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Abstract. Hamkins and Löwe proved that the modal logic of forcing is S4.2. In

this paper, we consider its modal companion, the intermediate logic KC and relate it to

the fatal Heyting algebra HZFC of forcing persistent sentences. This Heyting algebra is

equationally generic for the class of fatal Heyting algebras. Motivated by these results, we

further analyse the class of fatal Heyting algebras.
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0. Personal remarks of the second author

Over many years, there have been strong research ties between the Institute
for Logic, Language and Computation in Amsterdam and the logic group
built by Leo Esakia in Tbilisi. When I was visiting Tbilisi in late May 2007,
Leo’s group asked me to give two talks in their logic seminar and I presented
the material in the papers [6] and [9]. After the presentation on the joint
work with Joel Hamkins on the Modal Logic of Forcing, Leo suggested to
use the ideas from [6] in the setting of intermediate logics: in the ensuing
lively discussion, Leo developed his ideas in Russian and David Gabelaia
translated for me.

I had almost forgotten about this bilingual discussion when I returned
to Tbilisi later that year (October 2007) and Leo informed me then that
our “joint paper was progressing well”. In early 2009, Leo sent me notes
containing the results on intermediate logics we had talked about, but also
additional material on fatal Heyting algebras that he had worked on in the
meantime. In the month of March 2009, Leo and I collaborated via e-
mail to transform his notes into a submission for the conference Topology,
Algebra, and Categories in Logic (TACL 2009). Since I felt that I had made
no contribution to the additional material on fatal Heyting algebras, we
eventually decided to remove that material from the TACL submission. On
7 July 2009, I presented the material on intermediate logics at TACL 2009
in Amsterdam. This material is included in §§ 1 and 2 of the present paper.

When I heard the sad news of Leo’s passing, I contacted the editors
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of this special issue and asked them whether there would be any interest in
publishing Leo’s additional results on fatal Heyting algebras, indicating that
his notes from 2009 contained only claims and no proofs. The editors of the
special issue encouraged me to submit the paper as it had been intended by
Leo when he wrote the notes in 2009; Guram Bezhanishvili, David Gabelaia
and Mamuka Jibladze volunteered to provide the proofs of the material on
fatal Heyting algebras in an appendix. § 3 contains the material on fatal
Heyting algebras essentially as it was in Leo’s notes that he had written in
2009, and all of the results in this section are due to Leo alone. The proofs
for the statements in § 3 have been provided by Bezhanishvili, Gabelaia and
Jibladze in the appendix on the basis of Leo’s handwritten notes. I would
like to thank them for their crucial assistance in this project of publishing
unpublished work of Leo Esakia.

1. Introduction

In this paper, we shall deal with three different languages, the language L
of propositional logic, the language L� of modal propositional logic, and
the language LZFC of set theory (i.e., first-order logic with a binary relation
symbol ∈). We identify the languages with their sets of formulæ or sentences.

The Lindenbaum algebra of ZFC is the Boolean algebra BZFC of classes
of provably equivalent LZFC-sentences (i.e., formulæ with no free variables).
More precisely the elements of BZFC are the classes [ϕ] = {ψ ; ZFC ` ϕ↔ ψ}
and the Boolean operations are the induced ones, e.g., [ϕ] ∧ [ψ] := [ϕ ∧ ψ],
⊥ := [ϕ ∧ ¬ϕ], > = [ϕ ∨ ¬ϕ]. If B = 〈B,∧,∨,¬, 0, 1〉 is a Boolean algebra
and � is a unary operation on B, we call 〈B,�〉 an interior algebra if
�p ≤ p, ��p = �p, �(p ∧ q) = �p ∧ �q, and �1 = 1. Note that if for
an LZFC-sentence ϕ, we define �ϕ to be the LZFC-formalization of “in every
forcing extension, ϕ holds”, then 〈BZFC,�〉 is an interior algebra.

A Heyting algebra H = 〈H,∧,∨,→, 0, 1〉 is a structure such that
〈H,∧,∨, 0, 1〉 is a lattice with smallest and largest element and the equa-
tions p → p = 1, p ∧ (p → q) = p ∧ q, q ∧ (p → q) = q, and p → (q ∧ r) =
(p→ q)∧(p→ r) hold. We write ¬p := p→ 0. As usual, we shall not distin-
guish between H and its underlying set H, and write “p ∈ H” when we mean
“p ∈ H”. Recall that a Heyting algebra 〈H,∧,∨,→, 0〉 is a Boolean algebra
if and only if for every p ∈ H, we have p∨¬p = 1. Algebraic terms in Boolean
and Heyting algebras can be naturally identified with L-formulas, whereas
algebraic terms in interior algebras can be identified with L�-formulas. So,
if Λ is any modal logic extending S4, we can say “an interior algebra 〈B,�〉
satisfies Λ” and mean that we identify each theorem ϕ of Λ with a term tϕ
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in the interior algebra, and 〈B,�〉 |= tϕ = 1. From now on, we shall write
“ϕ = 1” for this.

We denote the class of Heyting algebras by HA. Note that one of the
two de Morgan laws is satisfied in every Heyting algebra, namely ¬(p∨ q) =
¬p ∧ ¬q for every p and q in H.

Definition 1. We call a Heyting algebra fatal if every prime filter is con-
tained in only one maximal filter. The class of fatal Heyting algebras will
be denoted by fHA.

For an interior algebra 〈B,�〉, we define its Heyting core to be H(B,�) :=
{�p ; p ∈ B}. On H(B,�), we define p → q := �(¬p ∨ q), and see that
〈H(B,�),∧,∨,→, 0, 1〉 is a Heyting algebra.

Fact 2. For a Heyting algebra H the following are equivalent:

1. H is fatal,

2. Stone’s Principle holds, i.e., ¬p ∨ ¬¬p = 1,

3. ¬(p ∧ q) = ¬p ∨ ¬q,

4. ¬¬p→ p = p ∨ ¬p.

Proof. (1)⇒ (2): If there is p ∈ H such that ¬p ∨ ¬¬p 6= 1, then there is
a prime filter x of H with ¬p ∨ ¬¬p /∈ x. Therefore, ¬p /∈ x and ¬¬p /∈ x.
Let F be the filter generated by x and ¬p and G be the filter generated
by x and ¬¬p. If there is a ∈ x such that a ∧ ¬p = 0, then a ≤ ¬¬p,
so ¬¬p ∈ x, a contradiction. Therefore, F is proper. Similarly if there is
b ∈ x with b ∧ ¬¬p = 0, then b ≤ ¬¬¬p = ¬p, so ¬p ∈ x, a contradiction.
Thus, G is also proper. Clearly F and G are incomparable as ¬p ∈ F\G
and ¬¬p ∈ G\F . Consequently, they extend to two different maximal filters
y and z. So there are two different maximal filters containing x, and so H
is not fatal.

(2) ⇒ (1): Suppose there is a prime filter x contained in two different
maximal filters y and z. Then there is p ∈ H contained in y but not in
z. Since z is maximal, ¬p ∈ z. Therefore, ¬p /∈ y and ¬¬p /∈ z. Thus,
¬p,¬¬p /∈ x, and since x is prime, ¬p ∨ ¬¬p /∈ x, so ¬p ∨ ¬¬p 6= 1.

That (2) is equivalent to (3) is well known; cf., e.g., [7, Chapter I.1.13].

(2) ⇒ (4). As ¬¬p ∧ (p ∨ ¬p) ≤ p, it follows that p ∨ ¬p ≤ ¬¬p → p in
any Heyting algebra H. Let H satisfy (2). We show that if q ≤ ¬¬p → p,
then q ≤ p ∨ ¬p. Let q ≤ ¬¬p → p. Then q ∧ ¬¬p ≤ p. Therefore,
(q∧¬¬p)∨¬p ≤ p∨¬p. Thus, (q∨¬p)∧ (¬¬p∨¬p) ≤ p∨¬p, and so by (2),
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q∨¬p ≤ p∨¬p, which implies q ≤ p∨¬p. Consequently, ¬¬p→ p ≤ p∨¬p,
and so ¬¬p→ p = p ∨ ¬p.

(4) ⇒ (2): Substituting ¬p for p in (4) gives ¬¬¬p → ¬p = ¬p ∨ ¬¬p.
The left hand side is obviously 1, so (2) follows.

2. Forcing persistent sentences

We say that an LZFC-sentence ϕ is forcing persistent if whenever ϕ is true
in a model M then it is true in every forcing extension of M . As before,
we use � for the “true in all forcing extensions” operator. We say that a
function H : L� → LZFC is a forcing translation if H commutes with
propositional connectives and H(�ϕ) is the formalization of “H(ϕ) is true
in all forcing extensions”. We call a formula ϕ ∈ L� a valid principle of
forcing if for all forcing translations H, we have that ZFC ` H(ϕ). By
[6, Theorem 3], all theorems of S4.2 are valid principles of forcing (“the
soundness of S4.2”).

Theorem 3 (Hamkins-Löwe). If ZFC is consistent, then for every ϕ ∈ L�,
we have S4.2 ` ϕ if and only if for all forcing translations H the sentence
H(ϕ) is provable in ZFC [6, Main Theorem 6].

We follow [6, p. 1798] and call an LZFC-sentence ϕ a button if there
is a forcing extension such that �ϕ is true and a switch if in all forcing
extensions, both ♦ϕ and ♦¬ϕ are true. Every LZFC-sentence is either a
button or the negation of a button or a switch.

Proposition 4. Let ϕ ∈ LZFC. Then the following are equivalent:

1. the sentence ϕ is forcing persistent, and

2. the sentence ϕ is equivalent to a statement of the form �ψ.

Proof. If ϕ is forcing persistent, then ϕ↔ �ϕ, so (1.)⇒(2.) is obvious.

To see (2.)⇒(1.) check the three possible cases. If ψ is a button, then
�ψ is a button (and forcing persistent). If ψ is the negation of a button,
then �ψ is provably false (since buttons are necessarily buttons by S4.2;
cf. [6, p. 1798]), and hence forcing persistent. If ψ is a switch, then �ψ is
provably false as well.

We denote the set of equivalence classes of forcing persistent sentences by
HZFC. It is not hard to see that HZFC is a sublattice of BZFC. By Proposition
4, we get that HZFC = H(BZFC,�), and thus HZFC is a Heyting algebra.
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Proposition 5. For every forcing persistent ϕ, �¬ϕ ∨ �♦ϕ is a ZFC-
theorem. Therefore, HZFC satisfies Stone’s Principle, and thus (by Fact
2) is a fatal Heyting algebra.

Proof. Suppose �¬ϕ is not the case. Then there is a forcing extension in
which ϕ holds. Since ϕ is forcing persistent, �ϕ holds in this extension, so
in the original model, we have ♦�ϕ. But by the soundness of S4.2, we get
�♦ϕ.

We furthermore have the Gödel translation T : L → L� of the in-
tuitionistic propositional calculus HC into the modal system S4 defined
by T (p) = �p, T (ϕ ∧ ψ) = T (ϕ) ∧ T (ψ), T (ϕ ∨ ψ) = T (ϕ) ∨ T (ψ), and
T (¬ϕ) = �¬T (ϕ).

Theorem 6 (Gödel). For every ϕ ∈ L, we have that HC ` ϕ if and only if
S4 ` T (ϕ) [5, 11].

Via the identification of formulæ in L and terms in Heyting algebras (as
well as formulæ in L� and terms in interior algebras), we can consider T as
a map between the Heyting core of an interior algebra and the surrounding
interior algebra.

Proposition 7. If 〈B,�〉 is an interior algebra and ϕ ∈ L, then 〈B,�〉 |=
T (ϕ) = 1 if and only if H(B,�) |= ϕ = 1.

Proof. Cf., e.g., [3, § 8.3].

An intermediate logic is an L-logic extending HC and contained in
classical propositional logic. One particular intermediate logic is the logic
KC, also known as “the logic of the weak law of excluded middle”, “Jankov
logic”, “testability logic”, or “De Morgan logic” which has been originally
introduced and studied by Dummett and Lemmon in [4]. The logic KC is
axiomatized by adding to HC the following weak law of excluded middle:
¬ϕ∨¬¬ϕ. By Fact 2, it is obvious that the class fHA provides an adequate
algebraic semantics of the intermediate logic KC.

Dummett and Lemmon showed, among other things, that the modal
system S4.2 (which was also originally introduced in [4]) interprets KC by
the Gödel translation T . We call KC the modal companion of S4.2 via
the Gödel translation.

Theorem 8 (Dummett/Lemmon). For every ϕ ∈ L, we have that KC ` ϕ
if and only if S4.2 ` T (ϕ) [4].
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We are now considering the compositions H ◦ T : L → LZFC of forcing
translations with the Gödel translation.

Proposition 9. Let ϕ ∈ LZFC. Then the following are equivalent:

1. the sentence ϕ is forcing persistent, and

2. there is a ψ ∈ L and a forcing translation H such that ϕ = H(T (ψ)).

Proof. By Proposition 4, we know that the forcing persistent sentences are
of the form �ψ for a button ψ or provably false.

For (2.)⇒(1.), we only need to check that for every ψ ∈ L, T (ψ) is S4.2-
equivalent to a boxed formula. However, this is clear by induction (note that
�p ∨�q ↔ �(�p ∨�q)).

For (1.)⇒(2.), let ϕ = �ψ, and use the formula p ∈ L. Any forcing
translation H with H(p) = ψ witnesses ϕ = H(T (p)).

Combining Theorems 3 and 8 with Proposition 9, we immediately get:

Corollary 10. If ϕ ∈ L, then KC ` ϕ if and only if for every forcing
translation H, we have ZFC ` H(T (ϕ)). Thus the intermediate logic KC is
precisely the logic of ZFC-provable forcing persistent sentences.

Theorem 11. The fatal Heyting algebra HZFC is equationally generic for the
class fHA, i.e., each element of fHA is a homomorphic image of a subalgebra
of a product of copies of HZFC.

Proof. In general, if K is a class of algebras, then we call A ∈ K func-
tionally free if for any two terms s and t, we have that A |= s = t if and
only if for all K ∈ K, we have that K |= s = t. Tarski proved that being
functionally free is equivalent to being equationally generic in the sense of
the theorem [13, p. 164].

Let BAOS4.2 be the class of Boolean algebras with an operator that
satisfy S4.2 (i.e., they are all interior algebras). If 〈B,�〉 is functionally free
for BAOS4.2, then its Heyting core H(B,�) is functionally free in fHA, and
thus by Tarski’s theorem equationally generic. [We identify formulæ with
their canonical terms in the algebras. By Theorem 8, KC ` ψ is equivalent
to S4.2 ` T (ψ). By assumption, this is equivalent to 〈B,�〉 |= T (ψ) = 1,
and this in turn to H(B,�) |= ψ = 1 by Proposition 7.]

But Theorem 3 implies that 〈BZFC,�〉 is functionally free for BAOS4.2,
thus completing the proof.
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3. Observations about fatal Heyting algebras

In the course of analysing fatal Heyting algebras in the setting of interme-
diate logics, we also established some specific properties of fatal Heyting
algebras which may be of independent interest. The following subsets of a
Heyting algebra 〈H,∧,∨,→, 0〉 are of special importance: the centre of H,
c(H) = {p ∈ H ; p ∨ ¬p = 1}, the dense part d(H) = {p ∈ H ; ¬p = 0},
the fatal part of H, f(H) = {p ∈ H ; ¬p ∨ ¬¬p = 1} and the set of regular
elements of H, rg(H) = {p ∈ H ; p = ¬¬p}.

Proposition 12. Let 〈H,∧,∨,→, 0〉 be a Heyting algebra. Then f(H) is a
Heyting subalgebra of H.

Corollary 13. The fatal part f(H) of any Heyting algebra H is the largest
subalgebra of H which is a fatal Heyting algebra.

It is not hard to see that the assignment of f(H) to each Heyting algebra
H can be expanded to yield a functor from the category HA into the category
fHA of fatal Heyting algebras.

Consider the following typical example of a fatal Heyting algebra: Let X
be an arbitrary topological space. We say that U ⊆ X is a steadily open set if
both U and the closure of U are open. The set of steadily open subsets of X
constitutes a fatal Heyting algebra. Since a space is extremally disconnected
if and only if every open set is steadily open, we obtain: X is extremally
disconnected if and only if the Heyting algebra of open sets of X is fatal.

Proposition 14. Let H be a Heyting algebra; then f(H) = {b ∧ d ; b ∈
c(H), d ∈ d(H)}.

Fact 15. A Heyting algebra H is fatal iff rg(H) = c(H), i.e., every regular
element is complemented.

Proof. Cf. [7, Chapter I.1.13].

Corollary 16. The algebra f(H) is the largest subalgebra H0 of H which
satisfies the condition rg(H0) = c(H0).

Combining Fact 2 with Corollary 16, we immediately obtain:

Proposition 17. The center c(H) of an arbitrary fatal Heyting algebra H
is a retract of H.

The following observation expresses an interesting connection between
fHA and HA:
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Theorem 18. The inclusion functor I : fHA→ HA has a left adjoint F and
a right adjoint G, i.e., the subcategory fHA is a reflective and coreflective
subcategory of the category of all Heyting algebras HA.

Furthermore, the functor G preserves varieties, i.e., if V is a subvariety
of HA then G(V) = {G(H) ; H ∈ V} also constitutes a variety.
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A. Proofs for § 3
The proofs in this appendix were provided by Guram Bezhanishvili, David Gabelaia,

and Mamuka Jibladze (see § 0).

Proof of Proposition 12. Clearly 0, 1 ∈ f(H). Let p, q ∈ f(H). Then:

¬(p ∨ q) ∨ ¬¬(p ∨ q) = (¬p ∧ ¬q) ∨ ¬(¬p ∧ ¬q)

= (¬p ∨ ¬(¬p ∧ ¬q)) ∧ (¬q ∨ ¬(¬p ∧ ¬q))

≥ (¬p ∨ ¬¬p) ∧ (¬q ∨ ¬¬q)

= 1

and

¬(p ∧ q) ∨ ¬¬(p ∧ q) ≥ (¬p ∨ ¬q) ∨ (¬¬p ∧ ¬¬q)

= (¬p ∨ ¬q ∨ ¬¬p) ∧ (¬p ∨ ¬q ∨ ¬¬q)

≥ (¬p ∨ ¬¬p) ∧ (¬q ∨ ¬¬q)

= 1.

Therefore, p ∨ q, p ∧ q ∈ f(H). Moreover,

¬(p→ q) ∨ ¬¬(p→ q) ≥ ¬(p→ ¬¬q) ∨ ¬¬(¬p ∨ q)

= ¬(¬q → ¬p) ∨ ¬(¬¬p ∧ ¬q).

Since ¬q ∨ ¬¬q = 1, we have ¬q ∈ c(H), and so ¬q → r = ¬¬q ∨ r for any r (cf., e.g., [2,
Lemma 16]). Thus, ¬(¬q → ¬p) = ¬(¬¬q ∨ ¬p), and so

¬(¬q → ¬p) ∨ ¬(¬¬p ∧ ¬q) = ¬(¬¬q ∨ ¬p) ∨ ¬(¬¬p ∧ ¬q)

= (¬q ∧ ¬¬p) ∨ ¬(¬¬p ∧ ¬q)

≥ (¬q ∧ ¬¬p) ∨ (¬p ∨ ¬¬q)

= (¬q ∨ ¬p ∨ ¬¬q) ∧ (¬¬p ∨ ¬p ∨ ¬¬q)

= 1.

Consequently, p→ q ∈ f(H), and hence f(H) is a Heyting subalgebra of H.

Proof of Corollary 13. By Proposition 12, f(H) is a Heyting subalgebra of H. More-
over, if H′ is a Heyting subalgebra of H and H′ is fatal, then ¬p ∨ ¬¬p = 1 for each
p ∈ H′, and so H′ ⊆ f(H). Thus, f(H) is the largest Heyting subalgebra of H that is a
fatal Heyting algebra.

Proof of Proposition 14. Let p ∈ H. Then

p = (¬¬p ∧ p) ∨ (¬¬p ∧ ¬p) = ¬¬p ∧ (p ∨ ¬p).

Clearly p ∨ ¬p ∈ d(H), and if p ∈ f(H), then ¬¬p ∈ c(H). Therefore, p = b ∧ d with
b ∈ c(H) and d ∈ d(H). Conversely, let b ∈ c(H) and d ∈ d(H). Then b = ¬¬b (cf., e.g.,
[2, Lemma 16]) and ¬(b ∧ d) = b → ¬d = b → 0 = ¬b. Thus, ¬(b ∧ d) ∨ ¬¬(b ∧ d) =
¬b ∨ (¬¬b ∧ ¬¬d) = ¬b ∨ ¬¬b = b ∨ ¬b = 1, and so b ∧ d ∈ f(H).

Corollary 16 is deduced immediately from Proposition 14 the same way Corollary 13
is deduced from Proposition 12.
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Proof of Proposition 17. Let H be a fatal Heyting algebra. By Fact 15, c(H) =
rg(H). Clearly c(H) is a Heyting subalgebra of H (see, e.g., [2, Lemma 16]). On the other
hand, ¬¬ : H→ rg(H) is a Heyting epimorphism, and so rg(H) is a homomorphic image
of H (see, e.g., [12, Chapter IV.6]). Thus, c(H) is a retract of H.

Proof of Theorem 18. That fHA is a reflective subcategory of HA is clear; in fact,
any subvariety of any variety is an (epi)reflective subcategory; the reflector F assigns to
an algebra its quotient by the identities of the subvariety (see, e.g., [1, Corollary 10.21]).
Define G : HA → fHA by assigning f(H) to each Heyting algebra H. This clearly defines
a functor since the restriction of any Heyting algebra homomorphism h : H→ H′ to f(H)
has its image in f(H′). Moreover, this functor is a coreflector since any homomorphism
K→ H from a fatal Heyting algebra K to any Heyting algebra H factors uniquely through
f(H).

In order to see the “furthermore” part of the theorem, let V be a subvariety of HA
and let H ∈ V. Then G(H) is in V as a subalgebra of H, so we obtain:

1. any homomorphic image H′ of G(H) is both in V and in fHA, so we get that H′ =
f(H′) = G(H′), and thus H′ ∈ G(V);

2. the same argument shows that any subalgebra H′ of G(H) must be in G(V);

3. any product of algebras from G(V) is again in G(V), since G, being a right adjoint,
preserves products.

In order to strengthen Theorem 18 to a result that was not included in Leo’s notes
(Theorem 20 below), we shall need the following lemma:

Lemma 19. Let V ′ be a coreflective subvariety of a variety V. If V has the amalgamation
property, then so does V ′.

Proof. It is well known (and easy to see) that a variety V has the amalgamation property
iff for any A1, A2 ∈ V and any common subalgebra A ⊆ Ai, i = 1, 2, the canonical
homomorphisms Ai → A1 qA A2, i = 1, 2, into the pushout of A1 and A2 over A in V
are injective maps (cf., e.g., [8]). Now suppose A, A1 and A2 belong to V ′. Then since
V ′ is coreflective, i.e., the inclusion functor I : V ′ → V has a right adjoint, it follows
that I preserves all colimits; in particular, A1 qA A2 belongs to V ′ too. This proves the
amalgamation property for V ′.

Theorem 20. The only nontrivial proper coreflective subvarieties of HA are the variety
BA of Boolean algebras and the variety fHA of fatal Heyting algebras.

Proof. That BA is a nontrivial proper coreflective subvariety of HA is well known. For
fHA, this was proved in Theorem 18. To prove the converse, suppose V is a nontriv-
ial proper coreflective subvariety of HA. Then by Lemma 19, V has the amalgamation
property. Therefore, by [10], V is one of the following six varieties:

1. BA.

2. The variety generated by the three element chain 3.

3. The variety generated by all finite chains.

4. The variety generated by the Heyting algebra 4 ⊕ 1, where 4 is the four element
Boolean algebra and −⊕ 1 is the operation of adjoining a new top.
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5. The variety generated by 0 ⊕ B ⊕ 1, where B is an arbitrary finite Boolean algebra
and 0⊕− is the operation of adjoining a new bottom.

6. fHA.

If V 6= BA, then the three element Heyting algebra 3 belongs to V. Since V is a coreflective
subvariety of HA, it is closed under arbitrary colimits. Therefore, the coproduct (in HA)
of 3 with itself belongs to V. As this is an infinite finitely generated Heyting algebra,
it follows that V cannot be locally finite. But all the varieties listed above except fHA
are locally finite. Thus, V = fHA. Consequently, if V is a nontrivial proper coreflective
subvariety of HA, then V = BA or V = fHA.


