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Abstract

Quantum computing—so weird, so wonderful—inspires much speculation about the line be-

tween the possible and the impossible. (Of course, there is still unclarity about how “impossi-

ble” intractable problems are and about how “possible” quantum computers are.) This thesis

takes a slightly different tack: instead of focusing on how to make the impossible possible, it

focuses on how to make the possible easier.

More specifically, this paper discusses quantum algorithms for finding cycles in graphs, a

problem for which polynomial-time classical algorithms already exist. It explains and com-

pares the classical and quantum algorithms, and it introduces a few new algorithms and

observations.

However, the primary contribution of this paper is its compilation of—and coherent pro-

gression through—old and new research. Interest in quantum cycle algorithms mushroomed

in 2003, and many of the new algorithms are included here. While not a comprehensive cat-

alog, this paper is a carefully chosen selection of the most important, elegant, and efficient

cycle algorithms.
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Chapter 1

Introduction

1.1 Opening Words

Quantum computing—so weird, so wonderful—inspires much speculation about the line be-

tween the possible and the impossible. (Of course, there is still unclarity about how “impossi-

ble” intractable problems are and about how “possible” quantum computers are.) This thesis

takes a slightly different tack: instead of focusing on how to make the impossible possible, it

focuses on how to make the possible easier.

More specifically, this paper discusses quantum algorithms for finding cycles in graphs, a

problem for which polynomial-time classical algorithms already exist. It explains and com-

pares the classical and quantum algorithms, and it introduces a few new algorithms and

observations.

However, the primary contribution of this paper is its compilation of—and coherent pro-

gression through—old and new research. Interest in quantum cycle algorithms mushroomed

in 2003, and many of the new algorithms are included here. While not a comprehensive cat-

alog, this paper is a carefully chosen selection of the most important, elegant, and efficient

cycle algorithms.

The paper is organized as follows: Chapter 1 reviews graphs and the ubiquitous search

problem. Chapter 2 reviews quantum computing and introduces our “bag of tricks”—three

quantum procedures that appear in many quantum cycle algorithms. Chapters 3, 4, and

5 examine algorithms for finding triangles, quadrilaterals, and longer cycles, respectively.

Chapter 6 summarizes the findings and presents them in a chart that facilitates comparisons.
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1.2 Graphs

1.2.1 Definitions1

A graph G is a structure (V,E), where V is a finite set of vertices (or nodes) and E ⊆ V × V

is a finite set of edges. In this paper, we examine undirected graphs, graphs whose edges are

unordered pairs of distinct vertices. Therefore, we use (u, v) and (v, u) interchangeably, and

we do not allow self-loops (u, u). A directed graph is a graph whose edges are ordered pairs

of possibly indistinct vertices.

The size of V and the size of E are somewhat independent: 0 ≤ |E| ≤ |V |(|V |−1)
2 in

undirected graphs. Therefore, we use both |V | and |E| to calculate the complexities of graph

algorithms. To simplify our expressions, we denote |V | by n and |E| by m.

Two vertices u, v ∈ V are adjacent if (u, v) ∈ E. The degree of a vertex u is the number

of vertices adjacent to it. A sequence of adjacent vertices 〈v0, v1, . . . , vk〉 is a path of length k.

A path 〈v0, v1, . . . , vk〉 is a cycle (more specifically, a k-cycle) if v0 = vk and if v1, . . . , vk are

all distinct. We sometimes use Ck to denote a k-cycle. When k is odd, Ck is an odd cycle,

and when k is even, Ck is an even cycle.

Paths and cycles are examples of subgraphs: A graph G′ = (V ′, E′) is a subgraph of

G = (V,E) if V ′ ⊆ V and E′ ⊆ E. Similarly, G′ is a supergraph of G if V ⊆ V ′ and E ⊆ E′.

Some graphs fall into special categories. An undirected graph G = (V,E) is complete if

every two vertices u, v ∈ V are adjacent. And G is bipartite if V can be partitioned into

disjoint subsets V1 and V2 such that every edge in E connects a vertex in V1 to a vertex in

V2. Also, G is dense if m ∈ Θ(n2), and G is sparse if m ∈ o(n2).

Graph problems pose questions about nontrivial graph properties, properties that are not

true of all graphs. Such a property is connectedness: An undirected graph G is connected if

every pair of vertices is connected by a path.

Graph properties themselves can have noteworthy properties. For example, suppose a

graph G has n vertices and satisfies graph property P . Property P is monotone if every

n-node supergraph of G also satisfies P . Having a path or cycle of a certain length is a

monotone property.

1The concepts introduced in Subsections 1.2.1 and 1.2.2 are also introduced, in more or less detail, in
[CLR90, pages 86–89 and 463–467] and [vL90, pages 527–537].
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1.2.2 Representations of Graphs

The first step in solving a graph problem is deciding how to represent the graph G. Two data

structures predominate: the adjacency matrix, which is easier to inspect for a given edge, and

the adjacency list, which is easier to store. Regardless of representation, we assume that the

graph’s vertices are numbered 1, 2, . . . , n.

Adjacency Matrix

The adjacency matrix of a graph G = (V,E) is an n × n matrix M such that M(u, v) = 1

if and only if (u, v) ∈ E, and M(u, v) = 0 otherwise. Determining whether an edge is in E

takes constant time on a RAM model, but storing the matrix requires O(n2) space.

The adjacency matrix for an undirected graph is symmetric, and we need not store the

redundant elements below the main diagonal. Furthermore, we can omit the main diagonal,

as M(u, u) = 0 for all u ∈ V . However, the remaining n(n−1)
2 elements still require O(n2)

storage.

Adjacency Lists

The adjacency list representation of a graph G = (V,E) is an array A of size n. Each element

of A represents a vertex u ∈ V and points to a linked list of vertices adjacent to u.2 Therefore,

|A[u]| = degree(u). An adjacency list representation requires only O(max(n, m)) = O(n+m)

storage and is usually less cumbersome than the corresponding adjacency matrix. However,

determining whether an edge (u, v) is in E involves searching A[u] (or A[v]) for v (or u) and

can be slow.

Once again, we can store an undirected graph more efficiently. Because the graph’s vertices

are numbered, the linked list for a vertex u can be limited to adjacent vertices v such that

v ≥ u. This representation halves the number of stored vertices, but it still requires O(n+m)

storage.

Also, the vertices v in A[u] can be ordered by value. In such an ordered list representation,

finding an edge involves a search on a sorted list, which is significantly faster than a search

2“Adjacency list representation” is a cumbersome term, so we often say just “adjacency list.” Of course,
we can also refer to the structure’s n linked lists as “adjacency lists.” In case of confusion, look to context for
clarification.

3



on an unsorted list.3 Because of this non-equivalence between ordered and unordered list

representations, we should never assume that a given adjacency list is ordered.

1.2.3 Common Feature of Graph Algorithms

There are scores of graph problems and therefore scores of graph algorithms. However, most

graph algorithms have a common feature: They search for something that satisfies some

property. That something might be a vertex, a set of vertices, an edge, a set of edges, a

subgraph, a set of subgraphs—or some combination of these.

This paper focuses on algorithms for finding cycles.4 Almost all of the algorithms we

consider include searches, and the complexity of searching affects the complexities of the

algorithms. Therefore, we are keenly interested in searching, and we study it closely in the

coming section and chapter.

1.3 The Search Problem

The unordered search problem is defined as follows: Let N = 2n for some positive integer n.

Given an arbitrary bit string x = (x0, x1, . . . , xN−1) ∈ {0, 1}N , we want to find an i such that

xi = 1 (i.e., a solution) or to learn that there is no such i.5 Note that all indices i can be

represented as n-bit strings.

1.3.1 Classical Search Algorithm

Classically, the fastest way to search an unordered database is to examine each element, in

order of appearance or in random order. If an element is a solution, its index is returned

and the search stops. If no solution is found, the search stops after every element has been

queried.

No matter what our tactics, we must examine an average of N/2 elements to find a unique

solution. Put probabilistically, we must examine at least N/2 elements to find a unique

3A classical search on N ordered elements requires O(log N) steps, and a classical search on N unordered
elements requires O(N) steps (see Section 1.3).

4More correctly: This paper focuses on algorithms for finding and/or determining the existence of cycles.
The difference between these tasks is explained in Section 1.4.

5Sometimes, we want to find several or all i such that xi = 1.
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solution with probability 1/2. So, all classical search algorithms require O(N) queries.6

1.3.2 Quantum Search Algorithm

In 1996, Lov Grover introduced a quantum algorithm that successfully searches an unordered

database in only O(
√

N) queries [Gro96]. Not surprisingly, Grover’s algorithm is far more

complicated than its classical counterpart, and Chapter 2 is devoted to explaining both the

algorithm and the quantum computational basics required to understand it.

1.4 Decision Algorithms vs. Example-Finding Algorithms

When we ask a question, we sometimes want a yes/no answer and sometimes want a detailed

answer. And when we want a yes/no answer, we rarely get just a yes or just a no. Instead,

we get arguments and evidence—from which we can deduce a yes or a no. Similarly, many

computer problems are yes/no questions, and many algorithms for these problems do more

than return yes or no.

Computational yes/no problems are known as decision problems. A common decision

problem is: “Does input X contain a structure Y ?” Often, the fastest and simplest way

to answer the question is to look for an example of the desired structure. Furthermore, an

algorithm that supplies an example is usually more useful than an algorithm that does not.

However, a correct yes/no answer is still a fully correct answer to a decision problem, and we

are equally interested in decision algorithms and example-finding algorithms. That said, it is

sometimes instructive to transform a decision algorithm into an example-finding algorithm.

These transformations are called search-to-decision reductions, and we will study several of

them in the coming chapters.

6From this point forward, we are more interested in query complexity than time complexity. See Section
2.2 for an explanation of query complexity.
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Chapter 2

Quantum Computing Basics

In this chapter, we introduce three quantum procedures that appear over and over again in

quantum graph algorithms: Grover’s quantum search algorithm, amplitude amplification, and

Ambainis’ algorithm. Like all quantum algorithms, these procedures exploit the weirdness of

quantum physics, and we can understand them only if we are familiar with some quantum

basics. Therefore, Section 2.1 summarizes the very basics of quantum mechanics, and Section

2.2 introduces the basics of quantum query complexity. For more thorough treatments, see

[NC00] and [dW01].

2.1 The Very Basics

Let us say that classical computing involves transitions between classical states and that

quantum computing involves transitions between quantum states. These definitions are sim-

plistic, but they make stark the fact that understanding quantum computing amounts to

understanding quantum states and the acceptable transitions between them.

2.1.1 Quantum States

As is well known, a classical state ϕ consists of one or more classical bits. Likewise, a quantum

state |ϕ〉 consists of one or more quantum bits, called qubits. However, a classical bit can be

only 0 or 1, while a qubit can be |0〉, |1〉, or a superposition of both |0〉 and |1〉. (States |0〉
and |1〉 are quantum basis states and correspond to the vectors

(
1
0

)
and

(
0
1

)
, respectively.) The

complex amplitudes α0 of |0〉 and α1 of |1〉 define the state of a qubit, and when both α0 and

α1 are nonzero, the qubit is in a superposition. However, a superposition cannot be observed.

6



Observation jostles a qubit out of its superposition and projects, or collapses, it onto either

|0〉 or |1〉. The probability of observing |0〉 is |α0|2, and the probability of observing |1〉 is

|α1|2, so |α0|2 + |α1|2 must equal 1.

The importance of superposed states becomes more obvious when we consider that, while

an n-bit classical register can hold any one number between 0 and 2n−1, an n-qubit quantum

register can hold in superposition every number between 0 and 2n−1. Moreover, computations

made on such a quantum register are made simultaneously on all 2n numbers.

An n-qubit quantum state |ϕ〉 is written:

α0|0〉+ α1|1〉+ · · ·+ α2n−1|2n − 1〉 =
2n−1∑
i=0

αi|i〉,

where α0, α1, . . . , α2n−1 are complex amplitudes and |0〉, |1〉, . . . , |2n − 1〉 are quantum basis

states. Note that |ϕ〉 can also be written in vector notation:

α0


1
0
...
0

+ α1


0
1
...
0

+ · · ·+ α2n−1


0
0
...
1

 =


α0

α1
...

α2n−1

 .

It is always the case that |α0|2 + |α1|2 + · · ·+ |α2n−1|2 = 1, which is equivalent to saying that

|ϕ〉 always has norm 1. Also, observation always projects |ϕ〉 to state |i〉 with probability

|αi|2.

2.1.2 Quantum Operations

All quantum operations, like all classical operations, can be expressed as matrices. However,

only some matrices define quantum operations. Specifically, a matrix U defines a realizable

quantum operation if and only if it is unitary (that is, if and only if it is a square matrix

whose inverse U−1 equals its conjugate transpose U∗). Unitary matrices preserve the norms

of vectors, so, no matter how many quantum operations are applied to a quantum state, the

resulting state always has norm 1. Because we can write quantum operations as matrices and

quantum states as vectors, we can calculate the effect of a quantum operation on a quantum

state by multiplying the operation’s matrix U by the state’s vector |ϕ〉: U |ϕ〉 = |ϕ′〉.
A very important quantum operation is the Hadamard transform:

H =
1√
2

(
1 1
1 −1

)
.

7



Applying H to |0〉 yields 1√
2
(|0〉 + |1〉), and applying H to |1〉 yields 1√

2
(|0〉 − |1〉). Because

|± 1√
2
|2 = 1

2 , both of these superpositions have a 50% chance of projecting onto |0〉 and a 50%

chance of projecting onto |1〉. In other words, H puts a qubit into a uniform superposition of

its basis states.

If we do not observe these uniform superpositions but again apply H, our original states

reappear. Observe:

H

(
|0〉+ |1〉√

2

)
=
(

H|0〉+ H|1〉√
2

)
=

 |0〉+|1〉√
2

+ |0〉−|1〉√
2√

2

 =
|0〉
2

+
|1〉
2

+
|0〉
2
− |1〉

2
= |0〉;

H

(
|0〉 − |1〉√

2

)
=
(

H|0〉 −H|1〉√
2

)
=

 |0〉+|1〉√
2
− |0〉−|1〉√

2√
2

 =
|0〉
2

+
|1〉
2
− |0〉

2
+
|1〉
2

= |1〉.

These second applications of H allow quantum interference to appear. Let us examine what

happens to |0〉 (the behavior of |1〉 is analogous): After one application of H to |0〉, the

amplitudes of |0〉 and |1〉 are equal. But, after a second application of H, the amplitude of

|0〉 is 1
2 + 1

2 = 1, and the amplitude of |1〉 is 1
2 −

1
2 = 0. The amplitudes of |0〉 interfere

constructively, the amplitudes of |1〉 interfere destructively, and we always observe |0〉.
The Hadamard transform is a one-qubit operation, but it can be simultaneously applied

to multiple qubits. For example, n Hadamard transforms can be used to put a register of n

zeroes in uniform superposition:1

H ⊗H ⊗ · · · ⊗H|0n〉 = H⊗n|0n〉 = H|0〉 ⊗H|0〉 ⊗ · · · ⊗H|0〉 =(
|0〉+ |1〉√

2

)
⊗
(
|0〉+ |1〉√

2

)
⊗ · · · ⊗

(
|0〉+ |1〉√

2

)
=

1√
2n

∑
j∈{0,1}n

|j〉.

Of course, H⊗n can be applied to any n-qubit basis state, not just |0n〉. Applying H⊗n to an

arbitrary n-qubit state |i〉 yields:

H⊗n|i〉 =
1√
2n

∑
j∈{0,1}n

(−1)i·j |j〉,

1The following equations introduce the tensor product notation ⊗. Tensor product is a way of combining
vector spaces or matrices (in this context, quantum states or quantum operations, respectively). The tensor
product of states |u〉 and |v〉 is the linear combination of |u〉 and |v〉 and can be written |u〉⊗ |v〉, |u〉|v〉, |u, v〉,
or |uv〉. The tensor product of operations A and B is the operation that simultaneously applies A to some
bits and B to other bits. So, if A is an m-bit operation, B is an n-bit operation, |u〉 is an m-bit state, and |v〉
is an n-bit state, then: A⊗B(|u〉 ⊗ |v〉) = A|u〉 ⊗B|v〉.

8



where i · j is the inner product of i and j. As we will see later, H⊗n is a common operation

in many quantum algorithms.

2.2 Time Complexity vs. Query Complexity

When we evaluate a classical algorithm, we are very concerned with its time consumption.

Therefore, we compute its time complexity, the number of operations it makes when running

on its worst-case input. We can also compute a quantum algorithm’s time complexity: Each

gate counts as one operation. So, whenever we know a quantum algorithm’s sequence of gates,

we can compare its time complexity to the time complexity of its fastest classical counterpart.

However, for many problems, we do not know whether the fastest known classical algo-

rithm is also the fastest possible classical algorithm. In other words, we do not know the

lower bound on the problem’s classical time complexity. As a result, we cannot know whether

a quantum algorithm’s time complexity is better than the problem’s classical lower bound—

which means that we cannot fully know how much more powerful quantum computing is than

classical computing.2

Therefore, an algorithm’s time complexity is sometimes less useful than its query complex-

ity, the number of times the algorithm accesses its worst-case input. The query complexity

model [BBC+98] is simple, and an algorithm’s query complexity says less about its efficiency

than its time complexity does. However, when we do not know the lower bound on a prob-

lem’s classical time complexity, we sometimes do know the lower bound on its classical query

complexity. In such cases, we can learn more by comparing quantum and classical query

complexities than by comparing quantum and classical time complexities.

2.2.1 Queries3

Suppose that an algorithm takes an input x = (x1, x2, . . . , xN ) ∈ {0, 1}N , where N = 2n for

some positive integer n. Suppose also that we can ask a oracle to return the value of any

bit xi. Each such request is called a query. Once a bit is queried, its value is known, and it

2Put in terms of complexity classes: If we had a polynomial-time quantum algorithm for a problem known
to require exponential time by classical probabilistic algorithms, we would know that BPP ⊂ BQP . For more
on complexity classes, see [dW01] and [Pap94].

3Subsections 2.2.1 and 2.2.2 summarize [dW01, Sections 1.5 and 2.3].
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never needs to be queried again. Therefore, the query complexity of any algorithm, classical

or quantum, is bounded above by N .

In a quantum algorithm, the following unitary transformation can act as an oracle:

O : |i〉|b〉 → |i〉|b⊕ xi〉,

where i ∈ {0, 1}n, b ∈ {0, 1}, and ⊕ is addition modulo 2. Because O is a quantum trans-

formation, we can apply it to a superposition of several index values i, in which case the

resulting |b ⊕ xi〉 is also a superposition. Each application of O counts as one query (even

when it is applied to a superposition).

If we set b to 1√
2
(|0〉 − |1〉) and apply O to |i〉

[
1√
2
(|0〉 − |1〉)

]
, then we get:

|i〉
[

1√
2

(|0⊕ xi〉 − |1⊕ xi〉)
]

= |i〉
[

1√
2

(|xi〉 − |1− xi〉)
]

= (−1)xi |i〉
[

1√
2

(|0〉 − |1〉)
]

.

We can ignore the second qubit and use O± to denote the transformation from |i〉 to (−1)xi |i〉.
Note that O± flips the input state’s phase if xi = 1 and preserves its phase if xi = 0. As with

O, each application of O± counts as one query.

An algorithm might perform many operations in addition to its queries, and its time

complexity might be much greater than its query complexity. Therefore, a quantum algorithm

and a classical algorithm with very different query complexities might not have similarly

separated time complexities. In other words, query complexities imply nothing about the

relationships between P , NP , and the other time complexity classes.

2.2.2 Kinds of Query Complexity

Below are six kinds of algorithms for computing a function f . For each kind of algorithm, we

use a different query complexity notation:

D(f): The query complexity of a deterministic algorithm, a classical algorithm that is always

correct and has no randomness.

R2(f): The query complexity of a bounded-error randomized algorithm, a classical algorithm

that employs coin flips and is correct with probability at least 1/2. (Often, the threshold

probability is defined to be 2/3. The exact threshold is not important: As long as the

threshold is at least 1/2, the success probability can be boosted arbitrarily high with

repetitions.)
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R0(f): The query complexity of a zero-error randomized algorithm, a classical algorithm

that employs coin flips and is never incorrect but is permitted to terminate without an

answer with probability at most 1/2.

QE(f): The query complexity of a exact quantum algorithm, a quantum algorithm that is

always correct.

Q2(f): The query complexity of a bounded-error quantum algorithm, a quantum algorithm

that is correct with probability at least 1/2 (or 2/3, or another constant value ≥ 1/2).

Q0(f): The query complexity of a zero-error quantum algorithm, a quantum algorithm that

is never incorrect but is permitted to terminate without an answer with probability at

most 1/2.

We do not know all of the relationships between the query complexities, but we do know that

Q2(f) ≤ R2(f) ≤ R0(f) ≤ D(f) ≤ N and that Q2(f) ≤ Q0(f) ≤ QE(f) ≤ D(f) ≤ N .

2.3 Quantum Algorithms

The first few quantum algorithms were devised by David Deutsch and Richard Jozsa, Ethan

Bernstein and Umesh Vazirani, and Daniel Simon ([DJ92], [BV97], and [Sim97], respectively).

Their algorithms require significantly fewer queries than the best possible classical algorithms

for their problems. However, the problems are rather contrived, and their algorithms were

overshadowed by Peter Shor’s polynomial-time algorithms for finding prime factors and dis-

crete logarithms [Sho97]. Shor’s algorithms are expontentially faster than the fastest known

classical algorithms, and they generated massive excitement about the power of quantum

computing.4

The other most important early quantum algorithm is Lov Grover’s quantum search al-

gorithm [Gro96], which is quadratically faster than the best possible classical algorithm.

Grover’s algorithm is notable because it was the first quantum algorithm for a total problem,

4It is still unknown how much time is required to find prime factors and discrete logarithms classically. But,
if it is ever proven that exponential time is required, then we will know that quantum computing is significantly
more powerful than classical computing, and we will have a first counterexample to the strong Church’s thesis
[Pap94, page 36].
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a problem whose input can be any of the 2N possible inputs of length N .5 Grover’s algorithm

is explained in detail below, as are a generalization of Grover’s algorithm and Andris Ambai-

nis’s recent algorithm. These three algorithms become our “bag of tricks” for creating other

quantum algorithms.

2.3.1 Grover’s Search Algorithm6

Grover’s search algorithm solves the unordered search problem defined in Section 1.3. Suppose

for now that the input contains exactly one solution. (We will consider inputs with no solutions

and multiple solutions later.)

The heart of Grover’s algorithm is a sequence of gates known as the Grover iterate. The

Grover iterate is G = (−I+[2/N ])Ox, where I is the N×N identity matrix, [2/N ] is the N×N

matrix with 2/N in every entry, and Ox is the oracle O± for the input x. The unitary matrix

(−I + [2/N ]) is called the diffusion transform and can be implemented as −H⊗nOGH⊗n,

where OG|~0〉 = −|~0〉 and does nothing to all other states.

The Grover iterate is embedded as follows:

Grover’s Search Algorithm [Gro96]

1. Begin in the n-qubit state |~0〉.
2. Apply the Hadamard transform H to every qubit in |~0〉, resulting in the uniform superposition

1√
N

∑
i |i〉.

3. Apply the Grover iterate O(
√

N) times.

4. Measure the resulting superposition, collapsing it into a single state.

After step 2, each of the superposition’s component states has amplitude 1/
√

N . As we

will explain below, each iteration of the Grover iterate increases the amplitude of the state

corresponding to the solution. So, by the end of step 3, the desired state has amplitude almost

1, and all other states have amplitude almost 0. The behavior of step 3 can be explained at

several levels of mathematical detail. Below, we follow Section 4 of [Gro96], which is the most

intuitive. For more precision, see [dW01, Section 1.7] and [BBHT98].

As already discussed, the Grover iterate consists of a query, which inverts the amplitude of

the solution state, and the diffusion transform (−I +[2/N ]). The diffusion transform achieves

5In other words, a total problem does not come with a promise that its input is either one way or another
way.

6This subsection summarizes [Gro96], with some additions from [dW01].
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what Grover calls “inversion about average.” To see why, first note that applying the matrix

[1/N ] to a vector ~v = (v1, v2, . . . , vn) yields a vector whose components all equal the average

A of the components of ~v. So, applying the matrix (−I + [2/N ]) to ~v yields the vector ~w

whose ith component is (−vi + 2A) = (A + (A − vi)). That is, each component of ~w is as

much below (or above) A as it was previously above (or below) it. So, ~w is the “inversion

about average” of ~v.

Inversion about average works considerable magic in step 3: After the first query, the

desired state has amplitude −1/
√

N , and all other states have amplitudes 1/
√

N . Clearly,

the average amplitude A is slightly less than 1/
√

N . So, after inverting about the average,

the desired state has amplitude O(2/
√

N), and all other states have amplitudes just under

1/
√

N . We make another query, which flips the amplitude of the desired state to O(−2/
√

N),

and we perform another inversion about the average, which increases the amplitude of the

desired state to O(3/
√

N) and further decreases all other amplitudes. The process continues,

and after O(
√

N) queries and inversions about average, the amplitude of the desired state

has grown to almost 1, and the other amplitudes have been whittled down to almost 0. So,

when we measure the system in step 4, we observe the state corresponding to the solution

with probability greater than 1/2. And we have achieved this with just O(
√

N) queries and

just O(
√

N) operations.

Suppose that the input contains all 0s. We can learn that there are no solutions by running

the algorithm and checking the value of the input bit indexed by the observed state. We see

that we have not found a solution, and we can infer that there is no solution. (We can increase

our confidence that there is no solution by running the algorithm several independent times.)

Now suppose that the input contains t bits that equal 1. It can be shown (again, see

[dW01, Section 1.7] and [BBHT98]) that finding one of those solutions with high probability

requires only O(
√

N/t) queries and operations, even if we do not know the value of t. And,

to find all t solutions, we simply find one solution, set that solution bit to 0, find another

solution, set that solution bit to 0, and so on. The query complexity and time complexity of

this process are
∑t

i=1 O
(√

N/i
)
, which equals:

O

(
√

N ·
t∑

i=1

1√
i

)
≤ O

(√
N ·

∫ t

0

1√
x

dx

)
= O

(√
N ·

[
2
√

x
]t
0

)
= O

(√
tN
)

.
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2.3.2 Amplitude Amplification Algorithm

Grover’s search algorithm was generalized into a quantum amplitude amplification algorithm

by Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp [BHMT02]. Instead of

finding a 1 in a bit string, amplitude amplification finds an x such that χ(x) = 1, where χ

is a Boolean function. As we will see, this allows amplitude amplification to fit into many

different algorithmic contexts. We summarize [BHMT02] below.

Suppose we have a Boolean function χ : X → {0, 1}, where x ∈ X is “good” if χ(x) = 1

and “bad” otherwise. Suppose also that we have a quantum algorithm (i.e., a sequence of

quantum gates) A such that A|0〉 =
∑

x∈X αx|x〉, a superposition of states x ∈ X with

amplitudes αx. Let a denote the probability that we observe a good state if we measure A|0〉.
Let Q denote the iterate −AS0A−1Sχ, where:

• A−1 is the inverse of A;

• S0|~0〉 = −|~0〉, and S0 does nothing to all other states;

• Sχ|x〉 = (−1)χ(x)|x〉.

The iterate Q is embedded in the amplitude amplification algorithm in the same way the

Grover iterate is embedded in Grover’s search algorithm:

Amplitude Amplification Algorithm

1. Begin in the n-qubit state |~0〉.
2. Apply A to |~0〉, resulting in the superposition

∑
x∈X αx|x〉. (If we measured the superpo-

sition now, the probability of observing a good state would be a.)

3. Apply Q to the superposition O(1/
√

a) times.

4. Measure the resulting superposition, collapsing it into a single state.

The analysis in [BHMT02] is similar to the analysis of Grover’s algorithm and shows that

we observe a good state in step 4 with probability close to 1. Moreover, it shows that if we

know the value of a ahead of time, we observe a good state with certainty. Whether or not

we know a, amplitude amplification performs just O(1/
√

a) queries and operations.

In algorithms, amplitude amplification can replace “for” loops, which step through every

x in search of a good one. Indeed, many algorithms in the coming chapters use amplitude

amplification to find good vertices and edges—that is, vertices and edges that appear in cycles.

It is easy to confirm that Grover’s algorithm is a special case of amplitude amplification.

Amplitude amplification becomes Grover’s search when χ(i) = xi and both A and A−1 are
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the Hadamard transform H. And just as amplitude amplification is exact when a is known,

Grover’s algorithm can be modified into an exact algorithm when the number of solutions t

is known.

2.3.3 Ambainis’s Algorithm7

In 2003, Andris Ambainis developed an important quantum algorithm for the element dis-

tinctness problem, which is defined as follows: Given numbers x1, x2, . . . , xN ∈ [M ], where

N ≤ M , are there distinct i, j ∈ [N ] such that xi = xj? His algorithm generalizes for

the element k-distinctness problem, which asks whether there are distinct i1, i2, . . . , ik ∈ [N ]

such that xi1 = xi2 = . . . = xik . On the standard element distinctness problem, Ambai-

nis’s algorithm makes O(N2/3) queries, which is a significant improvement over both classi-

cal algorithms (which require O(N) queries) and previous quantum algorithms (the best of

which makes O(N3/4) queries). On the k-distinctness problem, Ambainis’s algorithm makes

O(Nk/(k+1)) queries.

Ambainis’s algorithm involves searching, but it uses neither Grover’s algorithm nor ampli-

tude amplification. Instead, it examines a sequence of subsets S ⊆ [N ] such that |S| = N2/3

or |S| = N2/3 + 1. More specifically, Ambainis’s algorithm for standard element distinctness

reduces to finding a marked vertex in the following graph: Let r = N2/3, and let G be a

graph with
(
N
r

)
+
(

N
r+1

)
vertices. The vertices vS correspond to subsets S of [N ] of size r and

r +1. Two vertices vS and vT are connected by an edge if T = S ∪{i} for some i ∈ [N ]. That

is, vS and vT are connected if |S| = r, |T | = r + 1, and T ⊃ S. A vertex vS is marked if and

only if S contains distinct i and j such that xi = xj . Finding a marked vertex vS reveals that

xi = xj for some i, j ∈ S and thus that x1, x2, . . . , xN are not all distinct.

Ambainis’s algorithm searches this graph G using quantum walks, which are explained at

length in numerous articles (for example, [Kem03] and [AAKV01]). Broadly, a quantum walk

determines whether a set satisfies a certain property by stepping through (in superposition)

the set’s subsets of certain sizes. Each subset contains just one thing that its predecessor

lacked (or is missing just one thing that its predecessor had). Therefore, any visited subset is

very similar to its predecessor, and computation on that subset is very similar to computation

on its predecessor.

More formally, the state of a quantum walk is stored in two registers, the node register

7This subsection summarizes [Ambb], with some additions from [MSSb].
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and the coin register. The node register holds S, a subset of [N ] of size either r or r +1. The

coin register holds an element y ∈ [N ]. There is a condition on y, though: If |S| = r, then

y /∈ S, but if |S| = r + 1, then y ∈ S.

A quantum walk steps through a sequence of these subsets S. Each step of the walk

consists of the following operations:

A Single Step of Quantum Walk

1. Diffuse the coin register |y〉 over [N ]− S.8

2. Add y to S (increasing the size of S from r to r + 1).

3. Query for the value of xy.

4. Diffuse the coin register |y〉 over S.

5. Undo the query for xy.

6. Remove y from S (decreasing the size of S from r + 1 to r).

Suppose we have a promise that either x1, x2, . . . , xN are all distinct or that there are

exactly two elements i, j such that i 6= j and xi = xj . This promise problem is solved by an

algorithm that embeds steps of the quantum walk as follows:

Ambainis’s Element Distinctness Algorithm

1. Put node register |S〉 in uniform superposition of all subsets of [N ] of size r, and put coin

register |y〉 in uniform superposition of all elements not included in each S.

2. Query xi for all i ∈ S.

3. Repeat O(N/r) times:

4. For subsets S that contain distinct elements i and j such that xi = xj , flip the phase

from |S〉|y〉 to −|S〉|y〉.
5. Perform O(

√
r) steps of the quantum walk.

6. Measure the resulting superposition, collapsing it into a single state.

Step 1 of this algorithm makes no queries, but step 2 makes r = N2/3 queries. Step 5 per-

forms O(
√

r) steps of the quantum walk and therefore O(
√

r) = O(
√

N2/3) = O(N1/3) queries.

The loop in steps 3–5 makes O(N1/3) queries per iteration, and therefore O(N/r)O(N1/3) =

8Diffusion “over” something is closely related to diffusion as it was introduced in Section 2.3.1. The diffusion
transform over T (where T is a finite set) acts on T ’s basis elements |x〉 as follows: |x〉 7→ −|x〉+ 2

|T |
P

y∈T |y〉.
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O(N/N2/3)O(N1/3) = O(N2/3) queries total. Step 6 makes no queries, so the overall query

complexity of the algorithm is O(N2/3).

To see how this algorithm generalizes for total versions of the element distinctness problem

and the k-element distinctness problem, refer to [Ambb]. Also, see [Ambb] for analyses of

the correctness of all of Ambainis’s element distinctness algorithms. These analyses are well

beyond the scope of this paper; for our purposes, it suffices to note that Ambainis’s algorithm

bears some striking resemblances to Grover’s algorithm.

2.3.4 Embedding Quantum Algorithms into Larger Algorithms

As mentioned before, Grover’s search algorithm, amplitude amplification, and Ambainis’s

algorithm make up our “bag of tricks.” In the coming chapters, we will combine them and

embed them with each other and with classical operations to create quantum cycle algorithms.

Sometimes, we can speed up an algorithm simply by replacing some classical steps with one

of our tricks. Other times, a simple replacement has no effect on the algorithm’s efficiency

because the remaining classical operations dominate the algorithm’s complexity. In these

cases, the algorithm needs to be rebalanced or otherwise reconceived before it can benefit

from quantum interventions.

2.4 A Hypothetical Situation

Now is a good time to ask “What if?” What if we had a decision-only algorithm for the

element distinctness problem? How could we transform it into an example-finding algorithm,

and how much less efficient would the new algorithm be? A good strategy, we find, would be

to embed the algorithm in a recursion.

Let us formalize. Suppose we are working with a quantum element distinctness decision

algorithm whose success probability is at least 2/3. The quantum lower bound for the ele-

ment distinctness problem is Ω(N2/3) queries [Amba], so suppose that our algorithm’s query

complexity is O(N2/3).9

Suppose also that this algorithm takes as input a list L with length N = 2n and returns

9We could just as easily be working with a classical element distinctness decision algorithm. If we were, its
time complexity would be bounded below by Ω(N log N) [BDH+01]. Its query complexity would be bounded
above and below by Θ(N). (Every element may need to be queried, and no element needs to be queried more
than once.)
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either “all distinct” or “not all distinct.” (If L’s length is not a power of 2, pad L so that it

is. The padding must not affect the outcome of the algorithm, so the padding elements must

be distinct from the pre-existing list elements and distinct from each other.) Then we can do

the following:

Decision-to-Example-Finding Element Distinctness Algorithm

1. Run element distinctness decision algorithm on L.

2. If algorithm returns “all distinct,” return “all distinct.” Otherwise, return results of Example-

Finding Procedure.

Example-Finding Procedure

1. If |L| = 2, then L’s two elements are indistinct. Return their indices.

2. Randomly reorder the elements in L, keeping a record of each element’s original index.

3. Split L into two segments S1 and S2, each with N/2 elements.

4. Run element distinctness decision algorithm on S1. If algorithm returns “all distinct,” return

with failure. Otherwise, recur on S1. If recursion returns indices, return original indices of

the elements identified by the returned indices. Otherwise, return with failure.

First, let us analyze the success probability of the Example-Finding Procedure. Each

level of the procedure’s recursion involves randomly rearranging the elements of the inputted

list L, halving L into segments S1 and S2, and running the decision algorithm for element

distinctness on S1. After each random rearrangement, the probability that two indistinct

elements are in S1 is at least 1/4. Since the success probability of the decision algorithm is

at least 2/3, the success probability of each recursive level is at least 1/6 (and the failure

probability of each level is at most 5/6).

For overall success in the Example-Finding Procedure, we must succeed on each of the

log N recursive levels. Therefore, the overall success probability of the procedure is at least

(1/6)log N . This probability is not good enough, but we can make it arbitrarily close to 1 by

performing a sufficient number of independent repetitions of each recursive level, according

to the argument below.

Suppose that each level of the recursion is repeated up to k+j times, where k is a constant

and j is the level of the recursion (and therefore between 0 and log N − 1). In other words,

suppose that recursive level j does not return with failure until the decision algorithm for
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element distinctness has failed on k + j different segments S1. The failure probability of each

repetition is at most 5/6, so the failure probability of each level is at most (5/6)k+j .

Now we need to determine the overall failure probability of the Example-Finding Proce-

dure, where overall failure is caused by failure at any of the log N recursive levels. Because the

probability of a union is less than or equal to the sum of the probabilities of each component,

the overall failure probability is less than or equal to:

log N−1∑
j=0

(
5
6

)k+j

=
log N−1∑

j=0

(
5
6

)k (5
6

)j

<

∞∑
j=0

(
5
6

)k (5
6

)j

,

which is an infinite geometric series and therefore converges to:(
5
6

)k
1− 5

6

= 6
(

5
6

)k

.

However small we want the overall failure probability to be, there is a k that makes the

failure probability that small. For example, suppose we want the overall failure probability of

the Example-Finding Procedure to be less than 1/10. If k = 25, then the failure probability

of the Example-Finding Procedure is at most 6(5/6)25 = 525/624 < 0.063, which is less than

1/10.

Of course, the Decision-to-Example-Finding Algorithm involves not just the Example-

Finding Procedure but also one run of the element distinctness decision algorithm. The

failure probability of the decision algorithm is at most 1/3, so the overall failure probability

of the Decision-to-Example-Finding Algorithm is less than 0.333 + 0.063 = 0.3963, which is

acceptably low.

Now let us analyze the complexity of the Example-Finding Procedure. Again, the decision

algorithm runs up to k + j times on each of up to log N levels, where each level’s input is half

as long as the input on the previous level. Therefore, the query complexity of the Example-

Finding Algorithm is:

O

log N−1∑
j=0

(
N

2j

) 2
3

· (k + j)

 = O

N2/3 ·
log N−1∑

j=0

k + j

(22/3)j

 < O

N2/3 ·
∞∑

j=0

k + j

(22/3)j

 .

Because k+j grows linearly while (22/3)j grows exponentially, the sum in the expression above

converges to a constant. Therefore, the query complexity of the Example-Finding Procedure,

and in fact the Decision-to-Example-Finding Algorithm, is O(N2/3). So, despite the fact
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that it contains a procedure that runs the decision algorithm multiple times, the Decision-to-

Example-Finding Algorithm has the same query complexity as the decision algorithm.

2.5 Moving On

We now know enough about classical and quantum computing to understand the appeal

of embedding quantum search (and other quantum algorithms) in graph algorithms—and

to understand the difficulty of improving the algorithms’ complexities. Thus equipped, we

devote the rest of this paper to examining classical and quantum algorithms for cycles.
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Chapter 3

Triangle Algorithms

In undirected graphs, the simplest cycles are 3-cycles, often called triangles. Determining

whether a graph G = (V,E) contains a triangle is a straightforward task, and most trian-

gle algorithms are short and simple. We discuss three classical algorithms and six quantum

algorithms—presented in order of increasing sophistication.1 All but Classical Triangle Algo-

rithm #3 are example-finding algorithms.2

Remember that we care about the query complexities of quantum algorithms. So, in order

to make meaningful comparisons between quantum and classical algorithms, we calculate the

query complexities of classical algorithms as well. But, in order to understand the classi-

cal algorithms as fully as possible, we also discuss their time complexities. Both kinds of

complexity depend on the representation of the input graph, so we always note whether an

algorithm uses an adjacency matrix, an adjacency list, or both.

3.1 Classical Triangle Algorithms

3.1.1 Classical Triangle Algorithm #1

The first classical triangle algorithm uses an adjacency matrix M and is an exhaustive search:

1For the sake of less experienced readers, we move slowly through this chapter’s algorithms and analyses.
We quicken our pace in Chapters 4 and 5.

2Our selection of triangle algorithms is by no means complete. Nor are our selections of algorithms in
Chapters 4 and 5. Many more given-length cycle algorithms (some of which involve graph properties not
explained in this paper) are discussed in [AYZ97].
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Classical Triangle Algorithm #1

1. For each triple of distinct vertices u, v, w ∈ V ,

2. If M(u, v) = M(v, w) = M(w, u) = 1, then u, v, w is a triangle.

There are
(
n
3

)
= n(n − 1)(n − 2)/6 ∈ O(n3) potential triangles in G, and checking whether

a potential triangle is an actual triangle requires three matrix queries. Therefore, the algo-

rithm’s time complexity is O(n3). However, matrix queries do not need to be repeated, so

the query complexity is bounded by the size of the matrix: O(n2).

3.1.2 Classical Triangle Algorithm #2

An exhaustive search through an adjacency list A is no more efficient:

Classical Triangle Algorithm #2

1. For each vertex u ∈ V ,

2. Make a temporary array T of length n and initialize its elements to 0.

3. For each neighbor v ∈ A[u],

4. Set T [v]← 1.

5. For each vertex v ∈ A[u],

6. For each vertex w ∈ A[v],

7. If T [w] = 1, then u, v, w is a triangle.

The “for” loops in lines 1, 5, and 6 dominate the algorithm. Each loop steps through as many

as n vertices, and step 7 takes constant time, so the time complexity is O(n3). The algorithm

might query every element of A, so the query complexity is O(n + m) = O(n2).

3.1.3 Classical Triangle Algorithm #3

The third classical algorithm [vL90, page 563] is a decision algorithm and consists entirely of

matrix manipulations:

Classical Triangle Algorithm #3

1. Square adjacency matrix M using Boolean matrix multiplication.

2. Compute M2 ∧M .

3. If M2 ∧M contains a 1, then G contains a triangle.
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Step 1 computes the Boolean matrix M2, which contains a 1 if and only if G has a path of

length 2. Step 2 computes M2 ∧M , which contains a 1 if and only if the first and third

vertices of a path of length 2 are adjacent. So, the final matrix contains a 1 if and only if G

has a triangle.

It is harder to multiply matrices than to AND them, so this algorithm’s time complexity

depends on the difficulty of Boolean matrix multiplication. A naive Boolean matrix multipli-

cation algorithm performs O(n3) operations, but there are asymptotic improvements. One im-

provement is the Boolean version of Strassen’s algorithm, which performs O(nlg 7) ≈ O(n2.81)

operations [CLR90, page 748]. Another is by Coppersmith and Winograd and performs only

O(n2.376) operations [CW90].

So, the time complexity is O(nα), where α is the exponent of the Boolean matrix multipli-

cation algorithm we employ. The query complexity is obvious: We must know every element

of the adjacency matrix, so we must make O(n2) queries.3

Clearly, this algorithm does not involve a search—or any task that can reasonably be

transformed into a search. Therefore, only the first and second classical algorithms can

benefit from Grover’s algorithm, and we now examine how.

3.2 Quantum Triangle Algorithms

3.2.1 Quantum Triangle Algorithm #1

The first quantum algorithm [BDH+01] is exactly like the first classical algorithm, except

that Grover’s search replaces the exhaustive search through all potential triangles:

Quantum Triangle Algorithm #1

1. Perform Grover’s search to find a triangle among the
(
n
3

)
triples of vertices.

If a triangle exists among the
(
n
3

)
∈ O(n3) triples, Grover’s algorithm finds it with probability

at least 1/2 in only O(
√

n3) = O(n3/2) queries. This is a notable improvement over the

classical version’s O(n2) queries.

3Because Classical Triangle Algorithm #3 finds an edge of any triangle that it detects, it can easily be
extended into an example-finding algorithm. All that is needed is to look through the original matrix M for a
vertex that is adjacent to both ends of the known edge. Needless to say, this extra step does not increase the
algorithm’s time or query complexity.
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3.2.2 Quantum Triangle Algorithm #2

The second quantum algorithm [BDH+01] introduces amplitude amplification. It too uses

only an adjacency matrix:

Quantum Triangle Algorithm #2

1. Perform Grover’s search to find an actual edge (u, v) ∈ E among the
(
n
2

)
potential edges.

2. Perform Grover’s search to find a vertex w ∈ V such that u, v, w is a triangle.

3. Perform amplitude amplification on steps 1 and 2.

There are
(
n
2

)
= n(n − 1)/2 ∈ O(n2) possible edges and m actual edges, so step 1 requires

O(
√

n2/m) queries. Step 2 requires O(
√

n) queries. Therefore, the complexity of steps 1–2

is O(
√

n2/m +
√

n).

However, steps 1–2 are not sufficient. If step 1 finds a triangle edge, the probability that

step 2 finds the triangle’s third vertex is at least 1/2. However, when G contains only one

triangle, the probability that step 1 finds a triangle edge is only O(1/m), which means that

steps 1–2 find a triangle with probability only O(1/m).4 This probability can be boosted

with O(
√

m) iterations of amplitude amplification. Thus, the overall query complexity of

the algorithm is O
(√

m(
√

n2/m +
√

n)
)

= O (n +
√

nm). This complexity is better than

O(n3/2) if G is sparse.

3.2.3 Quantum Triangle Algorithm #3

The third quantum algorithm [BdW] is an adaptation of the second classical algorithm and

uses an adjacency list only:

Quantum Triangle Algorithm #3

1. Choose a random vertex u ∈ V .

2. Query all elements in A[u] and make a temporary list T of these neighbors.

3. Choose a random vertex v ∈ T .

4. Perform Grover’s search to find a vertex w ∈ A[v] that is also in T . If such a w is found,

then u, v, w is a triangle.

5. Perform amplitude amplification on steps 3 and 4 (to find a desired v).

6. Perform amplitude amplification on steps 1–5 (to find a desired u).

4The probability is greater than O(1/m) when G contains more than one triangle.
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This algorithm is unlike the others in this paper because it contains two layers of amplitude

amplification. Therefore, we compute its query complexity from the outside in. Step 1

chooses one of n vertices, so steps 1–5 must be embedded in O(
√

n) iterations of amplitude

amplification (step 6). In other words, the algorithm’s overall query complexity is O(
√

n)

times the query complexity of steps 2–5.

Step 2 queries up to n − 1 elements of A to create T (which, after its creation, is fully

known and costs nothing to query). Step 3 chooses one of up to n − 1 vertices, so steps 3

and 4 must also be embedded in O(
√

n) iterations of amplitude amplification (step 5). The

search in step 4 makes O(
√

n) queries, so steps 3–5 make O(n) queries. Therefore, steps 2–5

make O(n) queries, and steps 1–6 make O(n3/2) queries.

3.2.4 Quantum Triangle Algorithm #4

In 2003, Mario Szegedy announced a quantum triangle algorithm with a query complexity of

only O(n10/7 log2 n) [Sze].5 The algorithm’s only quantum trick is Grover’s search algorithm,

but its combinatorial tricks are many, and it is very difficult to understand. Furthermore,

its was almost immediately overshadowed by a Õ(n1.3) algorithm by Magniez, Santha, and

Szegedy [MSSb]. Therefore, we skip the Õ(n10/7) algorithm and focus instead on the Õ(n1.3)

one.

3.2.5 Quantum Triangle Algorithm #5

Unlike the Szegedy algorithm, the Magniez, Santha, and Szegedy algorithm uses quantum

sophistication, not combinatorial sophistication [MSSb]. But, rather than lay out an ac-

tual triangle algorithm, they show that the triangle problem reduces to the “graph collision”

problem, which reduces to the “collision” problem, which reduces to the “unique collision”

problem, which can be solved by a generalization of Ambainis’s Element Distinctness Algo-

rithm.

First, let’s summarize these intermediate problems:

• The collision problem supplies a function f that defines a relation C ⊆ [N ]2, and asks

whether C is non-empty. If so, a pair (a, b) ∈ C should be returned; otherwise, an

algorithm should return “reject.”

5Here and elsewhere, we can use the eO notation, which allows us to ignore complexities’ logarithmic factors.
In this case, we can write O(n10/7 log2 n) as eO(n10/7).
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• The unique collision problem is the same as the collision problem but promises that

either |C| = 1 or |C| = 0.

• The graph collision problem is the same as the collision problem except that f is a

boolean function on V , and it defines the relation C ⊆ V 2 such that (u, v) ∈ C if and

only if f(u) = f(v) = 1 and (u, v) ∈ E.

As said above, the unique collision problem can be solved by a generalization of Ambainis’s

Algorithm. This “Generic Algorithm” has three registers: |S〉|D(S)〉|y〉, where |S〉 is the

node register (familiar from Ambainis’s algorithm), |y〉 is the coin register (also familiar from

Ambainis’s algorithm), and |D(S)〉 is the data register (new to this algorithm). The data

register holds data D(S) about the set S. (This data comes from a database D, which

associates data with every subset of [N ].)

We want to use D(S) to determine whether (S×S)∩C 6= ∅. To do this, we use a quantum

checking procedure Φ such that Φ(D(S)) rejects if (S ×S)∩C = ∅ and otherwise outputs an

element of (S × S) ∩ C. Using the database D incurs three kinds of costs:

• Setup cost — s(r) — the query complexity of setting up D(S), where |S| = r. In the

collision problems described above, s(r) = r.

• Update cost — u(r) — the query complexity of updating D(S) to D(S′), where S′ is

the result of adding an element to S (if S is of size r) or deleting an element from S (if

S if of size r + 1). In the collision problems described above, u(r) = 1.

• Checking cost — c(r) — the query complexity of finding Φ(D(S)), where |S| = r. In

the collision problems described above, c(r) = 0.

We will consider these costs when we evaluate the complexity of the Generic Algorithm.

First though, we present the Generic Algorithm, which solves the unique collision problem:
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Generic Algorithm

1. Put the node register |S〉 in uniform superposition of all subsets of [N ] of size r.

2. Set up D on S in the data register.

3. Put the coin register |y〉 in uniform superposition of all elements of [N ]− S.

4. Do Θ(N/r) times:

5. Check Φ(D(S)). If it accepts, then flip the phase from |S〉|D(S)〉|y〉 to −|S〉|D(S)〉|y〉;
otherwise do nothing.

6. Perform Θ(
√

r) steps of the quantum walk algorithm, updating the data register with

each alteration of S.

7. Measure the system and check Φ(D(S)). It it rejects, then reject; otherwise output the

collision given by Φ(D(S)).

Steps 1 and 3 require no queries, but step 2 requires s(r) queries. Step 4 requires Θ(N/r)

repetitions of step 5 (which requires c(r) queries) and step 6 (which requires u(r) queries

Θ(
√

r) times). Like step 5, step 7 requires c(r) queries. These steps total to O(s(r)+ N
r (c(r)+

(
√

r× u(r))) + c(r)) queries. We know that for the collision problem, s(r) = r, u(r) = 1, and

c(r) = 0. Therefore, the query complexity of the Generic Algorithm is: O(r+ N
r (0+1

√
r)+0).

When r = N2/3, this complexity equals O(N2/3 + N1/3N1/3) = O(N2/3).

The Generic Algorithm can be transformed from a unique collision algorithm to a collision

algorithm in the same way that Ambainis’s Element Distinctness Algorithm (as presented in

Section 2.3.2) can be transformed into a total Element Distinctness Algorithm (again, see

[Ambb]). This requires a logarithmic number of iterations of the Generic Algorithm, so the

query complexity of the collision algorithm is Õ(N2/3).

The graph collision problem is a specialized version of the collision problem, and it can be

solved with a specialized version of the collision algorithm in which S = V . Define on every

subset U ⊆ V , D(U) = {(v, f(v)) : v ∈ U}, and let Φ(D(U)) = 1 if there are two vertices

u, u′ ∈ V that satisfy the graph collision property. As with the unique collision and collision

problems, s(r) = r, u(r) = 1, and c(r) = 0. So, as with the collision problem, when r = N2/3,

graph collision can be solved with Õ(N2/3) queries.

Finally, the triangle problem is an extension of the graph collision problem. Again let

S = V , but this time, for every subset U ⊆ V , we define D(U) = G|U , where G|U is the

subgraph of G generated by U . Furthermore, we define Φ such that Φ(G|U ) = 1 if some

triangle in G has an edge in G|U .
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With these definitions, the setup cost s(r) is the query complexity of setting up G|U , where

G|U has O(r2) edges. Therefore, s(r) = O(r2). Updating subgraph G|U requires visiting each

vertex, so the update cost u(r) is r. Checking subgraph G|U involves looking for a triangle,

which can be done as follows:

Let U be a set of r vertices, let v be a vertex in V , and let f(u) = 1 if (u, v) is an edge in

G. Use the graph collision algorithm to look for edges (u, u′) ∈ G|U such that both f(u) = 1

and f(u′) = 1; since G|U has r vertices, performing this graph collision algorithm requires

Õ(r2/3) queries. However, in order to find a “good” v, one that forms a triangle with an

edge in G|U , the graph collision algorithm must be embedded in the amplitude amplification

algorithm. Because there are N vertices in V , there need to be O(
√

N) iterations of amplitude

amplification. So, the amplified graph collision algorithm requires Õ(
√

N × r2/3) queries. In

other words, the cost c(r) of checking a subgraph G|U for a triangle is Õ(
√

N × r2/3) queries.

Recall that the triangle problem is ultimately a specialized version of the collision algo-

rithm, which requires a logarithmic number of iterations of the Generic Algorithm. Recall also

that each iteration of the Generic Algorithm requires O
(
s(r) + N

r (c(r) + (
√

r × u(r))) + c(r)
)

queries. Because c(r) is always less than N
r (c(r)), the second c(r) can be dropped, for a Generic

Algorithm query complexity of O
(
s(r) + N

r (c(r) + (
√

r × u(r)))
)

and a quantum triangle al-

gorithm query complexity of:

Õ

(
s(r) +

N

r

(
c(r) + (

√
r × u(r))

))
= Õ

(
r2 +

N

r

(
(
√

N × r2/3) + (
√

r × r)
))

.

This time, instead of letting r equal N2/3, let it equal N3/5. Then the above query complexity

equals:

Õ

(
(N3/5)2 +

N

N3/5

(
(
√

N × (N3/5)2/3) + (
√

N3/5 ×N3/5)
))

=

Õ
(
N6/5 + N2/5

(
(N1/2 ×N2/5) + (N3/10 ×N3/5)

))
=

Õ
(
N6/5 + N2/5(N9/10 + N9/10)

)
= Õ

(
N6/5 + N13/10

)
= Õ

(
N13/10

)
.

Shortly after releasing this algorithm, Magniez, Santha, and Szegedy showed that pre-

processing can improve this triangle algorithm’s complexity from Õ(n1.3) queries to O(n1.3)

queries. Consult [MSSa] for details.6

6In the summarizing table in Chapter 6, we refer to this improved O(n1.3) algorithm as Quantum Triangle
Algorithm #5I.

28



3.3 Another Hypothetical Situation

It is again a good time to ask “What if?” What if we had a decision-only algorithm for the

triangle problem? Could we transform it into an example-finding algorithm in the same way

that we can transform a decision-only algorithm for the element distinctness problem? Let

us see:

Suppose we have a quantum triangle decision algorithm whose query complexity is O(nβ)

and whose success probability is at least 2/3.7 Suppose also that its input is an adjacency

matrix M of graph G. There are two potential obstacles to embedding this algorithm in a

recursion as we did the element distinctness algorithm in Section 2.4. First, we need a way

of keeping track of the “active” vertices at each level of recursion. This is not a problem: We

can modify the triangle algorithm so that it also takes in a simple, one-dimensional list of

vertices. Like the element distinctness algorithm’s list of elements, this list is easy to reorder

and divide.

The second potential obstacle is that the graph shrinks each time the vertices are split in

half, and we need a way of passing the correct adjacency matrix to each recursive call. This

is not a problem either: We always pass the entire, original adjacency matrix. The decision

algorithm knows which vertices are active and queries only matrix elements corresponding to

active vertices.

So, we do not have any significant obstacles preventing us from embedding the decision

algorithm in a recursion. Suppose that the decision algorithm returns either “contains no

triangle” or “contains triangle.” Then we can embed the algorithm as follows:

Decision-to-Example-Finding Triangle Algorithm

1. Make list L of vertices in graph G.

2. Run triangle decision algorithm on adjacency matrix M and vertex list L.

3. If algorithm returns “contains no triangle,” return “contains no triangle.” Otherwise, return

results of Example-Finding Procedure.

7Again, we could be working with a classical algorithm with a different success probability. If we were, the
analysis would differ slightly.
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Example-Finding Procedure

1. If |L| = 4, then L’s four vertices must contain a triangle. Find the triangle and return its

vertices. If |L| > 4, go to step 2.

2. Randomly reorder the vertices in L.

3. Split L into two segments S1 and S2, each with n/2 vertices.

4. Run triangle decision algorithm on M and S1. If algorithm returns “contains no triangle,”

return with failure. Otherwise, recur on M and S1. If recursion returns vertices, return the

vertices; if not, return with failure.

Again, the success probability of this Example-Finding Procedure is not good enough.

Fortunately, the argument from Section 2.4 can be reapplied here: Repeating each recursive

level k + j times, where k is a constant and j is the level of the recursion, boosts the success

probability sufficiently high and allows the Decision-to-Example-Finding Triangle Algorithm

to maintain its query complexity of O(nβ).

So, yes, the method from Section 2.4 can be applied to a triangle decision algorithm that

uses an adjacency matrix. Now suppose we have a triangle decision algorithm whose input

includes an adjacency list. Can we do what we did with the adjacency matrix algorithm

and pass the entire adjacency list to each recursive call? No, we cannot, as doing so would

endanger the overall algorithm’s correctness. For example, the decision algorithm might run

an element distinctness algorithm on the adjacency list. If the list’s active vertices were all

distinct but its inactive vertices were not, the element distinctness algorithm would return an

incorrect answer.

Thus, we would need to prune the adjacency list before recurring. Doing this would

require up to O(n2) queries before the first recursive call, up to O((n/2)2) queries before the

second recursive call, up to O((n/4)2) queries before the third recursive call, and so on—for

a total of O(n2) queries. So, the query complexity of the Example-Finding Procedure would

be O(n2), even if the query complexity of the decision algorithm were considerably lower. In

conclusion, we could embed the decision algorithm in a recursion, but the query complexity

of the “upkeep” of the adjacency list would dominate the query complexity of the decision

algorithm.
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3.4 Triangle Lower Bounds

Different triangle algorithms have different upper bounds, but the triangle problem itself has

algorithm-independent lower bounds. We can determine these lower bounds by reducing the

OR problem to the triangle problem [BDH+01]:

Let X ∈ {0, 1}(
n
2) be an input to the OR problem. Think of X as a graph G on n vertices,

and think of the bits in X as indicators about which of the graph’s
(
n
2

)
possible edges exist.

Now, add a vertex to G, connect it to every other vertex in G, and call this supergraph

G′. Clearly, G′ has a triangle if and only if G has at least one edge—that is, if and only if

OR(X) = 1.

So, the OR problem reduces to the triangle decision problem. Thus, deciding whether

an (n + 1)-vertex graph contains a triangle requires at least as many queries as computing

the OR of
(
n
2

)
bits. Classically, the OR problem requires as many queries as its input has

bits, so the classical lower bound of the triangle problem is
(
n
2

)
∈ Ω(n2) queries. Quantumly,

the N -bit OR problem requires O(n) queries, so the quantum lower bound of the triangle

problem is Ω(n) queries.
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Chapter 4

Quadrilateral Algorithms

We now turn to the problem of determining whether an undirected graph contains a 4-cycle,

often called a quadrilateral. Not surprisingly, many quadrilateral algorithms are reworkings of

triangle algorithms. We look at some of these derivative algorithms, but we also study some

that are quite unlike any of the triangle algorithms. All of the algorithms in this chapter are

example-finding algorithms.

4.1 Classical Quadrilateral Algorithms

4.1.1 The Obvious Adaptations

Classical Triangle Algorithm #1 can be adapted for quadrilaterals very simply: Change the

search through
(
n
3

)
potential triangles into a search through

(
n
4

)
potential quadrilaterals. This

new search would take O(n4) time and O(n2) queries.1

Classical Triangle Algorithm #2 can be revised for quadrilaterals in several ways. The

original algorithm looks through combinations of an edge and a vertex, and we can modify

it to look through combinations of an edge and two vertices, combinations of two edges, or

combinations of a path of length two and a vertex. None of these revisions are interesting or

efficient enough to warrant careful study here.

It is tempting to modify Classical Triangle Algorithm #3 for quadrilaterals by computing

M3 ∧M . And indeed, M3 ∧M reveals whether G has a path 〈v0, v1, v2, v3, v0〉. However,

that is not the same as revealing whether G has a quadrilateral, as there is no guarantee

1There is a quantum version of this algorithm too. However, its query complexity is O(n4/2) = O(n2),
which is no better than the classical algorithm’s query complexity. Therefore, we do not present it in Section
4.2.
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that v1 is distinct from v3. That said, Classical Triangle Algorithm #3 can be adapted for

quadrilaterals and k-cycles. The adaptation is explained in Section 5.1.4.

4.1.2 Classical Quadrilateral Algorithm #1

Classical Quadrilateral Algorithm #1 [RL85] is faster than the classical triangle algorithms.

It takes in an adjacency list A and cleverly creates a matrix:2

Classical Quadrilateral Algorithm #1

1. Create an n× n matrix C and initialize all entries to 0.

2. For each vertex u ∈ V ,

3. For each pair of vertices v, w ∈ A[u] such that v < w,

4. If C(v, w) = 0, then C(v, w)← u. Else, u, v, C(v, w), w is a quadrilateral.

Note that matrix C is not an adjacency matrix. Rather, it is a matrix of corners, or middle

vertices in paths of length 2. The algorithm’s mission is to find a pair of vertices between

which are two different corners.

Each iteration of step 4 (except possibly the last one) finds one corner and changes an

entry C(v, w) from 0 to the corner’s vertex value. If there is a quadrilateral, the algorithm

ends when step 4 finds an entry of C that already contains a vertex value. If there is not a

quadrilateral, the algorithm ends when all vertices u ∈ V and all pairs v, w ∈ A[u] such that

v < w have been exhausted. Because v < w, all changes occur in the n(n − 1)/2 elements

above C’s main diagonal. Therefore, there can be at most (n(n−1)/2)+1 iterations of step 4,

and the algorithm runs in O(n2) time. And, because A has O(n+m) elements, the algorithm

makes O(n + m) queries.

4.2 Quantum Quadrilateral Algorithms

4.2.1 Quantum Quadrilateral Algorithm #1

Our first quantum quadrilateral algorithm [BdW] is a straightforward adjacency matrix al-

gorithm:

2Classical Quadrilateral Algorithm #1 could take in an adjacency matrix M instead. If so, it would need a
preliminary step that transforms M into an adjacency list. (The algorithm could be adapted for an adjacency
matrix in other ways, but the other adaptations are no more efficient.) This extra step would take O(n2)
queries, but the algorithm would still run in O(n2) time. In the summarizing table in Chapter 6, we refer to
this variation as Classical Quadrilateral Algorithm #1M .
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Quantum Quadrilateral Algorithm #1

1. Choose two random vertices u, v ∈ V .

2. Perform Grover’s search to find two vertices u′, v′ ∈ V such that u, u′, v, v′ is a quadrilateral.

3. Perform amplitude amplification on steps 1–2.

Step 1 selects random vertices u and v, and step 2 searches for vertices u′ and v′ that are

adjacent to both u and v. This search requires O(
√

n) queries and succeeds with probability

at least 1/2 if u and v are in a four-cycle together.

However, the probability that u and v are in the same four-cycle is just O(1/n2), so

the success probability of steps 1–2 is also just O(1/n2). We boost the algorithm’s success

probability by embedding steps 1–2 in O(n) iterations of amplitude amplification. This raises

the overall success probability to at least 1/2 and raises the overall query complexity to

O(n3/2).

4.2.2 Quantum Quadrilateral Algorithm #2

Our second quantum quadrilateral algorithm [BdW] takes in an adjacency list representation

A, as well as the lengths of the linked lists in A. It is more complicated but more efficient

than the previous algorithm:
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Quantum Quadrilateral Algorithm #2

1. Choose a random vertex u ∈ V , which has k neighbors v1, . . . , vk with adjacency lists

A[v1], . . . , A[vk].

2. Perform Grover’s search on v1, . . . , vk to find up to 2n1−c + 1 neighbors vL such that

|A[vL]| ≥ nc (c to be determined later). We say that these vL have “long” lists and that

all other vertices in {v1, . . . , vk} have “short” lists.

3. If there are more than 2n1−c neighbors with long lists, then graph G must contain a quadri-

lateral (see explanation below). Truncate each long list to length nc, and concatenate these

truncated lists into a new list L. Perform quantum element distinctness algorithm on L to

find a vertex w 6= u that is adjacent to at least two neighbors vL.

4. Otherwise, concatenate all lists (short and long) into a new list L. Perform quantum element

distinctness algorithm on L to find a vertex w ∈ V that is adjacent to at least two vertices

that are adjacent to u.

5. Perform amplitude amplification on steps 1–4.

Step 1 selects a random vertex u, which has k ≤ n− 1 neighbors v1, . . . , vk. Step 2 searches

these neighbors to determine whether more than 2n1−c of them are adjacent to at least nc

vertices (we calculate c below). This search is bounded by O(
√

n2−c) queries.3 Now our

algorithm forks, depending on the result of the search.

If u does have more than 2n1−c neighbors vL with “long” lists A[vL], then G must have

a quadrilateral. This is because
∑

vL
|A[vL]| > 2n1−c · nc = 2n > n + k, which means that,

taken together, the lists A[vL] must contain at least two instances of at least one vertex other

than u. In other words, at least one vertex w 6= u must be adjacent to two vertices vL1 and

vL2 . That w is in a quadrilateral with u, vL1 , and vL2 .

To find vL1 , vL2 , and w, we truncate 2n1−c + 1 of the long lists to length nc and then

concatenate the truncated lists. The concatenation has length (2n1−c + 1) · nc > 2n > n + k,

so it must contain at least two instances of at least one vertex w 6= u. We run the quantum

element distinctness algorithm to find such a w and to determine vL1 and vL2 . Doing so

requires O(n2/3) queries and brings the query complexity to O((n2−c)1/2 + n2/3).

3For some unknown t, there are t vertices vL ∈ {v1, . . . , vk} such that |A[vL]| ≥ nc. If t ≤ 2n1−c, then

finding all vL’s (and determining that there are no more) requires
�Pt

i=1 O(
p

k/i)
�

+ O(
√

k) = O(
√

kt) =

O(
√

n · 2n1−c) = O(
√

n2−c) queries. If t > 2n1−c, then we must find 2n1−c +1 of the vL’s. Doing this requiresP2n1−c+1
i=1 O(

p
k/i) = O(

√
n · 2n1−c) = O(

√
n2−c) queries.
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If u does not have more than 2n1−c neighbors with long lists, then there are at most n−1

short lists, each with length less than nc. In addition, there are at most 2n1−c long lists,

whose combined length is at most 2n. We concatenate all of these lists into a new list L,

whose length is bounded above by O((n − 1) · nc + 2n) = O(n1+c). Running the element

distinctness algorithm on L brings our query complexity to O
(
(n2−c)1/2 + n2/3 + (n1+c)2/3

)
.

As we have seen before, these first few steps are not sufficient. If G has one quadrilateral,

the probability that step 1 chooses a u in a quadrilateral is O(1/n), so the overall probability of

finding a quadrilateral is bounded above by O(1/n). Therefore, we embed steps 1–4 in O(
√

n)

iterations of amplitude amplification, bringing the algorithm’s overall query complexity to

O
(√

n
(
(n2−c)1/2 + n2/3 + (n1+c)2/3

))
.

In order to minimize this complexity, we must find a c that minimizes the sum of (n2−c)1/2

and (n1+c)2/3. So, we set them equal to each other and solve for c:

n(2−c)/2 = n(2+2c)/3 ⇒ (2− c)/2 = (2 + 2c)/3 ⇒ c = 2/7.

Plugging c = 2/7 into the overall query complexity, we obtain:

O
(√

n
(
(n12/7)1/2 + n2/3 + (n9/7)2/3

))
=

O
(
n1/2(n6/7 + n2/3 + n6/7)

)
= O

(
n1/2(n6/7)

)
= O(n19/14).

This algorithm is significantly more efficient than the other algorithms in this chapter, and

its efficiency is due not to a clever procedure but rather to careful balance between its search

components and its built-in knowledge about when a list must contain indistinct elements. If

“long” lists were defined differently, or if a different number of “long” lists were sought, this

balance would be disrupted, and the efficiency would suffer.

This balance makes this algorithm unlike the other algorithms in this paper, and it deserves

examination and admiration. However, its impressiveness is overshadowed by the generality of

the quantum walk algorithm for arbitrary subgraphs (which of course include quadrilaterals),

which is discussed in Section 5.3.

4.3 Yet Another Hypothetical Situation

What if we had a decision-only algorithm for the quadrilateral problem? Could we transform

this too into an example-finding algorithm by embedding it in a recursion? By now, the

answer should be obvious: We could.
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As before, each recursive level would need to be repeated a sufficient number of times.

Again, if the decision algorithm used an adjacency matrix, the query complexity of the

example-finding algorithm would be the same as the query complexity of the decision al-

gorithm. If it used an adjacency list, the query complexity of the example-finding algorithm

would again be O(n2).

We can sense a trend in these hypothetical situations. It seems that any algorithm for

determining the existence of a fixed-length cycle can be transformed into an example-finding

algorithm by being embedded in a recursion, each level of which is repeated sufficiently

many times. If the decision algorithm uses an adjacency matrix and no adjacency list, then

the example-finding algorithm has the same asymptotic query complexity as the decision

algorithm. If the decision algorithm uses an adjacency list, then the example-finding algorithm

has query complexity O(n2).

4.4 Quadrilateral Lower Bounds

Like the triangle problem, the quadrilateral problem has algorithm-independent lower bounds.

And as with the triangle problem, we can use the OR problem in a reduction:

Again let X ∈ {0, 1}(
n
2) be an input to the OR problem, and again think of X as a graph

G on n vertices. Let the bits in X indicate which of the G’s
(
n
2

)
possible edges exist. Add

two vertices to G, and connect them to each other and to every vertex in G. This supergraph

G′′ has a quadrilateral if and only if there is an edge between two of the G’s original n

vertices—once again, if and only if OR(X) = 1.

So, deciding whether an (n+2)-vertex graph contains a quadrilateral (like deciding whether

an (n + 1)-vertex graph contains a triangle) requires at least as many queries as computing

the OR of
(
n
2

)
bits. Thus, classical quadrilateral algorithms are bounded below by Ω(n2)

queries, and quantum quadrilateral algorithms are bounded below by Ω(n) queries.

The above reduction gives no information about whether the triangle problem or quadri-

lateral problem is easier. It just says that no quadrilateral algorithm and no triangle algorithm

can involve fewer than Ω(n2) classical queries or Ω(n) quantum queries.
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Chapter 5

Algorithms for Longer Cycles and
Arbitrary Subgraphs

Many triangle and quadrilateral algorithms can be adapted for longer k-cycles, but the adap-

tations are not efficient: The classical adaptations have time complexities around O(nk), and

all of the adaptations (classical and quantum) have query complexity O(n2).1,2

Luckily, there are better algorithms. Some of them work on cycles of any length, and

some are specific to even cycles or odd cycles.

Throughout this chapter, we assume that each algorithm is devoted to k-cycles for a fixed

k. In other words, we assume that there are different algorithms for different cycle lengths and

that k is not inputted. Therefore, we can omit factors of k from the algorithms’ complexities.

And, when a complexity includes k as an exponent, we know that the exponent is fixed.3

1Unfortunately, the tactics used in Quantum Quadrilateral Algorithm #2 do not seem to apply to cycles
of other lengths. The tactics could be used in a 5-cycle algorithm, but its query complexity would be O(n2).
And attempts to apply the tactics to cycles of other lengths have resulted in faulty algorithms.

2If it was not clear before, it should now be totally clear how very uninformative query complexity is for
classical algorithms.

3Note that we call arbitrary-length cycles k-cycles, even cycles 2k-cycles, and odd cycles (2k + 1)-cycles.
These different uses for k are potentially confusing, but context should always clarify whether or not k is the
cycle length under discussion.
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5.1 Classical Algorithms for Longer Cycles

5.1.1 Classical Even Cycle Algorithm #1

Dana Richards and Arthur L. Liestman [RL85] showed that Classical Quadrilateral Algorithm

#1 generalizes to an O(nk) time algorithm for finding 2k-cycles. In short, the algorithm

loops through ordered subsets of k vertices and looks for a unique corner between each pair

of consecutive vertices. It takes in an adjacency list for G but uses it only to create another

data structure:

Classical Even Cycle Algorithm #1 [RL85]

1. For each pair of vertices u, v ∈ V , use the adjacency list to find all corners—up to 2k − 2

of them—between u and v. Store the corners in a sorted list W (u, v).

2. For each ordered subset {v1, v2, . . . , vk} of k vertices in V ,

3. Make temporary copies of the lists W (v1, v2),W (v2, v3), . . . ,W (vk, v1).

4. Remove v1, v2, . . . , vk from each list. (No vertex can appear twice in a cycle).

5. Truncate all lists of length greater than k to length k.

6. Create a bipartite graph G′ = (X ∪ Y, E′), where X = {(vi, vi+1) | 1 ≤ i ≤ k},
Y = ∪k

1 W (vi, vi+1), and E′ = {((v1, vi+1), w) | w ∈W (v1, vi+1), 1 ≤ i ≤ k}.4

7. Search for a maximal matching M = {((vi, vi+1), w′
i) | 1 ≤ i ≤ k} for G′. If M is found,

then v1, w
′
1, v2, w

′
2, . . . , vk, w

′
k is a 2k-cycle.

First, we must convince ourselves that the algorithm finds a 2k-cycle if and only if one

exists. The following argument follows Richards and Liestman; for the full proof, see [RL85,

§4].

Suppose G contains a 2k-cycle C∗, consisting of v1, x1, v2, x2, . . . , vk, xk. We want to find a

2k-cycle v1, w1, v2, w2, . . . , vk, wk, which can be the same as C∗ but does not have to be. Step

1 makes lists W (u, v) of up to 2k− 2 corners between each pair of vertices in (u, v) ∈ V × V .

Step 2 chooses an ordered k-subset of V . Suppose it chooses {v1, v2, . . . , vk}, the set of

v1, v2, . . . , vk in C∗. Step 3 makes duplicates of the k lists W (vi, vi+1). (The duplicates are

necessary because the original lists need to be used multiple times and cannot be altered.

The duplicate lists are temporary and can be shortened as necessary.) Some of these lists

have 2k − 2 elements; some have fewer.

4Here and everywhere in this subsection, we let vk+1 denote v1.
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No vertex can appear more than once in a cycle, so step 4 removes v1, v2, . . . , vk from

all duplicate lists. (No list W (vi, vi+1) contains vi or vi+1, so this pruning removes at most

k − 2 elements from each list.) Some lists may still be longer than k; step 5 truncates them

to length k.

Now, let us step back from the algorithm and see that k distinct corners wi can be each

selected from the k lists W (vi, vi+1). Some of the lists, say j of them, began with fewer than

2k−2 elements; call them “short” lists. The other k− j lists began with 2k−2 elements; call

them “long” lists. A short list W (vi, vi+1) originally included every corner between vi and

vi+1, including xi. Some of the corners may have been deleted, but xi was not. Therefore,

it still includes xi, and wi can be set to xi. After the deletions, a long list W (vi, vi+1) still

has at least k corners. It might include j of the xi’s “claimed” by the short lists, but it also

has at least k − j “unclaimed” elements. So, we have k − j long lists, each with at least

k− j “unclaimed” elements. This is sufficient for each remaining pair (vi, vi+1) to be assigned

a distinct corner. So, there are enough corners to complete the 2k-cycle. Here is how the

algorithm makes the corner assignments:

Step 6 creates a bipartite graph G′. For ease, we will say that the graph has a “left” side

and a “right” side. The vertices on left side represent the k pairs (vi, vi+1). The vertices on

the right side represent the corners in ∪k
1W (vi, vi+1). (Therefore, each corner is represented

by just one vertex, even if it appears in multiple lists W (vi, vi+1).) A vertex on the left x

is adjacent to a vertex on the right y if and only if y represents a corner between the pair

of vertices represented by x. Step 7 runs a bipartite graph matching algorithm, which yields

a complete matching and reveals the remaining vertices in the 2k-cycle. (Whenever step 2

selects an ordered k-subset that does not generate a 2k-cycle, step 7 does not find a complete

matching.)

Now that we are convinced of the correctness of the algorithm, we can discuss its com-

plexity. Step 1 finds up to O(n) corners between each of up to O(n2) pairs, so it requires

O(n3) time and O(n2) queries. Steps 3–7 run in time polynomial in k,5 but they may need to

be repeated for each of O(nk) ordered k-subsets of V . Therefore, the overall time complexity

is O(nk), and the overall query complexity is O(n2).

5If the Hopcroft-Karp O(n5/2) time algorithm for maximum matching [HK73] is used, steps 3–7 run in
O(k5/2) time.
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5.1.2 Classical Odd Cycle Algorithm #1

Slight modifications turn Classical Even Cycle Algorithm #1 into an odd cycle algorithm

[RL85]. The main difference is that step 2 loops through O(nk+1) ordered (k + 1)-subsets

{v1, v2, . . . , vk, vk+1} such that vk+1 is adjacent to v1. The rest of the algorithm is adjusted

so that corners are sought for the pairs (v1, v2), (v2, v3), . . . , (vk, vk+1) but not for (vk+1, v1).

The modified algorithm finds a (2k + 1)-cycle, if one exists, in O(nk+1) time for k ≥ 2.

5.1.3 Classical Even/Odd Cycle Algorithm #2

Thankfully, we can do much, much better. In 1985, B. Monien devised an algorithm that

detects and finds k-cycles in O((k − 1)! · nm) = O(nm) steps. Monien’s trick is focusing on

the nodes that paths visit, not on the order in which they visit them. In other words, his

algorithm works with sets of nodes, not sequences of nodes.

However, the algorithm’s lack of interest in sequence is only temporary. The eventual

result of its set manipulations is the special matrix Dk−1, where Dk−1
i,j is equal to a path of

length k−1 from i to j if one exists, and equal to a no-path symbol λ otherwise. This matrix

Dk−1 can be compared to the regular adjacency matrix M to see if there is a k− 1-path from

i to j for any edge (j, i) ∈ E. If so, then the graph G contains a k-cycle.

However, we will not examine this algorithm here, as it is both less elegant and less

efficient than the algorithm presented in the next subsection. Interested readers should consult

Monien’s article, [Mon85].

5.1.4 Classical Even/Odd Cycle Algorithm #3

As promised in Chapter 4, there is a k-cycle algorithm using matrix multiplication. Discovered

by Noga Alon, Raphael Yuster, and Uri Zwick [AYZ95], the algorithm avoids pseudo-cycles

〈v0, . . . , vi, . . . , vi, . . . vk〉 by choosing random acyclic orientations of the input graph. An

acyclic orientation of a graph G = (V,E) is a directed graph ~G obtained by choosing a

random ordering ≺ of vertices and putting in ~G only those edges (u, v) ∈ E such that u ≺ v.

The algorithm takes in an adjacency matrix M :
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Classical Even/Odd Cycle Algorithm #3 [AYZ95]

1. Repeat until a k-cycle is found or until all acyclic orientations have been tried:

2. Choose a random ordering of the vertices in V .

3. Create an adjacency matrix ~M for the acyclic orientation ~G corresponding to the ordering.

4. Compute ~Mk−1 ∧M .

A path p = 〈v0, v1, . . . , vk−1〉 in G might appear in ~G as either 〈v0, v1, . . . , vk−1〉 or as

〈vk−1, vk−2, . . . , v0〉. Therefore, the probability that p appears in ~G is 2/(k!). If p is part of

a k-cycle in G, we discover this with probability 1. So, if G contains a k-cycle, it appears in

each ~G with probability 2/(k!). Therefore, steps 2–5 are repeated an expected number of at

most k!/2 times.

Steps 2–5 are dominated by the calculation of ~Mk−1, which requires O(log k) squarings of
~M and takes O(log k ·nα) time, where α is the exponent of matrix multiplication. Therefore,

the expected time of the algorithm is O(k! log k · nα) = O(nα).6 The query complexity is, of

course, O(n2).

5.1.5 Classical Even Cycle Algorithm #4

For even cycles, we can do even better. Raphael Yuster and Uri Zwick discovered that, for

every k ≥ 2, there is an example-finding algorithm for 2k-cycles that runs in O(n2) time

[YZ97]. More precisely, it runs in O((2k)! · n2) time. So, if k is part of the input, the time

complexity is exponential. But, since we are assuming that k is fixed, the time complexity

is only O(n2). Granted, the factor of (2k)! makes the running times unwieldy for large k.

Nevertheless, it is astonishing that there are algorithms for finding 10-cycles, 100-cycles, and

even 100,000-cycles that are asymptotically faster than classical algorithms for triangles.

The algorithm takes in an adjacency list, and the heart of the algorithm is a breadth-first

search (BFS). The BFS begins at a “source” vertex s. For other v ∈ V , let d(v) be the

distance between v and s. Let Li = {v | d(v) = i} be the complete set of vertices at level i of

the BFS tree. We know Li+1 by the end of stage i of the BFS. During stage i, while the set

is still growing, we call it L′
i+1. We say that an edge is inside Li if both of its vertices are in

Li, and we say that it is between Li and Li+1 if one vertex is in Li and one vertex is in Li+1.

6Alon, Yuster, and Zwick also present a deterministic version of this algorithm [AYZ95, Section 4]. Remov-
ing the algorithm’s randomness increases its time complexity to O(nα log n).
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Classical Even Cycle Algorithm #4 [YZ97]

1. For each vertex s ∈ V ,

2. Begin a breadth-first search from s.

3. At each stage i of the BFS, scan the linked lists of the vertices in Li. Keep count of

the number of edges found inside Li and the number of edges found between Li and L′
i+1.

4. Halt the BFS as soon as one of the following holds:

a) Stage k − 1 has completed or the BFS has ended;

b) At least 4k · |Li| edges have been found inside Li;

c) At least 4k · (|Li|+ |Li+1|) edges have been found between Li and L′
i+1.

5. Check whether the subgraph G′ induced by BFS has a 2k-cycle. (How to check depends

on which condition caused the BFS to halt. See discussion below.)

Here is a sketch of Yuster and Zwick’s proof of the algorithm’s correctness and efficiency:

Suppose the BFS halts because stage k − 1 has completed (or the BFS has ended). This

means that levels L0, L1, . . . , Lk of the BFS tree have all been finalized. Let G′ = (V ′, E′) be

the subgraph such that V ′ = ∪iLi and E′ contains all edges inside each Li (except Lk) and

between each Li and Li+1. For each level Li, there are fewer than 4k · |Li| edges inside Li,

fewer than 4k · (|Li−1|+ |Li|) edges between Li−1 and Li, and fewer than 4k · (|Li|+ |Li+1|)
edges between Li and Li+1. (If this were not so, the BFS would have halted earlier, and

under a different condition.) Therefore, |E′| < 12k · n.

Note that G′ contains all 2k-cycles that visit s. It is easy to see this: Any cycle that starts

at s and visits a vertex v in Lk+1 needs k + 1 edges to reach v and at least another k + 1

edges to return to s. Therefore, any cycle that extends beyond G′ has length greater than

2k. According to Corollary 2.6 in [YZ97], we can determine whether s does in fact sit on a

2k-cycle in O((2k!) · |V ′|) = O(n) operations and queries.

Now suppose the BFS halts because 4k · |Li| edges have been found inside Li for some

i < k. The BFS might halt in the middle of stage i, so stage i might be incomplete. However,

L0, L1, . . . , Li are all finalized. Let G′ = (Li, E
′) be the subgraph such that E′ contains all

edges inside Li. Because |E′| = 4k · |Li|, G′ must contain at least one connected subgraph

C = (VC , EC) such that VC ⊆ Li (not necessarily including s) and |EC | ≥ 4k ·VC . Subgraph C

is either bipartite or nonbipartite. Either way, C must contain a path p of length 2j that can

be extended into a 2k-cycle in the BFS tree. This can be done in O(kn) = O(n) operations

and queries.
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Finally suppose the BFS halts because 4k · (|Li|+ |Li+1|) edges have been found between

Li and L′
i+1 for some i < k. An argument similar to the argument above proves that this BFS

tree must also contain a 2k-cycle, and that it can be found in O(n) operations and queries.

So, in O(n) operations and queries, steps 2–5 either determine that s does not appear in

a 2k-cycle or find a 2k-cycle in G. Step 1 loops through all vertices s ∈ V , so the algorithm’s

overall time and query complexities are O(n2).

5.1.6 Even Cycle Theorem

Sometimes, we can know that a graph contains an even cycle of a certain length without ever

running an algorithm:

Theorem 5.1 (Yuster & Zwick [YZ97]) Let l ≥ 2 be an integer and let G = (V,E) be

an undirected graph with m ≥ 100ln1+(1/l). Then G contains a C2k for every k ∈ [l, lv1/l].

Furthermore, such a C2k can be found in O(kn2) time. In particular, a cycle of length exactly

bln1/lc can be found in O(n2+1/l) time.

More simply: If a graph is sufficiently dense, it must contain even-length cycles, for lengths

in a certain range.7 For example, if n = 10, 000 and m = 40, 000, 000 then G must contain

a C2k for every k ∈ [4, 10]. (Note that n must be very large for 100ln1+(1/l) not to exceed

n(n− 1)/2, the maximum number of edges.) The proof of this theorem is beyond the scope

of this paper, but it can be found in [YZ97].

5.2 Quantum Algorithms for Longer Cycles

Some of the classical algorithms for longer cycles are not conducive to quantum revision.

Classical Even Cycle Algorithm #1 and Classical Odd Cycle Algorithm #1 begin by making

O(n2) queries to transform the adjacency list into another data structure. We can avoid

these queries by stipulating that the algorithms instead receive that data structure. Then we

can replace the “for” loop in step 2 with amplitude amplification. These changes improve

the algorithm’s query complexity from O(n2) to O(n3/2) for 5-cycles and 6-cycles. How-

7Though we never would have guessed the specifics of this theorem, we should not be surprised that such
a theorem exists. Intuitively, it makes sense that a sufficiently large and dense graph contains predictable
subgraphs.
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ever, stipulating that the algorithms receive a non-standard data structure is an artificial fix.

Furthermore, the algorithms still require O(n2) queries for cycles longer than length 6.

Amplitude amplification can also be inserted into Classical Even/Odd Cycle Algorithm

#3. However, it only speeds up our selection of a good ordering and does not improve the

algorithm’s query complexity of O(n2) or time complexity O(nα).

Still, one of the classical algorithms does have a quantum improvement.

5.2.1 Quantum Even Cycle Algorithm #1

Quantum Even Cycle Algorithm #1 is the same as Classical Even Cycle Algorithm #4, except

that amplitude amplification replaces the “for” loop through vertices s ∈ V :

Quantum Even Cycle Algorithm #1

1. Choose a random vertex s ∈ V .

2. Perform steps 2–5 from Classical Even Cycle Algorithm #4.

3. Perform amplitude amplification on steps 1 and 2.

This one change improves the algorithm’s query complexity from O(n2) to O(n3/2). Perhaps

the algorithm could benefit from other quantum interventions, but it does not seem likely.

Instinctively, we want to replace the BFS with Grover’s algorithm. However, the BFS is used

here not to search but to generate a subgraph, which Grover’s algorithm does not do.

5.3 Algorithms for Cycles of Arbitrary Length

In late 2003, it was shown—twice!—that a cycle of any size can be found in a subquadratic

number of quantum queries. It can’t be denied that these findings somewhat dim the luster of

various algorithms discussed in this paper. However, working through those algorithms as we

did allows us to appreciate the new findings with a sense of history, a sense of drama, and a

sense of the cumulative nature of algorithmic research. Neither finding stems from an entirely

new algorithm. Rather, one is a generalization of Ambainis’s Algorithm, and the other is a

generalization of the O(n1.3) quantum triangle algorithm.

5.3.1 Generalization of Ambainis’s Algorithm

In [CE], Andrew M. Childs and Jason M. Eisenberg show that Ambainis’s O(nk/(k+1)) algo-

rithm for the k-element distinctness problem generalizes to a subset-finding algorithm. More
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precisely, they show that Ambainis’s algorithm can be repurposed to find a subset of size

k that satisfies any given property P . In a graph G with n vertices, a cycle of length k

is a subset of the
(
n
2

)
possible edges in G. Therefore, for any k, finding a k-cycle requires

O(
(
n
2

)k/(k+1)) = O(n2k/(k+1)) queries, which is always less than O(n2) queries.

For more details, see [CE]. We don’t dwell on them here, as the Childs and Eisenberg

finding is slightly improved by the Magniez, Santha, and Szegedy finding described below.

5.3.2 Generalization of O(n1.3) Triangle Algorithm

In the same paper in which they improve their quantum triangle algorithm from Õ(n1.3)

queries to O(n1.3) queries, Magniez, Santha, and Szegedy show that their O(n1.3) triangle

algorithm generalizes to a O(n2−(2/k)) algorithm for finding a specified k-vertex subgraph, for

k > 3 [MSSa]. Of course, a k-cycle is a k-vertex subgraph, so this generalization amounts to

the Holy Grail of cycle algorithms.

To arrive at the O(n2−(2/k)) bound, Magniez, Santha, and Szegedy use this parameterized

query complexity:

O

(
r2 +

(n

r

)(k−1)/2 ((√
n× rd/(d+1)

)
+
(√

r × r
)))

,

where d is the minimal degree of the subgraph being sought. For cycles, d is always 2, so

rd/(d+1) is always r2/3. In this case, instead of letting r equal n2/3 or n3/5 (as was done in

Section 3.2.5), let r = n1−(1/k). Then the r2 term dominates the expression, and the query

complexity becomes O(n2−(2/k)). For k > 4, this is the best complexity yet to be seen. (To

facilitate comparisons between complexities, summarizing charts are included in Chapter 6.)
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Chapter 6

Conclusion

6.1 What Did We Do?

When looking closely at algorithms, it can be difficult to see how they relate to each other.

Therefore, these next few pages summarize the “big picture” of this paper. Side-by-side

comparisons can communicate much, so: Table 6.1 reviews the elements in our quantum “bag

of tricks,” and Table 6.2 compares the cycle algorithms from Chapters 3, 4, and 5.

In addition to surveying algorithms, this paper examined several search-to-decision reduc-

tions. We outlined how to transform decision algorithms for element distinctness, triangle

existence, and quadrilateral existence, and we saw that the resulting example-finding algo-

rithms have the same query complexities as the original decision algorithms (provided the

algorithms use adjacency matrices, not adjacency lists). Also, we posited that the same ap-

proach could transform decision algorithms for fixed-length cycles of any length, and that

the resulting example-finding algorithms would also have the same query complexities as the

decision algorithms.

Table 6.1: Summary of Procedures in Quantum “Bag of Tricks”

Algorithm Query Complexity

Grover’s Search Algorithm (for unique solution in N bits) O(
√

N)
Grover’s Search Algorithm (for 1 of t solutions) O(

√
N/t)

Grover’s Search Algorithm (for all t solutions) O(
√

tN)
Amplitude Amplification (where a is prob. of “good” observation) O(1/

√
a)

Ambainis’s Algorithm (for element distinctness) O(N2/3)
Ambainis’s Algorithm (for element k-distinctness) O(Nk/(k+1))
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Table 6.2: Summary of Cycle Algorithms and Complexities

Algorithm Adj. Matrix Query Time

or Adj. List? Complexity Complexity

Note: In each category, the most efficient algorithm is in boldface.

Triangle Algorithms

Classical Triangle Algorithm #1 Matrix O(n2) O(n3)
Classical Triangle Algorithm #2 List O(n + m) O(n3)
Classical Triangle Algorithm #3∗ Matrix O(n2) O(nα)
Quantum Triangle Algorithm #1 Matrix O(n3/2) -
Quantum Triangle Algorithm #2 Matrix O(n +

√
nm) -

Quantum Triangle Algorithm #3 List O(n3/2) -
Quantum Triangle Algorithm #4 Matrix Õ(n10/7) -
Quantum Triangle Algorithm #5 Matrix Õ(n1.3) -
Quantum Triangle Algorithm #5I∗∗ Matrix O(n1.3) -
Classical Quadrilateral Algorithm #1 List O(n + m) O(n2)
Classical Quadrilateral Algorithm #1M † Matrix O(n2) O(n2)

Quantum Quadrilateral Algorithm #1 Matrix O(n3/2) -
Quantum Quadrilateral Algorithm #2 List O(n19/14) -

Classical Even (2k) Cycle Algorithm #1 List O(n2) O(nk)
Classical Odd (2k + 1) Cycle Algorithm #1 List O(n2) O(nk+1)
Classical Even/Odd (k) Cycle Algorithm #2 Matrix O(n2) O(nm)
Classical Even/Odd (k) Cycle Algorithm #3∗ Matrix O(n2) O(nα)
Classical Even (2k) Cycle Algorithm #4 List O(n2) O(n2)

Quantum 5-Cycle Algorithm #1‡ Other‡ O(n3/2) -
Quantum 6-Cycle Algorithm #1‡ Other‡ O(n3/2) -
Quantum Even (2k) Cycle Algorithm #1 List O(n3/2) -
Generalization of Ambainis’s Algorithm Matrix O(n2k/(k+1)) -
Generalization of O(n1.3) Triangle Alg. Matrix O(n2−(2/k)) -
* In the time complexity, α is the exponent of matrix multiplication.
** See Footnote 6 in Chapter 3.
† See Footnote 2 in Chapter 4.
‡ For a description of this algorithm’s data structure, see Sections 5.1.1 and 5.2.
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6.2 What’s Left?

Of the algorithms presented here for the first time, only Quantum Quadrilateral Algorithm

#2 “rebalances” the relative importances of the search steps and the non-search steps. This

rebalancing tactic should be kept in mind as researchers continue on their mission to unify

the lower and upper bounds of cycle-finding problems.
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