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Abstract

We axiomatize two di�erent game states for card games, the state

where cards have been dealt over players but where they haven't picked

up their cards from the table yet, and the state where they have picked

up their cards. The �rst is mainly interesting for its use in indirect de-

scription proofs. The second is extensively illustrated by the example of

three players and three cards. We prove that the axiomatizations describe

the respective models underlying the game states, in the technical sense

that all other models are bisimilar to them. We show that our results cor-

respond to those of �xed point computations of the description of modal

models.

1 Introduction

A dealing of cards over players de�nes the initial state of a knowledge game.
We represent that state by a pointed multiagent S5 model. All the players'
knowledge is encoded in this model by way of the accessibility relations for the
players between dealings that are relevant given the actual dealing of cards.
Why is this the correct model for the initial state of the game?

We answer this question as follows: First, we axiomatize the knowledge
that players have about the game and about each other, and we show that our
preferred model is indeed a model of this theory. Second, we show that this
model is the `only' model of the theory, because all other models are bisimilar
to it. This strengthens our conviction that we have both the right model and
the right theory for the state of the game under consideration.

The axiomatization of a given �nite modal model can also be computed in
a standard way by means of a �xed point construction. We relate our results,
that are derived from analyzing agent behaviour, to those from applying this
technique on multiagent S5 models.
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We proceed as follows: based on an informal analysis of agent properties,
�rst in section 2 we present the theory 33+, describing the initial state for the
knowledge game for three persons and three cards. We show that hexa is a
model of 33+. We proceed by proving some dependencies among the axioms,
by presenting di�erent versions for some axioms, and by presenting models of
restrictions of 33+ that are `countermodels' in the sense that they clearly do
not model the initial game state we attempt to describe. This also serves as
a further justi�cation of our informal analysis. We then present a compact
but equivalent version of 33+, that we name 33�, or just 33. Yet another
alternative is to characterize the model hexa by the (exclusive) disjunction of
a partial description of its worlds. We show the equivalence of that formula to
33. Next, we prove that 33 describes hexa: we show that all S5EC3 models of
33 are bisimilar to hexa.

In section 3 we then continue with the general case: the knowledge game for
a given parameter dealing d from m cards to n players. The intended S5ECn

model Id for its initial game state is also described in [vD00c]. At �rst sight, it
seems less clear what its axiomatization is: although some of the axioms from
33+ have obvious generalizations, this is not obvious for the agents' ignorance.
We illustrate the diÆculties by presenting rejected candidate axioms. It turns
out that we can characterize ignorance in three di�erent ways, that are all
equivalent to each other. The resulting axioms make up the theory kgames+

d
.

We also present a shortened version kgamesd. We then prove that each model
of kgames

d
is bisimilar to the intended model Id.

We can also describe game models indirectly by relating di�erent models with
actions. See [vD00a]. Because bisimulation is invariant under action execution,
it simpli�es our bisimulation proof obligations. We refer to it in section 4 and
give details in [vD00b].

In section 4 we discuss the game situation where the cards have been dealt
but where players haven't picked up and looked into their own cards. It has a
simpler intended model preId and a simpler axiomatization prekgames

d
. Again,

we prove that preId is unique. The model Id results from preId by executing the
action of `turning cards', thus providing the indirect proof that was mentioned
above.

In section 5 we discuss other issues. We compute the descriptions of Id and
preId by a �xed point construction for �nite models. We discuss hypercubes,
models for distributed systems that seem much related to models for card games.
Finally, we present some ideas on the belief revision that seems necessary for
the eÆcient computation of the axiomatizations of other game states, resulting
from action execution. For that, we need pre- and postconditions of actions.
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1.1 Logical preliminaries

We use logical notions and terminology as in [MvdH95]. An S5n model is an
S5 model for a set of n agents. An S5ECn model is a multiagent S5 model plus
access computed for general and common knowledge operators.

The S5n proof system (S5ECn proof system) is the axiomatic proof sys-
tem consisting of the S5 axiom schemata and rules for all agents (and for all
modal operators). We write ' `  for ` ' )`  . We use soundness and com-
pleteness of these systems without restriction, see [MvdH95] for proofs. Instead
of axiomatic proof we generally use a more informal natural deduction style
of proof. It allows for a more natural presentation of cases, and it introduces
modal operators by the derivation rule '1; :::; 'm `  ) �'1; :::;�'m ` � .

Unless speci�cally stated otherwise, we assume that j= denotes j=S5ECn
and

` denotes `S5ECn . In section 2 we more speci�cally assume j= denotes j=S5EC3

and ` denotes `S5EC3 .

Axioms

In our epistemic language, we distinguish axiom schemata, constraints (`ax-
ioms') and contingencies. Any instance of an axiom scheme, such as K1'! ',
is an axiom. Di�erently put, these instances are closed under uniform substi-
tution. A constraint, such as r1 ! K1r1 (for `if player 1 holds the red card,
he knows it') is also an axiom. However, constraints are not closed under uni-
form substitution: r2 ! K1r2 is not an axiom, because player 1 doesn't know
the card of player 2 in the initial state of the game. Instead of constraints, we
still call them axioms, as long as it is understood that they are not instances
of schemata. Formulas that are neither axioms nor deductive consequences of
axioms are contingencies. Contingencies may hold in speci�c worlds of a model
only, like r1 if player 1 holds red in the actual dealing of cards.

Common knowledge

It is not only the case that player 1 holds (at least) a card { r1_w1_b1 {, but this
is also commonly known { C123(r1 _ w1 _ b1) {. How explicit do we need to be
about such common knowledge? Mostly, it suÆces to leave it explicit. Axioms
are commonly known, because we have necessitation for common knowledge
operators. Indeed it will the the case, that not just the axiom (constraint) but
also knowledge of it, is essential in order to prove equivalences and dependencies
among axioms. From a semantic point of view, observe that axioms hold in all
worlds of a model. Therefore, from a given world, they hold in all (

S
a2A �a)

�-
accessible worlds. Therefore they are commonly known in that world.

Exclusive disjunction

We sometimes use `exclusive or' O and therefore de�ne it here, as an n-ary
operation, for each n � 2:
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5n
i=1pi := (p1 ^ :p2::: ^ :pn) _ (:p1 ^ p2::: ^ :pn) _ ::: _ (:p1 ^ :p2::: ^ pn)

Instead of 5n
i=1pi we also write p1O:::Opn. Observe that if one de�nes

exclusive disjunction as a binary operation only, we do not get the desired
truth-functionality for the n-ary case. Although (p1Op2)Op3 is equivalent to
p1O(p2Op3), neither of those is equivalent to 5

3
i=1pi.

Model and state descriptions

Our motivation for this investigation was the following: we described a model
for a game state but had some doubts on whether it the right model and some
doubts on whether it is unique. To remove those doubts, we axiomatize game
states and investigate how the resulting theories correspond to our preferred
model. It then turns out that they describe the model, in the standard logical
sense that all models of the theory are bisimilar to the preferred model, see e.g.
[vB98, BM96]. As the preferred model is �nite, we can compute its description
in epistemic logic with common knowledge operators, in a straightforward way.
These issues are discussed separately in section 5.1. We should not forget, how-
ever, that we started with doubts about both the models and the theories, that
validates our approach of �rst axiomatizing agent behaviour and subsequently
reducing those axioms because of interdependencies.

2 Axioms for three players each holding one card

In this section, we present the theory 33+, and its shortened but equivalent
version 33, that describe the S53 (S5EC3) model hexa, see �gure 1 (re
exive
arrows are not drawn in the �gure). The knowledge state (hexa; rwb) has been
introduced in [vD00c]. It is a (pointed) model of the initial state of the knowl-
edge game for 3 players (1, 2, 3) and three cards (r; w; b), where 1 holds red, 2
holds white and 3 holds blue. Observe that any further re�nement of access in
hexa, symmetrically for all agents, results in the fully re�ned model consisting
of six singleton worlds.

brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2

23

3 3

Figure 1: The model hexa for three players each holding a card
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2.1 The theory 33+

What information do the players have about this initial game state? They know
how many cards there are, namely three. They know that the cards are all
di�erent, namely one red, one white and one blue. That all cards are di�erent,
means that the dealing of cards over players is a function. They know that each
of them holds one card. Beyond that, if they hold a card, they know it, and if
they don't hold a card, they also know that they do not hold it. They don't
know anything else, and there seem to be two sides of that ignorance. First, a
player doesn't know that another player holds a speci�c card. Second, he also
doesn't know another player not to hold a speci�c card, unless it is his own card;
in other words: apart from his own card, a player can imagine any card to be
in possession of another player.

The theory 33+ is the set of axioms (constraints) formalizing this informa-
tion. The axioms are listed in table 1. We call it 33 because there are 3 players
and 3 cards. We index it with large because we will later present an equivalent
but smaller version of the theory. In 33+, the terms in (sansserif) roman are
to be interpreted as the conjunction the set of sentences following them, e.g.
see33 =

V
a2A

V
c2C(ca ! Kaca). Further, 33+ is the conjunction of all its

axioms. We may also think of common knowledge C12333
+ as the requested

formalization, and we implicitly assume distribution of the common knowledge
operator C123 over conjunction. In that way, e.g., we derive C123(r1 ! K1r1)
(it is commonly known, that if player 1 holds the red card, he knows it).

First we show that hexa satis�es 33+. Then we relate the intended meaning
of the axioms to their formulation, and present some alternative formulations
of axioms. We demonstrate the axioms' independence by showing that for all
axioms, the theory without that axiom has a countermodel of that axiom. This
also provides circumstantial evidence, so to speak, that our preferred model is
likely to be the right model.

2.2 Hexa is a model of 33+

Fact 1

hexa j= 33+

For all conjuncts ' of all axioms of 33+ we have to show hexa j= ', i.e.
for all worlds w 2 hexa : hexa; w j= '. Because of symmetry in the model, it
suÆces to show that, e.g., hexa; rwb j= '. For a proof, see the appendix on
page 29. Having proven that hexa j= 33+, we have also proven that hexa j=
C12333

+: because of the de�nition of the interpretation of common knowledge,
and because access for C123 on hexa is universal, hexa j= C12333

+ is equivalent
to 8w 2 hexa : hexa; w j= 33+.
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see33 players see their own cards

r1 ! K1r1 r2 ! K2r2 r3 ! K3r3

w1 ! K1w1 w2 ! K2w2 w3 ! K3w3

b1 ! K1b1 b2 ! K2b2 b3 ! K3b3

dontsee33 players only see their own cards

:r1 ! K1:r1 :r2 ! K2:r2 :r3 ! K3:r3

:w1 ! K1:w1 :w2 ! K2:w2 :w3 ! K3:w3

:b1 ! K1:b1 :b2 ! K2:b2 :b3 ! K3:b3

atmost33 there is at most one card of each colour

:(r1 ^ r2) :(w1 ^ w2) :(b1 ^ b2)

:(r1 ^ r3) :(w1 ^ w3) :(b1 ^ b3)

:(r2 ^ r3) :(w2 ^ w3) :(b2 ^ b3)

atleast33 there is at least one card per player

r1 _ w1 _ b1

r2 _ w2 _ b2

r3 _ w3 _ b3

dontknowthat33 players don't know others' cards

:K2r1 :K2w1 :K2b1

:K3r1 :K3w1 :K3b1

:K1r2 :K1w2 :K1b2

:K3r2 :K3w2 :K3b2

:K1r3 :K1w3 :K1b3

:K2r3 :K2w3 :K2b3

dontknownot33 players can imagine others to hold other cards

:r2 ! :K2:r1 :w2 ! :K2:w1 :b2 ! :K2:b1

:r3 ! :K3:r1 :w3 ! :K3:w1 :b3 ! :K3:b1

:r1 ! :K1:r2 :w1 ! :K1:w2 :b1 ! :K1:b2

:r3 ! :K3:r2 :w3 ! :K3:w2 :b3 ! :K3:b2

:r1 ! :K1:r3 :w1 ! :K1:w3 :b1 ! :K1:b3

:r2 ! :K2:r3 :w2 ! :K2:w3 :b2 ! :K2:b3

Table 1: The theory 33+
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2.3 Meaning of and dependencies between axioms

Some proofs are provided in the running text. Other proofs are found in the
appendix, on page 29. We remind the reader that we sometimes prove ' `  

from the equivalent, in S5ECn, C123' `  .

2.3.1 See33 and dontsee33

Theorem see33 says that in all worlds accessible to a player he should hold the
same cards. Theorem dontsee33 says that in all worlds accessible to a player he
should hold the same cards not: if a player does not hold a card, he doesn't hold
that card in all worlds accessible to him. Both dontsee33 and see33 separately
follow from the other axioms of 33+. We will retain see33 and delete dontsee33.
Informal proof:

33+ � dontsee33 ` dontsee33:
We prove the case :r1 ! K1:r1. Suppose :r1. From :r1 and r1 _ w1 _ b1

follows w1 _ b1.
From w1 and see33 follows K1w1. From atleast and atmost (or equivalently:

from dealings33, as de�ned below) follows w1 ! :r1. From w1 and w1 ! :r1
follows :r1. Therefore, from K1w1 and K1(w1 ! :r1) (which holds because
33+ and therefore also dealings33 are commonly known) follows K1:r1.

Similarly as for w1, from b1 and see33 followsK1b1, and from b1 and b1 ! :r1
follows :r1. Continuing as before, we derive K1:r1.

Therefore w1 _ b1 ! K1:r1, and therefore :r1 ! K1:r1. �

33+ � see33 ` see33: see the appendix.

2.3.2 Atmost33 and atleast33

Axiom atmost33 says that the same card cannot be held by two di�erent players.
This is obvious, as a dealing d is a function from the set of cards C to the set of
playersA. As the propositional language we use to describe game states doesn't
have functions, we have to be explicit about it: atmost33 states that a dealing
is a function. It even states that a dealing is a partial function, as it doesn't
require all cards to be dealt. We can express that a dealing is a total function,
by the proposition that each card is held by exactly one person:

function33 := (r1Or2Or3) ^ (w1Ow2Ow3) ^ (b1Ob2Ob3):

It holds that atmost33; atleast33 ` function33. For a proof see the appendix.

Axiom atleast33 says that every player holds at least one card. We actually
wanted to express that every player holds exactly one card:

exactly33 := (r1Ow1Ob1) ^ (r2Ow2Ob2) ^ (r3Ow3Ob3)
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Because of atmost33; atleast33 ` exactly33 the former is already suÆcient.
For a proof see the appendix.

The axiom dealings33 expresses that exactly one of six di�erent dealings of cards
can be the case. Let:

Æabc = a1 ^ :b1 ^ :c1 ^ :a2 ^ b2 ^ :c2 ^ :a3 ^ :b3 ^ c3

then:

dealings33 := Ærwb _ Ærbw _ Æwrb _ Æwbr _ Æbrw _ Æbwr

Dealings33 is equivalent to atleast33 and atmost33. For proofs of dealings33 `
atleast33 ^ atmost33 and atleast33^ atmost33 ` dealings33, see the appendix.

2.3.3 Dontknowthat33 and dontknownot33

Axiom dontknowthat33 says that a player doesn't know another player's card.
We might weaken it with the precondition that the �rst player doesn't hold that
card himself, because that more properly expresses what an agent knows:

dontknowother33 :=
^

a6=b2A

^

c2C

(:ca ! :Kacb):

From this weaker axiom dontknowother33 we can deduce dontknowthat33:
for a proof of atmost33, dontknowother33 ` dontknowthat33, see the appendix.
Of course, the reverse, dontknowthat33 ` dontknowother33, holds trivially. We
prefer dontknowthat33 over dontknowother33, because it is shorter.

Axiom dontknownot33 says that a player can imagine another player to hold
any card that he doesn't hold himself. In this case the antecedent is essen-
tial, as one cannot imagine other players to have the same cards as oneself:V
a6=b2A

V
c2CMacb obviously doesn't hold.

Both dontknowthat33 and dontknownot33 separately follow from the other
axioms. For proofs, see the appendix. We will retain dontknowthat33 and delete
dontknownot33.

2.4 Nonintended models for restrictions of the theory

To understand why all axioms are indispensable for formalizing the game state
of three persons each holding a card, it is instructive to present countermodels
of restrictions of the theory 33+. Because these models clearly do not model
that state, this strenghtens our case for the preferred model hexa.

In this subsection we also use the following notation for card dealings: let
C;D;E be subsets of cards, then CjDjE is the dealing where player 1 holds all
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cards in C, player 2 all in D, and player 3 all in E. For convenience we write
a set as the string of its elements, where an empty string is represented by ".
Thus rjwbrj" is the dealing of cards where player 1 holds a red card, player 2 a
red, a white and a blue card, and player 3 holds no card.

See33

Figure 2 (where rwb stands for rjwjb, etc.) is a model of 33� see33�dontsee33.
This model M doesn't satisfy see33, as M; rwb 6j= r1 ! K1r1. None of the
players can distinguish between any of the six dealings. Incidentally, it is the
model of the state of the game where the cards have already been dealt but
where the players haven't looked up their own cards yet. See also section 4.
Other models of 33� see33� dontsee33 are those resulting from a permutation
of access for 1, 2 and 3 in the model hexa (see �gure 1).

brw

wrb

rwb rbw

bwr

wbr

1; 2; 3

1; 2; 3

1; 2; 3

1; 2; 3 1; 2; 3

1; 2; 31; 2; 3

1; 2; 3 1; 2; 3

Figure 2: Nobody has looked in his cards (universal access for all agents).
Assume transitivity of links.

Atmost33

Without atmost33 there are more dealings relevant (f1; 2; 3g-accessible) to a
given dealing. In the theory 33+, delete atmost33 and replace atleast33 for the
stronger axiom exactly33. The theory 33+ � atmost33 � atleast33 + exactly33

has a model M27 containing 27 worlds, where a world is characterized by any

distribution of three cards of any three colours red, white and blue over three
players (thus there are 3 � 3 � 3 = 27 possibilities). E.g. rjrjw is such a world,
where 1 and 2 hold a red card and three holds a white card. Observe that
M27 6j= atmost33, as M27; rjrjw 6j= :(r1 ^ r2).

The theory 33+� atmost33 reveals an implicit constraint that is imposed by
the language. That theory has a model M 0 containing much more worlds than
M27, namely any world corresponding to a dealing of between three and nine
cards of any of three colours red, white and blue, where every player holds at
least one card, but with the restriction that a player cannot hold more than one
card of the same colour. The last is, because our language cannot express that a
player holds more than one card of the same colour! Some cases in more detail:
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Total of four cards: There are 34 worlds where one of the three players holds
two di�erent cards and the others hold one card.1

Total of �ve cards: We have to consider both the case where one player
holds three di�erent cards and the others both one, and the case where there
are two players holding two di�erent cards. There is only one combination of
three di�erent cards: rwb. Thus the total is 32 �1+3 � (3 �3 �3) = 90 possibilities.

Total of six, seven, eight, and nine cards: similarly to four and �ve cards.

Atleast33

Without atleast33 there are 27+18+9+1 = 55 di�erent dealings of at most three
di�erent cards over three players.2 Given the modelM55 with all these dealings
as worlds, M55 6j= atleast33 as M55; rwbj"j" 6j= r2 _ w2 _ b2. Somewhat similarly
to above, a model of special interest is the model M 00 containing only 27 worlds
(di�erent from those inM27, above!), for all the di�erent dealings of exactly three
di�erent cards (as formalized by function33), although not necessarily dealt to
di�erent players. Model M55 is not a model of this slightly strengthened theory
33+ � atleast33� atmost33+ function33, whereas model M 00 is.

Dontknowthat33

Figure 3 is a modelM of 33+�(dontknowthat33+dontknownot33). Incidentally,
this is the model resulting from the action of player 1 showing player 2 his
red card, given a request for his card. Obviously, M 6j= dontknowthat33, as
M; rwb 6j= :K2r1. Player 2 has become less ignorant. Actually, any model
resulting of any game action on hexa results in a decrease of ignorance, as
measured in terms of the dealings still imaginable for a player, and therefore
satis�es 33+ � (dontknowthat33+ dontknownot33).

brw

wrb

rwb rbw

bwr

wbr

1

1

1

3

3 3

Figure 3: Any 3/3 game state satis�es 33� (dontknowthat33+ dontknownot33)

1There are three di�erent combinations of two di�erent cards for a player: rw; bw; br. Any

of the three players can hold two cards. Thus the total is: 3 � 3 � 3 + 3 � 3 � 3 + 3 � 3 � 3 = 81.
227 combinations of three cards, e.g. rwbj"j" and rj"jwb, 18 of two, 9 of one, and 1 of zero.
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2.5 The theory 33

Given the equivalences proven in the previous subsection, we de�ne the theory
33 as the conjunction of the three axioms in table 2. Obviously, ` 33 $ 33+

Observe that ` atmost33 ^ atleast33 $ dealings33, as shown before. An initial
state (hexa; d) of the game for 3 persons and 3 cards is described by the con-
junction its atomic description and common knowledge of the theory 33. For
example, Ærwb^C12333 describes the initial state of the game where 1 holds red,
2 holds white and 3 holds blue.

see33 :=
V
a2f1;2;3g

V
c2fr;w;bg(ca ! Kaca)

dealings33 := Ærwb _ Ærbw _ Æwrb _ Æwbr _ Æbrw _ Æbwr
dontknowthat33 :=

V
a6=b2f1;2;3g

V
c2fr;w;bg :Kacb

Table 2: Theory 33

In the previous subsection we have shown that we cannot substantially
weaken the theory (by deleting axioms), because it then would model struc-
tures of di�erent game states. In the next subsection 2.6, we show that we do
not need to strengthen the theory, because in a technical sense hexa already is
its only model. Together, this shows that we have chosen the right model, and
the right axioms, for describing the game state of three players each holding a
card. Before we continue with that subsection, we digress on other versions of
33 that are equivalent to it:

2.5.1 Summing up worlds

Instead of formalizing observed agent properties, we might describe the model
hexa as the (exclusive) disjunction of the modal description of its worlds. Let
Æxyz be the formula describing the valuation corresponding to the dealing of
cards xyz, as before. Let Æ1xyz := x1 ^ :y1 ^ :z1, Æ

2
xyz := :x2 ^ y2 ^ :z2,

Æ3xyz := :x3 ^ :y3 ^ z3. Now de�ne:

�xyz := K1Æ
1
xyz ^K2Æ

2
xyz ^K3Æ

3
xyz ^M1Æxzy ^M2Æzyx ^M3Æyxz

�33 := �rwb _ �rbw _ �wrb _ �wbr _ �brw _ �bwr

In �33 we do not have to make exclusive disjunction explicit, as the disjuncts
exclude each other anyway. It is now easy to prove (see the appendix) that both
�33 ` 33 and 33 ` �33. The axiomatization of hexa as summing up worlds relates
to the `state descriptions' in [vB98] and [BM96]. In subsection 5.1 we will discuss
the general procedure for computing these descriptions from given �nite models,
such as hexa.
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2.6 Any S5 model of theory 33 is bisimilar to hexa

Proposition 1

Let M = hW; f�1;�2;�3g; V i be an S5 3 model of 33, i.e. M j= 33 . Then M
is bisimilar to hexa.

As we also present a more general version of this proposition, namely for
any number of players and cards, we have moved the proof of the underlying
proposition to the appendix. As compared to the proof for the general propo-
sition, the underlying proof is more explicit in what axioms are (only) needed
in what direction of the bisimulation: see33 is essential in the forth part of the
proof, dontknowthat33 is essential in the back part of the proof.

3 Axioms for players holding cards

In the previous section we have axiomatized the initial state of a game for three
players each holding a card. In this section we generalize our results for any
number of players and cards. Let d 2 AC be a dealing of a (nonempty) �nite
set C of cards over a �nite set A of more than two players.

Model of the initial state of a knowledge game

In [vD00c] we presented a pointed S5n model for the information state of a
game where these cards have been dealt and where everybody has (only) looked
in his cards (to every combination of an agent a and a card c corresponds an
atomic proposition ca, for `a holds c'):

Id = hDd; (�a)a2A; V i

where:

Dd = fd 2 AC j 8a 2 A : jd�1(a)j = jd�1(a)jg

8d1; d2 2 Dd : 8a 2 A : d1 �a d2 , d�11 (a) = d�12 (a)

8c 2 C : 8a 2 A : 8d 2 Dd : Vd(ca) = 1, d(c) = a; and else 0

Previous to the presentation of the axiomatization, we introduce two central
concepts: type of a dealing, and description of a dealing.

Type of a dealing

Parameters for the axiomatization are: the number of agents, the number of
cards, and the actual dealing of cards. So in an indirect manner, as a dealing
is a function from cards to agents, only that dealing of cards. We actually need
less than that, namely only the number of cards that each player holds in a

dealing d. We call this the type of d.
The type type(d) of a dealing d is the sequence jd�1(1)j, jd�1(2)j, ..., jd�1(n)j.

Just as for dealings, we use vertical bars as separators. For an example the type
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of the dealing where 1 holds red, 2 holds white and 3 holds blue: type(rwb) =
type(rjwjb) = 1j1j1. Another example: type(abjcdejf j"jgh) = 2j3j1j0j2. Observe
that for any dealing d, Dd = fd0 j type(d0) = type(d)g, in words: Dd is the set
of dealings of type type(d).

Description of a dealing

Let d 2 AC be a dealing of cards, let P be the set of all atomic propositions ca,
with a 2 A and c 2 C. De�ne, for all ca 2 P:

signd(ca) = ca if d(c) = a

signd(ca) = :ca if d(c) 6= a

then:

Æd =
^

ca2P

signd(ca)

The formula Æd is called the description of the dealing of cards d or, in a
model such where worlds are dealings, the atomic description of the world d.
The generalization of the axiom dealings33 will be:

dealings :=
_

d02Dd

Æd0

We further de�ne:

Æad =
^

c2C

signd(ca)

This formula is called the description of the cards of player a. In S5n +
dealings we can derive some equivalences that will appear to be useful in the
continuation:

8d 2 AC : Æd $
^

a2A

Æad

8d 2 AC : Æad $
_

d0�ad

Æd0

3.1 The theory kgames+
d

As in the previous section, we are looking for the S5ECn axiomatization of the
model underlying this initial state (where n = jAj). Also as before, we profess
uncertainty on the adequacy of Id as a model for this state, and therefore
discuss equivalences among and various weaker versions of the axioms, and the
countermodels they have.

Our �rst try at axiomatization is to generalize the axioms in table 1. We
have to keep in mind that the generalization of `player a holding a (one) card' is

13



`player a holding jd�1(a)j cards'. We will extensively comment on the generaliza-
tion of ignorance. Table 3 presents the propositional axiomatization kgames+

d
.

The formula Æd ^ CAkgames+
d
describes the knowledge of the players in the

initial state of a game for d. Unless confusion would otherwise result, instead of
kgames+

d
or kgames+

type(d) we sometimes write kgames+. Similarly, axioms from
dealings are sometimes given an index d. Further we will write, unless confusion
results: ]a := jd�1(a)j, the number of cards of agent a 2 A in dealing d. In
axiom dontknowthat of table 3 we write ]:ab for jCj � ]a � ]b (`the number of
cards not held by a or b').

players see their own cards

see :=
V
a2A

V
c2C(ca ! Kaca)

players only see their own cards

dontsee :=
V
a2A

V
c2C(:ca ! Ka:ca)

all cards are di�erent

(there is at most one card of each colour)
atmost :=

V
a6=b2A

V
c2C :(ca ^ cb)

each player has (at least) a known number of cards

atleast :=
V
a2A

W
c1 6=::: 6=c]a2C

V]a

i=1 c
i
a

players don't know the cards of others

dontknowthat :=
V
a6=b2A

V
c1 6=::: 6=c]:ab2CMa(

V]:ab

i=1 :cib)

players can imagine others to hold other cards

dontknownot :=
V
a6=b2A

V
c1 6=::: 6=c]b2C(

V]b

i=1 :c
i
a !Ma(

V]b

i=1 c
i
b))

Table 3: The theory kgames+
d
for dealing d 2 AC

3.2 Id is a model of kgames+
d

Fact 2

Id is a model of kgamesd.

The proof is along the same lines as that of fact 1 on page 5.

3.3 Dependencies among axioms

As in the previous section, we establish axiomatic dependencies informally, with
natural deduction style proofs. Further, to illustrate nonequivalence of axioms,

14



we sometimes `go semantical' and give countermodels.

3.3.1 See and dontsee

The following six axioms can all be seen as generalizations of see33 and dontsee33

respectively:

see :=
V
a2A

V
c2C(ca ! Kaca)

dontsee :=
V
a2A

V
c2C(:ca ! Ka:ca)

seeall :=
V
a2A

V
c1 6=::: 6=c]a2C(

V]a

i=1 c
i
a ! Ka

V]a

i=1 c
i
a)

dontseeall :=
V
a2A

V
c1 6=::: 6=c]:a2C(

V]:a

i=1 :c
i
a ! Ka

V]:a

i=1 :c
i
a)

seedeal :=
V
a2A

V
d2Dd

(Æad ! KaÆ
a
d)

dontseedeal :=
V
a2A

V
d2Dd

(:Æad ! Ka:Æ
a
d)

Axioms see and dontsee seem to be the most straightforward generalizations:
for every agent and for every single card, if a player holds it he knows that, and
if he doesn't hold it, he knows that too. They are therefore listed in kgames+.
Instead, seeall and dontseeall express that, if a player holds a given number of
cards, he knows them all, and that if he holds all others not, he knows that too.
Axiom seedeal (for parameter dealing d) expresses that, if a player holds a given
number of cards and all others not, he knows that, or in other words: he knows
his local state. Axiom dontseedeal expresses that for all local states he doesn't
have, he knows that too.

Somewhat surprisingly, all six axioms are equivalent in kgames+. The proofs
are simple and use the axiom dealings. Although see appears to be the most
straightforward of all six, for other reasons we will retain seedeal instead.

3.3.2 Atmost and atleast

Similar to atleast, the following expresses that each player holds a �xed number
of cards:

exactly :=
^

a2A

5c1 6=::: 6=c]a2C

]a^

i=1

cia

It holds that atmost; atleast ` exactly. Informal proof:

Suppose not exactly. Then for some player a both
V]a

i=1 c
i
a and

V]a

j=1 c
�j
a

where 9i � ]a : 8j � ]a : ci 6= c�j (we may assume that ]a > 0). Then a

holds more than ]a cards. That implies that some other player b holds less
than ]b cards, using the axiom atmost that all cards are di�erent. Therefore,
for no selection of ]b cards does

V]b

i=1 c
i
b hold. Therefore atleast doesn't hold.

Contradiction. Therefore exactly. �

Just as for three players and three cards, we can derive atleast; atmost `

dealings and vice versa, similarly to the proof in the previous section. We will
prefer dealings over atmost and atleast.
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3.3.3 Ignorance: dontknowthat, dontknownot, and dontknow

The form of ignorance in table 3 is the outcome of a process of gradual gener-
alization of dontknowthat33 and dontknownot33. We will repeat this process, in
order to convince the reader of the inevitability of this outcome. Apart from
dontknowthat and dontknownot, there is a third way to express ignorance as
well, more related to the parameter dealing d: this is the axiom dontknow.
Fortunately, all three versions of ignorance are equivalent.

Dontknowthat

In 33+ we only had to take into account one card per player. How to generalize
to more than one card? Starting from our original `observations' that for all
di�erent agents a and b and for all cards c we demand :Kacb, we might, instead,
now claim that a doesn't know any combination of b's cards: for any c1; :::; c]b:
:Ka

V]b

i=1 c
i
b. However, it is obvious that a is not only ignorant about that

combination of cards, but also about any single card of the combination, which
is a stronger claim, as e.g.:

:Kac
1
b ` :Ka

]b^

i=1

cib:

Unfortunately, unlike in the game for three players and three cards, the
axiom that :Kacb for all cards c and di�erent players a and b, isn't strong
enough. A counterexample is the game for three players 1; 2; 3 each holding two
cards, with dealing kljmnjop, where 2 has told the others that he holds one of
m and n. For any single card, it still holds that a player doesn't know another
player to have that card. But players 1 and 3 now clearly are less ignorant than
they were initially. So we have to demand the players to be less informed than
:Kacb, i.e. :Ka(c

1
b _ ::: _ c

r
b), for some r > 1. This is a stronger claim, as, e.g.:

:Ka(

r_

i=1

cib) ` :Kac
1
b

What is r, or, in other words: how large is our ignorance? We argue that,
for a given dealing d, r = jCj � jd�1(a)j � jd�1(b)j. We start to illustrate that
with an example:

Again, we look at the game for three players and six cards. Player 1 doesn't
know of any two cards that player 2 has one of those, but of some combinations
of three cards he does: e.g. K1(m2_n2_o2). Why? Suppose :K1(m2_n2_o2),
then M1(:m2 ^ :n2 ^ :o2), in other words: it would be conceivable for player
1 that player 2 didn't have all those cards. If that were true, and given that
player 1 holds k and l himself, there would be only one card left for 2 to hold: p.
But then player 2 would hold only 1 card. This contradicts atleast (or dealings).

The extent of player a's ignorance therefore is, that he doesn't know that
another player, b, has one from any of jCj� jd�1(a)j� jd�1(b)j cards (as before,
we write ]:ab for jCj � jd�1(a)j � jd�1(b)j):
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^

a6=b2A

^

c1 6=::: 6=c]:ab2C

:Ka

]:ab_

i=1

cib

This, of course, is equivalent to:

dontknowthat =
^

a6=b2A

^

c1 6=::: 6=c]:ab2C

Ma

]:ab^

i=1

:cib

Just as for dontknowthat33, we might have considered weakening the axiom
dontknowthat with the precondition `if player 1 doesn't hold these cards'. This
is dontknowother:

dontknowother =
^

a6=b2A

^

c1 6=::: 6=c]:ab2C

(

]:ab^

i=1

:cia !Ma

]:ab^

i=1

:cib)

As previously, in the theory kgames+
d

the version without precondition is
provably equivalent to the version with precondition:

kgames+
d
` dontknowother: Trivial.

kgames+
d
� dontknowthat+ dontknowother ` dontknowthat: Let a 6= b 2 A,

and c1 6= ::: 6= c]:ab 2 C. If
V]:ab

i=1 :cia then from that and dontknowother

follows Ma

V]:ab

i=1 :cib. Otherwise, :
V]:ab

i=1 :cia. That is equivalent to
W]:ab

i=1 cia,
i.e. a holds some r, at most ]a, of the cards ci. For all of those, there are
(di�erent) cards in jCj n fc1; :::; c]:abg that a doesn't hold. Note that this is
possible, because jCj � ]:ab = ]a + ]b: remove ]b cards from that, and there
still remain ]a to choose from. Once again, we now have a conjunction of
]:ab cards ca1; :::; ca]:ab that a doesn't hold, and from that and dontknowother

follows Ma

V]:ab

i=1 :caib (i). Now for the r cards that a holds from c1; :::; c]:ab,
we have that a knows that b doesn't hold them (ii). Combining (i) with (ii), we

get that Ma

V]:ab

i=1 :cib. This proves dontknowthat. �

Dontknownot

A similar process of gradual generalization leads from dontknownot33 to dont-

knownot.
By itself, :ca ! Macb for all cards c and di�erent players a and b, is not

strong enough. We cannot derive that a can imagine b to hold a combination
of two cards: just as in general we cannot derive Ma(' ^  ) from Ma' and
Ma . E.g. in the example above for three players each holding two cards, 1 can
imagine an atom m2 to be both false { M1:m2 { and true { M1m2, but not at
the same time { :M1(m2 ^ :m2).
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On the other hand, in the same example we want, e.g., that M1(m2 ^ n2)
holds. So, similarly to the generalization leading to dontknowthat, we have to
�nd the largest conjunction still conceivable. Obviously, we cannot imagine
another player to hold more cards than the number we know him to hold. This
number indeed is the required maximum:

dontknownot =
^

a6=b2A

^

c1 6=::: 6=c]b2C

(

]b^

i=1

:cia !Ma

]b^

i=1

cib)

We are about to show that dontknownot is equivalent to dontknowthat, but
before that we introduce a third way to describe ignorance: dontknow.

Dontknow

The axioms dontknownot and dontknowthat are unsatisfactory, because they are
too much in terms relations between players. In the special case of three players
and three cards, dontknownot33 and dontknowthat33 were more satisfactory.
Because the players only had one card each, it appeared that the formulation of
ignorance was for arbitrary (single) cards, and not strictly related to the number
of cards of player.

Instead of referring to the amounts of cards of two di�erent players, we
might as well refer more directly to the entire dealing of cards. This is the
case in dontknow. The following explanation might help to make it appear
plausible: Prior to the state of the game where the cards have been dealt and
where players have looked into their cards, is the state the cards have been dealt
but the players haven't seen their own cards yet. In that stage, all dealings in
Dd are possible for all players. (See also section 4.) Looking up cards then
corresponds to revising that maximum ignorance

V
a2A

V
d2Dd

MaÆd0 . This can
be done by conditionalizing on it. The condition is that, after they have looked
up their cards, players only consider dealings that correspond with their own
cards. This is the axiom dontknow:

dontknow :=
^

a2A

^

d2Dd

(Æad $MaÆd)

Fortunately, all three forms of ignorance are equivalent. This is surprising,
because dontknownot and dontknowthat appear to describe complementary kinds
of ignorance.

dontknownot ` dontknowthat:

Proof: Suppose not. Then there are players a; b and cards c1; :::; c]:ab, where
]:ab = jCj � ]a� ]b, such that Ka

W]:ab

i=1 cib.
Regardless of whether a holds some of these cards c1; :::; c]:ab himself, be-

cause r = jCj � ]a � ]b there must be at least ]b cards other than those,
that a doesn't hold, suppose: ca1; :::; ca]b. In other words, we have that:
:ca1a ^ ::: ^ :ca

]b
a . Applying dontknownot we get Ma

V]b

i=1 ca
i
b.
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FormulaMa

V]b

i=1 ca
i
b means that a considers b to hold the ]b cards ca1; :::; ca]b.

Formula Ka

Wm

i=1 c
i
b means that a knows that b holds at least one more card,

namely from the (other!) cards c1; :::; cm. Therefore, a considers b to hold more
than ]b cards. On the other hand, axioms atmost and atleast (or, equivalently,
dealings) express that b holds exactly ]b cards. Contradiction. �

dontknow ` dontknownot:

Proof: Suppose player a doesn't have any of the cards c1; :::; c]b:
V]b

i=1 :c
i
a.

Instead, a has cards c]b+1; :::; c]b+]a. Let d� be a dealing of cards where a has
those cards and such that b has all the cards c1; :::; c]b, thus

V]b

i=1 c
i
b. Formula

c]b+1a ^ ::: ^ c]b+]aa is the subformula of Æad� consisting of all positive literals (ie.,
atoms). Therefore, from c]b+1a ^:::^c]b+]aa and dealings follows Æad� . From that and

dontknow followsMaÆd� . Because
V]b

i=1 c
i
b is a subformula of the conjunction Æd� ,

and because in general �'; ' !  ` � , it follows that Ma

V]b

i=1 c
i
b. ThereforeV]b

i=1 :c
i
a ! Ma

V]b

i=1 c
i
b. As the cards c

1; :::; c]b were arbitrary, we have shown
that dontknownot. �

dontknowthat ` dontknow:

Proof: Let a 2 A, d 2 Dd. Assume Æad . From that and see follows KaÆ
a
d .

Suppose :MaÆd. We have that :MaÆd $ Ka:Æd $ Ka(:Æ
1
d _ ::: _ :Æ

n
d ). We

show that, for an arbitrary agent b, :Æbd leads to a contradiction, so that also
Ka(:Æ

1
d _ ::: _ :Æ

n
d ) leads to a contradiction.

Suppose :Æbd, i.e., for some ordering of cards: :c1b_:c
2
b_:::_:c

]b
b _c

]b+1
b _c

jCj

b .
We may assume that a 6= b, because otherwise we have a direct contradiction.
Agent a now knows a disjunction of jCj � ]a� ]b cards: a has ]a cards himself.
These cards b doesn't have. Also these cards are all di�erent from the ]b cards
c1; c2; :::; c]b, that b also doesn't have. Therefore b must have one of the jCj �
]a � ]b remaining cards, and a knows that. This contradicts dontknowthat.
Therefore Æad !MaÆd.

We prove MaÆd ! Æad by contraposition. Assume :Æad , i.e. :
W
d0�ad

Æd0 .
From that, with dealings, follows

W
d0 6�ad

Æd0 . Suppose that Æad00 (and keep in
mind that :(Æad $ Æad00), because d

00 6�a d). From that and see follows, again,
KaÆ

a
d00 , and similarly to the previous argument, and because d00 6�a d, we derive

Ka:Æ
a
d . This is equivalent to :MaÆ

a
d . The last implies :MaÆd (because of

contraposition of the general scheme �(' ^  )! �'). �

We have now shown that dontknow ` dontknownot, dontknownot ` dont-

knowthat, and dontknowthat ` dontknow. Therefore, all three versions of igno-
rance are equivalent in the theory kgames+:3

3For better understanding we give an informal argument that from dontknowthat follows

dontknownot, even though we don't need it, as we have proven it indirectly: Assume dont-

knowthat. Suppose dontknownot doesn't hold. I.e. suppose that :c1a ^ ::::c
]b
1
for some players
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dontknow dontknowthat

dontknownot

3.3.4 Boundary case in kgames
+
d

If there are only two players (1 and 2), both players have full knowledge of the
dealing of cards. The axiom dontknowthat `disappears', as jCj � ]1 � ]2 = 0.
In some of the proofs (namely, those about ignorance) we have essentially used
that there are more than two players. Dontknownot still holds, but now 1 cannot
only imagine 2 to have some cards he does not have, but knows it, because those
are all the other cards.

If there are more than two players, it still can be the case that the cards are
dealt over only two of those players, i.e. 9a; b 2 A : jd�1(a)j + jd�1(b)j = jCj.
Suppose that is the case for players 1 and 2. Now, dontknowthat disappears for
just the combination of 1 and 2. Although 1 and 2 still have full knowledge of
the dealing of cards, the other players haven't, and 1 and 2 know that.

3.4 The theory kgames
d

Given all the dependencies between axioms, that we have proven in the previous
subsection, we are now left with the choice how to simplify the theory kgames+

d
.

The axioms seedeal, dealings and dontknow suÆce. Given that we prove in
S5n, so that for all a and d: KaÆ

a
d ! Æad , we further propose to combine

seedeal =
V
a2A

V
d2Dd

(Æad ! KaÆ
a
d) and dontknow =

V
a2A

V
d2Dd

(Æad $MaÆd)
into one axiom seedontknow. This appears to be the most elegant formulation of
the theory. We therefore present the following as the theory kgames

d
, a shorter

but equivalent version of kgames+
d
:

dealings :=
W
d2Dd

Æd
seedontknow :=

V
a2A

V
d2Dd

(KaÆ
a
d $MaÆd)

Table 4: The theory kgamesd, for dealing d 2 AC

a 6= b and cards c1; :::; c]b, and that :Ma(c
1

b ^ ::: ^ c
]b
b
). The last is equivalent to: a knowing

that b doesn't hold at least one of these cards. As neither a himself holds one of those cards,

there must be a third player holding one of them. Now simplify the game by throwing all

other players on one heap, so to speak: give all other cards in the hands of an imaginary player

b0. Then a knows that b0 holds one of c1; :::; c]b: Ka(c
1

b0
_ :::_ c

]b

b0
). As jCj� ]a� ]b0 = ]b, this

contradicts dontknowthat. Therefore dontknownot.
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Just as for the case of three persons and three cards, we have shown that we
cannot substantially weaken the theory, by deleting axioms or weakening axioms.
We now show that we also do not need to strengthen the theory, because Id is
its only model. Together, this shows that we have chosen the right model, and
the right axioms, for describing the game state where a �nite amount of cards
are dealt over a �nite amount of players.

3.5 All models of kgames
d
are bisimilar to Id

Proposition 2

Let M be an S5n model of theory kgames
d
. Then M is bisimilar to Id.

Proof Write M = hWM ; (�M
a )a2A; V

M i. We have that M j= kgames
d
.

Write Id = hDd; (�a)a2A; V i, for the intended initial model Id. Observe that,
because M j= dealings, each world w 2 M has a valuation Vw = Vd for some
d 2 Dd. De�ne relation R � (M � Id) as follows:

8w 2M : 8d 2 Dd : R(w; d), Vw = Vd

We prove that R is a bisimulation between M and Id.

Forth:

Let w;w0 2M , let d 2 Dd. Suppose that R(w; d) and that, for an arbitrary
a 2 A: w �a w

0. We �nd an R-image of w0, in Dd, as follows:
Observe that Id; d j= Æd. As Vw = Vd, also M;w j= Æd. Therefore M;w j=

MaÆd. From that and M;w j= seedontknow follows M;w j= KaÆ
a
d . From that

and w �M
a w0 follows M;w0 j= Æad , i.e.: M;w0 j=

W
d0�ad

Æd0 . Therefore there is
a d0 �a d such that M;w0 j= Æd0 . That d0 is the required R-image of w0: note
that d �a d

0, and that V M
w0 = Vd0 , because also, obviously, Id; d

0 j= Æd0 .

Back:

Let d; d0 2 Id, let w 2 M . Suppose that R(w; d) and that, for an arbitrary
a 2 A, d �a d

0. We �nd an R-original of d0, in M , as follows:

M;w j= Æd
) re
exivity
M;w j=MaÆd
, from seedontknow

M;w j= KaÆ
a
d

,

8w00 �a w :M;w00 j= Æad
,

8w00 �a w :M;w00 j=
W
d00�ad

Æd00

,

8w00 �a w : 9d00 �a d :M;w00 j= Æd00
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, as d �a d
0

8w00 �a w : 9d00 �a d
0 :M;w00 j= Æd00

,

8w00 �a w :M;w00 j=
W
d00�ad0

Æd00

,

8w00 �a w :M;w00 j= Æad00
,

M;w j= KaÆ
a
d0

, from seedontknow

M;w j=MaÆd0

)

9w0 �a w :M;w0 j= Æd0

Any w0 satisfying the last statement is an R-original of d0, as M;w0 j= Æd
0

says that Vw0 = Vd0 .

Note that in the forth part of the proof, we have only essentially used that, for
any agent a and dealing d0, MaÆd0 ! KaÆ

a
d0 , whereas in the back part of the

proof, we have also essentially used the reverse: KaÆ
a
d0 !MaÆd0 . Further, note

that, in the proof, we only use re
exivity of models; the proposition therefore
holds for all Tn models. �

Instead of this direct proof, there is also an indirect proof. The indirect proof
uses that the model Id can be constructed by executing an action in a simpler
model for card games. In the next section, 4, we now present this simpler model.

4 Axioms for players not seeing their cards

We have described and axiomatized the state of the game where the cards have
been dealt and where players have looked into their cards. We called it the
initial state of a knowledge game. This game state is preceded by a state where
the cards have been dealt but where the players haven't looked into their cards
yet. Assume that everybody sees how many cards lie upside down in front of
each player. Therefore players know the type of the actual dealing. They know
how many cards they have, and how many cards everybody else, but they do
not what these cards are. Still, it is enough for all players to know (compute)
the set of relevant dealings given actual dealing d, as Dd = Dtype(d).

We call the model underlying this state the pre-initial model preId. In the
state (preId;d), all dealings in Dd are possible for all players, i.e. each player's
access on the set of relevant dealings is the universal relation:

preId = hDd; (�a)a2A; V i

where

8a 2 A : 8d; d0 2 Dd : d �a d
0
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and, as before:

8d 2 Dd : 8ca 2 P : Vd(ca) = 1 i� d(c) = a:

We continue with axiomatizing this model preId.

4.1 The theory prekgames
d

Let d be a dealing of cards. The theory prekgamesd is the conjunction of the
axioms in table 5.

dealings :=
W
d2Dd

Æd
dontknowany :=

V
a2A

V
d2Dd

MaÆd

Table 5: The theory prekgamesd, for parameter dealing d

It will be obvious that preId is a model of theory prekgames for parameter
dealing d. We now proceed as follows: �rst we prove that the theory describes
this model, or, in other words, that all other models of prekgames are bisimilar
to preId. Then we show that the model Id, describing the initial state of
a knowledge game, can be constructed from preId by executing a knowledge
action type (as de�ned in [vD00a]). We can then prove the uniqueness of Id
without having to worry about its axiomatization! This is also convenient,
because the bisimilarity proof to establish the uniqueness of Id is more complex
than the one below, to establish the uniqueness of the pre-initial state preId.

4.2 All models of prekgamesd are bisimilar to preId

Proposition 3

Let d 2 AC be a dealing of cards. LetM be a model of prekgames for parameter
d. Then M is bisimilar to preId.

Proof Let M be a model of prekgames for parameter d. Write M =
hWM ; (�M

a )a2A; V
M i. We remind the reader that preId = hDd; (�a)a2A; V i.

First observe that, becauseM j= dealings, each world w 2M has a valuation
Vw = Vd for some d 2 Dd.

De�ne relation R � (M � preId) as follows:

8w 2M : 8d 2 Dd : R(w; d), Vw = Vd

We prove that R is a bisimulation between M and preId.

Forth: Let w;w0 2 M . Let d 2 Dd. Suppose that R(w; d) and that, for an
arbitrary agent a 2 A, w �M

a w0. From our observation on valuations in M , it
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follows that there is a dealing d0 2 Dd such that Vw0 = Vd0 . This dealing d
0 is

our required R-image in Dd: because �a is universal on Dd it trivially holds
that d �a d

0, and because Vw0 = Vd0 we have that R(w
0; d0).

Back: Let d; d0 2 Dd. Let w 2 M . Suppose that R(w; d) and that, for an
arbitrary agent a 2 A, d �a d

0.
Suppose there is no w0 2 M such that Vw0 = Vd0 . In other words: there is

no w0 2M such that M;w0 j= Æd0 . Then, in particular there is no w0 2M such
that w �M

a w0 andM;w0 j= Æd0 , thusM;w 6j=MaÆd0 , thusM;w 6j= dontknowany.
Contradiction.

Therefore there is such a w0 2 M , and, as we have shown, there is even a
w0 that is �M

a -related to w. This world w0 is our required R-original in M : we
have that w �M

a w0, and because Vw0 = Vd0 we have that R(w
0; d0). �

4.3 Looking up cards

In [vD00a], see also [vD99], we presented the language DKL of dynamic knowl-
edge logic, containing dynamic modal operators [�] for actions � 2 KA and
action types � 2 KT, and its interpretation. The action of all players looking
up (turning) their cards, in a state where those cards have been dealt, is a KT

action type. We call this action type lookupA. KT actions and KA action types
have a precise formal interpretation [[�]], that is a relation between S5 models.
If the relation is functional, we can use [[�]] as a post�x unary operator. We now
have that:

Fact 3

preId[[lookupA]] = Id

In other words: the model Id is the unique model resulting from executing
an action of type lookupA in the model preId. Using fact 3, we have an `indirect'
proof of proposition 2 that Id is the unique model of kgames:

Indirect proof of proposition 2: Let M be a model of kgames. For
every agent a, add access for a between all A-related worlds in M that are
not a-related. The resulting model M 0 is a model of prekgames. It holds that
M 0[[lookupA]] = M . Because M 0 is bisimilar to preId, M

0[[lookup]] is bisimilar
to preId[[lookup]], i.e., using fact 3, M is bisimilar to Id. �

In the proof, we used that bisimilarity is invariant under execution of action
types with a functional interpretation. For details, see [vD00a]. For the de�ni-
tion of lookupA and the proof that its interpretation is functional, see [vD00b].
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5 Further observations

5.1 Modal �xed points

Even though we considered both models and axiomatizations for card game
states, we ended up in axiomatizing two di�erent S5n models, and their states.
For modal models and states in general, their description (or, as it is called,
`characteristic formula') in an in�nitary (propositional) modal logic can be com-
puted by a �xed point construction. See [vB98], relating to [BM96]. In this
subsection we show that our speci�c results are in accordance with this general
construction.

We apply the construction in [vB98], chapter 5 (Modal Fixed Points and
Bisimulation), to the initial model Id of a knowledge game for dealing d. A
given model M can be described with the following �xed-point construction:

E(M) =
^

w2M

E(M;w) =
^

w2M

(pw ! (Æw ^
^

Rwv

�pw ^�
_

Rwv

pw))

Here Æw is the atomic description of world w, as usual, and all pw are fresh
atoms.

Beyond that, if M is �nite, we can replace the atomic variables pw by a
unique modal de�nition �w of w in M . Indeed, this is the case for knowledge
game states. Initial (and pre-initial) states (Id; d) of knowledge games, such as
(hexa; rwb), are �nite, and all worlds even di�er in their atomic description Æd.
So Æd already serves as a unique modal de�nition �d of worlds d 2 Id. We can
then describe a solution for the equation above by replacing all pw by Æw (i.e. pd
by Æd). Also switching to a multiagent epistemic language we get the equation:

E(Id)[pd := Æd] = EÆ(Id) =
^

d2Id

^

a2A

(Æd ! (Æd ^ (
^

d�ad0

MaÆd0) ^Ka

_

d�ad0

Æd0))

As Æad $
W
d�ad0

Æd0 , and as Æd in the consequent is super
uous, we get:

EÆ(Id) =
^

d2Id

^

a2A

(Æd ! ((
^

d�ad0

MaÆd0) ^KaÆ
a
d))

For Id = hexa and w = rwb we get the following (in the consequent, we also
delete formulas expressing re
exivity):

EÆ(hexa; rwb) = Ærwb ! (M1Ærbw ^M2Æbwr ^M3Æwrb ^K1r1 ^K2w2 ^K3b3)

What is the relation between kgamesd and EÆ(Id)? Because in EÆ(Id) we
replaced atomic (fresh) variables pd by atomic descriptions Æd, we have to as-
sume explicitly that we `live' in one of these worlds/dealings, i.e. that one of
these descriptions holds. Di�erently said: dealings =

W
d2Dd

Æd, given parame-
ter dealing d, is an axiom. It holds that kgamesd = dealings + seedontknow is
logically equivalent to dealings+EÆ(Id).
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Proposition 4

kgames
d
$ dealings+ EÆ(Id)

It suÆces to prove that in S5n plus dealings, seedontknow is equivalent to
EÆ(Id):

V
d2Id

V
a2A(Æd ! (

V
d�ad0

MaÆd0) ^KaÆ
a
d) ,

V
d2Id

V
a2A(KaÆ

a
d $MaÆd)

(i) (ii)

For the proof, see the appendix.

Models versus states

We close this subsection with applying another observation from [vB98], on the
relation between model and state descriptions. Given the �nite model descrip-
tion E�(M) = E(M)[pw := �w], where �w is a unique modal description of
world w, a state from M is described by the formula

�w ^�
�E�(M):

Given that kgames
d
is the description of the model Id, we can therefore

describe any of its states (Id; d) by

Æd ^ CA(kgamesd):

We even can replace the common knowledge operator by the iteration Emax

A

(with E the general knowledge operator, and not the `description operator' of a
model), where max is the maximin length of a path between two dealings. (Ex-
cept for some examples, we do not know the actual value of max; we conjecture
that max � jAj.)

An example: the state (hexa; rwb) can be described by Ærwb ^ C12333. As
any world of hexa can be reached by a f1; 2; 3g-path (

S
i2f1;2;3g �i-path)of at

most length 2, we can replace this by Ærwb ^ E123E12333.

Similarly, we can compute that prekgamesd = dealings + dontknowany is
equivalent to dealings+EÆ(preId). Other than kgames, where we had to prove
an equivalence, computing EÆ(preId) directly results in dontknowany.

5.2 Frame characteristics

We have axiomatized models for knowledge games. One might wonder whether
the frames underlying these models cannot be characterized directly. Frames
for knowledge games for n players can be seen as distributed systems for n
processors, `with holes'. In [Lom99, LvdMR00] a distributed system for n pro-
cessors that only know their own states is called an n-dimensional hypercube.
Hypercubes have the property of being weakly-directed: for any world w, and
for any n (possibly di�erent) worlds that the n agents can access from w, there
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is a world w0 accessible from those n worlds for those n agents (possibly in a
di�erent order). They are characterized by a multiagent modal axiomWD. See
also [vD00c].

Figure 4, below, illustrates how hexa relates to a three-dimensional hyper-
cube, i.e., a cube. On the left, the model (`hypercube') of the distributed system
for three processors 1, 2 and 3 each having three possible local state values r,
w and b. On the right, hexa, the model of an initial state of a game for three
players 1, 2, and 3 and three cards r, w and b. In the hypercube on the left, we
have highlighted the worlds and the access that we �nd in hexa, on the right.

brb brw brr

wrb

rrb rrr

bwr

rwb

bbb bbr

wbr

rbb rbw rbr

brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2
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Figure 4: On the left, a three-dimensional hypercube. On the right, hexa.

5.3 Belief revision

In [vD00a] we de�ne a multiagent modal language with dynamic operators for
actions (`knowledge changing operations'). These actions are interpreted as a
relation between S5 models and S5 states. Instead, here we have axiomatized
two di�erent models, Id and preId. We have seen that preId can be trans-
formed into Id by a lookup action type. (Similarly game states (preId; d

0) can
be transformed into game states (Id; d

0) by a lookup action.) We now have a
relation between the axiomatizations of these models:

j= prekgames! [lookup]kgames

, by de�nition
8M :M j= prekgames! [lookup]kgames

, as only preId is a model of prekgames

preId j= [lookup]kgames

, by de�nition of interpretation in DKL

preId[[lookup]] j= kgames

, by fact 3
Id j= kgames

Complementary to our semantic approach, that relates theories by the unique
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models that they describe, one might consider to relate these theories in a more
direct way by a process of belief revision. Intuitively, we have already done that.
An example: In preId, axiom

dontknowany =
^

a2A

^

d02Dd

MaÆd0

describes that all dealings are relevant. In the transition from preId to Id,
where all players look up their cards, we have to weaken this axiom: no longer
all dealings are conceivable to all players. An obvious way to weaken it, is to
conditionalize the MaÆd0 : after `lookup', a dealing is only conceivable if your
known private state corresponds to it, and vice versa:

seedontknow =
^

a2A

^

d02Dd

(KaÆ
a
d0 $MaÆd0):

Can these `intuitions' be made more precise? We imagine axiom seedontknow

being computed from something like dontknowany[lookupA], where '[�] stands
for: `the revision of axiom ' as a consequence of the execution of action �'. The
process of revising prekgames would then be:

prekgamesd[lookupA] = (dealings ^ dontknowany)[lookupA]
= dealings[lookupA] ^ dontknowany[lookupA]
= dealings ^ seedontknow

This topic of `direct' theory revision is also discussed in [vB00]. A procedure
is given for the special case of actions that are public announcements. In [vB00],
the process is not called `theory revision', as we do, but syntactic relativization

of a formula.

5.3.1 Axiomatizing other game states

In order to axiomatize other game states, and in general other states resulting
from action execution, we obviously need a way of systematic belief revision.

An example: in a knowledge game state we can execute a show action (see
[vD99]). We have to revise once more our ignorance, and only consider dealings
that are consistent with both our private state and with that what we now
know from the private state of others (the card that we have seen). An extra
complication is that this involves subgroup common knowledge.

Just as for preId and Id, any game state resulting from executing a game
action in Id will still satisfy dealings and see. Only ignorance has to be revised.
Further, any game state will be �nite, as it is constructed by a KT action
type from the �nite model Id, and it is also unique, because Id is unique and
bisimilarity is invariant under action execution.

We have not pursued this course any further. The area of knowledge games
seems to be a fruitful playing �eld for interactions between belief revision and
model updating. Because our action semantics is clear and simple, we have an
easily check proposed beliefs revisions.
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6 Conclusion

We have axiomatized two di�erent game states for card games. We started with
the state where some cards are dealt over players and where players hold the
cards in their hands, i.e. where they can see their own cards. For the state
of three players and three cards, we showed that the preferred model hexa is
described by the theory 33. For the state of any �nite number of players and
cards, in other words for any dealing d of cards over players, we showed that
the preferred model Id is described by the theory kgamesd. In particular we
have described various equivalent versions of the axiom see that expresses that
a player knows the cards that he holds, and we have described three di�erent
axioms that express ignorance, that are all equivalent to each other. Prior
to the state where players have picked up their cards from the table, is the
state where cards have been dealt over players but where they haven't picked
them up yet. We have proven that its preferred model preId is described by
the axiomatization prekgamesd. We have shown that our results correspond to
those of �xed point computations of the description of modal models.

Appendix

Proof from section 2.2

Proof of fact 1: hexa j= 33+. From all axioms we prove a typical case. In the
proofs, read hexa; w j= ' for w j= '.

hexa j= see33:

rwb j= r1 and rbw j= r1
, as [rwb]�1

= frwb; rbwg

rwb j= K1r1
) as rwb j= r1
rwb j= r1 ! K1r1

hexa j= dontsee33:

rwb 6j= w1 and rbw 6j= w1
,

rwb j= :w1 and rbw j= :w1
, as [rwb]�1

= frwb; rbwg

rwb j= K1:w1
) as rwb j= :w1
rwb j= :w1 ! K1:w1

hexa j= atmost33:
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rwb j= r1 and rwb 6j= r2
)

rwb 6j= r1 ^ r2
,

rwb j= :(r1 ^ r2)

hexa j= atleast33:

rwb j= r1
)

rwb j= r1 _ w1 _ b1

hexa j= dontknowthat33:

bwr 6j= r1
)

bwr 6j= r1 or rwb 6j= r1
, as rwb j= K2r1 , (rwb j= r1 and bwr j= r1)
rwb 6j= K2r1
,

rwb j= :K2r1

hexa j= dontknownot33:

rwb j= r1
) as all access is re
exive
rwb j=M2r1
) as rwb j= :r2
rwb j= :r2 !M2r1

�

Proofs from section 2.3

33+ � see33 ` see33:

We prove the case r1 ! K1r1.
Suppose r1.
From dealings33 follows r1 ! :w1. From r1 and r1 ! :w1 follows :w1.

From :w1 and dontsee33 follows K1:w1.
From dealings33 follows r1 ! :b1. From r1 and r1 ! :b1 follows :b1. From

:b1 and dontsee33 follows K1:b1.
From K1:w1 and K1:b1 follows K1(:w1 ^ :b1). From atleast33 follows

r1 _ w1 _ b1. From :w1 ^ :b1 and r1 _ w1 _ b1 follows r1. Therefore from
K1(:w1 ^ :b1) and K1(r1 _ w1 _ b1) (as atleast33 is commonly known) follows
K1r1.

Therefore r1 ! K1r1. �
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atmost33; atleast33 ` function33:

We show by informal proof that atmost33; atleast33 ` function33, for the case
r1Or2Or3. First we show that there is at most one player holding the red card,
then we show that there is at least one player holding the red card.

Suppose more than one player holds the red card, e.g. r1 ^ r2. This con-
tradicts :(r1 ^ r2), which is a conjunct from atmost33. Therefore at most one
player holds the red card.

Suppose nobody holds the red card, i.e. :r1 ^ :r2 ^ :r3. From r1 _ w1 _ b1
and :r1 follows w1 _ b1. From r2 _ w2 _ b2 and :r2 follows w2 _ b2. From
r3 _ w3 _ b3 and :r3 follows w3 _ b3.

Either w1 or :w1.
Suppose :w1. From :w1 and w1 _ b1 follows b1. From b1 and :(b1 ^ b2)

follows :b2. From :b2 and w2 _ b2 follows w2. From b1 and :(b1 ^ b3) follows
:b3. From :b3 and w3 _ b3 follows w3. From w2, w3 and :(w2 ^ w3) follows a
contradiction.

Suppose w1. From w1 and :(w1 ^ w2) follows :w2. From :w2 and w2 _ b2
follows b2. From b2 and :(b2 ^ b3) follows :b3. From :b3 and w3 _ b3 follows
w3. From w1, w3 and :(w1 ^ w3) follows a contradiction.

Therefore the assumption that nobody holds the red card leads to a contra-
diction. Therefore at least one player holds the red card.

Therefore exactly one player holds the red card: r1Or2Or3. �

atmost33; atleast33 ` exactly33:

Suppose :(r1Ow1Ob1). Then either player 1 doesn't hold any cards, or player
1 holds more than 1 card. Player 1 not holding any cards is a contradiction with
atleast33. Therefore suppose that he holds more than 1: e.g. that r1^w1. From
r1 and :(r1 ^ r2) follows :r2. From w1 and :(w1 ^w2) follows :w2. From :r2
and :w2 and r2 _w2 _ b2 follows b2. From r1 and :(r1 ^ r3) follows :r3. From
w1 and :(w1 ^ w3) follows :w3. From :r3 and :w3 and r3 _ w3 _ b3 follows
b3. From b2 and b3 and :(b2 ^ b3) follows a contradiction. Therefore r1Ow1Ob1.
�

dealings33 ` atmost33 ^ atleast33.

That dealings33 ` atleast33 is obvious, e.g. Ærwb ` r1 ` r1 _w1 _ b1, similarly
for all other cases 'd, etc. That dealings33 ` atmost33 is also obvious, e.g.
'rwb ` r1^:r2^:r3 ` :(r1^r2). Similarly for all other cases Æd, etc. �

atmost33; atleast33 ` dealings33:

Also atleast33; atmost33 ` dealings33. This can be proven by reasoning from
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all di�erent cases from atleast33 that are consistent with atmost33:

It holds that atleast33 ` r1_w1_b1. Suppose r1. It holds that r1; atmost33 `

:r2 and r1; atmost33 ` ^:r3 Thus r1 ^ :r2 ^ :r3.
Also atleast33 ` r2 _ w2 _ b2. Assumption r2 is contradictory. Therefore

w2 _ b2. Suppose w2. Similarly to above, it follows that :w1 ^ w2 ^ :w3.
Also atleast33 ` r3_w3_b3. Only b3 is consistent with the previous. Similarly

to above, it follows that :b1 ^ :b2 ^ b3.
The conjunction of r1 ^:r2 ^:r3, :w1 ^w2 ^:w3, and :b1 ^:b2 ^ b3 is the

formula Ærwb. Similarly for other cases. Thus dealings33. �

atmost33; dontknowother33 ` dontknowthat33:

We prove the case :K2r1. Either r2 or :r2. If :r2 then from that and from
:r2 ! :K2r1 follows :K2r1. If r2 then from that and from :(r1 ^ r2) follows
:r1. If K2r1 held than, because of re
exivity, r1 would hold. Contradiction
with :r1. Therefore :K2r1. �

33+ � dontknownot33 ` dontknownot33:

We prove the case :r2 ! :K2:r1. Suppose it doesn't hold. Then both
:r2 and K2:r1. From dontsee33 and :r2 follows K2:r2. From function33

and :r1 and :r2 follows r3. Therefore, from K2:r1 and K2:r2 follows K2r3.
From dontknowthat33 follows :K2r3. Contradiction. Therefore :r2 ! :K2:r1.
�

33+ � dontknowthat33 ` dontknowthat33:

We prove the case :K2r1. Assume K2r1. We derive a contradiction. From
K2r1 and re
exivity follows r1. A conjunct from atmost33 is :(r1 ^ r2). From
r1 and :(r1 ^ r2) follows :r2. From :r2 and dontknownot33 follows :K2:r3.
Also, from r1 and :(r1^r3) follows :r3, and therefore: from K2r1 and atmost33

follows K2:r3. Contradiction. Therefore :K2r1. �

Proofs from section 2.5.1

�33 ` 33:

First observe that for any dealing xyz: �xyz ` Æxyz.
�33 ` see33: Obvious.
�33 ` dealings33: Obvious.
�33 ` dontknowthat33: Suppose not. Then there are agents a and b and

a card c such that Kacb. E.g. K1r2. Then r2. Therefore either Æwrb or Æbrw.
Therefore either �wrb or �brw.
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Suppose �wrb. Then M1Æwbr. Therefore M1b2, thus (as �
33 ` dealings33)

M1:r2, i.e. :K1r2. Contradiction.
Similarly for �brw. ThenM1Æbwr. ThereforeM1w2, thus (as �

33 ` dealings33)
M1:r2, i.e. :K1r2. Therefore, again a contradiction. �

33 ` �33:

Proof by cases from dealings33: Suppose Ærwb. From Ærwb and see33 follows
K1r1; and from that and from dealings33 follows K1Æ

1
rwb. Similarly for K2Æ

2
rwb

and K3Æ
3
rwb.

Now suppose :M1Ærbw. Because of r1, it is obvious that :M1Æbrw, :M1Æbwr,
:M1Æwrb, :M1Æwbr. Therefore K1(:Æbrw ^ :Æbwr ^ :Æwrb ^ :Æwbr). From that
and dealings33 follows K1Ærwb, therefore K1w2. From dontknowthat33 follows
:K1w2. Contradiction. Therefore M1Ærbw. Similarly for M2Æbwr and M3Æwrb.
Therefore �33.

Similarly for other cases from dealings33. �

Proof from section 2.6

Proof of proposition 1: Let M = hW; f�1;�2;�3g; V i be an S5 3 model of 33,
i.e. M j= 33 . Then M is bisimilar to hexa:

Proof In our proof we use the notation: hexa = hW h;�h; V hi, where W h =
frwb; rbw; brw; bwr; wrb; wbrg, �h

1= ffrwb; rbwg; fbrw; bwrg; fwrb; wbrgg, �h
2=

ffrwb; bwrg; frbw;wbrg; fwrb; brwgg, �h
3= ffrwb; wrbg; fwbr; bwrg; frbw; brwgg,

V h
ijk = Vijk such that: Vijk(i1) = Vijk(j2) = Vijk(k3) = 1 and Vijk(p) = 0 for all

other (six) atomic propositions p.
First an observation on valuations of worlds inM . BecauseM;w j= dealings33,

and because each one of the six exclusive alternatives in dealings33 correspond
to a valuation, any world w 2M has one of six di�erent valuations Vrwb, Vrbw,
Vbrw, Vbwr, Vwbr, Vwrb.

Now de�ne relation R � (M � hexa) as follows:

8w 2M : 8wh 2 hexa : R(w;wh), Vw = V h
wh

We prove that R is a bisimulation between M and hexa.

Forth:

Let w;w0 2M , let wh 2 hexa. Suppose w �1 w
0 and R(w;wh). We �nd an

R-image of w0 for every valuation Vw on w. First suppose Vw = Vrwb. From
R(w;wh) follows V h

wh = Vw = Vrwb. Therefore w
h = rwb.

As M is a model of 33, M j= see33. From M;w j= see33 follows M;w j=
r1 ! K1r1. From Vw(r1) = Vrwb(r1) = 1 and M;w j= r1 ! K1r1 follows
M;w j= K1r1. From M;w j= K1r1 and w �1 w

0 follows M;w0 j= r1. Therefore
Vw0 = Vrwb or Vw0 = Vrbw. If Vw0 = Vrwb, choose rwb as the R-image of w0 in
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hexa: obviously rwb �h
1 rwb and also R(w0; rwb). If Vw0 = Vrbw, choose rbw as

the R-image of w0 in hexa: we now have rwb �h
1 rbw and R(w0; rbw).

Similarly for the �ve other valuations Vw on w. Similarly for i = 2 and i = 3.

Back:

Let wh; wh
�
2 hexa, let w 2 M . Suppose wh �h

1 w
h
�
and R(w;wh). We �nd

an R-original of wh
�
for every valuation V h

wh on wh. First suppose V h
wh = Vrwb.

Obviously wh = rwb.
From rwb �h

1 w
h
�
follows wh

�
= rwb or wh

�
= rbw. If wh

�
= rwb choose w

itself as the required R-original of wh
�
. As M is an S5 model, w �1 w, and we

already assumed R(w; rwb).
Otherwise wh

�
= rbw. We derive a contradiction from the assumption that

there is no w0 2M such that w �1 w
0 and Vw0 = Vrbw.

Suppose so. In other words: for all w0 2 M : w �1 w
0 ) Vw0 6= Vrbw.

Suppose w �1 w
0. As before, from see33 follows M;w j= K1r1 and from that

and w �1 w
0 follows M;w0 j= r1 and therefore Vw0 = Vrwb or Vw0 = Vrbw. From

that and the assumption follows Vw0 = Vrwb, thus M;w0 j= w2, and thus, as w0

is an arbitrary 1-accessible world from w 2 M , M;w j= K1w2. However, also
M j= dontknowthat33, thus M;w j= :K1w2. Contradiction.

Therefore there is a w0 2M such that w �1 w
0 and Vw0 = Vrbw. By de�nition

we have R(w0; rbw). So we have found the required R-original of rbw.
Similarly for the �ve other valuations V h

wh on wh. Similarly for i = 2 and
i = 3. �

Proof from section 5.1

Proof of proposition 4: kgames
d
$ dealings+ EÆ(Id). It suÆces to prove that

in S5n plus dealings, seedontknow is equivalent to EÆ(Id):
V
d2Id

V
a2A(Æd ! (

V
d�ad0

MaÆd0) ^KaÆ
a
d) ,

V
d2Id

V
a2A(KaÆ

a
d $MaÆd)

(i) (ii)

Proof: As usual we assume a somewhat informal, natural-deduction like, proof
style.

(i) ) (ii)

Let a 2 A; d 2 Dd. First, we prove that KaÆ
a
d !MaÆd:

KaÆ
a
d

)

Æad
,W
d0�ad

Æd0

Let d0 �a d be an arbitrary dealing such that Æd0 . Then:
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Æd0

) applying (i)V
d00�ad0

MaÆd00

) as d �a d
0

MaÆd

Therefore KaÆ
a
d !MaÆd.

Next, we prove that MaÆd ! KaÆ
a
d , by contraposition. Start by observing

that:

:KaÆ
a
d

,

:Ka(
W
d0�ad

Æd0)
,

Ma(
V
d0�ad

:Æd0)

Suppose MaÆd. Either Æd or :Æd. If Æd, then apply (i) and KaÆ
a
d follows.

If :Æd then from dealings it follows that Æd00 for some d00 6= d. Again with (i),
followsKaÆ

a
d00 . We can have either d00 �a d or d

00 6�a d. If d
00 �a d then Æ

a
d00 $ Æad

and from that and KaÆ
a
d00 follows KaÆ

a
d . If d

00 6�a d we derive a contradiction:

KaÆ
a
d00

,

Ka

W
d��ad00

Æd�

, because dealings is an exclusive disjunction
Ka

V
d6�ad00

:Æd�

)

Ka:Æd
,

:MaÆd

(ii) ) (i)

Suppose Æd. Then MaÆd. From that and (ii) follows KaÆ
a
d . From that, and

because for all d0 �a d: Æ
a
d0 $ Æad , follows that for all d

0 �a d: KaÆ
a
d0 . Using (ii)

for all d0 �a d, we get: for all d
0 �a d: MaÆd0 . Thus

V
d0�ad

MaÆd0 . �
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