PP-2008-11: The Kuznetsov-Gerciu and Rieger-Nishimura Logics: The Boundaries of the Finite Model Property

PP-2008-11: Bezhanishvili, Guram and Bezhanishvili, Nick and de Jongh, Dick (2008) The Kuznetsov-Gerciu and Rieger-Nishimura Logics: The Boundaries of the Finite Model Property. [Report]

Text (Full Text)

Download (316kB) | Preview
[img] Text (Abstract)

Download (1kB)


We give a systematic method of constructing extensions of the Kuznetsov- Gerciu logic KG without the finite model property (fmp for short), and show that there are continuum many such. We also introduce a new technique of gluing of cyclic intuitionistic descriptive frames and give a new simple proof of Gerciu's result that all extensions of the Rieger-Nishimura logic RN have the fmp. Moreover, we show that each extension of RN has the poly-size model property, thus improving on [Gerciu]. Furthermore, for each function f:\omega->\omega, we construct an extension Lf of KG such that Lf has the fmp, but does not have the f-size model property. We also give a new simple proof of another result of Gerciu characterizing the only extension of KG that bounds the fmp for extensions of KG. We conclude the paper by proving that RN.KC = RN + (¬p v ¬¬p) is the only pre-locally tabular extension of KG, introduce the internal depth of an extension L of RN, and show that L is locally tabular if and only if the internal depth of L is finite.

Item Type: Report
Report Nr: PP-2008-11
Series Name: Prepublication (PP) Series
Year: 2008
Uncontrolled Keywords: superintuitionistic logic, finite model property, descriptive frames
Subjects: Logic
Depositing User: Prof. Dick de Jongh
Date Deposited: 12 Oct 2016 14:36
Last Modified: 12 Oct 2016 14:36
URI: https://eprints.illc.uva.nl/id/eprint/285

Actions (login required)

View Item View Item