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Abstract

By terms-allowed-in-types capacity, the Logic of Proofs LP includes formulas of the form t : ϕ(t),
which have self-referential meanings. In this paper, “prehistoric phenomena” in a Gentzen-style formula-
tion of modal logic S4 are defined. A special phenomenon, i.e., “left prehistoric loop”, is then shown to
be necessary for self-referentiality in S4-LP realization.

1 Introduction

The Logic of Proofs LP is introduced systematically in [1] by Prof. Sergei Artëmov, where it is shown
to be the explicit counterpart of modal logic S4 by verifying the realization theorem. With terms being
allowed in types, LP has its polynomials as advanced combinatory terms, and hence, extends the idea of
propositions-as-types in proof theory. By this new capacity, types of the form t :ϕ(t) are also included. This
sort of types, however, has self-referential meanings, and hence, may indicate some essential properties
of this capacity. As [5] says, by any arithmetical semantic ∗, t : ϕ(t) is interpreted to be the arithmetical
sentence Proo f (t∗, p(ϕ(t))∗q), which is not true in Peano Arithmetic with the standard Gödel numbering,
since the Gödel number of a proof can not be smaller than that of its conclusion.

Dr. Roman Kuznets has scrutinized this issue and verified the following meaningful result: there is an
S4−theorem, ¬�¬(p → �p), with any realizations of it calling for self-referential constant specifications
(see Result 13, also [6] and [4]). In Kuznets’s papers, self-referentiality was scrutinized at a “logic-level”,
i.e., whether or not a modal logic can be realized non-self-referentially.

Correspondingly, it is also interesting to consider this topic at a “theorem-level”, i.e., self-referentiality
in realizations of specified theorems. That is, which S4−theorems have to call for self-referential constant
specifications to prove their realized forms in LP? Are there some easy criteria for this? Roughly speaking,
if we can fix the class of non-self-referential-realizable S4−theorems, then we may find some S4 (and hence,
intuitionistic) measure of self-referentiality introduced by the terms-allowed-in-types capacity.

In this paper, we define and consider “prehistoric phenomena” in G3s, a Gentzen-style formulation of
S4. This notion is then used to scrutinize self-referentiality in realization procedure. A special prehistoric
phenomenon, i.e., left-prehistoric-loop, is then shown to be necessary for self-referentiality.

At beginning, we enumerate some preliminary notions and results which will be referred directly in this
paper. In [7] (see also [6]), a Gentzen-style formulation of S4 was presented.

Definition 1 (A Gentzen-style Formulation of S4: G3s [7] [6]) G3s has the following axioms and rules:
∗DF7G5036@hotmail.com, Department of Philosophy, Tsinghua University, Beijing, 100084, China.
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Ax.
p,Γ⇒ ∆, p

L¬. Γ⇒ ∆, ϕ
¬ϕ,Γ⇒ ∆

L∧. ϕ, ψ,Γ⇒ ∆
ϕ ∧ ψ, Γ⇒ ∆

L∨. ϕ,Γ⇒ ∆ ψ, Γ⇒ ∆
ϕ ∨ ψ, Γ⇒ ∆

L→ .
Γ⇒ ∆, ϕ ψ, Γ⇒ ∆
ϕ→ ψ, Γ⇒ ∆

L�.
ϕ,�ϕ, Γ⇒ ∆
�ϕ,Γ⇒ ∆

L⊥. ⊥,Γ⇒ ∆

R¬. ϕ,Γ⇒ ∆
Γ⇒ ∆,¬ϕ

R∧. Γ⇒ ∆, ϕ Γ⇒ ∆, ψ
Γ⇒ ∆, ϕ ∧ ψ

R∨. Γ⇒ ∆, ϕ, ψ
Γ⇒ ∆, ϕ ∨ ψ

R→ .
ϕ,Γ⇒ ∆, ψ
Γ⇒ ∆, ϕ→ ψ

R�.
�ϕ1, · · · ,�ϕn ⇒ ψ

�ϕ1, · · · ,�ϕn,Γ⇒ ∆,�ψ

Besides, cut-elimination holds for G3s [7].

The notion of “family (of �’s)” was defined in [1].

Definition 2 (Family of �’s [1] [6]) In a G3s−rule: (1) Each occurrence of � in a side formula ϕ in a
premise is related only to the corresponding occurrence of � in ϕ in the conclusion; (2) Each occurrence
of � in an active formula in a premise is related only to the corresponding occurrence of � in the principal
formula of the conclusion. A family of �’s is an equivalence class w.r.t. the reflexive transitive closure of
the relation above. We denote families by f0, f1, · · · . Since G3s enjoys cut-elimination, all rules of G3s
respect the polarity of formulas, and hence, each family consists of �’s of a same polarity. A family is
positive (negative) if it consists of positive (negative) �’s. If a positive family has at least one of its �’s
correspond to a principal � in an R� rule, this family is principal (or essential). Positive families which are
not principal are non-principal families.

Result 3 (Equivalence of S4 and G3s [7]) ⊢G3s Γ⇒ ∆ iff ⊢S4
∧
Γ→ ∨∆.

Although we may have been familiar with LP, we present the definition again, for the unification of
terminologies.

Definition 4 (The Logic LP [1] [6] [5]) The language is defined by: ϕ ::= ⊥ | p | ϕ → ϕ | t : ϕ, where t is a
proof polynomial (or term), which is defined by: t ::= x | c | !t | t · t | t + t, where x and c are called proof
variable and proof constant, respectively.

Axioms and rules:

A0. Propositional tautologies

A1. ⊢ t :ϕ→ ϕ

A2. ⊢ t : (ϕ→ ψ)→ (s :ϕ→ t · s :ψ)
A3. ⊢ t :ϕ→!t : t :ϕ
A4. ⊢ t :ϕ→ (s + t :ϕ ∧ t + s :ϕ)

R1(MP). ϕ, ϕ→ ψ ⊢ ψ
R2(AN). ⊢ c : A, where A is an axiom A0 − A4, and c is a proo f constant.

R2 is called axiom necessitation(AN) or axiom internalization. For k ∈ {0, 1, 2, 3, 4}, we take AN(Ak) to
denote an instance of AN rule, which introduces c : A in, with A being an Ak axiom.

Result 5 (Lifting Lemma [1] [6]) If x1 : ϕ1, · · · , xn : ϕn ⊢LP ψ, then there is a proof polynomial t =
t(x1, · · · , xn) s.t. x1 :ϕ1, · · · , xn :ϕn ⊢LP t(x1, · · · , xn) :ψ.

Definition 6 (Constant Specification, Self-referentiality and LP(CS) [1] [5]) A constant specificationCS
is a set of LP−formulas c1 : A1, c2 : A2, · · · , where ci’s are proof constants and Ai’s are instances of axioms
A0−A4. By TCS, we mean the total constant specification, which is the union of all constant specifications.
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CS is injective if for each c there is at most one formula c : A in CS. CS is non-direct-self-referential (or
non-self-referential, respectively) if CS does not contain any formulas (or subsets) of the form c : A(c) (or
{ c1 : A1(c2), · · · , cn−1 : An−1(cn), cn : An(c1) }). A non-direct-self-referential (or non-self-referential) constant
specification is denoted by CS∗ (or CS~).

By LP(CS), we mean the system, which enjoys the same language, A0 − A4 and R1 with LP, while
taking the following rule instead of R2:

R2CS. ⊢ ϕ, where ϕ ∈ CS.

For instance, LP(∅) is the system obtained by dropping R2 from LP.

Result 7 (Deduction Theorem of LP [1]) If Γ, ϕ ⊢LP(CS) ψ, then Γ ⊢LP(CS) ϕ→ ψ.

Result 8 (Substitution Lemma of LP [1]) ForCS ∈ {∅,TCS}, if Γ(x, p) ⊢LP(CS) ψ(x, p) for some variable
x and propositional letter p, then for any term t and any formula ϕ, we have: Γ(x/t, p/ϕ) ⊢LP(CS) ψ(x/t, p/ϕ).

A Gentzen-style formulation of LP(∅), i.e., LPG0, is presented in [1] on the propositional base G2c
from [7]. For convenience, we take G3c from [7] as our propositional base of LPG0.

Definition 9 (A Gentzen-style Formulation of LP(∅): LPG0 [1]) LPG0 has the following axioms and rules:
Ax, L⊥, L¬,R¬, L∧,R∧, L∨,R∨, L→,R→ as the same form of those in Definition 1, while formulas in

them being LP−formulas now.

L+L .
Γ⇒ ∆, t :ϕ
Γ⇒ ∆, s + t :ϕ

L : .
ϕ, t :ϕ,Γ⇒ ∆
t :ϕ,Γ⇒ ∆

L+R .
Γ⇒ ∆, t :ϕ
Γ⇒ ∆, t + s :ϕ

R!.
Γ⇒ ∆, t :ϕ
Γ⇒ ∆, !t : t :ϕ

L · . Γ⇒ ∆, s : (ϕ→ ψ) Γ⇒ ∆, t :ϕ
Γ⇒ ∆, s · t :ψ

Result 10 (Equivalence of LP(∅) and LPG0 [1]) (1) ⊢LP(∅)
∧
Γ→ ∨∆ iff ⊢LPG0 Γ⇒ ∆;

(2) ⊢LP(CS) ϕ iff ⊢LPG0 CS0 ⇒ ϕ, where CS0 is a finite subset of CS.

LP and S4 are linked by the following definition and result in [1].

Definition 11 (Forgetful Projection and Realization [1] [5]) The forgetful projection ◦ is a function from
the language of LP to the language of S4, which meets the following clauses:

p◦ = p ⊥◦ = ⊥ (ϕ→ ψ)◦ = ϕ◦ → ψ◦ (t :ϕ)◦ = �ϕ◦

An LP−formula ϕ is a realization1 of an S4−formula ψ (notation: ψr), provided ϕ◦ = ψ.

Result 12 (Realization Theorem of S4 [1]) ⊢LP ϕ iff ⊢S4 ϕ
◦. Or equally, ⊢S4 ϕ iff ⊢LP ϕ

r for some ϕr.

If we generalize Definition 11 to sets of formulas, i.e., Γ◦ = {ϕ◦|ϕ ∈ Γ}, then Result 12 can be stated as:

LP◦ = S4.

In [1], the result above is showed by offering a realization procedure, which can mechanically calculate
a suitable ϕr, if a proof of the S4−theorem ϕ is given. The procedure can be displayed by Figure 1 in
general. Note that the constant specification CS of the resulting LP−proof is determined only by the left
branch, and hence, only by employing Lifting Lemma (i.e., Result 5) while dealing with instances of R�
rules. Unfortunately, we can not include a complete instruction of this procedure here. For any details not
included in Figure 1, we refer to [1] and [6].

1Note that ◦ is a function while r being not, i.e., for each LP−formula ϕ, ϕ◦ is uniquely determined, while an S4−formula may
have lots of realizations.
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S4 − proo f

Result 3
��

G3s − proo f

Result 5

f or R�−rules

uu

f or axioms and other rules

trans f er directly ((
LP(CS) − piece

""

LPG0 − piece

Result 10
��

LP(∅) − piece

vv
LP(CS) − proo f

��
LP − proo f

Figure 1: Realization procedure of S4

By the realization procedure stated in [1], we can construct an LP−proof, and hence, employ a con-
stant specification. It is stated in [1, page 27] that the realization procedure there may lead to constant
specifications of the sort c :ϕ(c) where ϕ(c) contains c. This sort of formulas is interesting since they have
self-referential meanings in both arithmetical semantics [1] and Fitting semantics [3]. The following result
shows that self-referentiality is an essential property of S4.

Result 13 (Necessity of Direct-self-referentiality in S4 − LP Realization [6]) the S4−theorem

¬�¬(p→ �p) (1)

can not be realized in any LP(CS∗).

[4] and [5] consider self-referentiality of some other “modal logic-justification logic” pairs2. Here we
present results from [5] without details.

Result 14 ([5]) Each K−(or D−)theorem can be realized with a non-self-referential constant specification,
while in T,K4,D4, self-referentiality is necessary for realization.

As we have stated at the beginning, self-referentiality will be considered at a “theorem-level”, instead
of a “logic-level” in this paper. In Section 2, a series of notations about G3s and the standard realization
procedure are introduced. Then in Section 3, “prehistoric phenomena” in G3s are defined, and some results
are verified. In Section 4, we prove the necessity of “left prehistoric loop” for self-referentiality in S4-LP
realization. In Section 5, we list some relative open problems, which are suggested for further research.

2 Notations and Preliminary Discussions

We introduce a series of notations in this section. Though some of them seem cumbersome, they are
employed with a view of denoting notions in realization procedure in detail.

2.1 On Gentzen-style formulation G3s

Observations from [4] and [5] indicate that the behaviors of �−families in Gentzen-style proofs are essential
to self-referentiality. In this subsection, we fix some notations down, and then, consider in general the
behaviors of �−families in a G3s−proof.

2Explicit counterparts of K,D,T,K4,D4 were presented in [2]. These counterparts, together with LP and some other variants, are
called “justification logics” now.
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A G3s−proof (as a tree) is denoted by T = (T,R), where the node set T := {s0, s1, · · · , sn} is the set of
occurrences of sequents, and

R := { (si, s j) ∈ T × T | si is the conclusion o f a rule which has s j as a premise }

is a binary relation. The only root of T is denoted by sr. Since each path in T from sr is associated with
a unique end-node, we can denote paths by their end-nodes3. In what follows, whenever we say “path s0”,
we mean the only path from sr to s0. T � s is the subtree of T with root s. As usual, the transitive closure
and reflexive-transitive closure of P is denoted by P+ and P∗, respectively, for any binary relation P.

Sometimes, we take � (�,�) to denote a negative (non-principal-positive, principal-positive, respec-
tively) occurrence of � in T . Particularly, we take ⊕ to denote a principal-positive occurrence of � in the
conclusion of an R� rule, if this � is just introduced principally4 in this rule.

In T , we have only finitely many principal-positive families, say, f1, · · · , fm. An occurrence of � of
family fi is denoted by �i. Related �’s may occur in different sequents of T . We take �s

i as the notation for
an occurrence of �i in sequent s. Note that a family can have more than one occurrences in a sequent.

For each family, say fi, there are only finitely many R� rules, denoted by (R�)i.1, · · · , (R�)i.mi , which
introduce finitely many ⊕’s, denoted by ⊕i.1, · · · ,⊕i.mi , of this family. We also use (R�)i and ⊕i, if we only
concern the family it belongs. In T , the premise (conclusion) of (R�)i. j are denoted by Ii. j (Oi. j).

We are now ready to present some properties of �−families in G3s−proofs.

Lemma 15 In a G3s−proof T , each family has exactly one occurrence in sr.

Proof. By an easy induction on the height5 of T . For the inductive step: No matter which rule the last rule
is, it does not relate two occurrences of �’s in the conclusion to a same occurrence in a premise. Hence,
any two occurrences of �’s in sr had different corresponding occurrences before the application of the last
rule. Then by i.h., we know that these two occurrences of �’s belong to different families. ⊣

Theorem 16 In a sequent s in a G3s−proof T , any pair of nested �’s belong to different families.

Proof. By an induction on the height of T . For the inductive step, employ the fact that no G3s−rule can
relate two nested �’s in a premise to a same one in the conclusion. ⊣

Theorem 17 In a G3s−proof T , if a � j occurs in the scope of a �i in a sequent, then for any ⊕ j.y, there is
an ⊕i.x s.t. Ii.xR∗O j.y.

Proof. Suppose a formula of the form ϕ(�iψ(� jχ)) occurs in T . An easy induction shows that the formula
occurs as a subformula in sr. By Lemma 15, it is the only place where �i and � j occur in sr (*).

Assume for the sake of a contradiction that there is no (R�)i rule in the path O j.y
6.

• Obviously, there is a �O j.y

j , i.e., ⊕ j.y, which is not in the scope of any �O j.y

i , occurs in O j.y.

• For s0Rs1 in the path above, by i.h., we know that there is a �s1
j being out of the scope of any �s1

i .

– If s1 and s0 are linked by a (one-premise or two-premises) Boolean rule, then obviously the
related �s0

j is not in the scope of any �s0
i .

– If s1 and s0 are linked by an L� rule, then:

∗ If the promised (by i.h.) �s1
j is in a side formula, then the case is similar as the Boolean

case.
∗ If the promised �s1

j is in an active formula, then we may prefix a � in front of this formula.
However, the prefixed � is a �. Hence the related �s0

j is not in the scope of any �s0
i .

3We have the same notation for a branch and its end-node, which is, more or less, a little inappropriate. However, this convention
will not cause any problem in what follows. Since the system of notations employed is cumbersome, we will take this convention, in
view of simplifying the notations.

4For the R� rule stated in Definition 1, only the prefixal � in �ψ of the conclusion is principally introduced. Any �’s which are
weakened in are not principally introduced.

5For the definition of “height”, we refer to [7, Definition 1.1.9]
6As being stated above, we use a node as the name for the only path from sr to this node.
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– If s1 and s0 are linked by an R� rule, then:

∗ If the promised (by i.h.) �s1
j is in a side formula, then the case is similar as the Boolean

case.
∗ If the promised �s1

j is in the active formula, then we will prefix a �s0 in front of this formula.
Since this R� rule is not an (R�)i, the prefixed �s0 is not a �s0

i . Hence the related �s0
j is not

in the scope of any �s0
i .

Now we know that there is a �sr
j which is not in the scope of any �sr

i , which contradicts with (*).
Therefore, for any ⊕ j.y, there is an (R�)i in the path O j.y. That is to say, there is an ⊕i.x s.t. Ii.xR∗O j.y. ⊣

Theorem 18 In a G3s−proof T , if a � j occurs in the scope of a �i in a sequent, then for any �i in any
sequent of T , there is a � j occurs in the scope of this �i.

Proof. Similar as the proof of Theorem 17. ⊣

2.2 On S4-LP realization procedure

Here we need to denote notions from the realization procedure. We refer to [1] and [6] for complete
descriptions of the procedure without presenting any more here, since including a detailed instruction of it
may considerably prolong this paper. A general view of this procedure is given in Figure 1, which may also
help.

In the realization procedure, we need to apply two substitutions. The first one is to substitute all occur-
rences of �’s in a G3s−proof by terms (with provisional variables). Particularly, each �i is replaced by the
sum of provisional variables of this family, i.e., ui.1 + · · ·+ ui.mi . After the first substitution described above,
the resulting tree is then denoted by T ′ = (T ′,R′), while the resulting sequent, set of formulas and formula
corresponding to si,Γ, ϕ, being denoted by s′i ,Γ

′, ϕ′, respectively. R� rules of T are temporally replaced
by “Lifting Lemma rules” in T ′, while the other rules being automatically transferred to corresponding
LPG0−rules.

During the second substitution (in fact, a series of substitutions applied inductively), all of provisional
variables (denoted by u’s) are replaced by (provisional-variable-free) LP terms (denoted by t’s). We apply
this from leaf-side-most “Lifting Lemma rules” to the root-side-most one. Hence we have a function ϵ
s.t. for any i ∈ {1, · · · ,m} and j ∈ {1, · · · ,mi}, the “Lifting Lemma rule” corresponding to (R�)i. j is
dealt as the ϵ(i. j)-th one. It should be emphasized that Oi1. j1 R+Oi2. j2 implies ϵ(i2. j2) < ϵ(i1. j1). Suppose
that ϵ(i0. j0) = 1, then we use T ϵ(i. j) to denote T ′(ui0. j0/ti0. j0 ) · · · (ui. j/ti. j), i.e., the result of substituting all
provisional variables which have been dealt till ϵ(i. j) by corresponding LP−terms. sϵ(i. j),Γϵ(i. j), ϕϵ(i. j) have
similar meanings. Particularly, we have T 0 = T ′. To generate ti. j, we apply Lifting Lemma (Result 5)
on an LP−derivation of Iϵ(i. j)−1

i. j . We denote this derivation by di. j. During this application, we may need
some (finitely many) new constants, which are then denoted by ci. j.1, · · · , ci. j.mi. j . In the standard realization
procedure presented in [1], the constant specification employed is injective. That is to say, given a constant,
say, ci. j.k, the corresponding formula being prefixed, denoted by Ai. j.k, is determined. The collection of
all formulas introduced by AN rules in the promised (by Lifting Lemma) derivation is denoted by CSi. j.
After the second substitution, we take notations T ′′= (T ′′,R′′), s′′i ,Γ

′′, ϕ′′ to denote the tree, sequent, set of
formulas and formula, respectively.

3 Prehistoric Phenomena

In this section, we introduce “prehistoric phenomena”, while proving some related results.

Definition 19 (History) For any branch s0 of the form srR∗Oi. jRIi. jR∗s0 in a G3s−proof T , the path Oi. j,
i.e., srR∗Oi. j is called a history of fi in branch s0.

Definition 20 (Prehistoric Relation) We define prehistoric relation w.r.t. branches at first, and w.r.t. a
whole proof tree then.
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For any principal positive families fi and fh, any branch s of the form srR∗Oi. jRIi. jR∗s:
If Ii. j has the form of

�ξ1, · · · ,�ξk(�Ii. j

h (· · · )), · · · ,�ξn ⇒ η,

then fh is a left prehistoric family in s of fi. Notation: h ≺s
L i.

If Ii. j has the form of
�ξ1, · · · ,�ξn ⇒ η(�Ii. j

h (· · · )),
then fh is a right prehistoric family in s of fi. Notation: h ≺s

R i.
The relation of prehistoric family in s is defined by: ≺s:=≺s

L ∪ ≺s
R.

In G3s−proof T , binary relations of left prehistoric, right prehistoric, and prehistoric is defined by:
≺L:=

∪{ ≺s
L | s is a lea f o f T }, ≺R:=

∪{ ≺s
R | s is a lea f o f T }, ≺:=≺L ∪ ≺R.

At a first sight, the notion of prehistoric relation is not built on the notion of history directly. We now
present a lemma to indicate the desired connection.

Lemma 21 The following two statements are equivalent: (1) h ≺s i; (2) In branch s, there is a node s′

(which is also a sequent), with an occurrence of �s′
h in. There is also a history of fi in s, which does not

include s′.

Proof. The (⇒) direction is trivial, since �Ii. j

h mentioned in the definition is the �h desired. For the (⇐)
direction, the following arguments applies. By the assumption, s has the form of srR∗Oi. jRIi. jR∗s′R∗s for
some j. Since G3s is a cut-free system, we know that no matter what rules are applied from s′ to Ii. j, the �s′

h

will occur in Ii. j as a �Ii. j

h . ⊣

We have a few remarks here. (1) Intuitively speaking, a history can be seen as a list of sequents, whose
inverse starts from the conclusion of an R� rule, and ends at the root of the proof tree. Each history in a
branch breaks it into two parts, i.e, the “historic period”, which is from the conclusion of the R� rule to the
root of the proof tree, and the “prehistoric period”, which is from the leaf of the branch to the premise of
the R� rule. (2) Note that Definition 19 does not care the number of histories of a family in a branch. If a
family is principally introduced into a branch for more than one times7, it may have many different histories
in this branch. (3) It is possible that ≺s

L ∩ ≺s
R, ∅, which is instanced by the following proof:

(Ax) η,�η,�¬ �i �hη⇒ η

(L�) � η,�¬ �i �hη⇒ η

(R�) � η,�¬ �i �hη⇒ ⊕hη

(R�) � η,�¬ �i �hη⇒ ⊕i �h η

(L¬) � η,�¬ �i �hη,¬ �i �hη⇒
(L�) � η,�¬ �i �hη⇒

(4) We know by Lemma 21 that h ≺s i iff �h has an occurrence in the “prehistoric period” of fi in s. That is
the reason why the ≺ relation is called “prehistoric relation”.

In Section 2, we have gained some properties about G3s−proofs. Now in the terminology of prehistoric
phenomena, we have the following corollaries:

Corollary 22 For any principal positive family fi, i ⊀R i.

Proof. Otherwise, we will have a �i in the scope of ⊕i in Oi, which is forbidden by Theorem 16. ⊣

Corollary 23 For any principal positive families fi and f j, if j ≺R i, then for any branch s, j ≺s i provided
that there is an occurrence of ⊕ j in some sequent of s.

7The author is still not sure whether this is necessary for some theorem. In another word, suppose that we have a G3s−proof, in
which a family is principally introduced into a branch multi-timely. Then, must there be a G3s−proof of the same theorem, in which
each family is principally introduced into a branch no more than once?
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Proof. Since j ≺R i, we have a � j in the scope of ⊕i in some Oi. Then by Theorem 17, for any ⊕ j.y, there is
an ⊕i.x s.t. Ii.xR∗O j.y. That is to say, any occurrences of ⊕ j is in the “prehistoric period” of fi in the branch,
say s, it resides in. Hence, by Lemma 21, we have j ≺s i. ⊣

Corollary 24 If k ≺R j and j ▹ i, then k ▹ i, where ▹ is one of ≺,≺L,≺R,≺s,≺s
L,≺s

R.

Proof. Since k ≺R j, we know that there is a �k occurring in the scope of an ⊕ j. By Theorem 18, wherever
� j occurs, there is a �k occurring in the scope of it.

For ▹ =≺s
L, since j ≺s

L i, the branch s has a form of srR∗Oi.xRIi.xR∗s, where Ii.x is

�ξ1, · · · ,�ξy(�Ii.x
j (· · · )), · · · ,�ξn ⇒ η.

By the observation above, we know that there is a �Ii.x
k occurring in the scope of �Ii.x

j . Therefore, k ≺s
L i.

The case that ▹ =≺s
R can be shown similarly, while the case that ▹ =≺s being an easy consequence of

the previous cases.
In the same way, we can gain the result for ≺L and ≺R, and then for ≺. ⊣

We are now ready to present the notion of “prehistoric loop”, which indicates a special structure of
principal positive families w.r.t. prehistoric relations.

Definition 25 (Prehistoric Loop) In a G3s−proof T , the ordered sequent of principal positive families
fi1 , · · · , fin are called a prehistoric loop or left prehistoric loop respectively, if we have:
i1 ≺ i2 ≺ · · · ≺ in ≺ i1 or i1 ≺L i2 ≺L · · · ≺L in ≺L i1.

In an R� rule, formulas residing in the left or right of⇒ in the premise play different roles. This property
allows us to care about differences between ≺R and ≺L. With Corollary 24, we know that ≺L’s are the only
essential steps in a prehistoric loop, as stated in the following theorem.

Theorem 26 T has a prehistoric loop iff T has a left prehistoric loop.

Proof. For the (⇒) direction, by assumption, we have i1 ≺ i2 ≺ · · · ≺ in ≺ i1. We claim that there must be
a ≺L in the prehistoric loop listed above. Otherwise, we have i1 ≺R i2 ≺R · · · ≺R in ≺R i1. By Corollary 24,
we will have i1 ≺R i1 eventually, which is forbidden by Corollary 22.

By the observation above, we know that there is a ≺L in the loop. If there is no ≺R, then we have done
since it is already a left prehistoric loop. So it is sufficient to treat the case that there are both ≺L’s and ≺R’s
in the loop, which can be displayed roughly in Figure 2.

· · · ≺ i1 ≺R i2 ≺ · · ·

··
·≺
··
·

· · · ≻ i4 ≻L i3 ≻ · · · ··
·≻
··
·

Figure 2: A prehistoric loop with both ≺L and ≺R

As being indicated by the figure, there must be an “RL-border”, i.e., · · · ≺R≺L · · · 8. W.l.o.g., we have
· · · ≺ i1 ≺R i2 ≺L i3 ≺ · · · . Then by Corollary 24, we have · · · ≺ i1 ≺L i3 ≺ · · · . While having less ≺R’s, it is
still a prehistoric loop. Since there are only finitely many ≺R’s in the original loop, we can, eventually, gain
a prehistoric loop with only ≺L’s, which is, a left prehistoric loop.

The (⇐) direction is trivial. ⊣

In the last of this section, we consider the role of prehistoric phenomena in G3s. By considering Defini-
tion 1, it is obvious that all axioms and most of rules in G3s are common devices in G3−systems. The only

8Otherwise, since a ≺R, say i1 ≺R i2, is included, the loop would look like · · · i1 ≺R i2 ≺R i3 ≺R · · · (loop to the le f t), and then no
≺L could ever been included. For a similar reason, there must also be an “LR-border”. To gain a left prehistoric loop, it is sufficient (see
following observations to see why) to consider one of “RL-case” and “LR-case”. With Corollary 24 in hand, we take the “RL-case” in
what follows.
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two exceptions are L� and R�. L� is the only rule, which can relate two occurrences of � in one sequent
together. Roughly speaking, it is L� who determines the family-wise-situation of a proof. Correspondingly,
R� is the only rule, which can found “orders” between (principal positive) families. These “orders” are now
defined as prehistoric relations. While the right prehistoric relation behaving so “explicitly” (this relation
can be seen from the form of the succedent of an (R�)’s conclusion), the left prehistoric relation is not very
obvious. By the notion of prehistoric relations, the behavior of families in G3s−proofs are highlighted.

4 Left Prehistoric Loop and Self-referentiality

In this section, we consider (not necessarily direct) self-referentiality of realization procedures with notions
of prehistoric phenomena. The notation system employed is introduced in Section 2. We offer some lemmas
at first, to avoid prolix proofs. The first lemma tells, when applying Lifting Lemma (Result 5), which
provisional variables may be included in the corresponding constant specification. This is important, since
putting a later9 provisional variable in an earlier CS is the only way which can force a later constant to
occur in the housing axiom of an earlier constant.

Lemma 27 Any provisional variable ux.y, which does not occur in Iϵ(i. j)−1
i. j , does not occur in CSϵ(i. j)−1

i. j .

Proof. Firstly, we claim that ux.y does not occur in any sequent of T ϵ(i. j)−1 � Iϵ(i. j)−1
i. j .

Proof of the claim: {Case 1: If �x does not occur in Ii. j, we know that �x does not occur in any sequent
of T � Ii. j, since G3s enjoys the subformula property. Therefore, ux.y does not occur in any sequent of
T 0 � I0

i. j, and hence, does not occur in any sequent of T ϵ(i. j)−1 � Iϵ(i. j)−1
i. j . Case 2: If �x occurs in Ii. j, then

ux.y occurs in I0
i. j. In this case, ux.y does not occur in Iϵ(i. j)−1

i. j implies ϵ(x.y) < ϵ(i. j). Therefore, ux.y does not

occur in any sequent of T ϵ(i. j)−1 � Iϵ(i. j)−1
i. j .}

Secondly, we claim that each sequent sϵ(i. j)−1 of T ϵ(i. j)−1 � Iϵ(i. j)−1
i. j has an ux.y-free LP−derivation.

Proof of the claim: {We prove this claim by an induction on T ϵ(i. j)−1 � Iϵ(i. j)−1
i. j , which is an “LPG0 +

Li f ting Lemma Rule”−proof.
(1) For base cases, we take (Ax) as an example, since (L⊥) can be treated similarly. Assume that s,

which has the form10 of
p,Γ⇒ ∆, p

is introduced by an (Ax). Then we can take

p ∧ (∧Γ), p ∧ (∧Γ)→ (∨∆) ∨ p, (∨∆) ∨ p

to be the LP−derivation desired11. Note that all provisional variables in this derivation have occurrences in
s, which is ux.y-free (by the first claim). Hence, the resulting derivation is also ux.y-free.

(2) For Boolean cases, we take (L→) as an instance, while all other Boolean rules being able to be dealt
in similar ways. Assume that s is introduced by an (L→), i.e.,

Γ⇒ ∆, ϕ ψ, Γ⇒ ∆
ϕ→ ψ, Γ⇒ ∆

By i.h., we have ux.y-free derivations, dL and dR of the two premises. We apply the deduction theorem of LP
(Result 7) to dR, and denote the resulting derivation (∧Γ ⊢ ψ → ∨∆) by d′R. Specifically, if we employ the
standard method to calculate d′R, the resulting d′R is also ux.y-free. Now the following is a ux.y-free derivation
of s.

∧Γ −−→
(dL) (∨∆) ∨ ϕ, ϕ→ ψ, ((∨∆) ∨ ϕ)→ (ϕ→ ψ)→ ((∨∆) ∨ ψ),

9Here “earlier” and “later” are used w.r.t. the order indicated by ϵ. See Section 2 for details.
10Since s is a sequent in T ϵ(i. j)−1 � Iϵ(i. j)−1

i. j , precisely speaking, we should denote it by sϵ(i. j)−1, with similar superscripts added to
formulas in it. However, this would considerably complicate our notations, and make what follows much harder to read. Therefore, we
omit those superscripts. This ephemeral convention does not matter, since we are now living in the scope of a specified tree, instead of
a series of trees.

11Strictly speaking, we need to specify an order for conjuncts and disjuncts here. Since this issue is not essential for our proof, we
can take any reasonable order, e.g., the one employed in [6]. In what follows, we take

∧
and
∨

with an assumed reasonable order
without presenting it explicitly.
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(ϕ→ ψ)→ ((∨∆) ∨ ψ), (∨∆) ∨ ψ, ∧Γ
−−→
(d′R) ψ→ ∨∆,

((∨∆) ∨ ψ)→ (ψ→ ∨∆)→ ∨∆, (ψ→ ∨∆)→ ∨∆, ∨∆

(3) For non-Boolean LPG0−rules, we take (L :), which corresponding to (L�) in G3s, for example.
Suppose that s is obtained by an (L :), i.e.,

ϕ, t :ϕ,Γ⇒ ∆
t :ϕ,Γ⇒ ∆

By i.h., we have a ux.y-free derivation, say d′, of the premise. The desired ux.y-free derivation of s is then
gained by adding

t :ϕ, t :ϕ→ ϕ

at the beginning of d′.
(4) For the “Lifting Lemma Rule”. Assume that s is obtained by applying a “Lifting Lemma Rule”:

x1 :ξ1, · · · , xn :ξn ⇒ η

x1 :ξ1, · · · , xn :ξn,Γ⇒ ∆, t(x1, · · · , xn) :η

By i.h., we have a ux.y-free derivation of the premise. To construct t, we apply Lifting Lemma (Result
5) on this derivation. Note that the resulting derivation is also ux.y-free12. Then, we make some Boolean
amendment (to allow the weakening) on the resulting derivation, which is similar to the situation in Boolean-
rule-cases. This amendment does not introduce occurrences of ux.y, since each formula we need to weakened
in has an explicit occurrence in s, which is ux.y-free (by the first claim).}

Thirdly, as an easy consequence of the second claim, we know that Iϵ(i. j)−1
i. j has a ux.y-free derivation,

which is constructed inductively on T ϵ(i. j)−1 � Iϵ(i. j)−1
i. j . That is to say, di. j is ux.y-free.

Lastly, we turn to consider CSϵ(i. j)−1
i. j , which consists of formulas of the from c : Aϵ(i. j)−1. If c ∈

{ci. j.1, · · · , ci. j.mi. j }, then Aϵ(i. j)−1 is an axiom employed in di. j. If c < {ci. j.1, · · · , ci. j.mi. j }, then c : Aϵ(i. j)−1 is
introduced by an AN rule in di. j. In both cases, we have Aϵ(i. j)−1 occurs in di. j. Since ux.y does not occur in
di. j, ux.y does not occur in Aϵ(i. j)−1.

Thus, ux.y does not occur in CSϵ(i. j)−1
i. j . ⊣

When dealing with a “Lifting Lemma Rule”, we can try to reduce the risk of committing self-referentiality
by choosing new constants. Hence, the order ϵ is essential. Having considered this, we present the second
lemma, which says, given a prehistoric-loop-free proof, we can arrange ϵ in such a way that the order
respects prehistoric relations.

Lemma 28 If a G3s−proof T is prehistoric-loop-free, then we can realize it in such a way that: If h2 ≺ h1,
then ϵ(h2. j2) < ϵ(h1. j1)

Proof. We claim that there is a family fi1 s.t. h ⊀ i1 for any principal positive family fh.
Proof of the claim: {Otherwise, let Z = { f1}. Since T is prehistoric-loop-free, by Lemma 21, the �

which occur to the leaf-side of any O1 can not belong to the family in Z. That is to say, it must belong to
another family, say, f2, w.l.o.g.. Then let Z = { f1, f2}. Similarly, the � which occur to the leaf-side of any
O2 can not belong to any families in Z. Hence it must belong to a new family, say, f3. So and so on. Since
there are only finitely many principal positive families in T , in the way described above, we will add all of
these families into Z at sometime. At that time, we will no longer have new families to set the required �.
By this observation, we have verified the claim above.}

Let ϵ(i1. j) = j, for any j ∈ {1, · · · ,mi1 }.
We further claim that there is a family fi2 s.t. if h ≺ i2, then fh ∈ { fi1 }.

12In applying Lifting Lemma, each axiom ϕ is transferred to c : ϕ for some new constant c, each premise x : ϕ is transferred to
x :ϕ x :ϕ →!x : x :ϕ !x : x :ϕ, each result of (AN) a :ϕ is transferred to a :ϕ a :ϕ →!a : a :ϕ !a : a :ϕ, while each result of (MP)
with i.h. s : (ϕ→ ψ) and t :ϕ is transferred by applying (MP) on these two, together with s : (ϕ→ ψ)→ (t :ϕ→ (s · t) :ψ). It is easy to
see that the whole algorithm does not add any new provisional variables. For further details about Lifting Lemma, we refer to [6].
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Proof of the claim: {As we have done for the first one.}
Let ϵ(i2. j) = mi1 + j, for any j ∈ {1, · · · ,mi2 }.
Similarly, we can show that there is a family fix s.t. if h ≺ ix, then fh ∈ { fi1 , · · · , fix−1 }, and set

ϵ(ix. j) =
x−1∑
w=1

miw + j

for any j ∈ {1, · · · ,mix }.
Since there are only finitely many principal positive families in T , in the way above, we can set the

order of all these families, and hence, generate an ϵ as being required. ⊣

Given a prehistoric-loop-free proof, we have generated an ϵ which respects prehistoric relations. Now
the third lemma below says, with such an ϵ, the way the constants reside is also restricted.

Lemma 29 Assume the proof tree is prehistoric-loop-free. Taken the ϵ generated in Lemma 28, we have:
If ϵ(i0. j0) > ϵ(i. j), then for any k0 ∈ {1, · · · ,mi0. j0 }, any k ∈ {1, · · · ,mi. j}, ci0. j0.k0 does not occur in A′′i. j.k.

Proof. We employ the ϵ generated in Lemma 28.
When dealing with (R�)i. j, we need to apply the lifting procedure on di. j, which is an LP−derivation

of Iϵ(i. j)−1
i. j . Since Oi. jRIi. j, by Lemma 28, we know that: each � in Ii. j belongs to a family, say fw, s.t.

ϵ(w. jw) < ϵ(i. j) for any jw ∈ {1, · · · ,mw}. That is to say, Iϵ(i. j)−1
i. j is provisional-variable-free. Hence, by

Lemma 27, CSϵ(i. j)−1
i. j is provisional-variable-free, which implies that CSϵ(i. j)−1

i. j = CS′′i. j and

Aϵ(i. j)−1
i. j.k = A′′i. j.k f or any k ∈ {1, · · · ,mi. j}. (2)

Since ϵ(i0. j0) > ϵ(i. j), ci0. j0.k0 had not been introduced by the procedure when we began to apply lifting
procedure on di. j. Therefore, ci0. j0.k0 does not occur in di. j, and hence, does not occur in any axioms employed
in di. j. That is to say, for any k ∈ {1, · · · ,mi. j}, ci0. j0.k0 does not occur in Aϵ(i. j)−1

i. j.k . By (2), we know that ci0. j0.k0

does not occur in A′′i. j.k. ⊣

With the three lemmas above in hand, now we are ready to verify the main theorem.

Theorem 30 (Necessity of Left Prehistoric Loop for Self-referentiality) If an S4−theorem ϕ has a left-
prehistoric-loop-free G3s−proof, then there is an LP−formula ψ s.t. ψ◦ = ϕ and ⊢LP(CS~) ψ.

Proof. Since the G3s−proof is left-prehistoric-loop-free, by Theorem 26, the proof is prehistoric-loop-free.
Hence, we can take the ϵ generated in Lemma 28, which implies the result stated in Lemma 29.

Assume with the hope of a contradiction that the resulting constant specification CS is self-referential.
That is to say, we have:

{ci1. j1.k1 : A′′i1. j1.k1
(ci2. j2.k2 ), · · · , cin−1. jn−1.kn−1 : A′′in−1. jn−1.kn−1

(cin. jn.kn ), cin. jn.kn : A′′in. jn.kn
(ci1. j1.k1 )} ⊆ CS′′

By Lemma 29, we then have:

ϵ(in. jn) < ϵ(in−1. jn−1) < · · · < ϵ(i2. j2) < ϵ(i1. j1) < ϵ(in. jn)

which is impossible.
Hence, the resulting constant specification is non-self-referential. ⊣

Having finished the proof, we may notice that what have been done are natural. By the left-prehistoric-
loop-free condition, we are given an order of families. The order is then inherited by an ϵ, which indicates
the order of lifting procedures. Eventually, the order is echoed by the way in which the constants reside
themselves in their housing axioms.
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5 Conclusions

In this paper, we define “prehistoric phenomena” in a Gentzen-style formulation (G3s) of modal logic S4.
After presenting some basic results about this notion, a proof of the necessity of left prehistoric loop for
self-referentiality is given. The presented work constitutes a small step in the journey of finding a criterion
for self-referentiality in realization procedures, while the whole journey having its meaning in offering an
S4 (and hence, intuitionistic) measure of self-referentiality introduced by terms-allowed-in-types capacity.

It should be emphasized that, there are still spaces for this work to be developed. For example, it is
unclear whether left prehistoric loop is sufficient for self-referentiality. We conjecture that if all G3s−proofs
of an S4−theorem ϕ have left prehistoric loops, then any realizations of ϕ will necessarily call for self-
referential constant specifications. For another example, we have not answered the question that whether
there is an S4−theorem, the realization of which necessarily calls for self-referentiality, but not for direct
self-referentiality. Also, despite the applications shown above, we assume that “prehistoric phenomena”
have interests of their own, since they describe some family-wise structures of Gentzen-style modal proof
trees.
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