
Formalizing Implicatures Using Extended Logic
Programming

MSc Thesis (Afstudeerscriptie)

written by

Gerben de Vries
0033383

gkdvries@science.uva.nl
(born January 22nd, 1982 in Amsterdam)

under the supervision of Robert van Rooij, and submitted to the Board of
Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
May 15th, 2007 Dr. Robert van Rooij

Prof. Dr. Michiel van Lambalgen
Prof. Dr. Jeroen Groenendijk
Prof. Dr. Peter van Emde Boas

Abstract

In this thesis a successful formalization of implicatures using extended logic
programming is given. This provides a cognitively more interesting account
than traditional formalizations. Focus lies on the class of Q-implicatures, but
I-implicatures are dealt with as well. The thesis also includes an equivalence
proof between this approach and one using circumscription, such as sketched in
Van Rooij and Schulz [2004]. The main conclusion is the difference in complex-
ity between ‘exhaustivity’ and scalar implicatures, the latter type is harder to
compute. This is evidence in favor of the psycholinguistic theory that (scalar)
implicatures are only computed in the right context, since they require extra
processing.

Acknowledgment

I would like to thank my supervisor Robert van Rooij for developing the subject
of this thesis with me while I only had a vague thought about what I wanted.
More importantly, I thank him for helping me with this thesis even while it took
so long.

The original idea for this thesis arose in Jeroen Groenendijk’s class Semantics
and Pragmatics. Basically, the exposition below is a very long answer to one
of the exam questions. I thank him, in his position as my mentor, for thinking
with me about how to make a thesis subject out of the little paper I wrote for
his class.

I owe Michiel van Lambalgen thanks for reading my thesis and giving very
useful comments. The same goes for Brammert Ottens. Furthermore, I thank
my thesis committee.

Finally, and probably most importantly, I thank all of my friends who studied
with me in all the different UvA buildings: Gebouw P., PCHH, Daar-boven-het-
Atrium, Bushuis, Filobieb, UB, the list goes on.

1

Contents

1 Introduction 4

2 Implicatures 7
2.1 History . 7
2.2 The Common View . 9
2.3 Thesis Starting Points . 10
2.4 Psycholinguistic Studies . 11

3 Basic Approach 12
3.1 Extended Logic Programming . 12

3.1.1 Extended Logic Programs 13
3.1.2 SLDNF - Top down Derivations 14

3.2 Translating the Question and Answer 16
3.3 First Attempt . 19

3.3.1 “John and Mary came.” 19
3.3.2 “John or Mary came.” . 20

3.4 Second Attempt . 20
3.4.1 Answer-sets . 20
3.4.2 “John or Mary came.” - revisited 23

3.5 Answers with Quantifiers . 24
3.5.1 “Some boys came to the party.” 27
3.5.2 “Two people came to the party.” 29

3.6 Remarks . 31
3.7 Comparison with Circumscription 32

4 Advanced Approach 41
4.1 “John didn’t come.” . 41
4.2 WFSX - Well-founded Semantics with Explicit Negation 42

4.2.1 WFSX . 43
4.2.2 SLX . 46
4.2.3 Computational Complexity 46

4.3 Strong and Weak Epistemics . 47
4.3.1 Weak Epistemic Interpretation 47
4.3.2 “John didn’t come.” - revisited 50
4.3.3 “John and Mary didn’t come.” 50

4.4 Dealing with Modalities . 51
4.5 Conclusions and Remarks . 55

2

5 Other Types of Implicatures 58
5.1 I-implicatures . 58

5.1.1 Applying ELP . 59
5.1.2 Combination with a Q-implicature 62
5.1.3 Another Example: Conditional Perfection 65
5.1.4 Remarks . 66

5.2 M-implicatures . 66

6 Conclusion 67

3

Chapter 1

Introduction

Imagine that you’re at a friends house, sitting at the dinner table. You’re
drinking a nice cup of coffee after having finished a ‘deep-freeze-pizza-from-the-
oven’ meal. Later that evening the two of you are planning to go to a party
given by a classmate of both of you. Your friend knows that classmate very well,
so you ask him: “Will any of our classmates be there?” He responds: “Some
of our classmates will be there.” You discuss the party some more and after a
while you feel a bit of a party vibe coming up, so you ask: “Shall we go?” To
which your friend responds: “My cup isn’t empty yet.” After five more minutes
of coffee drinking the two of you are off to the party.

The short story above provides at least two examples of what has become
known as implicatures : extra pragmatic meaning that is ‘implicated’ by the
semantic content of an utterance. The first example is the answer to your
question: “Will any of our classmates be there?”. In general you shall infer
from the response: “Some of our classmates will be there” that not all of them
are going to attend the party. This inference is not strictly logical in a traditional
sense, since “some” does not imply “not all”. You only infer that not all of your
classmates are coming because you consider your friend informed about who is
coming to the party (after all he knows your classmate who throws the party
very well) and he has no reason to hide things from you. If all of them would be
coming, then he should have made a more informative statement, given these
assumptions. By the fact that he doesn’t do this, you infer that not all of your
classmates will be coming to the party. In this case the statement: “Not all of
our classmates will be there” is an implicature. It is extra pragmatic meaning
inferred from the context and the standard semantic content of the utterance.
The second response of your friend also carries an implicature. You ask whether
your friend is ready to go to the party, but he answers with a statement that
his coffeecup still has coffee in it. Because of your knowledge about your friend
you know that he likes to completely finish his coffee. Thus you infer that he is
not ready to go. In this particular example, the utterance: “My cup isn’t empty
yet.” carries the implicature: “I’m not ready to go.”

In the 1960’s the philosopher H.P. Grice introduced his theory of pragmatics,
which has the concept of an implicature as a main element. Being a philosopher
his concept remained somewhat informal, but since then a number of attempts
have been made to give a good formalization. Especially the class of so-called
quantity-implicatures has proven a good candidate for a formal treatment. Since

4

quantity-implicatures are concerned with stronger statements that could have
been made but were not, the first implicature in the above example belongs
in this category. Furthermore, there is some generality to the phenomenon,
an implicature from “some” to “not all” tends to occur in a lot of different
contexts and sentences. The main part of this thesis will be concerned with
the formalization of quantity-implicatures. The second example is of a different
nature. It depends very much on the specific context of the example, ie. you
know your friend always finishes his coffee, and only in this specific context does
the implicature occur. This type is often dubbed particularized implicatures and
is of no concern in this thesis.

Logic Programming

In Van Lambalgen and Hamm [2004] the authors provide a novel way of formally
looking at the semantics of verbs. It is customary in the field of natural lan-
guage semantics to have a model-theoretic point of view. Van Lambalgen and
Hamm argue that this is wrong from the perspective of cognitive science. A
widely held view in cognitive science is that humans are information processing
machines and therefore the modelling of human intelligence should be in terms
of algorithms. After all, algorithms are what makes information processing pos-
sible. The authors posit that if we want formal approaches to natural language
to be cognitively more relevant, then these approaches had better become com-
putational in nature.

The most elegant formalism in the eyes of Van Lambalgen and Hamm is
logic programming. One reason for this is that there is evidence that it has cog-
nitive relevance. For instance, it corresponds elegantly to certain, explanatory
relevant, neural networks (Stenning and Van Lambalgen [2007]). Another main
advantage is the ability of logic programming to deal elegantly with nonmono-
tonic reasoning. This type of reasoning is essential for day-to-day human life and
using it in formal modelling of verbs leads to insightful results, as the authors
show. We shall see below that, from the perspective of inferences, implicatures
are nonmonotonic in nature.

The above ideas are the starting point for this thesis. The traditional lit-
erature on the modelling of implicatures is model-theoretic in nature, hence a
computational approach might be very insightful. Since logic programming has
some cognitive relevance, results from this thesis can be compared to psycho-
logical literature on implicatures.

Thesis Outline

The objective of this thesis is to provide an adequate account of the formalization
of implicatures in logic programming that can deal with at least the same data
as other current formalization attempts. Furthermore, as mentioned above,
this account provides computational insights into implicatures which makes the
formalization psycholinguistically more relevant. Finally, the aim is to give a
comparison between the approach of this thesis and other formal treatments.

The main type of implicatures that we will treat is the quantity- or Q-
implicature, which we saw in the example above. But another type, the I-
implicature: inferences based on world knowledge and stereotypes, will be dealt
with as well. This class of implicatures looks very much like the knowledge

5

that AI researchers are interested in formalizing, which is precisely the type of
knowledge logic programming was designed to handle. Thus we will see that
dealing with I-implicatures using logic programming goes very well.

Chapter 2 will introduce the theory of implicatures, its history and current
status and the standpoint for this thesis. There will also be a short overview
of the recent psycholinguistic work on implicatures. A simplified account of
quantity-implicatures, using the formalism of our choice: extended logic pro-
gramming, will be presented in chapter 3. First, this special version of logic
programming is introduced. Then we encounter two ways to look at its se-
mantics: SLDNF-resolution and answer-sets. In between examples are treated.
The third chapter also contains a comparison between the approach sketched
and an account using circumscription. Some shortcomings that we encounter
in chapter 3 will be dealt with in the next chapter. Chapter 4 introduces the
WFSX-semantics. In this chapter the final account is given and more complex
data is dealt with. We will look at the class of I-implicatures in chapter 5 and
apply the theory from the previous two chapters to them. The conclusions are
left to chapter 6. To get a bit ahead of things, we will see that the main re-
sult is the computational difference between what will be dubbed ‘exhaustivity’
implicatures and scalar implicatures.

6

Chapter 2

Implicatures

2.1 History

As mentioned above, back in the 1960’s the philosopher H.P. Grice first coined
the term implicature as a part of his widely influential theory of pragmatics.
His theory is aimed at saving the traditional truth-functional account of nat-
ural language semantics by providing a set of pragmatic principles which ac-
count for the extra meaning that utterances have in specific contexts. The total
meaning of an utterance has at least two parts: what is said and what is im-
plicated. ‘What is said’ roughly corresponds to the traditional truth-functional
part. ‘What is implicated’ is part of pragmatics and further divided into conven-
tional and conversational implicatures. Conversational implicatures are again
split up into particularized and generalized conversational implicatures. It is
the class of conversational implicatures that we will be concerned with in this
thesis and to which we will often just refer as implicatures.

Conversational implicatures are, according to Grice, inferred on the basis of
assumptions about rational cooperative conversation. These assumptions are
summarized rather abstractly in the cooperative principle and are made further
explicit in his maxims of conversation.

The cooperative principle “Make your contribution such as is required, at
the stage at which it occurs, by the accepted purpose or direction of the talk
exchange in which you are engaged.” (Grice [1989]:26)

The maxims of Quality “Try to make your contribution one that is true,”
specifically:
“Do not say what you believe to be false”
“Do not say that for which you lack adequate evidence” (Grice [1989]:27)

The maxim of Relation “Be relevant.” (Grice [1989]:27)

The maxims of Quantity
Q1: “Make your contribution as informative as is required (for the purposes of
the exchange).”

7

Q2: “Do not make your contribution more informative than is required.” (Grice
[1989]:26)

The maxims of Manner “Be perspicuous,” specifically:
M1: “Avoid obscurity of expression”
M2: “Avoid ambiguity”
M3: “Be brief (avoid unnecessary prolixity)”
M4: “Be orderly” (Grice [1989]:27)

Conversational implicatures arise because the above maxims are being ad-
hered to in rational cooperative conversation. This means that, when we assume
that a speaker is following the maxims, a speaker conversationally implicates
a proposition φ, if φ is required to maintain the assumption that the speaker
follows the maxims and that the speaker thinks the hearer will realize this re-
quirement. To illustrate this, let us consider the following example taken from
Levinson [2000]:16.

(2.1) Q: “What time is it?”

A: “Some of the guests are already leaving.”

Imp: (a) “It must be late.”
(b) “Not all of the guests are already leaving.”

Both (a) and (b) are implicatures of the answer. (a) can be derived by
the assumption that the speaker sticks to the maxim of relevance. The fact
that guests are leaving is relevant to the time, because guests leave late in the
evening, since it is a nice party. By using Q1 we can derive (b). The utterance
“all of the guests are already leaving” would have been more informative than
the actual answer. Thus by Q1 (and the assumption that the speaker is well
informed as to who is leaving) we can assume that this is not the case. Thus
we derive (b).

As we see, we can derive implicatures more or less transparently from the
utterance and the assumption of rational cooperative conversational activity.
That they are derivable is a property of implicatures that is very important
to us and which is called calculability. Also highly relevant is cancellability:
an implicature can be defeated by the addition of extra premises. Based on
this property we can say the following: if we consider an implicature to be an
inference made from the actual utterance, then implicatures are nonmonotonic
inferences. Suppose the answer in example 2.1 is: “Some of the guests are
already leaving, in fact all of them are.” In this case the addition of the premise:
“in fact all of them are” cancels the inference to: “not all of the guests are
leaving”.

In the theorizing after Grice, the traditional set of maxims has been reduced
by many authors, collapsing different maxims together into one principle. Most
noticeable are the Q- and R-principles of Horn (Horn [1995, 2004] and the com-
parable Q-,I- and M-principles of Levinson (Levinson [2000]). The status of the
different maxims in these principles varies considerably: the maxims of quantity
are the most important, followed by those of manner. Early formalization of

8

the derivation of implicatures (and of pragmatics in general) was done by Gaz-
dar (Gazdar [1979]). The focus of his work was on implicatures based on the
quantity maxim, primarily scalar (Horn [1972]), but also clausal implicatures
(Gazdar [1979]). To date, these types remain the most important implicatures
to be studied formally.

2.2 The Common View

The most well-known current pragmatic theory is that of Levinson (Levinson
[2000]). This theory is basically a big update of his earlier work: Levinson
[1983]. It is based on the notion of a generalized conversational implicature and
three guiding heuristic principles. Generalized conversational implicatures are
called general because they arise unless there are unusual specific contextual
assumptions that defeat it, thus Levinson considers them context independent.
Opposite this idea we have the particularized conversational implicature. Such
an implicature arises precisely because of specific contextual assumptions and is
very much context dependent. In example 2.1 (a) is a particularized implicature.
For instance, if the question in the example had been: “Where’s Bill?”, then
(a) would not have been an implicature of the answer. According to Levinson
(b) would have been. He considers (b) to be a typical example of a generalized
implicature.

There are three principles behind the derivation of generalized conversational
implicatures in Levinson [2000]: Q,I and M. The Q-heuristic provides the back-
ground for most of the work on the formalization of implicatures, the I- and
M-principles are less relevant, but we will also consider those later on in this
thesis.

According to Levinson, the Q-principle roughly corresponds to Grice’s first
maxim of quantity: Q11. Therefore, implicatures based on this principle are
sometimes also called quantity-implicatures. For the speaker the Q-principle
entails the following maxim (from Levinson [2000]:76): “Do not provide a
statement that is informationally weaker than your knowledge of the world al-
lows, unless providing an informationally stronger statement would contravene
the I-principle.” What this boils down to is that the speaker should provide
the strongest (relevant) proposition that he knows to be true (ignoring the I-
principle for now). The hearer knows that the speaker adheres to this maxim
and can therefore infer something about certain statements stronger than the
one uttered by the speaker. To determine these statements we need Horn scales.

A Horn scale (Horn [1972]) is a linear ordered set of linguistic alternatives.
The use of each alternative in a proposition gives an informationally stronger
proposition than the use of those below that alternative. The most famous scale
is the one used in example 2.1: 〈some, all〉. Implicature (b) in 2.1 is inferred,
using the fact that all is higher on the scale than some, in the following way:
the speaker makes use of some, this is the strongest information the speaker
can provide, so this must mean that a stronger expression with all replacing
some must not be the case, thus “not all the guests are already leaving” is
true. Because of the use of scales, this type of implicature is called scalar. The
epistemic status of these implicatures is still a matter of debate. Some (Soames
[1982]) have argued that the inference is only a weak one and that (b) should

1However, whether this is really the case is a matter of debate in the community.

9

actually be: “The speaker doesn’t know/believe that all the guests are already
leaving.” However, the principle of scalar implicatures remains clear: infer some
form of negation of the propositions containing linguistic alternatives stronger
than the alternative used, provided that there is a Horn scale containing these
alternatives.

The other type of implicature based on the Q-principle is the clausal implica-
ture, which was first introduced by Gazdar (Gazdar [1979]) and which Levinson
copies intact. The idea is that if an utterance fails to entail a certain embedded
sentence φ which a stronger statement (in a scalar sense) would entail, then we
infer that the speaker considers φ and ¬φ possible.

2.3 Thesis Starting Points

For this thesis’ preliminaries regarding implicatures we shall look at the most
recent formal work on implicatures and use it to determine our own viewpoints.
Recent work on the (traditional) formalization of scalar implicatures is found
in for instance Sauerland [2004]. In Van Rooij and Schulz [2004], Schulz and
Van Rooij [2006] and also Spector [2003] a somewhat different approach is taken;
their formalization is based on the concept of exhaustive interpretation. Groe-
nendijk and Stokhof [1984] introduced the concept of exhaustive interpretation
as a way to account for the particular way we often interpret answers. If one
asks: “Who came to the party?” and the answer is: “John and Mary”, then we
take this to mean that only John and Mary came, the answer exhaustifies all
the possible people that can come. Van Rooij and Schulz show that this con-
cept, if modified a bit, can deal with traditional scalar and clausal implicatures
elegantly without the need for the postulation of Horn scales. This is a real
advantage over the traditional account. In this thesis we shall have no need of
Horn scales either.

The popular scalar approach as described by Levinson is considered to be
a global one, because implicatures are calculated on the semantic output of a
grammar. Recently, localists such as Chierchia [2001] have attacked the idea
that the global scalar account can handle complex sentences and argue that
pragmatic rules should be incorporated into the level of the grammar. They
want to proof that global accounts in general cannot be successful, but as men-
tioned above, there are other successful possibilities for a global approach. In
this thesis we will also consider implicatures from a global perspective, we will
assume an available semantic representation of a proposition and start from
there.

The idea that generalized conversational implicatures are completely context
independent is not entirely unproblematic, as for instance indicated in Van Rooij
and Schulz [2004]. Their following example illustrates this:

(2.2) Q: “Do you have some apples?”

A: “Yes, I have some apples.”

Although the scalar term “some” ordinarily gives rise to the scalar impli-
cature “not all”, it does not happen in this example because the implicature
is out of place in the context created by this particular question. Thus gen-
eralized conversational implicatures are not totally context independent. This

10

doesn’t mean that scalar implicatures are not in some sense very general, the
phenomenon occurs with a great number of linguistic terms in a lot of con-
texts. It does mean that, to avoid problems of this kind, we will always consider
implicatures in this thesis in the context of an (overt) question.

To sum up the vantage point for implicatures for this thesis: the aim is to
provide a global formal account of Q-implicatures without the postulation of
Horn scales or comparable concepts and we will always be explicit about the
context in which an implicature occurs.

2.4 Psycholinguistic Studies

Since the argument for a computational account is its greater cognitive relevance
it is also interesting for us to know what psycholinguistics has to say about
implicatures. And, although the literature on psycholinguistic investigations
into implicatures is not very large, recently some interesting studies have been
conducted. The focus of most of the research is to settle the debate between
the ‘defaultists’ and the ‘context dependents’. Defaultists think that scalar
implicatures are generated by default and processing is required when they are
cancelled. This is for instance the neo-Gricean account favored by Levinson. On
the other side we have the believers that scalar implicatures are only generated
if the context is right and hence cancellation never occurs (Carston [1998]).

In Breheny et al. [2006] this is done by doing a reading time experiment
that looks at the difference between the time needed to read and comprehend
a sentence with an implicature and one without an implicature. The work in
Noveck and Posada [2003] and Bott and Noveck [2004] looks at the reaction of
subjects to questions containing scalar terms, in the first research brain data
called ERP (event related potential) is measured, in the other a response-time
experiment is conducted. The scalar implicatures in all the experiments are from
“some” to “not all” and from “or” to “not and”. All the authors conclude from
their research that a context-driven account of implicatures is to be favored.

This is also the case in Pouscoulous et al. [in press], which is a research into
the development of implicatures in children. Children tend to have more trouble
computing scalar implicatures. The study suggests that this is because children
do not yet have enough cognitive capacity to compute scalar implicatures, they
require all their processing power to comprehend the basic meaning.

The authors of Storto and Tanenhaus [2004] are interested in a slightly dif-
ferent subject. They want to say something about the localist vs. globalist
debate that was mentioned in the previous section (which is completely orthog-
onal to the default vs. context dependent debate, as Geurts [2007] also notes).
The results of their experiments tend to favor a localist approach. Furthermore,
it somewhat seems to be evidence more in favor of the neo-Gricean account of
default generation. However, the authors themselves have nothing to say about
this.

All things considered the psycholinguistic evidence is more in favor of a
context-driven than a generate-by-default account. We will see that the ap-
proach of this thesis is also on the context-driven track.

11

Chapter 3

Basic Approach

We will always look at the implicature of an answer to a certain (overt) question,
since we saw in the previous chapter that the context in which an implicature
occurs is important. The idea of our approach is simple: we define a function
that generates an extended logic program based on a question and an answer.
This program represents the knowledge of the answerer in the context of the
question. Using this program we derive implicatures concerning the knowledge
state of the answerer. Thus, one could say that the program represents the
mental state of the answerer from a perspective of the questioner.

To be able to define our function for generating a ‘Gricean’ program, the
mechanics of extended logic programming are introduced first. Avoiding unnec-
essary complication in this chapter, we will consider the simplest semantics for
extended logic programs: SLDNF and answer-sets. Combined with a ‘Gricean’
program function we see what these semantics can do for us in different ‘bench-
mark’ examples.

3.1 Extended Logic Programming

Logic Programming is what it says: programming with logic. It arose as a
programming method separating the declarative part from the procedural part of
a program. A logic programmer’s only job is to specify what the program should
compute, not how it should do this. She does this by formalizing the declarative
part of the program using so-called rules. These rules describe the concepts
and relations relevant for the programming problem at hand. Computation
with these rules is left to the programming language. In order to be able to
do efficient computations we cannot use arbitrary first (or higher) order logic
formulae. Thus the rules that describe our problem are of a special type. In
their most basic form they are called Horn clauses. A typical example of a Horn
clause program might be:

come(john) ← come(mary)
come(mary) ← come(bill)

come(sue) ← come(andy)
come(bill).

This program formalizes the knowledge that John comes to the party if

12

Mary comes, Mary comes if Bill comes and Sue comes if Andy comes, and that
we know that Bill comes. Via SLD, the standard derivation procedure for Horn
clause logic programming, we derive that John comes in the following (informal)
way. We ask come(john), this matches with the head (left of the arrow) of the
first rule, which means we have to make come(mary) true, come(mary) matches
with the second rule, thus come(bill) must be true, since come(bill) holds, we
have successfully derived come(john). Note that, for instance, we cannot derive
come(sue), because come(andy) doesn’t hold.

Logic programming with Horn-clauses is already really powerful. However, it
still is monotonic and we saw that implicatures involve some form of nonmono-
tonic reasoning. Logic programming becomes nonmonotonic when we introduce
negation in the body (the right side) of a rule. Let’s consider a modified version
of the first example:

come(john) ← come(mary)
come(mary) ← come(bill)

come(sue) ← not come(andy)
come(bill).

In the third rule, come(andy) is replaced by not come(andy). Intuitively
the rule now means: Sue comes to the party if Andy doesn’t come, or to be
more precise, if we cannot derive that Andy comes. We query the program
with come(sue), which matches the head of the third rule, thus the program
must make not come(andy) true. The standard approach for this is negation
as failure (NAF): if it is impossible to construct a derivation for come(andy),
then not come(andy) is true. In the example there is no derivation possible
for come(andy) (there isn’t even a rule with come(andy) as its head), thus
not come(andy) holds, and therefore Sue comes to the party.

As the example illustrates this kind of negation is in some sense implicit,
everything that we cannot derive is “false”, but we cannot explicitly define
things false, eg. not come(andy) cannot be the head of a clause. To overcome
this problem people have introduced a second, more explicit, form of negation
into logic programming (Gelfond and Lifschitz [1990, 1991]). This form of logic
programming is called extended logic programming.

As Gelfond and Lifschitz already note (Gelfond and Lifschitz [1991]), one
of the main advantages of this approach is that we can define closed world
reasoning for only those predicates that we want it for, simply by introducing
something like:

¬P (x)← not P (x).

Thus ¬P holds for those individuals for which we cannot derive that P holds. As
we will see, such a rule is very useful in our approach to implicatures. Because
of this, and the ability to deal with negation explicitly in general, we prefer
extended over normal logic programming.

3.1.1 Extended Logic Programs

For the definitions of extended logic programming we will mainly follow the
work of Gelfond and Lifschitz [1991], Lifschitz [1996] and Alferes and Pereira
[1996]. A Logic Program is a finite collection of rules of the following form:

H ← L1, . . . , Ln.

13

The comma is interpreted as conjunction. We call such a program normal if
H (the head) is an atom and the Li (body) are literals. Sometimes the body is
represented as a set of literals. A literal is either an atom A or its default nega-
tion not A. A program is called extended if we allow objective literals instead
of atoms. An objective literal is either an atom A or its explicit negation ¬A.
The ¬ symbol is also used syntactically to denote complementary literals in the
sense of explicit negation, ie. ¬¬A = A. Semantically this does not necessarily
hold, eg. A and ¬A can both be false. In the extended case, a literal is either
objective A or its default negation not A. Rules with an empty body are called
facts and the arrow is usually omitted.

Atoms have the form p(t1, . . . , tn), where p is a predicate symbol and the ti
are terms. A term over an alphabet A of a language L is defined recursively as
either a variable, a constant or an expression of the form f(t1, . . . , tn) where f
is a function symbol of A and the ti are terms. A term (resp. atom, literal)
is called ground if it does not contain variables. The set of all ground terms
(resp. atoms) of A is called the Herbrand universe (resp. base) of A. In the
extended case the Herbrand base is the set of all ground objective literals. In
this thesis we will not need terms with function symbols in them and therefore
we are sloppy with respect to function symbols in our definitions.

It is assumed that the alphabet A of a program P consists precisely of those
constants and predicate and function symbols defined in P . So by the Herbrand
universe/base of P we mean the Herbrand universe/base of A. By the grounded
version of a program P we mean the possibly infinite set of rules obtained by
substituting in all possible ways each of the variables in P by elements of its
Herbrand universe. Since work in logic programming is usually restricted to
Herbrand interpretations and models, a program and its grounded version can
be used interchangeably. In a Herbrand model/interpretation a term in the
language is represented in the model by that term, ie. the term a is the object
a, the term f(a, b) is the object f(a,b), etc. Thus there is no difference between
the language of logic programs on the one side and models of the program on
the other, the terms are the objects. In the following this difference is therefore
ignored, since we are only concerned with Herbrand models.

The semantics of logic programs involve two components: what does a pro-
gram mean and how do we compute with it. The first is dubbed declarative and
the second procedural semantics. Procedural semantics are intuitively somewhat
more understandable than declarative semantics, so we start there first. The
aim of procedural semantics is to formalize the informal derivations that we saw
in the examples above.

3.1.2 SLDNF - Top down Derivations

As we saw in the informal examples in the previous section we want to derive
a goal from the rules of the program. This is done via inference rules that tell
us which steps are allowed in a derivation. We already saw that we deal with
a normal literal and default literal differently. The most well-known procedural
semantics for logic programs with default negation is SLDNF. The following
definition is taken from Lifschitz [1996].

SLDNF is about deriving the failure or success of a goal G, which is a
finite set of objective literals. The derivable objects in the SLDNF calculus are
expressions of the form � G and � G. It contains one axiom which says that

14

the empty set is always derivable:

� ∅,

and there are four inference rules associated with a program P :

(SP)
� G ∪B
� G ∪ {L} if L← B ∈ P

(FP)
� G ∪B for all B such that L← B ∈ P

� G ∪ {L}

(SN)
� G � {L}
� G ∪ {not L}

(FN)
� {L}

� G ∪ {not L}
If we can derive � G using these rules and the axiom, then G succeeds with

respect to the program P . A derivation of � G means that G fails in P . A rule
should be read in the following way: the expression under the line is derived if
we can derive the expression above the line. This illustrated by the following
explanation of the four rules. The first one says that a literal from the set of
goal literals succeeds if there is a rule in the program with this literal as its
head and the derivation of the body of this rule added to the remaining literals
in the goal succeeds. The next rule is its dual: a literal fails if for all the rules
that have this literal as its head the derivation of the body fails. The other two
rules are about the default negation. The derivation of a default negated literal
not L succeeds if the literal L fails and the other literals in the goal succeed.
The last rule says that a default negated literal not L fails if the derivation of
L succeeds.

Let us look at the following example program from Lifschitz [1996].

p
q ← p,not r
q ← r,not p
r ← p,not s

The failure of {q} can be derived as follows. (For readability the curly braces
are omitted.)

(FP)

(FN)

(SP)

(SP)

(SN)
� ∅ (FP)� s
� not s

� p,not s
� r

� p,not r
(FN)

(SP)
� ∅
� p

� r,not p
� q

When considering the meaning of a program we look at everything that
is derivable via SLDNF, thus the following definition is useful. However, this
definition is in some sense theoretical, because infinite derivations are possible
in SLDNF. It might be impossible to compute the set defined below in practice.

15

Definition 3.1. SLDNF (P) is the set of all literals derivable in P via SLDNF.

SLDNF (P) = {L | � {L} is derivable with SLDNF in P)}

It is debatable, but as far as procedural semantics go, with its four rules
and one axiom SLDNF, is an easily understandable semantics. Because of this
we choose this method over more involved procedural semantics. But we saw
it has drawbacks: infinite derivations are possible, we must keep that in mind.
Thus the introduction of SLDNF here mainly serves the illustrative purpose of
getting acquainted with procedural semantics. From a technical, computer sci-
ence perspective we usually consider SLDNF for so-called schematic programs,
ie. programs containing variables. For our purposes grounded, or propositional,
programs suffice. Thus we have only seen the SLDNF definitions for grounded
programs.

3.2 Translating the Question and Answer

With the basics of extended logic programs in place we need a way to system-
atically represent the combination of a question and an answer as a program.
A typical example that we want to deal with is:

(3.1) Q: “Who came to the party?”

A: “John and Mary came.”

Imp: “John, Mary and no one else came.”

At the moment we will only consider answers that are propositional formulae,
ie. that don’t contain quantifiers and variables. Typically these are things like:
come(john)∧ come(mary), ¬come(bill), etc. Thus we do have predicates and a
domain of individuals. Since the result of the translation will be logic program
rules, and since the models of a logic program are Herbrand models, the only
models we consider possible for our answer formulae must be Herbrand models
as well, eg. mary will never pick out the same individual as bill in the underlying
model.

Although the goals of this thesis and Wakaki and Satoh [1997] differ, the
similarities between the two are undeniable. The translation procedure proposed
in the following resembles very much the translation of a circumscriptive theory
into extended logic programming proposed by Wakaki and Satoh1.

The transformation of a propositional formula into rules will go in a number
of steps. The first thing we need is the conjunctive normal form of the formula.
The concept of conjunctive normal form is well-known, thus we will not provide
a full definition here, one can find it in any introductory logic book. A formula
in conjunctive normal form is a conjunction of disjunctions of literals, eg. (L1 ∨
¬L2 ∨ L3) ∧ (¬L4 ∨ L5 ∨ L6) ∧ (L7 ∨ ¬L8 ∨ ¬L9). Thus:

Definition 3.2 (CNF function). Let φ be a propositional formula, then CNF (φ)
is the result of translating φ into conjunctive normal form.

1Their hard-to-get paper was discovered by the author after he came up with the translation
procedure.

16

The answer formula for the above example is come(j) ∧ come(m). In this
case:

CNF (come(j) ∧ come(m)) = come(j) ∧ come(m).

The next step is to create clauses out of the CNF. Clauses are sets of literals.
In order for a clause to be true, one of its literals needs to be true, thus they
have a close connection with a formula in CNF.

Definition 3.3 (2Clauses function). Let φ be a propositional formula in con-
junctive normal form and let φ1, . . . , φn be its conjuncts. Then

Σ =
⋃
i≤n

{L | L is disjunct of φi}.

And
2Clauses(φ) = {σ | σ ∈ Σ ∧ ¬∃σ2 ∈ Σ : σ2 ⊂ σ}.

Notice the ‘clean up’ in the second part of the definition in which we remove
clauses that are supersets of other clauses, since they are superfluous. Applying
this function to the example we get:

2Clauses(come(j) ∧ come(m)) = {come(j)}, {come(m)}.
Finally, we transform clauses into extended logic programming rules.

Definition 3.4 (2Rules). Let Σ be a set of clauses. Then

2Rules(Σ) = {Lj ← ¬L1, . . . ,¬Lj−1,¬Lj+1, . . . ,¬Ln | {L1, . . . , Ln} ∈ Σ}2

Take as an example the simple disjunction:

a ∨ b.
Which is translated into the clause:

{a, b}.
Resulting in the two rules:

a ← ¬b
b ← ¬a.

We require two rules for this simple disjunction because the arrow in logic
programming is not contrapositive. The two rules represent the disjunction in
an intuitive manner: if we know one of the disjuncts to be false, then the other
one must be true. The rules for the party example above are easier,

2Rules({come(j)}, {come(m)}) =

come(j)
come(m).

We could directly translate a conjunctive normal form into rules without
the intermediate step of clauses. However, clauses will prove useful later on
and furthermore provide ‘cleaner’ rules, for instance, we don’t have duplicate
literals.

To keep things clear, let us put these three auxiliaries together into one
translation function.

2Recall that ¬¬L = L.

17

Definition 3.5 (Form2Rules). The translation function Form2Rules(φ) which
translates a propositional logic formula φ into logic programming rules repre-
senting φ is defined as follows:

Form2Rules(φ) = 2Rules(2Clauses(CNF (φ)))

The role of the question in the program is simpler, we don’t need a full
translation of the question into a formula. What the question does is deter-
mining which predicate is the one under discussion, ie. the predicate that the
questioner wants to know something about. Therefore this predicate is dubbed
‘question’ predicate. Usually the questioner assumes some form of competence
on the part of the answerer regarding this question predicate, else she would not
have asked the question. This means that for the question predicate we can do
closed world reasoning or make the closed world assumption (CWA), whereas
for other predicates we cannot. This results in the following treatment of the
question predicate.

For the question predicate we can add the grounded instances, ie. one for
every individual, of the following rule to the program.

¬Q(�x)← not Q(�x)3

Intuitively, we can assume that a predicate doesn’t hold for individuals (¬Q(�x))
if we have no reason to assume it (not Q(�x)). In terms of the work in Wakaki
and Satoh [1997], which is from a circumscription perspective, this means that
we treat the question predicate as the one that needs to be minimized.

In the above example the questioner wants to know who is coming to the
party, thus the question predicate is come. Which means that we would add
grounded instances of:

¬come(x)← not come(x)

to the program.
For now we will assume that the answer contains only the question predicate.

The treatment of predicates that are not the question predicate, but that do
occur in the answer is postponed and introduced together with the solution for
dealing with answers containing quantifiers.

The time has come to put it all together into one program that describes
the knowledge-state of the answerer.

Definition 3.6 (GP (Gricean Program)). The function GP(Q,A,D) takes as
input a question predicate Q, a propositional formula A and a domain of indi-
viduals D4 It returns an extended logic program.

GP(Q,A,D) = {¬Q(c1, . . . , cn)← not Q(c1, . . . , cn) | c1, . . . , cn ∈ D}
∪ Form2Rules(A)

3(�x) stands for the vector x1, . . . , xn, where n is the arity of the predicate.
4If we would have allowed terms with function symbols, then D should have included these

in grounded form as well.

18

3.3 First Attempt

The application of the above functions to sample data is straightforward, some
of it we already saw in the previous section. We determine the propositional
formula that represents the answer and we determine what the question predi-
cate is. There must also be a domain of individuals, this is usually trivial and
in most examples just a set of people. These three things are the arguments
we put in GP . SLDNF applied to the resulting program gives the implicatures
that we are looking for.

3.3.1 “John and Mary came.”

Most of the examples we will consider are in a party-going context. We already
saw the one below (repeated here for convenience).

(3.2) Q: “Who came to the party?”

A: “John and Mary came.”

Imp: “John, Mary and no one else came.”

We already noted that the question predicate is come and that the answer
is straightforwardly translated as come(j)∧ come(m). Of course there are more
individuals who could have come to the party, for brevity we stick to one and
call him Bill, abbreviated as b. Accordingly, our domain of individuals D is
{j,m, b}.

P3.1 = GP(come(x), come(j) ∧ come(m), {j,m, b}) =

come(j)
come(m)
¬come(j) ← not come(j)
¬come(m) ← not come(m)
¬come(b) ← not come(b)

It is easy to see that the following is true:

SLDNF (P3.1) = {come(j), come(m),¬come(b)}.

Both come(j) and come(m) are facts of the program and ¬come(b) can be
derived as follows:

(SP)

(SN)
� ∅ (FP)� come(b)
� not come(b)
� ¬come(b)

These results are what we are looking for. We assume that the answerer
communicates as much information as possible, ie. he will mention everybody
that he knows to have been at the party. So in this example we derive that
Bill didn’t come to the party. In fact, for every individual not mentioned in the
answer we can derive that that individual didn’t come.

19

3.3.2 “John or Mary came.”

While there was definitely an implicature at work in example 3.1, it didn’t
contain a traditional scalar implicature yet. Let’s see how we fare with the
following.

(3.3) Q: “Who came to the party?”

A: “John or Mary came.”

Imp: “John or Mary, but not both came.”
“No one else but John or Mary came.”

The scalar implicature we expect to arise in this example is that John and
Mary didn’t come both. The question predicate remains the same as in (3.1),
as does the domain of individuals. come(j) ∨ come(m) is the easy translation
of the answer. Everything together results in the program:

P3.3 = GP(come(x), come(j) ∨ come(m), {j,m, b}) =

come(j) ← ¬come(m)
come(m) ← ¬come(j)
¬come(m) ← not come(m)
¬come(j) ← not come(j)
¬come(b) ← not come(b).

Via SLDNF we can, as in the previous example, derive ¬come(b). Other
objective literals are not derivable. If we try to derive come(j), ¬come(j),
come(m) and ¬come(m) we get infinite derivations. Thus, with respect to the
individuals not mentioned we still derive that they weren’t at the party, but
the scalar implicature: ¬(come(j) ∧ come(m)) is not derivable. The answer
come(j) ∨ come(m) has multiple models. One of those models is cancelled by
the scalar implicature mentioned, but the others are not. It seems that, if we
want to derive the scalar implicature, then we need to look at the models of the
program P3.3. Possible models is precisely what declarative semantics of logic
programming is about, so we turn to this subject next.

3.4 Second Attempt

3.4.1 Answer-sets

Sticking to the ‘simplicity first’ approach we look at the simplest declarative
semantics for extended logic programs: answer-sets, first introduced by Gelfond
and Lifschitz (Gelfond and Lifschitz [1990, 1991]). For the definition we will
follow the style of Alferes and Pereira [1996], but give a more recent one by
Lifschitz, Tang and Turner (Lifschitz et al. [1999]). To give the answer-sets
semantics we need four things: interpretations, models, an ordering among in-
terpretations/models and the Γ-operator. Note that the definitions apply to the
grounded version of a program.

Interpretations are basically assignments of truth-values, they say which
literals are true and which are false. As we will see, some interpretations are
also models of a program and some models are answer-sets.

20

Definition 3.7 (Interpretation). An interpretation I of a program P is any
subset of the Herbrand base H of P. I is consistent iff it contains no pair of
complementary objective literals L, ¬L.

Looking at the example program P3.4:

(3.4)
a ← b, c
b ← not ¬b
¬c ← ¬a.

We can easily see that I1 = {a, b} and I2 = {¬a, b, c} are interpretations of the
program P3.4, since they are concerned with the same literals as P3.4.

An interpretation I can be viewed as a function I : H → V where V = {0, 1}.

I(A) =

{
1 ifA ∈ I
0 otherwise

Based on this we can define a truth valuation function for formulae.

Definition 3.8 (Truth valuation). Let I be an interpretation and C the set of
all formulae of the language, then the function Î : C → V is the truth valuation
corresponding to I. Î is recursively defined as follows:

- Î(L) = I(L), if L is an objective literal.

- Î(not L) = 1− I(L), if not L is a default literal.
- if S and T are formulae then

- Î((S, T)) = min(Î(S), Î(T)).
- Î(T ← S) = 1 if Î(S) ≤ Î(T), and 0 otherwise.

For instance, if we look at Î1 based on the interpretation I1, then Î1(b, c) =
min(I1(b), I1(c)) = min(1, 0) = 0 and Î1(not b) = 1− I1(b) = 1− 1 = 0.

Now we need to separate the interpretations that actually make a program
true, these are called models, from those that don’t. The above defined truth
valuation function is used to define what a model of a program is.

Definition 3.9 (Model). An interpretation I is called a model of a program P iff
for every ground instance of a program rule H ← B it holds that Î(H ← B) = 1.

It is easy to check that I1 is a model of P3.4. However I2 is not, because
Î2(a← b, c) = 0, since Î2(b, c) > Î2(a).

To decide which models are also answer-sets we need the following ordering
on interpretations and models, which is defined only for normal logic programs.

Definition 3.10 (Classical Ordering). If I and J are two interpretations then
we say I ≤ J if I ⊆ J . Take I a collection of literals, then an interpretation I
is called least in I if I ≤ J for any other interpretation J ∈ I.

An inconsistent answer-set is one which contains both a positive literal and
its negation. The recent definition of answer-sets in Lifschitz et al. [1999],
given here, has no room for inconsistent answer-sets and differs in this respect
from versions in Gelfond and Lifschitz [1990, 1991]; Lifschitz [1996]; Alferes and
Pereira [1996], whose definitions allowed, but didn’t agree with respect to in-
consistent answer-sets. The Γ-operator, defined below, is necessary to decide
which models are answer-sets of a program.

21

Definition 3.11 (The Γ-operator). Let P be an extended logic program and I a
consistent interpretation. The GL-transformation of P modulo I is the program
P
I obtained from P by:

- first denoting every objective literal in H of the form ¬A by a new atom,
say ¬ A;

- replacing in both P and I these objective literals by their new denotations;

- then performing the following operations:

- remove from P all rules which contain a default literal not A such
that A ∈ I;

- removing from the remaining rules all default literals.

Since P
I is a definite program (contains only atoms) it has a unique least

model J.
Replace in J the atoms ¬ A by ¬A and call this interpretation J ′. Then

Γ(I, P) = J ′.

Let us calculate Γ(I1, P3.4). First, we replace every ¬A by ¬ A resulting in:

a ← b, c
b ← not ¬ b

¬ c ← ¬ a.
Then we remove all rules containing a default literal not A such that A ∈ I1. In
our case there are none. However there is a default literal in the program which
we remove in the next step, giving:

a ← b, c
b ←

¬ c ← ¬ a.
If we take all literals except b to be 0, then every rule in the program is true,

thus the least model of this program is: {b}. This means: Γ(I1, P3.4) = {b}.
The definition of answer-sets semantics is given using the Γ-operator.

Definition 3.12 (Answer-sets semantics). A consistent interpretation I of an
extended logic program P is an answer-set of P iff Γ(I, P) = I, ie. I is a
fixedpoint of Γ. The answer-sets semantics of P is the set AS(P) defined as:

AS(P) = {I ⊆ H | Γ(I, P) = I}.
Thus I1 is not an answer-set of P3.4, however the interpretation: {b} is. Not

all programs have answer-sets, take for example the trivial program

p← not p.

Neither ∅ nor {p} are fixedpoints of the Γ-operator.
In Lifschitz [1996] it is shown that SLDNF is sound, but unfortunately not

complete, in relation to answer-sets.

Theorem 3.1 (Soundness of SLDNF). For any extended logic program P and
objective literal L,

22

- If L succeeds with respect to P, then L belongs to all answer-sets for P.

- If L fails with respect to P, then L does not belong to any answer-set of P.

If we examine the Γ-operator closely, we see that what it does is determine
the result of a program given certain assumptions about default literals. It
removes all rules with not A for which A ∈ I holds. Since the head of such
a rule can never be true if A holds this seems very intuitive. Furthermore all
default literals not A such that A /∈ I holds are removed. Again very intuitive,
A is not in I, thus basically not A succeeds and can be removed from the rule.
When considered this way, every answer-set is a way to interpret the program,
ie. an answer-set describes a possibility under which the program is true.

In this thesis we take the approach that the program resulting from GP
represents the knowledge of the answerer. Thus the answer-sets of this program
are the epistemic possibilities or possible worlds of the answerer.

3.4.2 “John or Mary came.” - revisited

We look again at example 3.3. Of interest to us now are the answer-sets of the
resulting program P3.3, which are the following:

AS (P3.3) =

{¬come(j), come(m),¬come(b)}
{come(j),¬come(m),¬come(b)}.

Let us see how we conclude that the first answer-set, call it IP3.3−1 , is an
answer-set of P3.3. We must calculate Γ(IP3.3−1 , P3.3), beginning with translat-
ing all ¬A, we get:

come(j) ← ¬ come(m)
come(m) ← ¬ come(j)

¬ come(m) ← not come(m)
¬ come(j) ← not come(j)
¬ come(b) ← not come(b).

We then remove all rules with not A such that A is in IP3.3−1 . This holds for
the third rule. Then we remove the remaining default literals, resulting in:

come(j) ← ¬ come(m)
come(m) ← ¬ come(j)
¬ come(j) ←
¬ come(b). ←

Since ¬ come(j) and ¬ come(b) are facts of this program, they must be true
in its minimal model. And since we have the rule: come(m) ← ¬ come(j),
come(m) must be in the minimal model as well. Thus, after translating back,
we conclude that Γ(IP3.3−1 , P3.3) = IP3.3−1 holds.

We consider answer-sets to be worlds that the speaker holds possible. From
this perspective we conclude from the answer-sets of P3.3 that the speaker knows:
¬come(b), he knows that Bill didn’t come. This we could already derive via
SLDNF. In neither of the two answer-sets is it the case that both John and
Mary came to the party. Thus, additionally the answer-set semantics allow

23

us to derive the scalar inference that we were looking for, the speaker knows
¬(come(j)∧ come(m)). On top of that, we derive the following, what is usually
considered a clausal implicature, the speaker holds possible: come(m), come(b),
¬come(m) and ¬come(b).

3.5 Answers with Quantifiers

Up until now we have made an oversimplification of answers by considering only
propositional formulae. What about arbitrary first-order formulae5? In general,
the translation of arbitrary first-order logic formulae into rules is impossible,
since logic programming is based on a subset of first-order logic. Nevertheless,
if we restrict ourselves to finite domains, then we can define an extension of
Form2Rules which translates first order formulae into rules. For this, we need
a new function.

It is well known that all first order formulae are equivalent to a first order
formula in prenex normal form, ie. all quantifiers are in front of the formula.
For the following we will assume that every formula is in prenex normal form.
The universal quantifier is easily translated by creating a large conjunction.
For every individual in the domain the formula that is quantified over should
hold. Dually, the existential quantifier can be translated by creating a large
disjunction. This method will create quite a number of rules. Although an
unfortunate problem, it is not insuperable. We define the following function for
this translation:

Definition 3.13 (2Prop). Let φ be a first order formula in prenex normal form
and D a domain of individuals. Then 2Prop is recursively defined as follows:

- 2Prop(∀xφ(x),D) = 2Prop(φ(d1),D) ∧ . . . ∧ 2Prop(φ(dn),D), where n is
the number of individuals in D and for each di, if i �= j, then dj is an
individual different from di.

- 2Prop(∃xφ(x),D) = 2Prop(φ(d1),D) ∨ . . . ∨ 2Prop(φ(dn),D), where n is
the number of individuals in D and for each di, if i �= j, then dj is an
individual different from di.

- 2Prop(φ,D) = φ, if φ contains no quantifiers.

The use of quantifiers and thus variables in formulae will inevitably intro-
duce the use of the equality predicate. We recall that the only models under
consideration are Herbrand models, this means that the equality relation is com-
pletely fixed. The only equality is between syntactically identical constants. We
can use this fact to clean up the clauses that we generate. If a clause contains a
literal with equality between two syntactically identical constants or vice versa,
then this literal is always true, thus the clause is always satisfied and we can
remove this clause from our set. On the other hand if we have a literal with
equality between two syntactically nonidentical constants or vice versa, then
we can remove this literal from the clause, since it will never be satisfied. To
keep the number of generated rules down, we will formalize these ideas in the
following clean-up function.

5Technically we are not dealing with first-order logic, since we are only concerned with
Herbrand models. However the formulae that we study follow the first-order logic syntax.

24

Definition 3.14 (EqClean function). Let Σ be a set of clauses. Then,

Σ′ = {{L1, . . . , Ln} |
{L1, . . . , Ln, d1a �= d1b, . . . , dma �= dmb, d(m+1)a = d(m+1)b, . . . , dka = dkb} ∈ Σ,
L1, . . . , Ln are not equality or inequality literals,
for all i ≤ m: dia is syntactically identical to dib,
for all m < j ≤ k: dja is syntactically nonidentical to djb,
d1a, . . . , dma, d1b, . . . , dmb, d(m+1)a, . . . , dka, d(m+1)b, . . . , dkb ∈ D}

and,
EqClean(Σ) = {σ | σ ∈ Σ′ ∧ ¬∃σ2 ∈ Σ′ : σ2 ⊂ σ}.

Suppose we have the following clauses:

{P (a), P (b), a = a, b = c}, {P (b), P (c), a �= a, b = c}.
The first clause is always true, since a = a is always true, thus we remove it
from our set. In the second clause a �= a and b = c can never be true, therefore
we can remove those literals. The application of the cleanup function to these
clauses would result in only one clause:

{P (b), P (c)}.
The redefinition of Form2Rules incorporates our newly defined functions.

Definition 3.15 (Form2Rules). The translation function Form2Rules(φ,D)
which translates a first-order logic formula in prenex form φ into logic pro-
gramming rules representing this formula given a finite domain D is defined as
follows:

Form2Rules(φ,D) = 2Rules(EqClean(2Clauses(CNF (2Prop(φ,D))))).

With the introduction of quantifiers into answers we will inevitably get an-
swers that contain other predicates than the question predicate. For instance,
we already saw an equivalence relation and we will see more in the next exam-
ple. There are two good alternatives for treating these other predicates. We
can explicitly define the extension of such a predicate in the program, ie. for
every individual we include a fact as background knowledge stating whether
this individual has this property or not. This means that we add rules to the
program generated by GP . The other option is to treat these predicates as fixed
predicates in a circumscription sense. Just as in Wakaki and Satoh [1997] we
introduce the following rules for a predicate R:

R(�x) ← not ¬R(�x)
¬R(�x) ← not R(�x)

The result of these rules is that each consistent answer-set of a program contains
either R(d) or ¬R(d) for each d in D. The first solution overrides this second
solution, which mean that we can implement the second one by default and
introduce the extension of a predicate as background knowledge if we need
that.

Since Form2Rules now has two arguments and we also want to deal with
other predicates than the question, we need a redefinition of GP .

25

Definition 3.16 (GP (Gricean Program)). The function GP(Q,A,D) takes as
input a question predicate Q, a first-order formula A in prenex normal form and
a domain of individuals D. It returns an extended logic program. Q′ is the set
of all the predicates in A that are not Q.

GP(Q,A,D) = {¬Q(c1, . . . , cn)← not Q(c1, . . . , cn) | c1, . . . , cn ∈ D}
∪ {R(c1, . . . , cn)← not ¬R(c1, . . . , cn) |

c1, . . . , cn ∈ D, R ∈ Q′}
∪ {¬R(c1, . . . , cn)← not R(c1, . . . , cn) |

c1, . . . , cn ∈ D, R ∈ Q′}
∪ Form2Rules(A,D)

This new definition of GP clearly extends the original one for the proposi-
tional case. The result is the same if we put in a propositional answer. First
of all, the result of 2Rules is still the same, since the function 2Prop leaves a
formula without quantifiers unchanged. Secondly, in the propositional case we
didn’t consider predicates other than the question, thus there will be no extra
rules introduced for dealing with other predicates and also the function EqClean
changes nothing.

For a proof later on in this thesis we will need to get more formal about
these claims: we require a theorem that states that under the Herbrand se-
mantics, ie. only allowing Herbrand models, a formula A is equivalent to
EqClean(2Clauses(CNF (2Prop(A,D)))) given a domain D. This requires two
lemmas.

Lemma 3.1. M = 〈D, I〉 is a Herbrand model of the first order formula φ in
prenex normal form iff M is a Herbrand model of 2Prop(φ,D).

Proof. We prove this by induction on the complexity of prenex normal form
formulae.

(base) The formula φ contains no quantifiers, thus 2Prop(φ,D) = φ. Which
means that M |= 2Prop(φ,D)⇔M |= φ.

(induction) ∀x The induction hypothesis is the following: for φ with free variable x
it holds that for all d ∈ D, M is a Herbrand model of φ(d) iff M is
a Herbrand model of 2Prop(φ,D). Now, the claim M is a Herbrand
model of 2Prop(∀xφ(x),D) is by definition of 2Prop equal to: M is
a Herbrand model of 2Prop(φ(d1),D)∧ . . .∧2Prop(φ(dn),D) (where
d1, . . . , dn are all the different individuals in D)). This is the same
as saying that M is a Herbrand model of 2Prop(φ(d1),D) and M
is a Herbrand model of 2Prop(φ(d2),D), etc. Now by the induction
hypothesis we know that this is the case iff M is a Herbrand model of
φ(d1) and M is a Herbrand model of φ(d2), etc. Which is equivalent
to claiming that M is a Herbrand model of ∀xφ(x).

∃x The induction hypothesis is the following: for φ with free variable x
it holds that for all d ∈ D, M is a Herbrand model of φ(d) iff M is
a Herbrand model of 2Prop(φ,D). Now, the claim M is a Herbrand
model of 2Prop(∃xφ(x),D) is by definition of 2Prop equal to: M is
a Herbrand model of 2Prop(φ(d1),D)∨ . . .∨2Prop(φ(dn),D) (where
d1, . . . , dn are all the different individuals in D)). This is the same

26

as saying that M is a Herbrand model of 2Prop(φ(d1),D) or M is
a Herbrand model of 2Prop(φ(d2),D), etc. Now by the induction
hypothesis we know that this is the case iff M is a Herbrand model
of φ(d1) or M is a Herbrand model of φ(d2), etc. Which is equivalent
to claiming that M is a Herbrand model of ∃xφ(x).

Lemma 3.2. M = 〈D, I〉 is a Herbrand model of the set of clauses Σ iff M is
a Herbrand model of the set of clauses EqClean(Σ).

Proof. (⇒) Assume M is a Herbrand model of Σ and suppose towards con-
tradiction that M is not a Herbrand model of EqClean(Σ). Thus there
is a clause σ in EqClean(Σ) that is not satisfied by M . By definition of
EqClean , σ must be a subset of, or equal to a clause in Σ. If it is equal,
then we have a contradiction, since it would imply that M is also not a
model of Σ. Thus, suppose it is a proper subset of a clause in Σ, call this
clause σ′. By definition of EqClean , σ − σ′ contains only equality liter-
als. Furthermore, we know by that definition and the fact that equality
is fixed in Herbrand semantics that these literals are all false. Therefore
M cannot be a model for σ′ and thus M cannot be a model for Σ, which
contradicts our assumption.

(⇐) Suppose M is a Herbrand model of EqClean(Σ) and towards contradiction
that M is not a Herbrand model of Σ. By definition of EqClean all clauses
in EqClean(Σ) must be subsets of clauses in Σ. Hence M must be a model
for Σ and therefore we have a contradiction.

These two lemmas allow us to prove the following theorem.

Theorem 3.2. M = 〈D, I〉 is a Herbrand model of the formula φ in prenex nor-
mal form iff M is a Herbrand model of EqClean(2Clauses(CNF (2Prop(A,D)))).

Proof. This proof is trivial using the two lemmas 3.1 and 3.2 combined with
the fact that it is well-known that formulae translated to conjunctive normal
form and then further translated to clauses are semantically equal to their non-
translated counterparts.

3.5.1 “Some boys came to the party.”

Now that we have a translation for quantifiers we can look at the most famous
of scalar implicatures: “some” implicates “not all”. Again, the example is about
the now familiar party.

(3.5) Q: “Who came to the party?”

A: “Some boys came.”

Imp: “Not all the boys came to the party.”
“No girls came to the party.”

27

The most elegant translation of the answer is: ∃x(boy(x) ∧ come(x)). Per-
haps, one can convincingly argue that “some” means “at least two”, but for
the example this does not really matter, thus we stick to the simple translation
above. We have seen two options for dealing with other predicates than the
question predicate: adding information about them as background knowledge
or treating them as fixed predicates. We begin with the later option and hence
do not state explicitly as background knowledge who is a boy and who is a girl.

The program that we are looking for is the result of GP(come(x), ∃x(boy(x)∧
come(x)), {j,m, b}). For illustrative purposes, let us look at the last step in the
GP function to see how it works: Form2Rules(∃x(boy(x)∧ come(x)), {j,m, b}).
We will look at all the interesting steps. The first one being 2Prop. C and B
abbreviate come and boy respectively.

2Prop(∃x(B(x) ∧ C(x)), {j,m, b}) =
2Prop(B(j) ∧ C(j), {j,m, b})∨

2Prop(B(m) ∧ C(m), {j,m, b}) ∨ 2Prop(B(b) ∧ C(b), {j,m, b}) =
(B(j) ∧ C(j)) ∨ (B(m) ∧ C(m)) ∨ (B(b) ∧ C(b))

We take the CNF and 2Clauses steps together, giving the clauses:

{B(j),¬B(m),¬B(b)}, {B(j),¬B(m),¬C(b)}, {B(j),¬C(m),¬B(b)},
{B(j),¬C(m),¬C(b)}, {C(j),¬B(m),¬B(b)}, {C(j),¬C(m),¬B(b)},

{C(j),¬B(m),¬C(b)}, {C(j),¬C(m),¬C(b)}.
The function EqClean changes nothing to these clause. The result of 2Rules
applied to them is the first chunk of rules in the program below, which is the
entire program for this example.

P4.6 = GP(C(x), ∃x(B(x) ∧ C(x)), {j,m, b}) =

B(j) ← ¬B(m),¬B(b) C(j) ← ¬B(m),¬B(b)
B(m) ← ¬B(j),¬B(b) B(m) ← ¬C(j),¬B(b)
B(b) ← ¬B(j),¬B(m) B(b) ← ¬C(j),¬B(m)
B(j) ← ¬B(m),¬C(b) C(j) ← ¬C(m),¬B(b)
B(m) ← ¬B(j),¬C(b) C(m) ← ¬C(j),¬B(b)
C(b) ← ¬B(j),¬B(m) B(b) ← ¬C(j),¬C(m)
B(j) ← ¬C(m),¬B(b) C(j) ← ¬B(m),¬C(b)
C(m) ← ¬B(j),¬B(b) B(m) ← ¬C(j),¬C(b)
B(b) ← ¬B(j),¬C(m) C(b) ← ¬C(j),¬B(m)
B(j) ← ¬C(m),¬C(b) C(j) ← ¬C(m),¬C(b)
C(m) ← ¬B(j),¬C(b) C(m) ← ¬C(j),¬C(b)
C(b) ← ¬B(j),¬C(m) C(b) ← ¬C(j),¬C(m)

¬C(j) ← not C(j)
¬C(m) ← not C(m)
¬C(b) ← not C(b)
¬B(j) ← not B(j)
¬B(m) ← not B(m)
¬B(b) ← not B(b)
B(j) ← not ¬B(j)
B(m) ← not ¬B(m)
B(b) ← not ¬B(b)

28

This program has twelve answer-sets.

AS (P4.6) =

{B(j), B(m), B(b), C(j),¬C(b),¬C(m)}
{B(j), B(m), B(b), C(m),¬C(j),¬C(b)}
{B(j), B(m), B(b), C(b),¬C(j),¬C(m)}
{B(j), B(m),¬B(b), C(j),¬C(m),¬C(b)}
{B(j), B(m),¬B(b), C(m),¬C(j),¬C(b)}
{B(j),¬B(m), B(b), C(j),¬C(m),¬C(b)}
{B(j),¬B(m), B(b), C(b),¬C(j),¬C(m)}
{B(j),¬B(m),¬B(b), C(j),¬C(m),¬C(b)}
{¬B(j), B(m), B(b), C(m),¬C(j),¬C(b)}
{¬B(j), B(m), B(b), C(b),¬C(j),¬C(m)}
{¬B(j), B(m),¬B(b), C(m),¬C(j),¬C(b)}
{¬B(j),¬B(m), B(b), C(b),¬C(j),¬C(m)}

The first thing to gather from all these sets is that it is never the case that
a girl came to the party, thus we can derive the second implicature: “No girls
came to the party.” from these answer-sets. Furthermore there is no answer-set
with more than one boy, in which all the boys came. This means that the first
implicature, the scalar one, is also derivable from these answer-sets, because in
no possibility with more than one boy did all the boys come to the party.

In the case of the sex of individuals it is very reasonable to include infor-
mation about this as background knowledge. In this example P4.6 would be
extended with the following facts: {B(j), B(b),¬B(m)}.

Since Mary is now defined as a girl and the answer is only about boys, one
would expect to derive the fact ¬C(m) in this extended program. Unfortunately,
infinite loops occur when trying to derive ¬C(m). Later on we will see a top-
down method that can derive the fact that Mary didn’t come to the party. For
now, we need to look at the answer-sets. The extended version of P4.6 has two
answer-sets.

AS (P4.6) =

{C(j),¬C(b),¬C(m), B(j), B(b),¬B(m)}
{C(b),¬C(j),¬C(m), B(j), B(b),¬B(m)}

Clearly, Mary didn’t come to the party. Furthermore, we see that there is
no answer-set in which all the boys, ie. John and Bill, came to the party. Thus,
as before, the answer-sets provide us with the scalar implicature that we were
looking for: “Not all the boys came to the party.”

3.5.2 “Two people came to the party.”

Using quantifiers we can also represent cardinal numbers, such as in this exam-
ple:

(3.6) Q: “How many people came to the party?”

A: “Two people came.”

Imp: “Exactly two people came to the party.”

29

We interpret “two” in a standard neo-Gricean way and take it to mean
“at least two”. We have the same question predicate as before: come(x). We
must notice however, that the question is about how many people came to
the party, which is the cardinality of the extension of the predicate, not the
extension itself. We cannot represent this cardinality explicitly since we refrain
from introducing numbers as individuals. Because of this, the translation of the
answer is a bit more complex, we have to count in first-order logic: ∃x∃y(x �=
y∧ come(x)∧ come(y)). We don’t need any background theory and we can also
keep {j,m, b} as our standard domain of individuals.

P3.6 = GP(come(x), ∃x∃y(x �= y ∧ come(x) ∧ come(y)), {j,m, b}, ∅) =

come(j) ← ¬come(b)
come(j) ← ¬come(m)
come(b) ← ¬come(j)
come(b) ← ¬come(m)

come(m) ← ¬come(j)
come(m) ← ¬come(b)
¬come(j) ← not come(j)
¬come(m) ← not come(m)
¬come(b) ← not come(b)

Via SLDNF there isn’t much useful derivable, except for the trivial facts.
The answer-sets are the most interesting in this case. We have three of them.

AS (P3.6) =

{come(j), come(m),¬come(b)}
{come(b), come(m),¬come(j)}
{come(j), come(b),¬come(m)}

Thus we have three possibilities, ie. John and Mary came, John and Bill
came and Mary and Bill came. In every possibility there are only two people that
came. Thus, we get an “exactly two” interpretation, precisely the implicature
we were looking for.

When we add natural numbers as objects to our domain we can give a some-
what simpler translation of the example. We need a new predicate:

NumAtParty(x)

which holds if at least x people where at the party. Furthermore we require
background theory in the form of the (grounded instances of the) rule:

NumAtParty(x)← NumAtParty(x+ 1).

Let us see what program we get in this case (keeping rules ungrounded for
brevity).

P3.6B = GP(NumAtParty(x),NumAtParty(2),
{0, 1, 2, 3, 4}, {NumAtParty(x)← NumAtParty(x+ 1)}) =

30

NumAtParty(2)
¬NumAtParty(x) ← not NumAtParty(x)
NumAtParty(x) ← NumAtParty(x+ 1)

As we see the program is rather simple and we can easily conclude that

SLDNF (P3.6B) =
{NumAtParty(0),NumAtParty(1),

NumAtParty(2),¬NumAtParty(3),¬NumAtParty(4)}.
This is also the only answer-set of the program. We see that we get an “exactly
two”, or more precise, “no more than two” reading. Because we represent
numbers differently, this second solution is somewhat less complex, in the sense
that the implicature already follows from SLDNF, than the previous one.

3.6 Remarks

Roughly we have seen two types of implicatures in the examples: implicatures
based on the not mentioning of individuals in the answer, such as “Bill didn’t
come” in example 3.1, and scalar implicatures. The first type we can perhaps
aptly dub ‘exhaustivity’ implicatures6. The difference between exhaustivity and
scalar implicatures is arguably the most noticeable thing so far. Apart from the
second treatment of the last example, every scalar implicature is obtained by
considering the answer-sets. In contrast, exhaustivity implicatures are most of
the time already achieved by using SLDNF (although not in the complex ex-
ample 4.6 with existentials). This hints at a difference in complexity between
exhaustive implicatures and scalar implicatures. So, if nothing else, this dis-
tinction is interesting. It might be a thing for psycholinguistic research to look
into. We will come back to this in the next chapter.

Scalar implicatures are only generated when one computes the answer-sets
of a program, this is a computationally expensive procedure, as we will see when
considering computational complexity. In practice SLDNF is used to work with
logic programs, answer-sets are only considered in special situations. To map
this distinction to a psycholinguistic standpoint: ‘just’ considering SLDNF is
what natural language users ordinarily do. Only when the context is right
do they consider all the answer-sets, which lets them derive scalar implicatures.
Thus, in terms of the psycholinguistic debate on whether scalar implicatures are
generated by default or are only generated in the right context, this approach
is in the latter category.

In terms of epistemic strength, the implicatures derived in the current ap-
proach are strong. In example 3.3 we derive ¬(come(j) ∧ come(m)) and in 4.6
we derive “Not all boys came to the party”. Epistemically it means that we
consider those implicatures knowledge of the speaker. This is correct for the
examples treated thus far, however, in the context of negation we might want
to consider epistemically weaker implicatures. We want ‘not knowledge that’
instead of ‘knowledge that not’.

6In Geurts [2007] the author uses the term multiplicatures for more or less the same type
of implicatures.

31

3.7 Comparison with Circumscription

In this section we will see a proof of equivalence between the approach of this
chapter using extended logic programming and answer-sets and the solution in
Van Rooij and Schulz [2004] using circumscription. This proof is somewhat
more technical than the rest of this thesis and can be skipped without missing
anything vital for the later chapters.

Although Van Rooij and Schulz [2004]; Schulz and Van Rooij [2006] is defi-
nitely not the only recent work on the formalization of implicatures (we already
mentioned Sauerland [2004] and Spector [2003]) it is the most advanced. There-
fore it is the most obvious to compare the results in this chapter with their work.
Moreover, upon studying their results the similarities immediately become ap-
parent.

Circumscription is a form of nonmonotonic reasoning introduced by John
McCarthy (McCarthy [1987]). Many authors have expanded on his ideas, a
good overview article is Lifschitz [1994].

In Wakaki and Satoh [1997] a translation of circumscription into extended
logic programs is provided, however, the resulting equivalence theorem is not
good enough for our aims. It only states equivalence between the intersection of
the answer-sets of the translated circumscriptive theory and the consequences
of the theory itself7. We are interested in equivalence between the models of
a circumscriptive theory and answer-sets, since our claims about implicatures
are based on the contents of the actual answer-sets, not on their intersection.
Nonetheless, other results from their paper will be useful for us.

Ordinarily circumscription is a syntactic operation applied to a first-order
theory. However, we consider circumscription from a model-theoretic perspec-
tive: interpretation in minimal models. There are three types of predicates in
circumscription, the predicate that needs to be minimized (P), those predicates
that remain fixed (Q) and those that are variable (Z). The first step in compar-
ing circumscription with our answer-sets approach is to define minimal models.
It is useful to note again that everywhere in this thesis we are only considering
Herbrand models. Furthermore, in contrast to the rest of this thesis, the symbol
Π is used as a variable for programs and P refers to the minimized predicate.

Definition 3.17 (Minimal Models). Let M1 = 〈D, I〉 and M2 = 〈D, J〉 be first
order models. D is a domain of individuals and I and J are interpretation func-
tions for the predicates and relations. We say that with respect to the minimized
predicate P and the fixed predicates Q:

M1 <P,Q M2, iff I(P) ⊂ J(P)
and for all other predicates P ′ ∈ Q: I(P ′) = J(P ′).

M is a minimal model for φ with respect to a minimized predicate P and fixed
predicates Q iff:

M |= φ, and ¬∃M ′ : M ′ |= φ ∧M ′ <P,Q M.

The question predicate in our approach is the minimized predicate P . The
other predicates in our program are fixed predicates and thus in Q. In this

7It is also unfortunate that the proof of the theorem was omitted from their paper due to
space constraints, since it is now only available in an extended version in Japanese, a language
in which the author of this thesis, unfortunately, is not proficient.

32

way, our translation of a question and an answer roughly corresponds to the
translation of a circumscriptive theory in Wakaki and Satoh [1997].

We need a simple lemma about the totality of answer-sets for our comparison
with circumscription. Since minimal models are total models, the corresponding
answer-sets must be total as well.

Lemma 3.3. If we have an extended logic program Π and we treat every predi-
cate in Π as either a minimized or a fixed predicate (thus for every predicate P
in Π we have either ¬P ← not P and/or P ← not ¬P). Then every answer-set
for this program is total, ie. for every literal L it either contains L or ¬L.

Proof. Assume the answer-set I for the program Π for which holds: I = Γ(I,Π).
Now assume towards contradiction that we have a literal L, such that �L /∈ I
and ¬L /∈ I.

If L is a literal of the minimized predicate, then we know by the assumption
L /∈ I and the rule ¬L← not L that ¬L ∈ Γ(I,Π), since ¬L /∈ I, this contradicts
the assumption that I is an answer-set.

If L is a fixed predicate, then we know by the assumption L /∈ I and the
rule ¬L ← not L and the assumption ¬L /∈ I and the rule L ← not ¬L that
L,¬L ∈ Γ(I,Π), again contradicting the assumption that I is an answer-set.

In order to prove equivalence between the minimal models of a circumscrip-
tive theory and the answer-sets of a program resulting from this theory we need
to assume that there are no variable predicates. As we see in lemma 3.3, answer-
sets of programs in which only minimized and fixed predicates are translated
are total, but for programs without this constraint, ie. with variable predicates,
this is not the case. To a non-total answer-set there correspond a number of
total minimal models. This isn’t completely problematic, we could try to prove
correspondence modulo variable predicates. However, for the sake of simplicity
we omit variable predicates. Also, as far as we have seen in this thesis, we can
deal with implicatures without them.

With the above lemma we can prove that every answer-set of a program
based on a question and answer is a minimal model of the corresponding answer.

Theorem 3.3. Let A be a consistent answer to a question about predicate P
and D a domain of individuals. Π = GP(P,A,D). Q is the set of predicates in
Π without P . Thus Q ∪ {P} is the set of all predicates in Π.

If J ∈ AS (Π), then M = 〈D, I〉 is a minimal Herbrand model of A with
respect to the minimized predicate P and the fixed predicates Q. Where I is
defined as:

for every P ′ ∈ {P} ∪Q:
I(P ′) = {〈d1, . . . , dn〉 | P ′(d1, . . . , dn) ∈ J, d1, . . . , dn ∈ D}

Proof. By theorem 3.2 we know that the Herbrand models of A are equal to
the Herbrand models of EqClean(2Clauses(CNF (2Prop(A,D)))). Thus, when
we refer to A this can also be a reference to its translated variant. Suppose that
J ∈ AS(Π) and towards contradiction that the model M = 〈D, I〉 of A is not a
minimal model. We have two options, M is not a model of A or M is a model
of A but not minimal. By lemma 3.3 we know that J is a total answer-set, so
M is a total model, which is what we need.

33

(case 1) M is not a model of A. Thus there must be a clause in A which is not
true under M . Let this clause be: {L1, . . . , Ln}. Since it is false, it holds
that for every i ≤ n: M |= ¬Li. And also for every i ≤ n: ¬Li ∈ J . Since
J is an answer-set, Γ(J,Π) = J and thus for every i ≤ n: ¬Li ∈ Γ(J,Π).
The translation of the clause {L1, . . . , Ln} results in the set of rules:

{Li ← ¬L1, . . . ,¬Li−1,¬Li+1, . . . ,¬Ln | i ≤ n}
Now, since every ¬Li ∈ Γ(J,Π), we have by the rules above that every Li

is in Γ(J,Π). Since Γ(J,Π) = J , every Li is in J . Thus J contains a con-
tradiction and cannot be an answer-set, which contradicts the assumption
that J is an answer-set.

(case 2) M is not minimal. This means that there is a model of A, M ′ = 〈D, I ′〉,
such that I ′(P) ⊂ I(P) and thus M ′ <P,Q M . The answer-set based on
M ′ is J ′. Thus A can be made true with at least one less positive P -literal
than that is true in M . Call these literals L′

1, . . . , L
′
n. For each of these

literals the following holds: M |= L′
i and M ′ |= ¬L′

i. Thus for every clause
in A with an L′

i in it there must also be a literal L′′
i , L′

i �= L′′
i , such that

M ′ |= L′′
i holds. We can write this clause as: {L′

i, L
′′
i , L1, . . . , Ln}, the

translation of which, results in, among others, the following two rules:

L′
i ← ¬L′′

i ,¬L1, . . . ,¬Ln

L′′
i ← ¬L′

i,¬L1, . . . ,¬Ln

We know: I ′(P) ⊂ I(P) and I ′(P ′) = I(P ′) for all P ′ ∈ Q. Thus, if
L′′

i is a positive P -literal, or a Q-literal, then L′′
i ∈ J holds. Hence by

Γ(J,Π) = J , L′′
i ∈ Γ(J,Π) is true. Therefore L′

i cannot be in Γ(J,Π) by
the first rule above, since that would require ¬L′′

i ∈ Γ(J,Π) to be true.
L′

i is a positive P -literal, thus there is no default rule with L′
i in its head.

But since M |= L′
i, we know that L′

i ∈ J , this means that Γ(J,Π) �= J ,
which is a contradiction with the fact that J is an answer-set.

Suppose that L′′
i is a negative P -literal. We know L′′

i ∈ J leads to a
contradiction by the argument above. Thus we assume that L′′

i /∈ J is the
case. Since ¬L′′

i is positive and it is in J and also L′′
i ∈ J ′ holds, we know

that L′′
i must be one of the L′

1, . . . , L
′
n, say L′

j . Thus L′
i ∈ Γ(J,Π) is true

if L′
j ∈ Γ(J,Π) holds. So, since positive P -literals cannot be in Γ(J,Π)

via a default rule, for an arbitrary L′
i to be in Γ(J,Π) there needs to be

at least another L′
j in Γ(J,Π) already. For this L′

j the same holds again,
or we run into a contradiction as we saw above, etc. Thus, they are all
interdependent, and all of them cannot be in Γ(J,Π), which contradicts
the assumption that J was an answer-set.

With theorem 3.3 we have one direction of the equivalence that we are look-
ing for. The other direction is a bit more problematic, which the following
example will illustrate.

(3.7) Q: come(x)?

A: (come(j) ∨ come(m) ∨ come(b)) ∧ (come(j)↔ come(m))

34

Clauses of A: {come(j), come(m), come(b)}, {¬come(j), come(m)},
{come(j),¬come(m)}

It is easy to see that this answer has two minimal models: one in which
only Bill comes and one in which John and Mary come. However, the resulting
program has only one answer-set.

come(j) ← ¬come(m),¬come(b)
come(m) ← ¬come(j),¬come(b)
come(b) ← ¬come(m),¬come(j)
¬come(j) ← ¬come(m)
come(m) ← come(j)
¬come(m) ← ¬come(j)

come(j) ← come(m)
¬come(x) ← not come(x)

This program does have the answer-set: {come(b),¬come(j),¬come(m)}, but
has no answer-set in which both Mary and John come.

A solution to this problem is given in Wakaki and Satoh [1997]. The authors
add an extra step to their translation to extended logic programming rules,
which we will see below. Let Σ be a set of clauses, then Th(Σ) is the set of
clauses which are theorems of Σ. Looking at example 3.7, the theorems would
be:

{{come(j), come(m), come(b)}, {¬come(j), come(m)},
{come(j),¬come(m)}, {come(m), come(b)}, {come(j), come(b)}}.

A clause in Th(Σ) that is not properly subsumed by any other clause in Th(Σ) is
called a characteristic clause. A clause φ is properly subsumed by a clause ψ iff
ψ ⊆ φ and not φ ⊆ ψ. They define μTh(Σ) as the set of all characteristic clauses
in Th(Σ). In example 3.7 we would have the following set of characteristic
clauses:

{{come(m), come(b)}, {come(j), come(b)},
{¬come(j), come(m)}, {¬come(m), come(j)}}.

The translation of these clauses results in the program:

come(j) ← ¬come(b)
come(b) ← ¬come(j)

come(m) ← ¬come(b)
come(b) ← ¬come(m)
¬come(j) ← ¬come(m)
come(m) ← come(j)
¬come(m) ← ¬come(j)

come(j) ← come(m)
¬come(x) ← not come(x).

This program does have the two answer-sets that we want:

{come(b),¬come(j),¬come(m)}
{¬come(b), come(j), come(m)}.

The proof of equivalence that we will give, requires the use of characteristic
clauses. However, we have refrained from introducing characteristic clauses

35

into our own answer-sets based approach described in the previous sections,
because the problem of example 3.7 is a somewhat contrived one and does
not occur often in natural language. Furthermore, the procedure to compute
characteristic clauses is not at all trivial and computationally quite complex.
We do keep in mind that in some cases problems might occur because of this
decision. For the proof we need special versions of Form2Rules and GP that
make use of charateristic clauses. We will need a function that translates clauses
into characteristic clauses first. Such a function is definitely not trivial, but we
only need the fact that it exists for this proof, so we will not spell out the entire
definition.

Definition 3.18 (2CC). 2CC (σ) gives the characteristic clauses of a set of
clauses σ.

With this auxiliary we can define new versions of Form2Rules and GP .

Definition 3.19 (Form2RulesCC). The function Form2RulesCC(φ,D) which
translates a first-order logic formula in prenex form φ into logic programming
rules representing this formula given a finite domain D is defined as follows:

Form2Rules(φ,D) = 2Rules(2CC (EqClean(2Clauses(CNF (2Prop(φ,D))))))

This function may start to look very complicated, but compared to previous
definitions only one extra step is added: the conversion to characteristic clauses.
Thus, this function still does to same, it applies a number of steps in a row to
go from a formula to a set of extended logic programming rules.

The special version of GP is trivial.

Definition 3.20 (GPCC). The function GPCC(Q,A,D) takes as input a ques-
tion predicate Q, a first-order formula A in prenex normal form and a domain
of individuals D. It returns an extended logic program. Q′ is the set of all the
predicates in A that are not Q.

GPCC(Q,A,D) = {¬Q(c1, . . . , cn)← not Q(c1, . . . , cn) | c1, . . . , cn ∈ D}
∪ {R(c1, . . . , cn)← not ¬R(c1, . . . , cn) |

c1, . . . , cn ∈ D, R ∈ Q′}
∪ {¬R(c1, . . . , cn)← not R(c1, . . . , cn) |

c1, . . . , cn ∈ D, R ∈ Q′}
∪ Form2RulesCC(A,D)

We also need some definitions from Lifschitz [1996] that are used for basic
programs. Basic programs are extended logic programs without default literals.

Definition 3.21 (Consequence-operator). Let Π be a basic program, ie. it
contains no default literals, and let X be a set of literals. Then we define the
function T from sets of literals to sets of literals as follows:

TΠ(X) = {H |H ← B1, . . . , Bn ∈ Π, B1, . . . , Bn ∈ X}.
The set of consequences of a basic program can be defined as follows:

Definition 3.22 (Consequences). The set Cn(Π) of consequences of a basic
program Π is:

Cn(Π) =
⋃
n≥0

T n
Π(∅).

Where T 0
Π(∅) = ∅, T 1

Π(∅) = TΠ(T 0
Π(∅)), T 2

Π(∅) = TΠ(T 1
Π(∅)), etc...

36

As Lifschitz shows in Lifschitz [1996] this set of consequences is the least
model of a basic program. Thus in definition 3.11 of the Gamma-operator we
could have equivalently used Cn(P

I), resulting in the following definition:

Definition 3.23 (The Γ-operator (Alternative definition)). Let P be an ex-
tended logic program and I a consistent interpretation. The GL-transformation
of P modulo I is the program P

I obtained from P by:

- first denoting every objective literal in H of the form ¬A by a new atom,
say ¬ A;

- replacing in both P and I these objective literals by their new denotations;

- then performing the following operations:

- remove from P all rules which contain a default literal not A such
that A ∈ I;

- removing from the remaining rules all default literals.

J = Cn(P
I).

Replace in J the atoms ¬ A by ¬A and call this interpretation J ′. Then
Γ(I, P) = J ′.

Using these definitions we can prove an equivalence.

Theorem 3.4. Let A be a consistent answer to a question about predicate P
and D a domain of individuals. Π = GPCC(P,A,D). Q is the set of predicates
in Π without P . Thus Q ∪ {P} is the set of all predicates in Π.

If M = 〈D, I〉 is a minimal Herbrand model of A with respect to the mini-
mized predicate P and the fixed predicates Q, then J ∈ AS(Π), where J =

{P ′(d1, . . . , dn) |
for every P ′ ∈ Q ∪ {P}:〈d1, . . . , dn〉 ∈ I(P ′) ∧ d1, . . . , dn ∈ D} ∪
{¬P ′(d1, . . . , dn) |

for every P ′ ∈ Q ∪ {P}:〈d1, . . . , dn〉 /∈ I(P ′) ∧ d1, . . . , dn ∈ D}.

Proof. We know from theorem 3.2 that EqClean(2Clauses(CNF (2Prop(φ,D))))
and A are equivalent. The further translation to characteristic clauses changes
nothing in this respect. So again when refering to A we can also mean the
characteristic clauses of A.

Assume that M is a minimal Herbrand model of A and towards contradiction
that J is not an answer-set, thus J �= Γ(J,Π). We have two possibilities: there
is a literal L such that L /∈ J and L ∈ Γ(J,Π) or L ∈ J and L /∈ Γ(J,Π).

(case 1) Assume there is a literal L such that L /∈ J and L ∈ Γ(J,Π).

By induction on the number of applications of the consequence operator
we can proof that, if for a literal L′ it holds that: L′ ∈ Cn(Π

J)T , then
L′ ∈ J must hold (where the superscript T means that we have translated
each literal ¬ X in Cn(Π

J) back to ¬X). L′ ∈ Cn(Π
J)T means by definition

that L′ ∈ (
⋃

n≥0 T
n
Π
J

(∅))T . Thus, L′ ∈ (T n
Π
J

(∅))T for some n.

(base) T 0
Π(∅) = ∅, thus it holds trivially. The real first step is T 1

Π(∅) = TΠ(∅).
Now TΠ(∅) = {H | H ← B1, . . . , Bn ∈ Π, B1, . . . , Bn ∈ ∅}. There is

37

trivially no Bi ∈ ∅, thus the only heads H in TΠ(∅) are facts in the
program. There are two ways that we can have facts H in Π

J . First
H can be a singleton clause of A. In this case H must be in J , or M
is not a model of A. The second way is if H is a fact resulting from
removing the default literal from a rule: H ← not ¬H . If the default
literal is removed, then this means that ¬H /∈ J , which implies, since
J is total and non-contradictory (because it is based on a total model
M), that H ∈ J holds.

(induction) The induction hypothesis is the following: if L′ ∈ (T n
Π
J

(∅))T , then

L′ ∈ J . Now we need to show for n + 1, that if L′ ∈ (T n+1
Π
J

(∅))T

then L′ ∈ J holds. We recall that T n+1
Π
J

(∅) = TΠ
J

(T n
Π
J

(∅)). Further-
more, TΠ

J
(T n

Π
J

(∅)) = {H |H ← B1, . . . , Bn ∈ Π, B1, . . . , Bn ∈ T n
Π
J

(∅)}.
Now, for every Bi that is in T n

Π
J

(∅) we know by the induction hy-
pothesis that Bi ∈ J . Thus, since J is total and non-contradictory,
¬Bi /∈ J . The rule: H ← B1, . . . , Bn was a translation of the clause:
{H,¬B1, . . . ,¬Bn}. Since M is a model for this clause, and we know
that ¬B1, . . . ,¬Bn are not in J and thus they are also not true in
M , it must be that H is true in M and therefore H ∈ J .

By the alternative definition of Γ with Cn, we know that L ∈ Γ(J,Π) is
equal to claiming that L ∈ Cn(Π

J)T . Now we have shown that if L ∈
Cn(Π

J)T then L ∈ J must be true, which contradicts our assumption that
L is not in J .

(case 2) Assume there is a literal L such that L ∈ J and L /∈ Γ(J,Π).

Suppose that L is a literal of a fixed predicate. Since J is total and non-
contradictory, we know that if L ∈ J , then ¬L /∈ J , thus by the default
rule: L← not ¬L, which exists for a fixed predicate, L must be in Γ(J,Π).
This contradicts our assumption. If L is a negative P -literal, then we know
that L ∈ Γ(J,Π) holds by the rule L← not ¬L, which exists for negative
P -literals. Again, this is contradicting our assumption.

The last option is that L is a positive P -literal. From all the minimal
models of A we can construct a special formula. Suppose we have n
minimal models. Then the formula φi is a conjunction of all the positive
P -literals true in the i-th minimal model. The disjunction of all these φi

we call ψ. Thus ψ looks like: φ1 ∨ . . . ∨ φn. This ψ is a theorem of A. If
it isn’t then there should be a model of A in which ψ doesn’t hold. Take
this model to be M ′. The set of every positive P -literal true in M ′ is a
superset of the set of positive P -literals true in some minimal model Mi of
A. Therefore φi must still be true in M ′ and thus ψ is true in M ′, which
gives a contradiction.

We can take the CNF of ψ and translate the result into clauses. Lets call
the set of these clauses Δ. It is easy to see that each clause in Δ contains
at most a number of literals equal to the number of minimal models of A.
Now since these clauses are theorems of A, there must be clauses that are
at least as strong as these in Σ. There cannot be a clause that is stronger
in Σ. Suppose we have such a clause σ. Then there is a δ ∈ Δ such that
σ ⊂ δ holds. Now for each Mi (minimal model of A) it holds that there

38

is an Li ∈ δ such that Mi |= Li, since every minimal model must satisfy
δ. Suppose that there is only one such Li for each Mi, thus one literal
can be true in multiple models, but there is not more than one literal true
in a model. Since σ ⊂ δ holds, there must be an Lj such that Lj ∈ δ
and Lj /∈ σ. However for this Lj it holds that there is a model Mj , such
that Mj |= Lj is true. Now σ is assumed to be a theorem of A, but then
Mj cannot be a model of A, since Mj �|= σ, which is a contradiction. It
might be however, that there is a model Mm such that there are multiple
Lm ∈ δ for which holds: Mm |= Lm. For such an Lm it can hold that
Lm /∈ σ and Lm ∈ δ, while σ remains true in all minimal models. Because
the number of literals in σ is less than the number of minimal models of
A, there must be an Lkl ∈ σ such that there are two minimal models Mk

and Ml which make Lkl true. This means that Lkl is in the conjunctions
φk and φl. Which implies by the construction of the clauses in Δ via a
conjunctive normal form of ψ that σ is also a clause in Δ.

Thus, every clause in Δ that is not properly subsumed by another clause
in Δ is also in Σ. Suppose without loss of generality that our literal L,
L ∈ J and L /∈ Γ(J,Π), is in φ1, thus M1 |= L is true. And we assume
also without loss of generality that M = M1. For every i �= 1 we can
find a positive P -literal L′, such that Mi |= L′ (and thus L′ is in φi) and
M1 |= ¬L′ hold. Suppose that we cannot do this for some i, then Mi

would be more minimal than M1, since M1 makes the same literals true
as Mi, and we can’t have M1 = Mi it must be that Mi ⊂M1 holds, which
contradicts the fact that M1 is a minimal model. With these L′ we can
construct the disjunction: L ∨ L′

1 ∨ . . . ∨ L′
n (note that some L′

i can be
equal). The clause ω of this disjunction is in Δ. None of the L′

i is true in
M1. Though it might be that a clause properly subsuming ω is in Σ and
not ω itself, it is always the case that such a clause will contain L which
is true in M1 and thus in M and literals L′′

1 , . . . L
′′
n, that are false in M1

and thus false in M . The fact that there is such a clause in Σ means that
there will be a rule in our program looking like:

L ← ¬L′′
1 , . . . ,¬L′′

n

The literals ¬L′′
1 , . . . ,¬L′′

n are all negative P -literals. Since L′′
1 , . . . L

′′
n are

false in M , it holds that ¬L′′
1 , . . . ,¬L′′

n ∈ J . And thus by: ¬P ← not P ,
they must be in Γ(J,Π). From which follows that L ∈ Γ(J,Π) must be
true, which contradicts our assumption.

The following theorem stating equivalence between answer-sets and the min-
imal models of circumscription in the context of a question and an answer is
now easy to prove.

Theorem 3.5. Let A be a consistent answer to a question about predicate P
and D a domain of individuals. Π = GPCC(P,A,D). Q is the set of predicates
in Π without P . Thus Q ∪ {P} is the set of all predicates in Π.

39

M = 〈D, I〉 is a minimal Herbrand model of A with respect to the minimized
predicate P and the fixed predicates Q, iff J ∈ AS(Π), where J =

{P ′(d1, . . . , dn) |
for every P ′ ∈ Q ∪ {P}:〈d1, . . . , dn〉 ∈ I(P ′) ∧ d1, . . . , dn ∈ D} ∪
{¬P ′(d1, . . . , dn) |

for every P ′ ∈ Q ∪ {P}:〈d1, . . . , dn〉 /∈ I(P ′) ∧ d1, . . . , dn ∈ D}.
Proof. The proof is trivial from theorems 3.3 and 3.4, which each provide a
direction of the equivalence. Theorem 3.3 is even a bit stronger than necessary
since it doesn’t depend on characteristic clauses.

We conclude that the approach described in this chapter has a very close
connection to a circumscription based solution. The main difference is the fact
that our approach distinguishes between facts already derivable using topdown
derivations and facts that are only derivable when considering all the possibil-
ities, ie. all answer-sets or minimal models. In the next chapter we will see a
refinement of the solutions in this chapter that allows for more implicatures,
but we will also loose the strong connection with circumscription.

40

Chapter 4

Advanced Approach

Already in chapter two we mentioned that not all the literature agrees with the
view that scalar implicatures are epistemically as strong as we derive them in
chapter three. In example 3.3 there can be contexts in which the implicature:
“The answerer does not know that John and Mary come” might be more ap-
propriate than the stronger: “(The answerer knows that) John and Mary don’t
come both”. This will become even more clear in the context of negation, which
we will see in the example below. The goal of this chapter is to provide a solu-
tion that can deal with both weak and strong epistemic interpretations via the
introduction of a different declarative semantics, called: WFSX.

4.1 “John didn’t come.”

Let us consider the following example with negation.

(4.1) Q: “Who came to the party?”

A: “John didn’t come to the party.”

Imp (a): “All other people came to the party.”

Imp (b): “It is possible that other people came to the party.”

As mentioned in Van Rooij and Schulz [2004] the literature is divided as to
what is the correct implicature in this example. Is it the strong variant (a), or
the epistemically weaker (b)? (a) can be derived in our approach by considering
¬come as our question predicate, a suggestion also found in Van Rooij and
Schulz [2004].

P4.1 = GP(¬come(x),¬come(j), {j,m, b}, {}) =

¬come(j)
come(m) ← not ¬come(m)
come(j) ← not ¬come(j)
come(b) ← not ¬come(b)

The answer-set of P4.1 is:

{¬come(j), come(b), come(m)}.

41

And clearly this is also the outcome of SLDNF (P4.1). Thus we derive the
exhaustivity implicature with respect to ¬come, which is variant (a).

As mentioned before, answer-sets intuitively represent different possibilities
of interpreting the program. Under different assumptions of the truth of the
default literals the program behaves differently. With this in mind, we modify
our closed world assumption (CWA) into something weaker, which would allow
us to derive variant (b). Suppose that we treat the question predicate P the
same as the other predicates:

P (�x) ← not ¬P (�x))
¬P (�x) ← not P (�x))

In this example this new approach would give the program P ′
4.1:

¬come(j)
come(m) ← not ¬come(m)
come(j) ← not ¬come(j)
come(b) ← not ¬come(b)

¬come(m) ← not come(m)
¬come(j) ← not come(j)
¬come(b) ← not come(b)

Via SLDNF we can only derive the obvious ¬come(j). The answer-sets of
this program are more interesting.

AS (P ′
4.1) =

{¬come(j), come(m), come(b)}
{¬come(j),¬come(m), come(b)}
{¬come(j), come(m),¬come(b)}
{¬come(j),¬come(m),¬come(b)}

The answer-sets tell us that as far as Bill and Mary are concerned, the
speaker keeps all options open: Mary might come, or Mary might not come and
the same is true for Bill. This solution is perhaps a bit too strong. Because
answer-sets are total, Bill and Mary either come or they don’t, but it might
be nice to have an option of undefinedness for not coming. It would be nice if
we could strengthen the interpretation to a strong one, ie. the first answer-set.
With the current solution it is not clear how, since by definition answer-sets
cannot be subsets of each other, it is difficult to define a relation between them
to model this. If we would have some form of partial models, then a nicer
solution might be achieved. The more complex WFSX-semantics provide this
for us.

4.2 WFSX - Well-founded Semantics with Ex-
plicit Negation

We will see that the declarative and procedural semantics described below are
going to incorporate both SLDNF and answer-sets. They can provide the results
gained with SLDNF and answer-sets, but can do more, since they allow for
partial models. These semantics are the final semantics of our choice.

42

Alferes and Pereira (Alferes and Pereira [1996]) introduce a declarative se-
mantics for extended logic programs based on the well-founded semantics for
normal logic programs (van Gelder et al. [1991]). They dub this semantics:
WFSX, Well-Founded Semantics with eXplicit negation.

4.2.1 WFSX

To introduce the WFSX semantics we need some new and some slightly different
definitions compared to those for answer-sets. Thus some concepts are redefined,
but it will always be clear whether the concepts from answer-sets or from WFSX
are used.

Definition 4.1 (Interpretation). An interpretation I of a language L is any set

T ∪ not F 1

where T and F are disjoint subsets of objective literals over the Herbrand base
of L, and:

if ¬L ∈ T then L ∈ F (Coherence Principle)

The set T contains all ground objective literals true in I and the set F contains
all ground objective literals false in I. The truth value for the remaining objective
literals is undefined.

We look again at the simple example program P3.4:

(4.2)
a ← b, c
b ← not ¬b
¬c ← ¬a

We can easily see that I1 = {a, b,not c} and I2 = {¬a, b, c,not a,not ¬c} are
interpretations of the program P3.4.

Again, as with answer-sets, it is easy to see that an interpretation I can be
viewed as a function I : H → V where V = {0, u, 1}.

I(A) =

⎧⎪⎨
⎪⎩

1 ifA ∈ I
0 if not A ∈ I
u otherwise

Based on this we can define a truth valuation function for formulae. Al-
though Alferes and Pereira never mention this, the third truth value behaves
in the sense of Kleene’s strong three-valued logic. However, the definition of ←
differs from the usual interpretation of implication in this logic.

Definition 4.2 (Truth valuation). Let I be an interpretation and C the set of
all formulae of the language, then the function Î : C → V is the truth valuation
corresponding to I. Î is recursively defined as follows:

- Î(L) = I(L), if L is an objective literal.

1where not {a1, ..., an} stands for {not a1, ..,not an}

43

- Î(not L) = 1− I(L), if not L is a default literal.

- Î((S, T)) = min(Î(S), Î(T)), if S and T are formulae.

- Î(L← S) =

{
1 if Î(S) ≤ Î(L) or Î(¬L) = 1 and Î(S) �= 1
0 otherwise

if L is an objective literal and S a formula.

Take Î1 to be the truth valuation function based on I1, then, for instance:
Î1(¬c← ¬a) = 1 and Î1(not ¬b) = u. In the case of Î2, we see: Î2(¬c← ¬a) =
0.

The definition of a model using the function Î remains the same as with
answer-sets. But not every such model is a model according to the WFSX se-
mantics. To define WFSX a couple of extra notions are required: an extended
definition of the modulo transformation and a definition of the least and coher-
ence operators. To be able to give these, we need to expand the language with
a proposition u such that for every interpretation I, I(u) = u.

Definition 4.3 (P
I transformation). Let P be an extend logic program, I an in-

terpretation, then P
I is the program obtained from P by performing the following

four operations:

1. Remove from P all rules containing a default literal not A such that A ∈ I.
2. Remove from P all rules which in the body contain an objective literal L

such that ¬L ∈ I.
3. Remove from all remaining rules of P their default literals not A such that

not A ∈ I.
4. Replace all the remaining default literals in P by u.

As an example, let us see what the result of P3.4
I1

is:

a ← b, c
b ← u

Notice that by the definition the resulting program is always non-negative, its
literals are either objective or u. This is necessary to be able to apply the least
operator.

Definition 4.4 (Least operator). least(P), where P is a non-negative program,
is defined as the set of literals T ∪ not F obtained in the following manner:

- Replace in P every negative objective literal ¬L by a new atomic symbol,
say L′ and call this program P ′.

- Let I = T ′ ∪ not F ′ be the model of P ′ such that there is no model J for
which holds that J �= I and there is a ground atom A such that I(A) >
J(A), this means that I is the least 3-valued model of P ′2.

- We get T ∪ not F from I by reversing the first replacement.
2This definition of least 3-valued model is non-constructive, but short. Alferes and Pereira

also provide a constructive definition using a fixed-point operator, similar to the consequence
operator for answer-sets that we saw in section 3.7.

44

least(P3.4
I1

) is:
{not a,not ¬a,not ¬b,not c,not ¬c}

Definition 4.5 (Coherence operator). Coh(QT ∪ not QF) = T ∪ not F , if
QT does not contain a pair of contradictory objective literals A and ¬A. The
interpretation T ∪ not F is obtained as follows:

T = QT and F = QF ∪ {¬L|L ∈ T }.
The coherence operator applied to least(P3.4

I1
) results in the same set.

All the operators from above are put together into one final operator.

Definition 4.6 (Φ-operator). Let P be a logic program, I an interpretation and
J = least(P

I). If Coh(J) exists, then Φ(I, P) = Coh(J). Otherwise Φ(I, P) is
undefined.

Using the Φ-operator we define the WFSX semantics.

Definition 4.7 (WFSX ; PSM and WFM). We call an interpretation I of a
program P a Partial Stable Model (PSM) of P iff

Φ(I, P) = I

If there is no J among the PSM’s of P such that J ⊂ I, then I is the F-least3

PSM and this is called the Well Founded Model (WFM) of P . The WFM is the
intended meaning of P .

WFSX (P) is the set of all the PSMs of P .

We already saw that I1 is not a PSM of P3.4, since I1 �= Coh(least(P3.4
I1

)).
Let us see if I3 = {not a,not ¬a, b,not ¬b,not c,not ¬c} is. The first step is to
calculate P3.4

I3
:

a ← b, c
b ←
¬c ← ¬a

When we apply the least -operator the result is:

{not a,not ¬a, b,not ¬b,not c,not ¬c}
Applying the Coh-operator does not change this result. Thus we conclude that
I3 = Coh(least(P3.4

I3
)) and that therefore I3 is a PSM of P3.4.

Alferes and Pereira show that every noncontradictory program always has
a unique WFM and that there exists a bottom-up and top-down procedure to
compute it. The WFM is equal to the intersection of all PSMs. The relation
between answer-sets and WFSX is given by the following theorem.

Theorem 4.1. Let P be and extended logic program, then:

if J ∈ AS(P), then J ∪ {not L | L /∈ J} ∈WFSX (P).

Furthermore, suppose P has an answer-set. Then WFSX is sound with respect
to answer-set semantics. Thus, for every literal L:

L ∈WFSX (P)⇒ L ∈ AS(P)
3Least in the so-called Fitting-order.

45

We see that WFSX generalizes answer-sets semantics: it assigns meaning
to the same and more programs than answer-sets. WFSX also has the very
nice property that the PSMs under set inclusion are organized into a downward
complete semilattice, its least element being the WFM. Alferes and Pereira also
show that if a program has answer-sets, then the maximal elements in this
semi-lattice are the answer-sets of the program. This will prove a very useful
property.

4.2.2 SLX

Alferes and Pereira also define a top down derivation procedure, in the vein of
SLDNF, called SLX. SLX is somewhat more complex than SLDNF and we will
refrain from giving its precise definitions. The most important advantage of SLX
over SLDNF is the ability to deal with loops. This allows Alferes and Pereira to
prove that SLX is sound and theoretically complete with respect to the WFM
of a program. Thus everything that is derivable using SLX is also in the WFM
of the program. This differs greatly with respect to SLDNF, we cannot derive
everything that is in the WFM (or intersection of the answer-sets) with SLDNF.
We are not really interested in what the top down derivations look like, except
for illustrative purposes, we just want to know which literals are derivable top
down. So, whenever we want to known those literals we just look at the WFM.
We will see that the distinction in the previous chapter of looking at SLDNF or
answer-sets is replaced by the distinction of looking at just the WFM or looking
at all the PSMs of a program.

4.2.3 Computational Complexity

Without going into the full details of computational complexity theory, it is
relevant to look into the matter with regard to the WFSX semantics. The
field of computational complexity is concerned with the computational difficulty
of computable functions. This complexity is studied using so-called decision
problems, ie. problems that have a yes/no answer as output. For example: for
a certain natural number x, is x a prime number? Different classes of complexity
are distinguished on the basis of the relation between the size of the input of a
decision problem and the time and space required to solve it. When this relation
is polynomial, ie. describable by a function in which the dominant term is of
the form nc, where n represents the size of the input and c a constant, then
the problem is in the complexity class P. Usually problems in P are considered
to be tractable, meaning that they can be solved well in practice. When the
computation costs grow faster in the size of the input, for instance exponential,
then solving such a problem becomes intractable. This means that, although
we might be able to define algorithms to solve them, they require a very long
running time.

For logic programming the decision problem is the following: does a literal
L belong to the chosen semantics of the program P? For full extended logic
programming with functions the decision problem is very complex, far beyond
the class P, both for the WFSX and the answer-set semantics (Dantsin et al.
[1997]). However, when considering only grounded functionless programs, as in
this thesis, things are brighter. For the WFSX semantics the decision problem
is polynomial (Alferes and Pereira [1996]). The answer-set semantics are more

46

complex, since the decision problem is Co-NP-complete. This seems a difficult
label, but for us the relevant thing is that at the moment there exist only super
polynomial (greater than polynomial) algorithms to solve the decision problem
and it is highly debatable that we will do better in the future4.

The fact that the decision problem for the WFSX semantics has such nice
computational properties is due to the fact that the well founded model (WFM)
of a program is bottom-up computable in polynomial time (Alferes and Pereira
[1996]) and we only need the WFM to solve the decision problem. However, to
solve the decision problem for the answer-set semantics we require the computa-
tion of all the answer-sets, since we need to take their intersection to determine
whether a literal is true or not. To get all the answer-sets we cannot be a lot
more efficient than just trying out all possible interpretations as answer-sets.

Unfortunately nothing is said in the literature about the complexity of com-
puting the entire semilattice of partial stable models (PSMs) under the WFSX
semantics, mostly because of the fact that it isn’t very interesting to many peo-
ple. However, it is interesting for this thesis since the derivation of a lot of
implicatures depends on them. Based on the decision problems of answer-sets it
seems reasonable to conjecture that the complexity of computing all the PSMs is
the same as the complexity of computing all the answer-sets. Both the number
of answer-sets and the number of PSMs is exponential in the amount of literals
and furthermore the procedures to compute them are similar (not much better
than just testing all possibilities).5.

The complexity of SLX is never clearly stated by the authors of Alferes and
Pereira [1996]. Though it is mentioned that it is computationally more com-
plex than computing the WFM bottom-up (Alferes et al. [1995]). The lack of
information about the complexity of SLX is another reason for not giving the
definitions in the previous section. The important point from this section is
that there is a clear difference in computational complexity between the WFM,
which is computable top-down, but more efficiently bottom-up, and the com-
plete semilattice of PSMs, for which there are only super polynomial algorithms.

4.3 Strong and Weak Epistemics

When it comes to interpreting WFSX semantics, we keep the view introduced
with answer-sets: partial stable models represent different possible worlds of the
speaker. Only now, literals can have the truth-value undefined, which allows for
more possible worlds. Furthermore, a PSM can be a subset of another PSM,
removing another constraint of answer-sets.

4.3.1 Weak Epistemic Interpretation

In our quest to define a weaker interpretation of an answer by using WFSX, we
need to remain able to provide for the strong interpretation as well. Since there
are more, or just as much, partial stable models as answer-sets for a program,
the thought arises that considering all PSMs as possible worlds is epistemically
weaker than considering just the answer-sets. Thus, this might just be what we
need to provide for a weaker epistemic account. Nonetheless, we still want to

4It all depends on whether P equals NP.
5If the complexity would clearly be better, one would expect to find so in the literature.

47

be able to derive the strong results that answer-sets give us. Fortunately, we
already saw that if a program has answer-sets, then the maximal elements in the
semilattice of PSMs correspond to these answer-sets. Thus if we only consider
those PSMs, then we have our original strong results. To make this notion a bit
more formal let us define a simple operator that selects the maximal elements
in the semilattice of PSMs. Note that in general there might be no maximal
elements, however, the examples that we consider in this thesis all have maximal
elements.

Definition 4.8 (MaxEl operator). Suppose that WFSX (P) is the set of partial
stable models of a program P under the WFSX-semantics. Then:

MaxEl (WFSX (P)) = {M | ¬∃M ′ ∈WFSX (P) : M ⊂M ′ ∧M �= M ′}.

Considering all the PSMs is not yet enough to get a weaker interpretation.
Recall that we have the proposition u in our language, which always has the
truth-value u. We are going to use this proposition to get an epistemically
weaker program. In our weaker gricean logic program we are going to intro-
duce the following rules for the question predicate instead of the original CWA
assumption:

¬Q(�x) ← not Q(�x))
Q(�x) ← u

Intuitively, what these rules do is state that by default either an individual
doesn’t have property Q, or we are undecided about it. Based on this idea we
also define a function GPweak .

Definition 4.9 (GPweak). The function GPweak (Q,A,D) takes as input a ques-
tion predicate Q, a first-order formula A in prenex normal form and a domain
of individuals D. It returns an extended logic program. Q′ is the set of all the
predicates in A that are not Q.

GPweak (Q,A,D) = {¬Q(c1, . . . , cn)← not Q(c1, . . . , cn) | c1, . . . , cn ∈ D}
∪ {Q(c1, . . . , cn)← u | c1, . . . , cn ∈ D}
∪ {R(c1, . . . , cn)← not ¬R(c1, . . . , cn) |

c1, . . . , cn ∈ D, R ∈ Q′}
∪ {¬R(c1, . . . , cn)← not R(c1, . . . , cn) |

c1, . . . , cn ∈ D, R ∈ Q′}
∪ Form2Rules(A,D)

The weaker closed world assumption (CWA) introduced above is only useful
when we consider all the PSMs. When we only look at the maximal elements,
which in our examples correspond to answer-sets, then we notice that these do
not contain literals that are undefined. So we might as well have had the original
CWA, without the Q(x) ← u rule. This rule is basically ineffective because in
an answer-set Q(x) is either true or false, not undefined.

There might not be a difference between the original CWA and the weaker
one when considering the maximal elements, there is, however, a difference when
we consider the minimal element, ie. the well founded model. Furthermore,
under the original CWA more literals can be derived with SLX than we could
with SLDNF.

48

This new approach gives us three levels of epistemic strength. We derive the
strongest interpretation by applying MaxEl to either GP or GPweak . Consid-
ering all the PSMs of GPweak gives the weakest epistemic interpretation, and
looking at all the PSMs of GP is somewhere in between.

To illustrate these three levels we shall consider both GP and GPweak of
example 3.3 (repeated here for convenience).

(4.3) Q: “Who came to the party?”
A: “John or Mary came.”

Imp: “John or Mary, but not both came.”
“No one else but John or Mary came.”

Let us call P3.3 the program obtained using GP and P3.3−weak the program ob-
tained using GPweak . The PSMs in WFSX (P3.3) form the following semilattice,
where C stands for come:

{¬C(j),not C(j),
C(m),not ¬C(m),
¬C(b),not C(b)}

{C(j),not ¬C(j),
¬C(m),not C(m),
¬C(b),not C(b)}

{¬C(b),not C(b)}

��������������

��������������

The semilattice of the PSMs in WFSX (P3.3−weak) is bigger:

{¬C(j),not C(j),
C(m),not ¬C(m),
¬C(b),not C(b)}

{C(j),not ¬C(j),
¬C(m),not C(m),
¬C(b),not C(b)}

{¬C(j),not C(j),
C(m),not ¬C(m)}

��

{¬C(b),not C(b)}

����������������

���������������� {C(j),not ¬C(j),
¬C(m),not C(m)}

��

{}

������������������

��
������������������

In both semilattices the maximal elements are the same, they correspond
to the answer-sets we found earlier and they give the answer-set account that
we know: either John or Mary came to the party and we are sure that Bill
didn’t come. We will dub this the strong epistemic interpretation. When we
look at the semilattice for P3.3 we see that every PSM contains the fact that
Bill didn’t come. Thus this is an implicature in this interpretation. Basically,
this implicature is derivable by only considering the well founded model, since
everything that holds in the WFM holds in all other PSMs too. When it comes
to John and Mary, the implicature that we can derive is weaker: “The speaker
doesn’t know that John and Mary came”, since the WFM isn’t decided about
whether John or Mary comes. Finally, what we will call the epistemically weak
interpretation is derived by considering all the PSMs of P3.3−weak. Next to the
weaker implicature mentioned above, we derive a weaker implicature regarding
Bill: “The speaker doesn’t know that Bill didn’t come”.

49

4.3.2 “John didn’t come.” - revisited

Let us look at example 4.1 under the WFSX-semantics using GPweak .

P ′′
4.1 = GPweak (¬come(x),¬come(j), {j,m, b}, {}) =

¬come(j)
come(m) ← not ¬come(m)
come(j) ← not ¬come(j)
come(b) ← not ¬come(b)

¬come(m) ← u
¬come(j) ← u
¬come(b) ← u

The WFSX of P ′′
4.1 can be represented by the following semilattice:

{¬C(j),not C(j),
C(m),not ¬C(m),
C(b),not ¬C(b)}

{¬C(j),not C(j),
C(m),not ¬C(m)}

�������������
{¬C(j),not C(j),
C(b),not ¬C(b)}

��											

{¬C(j),not C(j)}

��

����������������

This is exactly the weaker interpretation that we were looking for. The
speaker considers it possible that Bill comes and that Mary comes. Furthermore,
we can consider the maximal elements of this semilattice with MaxEl . In this
case this is the top element:

{¬C(j),not C(j), C(m),not ¬C(m), C(b),not ¬C(b)}

Which is the strong interpretation that we derived earlier: both Mary and Bill
come.

4.3.3 “John and Mary didn’t come.”

Somewhat more complicated is the following example with a conjunction un-
der a negation. That we intend the conjunction to fall under the negation is
accentuated by the emphasis on “and”.

(4.4) Q: “Who came to the party?”

A: “John and Mary didn’t come to the party.” (It is not the case that
John and Mary came to the party.)

Imp (a): “John or Mary came to the party and all other people came too.”

Imp (b): “It is possible that John or Mary came to the party and other
people too.”

50

The translation of the answer suggested by the emphasis on “and” is the
following: ¬(come(j) ∧ come(m))6. Thus P4.4 =

¬come(j) ← come(m)
¬come(m) ← come(j)
come(m) ← not ¬come(m)
come(j) ← not ¬come(j)
come(b) ← not ¬come(b)

¬come(m) ← u
¬come(j) ← u
¬come(b) ← u.

It has the following semilattice of PSMs.

{¬C(j),not C(j),
C(m),not ¬C(m),
C(b),not ¬C(b)}

{¬C(m),not C(m),
C(j),not ¬C(j),
C(b),not ¬C(b)}

{¬C(j),not C(j),
C(m),not ¬C(m)}

��

{C(b),not ¬C(b)}

����������������

���������������� {¬C(m),not C(m),
C(j),not ¬C(j)}

��

{}

������������������

��
������������������

This set of PSMs clearly represents the expected weak interpretation. It is
possible that John or Mary came to the party and it is also possible that Bill
came. The two maximal elements allow for the derivation of the strong scalar
implicature: “John or Mary came to the party”, and furthermore the exhaustive
implicature: “All other people came to the party”.

4.4 Dealing with Modalities

We can apply the approach for dealing with negations to examples containing
modalities as well. But we must keep it simple. Therefore we only look at the
epistemic modality: “possibly”, such as in the following example7.

(4.5) Q: “Who is coming to the party?”

A: “Possibly John or Mary is coming.”

Imp: “It is impossible that John and Mary come.”

The use of the epistemic modality “possibly” refers to the knowledge state of
the answerer. Thus it says something about the worlds that the answerer holds

6We stress this interpretation so much because ¬come(j) ∧ ¬come(m) has no interesting
implicature.

7There are approaches to logic programming that incorporate modal operators into the
language, see, for instance, Baldoni et al. [1998]; Orgun and Ma [1994]. However, these modal
logic programming languages do not contain an explicit negation and often even lack default
negation, which is why we shall not look into them here.

51

possible, ie. PSMs. This is the reason that we will only consider epistemic
modalities, they connect directly to our approach. Other modalities, such as
deontic or temporal ones, would require the introduction of extra structure in
our models before we can treat them.

Suppose that we have a formula with the “possible” modality: �φ. We
are going to apply the same solution as we chose for dealing with the question
predicate in the context of negation. This means the following:

φ ← not ¬φ
¬φ ← u.

However, the formula φ can be complex, so we need further translation after
we have applied the above solution. Lets see how example 4.5 would work out.
The formula for the answer is: �(come(j) ∨ come(m)). Which is translated to:

(come(j) ∨ come(m)) ← not ¬(come(j) ∨ come(m))
¬(come(j) ∨ come(m)) ← u.

On the first line we can distribute both the explicit and default negation. That
we can distribute the explicit negation over the disjunction is clear enough. The
distribution of the default negation over the resulting conjunction requires some
explanation. Suppose we have not (φ ∧ ψ). Informally this means that φ ∧ ψ is
not derivable, ie. has the truthvalue 0. Thus φ or ψ must be 0, which implies
that φ or ψ is not derivable, hence not φ ∨ not ψ.

(come(j) ∨ come(m)) ← (not ¬come(j) ∨ not ¬come(m))
(¬come(j) ∧ ¬come(m)) ← u.

A conjunction on the left can be split into separate copies of the same rule but
with a different conjunct as its head:

(come(j) ∨ come(m)) ← (not ¬come(j) ∨ not ¬come(m))
¬come(j) ← u
¬come(m) ← u.

For a disjunction on the right we can do something similar:

(come(j) ∨ come(m)) ← not ¬come(j)
(come(j) ∨ come(m)) ← not ¬come(m)

¬come(j) ← u
¬come(m) ← u.

Finally, a left-hand side disjunction can be translated as we normally translate
a disjunction, but we extend the new rules with the body on the right-hand
side:

come(m) ← ¬come(j),not ¬come(j)
come(j) ← ¬come(m),not ¬come(j)

come(m) ← ¬come(j),not ¬come(m)
come(j) ← ¬come(m),not ¬come(m)
¬come(j) ← u
¬come(m) ← u.

If we combine this with our standard default negation rule for the question
predicate and take the small domain: {j,m}, then we get the following program
for example 4.5:

52

P4.5 =

come(m) ← ¬come(j),not ¬come(j)
come(j) ← ¬come(m),not ¬come(j)

come(m) ← ¬come(j),not ¬come(m)
come(j) ← ¬come(m),not ¬come(m)
¬come(j) ← u
¬come(m) ← u
¬come(j) ← not come(j)
¬come(m) ← not come(m).

The semilattice of PSMs for this program is the following (C for come):

{¬C(j),not C(j),
C(m),not ¬C(m)}

{¬C(j),not C(j),
¬C(m),not C(m)}

{C(j),not ¬C(j),
¬C(m),not C(m)}

{¬C(j),not C(j)}

�� ����������������
{¬C(m),not C(m)}

����

{}

		�������������������

�������������������

When we consider the entire semilattice of PSMs we get a weak epistemic
interpretation. Basically all options are open. To arrive at the suggested impli-
cature, we need a strong interpretation. To get one, we know that we have to
apply MaxEl , which gives us:

{¬C(j),not C(j),
C(m),not ¬C(m)}

{¬C(j),not C(j),
¬C(m),not C(m)}

{C(j),not ¬C(j),
¬C(m),not C(m)} .

From these three PSMs we can conclude the implicature: “It is not possible
that John and Mary come.”

Let us look at another simpler example: come(j) ∧ �come(m), “John and
possibly Mary comes”. This formula results in the following program:

Pcome(j)∧�come(m) =

come(m) ← not ¬come(m)
¬come(m) ← u

come(j)
¬come(j) ← not come(j)
¬come(m) ← not come(m),

which has the semilattice:

{C(j),not ¬C(j),
C(m),not ¬C(m)}

{C(j),not ¬C(j),
¬C(m),not C(m)}

{C(j),not ¬C(j)}

����������������

����������������

53

There is no predicted implicature here, however, the PSMs represent the
knowledge that we would expect: John comes to the party and it is possible
that Mary does too, ie. there is a PSM in which she comes.

The result of another possible answer: �(come(j) ∧ come(m)), “Possibly
John and Mary come”, is a bit more problematic. The corresponding program:

P�(come(j)∧come(m)) =

come(m) ← not ¬come(j),not ¬come(m)
come(j) ← not ¬come(m),not ¬come(j)
¬come(j) ← come(m),u
¬come(m) ← come(j),u
¬come(j) ← not come(j)
¬come(m) ← not come(m),

has the following semilattice:

{C(j),not ¬C(j),
C(m),not ¬C(m)}

{¬C(j),not C(j),
¬C(m),not C(m)}

{}

��

�������������

Also in this case there is no predicted implicature. The problem is that one
would expect PSMs in which Mary comes and John doesn’t and vice versa,
since these seem to be possibilities we would expect given the answer “possibly
John and Mary come”. Nevertheless, “possibly John and Mary come” is still
clearly true in this semilattice, there is a possible world in which they come, but
they don’t come in all of them.

The most troublesome is the final example of this section: come(j)∨�come(m),
“John comes or possibly Mary comes”. The first thing to note is that this ut-
terance seems to be a bit contrived to begin with. What would one mean when
uttering this sentence? Perhaps one intends to convey that either John or Mary
comes, but that the chance of John coming is significantly higher than the
chance of Mary coming. In this case “possibly” would not have the epistemic
meaning we intend to have it. Nonetheless, the logical formula makes perfect
sense and we would like for it to receive the right interpretation. The program
for this formula is:

Pcome(j)∨�come(m) =

come(m) ← not ¬come(m),¬come(j)
come(j) ← ¬come(m),not ¬come(m)
come(j) ← come(m),u

¬come(m) ← ¬come(j),u
¬come(j) ← not come(j)
¬come(m) ← not come(m).

This program has the following semilattice of PSMs:

54

{¬C(j),not C(j),
C(m),not ¬C(m)}

{¬C(j),not C(j),
¬C(m),not C(m)}

{¬C(j),not C(j)}

����������������

����������������

{}

��

What is clearly wrong is that there is no PSM in which John comes. Thus
the semilattice seems more to represent the utterance: “Possibly Mary comes”
(if the empty well founded model wasn’t there this would actually be the case),
than “John comes or possibly Mary comes”. Both the disjunction and the
modal “possibility” are existential operators8 and in this example they somehow
interfere, resulting in wrong predictions.

The above sketched approach goes some way to provide a direction in which
to find a solution for dealing with modalities in a WFSX framework. How-
ever problems immediately pop-up, since the link between modalities and the
semilattice of PSMs run via rules. We have no way of directly defining the
restrictions that a modal operator imposes on the semilattice of PSMs.

4.5 Conclusions and Remarks

Before we draw conclusions for this chapter we shall look at example 4.6 again
(repeated here for readability).

(4.6) Q: “Who came to the party?”

A: “Some boys came.”

Imp: “Not all the boys came to the party.”
“No girls came to the party.”

We remarked in chapter 3 that even with adding the sex of the individuals
as background knowledge we still could not derive anything interesting using
SLDNF. Fortunately under the WFSX semantics we can derive something in-
teresting in a top-down fashion. We recall that the program extended with the
background knowledge has the following two answer-sets:

{C(j),¬C(b),¬C(m), B(j), B(b),¬B(m)}
{C(b),¬C(j),¬C(m), B(j), B(b),¬B(m)}

The semilattice under the WFSX semantics is as follows:
8The disjunction says that there is a disjunct that is true, “possibility” says there is a

world in which the formula holds.

55

{C(j),not ¬C(j),
¬C(b),not C(b),
¬C(m),not C(m),
B(j),not ¬B(j),
B(b),not ¬B(b),
¬B(m),not B(m)}

{¬C(j),not C(j),
C(b),not ¬C(b),
¬C(m),not C(m),
B(j),not ¬B(j),
B(b),not ¬B(b),
¬B(m),not B(m)}

{¬C(m),not C(m),
B(j),not ¬B(j),
B(b),not ¬B(b),
¬B(m),not B(m)}

����������

������������

We see that the well founded model contains the fact that Mary doesn’t come.
So in contrast to SLDNF we can already derive the implicature: “No girl came
to the party”, without looking at all the partial stable models. We can derive
it efficiently bottom-up and also top-down, since the WFM is computable using
SLX.

As mentioned earlier, there is a clear difference between the complexity of the
computation of the well founded model on the one hand and the semilattice of
partial stable models on the other. Furthermore, after reworking out example
4.6 under the WFSX semantics, we saw that the difference between what we
dubbed ‘exhaustivity’ and scalar implicatures has become even clearer. Un-
der the WFSX semantics exhaustivity implicatures are now all based on the
well founded model and derivable in a bottom-up or top-down fashion, without
looking at all the possible partial stable models. On the other hand all scalar
implicatures still require that we compute all PSMs9. Since the computation
of the WFM is computationally far less complex than the calculation of all the
PSMs, we conclude that there is a complexity difference between exhaustivity
implicatures and scalar implicatures. It would be very nice to set up experi-
ments to look into this from a psycholinguistic point of view and see whether
this theoretical difference has any real world significance.

To work with a program under WFSX semantics one doesn’t need to compute
the PSMs, ie. one can use SLX or the bottom-up procedure to compute the
WFM. We saw the same kind of distinction in chapter three. As in that chapter,
we have to look at all the models (PSMs) to derive the scalar implicatures. The
calculation of these PSMs is an expensive extra computational step. From a
pyscholinguistic perspective we can say again that humans ordinarily derive the
WFM and only when the context is right for scalar implicatures one computes
all the PSMs. Thus, even clearer than in the previous chapter, our approach is
in the line of the context-dependent explanation.

The WFSX semantics also provides a way to deal with implicatures of dif-
ferent epistemic strengths. However, the presented solution is not without its

9Actually, we saw one example in which this wasn’t the case: the second way of treating
cardinal numbers. However, this treatment was somewhat different than the rest of this thesis
and more importantly it is the case that the implicature community is very much divided as
to whether examples with cardinal number are real scalar implicatures, or just something else.
So this is not a problem.

56

flaws. Despite this fact, these semantics deserves more attention to find a better
and more widely applicable solution.

57

Chapter 5

Other Types of
Implicatures

Next to the Q-implicatures, which we encountered in the previous two chapters,
we already saw in chapter two that there are other types of implicatures. Stick-
ing to Levinson [2000] there are at least the classes of I- and M-implicatures that
we can look at as well. We expect to deal especially well with the I-implicatures,
since they have close resemblance to the type of default knowledge that AI re-
searchers want to formalize using logic programming, for an introduction, see
Baral and Gelfond [1994].

5.1 I-implicatures

While Q-implicatures are derived based on the idea that the speaker provides
as much information as possible, I-implicatures are derived using an opposite
intuition. Levinson (Levinson [2000]) calls the responsible maxim the Princi-
ple of Informativeness or just I-principle. To get an idea, let us consider the
following example:

(5.1) Q: “Who is John meeting tonight?”

A: “John is meeting his secretary tonight.”

Imp: “John is meeting a woman, who is not his wife, but is his secretary,
tonight.”

In the implicature the use of the word “secretary” is strengthened, via stereo-
typical world knowledge, to describe a woman, not the wife of the person in
question1. The hearer interprets the utterance more specific, she amplifies the
informational content of the utterance. The idea of the I-principle becomes clear
in the example: knowledge of the syntactic and semantic use of expressions al-
lows the speaker to say less and the hearer to interpret more.

On the speakers side we have the maxim of Minimization: “Say as little
as necessary.” The speaker produces as minimal linguistic information as is

1One could perhaps convincingly argue here that the inference that ‘his secretary’ is not
his wife can also be due to the Q-principle.

58

sufficient to communicate what she wants, while keeping the Q-principle in
mind. As a result of this, the hearer enriches the informational content of the
utterance as much as possible, unless it is somehow clear, for example from
the context, that the speaker has broken the maxim of Minimization. More
specifically, this means that the hearer assumes as much temporal, causal and
referential connections and stereotypical relations as are consistent with the
utterance and context, she doesn’t multiply entities referred to beyond what
is strictly necessary and she assumes the existence or actuality of what the
sentence is about if that is consistent.

5.1.1 Applying ELP

As we mentioned, the power of logic programming in AI has always been the
formalization of default reasoning such as in example 5.1. Typical examples
such as Tweety the bird who flies, and the penguin that by default doesn’t fly
can be considered examples of I-implicatures from our perspective. Thus we
expect that logic programming is particularly suited to deal with at least some
I-implicatures. Unfortunately, a big portion of the I-implicatures are based
on the syntax of the utterance in question and not strictly on the semantic
representation. Since the syntax of the utterance completely disappears in our
rule-based representation, we cannot deal with those kinds of I-implicatures.
The implicature of the following example cannot be dealt with.

(5.2) - “John closed the door and left the house.”

Imp: “John first closed the door and then left the house.”

The temporal reading of the implicature is based on the idea that the left
conjunct of “and” ordinarily occurs temporally before the right conjunct. Such
information is lost in our system. If we want to deal with this, we have to add
temporal structure.

However, example 5.1 can be dealt with perfectly. The answer can be trans-
lated as:

∃x(Meet(j, x) ∧ Secretary(j, x)).

Clearly the question predicate is Meet(j, x). The domain of individuals is again:
{j,m, b}. Since I-implicatures are based on world knowledge we need to formal-
ize this knowledge in a background theory in order to derive them. As we saw
in chapter 3, we add this theory to the program generated with GP . An old
AI trick is needed for this theory: abnormality predicates. The idea behind ab-
normality predicates is that they are false unless there is an abnormal situation
going on. This notion will become clearer when considering the background
knowledge that we are going to need in this example, which is the (grounded
version of the) following theory:

¬Male(x) ← Secretary(j, x),not ab1 (x)
¬Married(j, y) ← Secretary(j, x),not ab2 (j, x)
¬Secretary(j, x) ← Male(x),not ab1 (x)
¬Secretary(j, x) ← Married(j, x),not ab2 (j, x).

For simplicity, the background theory is centered around John, but in general
it means the following. A person is not male, ie. female, if that person is a

59

secretary and there is nothing abnormal going on for this person with regards
to the relation with his secretary, ie. ab1 (x) doesn’t hold. This also holds
vice versa, someone is not a secretary of someone if he is male, unless there is
something abnormal going on. For being married more or less the same holds:
two people are not married if the one is the secretary of the other, and there is
nothing abnormal going on, which is defined by another abnormality predicate
than the one used for the secretary relation. For this example we don’t know of
any abnormalities so we don’t add facts/rules with ab1 or ab2 .

If we put all the arguments into GP we get the following program P5.1 (M
for Meet and S for Secretary , also the default negation rules are ungrounded to
save space):

M(j, j) ← ¬M(j,m),¬M(j, b) S(j, j) ← ¬M(j,m),¬M(j, b)
M(j,m) ← ¬M(j, j),¬M(j, b) M(j,m) ← ¬S(j, j),¬M(j, b)
M(j, b) ← ¬M(j, j),¬M(j,m) M(j, b) ← ¬S(j, j),¬M(j,m)
M(j, j) ← ¬M(j,m),¬S(j, b) S(j, j) ← ¬S(j,m),¬M(j, b)
M(j,m) ← ¬M(j, j),¬S(j, b) S(j,m) ← ¬S(j, j),¬M(j, b)
S(j, b) ← ¬M(j, j),¬M(j,m) M(j, b) ← ¬S(j, j),¬S(j,m)
M(j, j) ← ¬S(j,m),¬M(j, b) S(j, j) ← ¬M(j,m),¬S(j, b)
S(j,m) ← ¬M(j, j),¬M(j, b) M(j,m) ← ¬S(j, j),¬S(j, b)
M(j, b) ← ¬M(j, j),¬S(j,m) S(j, b) ← ¬S(j, j),¬M(j,m)
M(j, j) ← ¬S(j,m),¬S(j, b) S(j, j) ← ¬S(j,m),¬S(j, b)
S(j,m) ← ¬M(j, j),¬S(j, b) S(j,m) ← ¬S(j, j),¬S(j, b)
S(j, b) ← ¬M(j, j),¬S(j,m) S(j, b) ← ¬S(j, j),¬S(j,m)

¬M (j, x) ← not M (j, x)
¬S (j, x) ← not S (j, x)
S (j, x) ← not ¬S (j, x)

¬Male(x) ← Secretary(j, x),not ab1 (x)
¬Married(j, y) ← Secretary(j, x),not ab2 (j, x)
¬Secretary(j, x) ← Male(x),not ab1 (x)
¬Secretary(j, x) ← Married(j, x),not ab2 (j, x).

This program has a lot of partial stable models. Since John can meet every
person2, that gives us three options already. Furthermore the person that John
is meeting must be his secretary. But the others might be his secretary too,
since we don’t apply closed world reasoning to the secretary predicate. This
leaves us with nine PSMs for every person that John is meeting. Thus including
the well founded model, which is just the empty-set, we have 28 PSMs. To sum
these all up would be a bit too much, so we only focus on who John is meeting
and that way reduce nine PSMs to one. We also leave out the default (not ¬L
is obviously in the PSM if L is) and the abnormality literals.

2Even himself because we didn’t add to the program that such a thing is usually impossible,
which would not be difficult, but only unnecessarily complicates matters.

60

{M(j, j),¬M(j, b),
¬M(j,m), S(j, j),
¬Male(j),

¬Married (j, j)}

{M(j, b),¬M(j, j),
¬M(j,m), S(j, b),
¬Male(b),

¬Married (j, b)}

{M(j,m),¬M(j, b),
¬M(j, j), S(j,m),
¬Male(m),

¬Married(j,m)}

{}

�����������������

�� �����������������

We see in all the partial stable models that the person that John is meeting is his
secretary and furthermore is female and not his wife, exactly the I-implicatures
that we were looking for.

Now let us see what happens when we explicitly define in the background
knowledge what the sex of the individuals in our domain is. We add the obvious:
Male(j), Male(b) and ¬Male(m) as background theory. What we get is one
possible partial stable model, which is of course also the well founded model (all
abnormality predicate literals are left out, they are all default negated).

{M(j,m),not ¬M(j,m),¬M(j, b),not M(j, b),¬M(j, j),not M(j, j),
S(j,m),not ¬S(j,m),¬S(j, b),not S(j, b),¬S(j, j),not S(j, j),

Male(j),not ¬Male(j),Male(b),not ¬Male(b),¬Male(m),not Male(m),
not ¬Married (j, j),not Married(j, j),not ¬Married(j, b),
not Married (j, b),¬Married (j,m),not Married (j,m)}

Clearly this is the result we desired. The only option left is that John
is meeting Mary, since she is female and furthermore he is not married to her.
Note that if we would add more females to the domain we will incidentally derive
a scalar implicature: John will only be meeting one woman tonight. Also, the
well founded model will still contain the fact that John is not meeting a man,
ie. for all men we have the fact that John is not meeting them is in the WFM.

But why do we need these abnormality predicates? A first intuition, upon
looking at this example, can be that background knowledge of the following
form should suffice:

¬Male(x) ← Secretary(j, x),not Male(x)
¬Married(j, x) ← Secretary(j, x),not Married (j, x)
¬Secretary(j, x) ← Male(x),not Secretary(j, x)
¬Secretary(j, x) ← Married(j, x),not Secretary(j, x).

The meaning of these rules seems to be almost identical to the ones given
above, without making use of ‘ugly’ abnormality predicates. The first thing
to note is that the last two rules are actually weaker than the default rule:
¬S (j, x)← not S (j, x), which is already included in the program. The last two
rules are basically the same, except for the added male/married predicate, so
whenever these rules can be used the default rule applies too.

If we don’t have information about the sex of the individuals in our back-
ground knowledge, then in this example the results are the same when using
these new rules as when using the abnormality predicate rules. Things differ
however when we add information about the sex of the individuals to the back-
ground knowledge. What we get is the same amount of PSMs as before (28).
Furthermore, they are almost completely the same, except for the fact that it

61

is now the case that John’s secretary might be male. There are PSMs where
John meets John and where John meets Bill, who are both male. However,
in no PSM is John married to his secretary. What we see is that the explicit
definition of the sex of the individuals overwrites the default rule. This is not
the right result. One would expect that for every person that is defined male it
is not possible that John is meeting this person, unless some explicit evidence
to the contrary is given. Which is exactly what the solution using abnormality
predicates does.

5.1.2 Combination with a Q-implicature

The above example contained a simple I-implicature and no more. However,
it might be the case that an utterance is expected to give rise to both Q-
and I-implicatures. These implicatures together might be inconsistent. Levin-
son argues that in such a case the Q-implicature takes precedence over the
I-implicature. In Levinson [2000] he gives examples of conjunctions which have
a possible I-implicature in one conjunct but have this implicature cancelled by
the fact that the other conjunct entails its contradiction. For instance, this is
the case in:

(5.3) Q: “Who is John meeting tonight?”

A: “John is meeting his wife or his secretary.”

Imp: The I-implicature: “John is not meeting his wife” arising from the
second conjunct, is cancelled by the Q-implicature: “Possibly John
is meeting his wife” from the first conjunct.

The implicature from the first conjunct is what is dubbed a clausal implicature
and we briefly saw it before in example 3.3.

It is clear that the question predicate must be Meet(j, x). The translation of
the answer is also not too difficult: ∃x(Meet(j, x)∧((Married (j, x)∧¬Male(x))∨
Secretary(j, x))). The domain of individuals and the background theory remain
the same as in the last version of example P5.1. The program resulting from
GP is given below. We abbreviate it a lot. First of all, we use M for Meet ,
Mr for Married , Ml for Male and S for Secretary . Also, we give the rules in a
more compact notion. Every literal in the body is now a set of literals. If we
take a literal from each of those sets, we get a rule of the program. Hereby we

62

compress around 70 rules into one. Thus, P5.3 =

M(j, j) ← {¬M(j, b),¬Mr (j, b),Ml (b)}, {¬M(j, b),¬S(j, b)},
{¬M(j,m),¬Mr (j,m),Ml (m)}, {¬M(j,m),¬S(j,m)}

M(j, b) ← {¬M(j, j),¬Mr (j, j),Ml (j)}, {¬M(j, j),¬S(j, j)},
{¬M(j,m),¬Mr (j,m),Ml (m)}, {¬M(j,m),¬S(j,m)}

M(j,m) ← {¬M(j, b),¬Mr (j, b),Ml (b)}, {¬M(j, b),¬S(j, b)},
{¬M(j, j),¬Mr (j, j),Ml (j)}, {¬M(j, j),¬S(j, j)}

Mr(j, j) ← {¬M(j, j),¬S(j, j)},
{¬M(j, b),¬Mr (j, b),Ml (b)}, {¬M(j, b),¬S(j, b)},
{¬M(j,m),¬Mr (j,m),Ml (m)}, {¬M(j,m),¬S(j,m)}

Mr(j, b) ← {¬M(j, b),¬S(j, b)},
{¬M(j, j),¬Mr (j, j),Ml (j)}, {¬M(j, j),¬S(j, j)},
{¬M(j,m),¬Mr (j,m),Ml (m)}, {¬M(j,m),¬S(j,m)}

Mr(j,m) ← {¬M(j,m),¬S(j,m)},
{¬M(j, b),¬Mr (j, b),Ml (b)}, {¬M(j, b),¬S(j, b)},
{¬M(j, j),¬Mr (j, j),Ml (j)}, {¬M(j, j),¬S(j, j)}

¬Ml (j, j) ← {¬M(j, j),¬S(j, j)},
{¬M(j, b),¬Mr (j, b),Ml (b)}, {¬M(j, b),¬S(j, b)},
{¬M(j,m),¬Mr (j,m),Ml (m)}, {¬M(j,m),¬S(j,m)}

¬Ml (j, b) ← {¬M(j, b),¬S(j, b)},
{¬M(j, j),¬Mr (j, j),Ml (j)}, {¬M(j, j),¬S(j, j)},
{¬M(j,m),¬Mr (j,m),Ml (m)}, {¬M(j,m),¬S(j,m)}

¬Ml (j,m) ← {¬M(j,m),¬S(j,m)},
{¬M(j, b),¬Mr (j, b),Ml (b)}, {¬M(j, b),¬S(j, b)},
{¬M(j, j),¬Mr (j, j),Ml (j)}, {¬M(j, j),¬S(j, j)}

S(j, j) ← {¬M(j, j),¬Mr (j, j),Ml (j)},
{¬M(j, b),¬Mr (j, b),Ml (b)}, {¬M(j, b),¬S(j, b)},
{¬M(j,m),¬Mr (j,m),Ml (m)}, {¬M(j,m),¬S(j,m)}

S(j, b) ← {¬M(j, b),¬Mr (j, b),Ml (b)},
{¬M(j, j),¬Mr (j, j),Ml (j)}, {¬M(j, j),¬S(j, j)},
{¬M(j,m),¬Mr (j,m),Ml (m)}, {¬M(j,m),¬S(j,m)}

S(j,m) ← {¬M(j,m),¬Mr (j,m),Ml (m)},
{¬M(j, b),¬Mr (j, b),Ml (b)}, {¬M(j, b),¬S(j, b)},
{¬M(j, j),¬Mr (j, j),Ml (j)}, {¬M(j, j),¬S(j, j)}

¬M (j, x) ← not M (j, x)
¬S (j, x) ← not S (j, x)
S (j, x) ← not ¬S (j, x)
¬Ml (x) ← S(j, x),not Ml(x)

¬Mr (j, x) ← S(j, x),not Mr(j, x)
¬S(j, x) ← Ml(x),not S(j, x)
¬S(j, x) ← Mr(j, x),not S(j, x)

Ml(j)
Ml (b)

¬Ml(m)

This program has the following semilattice of partial stable models (again
the complementary default negated literals are left out, as are the literals about
the sex of the individuals):

63

{M(j,m),¬M(j, b),
¬M(j, j),¬S(j, j),
¬S(j, b),¬S(j,m),

Mr (j,m)}

{M(j,m),¬M(j, j),
¬M(j, b),¬S(j, b),
¬S(j, j), S(j,m)
¬Mr (j,m)}

{M(j,m),¬M(j, j),
¬M(j, b),¬S(j, b),

¬S(j, j)}

������������

������������

{M(j,m),¬S(j, b),
¬S(j, j)}

��

When we apply a strong epistemic interpretation by using MaxEl we see
that the result is exactly what we want. There are two possibilities, John might
be meeting his wife and John might be meeting his secretary, which is female
and not his wife. Furthermore John is only meeting one person, which is not
an implicature we mentioned earlier in this example, but it is just the scalar
implicature from “or” to “not and” that we saw before.

The well founded model does not completely live up to our expectations. It
contains the fact that John is going to meet Mary, which makes sense, since Mary
is the only woman and either John is meeting his wife, or his secretary which is
a woman by default. Hence, from the perspective of the minimal interpretation
of the question predicate we would expect that we also derive that John is not
meeting himself or Bill, however, these facts are not in the WFM. This way we
miss the derivation of the exhaustivity implicature on the basis of the WFM (of
course we do get it from our maximal elements).

The problem is due to the interaction between the disjunction in our answer:
“John is meeting his wife or his secretary” and the disjunction created when
translating the existential quantifier. This is best illustrated with an example
taken from the program. To derive ¬M(j, b) we need to derive not M(j, b),
which implies that every derivation of M(j, b) should fail. Looking at the pro-
gram we see that an example of a salient rule for M(j, b) is:

M(j, b) ← Ml(j),¬S(j, j),¬Mr (j,m),¬S(j,m)

Both Ml (j) and ¬S(j, j) are derivable, thus if we want this rule to fail then
the derivation of ¬Mr (j,m) or ¬S(j,m) should fail. However they both do not
fail. Nevertheless, we as outsiders can see that one of the two fact should clearly
fail, since either John is going to meet his wife or his secretary and we already
know (since this is derivable) that this is Mary. So, while we can see that M(j, b)
should fail for this rule, and hence other similar ones, because of the fact that
the disjunction “John is meeting his wife or his secretary” is always true, the
derivation procedure doesn’t ‘know’ that M(j, b) should fail because it cannot
use the fact that the aforementioned disjunction should always be true.

Two solutions to this problem easily come to mind. First one could use
functions to model the secretary and wife relations. In which case the answer
would be the much less complex: M(j,Wife(j))∨M(j,Sec(j)). However, using

64

functions destroys some of the computational complexity properties mentioned
in the fourth chapter.

A second option is to introduce a discourse referent for an existential quan-
tifier, instead of the translation to the large disjunction, in the vein of Discourse
Representation Theory (DRT) (Kamp and Reyle [1993]). However, this would
require extra rules to model the equivalence relation to ensure that this referent
is equal to an individual in our domain and that it has the same properties
as this individual and vice versa. This solution would destroy the equivalence
result as it is proven in chapter three.

It is somewhat unfortunate that, in this complex example, we lose the di-
chotomy that we noticed in chapters three and four, between exhaustivity im-
plicatures and the WFM on the one hand and scalar implicatures and the semi-
lattice of PSMs on the other. The two solutions briefly presented above will
most likely return this dichotomy, but the extra complexities that they intro-
duce might not be worth the effort. Fleshing out these solutions is beyond the
scope of this thesis.

5.1.3 Another Example: Conditional Perfection

Levinson [2000] provides an example of another phenomenon attributed to the
I-principle. Since it is not based on the syntactic structure of the utterance, we
can account for it in our approach as well, quite easily in fact. We work out the
following example of conditional perfection adapted from Levinson [2000]:117:

(5.4) Q: “When will I get five dollars?”

A: “If you mow the lawn, I’ll give you five dollars.”

Imp: “If and only if you mow the lawn, will I give you five dollars.”

We keep the formalization as simple as possible, we only introduce what is
necessary to derive the conditional perfection. Thus, the question predicate in
this example is: ‘the getting of the five dollars’. So we introduce

¬FiveDollars ← not FiveDollars

for this literal. Furthermore, ‘mowing the lawn’, should remain a fixed predicate,
thus we have the rules:

¬MowLawn ← not MowLawn
MowLawn ← not ¬MowLawn .

What remains is a simple translation of the utterance into logic: MowLawn →
FiveDollars . Putting it all together gives us the program P5.4.

¬MowLawn ← ¬FiveDollars
FiveDollars ← MowLawn
¬FiveDollars ← not FiveDollars
¬MowLawn ← not MowLawn
MowLawn ← not ¬MowLawn

As far as the well founded model is concerned, nothing is derivable in this
program, it is just the empty set. Nevertheless, the maximal elements of the
semilattice give us the conditional perfection that we want.

65

{MowLawn ,not ¬MowLawn ,
FiveDollars ,not ¬FiveDollars}

{¬MowLawn ,not MowLawn ,
¬FiveDollars ,not FiveDollars}

{}

�����������������

�����������������

As we see, there are two ways the utterance is true, either the lawn is mown
and the five dollars is received, or the lawn remains untouched in which case
getting the five dollars will never happen. Thus the conditional is perfected into
a biconditional.

5.1.4 Remarks

Judging from the worked out examples, we can say that extended logic program-
ming handles the type of default reasoning that is required for I-implicatures
rather well. Unfortunately, the results of the most complex example were not
entirely satisfiable. If we want to deal with I-implicatures that arise from syntac-
tic features of the utterance, then we have to expand our approach to deal with
syntax and see if we are able to derive the desired results. Although difficult,
there is no reason to consider this impossible.

5.2 M-implicatures

Levinson defines a third principle responsible for implicatures, the M-principle.
The idea behind M-implicatures is that we can use marked expressions to indi-
cate nonstereotypical situations. The speaker is required to use a marked expres-
sion when such a situation occurs, so that the hearer is capable of recognizing
this intention and make an appropriate nonstereotypical interpretation, usually
one that contrasts with the stereotypical interpretation due to the I-principle.
The following example from Levinson [2000]:138 makes the idea clear.

(5.5) a. “Sue smiled.”

b. - “The corners of Sue’s lips turned slightly upwards.”
- Imp: Sue produced a smirk or grimace.

Both the utterance a and b describe the fact the Sue smiled. But since b is a
nonstereotypical way of saying this, we interpret the utterance as meaning that
Sue’s smile was not a real smile out of happiness, but a smirk or grimace.

From this example and also from the idea behind the M-principle in gen-
eral, we see that M-implicatures depend very much on the form and not so
much on the semantic content of the utterance. Thus, as with I-implicatures
based more on syntax than semantics, our approach is not suited to deal with
them. A solution for M-implicatures might be to explicitly state in the pro-
gram, via some special predicate, that a marked expression was used and that
we therefore cannot apply the default reasoning of I-implicatures. However, such
a solution is more stating that an M-implicature holds than actually deriving
an M-implicature and thus not to be preferred.

66

Chapter 6

Conclusion

In the previous chapters we have expounded a formalization using extended logic
programming that can deal with a lot of different examples of implicatures. At
the heart lies the function GP that generates an extended logic program on
the basis of formulae representing a question and an answer and a domain of
individuals. Then we apply either procedural or declarative semantics to derive
implicatures. We have seen two versions of both types of semantics, SLDNF
and answer-sets in the basic approach of chapter three and WFSX and SLX in
the advanced approach of chapter four.

The formalization provides a very satisfying account of traditional scalar
implicatures with “or” and “some”. We have also seen how we can deal with
implicatures with cardinal numbers. An epistemically weaker solution is also
given to deal with those implicatures that require an epistemically weaker read-
ing, such as scalar terms in the context of negation. Furthermore we can deal
with I-implicatures that are not based on the syntax but on the semantic content
of an utterance. Nevertheless, some of the more difficult data, such as modal-
ities and the mixing of Q- and I-implicatures, requires further investigation to
provide a more satisfying account. In terms of dealing with the same data that
other approaches can, we are almost as far as the work of Van Rooij and Schulz
[2004]; Schulz and Van Rooij [2006].

An important point of this thesis is the computational difference found be-
tween exhaustivity implicatures and scalar implicatures. The result of this thesis
is that it is easier to compute exhaustivity, eg. the fact that people not men-
tioned in the answer will not be becoming, than that it is to compute a full
scalar implicature, eg. inferring from the fact that Mary or Bill comes that they
won’t come both. Scalar implicatures almost always involve multiple models,
where one partial model is enough to determine the exhaustivity implicature.
This result is not something found elsewhere in the literature and worth taking
into account in the psycholinguistic studies of implicatures.

In the light of the debate whether scalar implicatures are computed by de-
fault or only when the context is right, this thesis favors the latter option,
since we have seen that scalar implicatures are computationally expensive. The
derivation of the scalar implicatures is a clear extra step on top of the computa-
tion of the well founded model. To know what is true in the program one only
needs this well founded model. From a psycholinguistic perspective the well
founded model can be regarded as the default behaviour and when the context

67

is right the computationally expensive partial stable models are computed to
derive scalar implicatures.

Chapter three also included an equivalence theorem between this thesis’
approach using extended logic programming and answer-sets semantics and the
approach by Van Rooij and Schulz [2004] using circumscription of the answer
formula. With adding the extra step of characteristic clauses this theorem is
proven.

Despite the fact that the approach in this thesis has problems of its own,
a lot of implicatures can be dealt with. Furthermore it provides a fresh com-
putationally motivated view on formalizing implicatures that can be expected
to be psychologically relevant. As we set out in the introduction, this was an
important goal of this thesis.

68

Bibliography

Jose Julio Alferes and Luis Moniz Pereira. Reasoning with logic programming,
volume 1111. Springer-Verlag Inc., New York, NY, USA, 1996.

Jose Julio Alferes, Carlos Viegas Damasio, and Luis Moniz Pereira. A logic pro-
gramming system for nonmonotonic reasoning. Journal of Automated Rea-
soning, 14(1):93–147, 1995.

Matteo Baldoni, Laura Giordano, and Alberto Martelli. A modal extension of
logic programming: Modularity, beliefs and hypothetical reasoning. Journal
of Logic and Computation, 8(5):597–635, 1998.

Chitta Baral and Michael Gelfond. Logic programming and knowledge repre-
sentation. Journal of Logic Programming, 19/20:73–148, 1994.

Lewis Bott and Ira A. Noveck. Some utterances are underinformative: The
onset and time course of scalar inferences. Journal of Memory and Language,
51(3):437–457, 2004.

Richard Breheny, Napoleon Katsos, and John Williams. Are generalised scalar
implicatures generated by default? an on-line investigation into the role of
context in generating pragmatic inferences. Cognition, 100(3):434–463, 2006.

Robyn Carston. Informativeness, relevance and scalar implicature. In
R. Carston and S. Uchida, editors, Relevance Theory: Applications and Im-
plications, pages 179–236. John Benjamins, Amsterdam, 1998.

Gennaro Chierchia. Scalar implicatures, polarity phenomena, and the syn-
tax/pragmatics interface. Ms., University of Milan, 2001.

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Com-
plexity and expressive power of logic programming. In IEEE Conference on
Computational Complexity, pages 82–101, 1997.

Gerald Gazdar. Pragmatics: Implicature, Presupposition and Logical Form.
Academic Press, New York, 1979.

Michael Gelfond and Vladimir Lifschitz. Logic programs with classical negation.
In Logic programming, pages 579–597. MIT Press, Cambridge, MA, USA,
1990.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9(3/4):365–386, 1991.

69

Bart Geurts. Quasi-local implicatures or local quasi-implicatures? ms., 2007.

Herbert Paul Grice. Studies in the Way of Words. Harvard University Press,
Cambridge, Massachusetts, 1989.

Jeroen Groenendijk and Martin Stokhof. Studies in the Semantics of Questions
and the Pragmatics of Answers. PhD thesis, University of Amsterdam, 1984.

Larry Horn. On the Semantic Properties of Logical Operators in English. PhD
thesis, University of California, 1972.

Larry Horn. Presupposition and implicature. In Shalom Lappin, editor, The
Handbook of Contemporary Semantic Theory, pages 299–319. Blackwell’s, Ox-
ford, 1995.

Larry Horn. Implicature. In The Handbook of Pragmatics, pages 3–28. Blackwell,
Oxford, 2004.

Hans Kamp and Uwe Reyle. From Discourse to Logic. Introduction to Mod-
eltheoretic Semantics of Natural Language, Formal Logic and Discourse Rep-
resentation Theory. Kluwer, Dordrecht, 1993.

Stephen Levinson. Pragmatics. Cambridge University Press, Cambridge, 1983.

Stephen Levinson. Presumptive Meanings. MIT Press, Cambridge, 2000.

Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions
in logic programs. Annals of Mathematics and Artificial Intelligence, 25(3-
4):369–389, 1999.

Vladimir Lifschitz. Circumscription. In Dov Gabbay, Christopher J. Hogger,
and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Rea-
soning, pages 298–352. Oxford University Press, 1994.

Vladimir Lifschitz. Foundations of logic programming. In Gerhard Brewka,
editor, Principles of Knowledge Representation, pages 69–127. CSLI Publica-
tions, Stanford, California, 1996.

John McCarthy. Circumscription: A form of non-monotonic reasoning. In
M. L. Ginsberg, editor, Readings in Nonmonotonic Reasoning, pages 145–
151. Kaufmann, Los Altos, CA, 1987.

Ira A. Noveck and Andres Posada. Characterizing the time course of an impli-
cature: An evoked potential study. Brain and Language, 85:203–210, 2003.

Mehmet Ali Orgun and Wanli Ma. An overview of temporal and modal logic
programming. In D M Gabbay and H J Ohlbach, editors, Proceedings of
ICTL’94: The 1st International Conference on Temporal Logic, pages 445–
479, Berlin Heidelberg, 1994. Springer-Verlag.

Nausicaa Pouscoulous, Ira A. Noveck, Guy Politzer, and Anne Bastide. Evi-
dence for the production of scalar implicature in young children. Language
Acquisition, in press.

70

Uli Sauerland. Scalar implicatures in complex sentences. Linguistics and Phi-
losophy, 27(3):367–391, 2004.

Katrin Schulz and Robert Van Rooij. Pragmatic meaning and non-monotonic
reasoning: The case of exhaustive interpretation. Linguistics and Philosophy,
29(2):205–250, 2006.

Scott Soames. How presuppositions are inherited: a solution to the projection
problem. Linguistic Inquiry, 13:483–545, 1982.

Benjamin Spector. Scalar implicatures: Exhaustivity and gricean reasoning.
In Balder ten Cate, editor, Proceedings of the ESSLLI 2003 Student Session,
2003.

Keith Stenning and Michiel Van Lambalgen. Human Reasoning and Cognitive
Science. to appear with MIT Press, 2007.

Gianluca Storto and Michael K. Tanenhaus. Are scalar implicatures computed
online? In Proceedings of WECOL 2004, 2004.

Allen van Gelder, Kenneth Ross, and John S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

Michiel Van Lambalgen and Fritz Hamm. The Proper Treatment of Events.
Blackwell, 2004.

Robert Van Rooij and Katrin Schulz. Exhaustive interpretation of complex
sentences. Journal of Logic, Language and Information, 13(4):491–519, 2004.

Toshiko Wakaki and Ken Satoh. Compiling prioritized circumscription into
extended logic programs. In IJCAI (1), pages 182–189, 1997.

71

