A Remark on Collective Quantification

Juha Kontinen

Department of Mathematics and Statistics

University of Helsinki

Jakub Szymanik

Institute for Logic, Language and Computation

University of Amsterdam

June 21, 2007

Abstract

We consider collective quantification in natural language. For many
years the common strategy in formalizing collective quantification has
been to define the meanings of collective determiners, quantifying over
collections, using certain type-shifting operations. These type-shifting
operations, i.e., lifts, define the collective interpretations of collective
determiners systematically from the standard meanings of quantifiers.
All the lifts considered in the literature turn out to be definable in
second-order logic. We argue that second-order definable quantifiers
are probably not expressive enough to formalize all collective quantifi-

cation in natural language.

Keywords: collective quantification, Lindstrém quantifiers, second-order gen-

eralized quantifiers, type-shifting, definability, computational complexity.

1 Introduction

Recently, there has been some interest in measuring the complexity of se-
mantic constructions of natural language. These studies have been mo-
tivated by certain mathematical questions (see e.g. Hella et al., 1997) as
well as cognitive considerations (see e.g. McMillan et al., 2005; Szymanik,
2007). As the complexity of the semantics of a language heavily depends on
the expressive power of its quantifiers, most of the studies have focused on
quantification. In particular, Mostowski and Wojtyniak (2004), followed by
Sevenster (2006), study computational complexity of natural language quan-
tifiers, and Mostowski and Szymanik (2005) search for semantic bounds of
the so-called everyday fragment of natural language. In all of these studies
only distributive reading of natural language determiners have been consid-
ered. In contrast — as the properties of plural objects are becoming more
and more important in many areas (e.g. in game-theoretical investigations,
where groups of agents are acting) — this paper is devoted to the collective
readings of quantifiers. We mainly focus on definability issues, but we also
discuss the connections to computational complexity. The rest of the intro-
duction roughly presents the state of the art in formal semantics of collective
plural noun phrases.

Already Bertrand Russell (1903) noticed that natural language contains
quantification not only over objects, but also over collections of objects.
The notion of a collective reading is a semantic one — as opposed to the
grammatical notion of plurality — and it applies to the meanings of certain
occurrences of plural noun phrases. The phenomenon is illustrated by the

following sentences:
(1) Tikitu and Samson lifted the poker table together.
(2) The decks of cards on the table had different colors.

(3) Nina and Jonathan had flush together, but each of them alone had
nothing.

(4) Most poker hands have no chance against an Ace and a Two.

(5) Most of the card combinations do not contain a picture card.

(6) Most of the PhD students play Texas Hold’em.
(7) Most groups of students have never played Hold’em together.

The question arises how should we model collective quantification in for-
mal semantics. Many authors have proposed different mathematical accounts
of collectivity in language (see Lgnning, 1997, for an overview and references).
None of the approaches is widely accepted, but, at least, all authors agree

on the following three principles formulated by Link (1991):

Atomicity Each collection is constituted by all the individuals it contains.
Completeness Collections may be combined into new collections.

Atoms Individuals are collections consisting of only a single member.

In Link (1983) one finds the idea of replacing the domain of discourse,
which consists of entities, with the structure of a complete join semilattice.
The author focuses on the cumulative properties of mass nouns and observes
that the same approach can be applied to cover plural nouns. The idea is
to enrich the structure of models to account for cumulative references. The
main advantage of this algebraic perspective is that it unifies the view on
collective predication and predication involving mass nouns.

J. van der Does (1992) noticed that all that can be modeled with the
algebraic models can be done as well within type theory. This alternative
tradition, starting with the works of Bartsch (1973) and Bennett (1974), uses
extensional type theory with the basic types: e (entities) and ¢ (truth values),
and compound types: «af (functions mapping type a objects onto type (3
objects). Together with the idea of type-shifting, introduced in the seminal
paper of Partee and Rooth (1983), and then formally developed by J. van
Benthem (1991), it gives a new approach to modeling collectivity in natural
language. The strategy, introduced by Scha (1981) and later advocated and
developed by J. van der Does (1992, 1996) and Winter (2001), is to lift first-
order generalized quantifiers to a second-order setting. In the type theoretical
terms the trick is to shift determiners of type ((et)((et)t)), related to the
distributive readings of quantifiers, into determiners of type ((et)(((et)t)t))

which can be used to formalize collective readings of quantifiers.

In the next section we illustrate the idea of lifting first-order quantifiers
by a few examples. Then we introduce, both, first-order and second-order
generalized quantifiers, and show that the type theoretic approach can be
redefined in terms of second-order generalized quantifiers. The idea of type-
shifting turns out to be very closely related to the notion of definability which
is central in generalized quantifier theory. We show that the type-shifting
operations considered in the literature (i.e. lifts) are definable in second-
order logic. This observation allows us to point out the restrictions of the
type-shifting strategy used in the literature. In particular, we show that
the collective meaning of the determiner Most can not be uniformly defined
by any lift definable in second-order logic, unless the counting hierarchy

collapses in computational complexity theory.

2 Lifting first-order determiners

Let us consider the following example sentences involving collective quantifi-

cation.
(8) Five people lifted the table.
(9) Some students played poker together.
(10) All combinations of cards are losing in some situations.

The type-shifting strategy defines the collective readings of determiners by
raising the types of the corresponding distributive determiners. In other
words, the idea is to lift first-order generalized quantifiers — expressing
properties of subsets of the discourse — into the second-order setting, in
which it is possible to speak about the properties of collections of all subsets
over a given domain. Let us analyze the examples.

The distributive reading of the sentence (8) claims that the total number
of students who lifted the table on their own is exactly five. This statement

can be formalized in elementary logic by the formula (11):

(11) F=°x[People(x) A Lift(x)].

The collective interpretation of (8) claims that there was a collection of
exactly five students who jointly lifted the table. This can be formalized by
lifting the formula (11) to the second-order formula (12):

(12) 3X[Card(X) =5A X C People A Lift(X)].

In the similar way, by lifting the corresponding first-order determiners, we

can express the collective readings of sentences (9)-(10) as follows:
(13) 3X[X C Students A Play(X)].
(14) VX[X C Cards = Lose(X)].

All the examples above can be described in terms of the uniform pro-
cedure of turning a determiner of type ((et)((et)t)) into a determiner of
type ((et)(((et)t)t)) by the means of the type-shifting operator called ex-
istential modifier, (-)¥M. Fix a universe of discourse U and take any
X C U, and Y C P(U). Define the existential lift QFM of a quantifier
Q in the following way:

QFM(X,Y) is true «—= 3Z C X[Q(X,Z)AZ €Y].

In the literature, lifts have been defined also for distributive and so-called
neutral readings of sentences. For example, Ben Avi and Winter (2003)
define the following lift — called dfit — for determiner fitting, to overcome
some problems related to the monotonicity properties of the previous lifts
considered in the literature. Note that the dfit operator turns a determiner
of type ((et)((et)t)) to a determiner of type (((et)t)(((et)t)t)), i.e., for all
X,Y CP(U) we have that

Qdﬁt(X7 Y) is true
<

QUX,UXNY)AXNY =0VvIW e XNY AQ(UX, W)

For us the most important observation is that all the lifts proposed in the
literature (see Winter, 2001, for an overview) are definable by the means of

second-order logic.

In the next section we recall the mathematical definitions of first-order
and second-order generalized quantifiers. We also discuss the notion of de-
finability which is a central concept in generalized quantifier theory. Then
we show that collective determiners relate to second-order generalized quan-
tifiers just like distributive determiners relate to first-order generalized quan-

tifiers.

3 Generalized quantifiers

3.1 Lindstréom quantifiers

Let us first recall the definition of a first-order generalized quantifier formu-
lated by Lindstrom (1966).

Let s = (¢1,...,4,) be a tuple of positive integers. A first-order general-
ized (Lindstrom) quantifier of type s is a class Q of structures of vocabulary
T7s = {P1,..., P}, such that P; is {;-ary for 1 < i <r, and Q is closed under
isomorphisms.

To illustrate the notion let us look at some well-known examples of first-

order generalized quantifiers.

V = {(M,P)|P=M}.
= {(M,P)| PC M and P # 0}.
Qeven = {(M,P)| P C M and card(P) is even}.
Most! = {(M,P,S)|P,SC M and card(PNS) > card(P\ 9)}.
Some = {(M,P,S)|P,SCMand PNS #0}.

The first two examples are the standard first-order universal and existential
quantifiers, both of type (1). The other examples are also familiar from
natural language semantics. Their aim is to capture the truth-conditions
of sentences of the form: “Even number of A’s are B”, “Most A’s are B”
and “Some A is B”. Divisibility quantifier Qeyen is of type (1), whereas the
quantifiers Most! and Some are of type (1, 1).

First-order generalized quantifiers enable us to enrich the expressive

power of first-order logic in a very controlled and minimal way. We define

the extension, FO(Q), of first-order logic by a quantifier Q in the following

way:

e The formula formation rules of FO are extended by the rule:

if for 1 < i < r, p;(7;) is a formula and Z; is an ¢;-tuple of pairwise

distinct variables, then QZy,...,Z, (¢1(Z1),...,¢r(Ty)) is a formula.

e The satisfaction relation of FO is extended by the rule:
M = QT ..., Ty (01 (1), - -, 0r(Tr)) iff (M, Q... M) € Q,
where oM = {@ € M*% | M |= ¢;(a)}.

First-order generalized quantifiers have been used extensively in formal-
semantics of natural language to model distributive determiners (see West-
erstahl and Peters, 2006). However, they are not adequate in formalizing
collective quantification. In the next section we present an intuitive and
natural extension of Lindstrom quantifiers, second-order generalized quanti-
fiers. They turn out to be a natural concept for interpreting the meanings
of collective determiners in natural language. Moreover, this concept is con-
sistent with the principles of atomicity, completeness, and atoms discussed

in the introduction. We begin with the formal definitions.

3.2 Second-order generalized quantifiers

Second-order generalized quantifiers were first defined and applied in the
context of descriptive complexity theory by Burtschick and Vollmer (1998).
The general notion of a second-order generalized quantifier was later for-
mulated by Andersson (2002). The following definition is a straightforward
generalization from the first-order case. However, note that the types of
second-order generalized quantifiers are more complicated than the types of
first-order generalized quantifiers, since predicate variables can have different
arities. Let t = (s1,...,5y), where s; = (£i,... ,Eii), be a tuple of tuples
of positive integers, for 1 < ¢ < w. A second order structure of type t is a
structure of the form (M, Py, ..., P,), where P, C P(M%) x -+ x P(Mﬁiz‘).

Below, we write f[A] for the image of A under the function f.

A second-order generalized quantifier Q of type t is a class of
structures of type t such that Q is closed under isomorphisms: if
(M,Py,...,P,) € Q and f: M — N 1is a bijection such that
Si = {(f[A1],-- -, f[An]) | (A1,...,A;,) € B}, for 1 < i < w, then
(N,Sy,...,80) € Q.

The following examples show that second-order generalized quantifiers

are a natural extension from the first-order case.
3 = {(M,P)| PCP(M)and P # (}.
Even = {(M,P)| P CP(M) and card(P) is even}.
Even’ = {(M,P)| P CP(M) and VX € P(card(X) is even)}.
Most? = {(M,P,S)| P,S C P(M) and card(PNS) > card(P\ S)}.

The first example is the familiar unary second-order existential quantifier.
The type of 3% is ((1)). The quantifier Even says that a formula holds for an
even number of subsets of the universe. On the other hand, the quantifier
Even’ says that all the subsets satisfying a formula have an even number of
elements. The quantifier Most? applies to two formulas ¢ and ¢ and says
that more than half of the subsets satisfying v also satisfy .

As in the first-order case, we define the extension, FO(Q), of FO by a

second-order generalized quantifier Q@ in the following way:
e Second order variables are introduced to FO.

e The formula formation rules of FO are extended by the rule:

if for 1 < i < w, p;(X;) is a formula and X; = (X1,,...,X,,;) is a
tuple of pairwise distinct predicate variables, such that arity (X;;) = ﬁ;-,
for 1 < j <y, then

QX1 Xuw (p1(X1)s -+ pw(Xw))
is a formula.
e Satisfaction relation of FO is extended by the rule:
ME QX1, ..., Xy (o1, .. 00) iff (M,)", 00) € Q,

where M = {R € P(M4) x --- x P(M™) | M = ¢:(R)}.

3.3 Definability

The concept of definability is central in generalized quantifier theory. Infor-
mally, definability of a quantifier Q in a logic £ means that there is a uniform
way to express every formula of the form Qx ¢ in L.

Formally, let Q be a first-order generalized quantifier of type s and L a
logic. We say that the quantifier Q is definable in L if there is a sentence

@ € L of vocabulary 7, such that for any 7s-structure M:
MEpeMeQ.

Let £ and L’ be logics. The logic L' is at least as strong as the logic
L (L <L) if for every sentence ¢ € L over any vocabulary there exists a

sentence ¢ € L' over the same vocabulary such that

Fp ey

The logics £ and L are equivalent (L= L") if L < L' and L' < L.
Below, we assume that the logic £ has the so-called Substitution Property,
i.e., that the logic L is closed under substituting predicates by formulas. The

following fact is well-known for Lindstrom quantifiers.

Proposition 3.1. Let Q be a first-order generalized quantifier and L a logic.
The quantifier Q is definable in L iff

Proof. Since Q = Mod(p), where ¢ = Q7y,...,Z, (P (Z1),..., P(Z;)) the
implication from right to left follows. For the other direction, we use recur-
sively the fact that if ¢ is the formula which defines Q and ¥1(Z1), ..., ¥, (Z;)

are formulas of £, then

’: Qfl’ cey Tp (wl(fl)a s a"vbr(fr)) — @(Pl/wlv .. '7PT/¢7')3

where the formula on the right is obtained by substituting every occurrence
of P;(Z;) in ¢ by 1;(7;). u

In the second-order case, analogous notion of definability can be formu-

lated. We do not give the formal definition here. However, things are not

completely analogous to the first-order case. With second-order generalized
quantifiers £(Q) = L does not imply that the quantifier Q is definable in

the logic £. The converse implication is still valid.

Proposition 3.2 (Kontinen (2004)). Let Q be a second-order generalized
quantifier and L a logic. If the quantifier Q is definable in L then

Proof. The idea and the proof is analogous to the first-order case. Here
we substitute second-order predicates by formulas having free second-order

variables. O

In Kontinen (2002) it was shown that the extension £* of FO by all
first-order generalized quantifiers cannot define the monadic second-order
existential quantifier. In other words, the logic £*, in which all properties of
first-order structures can be defined, cannot express in a uniform way that
a collection of subsets of the universe is non-empty. This observation can
be used to argue for the fact that first-order generalized quantifiers alone
are not adequate for formalizing all natural language quantification. For
example, as quantifier 32 is not definable in £*, the logic £* cannot express

the collective reading of sentences like (15).

(15) Some students gathered to play poker.

4 Defining collective determiners

In this section we show that collective determiners can be easily identified
with certain second-order generalized quantifiers.

At first sight, there seem to be a problem with identifying the collective
determiners with second-order generalized quantifiers; some of the collective
determiners discussed have a mixed type ((et)(((et)t)t))!. However, this is

not a problem since it is straightforward to extend the definition to allow

!Note that the lift dfit of Ben Avi and Winter (2003) turns a first-order quantifier of
type (1,1) directly to a second-order quantifier of type ((1), (1)).

10

also quantifiers with mixed types. Denote by Some’ the following quantifier
of type (1, (1))
{(M,P,G)|PCM; GCP(M): Y CPY #0and P € G)}.

Obviously, we can now express the collective meaning of sentence (15) by

the formula (16).
(16) Some’ x, X[Student(x), Play(X)].
Analogously, we can define the corresponding second-order quantifier ap-
pearing in sentence (8), here as (17).
(17) Five people lifted the table.

We take Five' to be the second order-quantifier of type (1, (1)) denoting the

class:

{(M,P,G)|PCM; GCP(M): 3Y C P(card(Y) =5 and P € G)}.
Now we can formalize the collective meaning of (17) by:
(18) Fivetz, X[Student(x), Lift(X)].

Already these simple examples show that it is straightforward to associate
with every lifted determiner a mixed second-order generalized quantifier.
Also, it easy to see that for any first-order quantifier Q the lifted second-order
quantifier Q! can be uniformly expressed in second-order logic assuming the
quantifier Q is also available. In fact, all the lifts discussed in Section 2., and,
as far as we know, all proposed in the literature, are definable in second-order

logic. This observation can be stated as follows.

Proposition 4.1. Let Q be a first-order quantifier definable in SO. Then

the second-order quantifiers QEM, Qdﬁt and Qt are definable in SO.

Proof. Let us consider the case of QFM. Let 1(x) and ¢(Y) be formulas. We
want to express Q¥M z, Y (1(x), ¢(Y)) in second-order logic. By the assump-
tion, the quantifier Q can be defined by some sentence 6§ € SO[{P;, P»}]. We

can now use the following formula:
AZ(Va(Z(x) — (@) A (O(PL/Y(2), P2/ Z) N §(Y/Z)).

The other lifts can be defined analogously. O

11

Proposition 4.1 shows that the type shifting strategy cannot take us
outside of second-order logic. In the next section we show that it is very
unlikely that all collective determiners in natural language can be defined
in second-order logic. Our argument is based on the close connection be-
tween second-order generalized quantifiers and certain complexity classes in

computational complexity theory.

5 Lifting the determiner Most

Let us return to the example sentences (4)—(7) from the introduction. For

readability, we repeat (7) here as (19).

(19) Most groups of students have never played Hold’em together.

It is easy to see that (19) can be formalized using the quantifier Most? by:
(20) Most? X, Y[Students(X), =Play(Y)].

We assume above that the predicates Students(X) and Play(Y') are inter-
preted as collections of sets of atomic entities of the universe of discourse.
Obviously, this is just one possible way of interpreting (19). However, it
seems that something like Most? is needed in the formalization assuming
that Students(X) and Play(Y') are interpreted as collective predicates.

For the sake of argument, let us assume that our formalization of sentence
(19) is correct. It is easy to see that the lifts discussed before do not give
the intended meaning when applied to the first-order quantifier Most!. We
shall next show that it is unlikely that any lift, which can be defined in
second-order logic, can do the job. More precicely, we shall show (Theorem
5.1 below) that if the quantifier Most? can be lifted from the first-order
Most! using a lift, which is definable in second-order logic, then something
unexpected happens in computational complexity. This result indicates that
the type-shifting strategy used to define the collective determiners in the
literature is probably not general enough to cover all collective quantification
in natural language.

We shall next discuss the complexity theoretic side of our argument.

Recall that second-order logic corresponds in the complexity theoretic side

12

to the polynomial hierarchy, PH, (see Stockmeyer, 1977). The polynomial
hierarchy is an oracle hierarchy with NP as the building block. If we replace
NP by probabilistic polynomial time (PP) in the definition of PH, then
we arrive at a class called the counting hierarchy (CH). PP consists of
languages L for which there is a polynomial time-bounded nondeterministic
Turing machine N such that, for all inputs z, z € L iff more than half of
the computations of IV on input x end up accepting. The counting hierarchy

can be defined now as follows in terms of oracle Turing machines
(1) CoP = PTIME,
(2) Cyi1P = PPOL,

(3) CH = Upen CrP.

It is known that PH is contained in the second level Co P of CH (see Toda,
1991). The question whether CH C PH is still open.
Now, we can turn to the theorem which is fundamental for our argumen-

tation.

Theorem 5.1. If the quantifier Most? is definable in second-order logic, then
CH = PH and CH collapses to its second level.

Proof. The proof is based on the observation Kontinen and Niemist6 (2006)
that already the logic FO(Most?) can define complete problems for each
level of the counting hierarchy. On the other hand, if the quantifier Most?
is definable in second-order logic, then by Proposition 3.2 we would have
that FO(I\/IostQ) < SO and therefore SO would contain complete problems
for each level of the counting hierarchy. This would imply that CH = PH
and furthermore that CH C PH C (3 P. O

Note that even if CH = PH would be true, this does not automatically
imply that the quantifier Most? can be defined in second-order logic. In fact,
it would be very surprising if this would be the case.

6 Conclusion

We have showed that the higher-order approach to collective quantification

in natural language can be formalized in terms of second-order generalized

13

quantifiers. The previous attempts have relied implicitly on quantifiers which
can be defined in second-order logic. We have presented an argument indicat-
ing that second-order definable quantifiers are probably not general enough

to cover all collective quantification in natural language.
Acknowledgments

We would like to thank Johan van Benthem and Yoad Winter for valuable
comments and suggestions. The first author was financially supported by
the Academy of Finland, project 106300. The second author is a recipient of
the 2007 Foundation for Polish Science Grant for Young Scientists and was
supported by a Marie Curie Early Stage Research fellowship in the project
GloRiClass (MEST-CT-2005-020841).

References

Andersson, A. (2002). On second-order generalized quantifiers and finite
structures. Annals of Pure Applied Logic, 115(1-3):1-32.

Bartsch, R. (1973). The semantics and syntax of number and numbers. In

Kimball, J., editor, Syntax and Semantics, pages 51-93. New York.

Ben Avi, G. and Winter, Y. (2003). Monotonicity and collective quantifica-
tion. Journal of Logic, Language and Information, 12:127-151.

Bennett, M. (1974). Some extensions of a Montague fragment of English.
PhD thesis, University of California, Los Angeles.

J. van Benthem (1991). Language in action. Amsterdam.

Burtschick, H.-J. and Vollmer, H. (1998). Lindstrom quantifiers and leaf
language definability. International Journal of Foundations of Computer
Science, 9(3):277-294.

J. van der Does (1992). Applied quantifier logics. PhD thesis, Universiteit

van Amsterdam.

J. van der Does (1996). Sums and quantifiers. Linguistics and Philosophy,
16:509-550.

14

Hella, L., Vaanénen, J., and Westerstahl, D. (1997). Definability of polyadic
lifts of generalized quantifiers. 6:305-335.

Kontinen, J. (2002). Second-order generalized quantifiers and natural lan-
guage. In Nissim, M., editor, Proceedings of the Seventh ESSLLI Student
Session, pages 107-118.

Kontinen, J. (2004). Definability of second order generalized quantifiers.
Technical Report 380, Department of Mathematics and Statistics, Univer-
sity of Helsinki. To appear in Archive for Mathematical Logic.

Kontinen, J. and Niemisto, H. (2006). Extensions of MSO and the monadic
counting hierarchy. Manuscript available at http://www.helsinki.fi/ jkon-
tine/.

Lindstrom, P. (1966). First order predicate logic with generalized quantifiers.
Theoria, 32:186-195.

Link, G. (1983). The logical analysis of plural and mass terms: a lattice—
theoretical approach. In Bauerle, R., Schwarze, C., and von Stechov,
A., editors, Meaning, use, and interpretation of language, pages 301-323.

Berlin.

Link, G. (1991). Plural. In Wunderlich, D. and von Stechov, A., editors,

Semantik. Semantics. Walter de Gruter, Berlin.

Lgnning, J. T. (1997). Plurals and collectivity. In van Benthem, J. and ter
Meulen, A., editors, Handbook of Logic and Language, pages 1009-1053.

Elsevier.

McMillan, C., Clark, R., Moore, P., Devita, C., and Grossman, M. (2005).
Neural basis for generalized quantifiers comprehension. Neuropsychologia,
43:1729-1737.

Mostowski, M. and Szymanik, J. (2005). Semantical bounds for everyday
language. ILLC Preprint Series PP-2006-40, To appear in Semiotica.

Mostowski, M. and Wojtyniak, D. (2004). Computational complexity of the

semantics of some natural language constructions. 127:219-227.

15

Partee, B. and Rooth, M. (1983). Generalized conjunction and type ambigu-
ity. In Bauerle, R., Schwarze, C., and von Stechov, A., editors, Meaning,

use, and interpretation of language, pages 361-383. Berlin.
Russell, B. (1903). The Principles of Mathematics. London.

Scha, R. (1981). Distributive, collective and cumulative quantification. In
Groenendijk, J., Janssen, T., and Stokhof, M., editors, Formal methods in
the study of language, pages 483-512. Amsterdam.

Sevenster, M. (2006). Branching Imperfect Information. Logic, Language,
and Computation. PhD thesis, Institute for Logic, Language, and Com-

putation.

Stockmeyer, L. (1977). The polynomial-time hierarchy. Theoretical Com-
puter Science, 3:535-555.

Szymanik, J. (2007). A comment on a neuroimaging study of natural lan-

guage quantifier comprehension. Neuropsychologia, 45(9):2158-2160.

Toda, S. (1991). PP is as hard as the polynomial-time hierarchy. SIAM
Journal on Computing, 20(5):865-877.

Westerstahl, D. and Peters, S. (2006). Quantifiers in Language And Logic.
Oxford University Press, Oxford.

Winter, Y. (2001). Flexibility principles in Boolean semantics. The MIT

Press, London.

16

