if, h and h′ are equally long (non-absentmindedness) and the lastk elements
of h and h′ coincide (k-cell and first in first out). Clearly,W(h) = Eloise iff
〈ah(x11), . . . , ah(xnk), ah(y1), . . . , ah(yn)〉 is anR-tuple inA.

Any functionS : Ii → A is a strategy for playeri in Sem-gameH(φ,A). Say
that a strategy for playeri is winning, if i following the strategy at each ofi’s
moves only results in terminal historiesh such thatW(h) = i,

Let φ = Hk
n R(x) and letA be a structure interpretingR. Let Sem-gameH(φ,A)

be the extensive game with imperfect information modeling the semantic game of
φ onA played by ak-memory cell agent.

Proposition 1. For everyH-sentenceφ = Hk
n R(x) and structureA interpreting

R, a non-absentminded agent with k memory cells has a winning strategy in the
semantic game Sem-gameH(φ,A) iff A |= φ.

Proof. The proof is straightforward once one notices that a series of Skolem func-
tions f1, . . . , fn witnessingA |= φ encodes a winning strategy inSem-gameH(φ,A),
and vice versa. �

It was observed in [27, pg. 223] that manyH-sentences appearing in the liter-
ature express the existence ofonesingle function on the universe. The sentence
ζ that expresses 3-colorability of graphs we discussed earlier is a case in point.
In the same vein many other interestingH-sentences sit in a certain fragment of
H, that was studied in [28]. This particular fragment is defined by thefunction
quantifierFk

n, that binds the variablesx11, . . . , xnk, y1, . . . , yn, just like the Henkin
quantifier with dimensionsn andk. (We will adhere to the same notational con-
ventions as with Henkin quantifiers.) The logicF is defined to be the language
containing all strings (sentences) of the form

Fk
n x1 . . . xny1 . . . yn R(x1, . . . , xn, y1, . . . , yn), (2)

wherexi = xi1, . . . , xik as before andR is an atom. As regards its semantics, any
formula (2) is true on a structureA interpretingR iff there existsone single k-ary
function f on the universe ofA such that

A |= ∀x R(x1, . . . , xn, f (x1), . . . , f (xn)).



Henkin quantifiers differ from function quantifiers in that the former allow for
multiple functions f1, . . . , fn, whereas function quantifiers allow for only one.
For a model-theoretic comparison of logics with Henkin quantifiers and function
quantifiers see [18, 28].

From a game-theoretic point of view, we show that the move from Henkin
quantifiers to function quantifiers resembles to imposing absentmindedness on
our k-cell agent playing according to the game rules of the semantic game of
∀x1∃y1 . . .∀xn∃yn R(x, y) onA. So in particular the game rules for the sentence

ψ =

(

∀x1 ∃y1

∀x2 ∃y2

)

R(x, y),

where

R(x, y) = (x1 = x2→ y1 = y2) ∧ (y1 = x2→ y2 = x1) ∧ (x1 , y1).

on the structureB would be equal to the ones for∀x1∃y1∀x2∃y2 R(x, y). (The sen-
tenceψ characterizes the finite structures whose universes have even cardinality,
see [35].) Considering an absentminded 1-cell agent, we see that during neither of
his rounds it knows whether the object it choses will be assigned toy1 or y2; it is
aware of the last action though. So in particular ifa,b, c are three different objects
from the universe ofB, it cannot tell apart the histories〈a,b, c〉 and〈c〉. On the
other hand it can distinguish〈c〉 from 〈a〉 and〈c,b,a〉.

Just as we had withH, if φ is anF-sentence letSem-gameF(φ,A) be the ex-
tensive game with imperfect information that models an absentminded agent with
k memory cells in the latter game. In particular inSem-gameF(ψ,B) there is an
information partition containing both〈a,b, c〉 and 〈c〉, but not 〈a〉 and 〈c,b,a〉.
Generally speaking, in these extensive games with imperfect information forF,
two historiesh andh′ sit in the same information partition, if the lastk elements
in h andh′ coincide. However as we saw before,h andh′ need not be of equal
length.

Proposition 2. For everyF-sentenceφ = Fk
n R(x) and structureA interpreting R,

an absentminded agent with k memory cells has a winning strategy in the semantic
game Sem-gameF(φ,A) iff A |= φ.

The reader may wonder, what’s next? Well, in the same vein onemay restrict
the agent’s powers to an even greater extent and supply it with a fixed array of
actions. Recall that in the semantic games forH andF the agents pick up their
actions from the universe of the structure at hand, that has unbounded cardinality.
If we consider the agent to be non-absentminded and in possession of a fixed
and finite number of actions, it is capable of ‘playing Henkinquantifiers with
restricted quantifiers’, see [5, 34, 35]. To the best of my knowledge the logic that



is played by absentminded agents with a limited number of memory cells and a
fixed number of actions has not been studied.

In semantic games forH, thek-cell agent is supposed to recall only the lastk
variables. This undoubtedly is an assumption without theoretical backing. Hin-
tikka and Sandu [21, 23, 33] overcome this needless restriction by introducing the
/ item in first-order logic, to indicate knowledge of a variable or absence thereof.
The resulting system is the Independence Friendly logic we spoke of earlier. In
this logic, the sentence

∀x1(∃y1/{x1})∀x2(∃y2/{x2}) R(x, y)

gives rise to games in which Eloise does not knowx1 when deciding fory1; but she
recollects it when she is to decide fory2. Given the syntactic formation rules of In-
dependence Friendly logic, one infers rather straightforwardly that everypattern
of ignoranceconcerning objects previously played can be accounted for.That
is, if we have a first-order formulaφ in whose semantic games the occurrence
of ∃x triggers a move for Eloise informed aboutx1, . . . , xn, then the/ item al-
lows one to limit the knowledge of Eloise to any subset of{x1, . . . , xn}. From this
game-theoretic perspective Independence Friendly logic truly is the imperfect in-
formation generalization of first-order logic. But note thatsome sentences from
Independence Friendly logic give rise to games that are hardto actually play, as
they violateperfect recall, cf. [8, 40, 41]. A perfect information approach to
Independence Friendly logic was pursued in [38].

Even more delicate flows of information were studied in thePartial Informa-
tion logic by Parikh and Väänänen [32] whose formulae give rise to imperfect
information games in which Eloise may be partially informedabout the previous
actions. In semantic games for the first-order formula∀x∃y R(x, y), for instance,
Eloise knows the object assigned tox. In Partial Information logic, the formula
∀x(∃y// f (x)) R(x, y) typically gives rise to a semantic game in which Eloise is not
aware ofx, but she is cognizant off (x). So in case the functionf maps every
object onx itself Eloise is aware ofx after all. But f may just as well return
1 if x is even and 0 otherwise. In this manner, ifP is a predicate, the formula
χ = ∀x(∃y//P(x)) (x , y) gives rise to games in which Eloise does not knowx, but
she knows whether Abelard chose aP-object. The formulaχ can thus be seen true
on any structure in which there is aP-object and a non-P-object. Under specific
conditions on the nature of the functions appearing at the right-hand side of the//
device, Partial Information logic is a decidable fragment of first-order logic.

It has been pointed out by various authors [22, 24, 41] that weare not really
interested in the actual game playing of semantic games. To the ends we employ
them it is very much indifferent what strategy is used, for instance, and whether
the game is actually played in a platonic universe. Instead we are interested in the



statements we can truthfully makeaboutthese games, in particular in the existence
of winning strategies. There is one viewpoint from which this difference becomes
clear, that we will highlight. There is a discrepancy between the complexity of
the players and the complexity of the statements we make about them, or—more
precisely—the expressive power of the logic required to express the winning con-
ditions of Eloise. We saw that Eloise enjoys an infallible faculty of memory in the
semantic games for first-order logic, or the toy fragment thereof. Yet, ipse facto,
it takes the first-order sentenceφ to express whether Eloise has a winning strategy
in the semantic game ofφ on any structure. On the other hand, we hired an agent
with a limited number of memory cells to play the semantic games forH. As was
pointed out in [10, 44], here we have to resort to the expressive power of fullΣ1

1!
Note that such a discrepancy does not always occur. For instance, limit at-

tention to 0-cell agents, i.e., agents that don’t see any of their opponent’s actions.
Then, Henkin quantifiers that are playable by such an agent look like
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,

and are clearly defined by the first-order prefix∃y1 . . .∃yn.
There is no a priori reason to stick to expressive power as thesingle measure of

complexity. Van Benthem [39] takes up the axiomatization of game models with
imperfect information, and needsextraaxioms to enforce perfect information. Yet
the axiom system seems to get more simple whenk-cell agents are considered.

4 Computation

Fagin [11] gave birth to the area of descriptive complexity,revealing an intimate
connection between model theory and the theory of computation. Descriptive
complexity concerns itself with connecting up logical languages and complexity
classes. This enterprise departs from the insight that withevery logical sentence
there is a computational cost associated to verifying its semantic value on an arbi-
trary finite structure; and the other way around, that the particulars of a computing
device can be described in logic. The hope is that hard questions from complexity
theory (think of P versus NP and NP versus coNP) can be solved by separating
the logics they are associated with, see also Section 5.

In this section we will take up the descriptive complexity analysis ofH∗. This
will give us an algorithmic view on Henkin quantifiers. Furthermore it gives some
insight in the way partially ordered quantifiers manifest themselves in the theory
of computation. A more general variant of Theorem 7 from thissection appeared



in an excellent paper by Gottlob [17]. The references we use do not build on any
of Gottlob’s results nor on his main references.1 An independent proof, that is.
The descriptive complexity ofH∗ was raised as an open problem in [5].

First we give a recap of the basics of finite model theory and descriptive com-
plexity.

Letσ be a finite set of relation symbols—avocabulary—each of which comes
with an integer, itsarity. Every vocabulary contains the binary relation symbol=.

Let aσ-structureA be an object of the form〈A, 〈RA〉R∈σ〉, whereA is the uni-
verse ofA andRA ⊆ Aa, for a the arity ofR. The symbol= is rigidly evaluated
as the identity relation. If< ∈ σ, then<A shall be a linear order onA, andA is
called alinear ordered structure. If A is finite,A is called afinite structure. Here
and henceforth, all discussion will be restricted to finite structures unless indicated
otherwise.

Sometimes when we writeA we actually meanthe binary encoding ofA. We
refer the reader to Immerman’s textbook [26], in which a detailed account is given
of how one can encode structures in binary. For our ends, it suffices to take notice
of the fact that the length of the binary encoding of aσ-structureA, symbolically
‖A‖, is of sizeAc, for some constantc depending onσ.

Let K be a class ofσ-structures. ApropertyΠ overK is a function assigning
a truth valueΠ(A) ∈ {false, true} to every structureA from K. Let L be a logic,
i.e., a set of sentences, for which the satisfaction relation |= is defined. Every
L-sentenceφ defines a propertyΠφ onK, where

Πφ(A) = true iff A |= φ,

for everyA ∈ K. We say thatφ andL expressΠφ. So the sentenceζ expresses the
graph-property of 3-colorability.

Let L andL′ be two languages over the same vocabulary. Then, writeL ≤K L′

to indicate that every property overK expressible inL is expressible inL′. Define
=K and<K in the standard way.

Let C be a complexity class [14, 31]. We say thatL captures at leastC over
K, if each C-decidable property overK can be expressed by a sentence fromL in
the vocabulary ofσ. We say that thequery complexityof L overK is in C, if for
every sentenceφ in L in the vocabularyσ, the propertyΠφ overK is decidable in
C. Here it should be borne in mind, that the size ofφ is constant. The complexity
of Πφ is measured solely by the size of the structures. Finally, say thatL captures
C overK, if L captures at least C overK and the query complexity ofL overK
is in C.

1Following the reviewer’s suggestion we tag presented proofs of already published results, that
differ from the ones given in the literature, with our name.



Descriptive complexity began withFagin’s Theorem, in which the complexity
class NP is captured.

Theorem 3 ([11]). Over graphs,Σ1
1 capturesNP.

The result can be extended so as to hold for arbitrary structures, cf. [26]. Blass
and Gurevich [5] drew upon the connection with Henkin quantifiers and obtained
thatH captures NP. This result is readily obtained in virtue of thefact thatH = Σ1

1,
due to [10, 44]. The remainder of this section is dedicated tothe descriptive com-
plexity of H∗.

For future reference, we lay down an easy Prenex normal form result.

Proposition 4. EveryH∗-sentenceφ is equivalent to anH∗-sentence of the fol-
lowing form:

±1H(1)x1 . . . ±n H(n)xn ψ,

where±i ∈ {¬,¬¬} andψ is first-order.

Proof. A standard inductive proof suffices, the only non-trivial case being the
conjunction. ButH(1)x φ1(x) ∧ H(2)y φ2(y) is easily seen to be equivalent to
H(1)xH(2)z (φ1(x)∧ φ2(z)), wherez is a string of variables none of which appear in
x. �

Our main observation concerns the computational complexity of H∗, that is
associated with the complexity class PNP

q
.2 This denotes the class of properties

decidable in deterministic polynomial time with the help ofan NP-oracle that can
be asked a polynomial number of queries in parallel only once. The action of
querying the oracle takes only one time step. Further, PNP contains those prob-
lems decidable in deterministic polynomial time with an NP-oracle. Some grasp
a complexity class best by its complete problems, that is, its problems to which
every problem in the complexity class can be reduced (by means of a polynomial
time, many one reduction). Wagner [42] showed that the graph-property of having
an odd chromatic number is PNP

q
-complete. Denote the class of graphs with an odd

chromatic number by O-.

Theorem 5 ([17]). The query complexity ofH∗ is in PNP
q

.

Proof (M. Sevenster).It suffices to show that for anH∗-sentenceφ in the vocab-
ularyσ, deciding whetherφ is true on a finiteσ-structureA can be done in PNP

q
.

2Gottlob’s [17] theorem is cast in terms of LOGSPACENP, that is, the class of problems decid-
able in logarithmic space with an NP-oracle. Recall that LOGSPACENP = PNP

q
, due to [43].



First we describe an algorithm that computes whetherφ is true onA. There-
after we observe that this algorithm can be implemented on a Turing machine that
works in PNP

q
.

As for the algorithm, due to Proposition 4 we may assume without loss of
generality thatφ has the form:

±1H(1)x1 . . . ±n H(n)xn ψ(x),

whereψ is a first-order formula over the variablesx = x1, . . . , xn. Let the al-
gorithm start off by writing down all variable assignments inAx, and label every
such assignmenta with true if 〈A, a〉 |= ψ(x), andfalseotherwise. Note that conse-
quentlyψ’s truth conditions onA are completely spelled out. Sinceψ is first-order
this can be done in LOGSPACE.

Put i = n andχi+1 = φ. For everyi from n through 1, proceed as follows for
±iH(i)xi in φ:

• Write down all assignments inAx1,...,xi−1.

• For every assignmenta ∈ Ax1,...,xi−1 ask the oracle whether〈A, a〉 |= H(i)xi χi+1.

• Label a with true if the answer of the oracle was positive and±i = ¬¬ or
the answer was negative and±i = ¬; otherwise label itfalse.

• Erase all labeled assignments fromAx1,...,xi and let the current list of assign-
ments fully specify the truth conditions ofχi(x1, . . . , xi−1); that is, letχi be
the formula that holds of an assignmenta on A if and only if a is labeled
true.

Finally, upon arriving atn = 0, if the empty assignment is labeledtrue the algo-
rithm accepts the input; otherwise, it rejects it.

By means of an elementary inductive argument this algorithm can be shown
correct.

Apart from consulting the oracle, this algorithm runs in polynomial determin-
istic time: enumerating all assignments overn iterations takes at mostn· |Ax| steps,
which is clearly polynomial in the size of the input,‖A‖, because the number of
variables inx is constant. SinceH captures NP it is sufficient (and necessary)
to employ an NP-oracle. This renders the algorithm in PNP, since the number of
queries are bounded by the polynomially many different assignments. Yet, this re-
sult can be improved, since per iteration the oracle can harmlessly be consulted in
parallel. So the algorithm needs a constant number ofn parallel queries to the NP-
oracle. (Recall that the size ofφ is constant.) In [6] it was shown that a constant
number of rounds of polynomially many queries to an NP-oracle is equivalent to
one round of parallel queries. Therefore, the algorithm sits in PNP

q
. �



Let H+ be thefirst-order closureof H. That is, the closure ofH under boolean
operations and existential quantification (but not under application of Henkin
quantifiers). More formally,H+ is generated by the following grammar:

φ ::= ψ | ¬φ | φ ∨ φ | ∃x φ,

whereψ ranges over theH-formulae. The first-order closure of (fragments of)
Σ1

1 was taken up in [2]. In this publication, the authors observethat the first-
order closure ofΣ1

1 captures PNP
q

, on linear ordered structures. SinceH = Σ1
1, the

following result follows directly.

Proposition 6. Over linear ordered structures,H+ capturesPNP
q

.

It is readily observed from the languages’ grammars that every sentence inH+

is a sentence inH∗ as well. Therefore, for every class of structuresK, H+ ≤K H∗.
This is actually the last step we have to make to establish themain result.

Theorem 7 ([17]). Over linear ordered structures,H∗ capturesPNP
q

.

Proof (M. Sevenster).Let L denote the class of linear ordered structures. By The-
orem 5 we have thatH∗’s query complexity is in PNP

q
, also overL. It remains to

be proved therefore thatH∗ captures at least PNP
q

. To this end, letΠ be an arbitrary
PNP
q

-decidable property overL. In virtue of Proposition 6, we obtain that there
is a sentenceφ from H+ that expressesΠ overL. As we concluded right before
this theorem, for every class of structuresK, H+ ≤K H∗. So in particular it is
the case thatH+ ≤L H∗. Whence,Π is expressible inH∗ as well, and the claim
follows. �

We wish to warn the reader who is about to jump to conclusions about paral-
lel computation and partially ordered quantification. Admittedly, the complexity
class PNP

q
is based on parallel Turing machines and it is captured byH∗, on linear

ordered structures. However, this does not mean that verifying a singleH-formula
Hx φ can be done by parallel means, as this requires ‘simply’ an NP-machine. The
parallel way of computing comes in effect only when we compute the semantic
value of severalH-formulae at the same moment in time. For instance, ifHx φ(y)
is anH-formula with one free variabley, then verifying all of

〈A,a1〉 |= Hx φ(y) . . . 〈A,am〉 |= Hx φ(y)

for objectsa1, . . . ,am ∈ A, can be done in one round ofm parallel queries to an
NP-oracle. It is this principle that underlies the fact thatH∗’s query complexity is
in PNP

q
.

On the other hand, it is noteworthy that the very fact that a polynomial num-
ber of parallel queries suffice is due to the fact thatH∗-formulae do only contain



first-order variables. This, namely, makes it sufficient to spell out all variable as-
signments, simply being tuples of objects, and to compute the formula’s semantic
value with respect to this list. By contrast, if one wishes to verify a second-order
formula like∃X∀Y∃Z φ on a structure, spelling out variable assignments amounts
to checking triples ofsubsetsof tuples of objects. Interestingly, full second-order
logic captures thePolynomial Hierarchy, whereasH∗ ‘gets stuck’ at PNP

q
. In this

sense Theorem 5 provides the computational upper-bound of partially ordered, yet
first-order, quantification.

One way to appreciate the fact that the logicsH+ andH∗ coincide on linear
ordered structures is by means of theHenkin depthof H∗-formulae:

hd(φ) = 0, for first-orderφ

hd(¬φ) = hd(φ)

hd(φ ∨ ψ) = max{hd(φ),hd(ψ)}

hd(∃x φ) = hd(φ)

hd(Hk
nx φ) = hd(φ) + 1,

readingH0
nx1 . . . xn as∃x1 . . .∃xn.

Clearly everyH+-sentence has a Henkin depth of at most one. Therefore,
by Theorem 7 we get that for everyH∗-sentenceφ there exists anH+-sentence
ψ, such thathd(ψ) ≤ 1 and on the class of linear ordered structuresφ andψ
define the same property. Put differently, on linearly ordered structures granting
Henkin quantifiers to nest does not yield greater expressivepower. Gottlob proves
an even stronger normal form forH∗ on linear ordered structures. In Gottlob’s
terminology, anH∗-sentenceφ is in Stewart normal form, if it is of the form

∃x
(

H(1)y φ1(x, y) ∧ ¬H(2)z φ2(x, z)
)

,

whereφ1 and φ2 are first-order. This normal form is inspired by the work of
Stewart [36, 37], hence the name. Clearly the Henkin depth of every formula in
Stewart normal form is at most one. Gottlob proves that on theclass of linear or-
dered structures for everyH∗-sentenceφ there exists anH∗-sentenceψ in Stewart
normal form, that expresses the same property.

This result cries out for an effective translation procedure fromH∗ into H+ of
course, but unfortunately we cannot provide it. The translation hinges on finding
a way of reducing the number of Henkin prefixes in a quantifier block. It gives
some insight in the problem to show that

(

∀u1 ∃v1

∀u2 ∃v2

) (

∀x1 ∃y1

∀x2 ∃y2

)

φ (3)



is equivalent to






























∀u1 ∃v1

∀u2 ∃v2

∀u1 ∀u2 ∀x1 ∃y1

∀u1 ∀u2 ∀x2 ∃y2































φ, (4)

see also [5]. But the real challenge is to find a way to handle negations appearing
in between Henkin prefixes, making use of the finiteness of thestructure and its
linear order.

Dawar, Gottlob, and Hella [7] raise the question whetherH∗ captures PNP
q

over
unorderedstructures. Surprisingly, it turns out thatH∗ does not capture PNP

q
in the

absence of a linear order, unless theExponential Boolean Hierarchycollapses,
amongst other hierarchies. In complexity theory the collapse of this hierarchy is
considered to be highly unlikely.

Further still, a study by Hyttinen and Sandu [25] implies that essentially one
has to make use of the finiteness of the structures. Consider the logical languages

H+1 = H

H′k = first-order closure ofH+k
H+k+1 = {Hx φ | φ ∈ H′k}.

Clearly the Henkin depth of any sentence fromH+k is k, and
⋃

k H+k = H∗. The au-
thors prove that on the standard model of arithmetic the languageH+k+1 has strictly
stronger expressive power thanH+k , for everyk ≥ 1.

For the sake of concreteness, consider the property O- over graphs.
By Theorem 7, the similar property over linear ordered graphsis expressible in
H∗ (andH+). A linear ordered graphG is a structure〈G,RG, <G〉 such that〈G,RG〉
is a graph and<G is a linear order onG. We claim thatξ expresses O- on
linear ordered graphs, whereξ is

∃x1∃x2 (EVEN(x2) ∧ SUC(x1, x2) ∧ COLOR(x2) ∧ ¬COLOR(x1)).

In ξ, EVEN is the predicate that holds for exactly those objects that are even with
respect to<, andSUC holds for every pair of objectsx1, x2 such thatx2 is the
immediate<-successor ofx1. EVEN andSUCare clearly expressible inΣ1

1 and
consequently inH. Intuitively, COLORholds for all objectsx such that the graph
at hand isn-colorable, wheren is the number of objects<-precedingx. Formally,
we defineCOLOR(x) as follows:
(

∀y1 ∃z1

∀y2 ∃z2

)

(y1 = y2)→(z1 = z2) ∧ R(y1, y2)→(z1 , z2) ∧ (z1 < x) ∧ (z2 < x),



in spirit akin to ζ. We leave it for the reader to check thatξ indeed expresses
O-. It is readily observed thatξ can be cast as aH+-sentence, that is not in
Stewart normal form. Yet by the Prenex normal form result, Proposition 4, we can
extract the Henkin quantifiers fromEVEN(x2), SUC(x1, x2) andCOLOR(x2), and
obtain an equivalent formula of the formH(1)xH(2)yH(3)z . . .. By merging these, as
we got from (3) to (4), we get an equivalent formula with one Henkin quantifier
H(4)u . . .. The formula that results after replacingH(4)u . . . in ξ is in Stewart normal
form.

5 Concluding remarks

As we hoped to have shown, Henkin’s idea has exciting manifestations in game
theory, model theory, and computational complexity. Each of these manifestations
shows a different face of the Henkin quantifier: interaction in the absence of full
information, expressive power on formal structures, and algorithmic verification.
Our results provide another instance when the disciplines at stake are strongly
intertwined. Our Propositions 1 and 2 are cases in point. But admittedly, our ap-
proach was not highly systematic. We meandered from non-absentmindedness to
absentmindedness, and from partially ordered quantification to Partial Informa-
tion logic. Improving our understanding of the sparkling interface of logic and
game theory is definitely worthwhile.

For instance what kind of game-theoretic underpinning can we give forH∗?
What does its game-theoretic semantics look like? And can it maybe inspire us to
define aninteractive protocol[16] kind of computing device that computes PNP

q
?

After all, interactive protocols are games with imperfect information.
An intriguing question was raised in [15] related to the finite model theory of

Carnap’s first-order modal logicC. It is shown that even over finite structures,
C < H∗, but what complexity class is actually captured byC is left as an open
question. To this problem we may add the issue of developing agame-theoretic
foundation forC.

Finally we mention a game-theoretic gap that needs to be filled in the interest
of logic and descriptive complexity. We used the computational result saying that
every constant series of parallel queries can be reduced to one session of parallel
queries [6]. The logical face of this theorem is theflatness result, holding that over
linear ordered structures aH∗-sentence of arbitrary Henkin depth has an equiva-
lentH∗-sentence of Henkin depth at most one. The question arises what would be
the game-theoretic face of the aforementioned flatness result, in particular in the
realm ofmodel comparison gamesà la Ehrenfeucht and Fraïssé [9, 13]. Model
comparison games are typically used to prove that some property is not express-
ible in a logic. As such they are tools par excellence to separate NP from coNP, for



instance. Although considerable progress has been made along these lines [2, 12]
the big questions from complexity theory are still unanswered. A fertile approach
to prove non-expressibility results is to simplify model comparison games, in or-
der to develop a library of intuitive tools for separating logics, cf. [1, 3]. Along
these lines the flatness result concerning Henkin quantifiers may give rise to less
complicated, but powerful, games.
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