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Abstract

We relate three different, but equivalent, ways to characterise be-
havioural equivalence for set coalgebras. These are: using final coalgebras,
using coalgebraic languages that have the Hennessy- Milner property and
using coalgebraic languages that have “logical congruences”. On the tech-
nical side the main result of our paper is a straightforward construction
of the final T -coalgebra of a set functor using a given logical language
that has the Hennessy-Milner property with respect to the class of T -
coalgebras.

1 Introduction

Characterising behavioral equivalence between coalgebras is an important issue
of universal coalgebra and coalgebraic logic. Rutten [15] shows that behavioral
equivalence can be structurally characterized by final coalgebras. Moss [12] and
Pattinson [14] provided two different ways for generalizing modal logic to ar-
bitrary coalgebras. These generalizations are called coalgebraic (modal) logics.
Moss showed in [12] that his language provides a logical characterization of be-
havioural equivalence: two pointed coalgebras are behaviourally equivalent iff
they satisfy the same formulas of the logic. In modal logic terminology this log-
ical characterisation of behavioural equivalence is usually called the “Hennessy-
Milner property” ([5]). For the language of coalgebraic modal logic from [14]
Lutz Schröder [16] shows how the Hennessy-Milner property can be obtained
using certain congruences of coalgebras, which we will call logical congruences.

The main contribution of this paper is to introduce a systematic study of
the relationship between these three methods: the structural and logical charac-
terisation of behavioural equivalence and the characterisation that uses logical
congruences. We work in a general framework that covers all known logics for
set coalgebras and easily generalizes to base categories different from Set. Our
main theorem (Theorem 4.23) can be stated as follows: Given a set functor T ,
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a final T -coalgebra exists iff there exists a language for T -coalgebras with the
Hennessy-Milner property iff there exists a language for T -coalgebras that has
logical congruences.

The first equivalence was proven by Goldblatt in [6], the second equivalence
was discussed by Schröder in [16] for the case of coalgebraic logics. We provide
relatively simple proofs for these equivalences in order to obtain our main the-
orem. In particular, 1) we simplify Goldblatt’s proof, 2) generalize Schröder’s
argument, and in addition to that, 3) we use our framework to construct canon-
ical models and characterize simple coalgebras. Furthermore we demonstrate
that our proofs allow for straightforward generalizations to base categories that
are different from Set.

The structure of the paper is as follows: In the Section 2, we introduce
some preliminaries and mention the relation between final coalgebras and be-
havioral equivalence. In Section 3 we introduce abstract coalgebraic languages.
Using these we present the connection between behavioral equivalence and the
Hennessy-Milner property and we construct canonical models. In Section 4 we
discuss the connection between coalgebraic congruences and languages with the
Hennessy-Milner property and characterize simple coalgebras. Finally in Sec-
tion 5 we explore generalizations of our work to other categories. For this last
part a bit more of knowledge of category theory is assumed.

2 Behaviour & Final Coalgebras (Preliminaries)

Before we start let us stress the fact that one major feature of our work is its
simplicity. Therefore we do not require much knowledge of category theory.
When possible, we avoid the use of general categorical notions and use set
theoretic terminology. The basic notion of this paper is that of coalgebras
for a set endofunctor. However, we introduce the notion of coalgebra for an
endofunctor on any category, and not just Set, as we will discuss generalisations
of our results.

Definition 2.1. The category of coalgebras Coalg(T ) for an endofunctor on
a category C has as objects arrows ξ : X −→ TX and morphisms f : (X, ξ)
−→ (Y, γ) are arrows f : X −→ Y such that T (f)ξ = γf . The object X is called
the states of ξ. A pointed coalgebra is a pair (ξ, x) with x a point of the states
of ξ.We often write f : ξ −→ γ for a morphism f : (X, ξ) −→ (Y, γ).We call the
arrow ξ, in a coalgebra (X, ξ), the structural map of the coalgebra. We reserve
the letter ξ for coalgebras with a carrier object X, the letter γ for coalgebras
over an object Y , and the letter ζ for coalgebras based on an object Z.

The crucial notion that we want to investigate is behavioural equivalence.
For now, we only consider set coalgebras. One of the important issues towards
a generalisation of the results presented in this paper is to find a notion of
behavioural equivalence that can be interpreted in other categories different
from Set.
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Definition 2.2. Let T : Set −→ Set be a functor. Two states x1 and x2 on T -
coalgebras ξ1 and ξ2, respectively, are behavioural equivalent, written x1 ∼ x2, if
there exists a coalgebra γ and morphisms gi : ξi −→ γ such that g1(x1) = g2(x2).

It was noted by Rutten [15] that behavioural equivalence could be charac-
terised using final systems, also called final coalgebras.

Definition 2.3. A final coalgebra for an endofunctor T is a terminal object in
Coalg(T ). Explicitly, a final coalgebra is a coalgebra ζ : Z −→ TZ such that for
any other coalgebra ξ : X −→ TX there exists a unique morphism fξ : ξ −→ ζ.
This morphism is called the final map of ξ.

Final coalgebras are to coalgebra what initial algebras or term algebras are
to algebra (cf. e.g. [9]). In this paper we are interested in final coalgebras mainly
because they can be used to characterise behavioural equivalence between states.

Proposition 2.4 ([15]). If a final coalgebra for a set functor T exists, two states
xi in coalgebras ξi are behavioural equivalent if and only if they are mapped into
the same state of the final coalgebra, ie., if fξ1(x1) = fξ2(x2).

3 The Hennessy-Milner Property & Behaviour

In this section we introduce languages to describe coalgebras. We will show how
languages with the Hennessy-Milner property relate to final coalgebras. We will
illustrate this interaction constructing canonical models for those languages.

3.1 Abstract Coalgebraic Languages

We begin by showing that the existence of a final coalgebra is equivalent to the
existence of a language with the Hennessy-Milner property. Let us first clarify
what is meant by an abstract coalgebraic language. In the sequel, unless stated
otherwise, T will always denote an arbitrary functor T : Set −→ Set.

Definition 3.1. An abstract coalgebraic language for T , or simply a language
for T -coalgebras, is a set L together with a function Φξ : X −→ PL for each
T -coalgebra ξ : X −→ TX. The function Φξ will be called the theory map of ξ,
elements of PL will be called (L-)theories.

An abstract coalgebraic language is precisely what Goldblatt calls a “small
logic” for T ([6]). A first example of a coalgebraic language is the language of
basic modal logic.

Example 3.2. Let T = P be the covariant power set functor. It is well-known
that the category of P-coalgebras is isomorphic to the category of Kripke frames
and bounded morphisms. Let LK be the set of closed modal formulas of the
basic similarity type (see [5] for details). For an arbitrary P-coalgebra ξ : X
−→ PX we define Φξ : X −→ PLK to be the “modal theory map”, i.e., the
function that maps a state x ∈ X to the set of formulas ϕ ∈ LK such that
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ξ, x |= ϕ. The set LK together with the family {Φξ}ξ∈Coalg(P) is an abstract
coalgebraic language for P. We have a similar example if we take T = Pω, the
finite power set functor. Recall that coalgebras for Pω are image finite Kripke
frames.

In fact modal logic is a particular instance of a more general class of coal-
gebraic languages. Namely coalgebraic modal logics with predicate liftings, or
languages of predicate liftings (see [14, 16] for details).

Example 3.3 ([16]). Given a set endofunctor, an n-ary predicate lifting is a
natural transformation Qn −→ QT . We can associate an abstract coalgebraic
language to each set of predicate liftings, for T , Λ. The language of predi-
cate liftings Lκ(Λ) with κ conjunctions1 associated with Λ is defined by the
usual boolean grammar for κ conjunctions together with the following clause
for predicate liftings λ ∈ Λ: If λ is an n-ary predicate lifting, and (ϕi)i∈n is
a n-sequence of formulas in Lκ(Λ) then λ(ϕi)i∈n ∈ Lκ(Λ). where |I| < κ and
λ ∈ Λ. Formulas in Lκ(Λ) can be interpreted on set coalgebras as follows: For
each coalgebra ξ we define a function [[−]]ξ : Lκ(Λ) −→ PX, this function is
defined by induction on the complexity of the formula. The case of boolean
formulas is done as usual. In the case of formulas involving predicate liftings we
define [[λ(ϕi)]]ξ = ξ−1λX([[ϕi]]ξ)i∈n. The intuition is that predicate liftings are
“modalities”. The transpose of [[−]]ξ, which is a function Φξ : X −→ PLκ(Λ), is
the theory map of ξ; The set Lκ(Λ) together with the maps Φxi is and abstract
coalgebraic language for T . Using this we could say that a state x in a coalgebra
ξ satisfies a formula λ(ϕi)i∈n, written ξ, x � λ(ϕi)i∈n, iff ξ(x) ∈ λX([[ϕi]]ξ)i∈n.

The fact that abstract coalgebraic languages are just sets and do not carry
by definition any further structure could be seen as a weakness. However, this
has that the advantage we are covering any logical language for Set-coalgebras
that one can imagine2. This means that the results presented in this section
hold for any language. For example, for languages with fixpoint operators.

As mentioned before, we are interested in describing behavioural equiva-
lence. To do this we have two requirements on the language, which together
lead to what sometimes is called expressivity: 1) Adequacy: formulas must be
invariant under coalgebra morphisms. 2) Hennessy-Milner property: formulas
must distinguish states that are not behavioural equivalent.

Definition 3.4. An abstract coalgebraic language L is said to be adequate if
for every pair of pointed T -coalgebras (ξ1, x1) and (ξ2, x2),

x1 ∼ x2 implies Φξ1(x1) = Φξ2(x2).

The language L is said to have the Hennessy-Milner property if for every pair
of pointed T -coalgebras (ξ1, x1) and (ξ2, x2),

Φξ1(x1) = Φξ2(x2) implies x1 ∼ x2.

1Here κ should be an inaccessible cardinal (Definition 4.20)
2We have of course the assumption that formulas are interpreted at a state and not in the

whole coalgebra (unlike, e.g. first-order logic).
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Other names used for adequacy and the Hennessy-Milner property are sound-
ness and completeness, respectively. So we can talk of languages that are sound
and complete with respect to behavioural equivalence.

Example 3.5. The basic modal language is an adequate language for P-
coalgebras, but it does not have the Hennessy-Milner property. Nevertheless,
the basic modal language has the Hennessy-Milner property with respect to
Pω-coalgebras (image-finite Kripke frames). All languages of predicate liftings
are adequate. However, not all of them have the Hennessy-Milner property.
Sufficient conditions for this can be found in [16].

3.2 An Elementary Construction of Final Coalgebras

One advantage of using abstract coalgebraic languages is that we can easily
show how a final coalgebra induces an adequate language that has the Hennessy-
Milner property.

Theorem 3.6. For any functor T : Set −→ Set, if there exists a final coalgebra
then there exists an adequate language for T coalgebras with the Hennessy-Milner
property.

Proof. Let (Z, ζ) be a final coalgebra, and let fξ be the final map for each
coalgebra ζ. Take L = Z and for each coalgebra (X, ξ) define Φξ(x) = {fξ(x)}.
Since Z is a final coalgebra this language together with the maps Φξ is adequate
and has the Hennessy-Milner property. This concludes the proof.

At first glance it might seem that the previous construction is too abstract
and that the language we obtain from a final coalgebra is not interesting. How-
ever, this is not the case. We consider the following example from [9].

Example 3.7. Consider the set endofunctor T = 1 + (−). Coalgebras for this
functor can be considered as a black-box machine with one (external) button
and one light. The machine performs a certain action only if the button is
pressed. And the light goes one only if the machine stops operating. A final
coalgebra for T is given by the set N = N ∪ {∞} together with a function p : N
−→ 1 + N defined as follows p(0) = ∗; p(n + 1) = n; p(∞) = ∞, where ∗ is the
only element of 1. This presentation of the final coalgebra for T contains all the
information about the observable behaviour of a state in T -coalgebra as a state
can only either lead the machine to stop after n-steps or let the machine run
forever.

Other examples demonstrating that final coalgebras are useful for describing
the coalgebraic behaviour can be found in [17, 18, 2]. Now we will illustrate
how to construct a final T -coalgebra from an adequate language which has
the Hennessy-Milner property. Our exposition is a slight generalisation and
simplification of the construction introduced in [6].

Theorem 3.8. For any functor T : Set −→ Set, if there exists an adequate
language for T -coalgebras with the Hennessy-Milner property then there exists a
final coalgebra.
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We will provide a proof of this theorem after we have made some observa-
tions. Our construction has three main points: The first key idea is to notice
that if we have a language for T -coalgebras we can identify a concrete set (ob-
ject) Z which is a natural candidate for the carrier of a final coalgebra. The
second observation is that for each coalgebra (X, ξ) there is a natural map X
−→ TZ; should the language be adequate and have the Hennessy-Milner prop-
erty then we can combine these functions into a function ζ : Z −→ TZ which
decorates Z with the structure of a final T -coalgebra. Moreover, using this ap-
proach we can show that the function ζ exists if and only if the language has
the Hennessy-Milner property. A natural candidate for the carrier of a final
coalgebra is the set of satisfiable theories of the language.

Definition 3.9. Given a functor T : Set −→ Set and an abstract coalgebraic
language L for T -coalgebras, the set ZL of L-satisfiable theories is the set
ZL := {Φ ⊆ L | (∃ξ)(∃x ∈ ξ)(Φξ(x) = Φ)}. We often drop the subindex L.

Remark 3.10. The reader might worry that in the definition of ZL we quantify
over all coalgebras and all states on them and then we might not be defining a
set but a proper class. This is not an issue as we required the language L to be
a set and obviously ZL ⊆ L.

By definition of ZL it is clear that for each coalgebra ξ : X −→ TX there is a
canonical map fξ : X −→ ZL that is obtained from Φξ : X −→ PL by restricting
the codomain. This restriction is possible as the range of Φξ is clearly contained
in ZL. Using the functions fξ we can see that for each coalgebra (X, ξ) there is
a natural function from X to TZ, namely the lower edge of the following square

TX TZ-
T (fξ)

X Z-fξ

?
ξ

(1)

This square suggests the following assignment ζ: a theory fξ(x) = Φξ(x) ∈ Z is
assigned to

ζ(Φξ(x)) = T (fξ)ξ(x). (2)

Since in general we will have Φ = Φξ1(x1) = Φξ2(x2) for different pointed
coalgebras (ξ1, x1) and (ξ2, x2) it is not clear that (2) defines a function. We
are now going to show that (2) defines a function if the language is adequate
and has the Hennessy-Milner property. We will prove this in two steps which
illustrate that both conditions are really needed.

Lemma 3.11. Let L be an adequate language for T -coalgebras. For any mor-
phism f : ξ −→ γ we have: (Tfξ)ξ = (Tfγ)γf , where fξ and fγ are obtained
from the respective theory maps by restricting the domain.
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Proof. The situation is depicted in the following diagram

X Y-f

Z

fξ

@
@

@
@R

fγ

�
�

�
�	

T (X) T (Y )-T (f)

T (Z)

T (fξ)
@

@
@
@R

T (fγ)
�

�
�

�	

?

ξ

?

γ

?

ζ

We want to show that the pentagon in the back commutes. Since L is adequate,
the upper triangle commutes. Using this, since T is a functor, we conclude that
the lower triangle commutes, i.e. T (fγ)T (f) = T (fξ). Now notice that the back
rectangle commutes because f is a morphism of T -coalgebras. Chasing around
the diagram we obtain:

T (Thγ)γf(x) = T (Thγ)T (f)ξ(x) = T (Φξ)ξ(x)

This concludes the proof.

If we assume the language L to be adequate and we have a morphism f :
ξ −→ γ, then Φξ(x) = Φγ(f(x)). The previous lemma implies ζ(Φξ(x)) =
ζ(Φγ)(f(x)). We can show that if in addition to adequacy L has the Hennessy-
Milner property, equation (2) defines a function ζ. In fact these two conditions
are equivalent.

Theorem 3.12. Let T be a set functor, let L be an adequate language for
T -coalgebras, let ZL be the set of L-satisfiable theories, and let fξ be the func-
tion obtained from a theory map Φξ by restricting the domain; the following
are equivalent: 1) The language L has the Hennessy-Milner property. 2) The
assignment ζ from (2) which takes an L-theory Φ = Φξ(x) ∈ ZL to (Tfξ)ξ(x)
does not depend on the choice of (ξ, x), i.e., (2) defines a function ζ : Z −→ TZ.

Proof. Form top to bottom: Assume we have Φξ1(x1) = Φξ2(x2). Since L
has the Hennessy-Milner property there exists a coalgebra (Y, γ) and morphisms
f1 : ξ1 −→ γ and f2 : ξ2 −→ γ such that f1(x1) = f2(x2). This combined with
the adequacy of L and the previous lemma implies

ζ(Φξ1(x1)) = T (fξ1)ξ1(x1) = T (fγ)γf1(x1)
= T (fγ)γf2(x2) = T (fξ2)ξ2(x2) = ζ(Φξ2(x2),

which precisely states that ζ does not depend on the choice of (ξ, x).
From bottom to top: Assume the assignation ζ does not depend on the

representant (ξ, x). This implies that we have a function ζ : ZL −→ TZL. We

7



have to show that L has the Hennessy-Milner property. Since each function fξ

is obtained from the theory map Φξ by restricting the domain this is almost
immediate, as it is easy to check that for each coalgebra ξ the map fξ is a
coalgebra morphism from ξ to ζ. Any two coalgebra states that are logically
equivalent will be identified by the corresponding theory maps and are therefore
behaviourally equivalent.

It is almost immediate by definition of ζ that for each coalgebra ξ the function
fξ : X −→ ZL is a morphism between the coalgebras ξ and ζ. We make this
explicit as we will use it in the proof of Theorem 3.8.

Corollary 3.13. Under the conditions of the previous theorem; for any coalge-
bra ξ, the function fξ : ξ −→ ζ is a morphism of coalgebras.

This previous result already implies that a final coalgebra exists but we can
do better by showing that (Z, ζ) is already a final object. The next lemma will
be useful in several occasions, in particular in the proof of Theorem 3.8 and in
our application to canonical models.

Lemma 3.14. For a functor T : Set −→ Set and a language L that is adequate
and has the Hennessy-Milner property, the theory map Φζ : Z −→ PL is the
inclusion, where Z is the set of satisfiable L-theories and ζ is defined as in
equation (2).

Proof. We will prove that Φζ is the inclusion by showing that Z is the image of
a single theory map. In other words, we will show that there exists a coalgebra
(Y, γ) such that the function fγ : Y −→ Z is onto. From this, using that L
is adequate and the previous corollary, it will follow that Φζ is the inclusion;
because we would have iZfγ = Φγ = Φζfγ .

For each element Φ ∈ Z choose a representant, i.e. and coalgebra ξΦ and a
state x in it such that ΦξΦ(x) = Φ. Let (Y, γ) =

∐
Z(XΦ,Φ) in Coalg(T ). Since

L is adequate and each of the coproduct inclusions is a morphism of coalgebras,
we conclude that the image of Φγ : Y −→ PL is Z. This concludes the proof.

Now we have all the material to prove Theorem 3.8.

Proof of Theorem 3.8. Let Z be the set of L-satisfiable theories, let fξ be the
function obtained from a theory map Φξ by restricting the codomain; Theorem
3.12 implies that the assignment ζ which takes a theory Φξ(x) ∈ Z to T (fξ)ξ(x)
does not depend on the choice of (ξ, x), i.e., it is a function ζ : Z −→ TZ.
Corollary 3.13 implies that for each coalgebra ξ the function fξ : ξ −→ ζ is
a morphism of coalgebras. It is only left to prove that fξ : ξ −→ ζ is the only
morphism of coalgebras. Since the language is adequate, this will follow because
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any morphism of coalgebras f : ξ1 −→ ζ makes the following diagram

Z PL--
Φζ

X

f �
��	

Φξ
@

@@R

commute and Lemma 3.14 tells us that the function Φζ is injective. QED.

Gathering Theorem 3.6 and Theorem 3.8 we have:

Proposition 3.15. The following are equivalent: 1) There exists a final T -
coalgebra. 2) There exists an adequate language for T -coalgebras with the Hennessy-
Milner property.

The contrapositive of previous result clearly shows the power of our abstract
approach as it tells us that if a functor T fails to have a final coalgebra there is
no way to completely describe the behavior of T -coalgebras using an abstract
coalgebraic language This is particularly relevant for applications. Also notice
that the proof of Theorem 3.8 tells us a bit more about the relation of final
coalgebras and abstract coalgebraic languages; we can improve Theorem 3.12
into an equivalence as follows.

Theorem 3.16. Let L be a language for T -coalgebras, let Z be the set of L-
satisfiable theories and let fξ be the function obtained from a theory map Φξ

by restricting the codomain; the following are equivalent: 1) The language L
is adequate and has the Hennessy-Milner property. 2) There exists a function
ζ : Z −→ TZ which furnishes Z with a final coalgebra structure in such a way
that for each coalgebra (X, ξ) the function fξ : X −→ Z is the final map.

Theorem 3.16. From bottom to top: The Henessy-Milner property follows be-
cause for each coalgebra ξ the map fξ is a morphism of coalgebras. Adequacy
follows because fξ is the only coalgebra map ξ −→ ζ. The implication from top
to bottom follows from the proof of Theorem 3.8.

3.2.1 An application: Canonical Models

Until here we have illustrated that for set endofunctors, there exists a final
coalgebra iff there exists an adequate abstract coalgebraic language with the
Hennessy-Milner property. As mentioned before (Example 3.7), the work in
[15, 9] presents interesting examples of the implication from left to right. The
work on coequational logic in [17, 2] is another instantiation of this. The work on
the category Meas in [13, 18], which can be instantiated in Set, shows another
non trivial illustration of this implication. We illustrate the implication from
right to left with a construction of canonical models. In Lemma 3.14 we showed
that the theory map of (Z, ζ) is the inclusion. Since the states of (Z, ζ) are the
satisfiable theories of L we can rewrite Lemma 3.14 into a well known theorem
of Modal logic.
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Lemma 3.17 (Truth Lemma). Let L be an adequate language for T -coalgebras
with the Hennessy-Milner property. Let Z be the set of L-satisfiable theories
(Definition 3.9) and let ζ : Z −→ TZ be defined as in Equation (2). For any
Φ ∈ Z and any ϕ ∈ L we have Φ |=ζ ϕ iff ϕ ∈ Φ, where Φ |=ζ ϕ means
ϕ ∈ Φζ(Φ)

The previous lemma illustrates that our construction is similar to the canoni-
cal model construction from modal logic (see [5]). A natural step is to investigate
completeness results for different abstract coalgebraic languages. Assuming that
L has some notion of consistency we can ask: are maximally consistent sets sat-
isfiable? We do not peruse this question in this paper, but notice the following
result:

Proposition 3.18. Let L be an adequate language for T -coalgebras, let Z be the
set of L-satisfiable theories. The set Z is the largest subset of PL for which we
can 1) define a T -coalgebra structure ζ such that the Truth Lemma is satisfied,
i.e. the theory map is the inclusion, and 2) such that for each coalgebra the
codomain restiricions of the theory maps are morphisms of T -coalgebras.

Proposition 3.18. Let Z ′ ⊆ PL be a set for which conditions 1) and 2) are
satisfied, let ζ ′ be the mentioned coalgebraic structure. Condition 2) implies
that L has the Hennessy-Milner property. From this, using Theorem 3.16, we
conclude that there is final coalgebraic structure over Z, the set of L-satisfiable
theories, moreover, our construction tells us that the final map fζ′ : ζ ′ −→ ζ is
obtained by restricting the codomain of the theory map Φζ′ . This together with
condition 1) implies that Z ′ ⊆ Z; the other inclusion follows from condition
2).

As corollary we have a well known result from modal logic (see [5]).

Corollary 3.19. Let L be basic modal language, and let (M,µ) be the canonical
model for the logic K; there exists a Kripke frame (X, ξ) for which the modal
theory map Φξ : X −→ M is not a bounded morphism.

4 Behaviour & Congruences

The Hennessy-Milner property states that if two states are logically equivalent
then they are identified in some coalgebra. However, this coalgebra is not made
explicit. The work in the previous section provides a canonical coalgebra where
logically equivalent states are identified, namely the final coalgebra. In this sec-
tion we investigate another construction in order to identify logically equivalent
states: taking logical congruences. Let us first recall the notion of a coalgebraic
congruence and its equivalent characterisations.

Definition 4.1. Let (X, ξ) be a T -coalgebra. An equivalence relation θ on the
set X is a congruence of T -coalgebras iff there exists a coalgebraic structure

10



ξθ : X/θ −→ T (X/θ) such that the following diagram

TX T (X/θ)-
T (e)

X X/θ-e

?
ξ

?
ξθ

commutes. Here e is the canonical quotient map.

Example 4.2. If T is the covariant power set functor, two states are related
by a congruence iff they are related by some bisimulation (see [5]). In fact this
is the case for any functor that weakly preserves kernels (see [15] for details)

In the category Set, it can be shown that the notion of a congruence for
coalgebra can be characterised as the kernel of coalgebra morphisms. In other
words, it behaves like the notion of a congruence in universal algebra [8, 15].

Fact 4.3. Let (X, ξ) be a T -coalgebra for a functor T : Set −→ Set, For an
equivalence relation θ, on X, the following conditions are equivalent: 1) θ is
a congruence of coalgebras. 2) θ ⊆ Ker(T (e)ξ). 3) θ is the kernel of some
morphism of T -coalgebras with domain ξ.

We remark that the previous characterisation of congruences depends on
the fact that set functors preserve monomorphisms with non-empty domain [8],
something that is not generally true in categories different from Set.

4.1 Simple Coalgebras

Before describing how behavioural equivalence relates to congruences, we discuss
the notion of a simple coalgebra. As it is the case in algebra, the set of all
congruences on a coalgebra (X, ξ) is a complete lattice under the partial ordering
of set inclusion. In particular, there is a smallest congruence ∆X (the identity
relation on X) and a largest congruence. However, unlike the universal algebra
case, the largest congruence may be smaller than the universal relation. Simple
coalgebras are then defined as coalgebras with only one congruence.

Definition 4.4. A coalgebra ξ : X −→ TX is simple if its largest (and hence
only) congruence is the identity relation ∆X on X.

Example 4.5. The following Kripke frame is a simple P-coalgebra. In order
to see this we have to use that, in this case, Kripke bisimilarity ([5]) coincides
with the largest congruence. •

yysssssssssss

vvmmmmmmmmmmmmmmmm

����
��

��
�

• •oo •oo . . .oo

•

eeKKKKKKKKKKK

hhQQQQQQQQQQQQQQQQ

]]::::::: zz
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Using Fact 4.3 the following holds from the definition of simple coalgebra.

Lemma 4.6. A T -coalgebra ξ is simple iff every morphism of coalgebras with
domain ξ is injective (monomorphism).

Corollary 4.7. If a final T -coalgebra exists, then a T -coalgebra is simple iff it
is isomorphic to a subcoalgebra of the final coalgebra.

Using coalgebraic languages we can give a more concrete characterisation of
simple coalgebras; a first step is given by the following result.

Proposition 4.8. Let T be a set functor and let L be an adequate language for
T -coalgebras. A T -coalgebra ξ is simple if the theory map Φξ is injective.

Proposition 4.8. Assume Φξ to be injective. since the language is adequate, for
any morphisms f : ξ −→ γ we have Φξ = Φγf , which implies that f is injective.
Lemma 4.6 implies that ξ is simple.

The converse of the previous proposition is not true; the Kripke frame in
Example 4.5 is a counterexample. In order to obtain an equivalence in the
previous proposition the Hennessy-Milner property is needed. This motivates
the introduction of logical congruences.

4.2 Logical congruences

Logical congruences are congruences obtained using logical equivalence of states.

Definition 4.9. Given an abstract coalgebraic language L, we say that two
pointed coalgebras (ξi, xi) are logically equivalent, written (ξ1, x1) !L (ξ2, x2),
iff Φξ1(x1) = Φξ2(x2). We call !L the logical equivalence relation of states.
Given a coalgebra ξ, we write !ξ

L for the relation !L restricted to the states
of ξ.

Our interest into these equivalence relations has two main reasons. The
first one was an attempt to make Proposition 4.8 into an equivalence and then
obtain a concrete characterisation of simple coalgebras. The second and most
important motivation was to generalise Proposition 3.15 and Theorem 3.16 to
arbitrary categories. To our surprise logical congruences proved to be remark-
ably useful to simplify our constructions. In our opinion, logical congruences
provide the appropriate categorical generalisation of the Hennessy-Milner prop-
erty.

Definition 4.10. Let L be an abstract coalgebraic language for T . For each
T -coalgebra (X, ξ) we identify the set of satisfiable theories in ξ, X/ !ξ

L, with
the set Zξ := {Φ ⊆ L | (∃x ∈ X)(Φξ(x) = Φ)}. We use eξ : X −→ Zξ for the
canonical (quotient) map.

If our language happens to be adequate and have the Hennessy-Milner prop-
erty we can show that logical equivalence of states is a congruence of coalgebras.
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Lemma 4.11. Let L be a language for T -coalgebras. If L is adequate and has
the Hennessy-Milner property, then for each coalgebra (X, ξ) the relation !ξ

L is
a congruence of coalgebras. Moreover, !ξ

L is the largest congruence on (X, ξ).

Proof. The main idea is to follow the proof of Theorem 3.8, on page 8, relativized
to the set Zξ. Explicitly this is: we define a function ζξ : Zξ −→ T (Zξ) such that
the canonical map eξ is a morphism of coalgebras. See the appendix for more
details.

The function ζξ is defined as follows: an element Φξ(x) ∈ Zξ is mapped to
ζξ(Φ) := T (eξ)(ξ(x)). Following the argument from the proof of Theorem 3.8
it is not difficult to see that ζξ is well-defined because L is adequate and has
the Hennessy-Milner property. It is then a direct consequence of the definition
of ζξ that eξ is a coalgebra morphism from ξ to ζξ. Hence Ker(eξ), which is
equal to !ξ

L, is a congruence on ξ. In order to see that Ker(eξ) is the largest
congruence, one has to observe that for any x, x′ ∈ ξ with eξ(x) 6= eξ(x′) we
have Φξ(x) 6= Φξ(x′) and thus, by adequacy of L, there can be no coalgebra
morphism f with f(x) = f(x′).

Now we can easily make Proposition 4.8 into an equivalence.

Theorem 4.12. Let T be a set endofunctor, and let L be an adequate language
for T -coalgebras with the Hennessy-Milner property. A T -coalgebra ξ is simple
iff the theory map Φξ is injective.

Theorem 4.12. The implication from right to left is proposition 4.8. The impli-
cation from left to right: the previous Lemma tells us that !ξ

L is a congruence
of coalgebras, hence since ξ is simple !ξ

L= ∆X , the identity. Notice that
Ker(Φξ) =!ξ

L= ∆X , this concludes the proof.

Notice that the construction used in the proof of Lemma 4.11 generalises
the construction of final coalgebras of the previous section. This leads us to the
following definition.

Definition 4.13. An abstract coalgebraic language L for T -coalgebras is said
to have logical congruences iff for each coalgebra ξ the equivalence relation !ξ

L,
is a congruence of T -coalgebras. The quotient of ξ using !ξ

L is called the logical
quotient of ξ and we write (Zξ, ζξ) for this coalgebra.

In [16] Lutz Schröder noticed that languages of predicate liftings that have
logical congruences have the Hennessy-Milner property. We turn his observation
into a general theorem for abstract coalgebraic languages.

Theorem 4.14. If a language L for T -coalgebras is adequate, the following are
equivalent: 1) L has the Hennessy-Milner property. 2) L has logical congruences.

Proof. The implication from (4.14) to (4.14) is an immediate consequence of
Lemma 4.11. Conversely suppose that L has logical congruences and let ξ1, ξ2

be T -coalgebras with logically equivalent states x1 ∈ ξ1 and x2 ∈ ξ2. Let ξ1 + ξ2
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be the coproduct of ξ1 and ξ2 in Coalg(T ) and let κ1(x1), κ2(x2) ∈ ξ1 + ξ2

be the image of x1 and x2 under the canonical embeddings. By adequacy
of L it is clear that κ1(x1) and κ2(x2) are logically equivalent. Since L has
logical congruences, by assumption, we can make the quotient, in Coalg(T ),
using !ξ1+ξ2

L ; the canonical quotient map e will identify κ1(x1) and κ2(x2).
In other words, x1 and x2 are identified by the morphisms e ◦ κ1 and e ◦ κ2

and are thus behaviourally equivalent. As x1 and x2 where arbitrary logically
equivalent coalgebra states, we proved that L has the Hennessy-Milner property
as required.

4.2.1 An application: A Concrete Characterization of Simple Coal-
gebras

As mentioned before, in the work of Schröder [16] we have non trivial use of
logical congruences to establish the Hennessy-Milner property for a language.
Theorem 4.14 tells us that in fact the two properties are equivalent. In this
section, we illustrate the construction of logical congruences (cf. proof of Lemma
4.11) giving a concrete characterization of simple coalgebras. We first make a
remark concerning the theory maps of logical quotients (Definition 4.13).

Proposition 4.15. Let L be an adequate language for T -coalgebras that has
logical congruences and let ξ : X −→ TX be a T -coalgebra. The theory map
Φζξ

: Zξ −→ PL of the logical quotient of ξ (Definition 4.13) is equal to the
inclusion.

Proof. Let e : X −→ Zξ the quotient map. By adequacy of L we have Φξ(x) =
Φζξ

(e(x)) and by definition of e we have e(x) = Φξ(x) for all x ∈ X. Therefore
Φζξ

has to be the inclusion map.

Now we can use logical congruences in order to characterize simple coalgebras
as logical quotients, i.e. quotients using the relations !ξ

L.

Theorem 4.16. Let L be an adequate language for T -coalgebras that has logical
congruences. Any logical quotient (Zξ, ζξ) is simple and any simple T -coalgebra
γ is isomorphic to the logical quotient (Zξ, ζξ) of some coalgebra ξ.

Theorem 4.16. Theorem 4.14 tells that if L has logical congruences, hence the
logical quotient (Zξ, ζξ) of any T -coalgebra ξ exists; Proposition 4.15 together
with Theorem 4.12 imply that each of these quotients is simple. Now we show
that every simple coalgebra is isomorphic to a logical quotient of some T -
coalgebra. Let ξ : X −→ TX be a simple coalgebra. Since (X, ξ) is simple
and !ξ

L is a congruence, we conclude !ξ
L= ∆X . Therefore (X, ξ) ∼= (Zξ, ζξ).

Using this characterization of simple coalgebras we can easily prove that
truth-preserving functions with simple codomain must be coalgebra morphisms.
This was a key result used by Goldblatt in [6] to construct final coalgebras.
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Corollary 4.17. Let L be an adequate language for T -coalgebras with the
Hennessy-Milner property. Let f : X −→ Y be a function with (X, ξ), (Y, ζ) ∈
Coalg(T ) and ζ simple such that Φξ(x) = Φζ(f(x)) for all x ∈ X. Then f : ξ
−→ ζ is a coalgebra morphism.

Proof. Let f be a truth invariant morphism whose codomain is simple. The
previous Theorem implies that we can assume the codomain of f to be the
logical quotient (Zγ , ζγ) for some coalgebra γ; say f : (X, ξ) −→ (Zγ , ζγ). Since
f is truth invariant we have that Ker(f) ⊆!ξ

L, this implies Zξ ⊆ Zγ . Now
using the fact that L is adequate and has the Hennessy-Milner property, one
can prove either directly or using the construction of Theorem 3.8 that the
inclusion map i : Zξ −→ Zγ is a morphism of coalgebras. This exhibits f as the
composition of the quotient map eξ and the inclusion i, since both maps are
coalgebra morphism we conclude that so is f .

4.3 Logical Congruences & Weak Finality

The results of the previous sections already imply that the existence of logical
congruences is equivalent to existence of final coalgebras. Nevertheless, we will
do a direct proof of this fact because we can provide a categorical proof that
can be reused in several other examples. Our main categorical tool to produce
final coalgebras is Freyd’s existence Theorem of a final object [11]:

Theorem 4.18. A cocomplete category C has a final object iff it has a small
set of objects S which is weakly final, i.e. for every object c ∈ C there exists a
s ∈ S and and arrow c −→ s; a final object is a colimit of the diagram induced
by S3.

The set S, mentioned in the previous theorem, is called a solution set.
Freyd’s Theorem is strongly related to the Adjoint Functor theorem. Recall
that in the category of sets every object only has a set of subobjects (subsets).
In Proposition 4.11 we proved that if a language L is adequate and has logical
congruences each coalgebra (X, ξ) can be mapped to some coalgebra of the
form (Zξ, ζξ) (Definition 4.10). This tells us that the coalgebras that are based
on subsets of PL form a solution set, which by Freyd’s theorem implies the
existence of a final object. Therefore the following holds true.

Proposition 4.19. If a language L is adequate and has logical congruences for
T -coalgebras then there exists a final T -coalgebra which is obtained as a colimit
of diagram induced by the T -coalgebras (Zξ, ζξ) (Definitions 4.10 & 4.13).

This proposition supplies us with another description of the final coalgebra.
Moreover, following the path: Hennessy-Milner ⇒ logical congruences ⇒ final
coalgebras we have another proof of Goldblatt’s Theorem. This alternative proof
is not as simple as the construction presented in Theorem 3.8 but illustrates the
importance of adequacy. This can be restated saying that the Hennessy-Milner
property is a solution set condition to obtain final coalgebras.

3Recall that the diagram induced by a set of objects is the inclusion functor of the full
subcategory of C generated by S
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4.3.1 Barr-Aczel-Melender Theorem

We finish our discussion on set coalgebras with the famous final coalgebra theo-
rem. Peter Aczel and Nax Mendler [1] proved a final coalgebra theorem for set
endofunctors. They showed that every set endofunctor has a final coalgebra.
This final coalgebra might have, however, a proper class as carrier set. Michael
Barr noticed, in [4], that

“such result for an endofunctor on the category of sets do not, for the
main part of the results, require looking at functors on the category
of (possibly proper) classes. We will see here that the main results
are valid for sets up to some regular cardinal. Should that cardinal
be inaccessible, then Aczel and Mendler’s results are derived.”

We will do just as Barr described with his own result using logical congruences
and languages of predicate liftings. We consider that our construction is more
accessible to readers not familiar with category theory. The following definition
is needed for the formulation of the theorem.

Definition 4.20. A cardinal number κ is said to be weakly inaccessibleif κ is
an uncountable, regular cardinal such that for all cardinals λ we have λ < κ
implies 2λ ≤ κ. The cardinal κ is said inaccessible if in addition these conditions
the last inequality is strict.

Intuitively κ is weakly inaccessible if one can construct κ from smaller sets
only if one uses all of κ itself. One of the key results used by Barr in [4] was the
following.

Lemma 4.21. Let κ be a weakly inaccessible cardinal and let T be a κ-accessible
functor. Every T -coalgebra is a colimit of coalgebras with carrier set of size
strictly less than κ

In fact this previous result already implies the existence of a final T -coalgebra.
Barr’s proof uses this result which implies the existence of a set of generators
and then produces a final coalgebra. We can also ignore generators and use the
Hennessy-Milner property to produce a solution set which by Freyds Theorem
will conceive a final coalgebra.

Theorem 4.22. Let κ be a weakly inaccessible cardinal and let T : Set −→ Set be
a κ-accessible functor. Suppose, in addition, that for all sets X we have |X| < κ
implies |TX| < κ. Then Coalg(T ) has a final coalgebra of cardinality no larger
than κ.

Proof. Let Lκ(Λ) be the language with all predicate liftings, for T , of arity less
than κ and conjunctions bounded by κ. As we have mentioned before, this lan-
guage is adequate and has the Hennessy-Milner property. Theorem 3.8 implies
that there exists a final T -coalgebra (Z, ζ). Notice that |Lκ(Λ)| = κ, therefore
|Z| ≤ 2κ. We will use logical congruences to show |Z| ≤ κ.
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Lemma 4.19 states that we can obtain a final coalgebra using logical congru-
ences as a colimit of the coalgebras Zξ = (X/ !L, ζξ). The previous lemma
tells us that it is enough to consider coalgebras with a carrier set such that
|X| < κ. This implies that |Zξ| < κ for each coalgebra ξ.

Using that |X| < κ implies |TX| < κ and κ is weakly inaccessible, we can
conclude that there are, up to isomorphisms, κ-any coalgebras with carrier set
|X| < κ. Therefore there at most κ-many coalgebras of the form Zξ.

Gathering the previous two paragraphs we conclude that a final T -coalgebra
can be obtained as a colimit of at most κ-many sets of cardinality less that κ.
Since κ is weakly inaccessible we conclude |Z| ≤ κ.

4.4 Summary

In summary, in the category of sets and functions, under the assumption of
adequacy we have the following equivalents of the Hennessy-Milner property.

Theorem 4.23. Let L be an adequate language for T -coalgebras. The following
conditions are equivalent:

1. L has the Hennessy-Milner property.

2. The function ζ : ZL −→ TZL from equation (2), page 6, on the set

ZL = {Φ ⊆ L | (∃ξ)(∃x ∈ ξ)(Φξ(x) = Φ}

of satisfiable L-theories is well-defined.

3. The set ZL admits a coalgebraic structure, for T , such that for each coal-
gebra ξ the function fξ : X −→ ZL, i.e. the restriction of the codomain of
the theory map Φξ, is a morphism of coalgebras.

4. For each coalgebra ξ the relation !ξ
L is a congruence of coalgebras.

5. For each coalgebra ξ the set of satisfiable theories in ξ

Zξ = {Φ ⊆ L | (∃x ∈ ξ)(Φξ(x) = Φ}

admits a coalgebraic structure ζξ : Zξ −→ TZξ, such that the function
eξ : X −→ Zξ mapping a state x ∈ ξ to its L-theory eξ(x) = Φ ∈ Zξ is a
morphism of coalgebras.

6. Let (X1, ξ1) and (X2, ξ2) be T -coalgebras. If the diagram on the left is a
pullback (in Set), there exists a coalgebra (Y, γ) and morphisms f1 : ξ1

−→ γ; f2 : ξ2 −→ γ such that

X2 PL-
Φξ2

P X1
-p1

?
p2

?
Φξ1

X2 Y-
f2

P X1
-p1

?
p2

?
f1

the diagram on the right commutes (in Set).
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Proof. The equivalence between 1) and 2) is the content of Theorem 3.12. The
implication from 2) to 3) is obvious and the converse direction is a consequence
of the definition of ζ: any map ζ ′ : ZL −→ TZL that turns the theory maps
fξ into coalgebra morphisms must be obviously equal to ζ. The equivalence
between 1) and 4) follows from Theorem 4.14. Item 4) is equivalent to item 5)
because !ξ

L= Ker(Φξ) = Ker(fξ). Finally the equivalence between 6) and 1)
is immediate from the canonical characterisation of pullbacks in Set.

5 Generalization to other categories

In this section we show how the result for coalgebras on Set can be generalised to
coalgebras over other base categories. The first part of the section discusses how
to generalise the notion of a language to a functor T : C −→ C on an arbitrary
category C. After that we focus on a special class of categories, those that are
regularly algebraic over Set, and show that the results from the previous section
generalise smoothly to these categories. Due to space limitations we cannot
provide the necessary categorical definitions. Instead we refer the reader to [3]
where all our terminology is explained.

When generalising the notion of an abstract coalgebraic language to cate-
gories other than Set we face the problem that we do not know much about the
structure of the given base category C. In particular, unlike in the case C = Set,
we do not know how to move freely from an object L representing the formulas
to an object PL that represents the theories of a given language. This leads us
to the following definition of an adequate object for T -coalgebras.

Definition 5.1. Let T be a functor T : C −→ C. An object L, in C is an
adequate object for T -coalgebras if there exists a natural transformation Φ : U
−→ ∆L, where U : Coalg(T ) −→ C is the forgetful functor and ∆L : Coalg(T )
−→ C is the constant functor with value L. We call the components of Φ theory
morphisms.

At first sight it is not completely clear why our definition of an adequate
object for T -coalgebras gives in general a good formalization of what a language
for T -coalgebras is. Under the additional assumption, that we are looking at
a category C that is dual to some category A, our notion seems to be quite
natural.

Example 5.2. • For C = Set we have L is an adequate abstract coalgebraic
language (Definition 3.1) for T with theory maps {Φξ}ξ∈Coalg(T ) iff PL
together with {Φξ}ξ∈Coalg(T ) is an adequate object for T -coalgebras.

• Let C = Stone the category of Stone spaces and continuous functions and
let T : Stone −→ Stone be a functor. We can use the duality between Stone
and the category BA of Boolean algebras to see that an adequate object
L for T -coalgebras corresponds to some Boolean algebra AL. Hence L is,
again by duality, isomorphic to the collection of ultrafilters (=theories)
over AL.
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In order to arrive at a generalisation of a language for T -coalgebras which
has the Hennessy-Milner property, we use the results that we obtained in Sec-
tion 4. Theorem 4.23 shows that there are at least three ways to obtain this
generalisation.

Definition 5.3. Let L be an adequate object for T -coalgebras for a functor
T : C −→ C. We say L is almost final if L has a subobject m : Z −→ L that can
be uniquely lifted to a final T -coalgebra (Z, ζ) such that m = Φζ . If the base
category C has pullbacks we say L has the Hennessy-Milner property if every
pullback (P, p1, p2) (in C) of theory morphisms Φξ1 and Φξ2 can be factored
(in C) using a pair of coalgebra morphisms. Finally, if the base category C is
(RegEpi,Mono)-structured, we say L has logical congruences if for each theory
morphism Φξ and each (RegEpi,Mono)-factorization (e, Zξ,m) of Φξ, there
exists a coalgebraic structure ζξ : Zξ −→ T (Zξ) such that e is a coalgebra
morphism from ξ to ζξ.

As we proved in Theorem 4.23, all of the three notions from the previous
definition are equivalent if our base category C is Set. How do they relate in
other categories?

Proposition 5.4. Let C be a cocomplete and (RegEpi,Mono)-structured cate-
gory with pullbacks. Let T be an endofunctor on C and let L be an adequate
object for T -coalgebras which is wellpowered. We have: L has logical congru-
ences ⇒ L is almost final ⇒ L has the Hennessy-Milner property. Furthermore,
if T preserves monomorphisms, the converse implications are true as well and
thus all three notions are equivalent.

Proposition 5.4. Let C be a category that satisfies the conditions of the propo-
sition let T : C −→ C be a functor and let L be an adequate object for T -
coalgebras. Suppose that L has logical congruences, let ξ : X −→ TX be an
arbitrary T -coalgebra and let (eξ, Zξ,mξ) be the (RegEpi,Mono)-factorisation
of Φξ, ie., eξ : X −→ Zξ is a regular epi, mξ : Zξ −→ L is a monomorphism and
Φξ = mξeξ. By our assumption that L has logical congruences, there exists
some morphism ζξ : Zξ −→ TZξ such that eξ : ξ −→ ζξ is a coalgebra morphism.
As ξ was arbitrary this shows that for any T -coalgebra ξ there is a subobject
Zξ of L that carries some coalgebra structure ζξ : Zξ −→ TZξ such that there
exists a coalgebra morphism e : ξ : X −→ Zξ. By wellpoweredness of L the
collection of subobjects Zξ of L, and hence also the collection S of T -coalgebras
based on subobjects of L, forms a set. Therefore we proved S is a weakly final
in Coalg(T ) in the sense of Theorem 4.18 and an application of this theorem
proves the existence of a final T -coalgebra (Z, ζ). It is not difficult to see that
Φζ : Z −→ L is injective which finishes that proof of the fact that L is almost
final.

Let us now assume that L is almost final. We have to show that L has
the Hennessy-Milner property. To this aim consider two T -coalgebras (X1, ξ1)
and (X2, ξ2) and their respective theory maps Φξ1 and Φξ2 . Furthermore let
(P, p1, p2) be the pullback of Φξ1 and Φξ2 , ie., Φξ1p1 = Φξ2p2. As L is almost
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final, there exists some subobject m : Z −→ L of L and some T -coalgebra
structure ζ : Z −→ TZ such that ζ is the final T -coalgebra and such that
m = Φζ . Let fξ1 : ξ1 −→ ζ and fξ2 : ξ2 −→ ζ be the unique coalgebra morphisms
from ξ1 and ξ2 into ζ. We have

mfξ1p1 = Φζfξ1p1
(adequacy)= Φξ1p1

= Φξ2p2
(adequacy)= Φζfξ2p2 = mfξ2p2,

and as m is a monomorphism this implies fξ1p1 = fξ2p2, ie., the pullback
“factors” through fξ1 and fξ2 as required. This demonstrates that L has the
Hennessy-Milner property.

Consider now some functor T that preserves monomorphisms and assume L
is an adequate object for T -coalgebras that has the Hennessy-Milner property.
We have to prove that L has logical congruences. Let (X, ξ) be a T -coalgebra
and let (eξ, Zξ,mξ) be a (RegEpi,Mono)-factorization of Φξ. As eξ is a regular
epimorphism there exist two morphisms q1 : Y −→ X and q2 : Y −→ X such that
eξ is the coequalizer of q1 and q2. Using the Hennessy-Milner property of L one
can show that there is a T -coalgebra (X ′, ξ′) and a T -coalgebra morphism e′ : ξ
−→ ξ′ such that e′q1 = e′q2. By adequacy of L we obtain

mξeξ = Φξ = Φξ′e′. (3)

Furthermore we have the following:

(Tmξ)(Teξ)ξq1 = T (mξeξ)ξq1

(3)
= T (Φξ′e′)ξq1 = T (Φξ′)(Te′)ξq1

(e′ co.morph.)= T (Φξ′)ξ′e′q1 = T (Φξ′)ξ′e′q2

... (use argument backwards)
= (Tmξ)(Teξ)ξq2

As mξ was a monomorphism and because T preserves monomorphisms we have
that Tmξ is a monomorphism as well. Therefore we obtain (Teξ)ξq1 = (Teξ)ξq2,
ie., (Teξ)ξ is a “competitor” of the coequalizer eξ of q1 and q2. This implies
that there exists a unique morphism ζξ : Zξ −→ TZξ such that ζξeξ = (Teξ)ξ,
ie., such that eξ is a coalgebra morphism from ξ to ζξ. Moreover adequacy of L
implies that mξeξ = Φξ = Φζξ

eξ which implies that mξ = Φζξ
because eξ is an

epimorphism. This shows that ζξ is the logical quotient of ξ as required.

We can lift regular factorisations of morphisms from Set to A as the following
lemma shows. This lemma is needed for the proof of Theorem 5.6.

Lemma 5.5. Let A be a category that is regularly algebraic over Set, let f : A −→
C be an A-morphism and let (e : V A −→ X, m : X −→ V C) be a (RegEpi,Mono)-
factorization of V f in Set. Then there exists a B ∈ A and morphisms eA : A
−→ B, mA : B −→ C such that V B = X, (eA : A −→ B,mA : B −→ C) is a
regular factorization of f in A and such that V eA = e, V mA = m.
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Proof. Suppose that (e : V A −→ X, m : X −→ V C) is a (RegEpi,Mono)-
factorization of V f in Set. Furthermore let (e′ : A −→ B′,m′ : B′ −→ C)
be a (RegEpi,Mono)-factorization of f in A. The forgetful functor V preserves
regular epimorphisms and V is right adjoint and thus preserves monos. Hence
it is easy to see that (V e′, V m′) is a factorization of V f in Set. Therefore there
exists an isomorphism i : V B′ −→ X in Set. By unique transportability of A
there exists a unique object B ∈ A and an isomorphism i′ : B′ −→ B such that
V B = X and V i′ = i. Obviously V (i′ ◦ e′) = e, V (m′ ◦ i−1) = m. It is now
easy to see that eA := i′ ◦ e′ and mA := m′ ◦ i−1 fulfil the requirements of the
lemma.

In particular, the previous proposition demonstrates that under mild as-
sumptions on our base category we can establish the existence of a final coal-
gebra for a functor T by proving that there exists some adequate object for
T -coalgebras that has logical congruences. We use this fact in order to prove
the following theorem.

Theorem 5.6. Let A be a category that is regularly algebraic over Set with
forgetful functor V : A −→ Set and let T : A −→ A be a functor. The functor T
has a final coalgebra iff there exists an adequate object L for T -coalgebras that
has the Hennessy-Milner property.

Sketch Theorem 5.6. The fact that the existence of a final T -coalgebra implies
the existence of an adequate object that has the Hennessy-Milner property is
easy. For the converse direction of the theorem, suppose that there is an ad-
equate object L that has the Hennessy-Milner property. We note first that
any regularly algebraic category A is (RegEpi,Mono)-structured is cocomplete,
wellpowered and has pullbacks (cf. [3, Sec. 23]). Therefore by Proposition 5.4
for proving the existence of a final T -coalgebra it suffices to prove that L has
logical congruences. Let (X, ξ) be a T -coalgebra with theory map Φξ : X −→ L.
Now consider the canonical factorization (e′ξ, Z

′
ξ,m

′
ξ) of V Φξ via the set

Z ′
ξ = {Φ | (∃x ∈ X)(Φ = V Φξ(x))}.

Since A is regularly algebraic over Set, this factorization can be lifted to a
factorization (eξ, Zξ,mξ) in A of Φξ with V Zξ = Z ′

ξ (cf. Lemma 5.5). Using the
argument from the proof of Theorem 3.8 we define a function ζ ′ξ : Z ′

ξ −→ V TZξ

such that the following diagram

V TX V TZξ-
V T (eξ)

V X V Zξ-V eξ

?
V ξ

?
ζ ′ξ

commutes in Set. It is only left to proof that ζ ′ξ can be lifted to an A-morphism.
In order to show this notice that because e′ξ is onto it is a coequalizer in Set.
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Since forgetful functors from regular algebraic categories reflect coequalizers we
have that eξ is a coequalizer in A. Say that eξ coequalizes A-morphisms p and q.
Using the square above it is easy to show that V (T (eξ)ξp) = V (T (eξ)ξq), which
implies T (eξ)ξp = T (eξ)ξq, because V is faithful. Now using the universal
property of coequalizers, we conclude that there is an A-morphism ζξ : Zξ

−→ TZξ which makes the square above commute in A. Using on more time the
faithfulness of V we conclude that this morphism must have ζ ′ξ as underlying
function.

Our results apply to any category of algebras such as the category BA of
Boolean algebras and the category DL of distributive lattices, but also to cat-
egories like the category Stone of Stone spaces. We hope to be able to extend
the scope of Theorem 5.6 to categories that are topological over Set such as the
category Meas of measurable spaces.

6 Conclusions

In this paper, we have studied three ways to express behavioural equivalence of
coalgebra states: using final coalgebras, using coalgebraic languages that have
the Hennessy-Milner property and using coalgebraic languages that have logical
congruences. We provided a simple proof for the fact that these three different
methods are equivalent when used to express behavioural equivalence between
set coalgebras. As by-products of our proof we obtained a straightforward con-
struction of final coalgebras as canonical models of coalgebraic logics and a
concrete characterisation of simple coalgebras as logical quotients.

A main topic for further research is that of abstract coalgebraic languages
for functors on categories different from Set. Section 5 illustrates how abstract
coalgebraic languages can be generalised to arbitrary categories. The main
result of this section states that for a functor on any category that is regularly
algebraic over Set an adequate object with the Hennessy-Milner property exists
iff there exists a final coalgebra (Theorem 5.6). The proof of this theorem
demonstrates that logical congruences are useful in order to prove the existence
of a final coalgebra. A crucial ingredient for the proof is Freyd’s Theorem
(Thm 4.18). Our hope is that the scope of Theorem 5.6 can be extended to a
larger class of categories that satisfy the conditions of Freyd’s theorem.

Another gain of using logical congruences is that they revealed that the
Hennessy-Milner property is related to the description of a particular factorisa-
tion structure (cf. Def. 5.3, Prop. 5.4). In our paper we considered (RegEpi,Mono)-
structured categories, but it is quite natural to generalise the results here to
other factorisation structures. We believe that a study of these factorisations
will lead to a coalgebraic understanding of non standard bisimulations as, for
example, discussed in [7]. A step in this direction has already been made in
[10]. There it was shown that using logically invariant morphisms between
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coalgebras, that are not necessarily coalgebra morphisms, canonical models for
abstract coalgebraic languages can be presented as final objects.

References

[1] Peter Aczel and Nax Paul Mendler, A final coalgebra theorem, Category
Theory and Computer Science, 1989, pp. 357–365.
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