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Abstract

The aim of the present paper is to discuss twiedént ways of formulat-
ing independence friendly (IF) modal logic. In one of them, first presented
in [17] modifying ideas introduced in [4], the language of basic modal logic
is enriched with the slash notation familiar from IF first-order logics, and the
resulting logic is interpreted in terms of games and uniform strategies. The
present paper formulates aférent approach, by introducing a framework
that can be used for formulating various IF modal logics. Within the frame-
work, an IF modal logic is defined by imposing conditions on its structural
relationships to other logics, namely a specified modal logic (for instance:
basic modal logic), its first-order correspondence language, and IF logic.
This framework makes it possible to obtain expressively strong languages
that nevertheless enjoy ‘nice’ properties. In this vein, the so-called ‘struc-
turally determined IF modal logic’ was introduced in [19]. We compare the
logics emerging from these two approaches. More generally, the issue of the
Eigenartof IF modal logics is addressed.

1 Introduction

Already in the seminal publications andependence friendly first-order logft-

logic) [9, 10, 12, 16], applications were pointed out involving a first-order modal
setting. It was argued that the logical form of some natural language sentences
is best captured by formulas that allow felashingrelative to modal operators

— marking certain logical operators as independent of modal operators in whose
syntactic scope they nevertheless lie. In the first publications that developed an
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independence friendly modal logic, Bradfield [4] together withdehle [5] inter-
preted the logic’s independence indications using a combination of transition sys-
tems withconcurrencyand games oimperfect information Tulenheimo [17, 18]
together with Hyttinen [15] showed that a reasonable IF modal logic can be de-
fined simply using Hintikka’'s original idea of implementing logical independence
by informational independence in the sense of game theory [8, 9, 10]. To model
logical independence, this ices; it is not necessary to enrich standard modal
structures by introducing concurrency as a separate, primitive component of the
models. This type of study of IF modal logic serves to attract interest in the larger
program of independence-friendliness that investigates the notion of informational
independence in logic.

The aims of the present paper are twofold. (1) First, we wish to give a recap
of the various logics introduced under the heading ‘IF modal logic’ whose seman-
tics rely simply on the game-theoretical notion of informational independence, as
just explained. (Accordingly, we do not discuss Bradfield’s independence friendly
modal logics.) The pre-theoretical motivation for all these logics was, when they
were introduced, that they would be ‘modal analogues’ of IF first-order legic
syntax as well as in semantics.

The logics termed ‘independence friendly modal logic’ in the relevant research
publications [15, 17, 18, 19], fler among themselves both in syntax and in se-
mantics. (The sense of diversity is of course only increased when the logics of
[4, 5] are considered as well.) Depending on which precise syntactic restrictions
one imposes on the formation of the independence indications, logics \ffigh-di
ent metalogical properties result. As will turn out, the appropriate properties may
diverge strikingly from case to case (cf. FigureZct.6). The present authors
conclude that a framework is desirable in which the various systems can be sys-
tematically studied and compared. In this vein, our second aim (2) is to introduce a
framework that sheds a unifying light on the IF modal logics introduced so far, and
can be used to develop new logics that are both modal and independence friendly.
The framework we put forward is determined by three parameters. These param-
eters are inspired by the standard translation of basic modal logic into first-order
logic, and Hintikka’s IF procedure that brings us from first-order logic to IF first-
order logic.

Although we find our framework a natural environment for studying indepen-
dence friendliness and modal logic, by no means do we claim that the framework
covers all conceivable IF modal logics. Neither do we claim that all logics to be
found within this framework are equally interesting. In fact, we regard it as one of
the virtues of the framework that within its confines, one can isolate logics some of
which enjoy ‘nicer’ properties than others. From this very perspective, we define
the so-called ‘structurally determined IF modal logic’. In [19] this logic is shown



to combine a number of nice properties: strong expressive power, decidability, and
allowing for a compositional semantics.

Let us move on to introduce some basic notions, and fix the plan of the paper.

IF first-order logic. It has been observed by Hintikka, on various occasions, that
as a matter of fact, theyntactical scopand(logical) priority scopeof quantifiers
coincide in first-order logic. Hintikka [10] points out that there is no general pre-
theoretical backing for this assumption, and provocatively refers to Frege’s
fallacy. The formulas of IF first-order logic, denotd#, carry the slash/* as a
new item of notation. The slash, asMg(3x/y)¢, is to be interpreted in such a way
that the occurrence alx is outside the logical priority scope &fy, although it
falls within the syntactical scope &f. The formulas ofF are generated from the
fragment of first-order logic in which every variable is quantified at most once and
in which every formula is imegation normal formto be denotedO. Formally,

we letlF be the smallest supersetle® closed under the following condition:

e If ¢ € IF and3x occurs ing in the syntactic scope of quantifiers among
which Quy1,...,Qnyn, then the formula resulting from replacirigx by
(Ax/y1,...,Yn) is also inlF,

whereQyy; stands forvy; or 3y;. The notion of ‘binding a variable’ is extended
from the usual first-order case by saying that the quani@jgr bindsthe occur-
rence of the variablg; in (IX/y1,...,¥n), with 1 < i < n. We write Ix rather

than @x/0), if the tupleys,...,yn is empty. One may consider the above rule as
specifying anF procedure producinglF from FO. In the literature various other

IF procedures are put forward, that allow for marking propositional connectives
as independent of quantifiers, marking quantifiers as independent of (suitably con-
strued) propositional connectives, amdmarking universal quantifiers as indepen-
dent of other logical operators. In the current paper, we refrain from considering

these options.

Basic modal logic. Formulas ofbasic modal logidML ) are generated from a
fixed classprop of propositional atoms by the following grammar:

¢=pl-plpVve)l(@Ag) ool O,

wherep € prop. Its semantics is defined relative noodal structuresand their
states, that is, tuplet = (M,R,V) and elementsv € M, whereM is a non-
empty domain,R is a binary relation onM termedaccessibility relation and

V : prop — Pow(M) is avaluation function It will be assumed that the clauses
recursively associating a truth condition with BIL -formulas are familiar. (The



reader may consult, e.g., [Sect.1.3].) Polymodal basic modal logikIL  is like
ML, but involvesk modality types, each with its own bax and diamond;. Its
semantics is in terms d&fary modal structured\, Ry, .. ., Rk, V), having for every
modality typei an accessibility relatioR € M? of its own.

Expressive power. If L andL’ are two modal logics whose semantics are defined
relative to a clas$< of modal structures, we say thiats translatable into L over

K (in symbolsL < L’), if for every¢ € L, there isy, € L’ such that for all modal
structurest € K and allw € M, we have:Mt, w k= ¢ if, and only if, M, w | .

L’ is more expressive than dver &, or hasgreater expressive power thanover

K (symbolicallyL <4 L"), if L <4 L’ butL’ £4 L. The logicsL andL’ have the
same expressive powever ¥, or coincideoverXk (denoted. =g L’), if L < L’
andL’ <4 L. When speaking of the class all modal structures, we suppress the
subscript indicating the class altogether, and write sinhptyL’” and so on.

These notions are naturally extended to a comparison between a modal logic
and (IF) first-order logic. For every modal struct@e = (M, R, V) there corre-
sponds, in a canonical way, a first-order structite® = (M, R, (V(P)) peprop)-
interpreting a binary relation symbol R as the binary relat®yrand, for each
p € prop, a unary relation symbol P as the 34ip). Saying, for instance, that
L is translatable inté-O, means that for every € L there is a first-order formula
Ys(X) of one free variablex, written in the vocabularyR, (P)peprop}, such that
for any modal structur&®: and anyw € M, we have:9t,w E ¢ if, and only if,
MO,y [ vy, Wherey(x) = w.

Plan of the paper. In Section® and 3 we survey two IF modal logics interpreting
the slash device in terms of informational independence, referrediEivds and
EIFML k. As an original result we prove Theorem 6, stating tRAML cannot be
translated into first-order logic. The logitsML andEIFML g show that allowing
independence friendliness serves to increase the expressive power of a modal logic.
However, the definitions of these logics also suggest that many more IF modal
logics can be obtained by varying the syntax and the IF procedure applied.

In Sectiond we propose a new framework for studying IF modal logics from
the IF first-order viewpoint. Essentially, the framework allows for systematically
varying the syntax and the IF procedure used in defining an IF modal logic. We
discuss at some length a particular logic obtained in this framework, termed ‘struc-
turally determined IF modal logic’, dFML sp. (This logic is extensively studied
by the authors in [19].) To give a fuller picture of the expressivity of the various IF
modal logics discussed in the paperSaction5 we provide an original negative
expressivity result concerning-ML , EIFML x andIFML gsp, proving that rela-



tive to a certain class of trees, the expressive power of all these logics collapses to
that of basic modal logicSection6 serves as a conclusion in which we comment
the issue of informational independence in logics, putting forward our conviction
that the notion of informational independence not only makes sense with respect to
logics other than first-order logic (since it can, for instance, be systematically stud-
ied in connection with modal logic) but also enjoys general theoretical interest. In
this concluding section also a summary of known results concerniteyeit IF

modal logics can be found, as well as a table where some conjectures about them
are listed.

Note on notation. If L is a logic for which syntax and semantics is defined, and
¢ is a formula ofL, we write¢ € L to say thaw is among the formulas df. That

is, when no confusion may arise, we do not notationally distinguish a logic from
its set of formulas. By.-formula we mean formula df.

2 IF modal logic via independence indications

We wish to introduce a modification of basic modal logic where diamonds may
be ‘indicated as independent’ from any syntactically superordinate modal opera-
tors (boxes or diamonds). Such indicating is accomplished by using a notation
(©/i1,...,ik), Wwhereiy, ..., ik are positive integers which in a specified, systematic
way identify superordinate modal operators. Such syntactic independence indica-
tions are semantically interpreted in terms of ‘logical dependence’: the choice of a
state as a semantic value of a diamoadig, . .., ix) must not depend on the states
interpreting the modal operators identified by the integgrs. , ix. Supposing that
(a,....,a) and @, ..., a,) are two sequences of choices for modal operators su-

perordinate to</is, ..., k), then if these sequences agree on all choices save for
those corresponding to the operators identified by the integers, ik, the state
chosen for ¢ /i1, ..., ix) must be the same in both cases.

The logic we now proceed to define is dubliadependence friendly modal
logic. We stress that it carries this name for historical reasomgno means do we
wish to suggest that this logic the IF modal logic. Semantically, IF modal logic
will emerge as a proper extension of basic modal logic. This observation increases
interest in the study of IF modal logics, for it gives rise to the hope that indepen-
dence friendliness is a dimension of modal logics that yields more expressive, yet
decidable systems. (That entertaining such a hope is not entirely unrealistic can be
seen from the decidability results concerning certain specific IF modal logics, cf.
[15, 19].) We now turn to defining the syntax and semantics of this logic in detail.



2.1 Definition of the logic

Syntax. The formulas ofindependence friendly (IF) modal log{tFML ) are
obtained from those d¥IL by the following rewriting rules:

1. If 4 € ML, then the result of replacing all occurrencesoofn ¢ by the
symbol ©/0) is a formula.

2. If y is a formula, ¢©/0) appears iny, andis, ...,y IS a tuple of positive
integers, then the result of replacing that token®f() in v by the symbol
(©/i1,...,in) is also a formula.

Formulas ofFML are precisely the strings generated by the above two rules. By
stipulation, we write® for (¢/0). Thereby any string that is a formula bfL , is

in fact also a formula ofFML . Note that the input and output of the above rule 2
are identical in the special case timat 0. Examples ofFML -formulas are:

oop, O(¢/Lp, O(¢/1)p, O(¢/1270(¢/1, 2)p,
(@©/DpAon(¢/1,2)q), o(pVv (©/1)a), o(pA(¢/1)q).

It was already pointed out that the role of the integers. ., i following a
diamond sign, as irk{/i1, ..., in), is toidentify certain syntactically superordinate
modal operators. Which ones? The principle of identification we make use of, is
based on the left-linear relation eyntactic subordinatiommong tokens of oper-
ators {/, A, ©,0) appearing in formulag € IFML . Relative to a formula, this
relation induces a tree structure, with the unique outmost operatpabits root,
and operators with no subordinate operators at leaves. Hence for any operator-
token, the set of its predecessors in this tree structures determinearaorder. If
O e {v, A, <,O} appears i, it is either itself the unique outmost operatorgoior
else there is a unique immediate predece®af O among the operator-tokens to
which O is subordinate, and so on. So we may speak of rttie predecessor’ of
O. We can also restrict attention modaloperators precedin@, and enumerate
them beginning from the one that is furthest and ending up with the one that is
closest. In this way we may speak of ‘theh modal operator ipp among those
modal operators that prece@ — hence counting only modal operators and ignor-
ing conjunctions and disjunctions. It is to the numbers identifying the locations of
modal operators syntactically superordinateddgiq,...,in) in this latter type of
numbering, that the integers ..., i, refer.

Ino(¢/1)a(<¢/1, 2)p, the numeral 1 in¢/1) refers to the immediately preced-
ing box, and the numerals 1 and 2 i/(, 2) to the first occurrence ai resp. to
the first (and only) occurrence of(1). In [@(¢/1)p A ©O(<¢/1, 2)g), the numeral



1in (¢©/1) identifies the box in the left conjunct, whereas the same numeral iden-
tifies the outmost diamond of the right conjunct @/, 2). We allow for vacuous
identifiers: ino(¢/127)p the numeral 127 refers to nothing at all, since there are
no 126 or more nested modal operators syntactically precedinghat formula.

In earlier publications on IF modal logic [4, 5, 15, 17, 18], variouSedéent
identification methods are used for singling out the desired superordinate modal
operators. Typically this has been accomplished by introducing an explicit index-
ing or labeling of tokens of modal operators as a part of the syntax. The possibility
of defining the syntax as above shows that such an indexing is by no means a con-
ceptually necessary ingredient of IF modal logfics.

The setSulj¢] of subformulasf a formulag € IFML is defined in a straight-
forward way: Suljp] = {p} andSuld—-p] = {=p}; for o € {Vv, A}: Sulj(y o )] =
{(¥ 0 6)} U Suldy] U Suljd]; Sujoy] = {oy} U Suljy]; and Sulj(o /iy, . . ., iny] =
{(¢/i1,...,iny} U Suljy]. Aformula¢ € IFML is closed if it contains no vacu-
ous identifiers, i.e. if everyy/is,...,in) appearing inp is subordinate to at least
maxii, ..., in} nested modal operators ¢n Otherwisep is open

Semantics. There may appear in a given formula mangensof the same sub-
formula. (E.g., in p Vv p) there appear two tokens of the subformpla When
defining the semantics of an IF logic, one must pay specific attention to this fact,
to be able to formulate clauses defining the semantic role of operators with inde-
pendencies, such a& (i1, ..., ik).

We follow [20] in understanding formulas explicitly as fintgings of symbols
Each numeral standing for a positive integer in a formulddAL is counted as
a separate symbol (no matter how many digits it has in the chosen presentation),
other symbols being propositional atoms, (v, A, ¢, O, 0, the comma and the
slash-sigry. Thelengthof a stringS, in symbolgS, is the number of symbols i&
when each symbol is counted as many times as it occurs. The symbols appearing
in a formula areenumeratedvith positive integers starting from left to right. For
illustration, consider the formula := o(¢/1,27)(p v q).

o o/ j2r))|(jp|Vvig])
1/2[3]4]5][6| 7 |8]9]10]11]12]13

In the special case that timeth symbol of a stringy starts itself a string which is
a subformula ofy, we write A(y, n) for that subformula. In the above example,
A(#,9) = (pV qg) andA(¢, 10) = p. Every subformula of a formulg is of the
form A(y, n) for somen, and some subformulas may appearicorresponding

! Essentially this way of defining the syntax was suggested to one of the authors (TT) by Balder
ten Cate already in December 2002.



to several numbenms. It may further be noted that if is closed and the operator
(©/i1,...,in) appears iny, the above enumeration of the symbolsjircould be

used as an alternative way of identifying those modal operators, superordinate to
(©/i1,...,in), that by syntax are identified by the integers. ., i,.

In defining game-theoretical semantics BML , we adapt the definition that
is given in [20] for IF first-order logic. For every formula modal structuréh
and statenvg € M, a semantic gamé&(yp, M, wp) between two playersi(andV) is
associated by defining the set of fiesitions We refer tod as ‘she’ and to/ as
‘he’. If ¢ = (ap, ..., an) is a finite sequence, we write mgX(or its last member,
max() = an. If any1 is any further object, we write™a,.1 for the extended
sequencedy, ..., an, ans1)-

Definition 1 (Positions) Paositionsare triples(y, n, ), wherey = A(p, N) andg is

a finite sequence of elements of M. In the beginning of the game the position is
(e, 1,(wWp)). The following conditions serve to generate the set of all positions of
G(p, M, wp), withMi = (M, R, V). They also specify which player makes which type
of choice (if any) at a given position.

1. (@) If (p,n, ) is a position, then: imax() € V(p), Awins, otherwis¢/ wins.
(b) If (=p, n,¢) is a position, then: imax) ¢ V(p), 3 wins, elsey wins.

2. If ((y Vv ¢),n,¢) is a position, alsay,n + 1,¢) and (¢,n + 2 + |y, ¢) are
positions. Played chooses one of these positiong(@t v ¢),n, ¢).

3. If (W A ¢),n,¢) is a position, alsay,n + 1,¢) and (¢, n + 2 + |y, ¢) are
positions. Playel/ chooses one of these positiong(@t A ¢), n, ¢).

4. If ((¢/i1,..., k¢, N, ) is a position andmax(), v) € R, then
(¢,n+ 2k + 3+ #(K),s"V)

is a position, wheref(k) = 0, if k > Land#(k) = 2, if k = 02 If
there is at least one such position, playgrchooses one among them at
((©/i1,...,iKe¢,n,5). If there is none, playey wins.

5. If (Og, n,¢) is a position andmax(), V) € R, then(¢,n + 1,67 V) is a posi-
tion. If there is at least one such position, playechooses one among them
at (O¢, n, ¢). If there is none, playefl wins. 4

2If k > 1, the numben + 2k + 3 + #(k) = n + 2k + 3 is obtained by counting two parentheses,
the diamond, the slash, akdhumerals together with — 1 commas in the independence indication.
However, ifk = 0, then ©/iy, ..., ix) = (©/0), and the correct identifier is+ 2k + 3+ 2=n+5.



Note that the subformula componeftin a position {,n, ) is strictly speaking
superfluous, because this subformula is fully determined by the numhbgr=
A(ep, n). Itis written down here for clarity of exposition.

The above definition of the set of positions in fact serves to define the game
G(p, M, wp). This game is a determined zero-sum game of perfect information.
We are not, however, interested in who has a winning strategy in this game. What
interests us, instead, is who has a strategy that leads to a win against any sequence
of moves by the opponerdndsatisfies the extra condition ahiformity, to be de-
fined shortly. The uniformity requirement will have the consequence that to force
the desired outcome, playérin particular, must make her choices in a ‘universal-
izable’ manner: make the same choice in several ‘equivalent’ circumstances.

Before we can define the uniformity requirement, let us define the notion of
game tree; tell what are strategies of the players; and specify what it means for a
player to use a strategy.

Definition 2 (Game tree, play, partial play) The set of positions of a semantic
game Gg, M, wp) determines in a canonical way a tree, to be called ¢jaene

tree The nodes of the tree are the positions, and its ordering relation is the transi-
tive closure of the relation ‘is a successor position of’, itself ffeet given by the
definition of position when telling which are the positions to which a given position
gives rise. Any (maximal) branch of the tree represents a pogdinef the game.
Initial segments of plays are callgzhrtial plays Sometimes partial plays will be
termedhistoriesof the game. 4

Definition 3 (Strategy, using a strategy) A strategyof player3 in semantic game
G(p, M, wp) is any finite sequence of functionso; (called strategy functions
defined on the set of all partial playgg, .. ., pi_1) satisfying:

o If pi1 = ((¥ V ¢),n,¢), theno tells 3 which formula to pick, that is,
oi(po, ..., Pi-1) € N+ L n+ 2+ |y|}. If the strategy gives the lower value,
player 3 picks the left-hand formulg, otherwise the right-hand formula

o If pi_1 = ((©/i1,...,iK¢,N,¢), theno tells 3, if possible, which element
v € M with (max),v) € R to pick. Henceri(po,...,pi-1) € M and is
accessible froomax(). If no suitable element exists; does nothing:3
gives up!

3 The resulting game resembles in many respects games of imperfect information, but strictly
speaking is not one. This feature of the semantic games for IF modal logic is discussed in [18,
Subsect2.3.1].
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It is said thatd has used strategy in a play of Qg, M, wp), if in each relevant
cased has made her choice usinng More exactly, played has usedr in a play
(pos - - - » Pn), if the following two conditions hold for all« n:

1. Ifpo1 = (W vV ¢),mg) andaoi(po, - - ., Pi-1) = M+ 1, then p = (¥, m+1,5),
whereas ifoi(po, ..., pi—1) = M+ 2+ ¥, then p = (¢, M+ 2+ ¥, ¢).

2. If po1 = ((©/i1,...,i¢,ms) and oi(po,...,pPi-1) = V, then p =
(¢, m+ 2k + 3+ #(K), s V).

The notions of strategy and using a strategy can be analogously defined for
playerV. 4

Definition 4 (Uniform strategy, winning strategy) A strategyo of player 3 in
semantic game (@, 9, Wo) is uniform, if the following condition holds: Suppose
Pi-1 = (A(y,m),m¢) and §_, = (A(y, m),m, ¢’) are two positions arising in the
game, whed has played according to. Furthermore, assume that

A, m) = (O/i, ..., IK)e.

Then if the sequencesand ¢’ agree on their values for all arguments except
possibly oni,...,ik, the strategyr agrees on the positiong\(y, m), m,¢) and
(A(y, m),m,¢"), that is to saygi(Po, - - - » Pi-1) = (P, - - -» P_p)-

A strategyo of playerd in game G, i, Wp) is a winning strategy if o is
uniform, and played wins every play in which she has used the strategy.

The analogous uniformity condition for strategies/dé vacuous, since by the
syntax, there are no operators of the fofayis, ..., in). A strategyo of playerY
is winning simply if it leads to a win by against every sequence of movesiby

On the basis of the definition of position, the sequenrcasds’ mentioned in
the definition of uniformity indeed necessarily have the same length. That is, there
is an initial segment of w such that andg’” both are functions of typE — M.
If some or all of the numberi, ..., ix happen to be outside of the domainthe
sequences andg’ are vacuously uniform in the corresponding arguments.

Truth and falsity oFML -formulas are defined in terms of semantic games:
e ¢istrueinM atw (denotedh, w " ¢), if there is aw.s. fod in G(¢, M, w).

e ¢isfalse ini atw (denoted)t, w =~ ¢), if there is aw.s. fo¥ in G(g, i, w).

e ¢ is non-determined ifdt atw (denotedn, w =0 ), if gameG(a, M, w) is
not determined, i.e. if neith&i, w =* ¢ nor, w =~ ¢.

In what follows we will almost exclusively be interestedinth of modal formulas,
and we will simply writel= for the relation="*.
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2.2 [Expressive power

For an example of evaluating #RML -formula, consider the modal structurgs
andt depicted in Figure 1.

C1 Co C3 c’l c’2 cé
p\N / N\ /p X Ap\ A
by by by b,
N/ N S
N a a N
Ficure 1

The atomp is true int precisely aic; andcs, and indt exactly atc,. Consider,
then, the formula := o(¢/1)p. We observe three things:

(1) ¢isnottrue it ata: There is no winning strategy farin gameG(¢, M, a),
since a functiorg inducing a winning strategy would have to satigfi1) =
g(by), and if this value wasg; or c3, the move would not be in accordance
with the game rules i¥’s choice wad, resp. . On the other hand, if the
value wascy, the resulting plays would be wins f&F, sincep is not true at
C2. (As a matter of factg is not false indt at a either: also forv there is
no winning strategy if(¢, M, a). If ¥ choosed; (b,) then by choosing;
(resp. @) d generates a play that she wins.)

(2) ¢ istrue inft ata’: The functionf defined by the conditiofi(b}) = f(b) =
¢, induces a winning strategy farin G(¢, %, &).

(3) The structuresiti, a) and (t, &) are bisimilar* Hence they are not distin-
guished by any formula of basic modal logic.

In view of (1), (2) and (3), it follows thatFML is not translatable int/L .
SinceML is trivially translatable intdFML , we have just established tH&ML
has greater expressive power than basic modal Pgic:

Theorem5 ML < IFML . 4

Our main result concerning the expressive powdFML in this paper, The-
orem 6, says that this logic is strong enougbt to admit of a translation into
first-order logic. This is in contradistinction to the case of basic modal logic, trans-
latable via the well known standard translation if©, in fact into the 2-variable
fragment ofFO. (For standard translation, see, e.g.,38¢t.2.4].)

4 For bisimilarity, see, e.g., [Bect.2.2].
5 This expressivity result was originally proven in [17, Lemma 4].
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Theorem 6 IFML is not translatable intd=O.

Proof. Letn > 2 be arbitrary. In what follows, by stipulation® 1 =
i+1,ifi <n andnel = 1. (Inversely,iol = jmeansj® 1l = i)
Define a modal structurdt, = (Mp, Ry, V) as follows. The domaiM, con-
sists of five disjoint layerslg := {a1}, L1 := {b1,...,by}, Lo = {c1,...,Cn},
L3 :={ds,...,dn}, andL, := {ey, ..., &}, related by the accessibility relatiéty :=

{(a,b) :1<i<nu{(b,c):l<j<nandj<i<jel} U
{(cj,d): 1<k<nandk< j<k®l} U {(d.&e1):1<k<n).

The valuationVv,, is empty. In Figure 2, the modal structuwg; is depicted.

€1
A

ds
SN
T
\<d4 \ bl f d17

bs .} _ by A
\ gy oTaTr )/

Ms €4 €3
FiGure 2

Let, theny := o(@(¢/2)(¢/1,3)T v O(¢/2)(¢/1,3)T).
Claim7 Foralln>2, 9,a vy if, andonlyif, niseven.

Proof of the Claim. From right to left. Supposen is even. We define three
functions, f : L1 — {left,right}, g : {left,right} x Ly — L3 and
h:{left,right} x Ly, — La.

If V's first move isb;, definef(b)) = left, if i is odd, andf(b;) = right,
otherwise. If¥ continues by picking outj, putg(right, b)) = g(left, bj) = dic1,
hence ignoring the information abogjt Further, ifj is odd andf (b)) = 1eft (and
so alsai is odd), leth(f(ly), ¢;) = €j, and similarly, ifj is even andf (b)) = right
(and so alsais even), leh(f(bj), cj) = ;. Otherwise, leh(f(b), cj) = €ja1.

It is immediate that the functionfs g, h serve to define a winning strategy fér
in G(y, My, &1). In particular, wherd is supposed to make a choice corresponding
to one of the occurrences of(1, 3), she knows byf whether it is the right or the
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left disjunct that is at stake, and she sg&smovec; for the second occurrence of

O in that disjunction. She can infer whethés first choice wa®; or bje1, because

by the evenness af, the numberg and j @ 1 cannot have the same parity, and
having used, 3 has chosen the left disjunction if, and only jifis odd. Knowing,

then, which of the pointb; or bje1 V had choseni can further infer, by using,

at which point she currently is. But then there is only one point she can choose at
all for (¢/1, 3), and this point is as a matter of fact giventby

From left to right. Assumen is odd, and suppose for contradiction that there is
a winning strategy fod in G(y, 9t,, a1). Let f, g, h be functions as above induced
by that winning strategy. Becauseis odd, there necessarily are poiftsbie:
such thatf (b;) = f(big1). Let us w.l.o.g. assume that these pointsigrandby,
and thatf(b,) = f(b;) = 1left. Consider, then, the two partial plays wheét's
pairs of choices arebj, c,) and i, cn). The functiong must yield for ¢/2) the
choiced,_1 in the former case, and in the latter case the chdic¢Because of the
uniformity condition, the choice must be the same no matter which succedgpr of
resp. h player¥ chooses. In the former case, the optionsWarec, andcy-1,
and their only common successodis 1. And in the latter casg’s options arec;,
andcy, whose only common successodis)

The functionh may only use as its arguments the disjunctive choice (which
here isleft in both cases) and's choicec, — which likewise is the same for both
partial plays, havingl, ¢n, dn-1) and @1, ¢n, dn) as their corresponding respective
choices from the model. This means thawill choose the same poim; in both
cases. But which ever poim is, the move is possible along the accessibility
relationR, in at most one of the two cases. Herfcg, h do not induce a winning
strategy, contrary to the assumption. 4

Claim 8 For all n > 1, the first-order structure¢lit,®, a1y and (M5 |, &) satisfy
exactly the same first-order formulas of one free variable and quantifier rank at

most n+ 1.

Proof of the Claim. There is a winning strategy fobuplicator in the
Ehrenfeucht-Frizse gameEle(imgno,al;ﬂthﬁl, a1): an optimal strategy for
Spoileris to choose successively the elemens bos, ..., b from the domain
of MES.; let Duplicator respond to these choices by the elemégtsbys, ... ., bon,
respectively, from the domain dﬁg,?. (ShouldSpoilerbe allowed ant{ + 2)-th
move, he could choose the elemént,; from the domain of.mgncil, and to this

Duplicatorwould have no response.) 4

In view of the two claimsy does not admit of translation inteO, and so
IFML is not translatable into first-order logic. 4
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ThusIFML is semantically a much stronger logic thisih. , in fact, it cannot
be translated int&O. As yet it is unknown whether the satisfiability and validity
problems ofFML are decidablé. In [15] the decidability of both of these prob-
lems was established for the so-called ‘IF modal logic of perfect re¢BM pRr).
This logic is a fragment ofFML , syntactically restricted in such a way that the
semantic games corresponding to its formulas are games of perfect recall. The
structurally determined IF modal logic fro®ection4 is likewise a fragment of
IFML ; like IFML pR, it is more expressive thaviL ; and its satisfiability and va-
lidity problems are decidable. The complexitylBML gp-satisfiability is known
to be in PSPACE [19]; by contrast, the exact complexitfFdliL pr-satisfiability is
an open question (the recursive bound on the size of a finite moddFdlia pr-
formula obtained in [15] has the form of tower function w.r.t. the length of the
length of the formula, and is hence far from feasible). The validity problems of the
logics IFML pr andIFML gp are, on the other hand, both known to be decidable
in PSPACE.

3 Extended IF modal logic

For one thing, the enterprise of IF logic teaches us that things that are uncontro-
versial and unproblematic in first-order logic turn out to have intriguing properties
when we dare to introduce the slash device. A case in point is the behavior of
propositional connectives.

Semantically, the evaluation of conjunction (disjunction) involves a choice be-
tween two things: the left and the right conjunct (disjunct). Hence these con-
nectives can be construed as restricted quantifiers. Instead ©f{, we may,
equivalently, writeAicurn¢i, given thatg, = ¢ and¢, = y. Similar observa-
tions can be made about the restricted quantifiefi,,. It is straightforward to
see that in first-order logic, introducing these restricted quantifiers does not yield
greater expressive power. E.g., the senteneg,,3x Pix is simply equivalent to
(Ax PxA 3x Prx). The same holds for the result of replacing the usual conjunction
and disjunction by the corresponding restricted quantifiers in basic modal logic:
what results is just a notational variantMt . For instancepic<ip is equiva-
lentto (O1p A O p), Whered; is the diamond over the accessibility relatign

The restricted quantifiersicy ry and Vie ) were studied in the context of IF
logic by Hodges in [13]. A similar move has been made by Tulenheimo with

6 Note that for IF modal logics, the satisfiability and validity problemsraeach other’s duals.
Let ‘=’ be a shorthand notation for a formula in negation normal form such thags a w.s. in
G(—y, M, w) iff ¥ has a w.s. irG(y, M, w). Choosep, M andw so thaty is non-determined ifdi
atw. Then {p VvV =) also is non-determined ift atw, and thus not valid. Yet(e vV —¢) is not
satisfiable.
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respect to IF modal logic. The resulting logic, callextended IF modal logiovas

first introduced in [18], having been originally suggested by Hyttinen (personal
communcation). This logic allows marking modal operators as independent even
from superordinate conjunctions and disjunctions, when the latter are construed
precisely as restricted quantifiers.

To make theEigenartof Extended IF modal logic visible, we assume a poly-
modal framework. The modal structures considered will Hagecessibility rela-
tionsRy, ..., Rk each corresponding to a modality type of its own. In syntax, the
diamonds and boxes carry an index, indicating which accessibility relation is re-
sponsible for the semantics of the operator in question. In a polymodal basic modal
logic, e.g. the formulao,¢7p says that anyR,-successor of the current state has
anRy-successor satisfying the atgm

Conjunctions and disjunctions are construed as restricted quantifiers ranging
over the sefl,r}. Accordingly, a strings ...in € {l,r}* may appear as a subscript
of a modal operator syntactically subordinat@tonjunction or disjunction signs,
and it is a part of the specification of the syntax to associate the appropriate strings
with modality types 1...,k. For instance, ifAiejr Ve (€ij/1)T is a formula,
the syntax must provide a mapping from the gktr, rl,rr} to the set{1,...,k}.

If the evaluation has proceeded to the subformala/@)T, the mapping yields a
modality type corresponding to the diamond, depending on which choices among
[,r were made earlier, first foxicy sy and then forv jeg r).

Before we get to the formal underpinnings of this logic, let us consider a nice
illustration of its capabilities. Think of Extended IF modal logic with two modal-
ity types, one of which is interpreted by means of the identity relatioSlightly
abusing the syntax to make stating the example smoother, consider the formula
Aiei=,R)(€©i/1)T, indicating that there is a state to whidlhcan move from the cur-
rent statew, without knowing which accessibility relation was earlier picked out
by V. One of the accessibility relations beigg3d must choosev. But this means
that in order for this formula to hold it atw, it must also be possible to get from
w to w via the relatiorR. In fact, when evaluated at, the formula serves to state
that fv,w) € R,

Syntax. Write L(prop) for the set of literals, i.e. formulas of the formor —p
with p € prop. Extended IF modal logiEIFML , will use k modality types, and
its formulas will be string; ... Ony(j1... jm), Wherem is the total number of
conjunction and disjunction symbols in the pre®x...O,. The components of
these strings are explained as follows. First, the strings are associateddigth-a
bution of modality typeg : Ui<m{l,r}' — {1,...,k} and adistribution of literals
v {l,r}™ — L(prop). Second, eacBy is one of the following:
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(i) Nijxell,r}s
(i) Vi,

(i) Oj,..j,» wherey is the number of conjunction and disjunction symbols pre-
cedingOxy in the prefix;

(iv) (¢j,..j,/11,...,i2), wherey is the number of conjunction and disjunction
symbols precedin@y in the prefix, and X iy, ...,i; < x—-1.

Semantics. The semantics will be defined relative keary modal structures,
mentioned irSectionl. To formulate the truth conditions for formulas of the logic,

a semantic gam@(p, M, wp) is associated with each formujak-ary modal struc-
turedt and statenvg € M. In the interest of clarity, we will define positions in the
game so that they keep explicitly track not only of the states chosen before reaching
that position, but also of the conjuncts and disjuncts chosen up to then.

Definition 9 Let ¢ = O1...0ny(j1...Jm) € EIFML . Positions of game
G(p, M, wp) are quadruples (v,¢,¢,¢’), where 1 < ¢ < n + 1,
v = Op...00(j1.--jm), s : S — Mand¢ : S — {l,r}, where S is
the set of those numbers x {f,...,n} for which O is a modal operator, and
S’ ={1,...,n\S. (The functions, ¢’ may simply be thought of as sequences of
states and sequences of objectslespectively.)

In the beginning, the position {&, 1, (wo), 0). The following conditions gener-
ate the set of all positions of (@, M, wp), withM = (M, Ry, ..., Rk, V). They also
specify which player makes which type of choice (if any) at a given position.

1. (&) If y(¢’) = p and the position igp,n + 1, ¢,¢”), then: ifmax() € V(p),
A wins, else¥ wins. (b) If y(¢’) = =p and the position i$=p,n+ 1,¢,¢”),
then: ifmax() ¢ V(p), 3 wins, otherwiseé/ wins.

2. If the position is(Vjeund.t,s,¢"), then both (4, + 1,¢,6'"1) and
(¢,¢ + 1,6,¢'7r) are positions. Played chooses one of these positions
at (Viein®, £.s,s’). The case ofAj,cqi.no, ¢, s, ¢") is otherwise similar, but
it is playerV who chooses one of the positiong af,c(.n ¢, {,s,s").

3. If u(¢’) = J, and the position i(<j/i1,...,i2)¢,¢,¢,¢"), then for every v
such thakmax(), v) € R;, we have thafg, £ + 1,67V, ¢’) is a position. Itis
d who chooses one of these, or if none exists, there are no further positions
andV wins. The case dfj¢, ¢,,s’) is similar, but it is¥ who makes the
choice, or, if he can make none, there are no further positionstanths. -
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The notions of game tree and (partial) play are defined as in the cH#sSklbf.
A strategy of3d is also defined similarly, as a tuple of strategy functions=
(01,...,0m), with one strategy function for each expression of the forgay r, or
(Cjy..jy/11, - - -5 12) in the prefix. If a partial playfo. . . ., pi-1) is already produced,
such a strategy function makes a choice between the positions each of which is
a combinatorially possible next position. The notion of using a strategy is again
defined like in the case dFML . A strategy ofd is winning, if it leads to a win
against any sequence of movesWyand is, furthermore, uniform in the following
sense: ifpi = (¢, ¢, 5,¢") andp = (¢, ¢, 7,7’) are any two positions arising in the
game supposing thathas usedr, with

¢ = (Ofyiy/i1 -5 i2W,

then if the maps; U ¢’ andr U v/ agree on all their values except possibly on
i1,...,Iz then the strategy- agrees on the positiorg and p/, i.e. maps the se-
guence of positions leading {® to the same element as the sequence of positions
leading top;. The notions of strategy, using a strategy and winning strategy are
defined analogously for play&r(keeping in mind that the condition of uniformity
is vacuously satisfied by's strategies).

Semantics oEIFML  is, then, simply defined by stipulating thatis true
(false) indt atwy, if there is a winning strategy fat (resp.Y) in gameG(¢p, M, Wo).

About the expressiveness of Extended IF modal logic, we may first note that
by the proof of Theorem 6, in particul& FML 1 cannot be translated inf€O:’

Theorem 10 For all k > 1, EIFML  is not translatable intd-O. 4

Second, it is evident that polymodBIFML g is more expressive than the poly-
modal version ofFML . E.g., consider evaluating the formulge- r(<¢i/1)T
of our earlier example relative to the modal structufes ((a, a)}, {(a, a)}, @) and
({a, b}, {(a, @)}, {(a b)}, @) with a # b.

Among the applauded virtues of modal logic are its nice computational proper-
ties: e.g., model checking is tractable and satisfiability is decidable. Amusingly, it
can be shown that the satisfiability problemeFML y with the identity relation
is undecidable, cf. unpublished manuscripts by Hyttinen & Tulenheimo, and by
Sevenster. This result shows that the power of slashing is considerable even when
we import it in modal logic. It is interesting to see whether a similar undecidabil-
ity result can be achieved without the identity relation and maybe evdi Kbk .

7 This considerably improves the result proven in [18, Th. 3.3.9], according to which, whenever
k > 3, EIFML , does not have a first-order translation.
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It might well turn out thatFML proper is decidable, where&FML  is unde-
cidable. This would show us once again- that the particulars of a pre-slash,
independence-unfriendly language are sleeping beauties.

4 Structurally determined IF modal logic

The logicsIFML andEIFML g aimed at being modal analogues of IF first-order
logic: results of importing the slash device into modal logic and interpreting it so
as to produce a modal logic of informational independence. However, as indeed
shown by the two languages, the particular independence friendly modal logic that
we end up considering depends highly on the syntax used, and on the way in-
dependence is introduced. 8ubsectiort.1, we introduce a new framework in
which IF modal logics can be compared and isolated, by tuning three parameters
that will be highlighted shortly. Some researchers have objected that therais no
priori reason why slashed modal operators would formalize a meaningful notion
of independence. This criticism will be revisited in relation to the logics specified
within our framework. Subsectio.2 singles out a specific logic by instantiat-
ing the three parameters of the framework in a certain way. The logic in question
will be a fragment of IF first-order logic; it is denoted By(ST?(ML)). Subsec-

tion 4.3 introduces a certain modal-like logicso-called ‘structurally determined

IF modal logic’ — which is subsequently, iBubsectiort.4, shown to character-

ize IF(STA(ML)). Interestingly, this modal-like logic will have a compositional,
‘Tarskian’ semantics. Finalhsubsectiod.5 discusses some aspects of the expres-
sive power of the structurally determined IF modal logic.

4.1 The framework

The framework we propose essentially isolates ‘modal fragments’ of IF first-order
logic. This approach is partially inspired by current research in modal logic.
Namely, although basic modal logic is an extension of propositional logic, nowa-
days it is usually conceived of as a fragment of first-order logic. Milestone results
that brought about this change of perspective include the standard translation, and
van Benthem'’s Theorem [1] which characterizes modal logic ashilsariulation
invariant fragment of first-order logic.

Assuming this perspective, an IF modal logic is obtained by fixing three things:
first, a set of strings that are considered as modal formulas; second, a standard
translation that maps the former set to a subset of first-order logic; and third, an
IF procedure that maps this subset of first-order logic into IF first-order logic. The
IF modal logic thus generatedimgodalin that it is originates from a modal logic,
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andindependence friendly that it is a fragment of IF first-order logic, through
the appropriate IF procedure.

More precisely, our framework covers all logics that are obtained from a modal
logic ML, standard translatio8T and IF proceduré&~ as follows:

e Translate every formula frooM L into first-order logic usingT, and obtain
the first-order correspondence languagd€f, denotedST(ML).

e Apply to every formula fronST(ML) the IF procedurd~, and obtain the set
of IF modal formulas constituted by1.£, ST, andIF, denotedF (ST(M.L)).

Observe that there are instantiations of the initial modal logic, the standard transla-

tion, and the IF procedure that give rise to meaningless and uninteresting systems.
This will happen if the parameteys(£, S T andIF are incompatible; for instance,

if the range of the operatio8T is disjoint from the domain of the operatidR.

But the framework also contains potentially interesting systems. For one thing, as

we will see, the (IF first-order correspondence languages of the) logics that were

studied earlier under the headirl§dL andEIFML y can be generated by tuning

the parameters of the framework in a specific way (cf. FigureSubsect4.2).

We think this framework facilitates finding logics that have ‘nice’ combinations
of properties. It is beyond the scope of the current paper to give a specific sense to
the phrase ‘nice combination of properties’. But generally a high expressive power
combined with a low computational complexity is considered nice. In the context
of IF logic, also allowing for a compaositional semantics can be appreciated as a
desirable property.

Indeed, Cameron and Hodges showed in [6] timEompositional semantics
exists for IF first-order logic in which the ‘interpretatio@(x)|.# of a formula with
one free variable is aubsef the domain ofA; what is more, they even proved
that in a compositional semantics for IF first-order logi¢x)|.# cannot be a subset
of dom(A)", for anyn < w. If by ‘Tarskian semantics’ we mean a compositional
semantics where the interpretation of a formla, . . ., Xk)|.# will be a subset of
dom(A)™ for somem > k, it follows that no Tarskian semantics for IF first-order
logic is possible. (On the other hand, Hodges had already proven in [13, 14] that
IF first-order logic admits of a compositional semantics where the interpretation
l¢(X)|# of each formulag(x) is a subset of the powersef the domain.) Given
this background, being able to show that an IF modal logic can be interpreted in
a Tarskian way, signals that the complexity of the full IF logic is tamed in this
respect.

As an example of a logic emerging from our framework, we will consider the
structurally determined IF modal logic introduced in [19]. The satisfiability and
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validity problems of this logic are decidable, and it allows for a compositional
semantics.

Some researchers have opposed the very idea of an independence friendly
modal logic, by insisting that independence is a relation between (syntactically
manifest) variables, while none are forthcoming in modal logics. Thus, they have
suggested thad priori modal operators furnished with independence indications
are not necessarily meaningful. Staying within our framework, we need not enter
such a discussion. Rather, we can point out that logics generated in our framework
are immune to any such criticism, since they are fragments of IF first-order logic.

4.2 Instantiating the three parameters

In this subsection, we will fix the values of the parameters in a certain way. It
turns out that the resulting fragment of IF first-order logic admits of a particularly
smooth characterization in modal logical terms (Sedsect4.3). Actually, it is
captured by a compositional modal-like language, to be referred BMks sp.

The concrete cases we wish to consider are these:

e Basic modal logic ML, in negation normal form (It is well known that
each basic modal formula has an equivalent form in which the negation-sign
appears only as prefixed to a propositional atom.)

e The standard translatic®® T2 : ML —s FO? of basic modal logic into the
2-variable fragment of first-order logic.

e The IF procedure associating with every first-order formutae setiF (¢)
of those IF first-order formulas that are obtained by replacing any number
of existential quantifierslx, appearing inp by the corresponding symbol
(IX/Xiys - - -5 Xi,,), provided that: &) in ¢ there appear the universal quanti-
fiersvx,, ..., VX, superordinate tdxy; (b) in the formula resulting from the
replacement, the variableg,, ..., X, in (IAx/X,, ..., X,) become thereby
bound by the universal quantifie¥s;,, ..., Vx; and €) Xk & {Xi,, ..., Xi,}

Note that clauseb) precludes cases like the striNgAdx(dy/X)¢, resulting from
applying the IF procedure toxax3ye.

Basic modal logic is assumed to be in negation normal form (NNF), to ensure
that its first-order correspondence language is in negation normal form as well.
This is useful in the present context, since one may safely apply a Hintikka-style
IF procedure to extend any fragmentk® that is in NNF. Another way in which
a basic modal language interesting for the purposes of IF modal logic can be in-
troduced is using the strong prenex normal form (SPNF), by now familiar from
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EIFML : considering formula®; ... Ony(j1... jm), Where eaclDy in the prefix

IS Ajeetlr}s Viketlr}, Djy...j, OF ©jy..j, (v being the number of conjunction and dis-
junction symbols precedin@y in the prefix), and for all stringg; . .. jm € {0, 1}™,

we have thay(j1... jm) is a literal. As was already noted Bubsectior?.2, the
standard translation ®fiL into FO can be performed using only two variables. Of
course, other standard translations mappitig into FO are readily available, for
instance one that introduces pairwise distinct variables for any quantifiers translat-
ing nested modal operators. Finally, as we remarked earlier, various IF procedures
have been proposed. The one put forward by us is tailor-made to suit the particulars
of the fragment of first-order logic obtained by translatiy to FO via S T2.

We stipulate that the two variables BO? arex,y. The 2-variable fragment
of IF first-order logig denotedF?, is then defined as follows. Its formulas are
obtained from the formulas ¢f0?%: Leta, € {x,y} anda # B. If ¢ € FO?, then
the result of replacing any number of occurrenceslg@fsubordinate t¢/a in ¢
by the symbol #8/«) is a formula oflF2, provided that the variablg in (38/)
becomes thereby bound . So e.g.3IxVx(Jy/x)Rxyis a formula oflF2, but
vx3ax(Ay/x)Rxyis not. The semantics oF 2 is obtained from the semantics of IF
first-order logic by applying the stipulation that the variaklmentioned in 18/«)
is bound by theclosestuniversal quantifie¥a superordinateéo (358/«).

Having made the three choices and defined the 2-variable fragment of IF first-
order logic, we have determined a fragment of IF first-order logic, to be denoted
IF (ST?(ML)), consisting of the results of applying the specified IF procedure to the
first-order formulas yielded, by the standard translag8ai, from the formulas of
basic modal logic in NNF. The framework of structurally determining a logic is
well-suited also for discussing other IF modal logics. The following table lists (the
IF first-order correspondence languages of) several IF modal logics studied in the
literature, in terms of dferent instantiations of the three parameters.

Basic mod. log. in| Translation into| 3x; can be indep. of

Ly NNF FOinNNF | Vx; if betw. Vx; and3x;,
no Vv or dx, appears

Lo NNF FO in NNF VXj or Jx;

L3 SPNF FO in SPNF VXj, AXj, AOrv

Lq NNF FO?in NNF vx; if X # xj and

betw. Vx; and3x;,
3x; does not appear

Ficure 3. Logics resulting from giferent instantiations of the three parameters.

The logicsL1, Lo, L3 are the IF first-order correspondence languageBML pR,
IFML resp. EIFML y, i.e., the canonical translations of these IF modal logics



22

into the suitable formulation of IF first-order logity is the logiclF (ST2(ML )).

The standard translation needed for the lodigsL, and L3 introduces distinct
guantified variables for any two nested modal operators. The standard translation
of L3 further construes propositional connectives as restricted quantifiers.

4.3 Structurally determined IF modal logic

Our framework generates fragments of IF first-order logic. They may be hard
to parse. Therefore we aim at characterizing the 10GST2(ML)) in terms of

a more transparent, modal machinery. We wish to structurally determine a modal
logic — ‘IF modal logic’ with a modal syntax by singling it out as the logi¥ such

that its translatiors T'F (X) into the 2-variable fragmenE 2 of IF first-order logic
coincides with the result of applying the IF procedulg) to theFO?-translation

of ML :

ST?

ML 25 sBML) ¢ FO?
biF UiF
n IF(STAML)) c IF?2

I
.
x 5 sTFX)
In want of better terminology, we will refer to the languages ‘structurally de-
termined IF modal logic’ (and will denote it byFML sp’).

As will be shown in this subsection, we will be able to find a particularly nice
modal-like presentation for the IF modal logic a modal-like logic with a com-
positional semantics. We duot wish to suggest that this would be an integral
part of our proposed framework of structurally determining modal logics. E.g.,
for IFML andEIFML g, we do not have such a Tarskian compositional charac-
terization, and neither are we aware of a possibility of obtaining one (except by
formulating a non-Tarskian modal ‘trump semantics’, i.e. by doing to the relevant
IF modal logics what Hodges did in [13] for IF first-order logic).

Let us now define the syntax and semantics of a modal-like logic, which turns
out to be the logiX structurally determined above (see Proposition 12).

Syntax. A class of formulas is generated by the two gramn#aesdB:

@ pl-pl(@Vva)l(ana)|oa|Da|m
B = eal(@vp)BVa) | BVE)I(@Ap)BAa)](BAPS)

wherep € prop. The two grammars generate the formulas of a logic we refer to
asIFML g,. The formulasy are said to b&losed and the formulag open If ¢
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is a formula, all tokens o# not subordinate to a token &f in ¢ are calledfree
If ¢ is open, all its free tokens & becomebound bythe outmost token ot in
m¢. For instance# pis open; anda(epV €q) is closed, the two tokens @& being
bound by the unique token «f. We stipulate that the formulas of tis&ucturally
determined IF modal logidFML sp, are the closed formulas &ML g (i.e., the
formulas generated by the gramn#r Note that the reason why the gramnfgar
contains both clausea ¢ B) and 3 o @) with o € {A, V} is simply ‘aesthetic’: we
wish that the conjunctions and disjunctions of formulas of which one is open and
the other is closed, can be formed in either order.

The operatorm ande will be referred to as ‘black box’ and ‘black diamond’,
and the operators and < as ‘white box’ and ‘white diamond’. Intuitivelys is
the ‘independent diamond’, and it will by definition be independent precisely of
the token ofm that binds it. For its part, this logic will hence illustrate that the
relations ‘being bound by’ and ‘being logically dependent on’ need not coincide;
this point is made in a more general context by Hintikka [11].

Semantics. For everyyp € IFML &, a satisfaction relation
M, 1,0, Wk ¢

is defined, wher@t = (M, R, V) is a modal structure andl € M is a state as usual,
and furthermore| : {0,1}* — M is atoken valuationandi is a binary string:
i € {0,1}*. Here, 0 and 1 should be intuitively thought of as the choleésand
right, respectively, made when interpreting propositional connectiveg)( Ob-
serve that given a formuls a binary strinds . . . i, determines a subformujaof ¢,
namely the formula yielded by starting to go through, outside-in, the propositional
connectives o and choosing for thg-th connective encounteréelt or right ac-
cording to whethet; is 0 or 1. The process stops either because there are no more
connectives to go or because all thehoices have been made. The determined
formulay is the subformula reached by the process.

In providing the semantics of formulas of the fomp, the token valuation
will be used. The idea is thatwill yield states interpreting particular tokens &f
the tokens being identified precisely in terms of binary stringq0, 1}*. Hence,
in particular, the state interpreting the tokendefprefixing ®¢ is determined by
I; and in general the valuatidnhas been chosen already earlier in the evaluation
(namely, when interpreting the closest superordimtso that the state to interpret
the token ofe in question has been determined, as it were, in advance. The truth
conditions of literals and formulas of the formesand ¢ do not make use of the
componentd andi of the models; by contrast, the componen&ndi play a key
role in the rest of the clauses:
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t_, wEp ifi weV(p

N, Li,wE-p iffi weV(p)

Mm, |,I__,W oy iff:  for somevwith Rw,v): 0, 1,i,w =

N, 1Li,wEoOp iff:  for everyvwith R(w, v): I, 1,1, w E ¢
M1, WE @ Ve) it M 1i0wEy or M1 iLwE ¢
M Li,wE @WAg) iff: D LIOWEY and D, 1L iLwE ¢

M, 1,i,wEmg iff: for somel’ : {0,1)* — M: M, 1",i,w O

M 1Li,wE ep iff:  Rw, (i) andm, 1,i, 1(i) E ¢.

It should be observed that for the token valuationi-ML ;D—semantics, what
really matters are thiree occurrences of the black diamond in a formula. It can
easily be checked that if (relative to an initial strifnghe free occurrences #fin ¢
are those identified by the strings in the Set {0, 1} (which is necessarily finite),
then if forsome | we haveli, 1,i,w [ ¢, actuallyd, I”,i,w E ¢ holds for anyl’
such that for aIIJ €S, I (j) = |(j) In particular, to keep the satisfaction condition
intact we need not havi(i) = I(i) unlessi € S. It follows that the semantic
clause for the black diamond need not be phrased in terms of quantification over
token valuations: to evaluam, it suffices to choose a fixed finite number of
states: as many states as there are free occurrencesnop to be interpreted.

Let us writedt, w = ¢ to express the following condition: for all token valuations

I :{0,1}* — M and all strings € {0, 1}*, we havelli, |,i,w  ¢. Now note that

if the IFML ¢-formula¢ is closed (i.e., ifp € IFML sp) and forsome landi, we
havedi, I, i, w E ¢, then actuallyi, w £ ¢ holds. Formulas ofFML sp are in this
respect likesentence#n first-order logic: if satisfied under one assignment, they
are satisfied under all assignments. Their being satisfied is entirely independent
of the assignment. By contrast, for opgtML g -formulas the token valuations

and the binary strings have a crucial relevance. Formally, free tokews(ab
identified by certain strings) bear resemblance to free variables, and the valuations
to variable assignments; in the presence of free variables the satisfaction conditions
of first-order logic are of course essentially dependent on the assignments.

4.4 Standard translation

In this subsection we show that the modal-like lotfit®IL sp is equally expres-

sive as the logidF (ST?(ML )) specified inSection4.2. This result is interesting,
because it shows that this fragment of IF first-order logic indeed can be given a
Tarskian semantics, in the sense specifie@Gubsectio.1, unlike the full IF
first-order logic. To be precise, in the compositional semantics we designed for
IFML 2p, the interpretatiofy|y; of a formulag in a modal structur®t = (M, R, V)
is, in éfect, a set ofr{ + 1)-tuples of elements d#l, wheren is the number ofree
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tokens of the black diamona ¢, the remaining member of the tuple simply speci-
fying the statew relative to which the formula is evaluated. Hence the analogue of
[6, Cor. 6.2] does not hold for the logiEML sp: we need not climb to the level of
the powerset of the domain to obtain a compositional semantics; for any formula
of IFML g, a fixed Cartesian power of the domairfiaes.

Basic modal logic admits of a translation into the 2-variable fragment of first-
order logic. The class of closg@BML g -formulas, that is, the clasbML sp, has
an analogous property. Concretely, the following n&f"™ : IFML sp — IF2
provides a canonical translationl&™ML sp into the 2-variable fragment of IF first-
order logic. For allr, 8 € {x,y} with a # 8, define:

STF(p) = P
STF(-p) = -Pa
STy (doy) =(STy () o ST (W) ifoefv,A)
STF (0¢) = PB(Rap A ST (¢))
STy (@¢) = VB(RaB — ST (¢))
ST (8¢) = (AB/)(RaB A ST (¢))
STy (m¢) = STy (09).

Clearly, if ¢ is a closedFML g -formula, thenS T (¢) is anIF2-formula with
exactly one free variable,, The mappingS Ti actually provides a translation:

Proposition 11 For every formulap € IFML sp, modal structurét, and state w:

MwE ¢ if,and onlyif, MO, wE STF(4).

Proof. The proposition can be proven by induction on the structure of closed
formulas. Observe that the formulas prefixed vaitlare of the forrmy, wherey
is obtained by conjunction and disjunction from closed formulas and formulas of
the forme48, whered is closed. .

Further, the following ‘commutativity’ result holds, establishing tHa¥lL sp
actually is the logicX structurally determined above:

Proposition 12 Syntactically, S ¥ (IFML sp) = IF(ST2(ML)).

Proof. The inclusion from left to rightLet ¢ € IFML sp be arbitrary, and let
¢~ be theML -formula resulting fromp by turning all its black boxes and black
diamonds into their white counterparts. Clea8yfi" (¢) is obtained by the IF
procedure fron$ T2(¢~). The inclusion from right to lefttety € ML be arbitrary,
and lety* be any result of applying the IF procedureSd2z(y). SinceS T2(y) €
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FO?, y* is a formula oflF2. Any independence indication appearingsih must
be in a context of the formdu/B), whereg is bound by a universal quantifigg.
Let, theny™ be the result of having turned all those white diamogda v black,
that correspond to an existential quantifierdi2(y) which has become slashed
via the IF procedure leading fromto y*; and having also turned all those white
boxesn in ¢ black, that correspond to a universal quantifieBife(y) binding the
slashed variable of some existential slashed quantifigf init is easy to see that
STF (> is, by syntactical criteria, identical to the formufd. 4

4.5 Expressive power

The expressivity and decidability properties of the logibL sp are extensively
studied in [19]. Without entering details concerning the expressive power of
IFML sp, let us take an example.

Example 13 Consider evaluating the closed formula= m(¢p Vv €Q) at the root
w of the modal structur@t depicted in Figure 4:

E)Vl (o:]Vz
Lllo/ lEo o{ﬁ$oU5
FIGI\?]IQE4

Let I be any token valuation aridiny binary string. We claim thal, lo, i,w | .

To see this, choose | so thgiQ) = v; and I(i1) = v». (Choosing a valuation |
corresponds to picking out, as it were beforehand, states interpreting the two black
diamondse that can come across later in the evaluation.) lf&es to check that

M, 1,i,wEo(ep v q).

For this to hold, it must be possible to partition the $ef, .. ., us} into two cells
(corresponding to the choideft or right for the disjunction symbol), so that if u
belongs to one of the cells, thal, 1,i0,u; = &p; and if y; belongs to the other
cell, thenM, 1,il,uj £ &g. Let the cells béuy, uz} for left, and {us, us, us} for
right. Then the above conditions hold indeed: the former, sii€) is accessible
from all states in the former cell, and p is true &td); and the latter becauskill)
is accessible from all states in the latter cell, and q is true(&t)l

The above reasoning shows, then, thiatw E ¢. Observe that the formula
can be written in the syntax tfFML aso((¢/1)p Vv (¢/1)q). .
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For a further example of what can be expressed in ternisME sp, letn > 2
be arbitrary, and think of the formulg, :=

m(OTV...VeT).
—————

n-1times

Evaluated relative to a modal structubé = (M, R, V) at a statew, the formula
asserts, in fect, that the sefv : R(w, v)} can be partitioned into (at most)— 1
cells in such a way that the elements in each cell hasenamon successatong
the relationR. Actually the truth condition o can be expressed by the first-order
formula¢y, ;= Jz;...3z,-1VY(Rxy —» (Ryza V ... vV Ryz_1)). The formulagy, is

in the (W + 1)-variable fragment oFO. On the other hand, it is not féiicult to
see (by reference to a pebble game arguR)ehat ¢/, is not equivalent to any
formula in then-variable fragment oFO. Hence the greater the numbreis, the
more variables are needed to translate the formlmto first-order logic. As a
consequence, we may infer the following fact:

Fact 14 For alln < w, IFML gp £ FO".

Furthermore, we observe that for alk 2, the maximum number of nested modal
operators i, is 2. Yet wheneven’ > n, the formulasp, and¢, are not equiva-
lent. So we have:

Fact 15 For IFML gp, it is not the case that up to logical equivalence, there are
only finitely many formulas of a given modal depth.

It may be noted that Facts 14 and 15 are in a striking contrast to the case of basic
modal logic, which is translatable inf6O?, and has the property that the number

of pairwise non-equivalent formulas of any given modal depth is finite. (For the
latter fact, see, e.g., [3, Prop. 2.29].) These and other unorthodox properties of
the modal-like logidFML sp might suggest that it should be of a rather marginal
interest as a modal logic; even its status as a modal logic might be thereby called
into question. However, it is proven by the present authors in [19] that satisfiability
and validity problems ofFML gp are decidable in PSPACE. Hence this expressive
logic shares with basic modal logic a good deal of its nice computational properties.
So we see that the distribution of ‘desirable’ and ‘undesirable’ properties may,
in modal-like logics, be rather surprising. Actually, one of the most interesting
negative properties dFML gp is its non-translatability into the guarded fragment

of first-order logic, proven in [19].

8 On how to use pebble gam&3,(M, a, N, b) to characterize equivalence of structures up to
quantifier rank< mrelative toFO", see, e.g., [7, pp. 49-50].
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5 Collapse of diversity

Two ways to approach independence friendly modal logic have been discussed:
one leading fromFML to EIFML , proceeding via adding independence indica-
tions to modal operators much in the same way as is done in IF first-order logic
— the other way being via adjusting several parameters in such a way that an in-
dependence friendly logic gets structurally determined. It is fairly evident that
the three logics considered herdtdr in their expressive power. In fact, we have
IFML sp < IFML < EIFML . (For what is known and what is conjectured about
the relations of these logics, see Figures 5 and $diat.6.) By contrast, we now
show that in some casesin fact in cases that are extremely common in modal
logical contexts- the expressive powers of these logics coincide.

Let us begin with a couple of definitions. M is a set andR ¢ M? is a binary
relation, let us writeR* for the transitive closure dR, andR* for the reflexive
transitive closure oR. The structurelfl, R) is atreeg if (i) there is a unique element
r € M such that for allx € M, R'rx; (ii) every element oM has a uniquédR-
predecessor; andii() R is acyclic, i.e. there is na such thatR*xx. Let us say
that a tree idoranching if no x € M has precisely on&-successor (no element
has ‘out-degree’ equal to 1). Hence in a branching tree any element has either no
R-successors at all, or at least tResuccessors.

A k-ary modal structur@t = (M, Ry, ..., R, V) is (branching and) tree-likeif
the structure M, U1<i<x R) is a (branching) tree. A tree-likeary modal structure
N is proper, if for all x,y e M and all 1< i, j < k:

[(xy)eRandky) eR] = i=].

That is, in a proper tree-like structure no vertices are connected by more than one
relation out of th&k available ones. Defirgreey as the class of all proper branching
tree-likek-ary modal structures. Note that by virtue of claugg {(n the definition
of tree, all accessibility relatiorf?y, . . ., R¢ of a structurélt € Treey are irreflexive.
We will prove that all logic3FML , EIFML ¢ andIFML gp coincide with basic
modal logic (and hence with each other) relative to the classc. We begin by
consideringelFML . If ¢ = O1...0ny € EIFML g, Oz1 = (Ojy.j, /11, - - -5 1m)
and [x,Z] ¢ {i1,...,im}, we say that the operat@,,; involvesindependence of
a continuous block of predecessoihis terminology is reasonable, since by as-
sumptionO,, 1 is indicated as independent from its immediate predec€xsfmom
the predecess@, ; of O, and so on, (at least) untdy. (The smallest number in
the listiy,...,im may well be smaller thaw, while its greatest number must be
Z, given that the intervalX, 7 is contained in{iy,...,im}.) In what follows, we
will rewrite any operatorg;j, .j, /i1, .. .,imn), @s given by the syntax, in the form
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(jrjy /115 -+ Imy 13, ..., 17y), Where the integers, . . ., im refer by stipulation to
modal operators, and the integ€Js . ., i, to propositional connectives.

Lemma 16 (a)lf ¢ € EIFML , let ¢~ be the result of replacing all indepen-
dent diamondg<j,..j, /i1, .. .,imi},...,i,) in ¢ by the corresponding diamond
(©jy...j, /135 - - - »11y) involving no independencies of modal operators. Relative to
Treey, ¢ IS equivalent top~. (b) If no diamonds inp € EIFML i contain inde-
pendencies of modal operators, gt be the result of replacing all independent
diamondg<j, . j, /i3, - - ., if,) in ¢ by the simple diamond;, _j . Relative ta¥reey,

¢ is equivalent tay~.

Proof. (a) Let M € Treex andw € M, and assume thalt, w E ¢. Supposes
contains a diamon@z,1 = (®j,..j,/i1,- .., im: i}, - .., if,) involving independence
of a continuous block of predecess@s ..., O, such thatOx = Oj, .. But this
means that the strategy function,; corresponding t®,,; given by3’s winning
strategy (which exists by assumption) satisfies:

O—Z+1(p0a pla ) pZ) = O—Z+1(p09 pg]_ ] p,Z)a

where the sequence of choices from the domain associated myiths
¢ = (W,wy,...,w) and the one associated wifl} is ¢’ = (w,w/,...,w;), and
W, # W;. (This is becaus®i € Treey is branching and so in the two playshas
chosen pairwise incomparable and hence distinct states when choosing for the box
Ox.) But this is impossible, since in a tree no distinct nodes can have a common
successor and $6,,1 cannot be a strategy function involved in a winning strategy.

If the longest possible continuous block of predecessof3, of contains only
diamonds, the®,.1 may trivially be replaced by, j,/if, ..., i7y)-

Finally, if ¢ contains no operator involving independence of a continuous block
of predecessors, then all operato@ql(,jy/il, N i’l, ...,imy) In ¢ satisfy: either
the listiy, ..., im IS empty, or subordinate to the closest box (if any) identified by an
integer in the list, there is a modal operator superordinate to the diamond and not
identified by any integer in the list. Hencewf is the most recent choice from the
domain made before arriving at the position wharmust make a choice for the
diamond lemjy/i]_, N i'l, ...,imr), then, to put it intuitively3's move for the
diamond is allowed to depend @n. But there is a uniquely determined path in the
tree-like structur@lt leading fromw to w;, whenced can infer all previous choices
made in the relevant partial play. Hence the diamawg.(j, /i1, ..., im, 17, ..., im)
may, without changing the truth condition, be replaceddy (j,/i’,...,i/y)-

(b) Let u be the distribution of modality types associated wittand suppose
thatdi, w = ¢. Consider a diamondXj, j, /i, ....i;,) appearing in. (If none ex-
ists, there is nothing to prove.) If the indicated independencies from conjunctions
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correspond, as determined py to the requirement of reaching one state along
several accessibility relations, thais winning strategy irG(¢, 9t, w) will choose

such a state. But this is impossible, becallses a proper tree-like structure and
hence no such state exists. On the other hand, if the indicated independencies from
conjunctions correspond to making a choice along one and the same accessibility
relation irrespective of what the choices for those conjunctions were, then the inde-
pendent diamond can be replaced by the simple diamond. Finally, if in the diamond
considered there are only independencies from disjunctions, the formula says the
same as the result of replacing the independent diamond with a simple diamond.

Recall thatML ¢ stands for the polymodal basic modal logic, evaluated relative
to k-ary modal structures. We are in a position to prove:

Theorem 17 (a)For all k > 1, EIFML g coincides withVIL i over Treek. (b) Both
IFML andIFML gp coincide withML overTree;.

Proof. Statementd) follows by Lemma 16; and statemei) py an argument
exactly like the one presented for ites) (n the proof of Lemma 16. 4

The class of tree-like structures is omnipresent in modal logic. In particular,
any ML -formula that has a model at all, has a tree-like model. (Cf., e.g., [3, Prop.
2.15].) The clasSreek discerned above is quite representative a subclass of all tree-
like models from the viewpoint of basic modal logic. (It is noffidiult to see that
any satisfiable polymodal formulae ML i is satisfied in a structut € Treey.)
Hence it is of interest to see that the additional expressive power of the IF modal
languages discussed in the present paperclaie in their capacity to distinguish
such tree-like models. Relative ¥mecy the three logics do not exceed what already
their common core, basic modal logic, is able to express.

There is, at least tentatively, a positive methodological side to our negative ex-
pressivity result. Namely, one can propose to turn the tables and suggest that a
result such as Theorem 17 points to a feature émgtlIF version of basic modal
logic should exhibif That is, this type of results can be used in assessing the gen-
eral question as to the ‘nature’ of IF modal logics. From this perspective, indeed it
seems reasonable to require that IF modal logics of the appropriate kind precisely
shouldcoincide with basic modal logic on the class of trees discussed; if a logic
does not, it cannot be properly called an IF modal logic in the sense intended. This
systematic idea alone brings some order in the manifold @&rdint logics that
could conceivably be termed IF modal logics. However, it must be noted that de-
ciding the precise characteristics of a family of logics, such as IF modal logics, is

® We are indebted to the anonymous referee for pointing out this positive side of our negative
result.
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bound to leave some room for discussion; the same holds for the acceptance crite-
ria of any exclusive club of logics modal, first-order, or what not. What is more,
when applying the framework introduced$ectiord4, we need not choose a frag-
ment of basic modal logic as the class of modal formulas we start with. Choosing
for instance basic tense logic, or first-order modal logic, will likewise result in a
system that can, in a generic sense, be termed an IF modal logic. And such logics
need not satisfy any specific conditions that may be necessary for IF modal logics
corresponding to somefiierent choice of input modal formulas; for instance, there

is in general no reason why they should meet the conditions that IF modal logics
emerging from basic modal logic actually satisfy.

6 Concluding remarks

In this paper we aimed to discuss twdfdrent ways of formulating independence
friendly modal logic. To achieve this, we began by surveying and further studying
IF modal logics of one of these two kinds, i.e. those obtained from basic modal
logic by introducing a suitably interpreted slash device to the syr8axt§.2 and

3). Now one respect in which modal logididirs from first-order logic is that syn-
tactically, modal operators do not carry variables, whereas quantifiers do. When
subject to suitable syntactic restrictions, these variables can easily be employed in
referring to particular tokens of quantifiers, whereas no similar syntactic mecha-
nism is available in standard modal logic. This is why in the approaches such as
those discussed iBection2 and 3, one must introduce an identification method
by means of which to single out those tokens of modal operators from whose log-
ical (priority) scope one wishes to exempt, say, a given diamond. On conceptual
grounds one might find introducing such identification methods into the syntax less
than fortunate. One could argue that independence is a relation between (syntac-
tically manifest) variables, and suggest that since modal syntax doeff@oaoy

such variables, it does not really make sense to attempt formulating an IF modal
logic. According to such a viewpoint, adding for instance indices to modal oper-
ators to make reference to tokens of such operators possible, wouldasthat

move from the perspective of what modal logic is about.

The present authors do not share the ideas on which such a critique is based;
we hold independence to be a relation between tokens of logical operators, not first
and foremost between syntactically manifest variables. Howev&edatiord, we
hope to have made it clear that even if independence was considered precisely as
a relation between variables, an independence friendly modal logic analogous to
IF first-order logic can be defined by considerfrggments of IF first-order logic
This is the framework of the IF modal logics of the second kind considered in the
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present paper. The particular fragment to which we gave attention, the result of tak-
ing the standard translation BfL into FO?, and applying a certain IF procedure to
the resulting class of first-order formulas, turned out to be even of further interest.
Namely, we found a modal-like logié-ML sp, with a compositional semantics,
which actually captures the relevant subfragment of (the 2-variable fragment of) IF
first-order logic.

The following table lists the main results known about the various logics dis-
cussed in the present pap&lFML _ stands for the polymod&IFML y, one of
whose accessibility relations is rigidly interpreted as equality.

L Expressivity Satisfiability | Validity
ML L < FO? PSPACE PSPACE
IFML pr ML <L < FO?3, < SUPEREXP| PSPACE
IFML sp £ L < IFML
IFML L £ FO ? ?
EIFML IFML <L £ FO ? ?
EIFML _ L £FO undecidable ?
IFML sp L £ FO", L < FO, PSPACE PSPACE
L < IFML

Ficure 5. Known results on (IF) modal logics.

In the table below, some conjectures about the various IF logics are presented. The
conjecture to theféect thatFML pgr cannot be translated intBML sp holds fairly
obviously, but the requisite tool called for by the standard proof technique (viz. an
appropriate bisimulation relation) has not as yet been formulated in the literature.

L Expressivity | Validity
IFML PSPACE
EIFML g PSPACE
EIFML _ PSPACE
IFML sp || IFML pr £ L

Ficure 6. Conjectures on IF modal logics.

Although we feel that the logics discussed and studied in the present paper are
interesting in their own right, we think that more generally, they help to see the
interest of the grand program of independence-friendliness in ledltat is, to
repair Frege’s fallacy also outside of first-order logic.
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