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Abstract

This thesis presents a connectionist model of syntactic bootstrapping processes
in language acquisition. According to the Syntactic Bootstrapping hypothe-
sis, children acquiring language can learn (part of) the meaning of new words
based on the syntactic context in which they appear. Psycholinguistic research
has shown that children can indeed use morphosyntactic cues to guide their
interpretation of novel words.

This project investigates whether a connectionist network can exploit sys-
tematicity in language to acquire novel words over the course of development.
The network is trained according to a semi-supervised algorithm. The model
learns a sentence-interpretation task from both labelled and unlabelled data.
Specifically, it learns to output a semantic representation (roughly correspond-
ing to ‘who did what to whom’) for given sentences. To investigate whether
syntactic bootstrapping can successfully lead to lexical development, some vo-
cabulary items are only presented in unlabelled sentences. To correctly process
these examples and learn these words, the network must infer the novel words’
properties (e.g. grammatical category, animacy features) based on the context
in which they appear. The network must then use its own output (i.e. its
interpretation of the sentences) to train itself.

The system’s ability to rely on syntactic cues for vocabulary acquisition is
tested in a number of experiments. Although the network is able to acquire
the language and shows very good generalization, its ability to rely on syntactic
bootstrapping to learn novel words does not meet expectations.
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Chapter 1

Introduction

A key aspect of natural language is its systematicity. Much of the expressive
power of language lies in the fact that innumerably many sentences can be cre-
ated from a finite number of words and structures. Regularities in language
allow native speakers to produce and understand sentences they have never
heard before. For example, a speaker of English who understands the sentence
John loves Mary will also understand the sentence Mary loves John. Although
systematicity is often discussed in terms of production and comprehension, reg-
ularities in language are also useful during the process of acquiring a language.
One very influential theory of vocabulary acquisition, known as the Syntactic
Bootstrapping hypothesis (Landau and Gleitman, 1985; Gleitman, 1990), de-
pends on systematic correspondences between syntax and semantics.

The Syntactic Bootstrapping hypothesis holds that children acquiring lan-
guage can learn (part of) the meaning of new words based on the syntactic
context in which they occur. This is possible because there are strong cor-
relations between form and meaning. For example, the number of arguments
licensed by a verb is closely related to its meaning: verbs that describe one-
participant actions are typically intransitive (e.g. Bill laughed), while verbs
that describe events involving two participants typically appear in transitive
frames (e.g. Anna tickled Bill) (Fisher et al., 2010).

Experimental research has shown that children can learn about the mean-
ing of novel words based on the syntactic context in which these words occur.
Nevertheless, little is known about the role of syntactic bootstrapping in the
‘usual’ course of lexical development. While it is clear that children can rely
on linguistic cues to learn about the meaning of words in laboratory settings,
it has yet to be demonstrated that bootstrapping can eventually lead to the
acquisition of new vocabulary, i.e. that it can lead to long-term learning.

In addition to psycholinguistic experiments, computational simulations can
be useful for investigating the validity of theories of language acquisition. In
particular, models of syntactic bootstrapping can be helpful for determining un-
der what conditions bootstrapping mechanisms might allow learners to acquire
new vocabulary. Indeed, computational simulations have provided supporting



evidence for the use of bootstrapping processes for comprehension of novel words
appearing in familiar syntactic frames. Computational models have been shown
to make appropriate inferences about novel words presented in familiar syntac-
tic contexts. However, these models are only presented with novel words during
testing, i.e. after the model has acquired the input language. What has yet
to be explored is whether a model can make use of inferred knowledge during
training to acquire new vocabulary over time. For bootstrapping to be plausible
as a learning strategy, it must be shown that learners can integrate knowledge
inferred from linguistic context with already-existing knowledge.

In this thesis, I investigate whether a connectionist network can exploit sys-
tematicity in language to acquire novel words over the course of development.
The network is trained according to a semi-supervised algorithm. The model
learns a sentence-interpretation task from both labelled and unlabelled data.
Specifically, it learns to output a semantic representation (roughly correspond-
ing to ‘who did what to whom’) for given sentences. To investigate whether
syntactic bootstrapping can successfully lead to lexical development, some vo-
cabulary items are only presented in unlabelled sentences. When presented with
an unlabelled example containing a novel word, the network must infer (part
of) of the word’s meaning (e.g. grammatical category, animacy features) based
on the context in which it appears. The network must then use its own output
(i.e. its interpretation of the sentences) to train itself.

The model also provides an opportunity to explore the issue of systematic-
ity in connectionist systems from a new perspective. The capacity of neural
networks to display the same level of systematic behaviour as humans has been
heavily debated (for discussion, see, among others, Hadley (1994), Christiansen
and Chater (1994), and Frank and Cerfiansky (2008)). Much of the debate
has focused on networks’ ability to process sentences containing known words
appearing in new contexts. However, as noted earlier, regularities in language
can also be exploited to make inferences about novel words appearing in famil-
iar contexts. A model of bootstrapping must display systematic behaviour in
order to successfully acquire vocabulary, because it must exploit regularities in
the input to make inferences about novel words. The model developed for this
thesis can thus provide a new perspective on systematicity in neural networks.

The thesis is organized as follows. In chapter 2, I discuss how regularities in
language can be exploited for language comprehension and language acquisition,
both by children and computational models. First, I briefly discuss the issue of
systematicity in connectionist models. I then give an overview of the Syntactic
Bootstrapping hypothesis, and present existing computational models of syn-
tactic bootstrapping. Chapter 3 introduces the connectionist model developed
for this thesis. After presenting the language learned by the model and the
training and test data, I describe the model’s architecture, the semi-supervised
training procedure and the criteria used to evaluate the model’s performance.
In chapter 4, I discuss the results of the simulations performed with the model,
which test the system’s ability to exploit systematic properties of the input data.
Chapter 5 concludes the thesis.



Chapter 2

Background

2.1 Systematicity and connectionism

The capacity to create and understand novel sentences is an important feature
of human language processing. Human beings have the ability to generalize — to
discover underlying patterns in the data they are presented with, and to apply
this knowledge when processing or uttering new sentences. Fodor and Pylyshyn
(1988) argued that cognitive models of language should be systematic in this
sense, and that connectionist networks cannot display systematicity without
implementing a classical symbol system. The ability of neural networks to
display systematic behaviour is still a matter of debate.

Studies of systematicity in connectionist models have focused on the ability
(or lack thereof) of networks to display systematic behaviour when faced with
a sentence processing task. What is evaluated is the model’s ability to process
sentences containing words that occur in new combinations or positions. For
example, suppose a network has encountered the word giraffes only in subject
position during training, and the word apes only in object position. The network
displays systematicity if it can process a sentence like apes see giraffes, where
the positions of the nouns are reversed.

Several researchers have investigated the ability of networks to display this
kind of systematicity (see, among others, Hadley (1994), Christiansen and
Chater (1994), van der Velde et al. (2004), Frank and Cerniansky (2008)), and
Frank et al. (2009)). In most experiments, networks are trained on a gram-
mar where the distribution of certain words is unnaturally restricted, so that
the model’s ability to process words appearing in novel positions can be tested.
The problem with this approach is that it is very difficult to create a grammar
that is sufficiently restrictive to allow the investigation of systematic behaviour
without simultaneously requiring the system to overgeneralize.

An alternative approach is to test a model on sentences containing words
that were not seen during training at all, and to ask whether the model can
rely on its knowledge of syntax and semantics to interpret these utterances.



If it can process the sentences successfully, the system can be said to display
systematicity.

In this thesis, I look at the issue of systematicity from this angle, by asking
whether neural networks can exploit the regularities prevalent in language to
make inferences about novel words. For example, someone who knows the verb
sleep and hears the sentence ‘Wugs sleep’ will infer that wugs is a noun, and
refers to an animate entity, even if they have never encountered this word before.

This aspect of systematicity has received little attention in the debate on
systematic behaviour in connectionist models, perhaps because systematicity
in sentence processing is a prerequisite for inferring word meaning based on
context. As we will see in the next section, the ability to rely on context to learn
about the meaning of novel words is known as Syntactic Bootstrapping. In this
thesis, I develop a model of bootstrapping, and explore the issue of systematicity
in connectionist networks from a language acquisition perspective.

2.2 Language acquisition

2.2.1 Syntactic bootstrapping

Learning novel words is difficult. Infants learning their native language must
find correlations between the utterances they hear and the real world, and learn
which words correspond to which objects, concepts, relations or events. How-
ever, as observed by Quine (1960), lining up linguistic input with extralinguistic
scenes is not an easy task. A number of problems arise for the learner attempt-
ing to relate linguistic input with her experience of the world. Even in simple
cases, (e.g. an adult saying “This is a cat” or “Look, a cat!” while pointing
at a cat), several possible interpretations are available; the child might infer
that the word refers to this particular cat, to animals in general, to furriness,
to white objects, etc. (Landau and Gleitman, 1985). The problem is even more
complicated in the case of abstract concepts (e.g. thought, beauty), which have
no direct instantiation in the real world.

In addition, as observed by Gleitman (1990), a given situation can typically
be construed in a number of ways, thereby allowing any number of pairings be-
tween word and world. For example, verb pairs like lead/follow or chase/flee de-
scribe the same event from different perspectives. Moreover, caregivers’ speech
to infants is not perfectly aligned with the events observable to children, and
the focus of attention of the child and adult may differ. For example, the adult
might tell the child “Come take your nap” while the child’s attention is directed
at a cat (Gleitman and Gillette, 1995).

Given the difficulties involved in building a lexicon based solely on obser-
vation, Landau and Gleitman (1985) and Gleitman (1990) hypothesized that
both extralinguistic and linguistic cues guide vocabulary acquisition, a process
known as syntactic bootstrapping.

According to the bootstrapping hypothesis, children use linguistic cues to
guide their interpretation when mapping utterances to scenes, i.e. they can use



syntax to determine what particular words refer to, and to constrain the range
of possible correlations between the world and the linguistic input (Landau and
Gleitman, 1985; Gleitman, 1990; Gleitman and Gillette, 1995).

Morphology and syntax can provide powerful cues to meaning. For exam-
ple, function words like determiners and pronouns are highly indicative of the
lexical category of surrounding words (e.g. a blick suggests that blick refers to
a concrete noun, he’s blicking suggests a verb, and the morphological marker
ish in a blickish cat would indicate that it is an adjective). Children’s ability
to rely on such cues to interpret novel words was first demonstrated by Brown
(1957), who showed that preschoolers could use morphosyntactic cues to infer
the lexical category of a novel word. For example, when hearing a sib, they
associated the novel word sib with a novel object, whereas when presented with
sibbing, they associated the new word with an action.

2.2.2 Experimental evidence
Mapping utterances to scenes

Since Brown (1957), numerous other studies have shown that both adults and
children can use distributional cues in language to infer (partial) meaning of
novel words, and that syntax supports vocabulary acquisition. As noted by
Naigles and Swensen (2007), there is now ample evidence that preschool-aged
children (3- to 5-year-olds) make use of syntactic bootstrapping to learn novel
words, and even toddlers appear to rely on linguistic context during compre-
hension.

Several experiments have focused on verb learning, investigating children’s
ability to rely on the syntactic frame in which a novel verb appears to make
inferences about its meaning. For example, in an experiment conducted by
Naigles (1998), children were shown side-by-side videos depicting characters
involved in two types of actions. One action was causative, e.g. a duck making
a rabbit bend over, and the other was non-causative and synchronous, e.g. a
duck and a rabbit making arm circles. These scenes were paired with sentences
introducing a novel verb (e.g. ‘blicking’) in either a transitive (e.g. “The duck
is blicking the bunny”) or intransitive frame (e.g. “The duck and the bunny are
blicking”).

Children’s interpretation of the novel words were tested by asking them to
“find blicking” while showing the two actions on separate screens. One video
depicted the causative action, the other the non-causative action. Children who
had heard the novel verb in transitive frames looked significantly longer at the
scene depicting the causative action, while those who had heard intransitive
sentences looked longer at the scene showing the non-causative action (Naigles,
1998). For discussion and additional references to similar work, see also Naigles
and Swensen (2007); Naigles (1996); Fisher et al. (2010).



Multiple frames

In many experimental validations of the syntactic bootstrapping hypothesis,
children are exposed to utterances where a novel word is presented in a single,
unambiguous, context (e.g. in either a transitive or intransitive frame, as in the
experiment described above). However, in many cases, exposure to a novel word
in a single syntactic frame is insufficient for determining the word’s meaning.

As an illustration, consider the following example from Gleitman and Gillette
(1995). The sentence “John is ziking the book to Bill” suggests that ziking is
a verb of transfer, but it is compatible with a variety of concepts, such as give,
bring, throw, explain. Hearing this word in a variety of contexts could provide
additional information about its semantics; for instance, “John is ziking that
the book is boring” would indicate a mental activity. Taken together, these two
utterances would then suggest that the meaning of ziking is analogous to that
of explain (Gleitman and Gillette, 1995, p. 216).

Since learners must sometimes hear a novel word in a variety of syntactic
structures in order to gain a full picture of its meaning and distribution, for
bootstrapping to be plausible as a theory of word learning, children must be ca-
pable of keeping track of the distributional properties of words. Naigles (1996,
1998) provided experimental demonstrations of children’s ability to use infor-
mation from multiple frames to discover word meanings. The experiments relied
on English transitivity alternations: the causative alternation and the omitted
object (or unspecified object) alternation. These alternations are illustrated in
(1) and (2) (Naigles, 1996, p. 226).

(1) The girl dropped the ball.

The ball dropped.

The cat was scratching the door.
The cat was scratching.

(2)

o oP

Syntactically, these verbs are indistinguishable in the transitive frame. The
difference between the two classes surfaces in the intransitive use of the verbs:
in the causative alternation (1), the subject of the intransitive verb corresponds
to the object in the transitive frame; in the omitted object alternation (2),
the subject of both sentences is the same, and the affected object is unspecified.
Only by comparing pairs of sentences like those in (1) and (2) can the distinction
between these verbs be discovered.

These verbs differ only slightly in their lexical semantics. Causative verbs
involve actions where the subject causes a change in the state or position of
the object, while verbs presented in the omitted object condition involve “con-
tacting” activities — actions with repeated contact, but no change-of-state or
change-of-position. Examples of ‘contact’ verbs include touch, pat, stroke.

Naigles (1998) taught toddlers novel verbs similar to causatives like move
(e.g. The duck krads the frog/ The frog krads) or ‘contact’ verbs like pat (e.g.
The duck krads the frog/ The duck krads). Children were able to use informa-
tion presented over multiple frames to distinguish between these verbs.



Inferring meaning in the absence of extralinguistic context

The studies mentioned above show that syntactic bootstrapping can be useful
in the presence of corresponding extralinguistic input, but another aspect of
the theory is that learners should be able to infer (partial) information about
novel words even in the absence of perceptual cues. This is particularly im-
portant given that it would be impossible to learn language solely based on
cross-situational observation.

Recent research has investigated children’s ability to rely on bootstrapping
strategies to infer the meaning of novel verbs even when no semantic cues are
available from an extralinguistic scene. Yuan and Fisher (2009) showed that
children can learn about the syntactic properties of verbs based solely on lin-
guistic cues, while Scott and Fisher (2009) demonstrated that information about
semantic properties of verbs can be learned from the linguistic context in which
verbs appear.

Yuan and Fisher (2009) presented 2-year-olds with videos showing two women
engaged in conversation. The women used a nonsense verb in a transitive (Jane
blicked the baby!) or intransitive (Jane blicked!) frame. Since the videos did
not show a novel action, children could rely only on syntax to learn about the
verb’s meaning. The experiment showed that children can indeed make use of
purely linguistic cues to distinguish between transitive and intransitive actions.
Children’s interpretation of the verb was then tested by showing them a scene
depicting either a two-participant event or a one-participant event. The ex-
periment showed that children who had heard novel verbs in transitive frames
correctly associated the verb with two-participant events, while those who had
heard intransitive sentences associated the verb with a one-participant event.

This experiment from Yuan and Fisher (2009) shows that even without ex-
tralinguistic cues, children can learn about the syntactic properties of verbs,
i.e. the number of arguments it takes. Scott and Fisher (2009) extended this
work by investigating whether children can also learn about abstract semantic
properties of verbs based on linguistic cues. More precisely, they investigated
whether children can use linguistic cues to make inferences about the semantic
roles a verb assigns to its arguments.

The experiment relied on the transitivity alternations discussed earlier. In
the causative alternation, the subject of the intransitive variant is assigned an
Undergoer/Patient/Theme role. That is, the subject of the intransitive sen-
tence is the object affected by the action described by the verb. The Agent
is left unspecified. This is illustrated in (3). In the omitted object alterna-
tion, the subject of the intransitive sentence is the Agent, and the object is left
unspecified, as in (4) (Scott and Fisher, 2009, p. 778).

(3) a. Anne broke the lamp. Causative alternation
b.  The lamp broke. (Undergoer subject)
(4) a. Anne dusted the lamp. Omitted object alternation
b. Anne dusted. (Agent subject)



In an experiment similar to that of Naigles (1998), Scott and Fisher (2009)
showed that children presented with pairs of sentences like those in (3) and (4)
could distinguish between the causative and non-causative meanings of verbs,
even when they did not have access to a concurrent extralinguistic scene.

To sum up: there is ample evidence that children can use linguistic cues to
guide their interpretation of novel words, even without a corresponding scene.
In addition, children can keep track of the combinatorial privileges of verbs over
multiple trials and frames to progressively refine their understanding of a word.
Nevertheless, as noted by Naigles and Swensen (2007), little is known about
the role of syntactic bootstrapping in the ‘usual’ course of lexical development.
While it is clear that children can rely on linguistic cues to learn about the
meaning of words in laboratory settings, it has yet to be demonstrated that
bootstrapping can eventually lead to the acquisition of new vocabulary, i.e.
that it can lead to long-term learning.

2.3 Related work

In this section, I give an overview of computational models of syntactic boot-
strapping. As we will see, previous modelling work on bootstrapping has focused
on issues related to the learnability of language. The computational models of
Desai (2002, 2007); Allen (1997); Alishahi and Stevenson (2010), among oth-
ers, demonstrate that learners can exploit regularities in language to discover
correlations between form and meaning. Experimental and computational work
support the hypothesis that linguistic context can allow the learner to infer
components of the meaning of novel words.

The models reviewed in this section provide evidence for the importance
of bootstrapping in comprehension, and support a usage-based approach to
language acquisition, where multiple sources of information are combined to
learn abstract properties of language, such as constructions or linking rules
between syntax and semantics.

However, there are other aspects of syntactic bootstrapping which have yet
to be investigated experimentally or computationally. In particular, few studies
have explored whether knowledge obtained primarily from linguistic context —
without extralinguistic input — can be integrated with previously-existing knowl-
edge. The model developed for this thesis focuses on this issue, and thus extends
or complements previous computational work on syntactic bootstrapping.

2.3.1 Desai (2002, 2007)

Desai (2002) presents a model of bootstrapping in the acquisition of a miniature
language and shows that a Simple Recurrent Network trained on a sentence in-
terpretation task can exploit syntax-semantics correspondences to infer part of
the meaning of novel words. The model learns to process two types of inputs:
sentence fragments (noun phrases) and simple sentences. Noun phrases consist
of either a determiner and a noun (e.g. a boy) or two conjoined noun phrases

10



(e.g. a boy and a girl). Simples sentences contain either a transitive or intransi-
tive verb. The grammar therefore licenses the following types of inputs, where
N denotes a noun phrase, and V denotes a verb (Desai, 2002).1

(5) a boy (N)

a boy and a girl (NN)

a boy is jumping (NV)

a boy and a girl are jumping (NNV)

a boy is pushing a girl (NVN)

®po ow

The network is trained on input pairs consisting of utterances (sequences of
words) and scenes (semantic representations of the corresponding utterances).
The task is to determine the semantics of input sentences, which entails identi-
fying the first and second noun phrases, the verb, and whether or not the event
involves causation.

The model’s ability to perform syntactic bootstrapping is tested by present-
ing it with different sentences containing the novel word glorp in a variety of
structures. The model assigns appropriately different representations to the
semantic component representing glorp, depending on the structure in which
it occurs. For instance, when presented with the fragment a glorp, the model
interprets the novel word as a noun; when given the sentence a girl is glorping,
the novel word is interpreted as an intransitive verb. The network thus exhibits
the ability to infer part of the meaning of novel words based on linguistic cues.

One of the limitations of this task is that the identification of a nominal
argument is only related to its linear position in the sentence, and does not
depend on its syntactic position or semantic role. For example, in (5-d), the
input girl is a subject and an Agent, while in (5-e), it is an object and Undergoer,
but in both cases, it would receive the same semantic representation.

In addition, in this miniature language, causality is strictly related to transi-
tivity: transitive verbs involve causation, while intransitive verbs do not. Thus,
the network can fully identify the semantics of a novel verb based on a single
frame; it does not need to keep track of the different structures in which a
verb can appear to determine its distributional properties. Ideally, a model of
bootstrapping would incorporate more refined semantics, requiring the model to
attend not only to the respective order of arguments, but also to their semantic
roles.

Desai (2007) presents a connectionist network that learns a slightly more
complex grammar. The language is similar to that of Desai (2002), but in-
cludes a causative alternation, with some verbs licensed in both transitive and
intransitive frames (e.g. A boy broke the window/The window broke). The
model provides an account of Frame and Verb compliance, and is not aimed
at exploring bootstrapping mechanisms. The model does demonstrate that the
network is capable of keeping track of syntactic information over distinct syntac-
tic frames. However, the model’s ability to make inferences about novel words

IThe grammar also allows noun phrases modified by an adjective encoding the referent’s
size, with two potential values ‘large’ and ‘small’ (e.g. a large dog).
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is not evaluated.

Although the model of Desai (2002) does demonstrate that the network can
use syntactic cues to interpret sentences, it does not provide a robust validation
of bootstrapping as a procedure for acquiring vocabulary. In particular, it does
not allow us to explore whether knowledge of novel words can be integrated
with already-existing knowledge, or whether word meaning can be progressively
refined through exposure to a given word in various syntactic structures.

2.3.2 Allen (1997)

Allen (1997) presents a connectionist network that exhibits bootstrapping be-
haviour. The model learns to assign semantic roles to arguments based on
semantic and syntactic cues. In this model, nouns are encoded in the input
as distributed representations of semantic features, while verbs and preposi-
tions are given localist representations (i.e. they do not encode any semantic
features). More precisely, nouns are represented by an array of 390 semantic
features based on the WordNet database (Miller et al., 1990). For example,
a proper name like Peter would be encoded as [+human, +animate, +male,
-vehicle, .. .].

The output of the model represents semantic features of verbs (e.g. +act,
+cause) and features associated with the arguments’ roles. In total, 360 features
are represented in the output of the network. The model is also provided with
syntactic information, in the sense that the order of a verb’s arguments is also
presented as part of the input. The training data were created based on care-
taker speech from the CHILDES database. The trained network is tested with
a grammaticality judgement task. The network is presented with grammatical
and ungrammatical novel sentences, for which it must output the corresponding
semantics. If the network computes semantic roles for all and only the nominal
arguments in the sentence, it is deemed to have judged the sentence as being
acceptable.

To demonstrate the bootstrapping behaviour of the network, Allen (1997)
supplied the network with utterances containing novel words, and examined the
resulting interpretation. Given the sentence John glorped the basket to Mary,
the network attributed an Agent role to John, an endpoint role to Mary, and a
theme role for basket. The computed pattern also reflects information inferred
about the novel verb glorp, including features such as [+move, +hand, +pass
+transfer|. Since the network was not previously trained on this word, these
semantic features are primarily deduced from the syntactic construction in which
the verb appears.

The network can also rely on the semantics of lexical items to make inferences
about novel words. For example, when presented with He glorped the message
to Mary, which is syntactically similar to the preceding example, the network
computes the same role interpretation as before, but the semantics of the verb
now include features such as [+communicate, +interact, +express].

This model provides an interesting approach to modelling language acquisi-
tion, because it allows the learner to use multiple cues (e.g. number and order of
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Lexical properties: {meal, repast, nutriment, nourishment, sustenance, ...}
Event-based properties:  {non-independently exist, affected, change, ...}

Sara eat lunch

Semantic primitives: {act, consume}

Lexical properties: {woman, adult female, female, person, individual, somebody, human, ..}

Event-based properties:  {volitional, affecting, animate, independently exist, consuming, ...}

Figure 2.1: A sample verb usage: an utterance paired with the inferred semantic
information. Reproduced from Alishahi and Stevenson (2010, p. 59, Figure 1)

arguments, semantic properties of nouns) to make inferences about the meaning
of novel words. Indeed, although much research on syntactic bootstrapping has
focused on morphosyntactic cues, it is also assumed that children also rely on
conceptual cues to make inferences about novel words.

The drawback of this model is that it assumes that the child has very so-
phisticated and extensive semantic knowledge of both nominal arguments and
events. As such, it cannot be taken as a model of bootstrapping processes
occurring at an early stage of language acquisition. In addition, the gram-
maticality judgement task only provides a cursory evaluation method. Finally,
like the model of Desai (2002), the network is only tested on utterances with
novel words, so the model never makes use of inferred knowledge to learn new
vocabulary.

2.3.3 Alishahi and Stevenson (2010)

Alishahi and Stevenson (2010) implement an incremental Bayesian model ca-
pable of using both syntactic and semantic information to guide its interpreta-
tion of novel verbs. This model, which is an extended version of their earlier
work (Alishahi and Stevenson, 2007), learns not only linking rules governing
the mappings between syntax and semantics, but also learns the semantic roles
themselves. The semantic role labels are not pre-defined in this model; they
are acquired from experience. In addition, the model develops knowledge of the
distributional properties of individual verbs, and also generalizes this knowledge
to discover different constructions.

The model is first presented with sample verb usages, which consist of an
utterance paired with semantic information describing the corresponding event.
The child is assumed to be capable of inferring semantic properties of events
and participants, as well as being able to establish a link between the utterance
and the scene. A sample verb usage, reproduced from Alishahi and Stevenson
(2010), is given in Figure 2.1.
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| Head verb ear
Number of arguments 2
Syntactic pattern argl verb arg2
Semantic primitives of verh {act, consume}
Lexical properties of arpument 1 {woman, adult ferzle, female, person, individual, ...}

| Event-based properties of argument 1  {volitional, affecting, animate, independently exist, ...}
Lexical properties of argument 2 {meal, repast, nutriment, nourishment, sustenance, ...}
Event-based properties of argument 2 {non-independently exist, affected, change, ...}

Figure 2.2: The argument structure frame extracted from the verb usage Sara
ate lunch in Figure 2.1. Reproduced from Alishahi and Stevenson (2010, p. 61,
Figure 3)

These input pairs are generated from a hand-crafted input corpus based
on statistical properties of child-directed speech. To simulate missing data and
noise, two out of every five input pairs are modified by having a feature removed.
One of these modified input pairs thus serves to simulate incomplete data, and
the other is altered to simulate noise. This is done by replacing the missing
feature with the most probable value for this feature, as predicted by the model
at that point in training. This mirrors situations where the child relies on
inferred knowledge to fill in missing information.

The addition of noise to the model is particularly interesting for simulating
bootstrapping processes, since an important aspect of the bootstrapping hy-
pothesis holds that children exploit both linguistic and extralinguistic cues to
make inferences about meaning. However, even these noisified input pairs still
require that a considerable amount of information be available to the child. In
particular, the child must possess knowledge about complex lexical semantic
features, and must still have access to substantial observational information.
Since only one feature is removed, this simulates situations where the child has
access to extralinguistic input, but the full ‘meaning’ of the scene is not avail-
able to her. Indeed, the main shortcoming of the model is that, like Allen’s
(1997) model, it assumes that the child already has an extensive understanding
of various semantic and conceptual properties of both words and events, and
that the child always has access to extralinguistic input.

The input corpus is used to generate verb usages like the one illustrated in
Figure 2.1. The model incrementally processes each verb usage to extract an
argument structure frame, illustrated in Figure 2.2, reproduced from Alishahi
and Stevenson (2010). Similar frames are then grouped together based on an
unsupervised Bayesian clustering process.

Alishahi and Stevenson (2010) present a number of experiments with differ-
ent language tasks, showing that the model has learned semantic roles as well
as constructions, and can extend this knowledge to utterances containing novel
words. After training, the model is presented with a novel verb in an ambigu-
ous context, and asked to select the most likely interpretation amongst different
frames. For example, when presented with the novel verb blick in a transitive
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structure (e.g. She blick her), the model prefers an interpretation where she is
an Agent over an interpretation where it would be an Undergoer, which shows
that it has successfully interpreted the novel word.

2.3.4 General discussion

The main objective of previous simulations of bootstrapping has been to show
that bootstrapping mechanisms can emerge from exposure to language, with
limited prior assumptions about innate knowledge. The models discussed in
this section show that linking rules can be learned from experience (Desai, 2002;
Allen, 1997) and that even the semantic roles themselves need not be innately
given (Alishahi and Stevenson, 2010).? Nevertheless, like the experimental work
on child language acquisition, these models only demonstrate that bootstrapping
processes can play a role in sentence comprehension. They do not illustrate that
bootstrapping can work as a procedure for learning novel words over time.

Moreover, these models rely on training procedures where both utterances
and scenes are always available to the learner. It is only during testing that novel
words are presented to the model without concurrent extralinguistic input. Yet,
the syntactic bootstrapping hypothesis holds that children can exploit linguistic
cues even in the absence of an extralinguistic scene. For concrete nouns and
verbs, this is perhaps not crucial, since the child could eventually be exposed
to enough real-world situations to allow him to learn the words without relying
on linguistic structure. However, for words with more abstract meanings, most
of the learning must occur without direct tangible evidence. Indeed, syntactic
bootstrapping is particularly important in cases where no extralinguistic scene
is available.

Previous models treat bootstrapping as a procedure that applies after the
child has acquired a significant amount of knowledge. For example, the models
of Allen (1997) and Alishahi and Stevenson (2010) model procedures that come
into play only after the child has acquired complex representations of individual
lexical items, because words are represented as bundles of features garnered
from the WordNet database. While the syntactic bootstrapping hypothesis
does assume that children can build a small vocabulary from cross-situational
observation alone, it does not presuppose such extensive knowledge.? It would
be desirable to investigate whether children at an earlier stage of learning can
also take advantage of syntactic cues to infer (more general) components of word
meaning.

A complete account of bootstrapping must involve semi-supervised training,
where the model is presented with both labelled and unlabelled examples in the
learning phase. In the latter case, the model would need to rely on its inferences
about the properties of novel words to progressively acquire the meaning of these
words. This would simulate situations where real-world observation provides

2See also Morris et al. (2000) for a connectionist model that learns linking rules between
syntax and semantics, as well as the abstract notion of ‘subject’.

3Indeed, Alishahi and Stevenson (2010) do not claim that this assumption is psychologically
plausible.
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little or no information to the learner, as in the experiments of Yuan and Fisher
(2009) and Scott and Fisher (2009). It would also allow the investigation of
whether bootstrapping can allow young learners to learn new vocabulary even
while they are still in the early stages of learning the syntax of their language.
Finally, the training data should be sufficiently rich so that the model is required
to keep track of novel words over distinct syntactic frames in order to learn the
full meaning of novel words (as given by the grammar).

In the next chapter, I present a connectionist model designed to fulfill these
criteria. The objective is to investigate whether syntactic bootstrapping can lead
to learning new vocabulary even before the child has learned complex lexical
semantics or acquired a full grasp of syntax.
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Chapter 3

Methodology

Bootstrapping requires discovering and exploiting correspondences between syn-
tax and semantics. In this thesis, this process is modelled by a neural network
trained to associate “utterances” and “scenes”. The network learns to gener-
ate a semantic representation for input sentences, which roughly corresponds
to determining ‘who did what to whom’, as in Desai (2002, 2007) and Morris
et al. (2000), among others. More specifically, for a given input sentence (i.e. a
sequence of words), the network must identify the participants (the Agent and
Undergoer), the activity or event described by the predicate (the verb), and
the causality of the event. Example utterances with their corresponding scene
representations are given in (1).

(1) a. Cats sleep
Agent: none
Undergoer: cats
Event: sleep
Causality: non-causal

b.  The kids make sand-castles
Agent: kids
Undergoer: sand-castles
Event: make
Causality: causal

The model simulates language acquisition at a stage after the child has learned
to segment speech. Inputs to the model therefore consist of sentences presented
one word at a time. The main assumptions built into the model are that it
processes data incrementally and sequentially, i.e. that it processes sentences
word-by-word, and that it attempts to discover correspondences between syn-
tax and semantics — mappings from ‘utterances’ (input sequences) to ‘scenes’
(targets/outputs).
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No formal linguistic structures or features are provided to the model. In
particular, knowledge of linking rules, lexical categories, or syntax is mot inher-
ent to the network, and must be learned. For simplicity, no morphosyntactic or
prosodic information is represented in the data given to the model. For consis-
tency, nouns of the language will be referred to in the plural form throughout
the thesis, and verbs will be conjugated in the present tense. However, neither
number nor tense features are encoded in the language.

This chapter is organized as follows. In section 3.1, I describe the miniature
language learned by the model. Section 3.2 discusses the procedure used to
generate training and test sentences. Section 3.3 outlines the network architec-
ture, with special attention to the encoding of the inputs and outputs. Finally,
in sections 3.4 and 3.5, I present the training procedure and describe how the
network’s performance is evaluated.

3.1 The language

As in previous work on syntactic bootstrapping, the model is trained on input-
output pairs representing “utterances” and “scenes”, respectively. The artificial
grammar used to generate training and test examples must therefore specify
both the syntactic forms of the language as well as their semantic correlates.

The artificial language used to train the model is designed to contain lin-
guistic structures found in natural language, but is not intended to be a realistic
representation of the linguistic input in a child’s environment. The language in-
cludes both ‘content’ words (nouns and verbs) and ‘function’ words (the prepo-
sition to, and the determiner the, which optionally modifies nouns). There are
two kinds of nouns: animate and inanimate, and three types of verbs: option-
ally transitive, strictly transitive, and strictly intransitive. Verbs are further
divided into different classes, depending on the type of argument(s) they take,
the semantic roles they assign to their arguments, and whether they denote a
causal or non-causal activity or event.

In total, the language includes 6 verb classes, each imposing different require-
ments on the lexical category or semantic role of their argument(s). In what
follows, I first describe the syntactic structures licensed by each verb class, then
discuss the corresponding semantic properties of each class.

3.1.1 Syntax

There are 2 classes of transitivity-alternating verbs, denoted Vi,ove and Vgrquw.!
In the transitive frame, verbs of both classes obligatorily take an animate sub-
ject, but direct objects can be either animate or inanimate. In the intransitive
frame, verbs of the V,,,ye class license only inanimate subjects, while the V g.q4
class licenses only animate arguments.

1Each verb class is referred to with a subscript indicating a typical verb of the class. For
example, Viove verbs belong to the same class as mowve.

18



Table 3.1: Syntactic structure of each sentence type, as defined by each verb
class. Subscripts indicate restrictions (if any) imposed on verb arguments (e.g.
‘NPgnim’ indicates that the argument must be animate, while ‘NP’ indicates
that no restriction is imposed on the argument).

Type Sentence structure Examples

1 Transitive NP nim Vmove NP The kids move cats/toys
Intransitive  NPj;nanim Vmove The toys move

2 Transitive NP nim Varaw NP Kids draw cats/toys
Intransitive NP nim Vdraw Kids draw

3 NPunim Vimake NPinanim  Girls make sand-castles

4 NPinanim Vait NP Frisbees hit the kids/walls

5 NP onim Viun The dogs run

6 NP V¢au The girls/toys fall

e V,.ove class: verbs taking only animate subjects, but either animate or
inanimate objects. In the intransitive frame, the subject must be inani-
mate.

Examples: The boys drop the balls/the cats. The balls drop.

® Vyraw class: verbs taking only animate subjects, but either animate or
inanimate objects. In the intransitive frame, the subject must be animate.
Examples: The kids draw pictures/cats. The kids draw.

There are 2 classes of strictly transitive verbs:
® V..ake Class: verbs taking only animate subjects and only inanimate ob-
jects.

Example: The girls make sand-castles.

e Vy; class: verbs taking only inanimate subjects, but either animate or
inanimate objects.
Examples: The frisbees hit the girls. The frisbees hit the walls.

There are 2 classes of strictly intransitive verbs:

e V.. take only animate subjects.
Example: The dogs run.

e V. take either an animate or inanimate subject.
Examples: The girls arrive. The toys fall.

Table 3.1 summarizes the syntactic structures licensed by each verb class.
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Sentences of the language can be generated by a formal probabilistic context-
free grammar (PCFG). Table 3.2 shows the grammar used to generate training
and test sentences.

3.1.2 Semantics

Verb classes also define the semantics of sentences licensed by the grammar.
Verb classes determine the semantic role assigned to arguments, and the causal-
ity of the event, as explained shortly.

Only two general semantic roles are defined: Agent and Undergoer. The
Agent role is used to encode a general concept involving the doer, causer, or
source of the activity described by the verb. The Undergoer role is assigned to
the entity affected by the action. For instance, in the sentence ‘John threw the
ball’, John would be the Agent, and ball would be the Undergoer.

The transitivity-alternating verbs defined in the miniature language assign
different semantic roles to their subject, much like the causative and contact
verbs discussed in Chapter 2, Section 2.2. These verb classes also differ in their
causality, as outlined below. Similarly, strictly intransitive verbs vary in the role
assigned to the subject, and the causality of the event. Strictly transitive verbs
are all causal, and assign Agent roles to their subjects and Undergoer roles to
their objects. The semantics of each verb class can be summarized as follows:

® V,ove class (causal):
Transitive frame: Agent V. .qusq; Undergoer
Example: The boys (Agent) bounce the balls (Undergoer)

Intransitive frame: Undergoer V. qusai
Example: The balls (Undergoer) bounce

® Virqw class (non-causal):
Transitive frame: Agent V,on—causar Undergoer
Example: The boys (Agent) draw the balls (Undergoer)

Intransitive frame: Agent V,on—causal
Example: The boys (Agent) draw

Both classes of strictly transitive verbs are causal. They assign an Agent
role to the subject, and an Undergoer role to the object.

® Viake class (causal):
Agent V gyusai Undergoer
Example: The girls (Agent) make sand-castles (Undergoer)

e Vit class (causal):
Agent V qusa: Undergoer
Example: The frisbees (Agent) hit the girls (Undergoer).
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Table 3.2: PCFG of the language. Variable k denotes the kind of NP (animate
(anim) or inanimate (inanim)). Where the probabilities of different production
rules are not equal, they are given in parentheses.®

S —  NPanim Vinove NPy

S - NPanim Vdraw NPk

S - NPanim Vmake NPinanim
S - NPinanim Vhit NPk

S —  NPg Viyau

S —  NPanim Veun

Nk - Nanim | Ninanim

Nanim —  boys | girls | kids | cats ...
Ninanim — frisbees | toys | dolls | books ...
Vinove ~ — move | roll | bounce ...
Varaw —  draw | sketch | dust ...
Vinake —  make | build | catch ...
Vhit —  hit | strike | break ...
Viun — run | dance | sing ...
Viau —  fall | arrive | sleep ...

% An additional well-formedness constraint, not specified in the PCFG, is imposed on
utterances: in a given sentence, the same noun is not allowed to appear in two
different syntactic positions (e.g. Subject/Object). For example, there are no
sentences like the girls draw the girls. This constraint reflects the fact that in natural
language, such sentences are only grammatical if the two noun phrases refer to distinct
entities (i.e. if there are two different groups of girls). Otherwise, reflexive or
reciprocal pronouns would be required (at least in English), e.g. the girls draw
themselves, the girls draw each other. Moreover, if the same noun could appear as
both subject and object in a given sentence, the semantic representations would have
to allow a referent to receive two semantic roles (e.g. girls would be both Agent and
Undergoer). This would violates a robust cross-linguistic generalization: an NP cannot
simultaneously fill two semantic roles.

Although this rule was omitted from the PCFG to improve readability, in the
remainder of this thesis, any reference to the grammar or language includes this rule.
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Table 3.3: Semantic structure of each sentence type, as defined by

each verb class.

Type Sentence structure Causality
1 Transitive Agent V00 Undergoer Causal
The kids move balls/cats
Intransitive  Undergoer V,,o0e Causal
The balls move
2 Transitive Agent Vg,q Undergoer Non-causal
Kids draw cats/toys
Intransitive  Agent Vgraw Non-causal
Kids draw
3 Agent V,,qke Undergoer Causal
The girls build sand-castles
4 Agent Vy,;; Undergoer Causal
The frisbees hit the kids/walls
5 Agent Vi, Causal
The dogs run
6 Undergoer V zq1 Non-causal

The toys/girls fall

Strictly intransitive verbs differ in their causality and in the role assigned to

the subject:

e V., class (causal):
Agent Vcausal

Example: The dogs (Agent) run

o Vyu (non-causal):

Undergoer V,,on—causal
Example: The girls (Undergoer) arrive

Table 3.3 summarizes the semantic structures licensed by each verb class.

Together, the syntax and semantics fully determine the structures licensed
by the grammar. Table 3.4 summarizes the syntax and semantics of the different
constructions of the language.

The constructions licensed by this grammar were chosen because they paral-
lel some of those frequently discussed in the literature on bootstrapping. Ideally,
the language would include not only a larger number of lexical categories and
constructions, but would also impose more realistic requirements on the argu-
ments of particular verbs. Nevertheless, given that the model’s task is to learn
correspondences between form and meaning, the language must be sufficiently
rich in both its syntax and semantics, without becoming overly complex. In
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Table 3.4: Syntactic and semantic structure of each sentence type, as defined by each
verb class. Subscripts indicate restrictions (if any) imposed on verb arguments (e.g.
‘NP anim’ indicates that the argument must be animate).

Type Sentence structure Causality
1 Transitive NP onim (Agent) V,,o0e NP (Undergoer) Causal
The kids move cats/toys
Intransitive  NPgpim (Undergoer) Viope Causal
The toys move
2 Transitive NP anim (Agent) Vgrqw NP (Undergoer) Non-causal
Kids draw cats/toys
Intransitive NP apnim (Agent) Varaw NP (Undergoer) Non-causal
Kids draw
3 NPanim (Agent) Viake NPinanim (Undergoer)  Causal
The girls build sand-castles
4 NPinanim (Agent) Vi, NP (Undergoer) Causal
Frisbees hit kids/walls
6 NP onim (Agent) Viyun Causal
The dogs run
7 NP (Undergoer) V yq Non-causal

The girls/toys fall
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particular, the grammar is designed so that the model cannot rely solely on the
syntactic position of words in a sentence to successfully acquire the language.
For example, although most — but not all — transitive verbs are causal, and most
intransitives are non-causal, the learner cannot simply associate (non)causality
with (in)transitivity.

3.2 Data sets

In previous work on bootstrapping, models were presented with ‘novel’ words
only during testing, to evaluate the model’s ability to use linguistic context to
infer the meaning of novel words. The main contribution of the present thesis is
to investigate whether inferences about the meaning of words can also be used
during the learning process, as well as after the language has been acquired.

3.2.1 Labelled and unlabelled data

To simulate the use of bootstrapping processes for vocabulary acquisition, a
partly unsupervised training procedure is adopted, with the network trained on
both labelled and unlabelled data.

Labelled data consist of input-output pairs, where the output is the correct
target according to the syntax and semantics of the language, the groundtruth.
Training the network on labelled examples is therefore referred to as ‘supervised’
training. The use of labelled examples corresponds to situations where the
learner is exposed to both an extralinguistic scene and linguistic input. These
training data therefore include an input sentence (i.e. a sequence of words) and a
semantic representation of that sentence, identifying the event, its causality, and
the participants in the event. However, the learner is given no direct information
about which words correspond to which semantic role — the network must learn
these relations over time.

Unlabelled data consist of input sentences presented to the model without
the corresponding groundtruth. Training the network on these examples is
referred to as ‘self-supervised training’ (or simply ‘selftraining’), because the
network must generate its own target, and use it to train itself. The use of
unlabelled examples simulates bootstrapping in cases where the learner cannot
rely on extralinguistic context to interpret an utterance. This could represent
situations where there is no congruent scene, or situations where a novel word
is abstract, and cannot be directly linked to the real world.

For training purposes, the only distinction between labelled and unlabelled
data is that with labelled examples, the target presented to the network is fully
determined by the syntactic and semantic constraints imposed on arguments,
as described above, whereas with unlabelled examples, the network generates
its own target.

In and of itself, the self-supervised training algorithm is not sufficient to
study the use of inferences to learn novel words. This is because even if some
data are unlabelled, in principle, any given word would eventually appear in
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Table 3.5: Distribution of trained/selftrained
words in (un)labelled training examples

Trained Selftrained

Labelled 2553 0
Unlabelled 451 2201

enough labelled examples to allow the network to discover their meaning based
on extralinguistic information.

Therefore, to determine to what extent the network can learn words without
the support of extralinguistic content, some words in the grammar are desig-
nated as ‘selftrained’, and restricted to unlabelled examples. This means that
all information about these words is inferred based on the model’s (evolving)
knowledge of the grammar, and on the syntactic context(s) where the words
appear over multiple exposures.

For example, if ‘wugs’ is designated as a selftrained animate noun, this word
will only appear in unlabelled examples. When presented with a sentence con-
taining this word, the network must therefore make inferences about the word’s
meaning based on context. Ideally, by seeing multiple instances of this word in
different syntactic frames, the network will eventually build a representation of
‘wugs’ which is similar to that of animate nouns presented in labelled examples.

Words allowed in labelled examples are referred to as trained, but it is im-
portant to realize that these words must still be learned by the network. The
only distinction between trained and selftrained words is that the latter can
only appear in unlabelled examples, whereas trained words can appear in either
labelled or unlabelled examples.?

Since any sentence containing a selftrained word must be part of the unla-
belled data, training the model on sentences with selftrained words simulates
situations where no extralinguistic cues are available to the learner.

Table 3.5 gives the distribution of labelled and unlabelled sentences in the
training data. In brief: selftrained words are restricted to unlabelled exam-
ples, while trained words are allowed in both labelled and unlabelled examples.
Labelled examples can only contain trained words.

In what follows, I describe how the training and test data are generated.

3.2.2 Training sentences

There are 54 trained words and 16 selftrained words in the language. Trained
words include 8 nouns of each type (animate/inanimate), 6 verbs of each class,
and the function words the and to. For each lexical (sub)category, there are
2 selftrained words, i.e. 2 selftrained animate nouns, 2 selftrained inanimate

2The sets of labelled and unlabelled examples are disjoint; no sentence is used for both
supervised and unsupervised training.
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Table 3.6: Word categories and examples. There are 8 trained nouns
in each category (animate/inanimate) and 2 selftrained nouns in each
category. For each verb class, there are 6 trained verbs and 2 selftrained
verbs.

Word category  Trained word example Selftrained word example

Animate noun cats wugs

Inanimate noun toys daxes
Vimove verb bounce glorp
Vdraw verb sketch blick
Vimake verb build sib
Vit verb strike krad
V,un verb dance lorp
V¢au verb arrive pilk

nouns, and 2 selftrained verbs of each class. Table 3.6 provides examples of
trained and selftrained words of each category.

All sentences licensed by the grammar are initially generated, but certain
sentences are then removed to create the final set of training data.

First, sentences with more than one selftrained word are removed from the
training data, so in any sentence, only one word may be a selftrained word.
For example, if ‘wugs’ is a selftrained animate noun, and ‘daxes’ is a selftrained
inanimate noun, the sentences cats see wugs, cats see daxes, wugs see cats,

can be used as input data. However, sentences such as wugs move daxes,
wugs draw dazes, dazres hit wugs, ... are excluded from the training data, even
though they are grammatical. This is done to avoid overwhelming the model
with sentences where it has too little information to make inferences based only
on its developing knowledge of grammar and on syntactic context.

Second, specific sentences are extracted to make it possible to generate test
examples where trained words appear in highly novel combinations. More pre-
cisely, the objective is to create test sentences where adjacent words never appear
together during training. For example, if the combinations girls draw X and Y
draw toys are excluded from the training data, then the combination girls draw
toys is highly novel.

The only way the network can perform well when tested on such a novel
combination is by generalizing over the use of individual verbs, and relying on
its knowledge of both the nouns and the syntactic positions they appear in. In
most cases, neither the word nor the syntactic frame alone is sufficient to fully
predict the meaning of the utterance.

Table 3.7 lists the combinations excluded from the training data. For each
transitive verb class, restrictions are imposed on the arguments of one of the
verbs. For example, the verb draw is not allowed to appear with girls or toys,
so the combinations girls draw X and Y draw toys are not seen during training.
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Table 3.7: Inputs removed from training set to create sentences with
trained words presented in novel combinations.

Restriction Corresponding
novel test sentences

boys & frisbees  do not appear with drop boys drop frisbees
frisbees drop

girls & toys do not appear with draw | girls draw toys
girls draw

kids & dolls do not appear with build | kids build dolls

cats & rocks do not appear with strike | rocks strike cats

This allows the creation of the corresponding highly novel combinations girls
draw and girls draw toys.>

After these sentences have been removed from the training data, 25% of
sentences with selftrained words and 10% of the remaining labelled sentences
are randomly extracted to serve as test examples. Finally, 15% of the remaining
labelled sentences are randomly selected to be used as unlabelled examples. This
creates a training set with sentences consisting of only trained words to be used
for self-supervised training. The will allow a comparison between selftraining
on examples with only trained words, and selftraining on examples that include
selftrained words.

The procedure for generating training data is summarized below.

1. Generate all sentences licensed by the grammar.

2. Remove all sentences with more than one selftrained word.
This results in two sets of training data:
Set A: sentences with only trained words
Set B: sentences where exactly one word in each sentence is a selftrained
word, and the rest are trained words

3. Systematically extract specific sentences from both resulting sets (i.e. from
AUB). These examples serve as test items with highly novel combinations
of words; two test sets are created: one with only trained words, one with
sentences composed of trained words plus one selftrained word.

4. Randomly remove 25% of examples from set B for testing. These examples
(sentences with exactly one selftrained word) are used to test generaliza-
tion with selftrained words.

3Restrictions are not applied to strictly intransitive verbs (i.e. Vrun and Vyqy) because
there are few occurrences of these verbs in the training set, due to the fact that intransitive
verbs take only one argument and therefore give rise to fewer combinations than transitive
verbs.
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5. Randomly remove 10% of examples from set A for testing (examples with
only trained words). These examples serve as baseline generalization ex-
amples with only trained words.

6. Randomly remove 15% of examples remaining in set A to be part of un-
labelled data

3.2.3 Test sentences

Test sentences can be broken down into different types, depending on their
degree of novelty (relative to examples seen by the network during training),
and the type of words they contain (trained/selftrained).

There are two sets of test sentences formed with only trained words. First,
there are the sentences randomly extracted from the initial training set and
reserved for testing; these serve as a baseline generalization test since they can,
in principle, be very similar to labelled examples presented to the network.

Second, there are the sentences specifically excluded from training to test
for generalization to highly novel combinations of words (see Table 3.7 and the
discussion in section 3.2.2).

Similarly, there are two different sets of test sentences with selftrained words.
One set simply consists of the examples randomly extracted from the training
data. The other includes sentences with highly novel combinations of trained
words combined with a selftrained word. For example, girls draw toys is a
highly novel test item (which means that combinations girls draw X and Y
draw toys were not seen during training). Thus, there are similar examples with
selftrained words, e.g. girls draw dazes and wugs draw toys. These examples are
not highly novel, however, because during training, the selftrained word could
have occurred together with the verb. In particular, even if the combination
Y draw toys is novel, the combinations wugs draw and draw dazes could have
been seen in selftraining.

In addition to these test data, the model is also tested on entirely novel
words, unseen during any training phase. To this end, a set of untrained words
is also included in the grammar, and different test sets consisting of combina-
tions of trained and untrained words can be created to compare performance on
selftrained words and untrained words. This will be discussed in chapter 4.

3.3 Network Architecture and processing

The model is a simple recurrent network (SRN; Elman (1990)). Given that boot-
strapping requires discovering and exploiting correspondences between syntax
and semantics, the word-prediction task commonly associated with SRNs is not
appropriate. Rather, the network is trained on a sentence interpretation task,
which involves associating “utterances” with “scenes”, as described earlier. The
network architecture is shown in Figure 3.1.
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Figure 3.1: Network architecture

3.3.1 Input and output

Words are encoded in the input layer using localist representations, where each
unit corresponds to an individual word. There are 86 input units in total,
each corresponding to one of the 54 trained words, 16 selftrained words, and
16 untrained words that are part of the model’s vocabulary. Untrained words
are represented in the input layer, but since these words do not appear in any
(self )training examples, their corresponding input units are never activated dur-
ing training. The input weights for the units representing untrained words are
a random permutation of the input weights corresponding to selftrained words
after training.

The network’s output layer encodes the semantics of the sentences presented
to the network, as explained in section 3.2. Output units are divided into 4 slots,
each encoding a particular aspect of the event representation.

The first two slots correspond to semantic roles: the Agent and Undergoer,
respectively. For each trained noun in the input layer, there is a corresponding
‘concept’ unit in the output. In addition, for each of the two semantic roles, one
output unit represents the possibility that there is no argument corresponding
to this role in the input sentence. For example, if the input is cats sleep, where
cats is assigned the role Undergoer, the correct output unit for the Agent slot,
as specified by the groundtruth, is the unit corresponding to ‘no Agent’. The
groundtruth for the Agent and Undergoer slots for ‘cats sleep’ is illustrated in
Figure 3.2. The symbol ‘(" denotes the ‘empty’ node, indicating that there is
no filler for the corresponding semantic role.

Notice that inputs and outputs are not in a one-to-one correspondence. For
instance, the function words to and the are represented in the input layer,
but have no corresponding outputs. In addition, each input unit representing
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Agent Slot

Animate concepts Inanimate concepts None
boys | girls | kids | cats toys | dolls | books | balls @
Undergoer Slot

Animate concepts Inanimate concepts None
boys | girls | kids | cats toys | dolls | books | balls @

Figure 3.2: Groundtruth for the Agent and Undergoer slots for the sentence
cats sleep; darkened boxes indicate target units.

a trained noun is related to two distinct output units (one for each possible
semantic role). Therefore, even if a noun appears in the same position in two
very similar sentences, the semantic representation corresponding to the noun
need not be identical. In (2-a), for example, the ‘cats’ concept in the Undergoer
slot would be the target, while in (2-b), the ‘cats’ concept in the Agent slot
would be the target.

(2)  a. cats sleep (cats = Undergoer)
b. cats run (cats = Agent)

The third slot represents the event description; there is a one-to-one correspon-
dence between the units in this slot and the trained verbs in the input layer.
All sentences presented to the network are complete utterances, and therefore
contain a verb. Moreover, since there are no complex sentences in the grammar
(i.e. no sentences with a subordinate clause), each sentence contains only one
verb.

The last slot encodes the causality of the event, with the one unit activated
for causal events, and the other unit activated for non-causal events.

There are a total of 72 output units. In each of the Agent and Under-
goer slots, there are 17 nodes (8 representing animate concepts, 8 representing
inanimate concepts, and one representing ‘empty’). The verb slot contains 36
nodes, each corresponding to an individual verb, and the causality slot includes
2 nodes, one for causal events, the other for non-causal events.

To illustrate the mapping from utterances to scenes, the groundtruth for cats
sleep and boys read books are shown in Figure 3.3 and Figure 3.4, respectively.

Selftrained and untrained words are not represented as individual concepts
in the output layer. Therefore, when presented with selftrained or untrained
words, the network must activate the output units that most closely fit the
inferred ‘meaning’ of these words. This meaning will inevitably be related (cor-
rectly or not) to some output unit(s) corresponding to the concepts encoded
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Agent Slot

Animate concepts Inanimate concepts None
boys | girls | kids | cats toys | dolls | books | balls 1%
Undergoer Slot

Animate concepts Inanimate concepts None
boys | girls | kids | cats toys | dolls | books | balls
Verb Slot

Vmuve Vdraw Vmake Vhit Vrun Vfall

g 2 L= 2 o %
Causality Slot

Causal Non-causal

Figure 3.3: Groundtruth for the sentence cats sleep; darkened boxes indicate
target units.

31



Agent Slot

Animate concepts Inanimate concepts None
boys | girls | kids | cats toys | dolls | books | balls @
Undergoer Slot

Animate concepts Inanimate concepts None
boys | girls | kids | cats toys | dolls | books | balls @
Verb Slot

Vmuve Vdraw Umake Vhit Vrun Vfall

] (=8

8| = 38| |82 - | |-|§&
g8 5|8 3 |5 |G B3
Causality Slot

Causal Non-causal

Figure 3.4: Groundtruth for the sentence boys read books; darkened boxes indi-
cate target units.
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Agent Slot

‘ Animate concepts Inanimate concepts None
boys | girls | kids | cats toys | dolls | books | balls - &
Undergoer Slot
Animate concepts Inanimate concepts None
boys | girls | kids | cats toys | dolls | books | balls . @
Verb Slot
Vmuve Vdraw Vmake Vhit Vrun Vfall
@ @ k] (=X
> z | o x | B kv o
gl = m | @ o | = = c = 8
|2 5|2 E|3 £ 3 2|3 3|3
Causality Slot

Causal Non-causal

Figure 3.5: Groundtruth for the sentence boys make dazes; darkened boxes
indicate target units.

by trained content words in the language. When the network is tested on sen-
tences containing a selftrained or untrained word, we can therefore determine
whether it has made appropriate inferences based on which output units are
activated. For example, if ‘daxes’ is a selftrained inanimate noun presented as
an Undergoer, the network would ideally activate an output unit corresponding
to an inanimate trained noun in the Undergoer slot. Since selecting any of the
appropriate output units would be correct, the groundtruth units in this case
would range over all Undergoer outputs corresponding to inanimate nouns. This
is illustrated in Figure 3.5.

3.3.2 SRN processing

Sentences are presented to the network one word at a time by activating the
unit corresponding to the word currently being processed. Words are encoded
using localist representations, so at each time-step ¢, the input to the network
is encoded by the vector a;,(t), whose length is equal to the number of input
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units. The vector presented at time ¢ contains zeros in all entries except for the
entry corresponding to the input word at time .
The values of the recurrent and output units are calculated according to

arec(t) - f(Wznavn (t) + Wrecarec(t - 1) + brec) (31)
aout(t) - fout(Woutarec(t) + bout)

where arec(t), aout(t) are the activation vectors of the recurrent and output
layers, respectively, and byq.(t), boyut(t) are the corresponding bias vectors; W,
Wiees, Wour(t) are the matrices containing the input, recurrent, and output
weights, respectively; f is the logistic activation function, used to compute the
activations of the recurrent units:

1

—_— 3.2
14+e % (32)

Qrec,i = f(xz) =

where x; is the activation going into unit i.

There are 25 recurrent units in the SRN. The activations of the recurrent
layer are reset after each full sentence has been processed, such that each sen-
tence has its own independent semantic representation. This is done because in
the input data, the semantic representation of a given sentence is not related to
the previous sentence(s); it is fully determined by the utterance itself.

Cross-entropy was used as the error function, with softmax activation applied
to the output. The softmax activation function results in outputs that sum to
1, and each is non-negative, so these outputs can be interpreted as probabilities.
Here, the network’s task is to identify participants and events described by the
input sequence, so the relevant probabilities must be taken over each slot, rather
than over the full output. The softmax activation function is therefore applied
over each slot:

X

Qout,i = fout(xi) = 267 (33)

j€Eslot; e
where slot; is the set of units in the slot with unit <.

After applying this function, the sum over the output of the units in a given
slot equals 1, so aoy:,i can be viewed as a probability estimate. For a given
semantic role, aqyt,; can be interpreted as the network’s estimated probability
that ¢ is the filler for the corresponding role. Similarly, for verbs, each output
activation in the verb slot represents the network’s probability estimate that
1 is the event described by the input sentence. Finally, each activation in the
causality slot reflects the network’s estimate about whether or not the event is
causal.

3.4 Training

To train the network, both labelled and unlabelled examples are pooled together
in a single training set, and randomly shuffled before each training epoch.*

4An epoch is a single presentation of the full set of training data.
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During training, the network is provided with utterances (sequences of words)
(the input), and the intended output (the target). As noted earlier, the only
difference between labelled and unlabelled examples lies in how the target is
created. With labelled data, the target given to the network is the groundtruth.
With unlabelled data, the target is inferred by the network. In both cases, the
network is trained (or trains itself) on a sentence and a target.

The target for a sentence is held constant during the presentation of the
full sequence. As noted by Desai (2007), this makes the task very challenging,
since the network must try to predict the entire scene as soon as the first word
is processed. The task is also more realistic than presenting the semantic rep-
resentation of a word only when that word is processed, because it means the
network must learn which words are related to which aspect of the scene. It is
also in line with the incremental nature of human sentence processing.

With unlabelled examples, the target is inferred based on the full sentence,
because the entire context may be required to understand the full meaning of
selftrained words.® Targets for unlabelled examples are obtained by initially
presenting the utterance to the network without a target (as in testing), then
‘exaggerating’ the resulting output to create a target. This is done by first
computing the network’s activation for each slot, then finding the unit with the
highest activation in each slot. Each of these ‘winning’ units is then set to ‘1,
and all other units are set to ‘0’. This results in a vector with exactly 1 unit
per slot set to ‘1’, as in the groundtruth vectors. Each of the ‘target’ units
corresponds to the network’s ‘guess’ about the meaning of the given input.

No sentence contains more than one selftrained word, and in the ideal case,
for each trained content word in the input, the target unit for the corresponding
slot will be identical to the groundtruth unit for that slot. This is by no means
guaranteed, however.

For selftrained words, there is no single ‘correct’ unit, so in the best-case
scenario, the network will assign the highest activation to a content word of
the same lexical (sub)category, e.g. if wugs is a selftrained animate noun in
Agent position, the inferred target for the Agent slot will be one of the concepts
corresponding to animate nouns.

The intuition behind this self-supervised training procedure is that over time,
the network will see a given selftrained word in a variety of contexts; it should
then be able to build on its experience with that word to make inferences about
its meaning. Therefore, even if its initial ‘guesses’ are incorrect, as the network’s
knowledge of the grammar develops, it will make better inferences, and more
often create targets that do not diverge (much) from the groundtruth. Given
that the artificial language does not encode complex lexical semantics, only

5 Alternatively, the target could be inferred as each word is processed, so that at each time-
step, the network is presented with a new (inferred) target. However, if a sentence includes
an unfamiliar word, the learner may not be able to make inferences about the word until the
full sentence has been parsed. For example, hearing the wugs only indicates that this word is
a noun, whereas the wugs eat suggests that it is an animate noun. To model the acquisition
of words, it is therefore better to take the target inferred after the full sentence has been
processed.
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broad inferences can be made, e.g. the lexical category of the word, and its
animacy value (for nouns) or class (for verbs).

The network was trained for 350 epochs, using the standard back-propagation
algorithm (Rumelhart et al., 1986). Initial connection and bias weights were ran-
domly generated, uniformly distributed between -0.15 and 0.15. The learning
rate was 0.02.

3.5 Evaluation

To evaluate the model’s performance on a given input sequence, the network’s
output after processing the complete sequence (which represents the network’s
interpretation of the entire sentence) is compared to the groundtruth. For sen-
tences containing only trained words, the groundtruth and the target presented
to the network during training are identical. The network’s accuracy is the joint
probability of correctly identifying each of the groundtruth units corresponding
to the event representation (i.e. semantic roles, verb, causality).

Since the output units are divided into 4 slots, and there is exactly one target
unit in each slot, the network’s accuracy for a sentence is given by equation (3.4),
where p(slot,) is the probability assigned to the correct unit in slot 7, i.e. the
network’s activation of that unit.

4

accuracy = Hp(sloti) (3.4)
i=1

For sentences containing selftrained words, the groundtruth is not identical
to targets presented during training, since the training targets were generated
by the network rather than based on the grammar. In addition, for a selftrained
word, there is no output unit representing the concept encoded by the word.
Therefore, the output activated by the network in the corresponding slot is
considered correct if it is of the right class, as determined by the grammar. For
instance, consider the following example, where ‘daxes’ is a selftrained word,

classified as an inanimate noun.

(3)  The boys make daxes.
The boys (Agent) make (Verb) daxes (Undergoer)

Since the Undergoer slot is filled by a selftrained word, the network’s ‘guess’
for this slot is considered correct if it activates output units corresponding to
inanimate nouns. More precisely, the network’s performance for this slot is
the sum of the probabilities assigned to the Undergoer units representing the
inanimate nouns. For each of the trained words, the correct unit is the concept
corresponding to the input word (e.g. ‘boys’, ‘make’), as was illustrated in
Figure 3.5, which shows the groundtruth for the sentence boys make daxes.
Performance is calculated using equation (3.4) as before, but with one dif-
ference: for a slot related to a selftrained word, p(slot;) is the sum over the
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probabilities assigned to the appropriate units in slot ¢, i.e. the network’s ac-
tivations over a subset of units in that slot. In the preceding example, this
would be the sum of the probabilities assigned to each inanimate concept in the
Undergoer slot.

The resulting score represents the probability that the network has correctly
interpreted every aspect of the full sentence, i.e. that it has accurately identified
the participants and the nature of the event encoded by the input. The network’s
performance over a set of sentences is simply the mean of its performance on
each sentence in the set.

The joint probably is a very strict performance measure, because the per-
formance in a given slot can never be greater than the minimum probability
over the slot. This means that even if the network accurately identifies the
correct unit in every slot, its score for that sentence can still be very low. Con-
sider the following example. Suppose that each incorrect output unit gets a
very low probability of .01, so all the other probability mass is in the correct
unit. This is very good performance, since incorrect units have such low prob-
ability. However, the accuracy measure in this case receives a low score of
(1—.16) x (1 —.16) x (1 —.35) x .99 = 0.4541.

3.6 Summary

The model is trained in semi-supervised fashion, using labelled and unlabelled
examples. Labelled examples correspond to situations where both linguistic
and extralinguistic context are available to the learner. Unlabelled examples
correspond to cases where there is no congruent scene, and the learner must
extract all information from the utterance.

During training, the network relies on the knowledge it acquires about word
meaning, syntax, and syntax-semantics correspondences. With labelled exam-
ples, the model also has access to information about the scene. With unlabelled
examples, it can only rely on the syntactic context and what it has previously
learned about words, syntax, and syntax-semantic mappings.

Some words in the grammar are designated as selftrained and are restricted
to unlabelled examples. These words present the most interesting cases to study
bootstrapping processes in the model, because information about the semantics
of these words can only be inferred based on linguistic context and the evolving
knowledge of the network.

Even when the model is presented with labelled examples, it must still learn
the relations between syntax and semantics. In particular, the network must
learn which words are mapped to which concepts, as well as how syntax relates
to semantics. This is not built into the model. The semantic roles are prede-
fined, however. Thus, the assumption that the child has some notion of general
semantic roles such as doer/causer and undergoer/affected object is inherent to
the model. These could either be innately given, or learned at an earlier stage.

In the next chapter, I present the results of simulations performed with the
model.
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Chapter 4

Results and Discussion

In this chapter I present results of experiments performed with the model. T first
discuss the training process in section 4.1. In section 4.2, I present results related
to the network’s capacity to generalize and to display systematic behaviour.
In section 4.3, I investigate the network’s ability to rely on context to make
inferences and learn vocabulary.

4.1 Training process

Three different networks were trained using the semi-supervised training proce-
dure outlined in Chapter 3. For each network, a different set of initial random
weights was generated, and different data sets were created.! All networks had
the same architecture and were trained with a learning rate of 0.02 for 350
epochs. Training was stopped at this point because there was no longer any
significant improvement in performance (for any network).

Recall from Chapter 3 that the model is trained on two types of examples:
sentences containing only trained words, and sentences containing one selftrained
word. In addition, training was only partly supervised: the network was pre-
sented with labelled and unlabelled data, and had to infer the target when given
an unlabelled example. Trained words could appear in either labelled or unla-
belled examples, while selftrained words were restricted to unlabelled examples.

The networks’ performance on training and test data is shown in Figures 4.1-
4.3. Each graph shows the network’s accuracy on three different data sets:
labelled training data, test examples consisting of only trained words, and test
examples containing a selftrained word.

In all cases, performance on test sentences with only trained words is nearly
equal to performance on labelled training data, which shows that the net-
work can learn the grammar and the trained lexical items. For sentences
containing selftrained words, performance initially improves, suggesting that

IThe data sets differed only with respect to the items randomly extracted for testing, or,
in the case of sentences with only trained words, for use as unlabelled examples.
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Figure 4.1: Accuracy of network 1 on training and test data.

self-supervised training does have a positive effect on vocabulary acquisition.
However, given that performance on these data remains far below that of exam-
ples with only trained words, the model cannot be said to successfully acquire
selftrained words.

As illustrated by the graph in Figure 4.4, performance on unlabelled training
examples with only trained words is nearly identical to performance on labelled
training data.? Given this, in the remainder of this chapter, I will not discuss
these data further.

To evaluate the model, I take each network at epoch 350. All further results
discussed in this chapter are based on the performance of these networks.

4.2 Generalization

The model’s ability to generalize and display systematic behaviour is evaluated
by testing its performance on sentences containing only t¢rained words. Recall
that there are two sets of test sentences with trained words. First, there are
the sentences randomly extracted from the initial training set and reserved for

20nly the graph for network 1 is plotted, but the graphs for networks 2 and 3 show a
similar pattern.
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Figure 4.2: Accuracy of network 2 on training and test data.
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Table 4.1: Test sentences featuring
highly novel combinations of words
(‘Systematicity test sentences’)

boys drop frisbees
frisbees drop

girls draw toys
girls draw

kids build dolls
rocks strike cats

testing. Second, there are the sentences where words appear in highly novel
combinations, because specific combinations were excluded from the training
data. Two types of examples can therefore be compared: sentences that were
randomly selected and withheld from training data (‘Generalization test sen-
tences’), and sentences where words appear in highly novel combinations, as
described in Chapter 3. These sentences, referred to as ‘Systematicity test sen-
tences’, are listed in Table 4.1.

For each network and each systematicity test sentence, an ‘equivalent’ gen-
eralization test sentence is selected from the set of test sentences consisting of
only trained words. Equivalent sentences contain the same verb and have the
same syntactic structure as a systematicity sentence. For instance, since frisbees
drop is a systematicity test example, balls drop is an equivalent generalization
sentence. This allows for a paired comparison between generalization and sys-
tematicity examples.

Results show that the model’s ability to generalize is very good; however, its
accuracy on systematicity examples is significantly lower than on generalization
examples (0.7722 accuracy on generalization examples, 0.3794 on systematicity
examples, t17 = —3.67;p = 0.0019). Thus, the model cannot be said to fully
display systematic behaviour. However, as noted in Section 3.5, the performance
measure used here is very strict, and a score of 0.3794 is quite good, even though
it is much lower than the generalization accuracy.?

4.3 Syntactic bootstrapping

4.3.1 Experimental set-up

To investigate the model’s ability to rely on syntactic bootstrapping, the context
where selftrained words appear must be taken into account. Words can appear

3(Generalization and Systematicity examples cannot be perfectly matched. For any sentence
in the Systematicity set, the corresponding Generalization sentence has the same structure
and the same verb, but only one of the noun phrases can be matched. Given this, conclusions
based on these results are not very reliable.
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in either ambiguous or unambiguous contexts, as determined by the trained
words in the sentence and the structures licensed by the grammar.

Unambiguous contexts are defined as those where the learner does not need
to rely on its knowledge of the selftrained words to correctly identify the se-
mantics of an utterance. This occurs when the trained words provide sufficient
information to fully interpret the utterance. For example, suppose the learner
is presented with the example wugs draw. Since draw is a trained verb, the
learner can, in principle, rely on knowledge of this verb to infer that wugs must
be an animate Agent, and can therefore correctly determine the semantics of
the full sentence. In that sense, knowledge of wugs itself is not required, and
the example is considered unambiguous.*

Conversely, ambiguous contexts are defined as those where the learner must
rely on knowledge of the selftrained word to correctly interpret an utterance.
For instance, consider the sentence kids draw daxes. Since verbs of the Vg qw
class license both animate and inanimate direct objects, the model cannot rely
solely on knowledge of the trained words kids and draw to correctly interpret
the sentence. More precisely, it can only identify the animacy feature of the
Undergoer dazes if it has learned that this word refers to an inanimate noun,
after having seen this word appear in unambiguous contexts over the course of
training. If the model successfully identifies the semantics of such ‘ambiguous’
sentences, it must have used bootstrapping processes to progressively learn the
meaning of selftrained words.

For selftrained nouns, identifying ambiguous and unambiguous contexts is
relatively straightforward, because this only depends on whether the verb li-
censes both animate and inanimate arguments in a given position. For exam-
ple, subjects of V.., are obligatorily animate, so this context is unambiguous.
Subjects of V g411, however, can be either animate or inanimate, so this context
is ambiguous. Direct objects of V,,qke can only be inanimate, resulting in an
unambiguous context. More generally, unambiguous contexts are those where a
restriction is imposed on an argument. Ambiguous contexts for nouns are those
where no restriction is imposed on the NP.

For selftrained verbs, no distinction is made between ambiguous and un-
ambiguous contexts, simply because most contexts are ambiguous. Other than
selftrained verbs of the Vy,;; class, all selftrained verbs appearing in transitive
frames are ambiguous. This is because all verb classes other than Vj;; license
animate subjects, which means that a verb appearing in the structure NP,,im V
NP has an ambiguous interpretation. Selftrained Vy,;; verbs are not ambiguous
because they are the only verbs licensed in the frame NP, qnim V NP. Similarly,
all verbs appearing in intransitive frames have an ambiguous interpretation be-
cause verbs taking inanimate subjects can belong either to the Vi,ope o Vqy
class, while those taking animate subjects can be of the Vg,qyp Or Vi class.

The model’s ability to rely on bootstrapping processes during interpretation

4The underlying assumption, of course, is that the model has correctly learned the meaning
of trained words, and has acquired the syntax and semantics of the language. Of course,
although the model’s performance on generalization examples is very good, this assumption
is not entirely valid.
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can be tested by presenting it with examples containing untrained words, rather
than selftrained words. This is similar to the psycholinguistic experiments dis-
cussed in Section 2.2, in that the model is presented with a word it has never
seen before, and can only rely on context to infer the word’s meaning.

To evaluate whether the model can rely on bootstrapping processes for ac-
quisition of vocabulary, what is evaluated is whether the model has succeeded in
combining information from multiple frames to learn the meanings of selftrained
words. Therefore, the model’s performance on sentences with selftrained words
is evaluated against the groundtruth. For example, in the sentence kids draw
dazes, if the model identifies the Undergoer as animate, this is incorrect. As
illustrated by the discussion on verbs, the model must frequently rely on infor-
mation from multiple frames to successfully acquire vocabulary, which results
in a very difficult task.

In what follows, I compare the model’s performance on sentences containing
selftrained words with ‘matched’ sentences containing untrained words. There
are two selftrained words of each class, and two untrained words of each class,
so there is a one-to-one correspondence between these two sets of words. More
specifically, for each selftrained word, there is a unique untrained word which
has the same semantic features (i.e. animacy feature in the case of nouns, verb
class in the case of verbs).

Two sentences are defined as being matched if they differ only in one word
in the sentence, and this ‘critical’ word is a selftrained or untrained word of
the same lexical class. For example, kids draw dazes is a sentence with a self-
trained word (daxes). If zups is the untrained word corresponding to dazes,
then the matched untrained sentence is kids draw zups. Since there is a one-
to-one mapping between selftrained and untrained words, for each selftrained
sentence, there is a unique matched untrained sentence. This means that any
set of sentences with selftrained words can be compared to a matched set of
sentences with untrained words. The statistical significance of the difference
between selftrained and untrained sentences can therefore be established using
paired t-tests.

4.3.2 Verbs

The model’s performance on sentences with selftrained and untrained verbs of
each class is shown in Table 4.2 and Figure 4.5.

The results show that the model has not successfully acquired selftrained
verbs, since its performance is below 0.1 for all verbs other than V,,,,. and
Viit, and accuracy on these is only 0.1172 and 0.1805, respectively. Results on
untrained verbs are similar, except that accuracy on untrained Vg4, verbs is
significantly higher than on selftrained verbs of this class (0.1540 and 0.0058
accuracy on untrained and selftrained verbs, respectively, p ~ 0). In addition,
overall performance on untrained verbs is significantly better than on selftrained
verbs (0.1225 and 0.0815 accuracy on all untrained and selftrained verbs, respec-
tively, p = 0.0057).

This suggests not only that selftraining does not lead to the acquisition of
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Table 4.2: Results on sentences with selftrained and untrained
verbs, separated according to the class of the verb. Columns
2 and 3 (‘Selftrained’ and ‘Untrained’) give the mean accuracy
on each data set, averaged over all networks and verbs in each
group. The abbreviation ‘dfs’ refers to ‘degrees of freedom’, and
gives the number of data points minus one.

Set Selftrained Untrained t-value dfs p-value
Vimove 0.1172 0.1228 -0.2460 161  0.8060
Viraw 0.0058 0.1540 -5.7355 154  0.0000
Vinake 0.0773 0.0112 21465 46  0.0371
Vit 0.1805 0.1542 0.5826 80 0.5618
Vau 0.0000 0.0155 -1.4555 15 0.1661
Viun 0.0000 0.0450 -2.3160 6 0.0598
All verbs 0.0815 0.1225 -2.7774 467  0.0057
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Figure 4.5: Mean accuracy on sentences with selftrained and untrained verbs,
separated according to verb class. Results are averaged over all networks and
verbs in each group.
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Table 4.3: Results on sentences where a selftrained or untrained noun
appears in an ambiguous context. Columns 2 and 3 (‘Selftrained’ and
‘Untrained’) give the mean accuracy on each data set, averaged over all
networks and nouns in each group.

Set Selftrained Untrained  ¢-value dfs p-value
Animate nouns 0.0028 0.1747 -7.2406 143  0.0000
Inanimate nouns 0.8496 0.4561 11.4218 144  0.0000
All nouns 0.4276 0.3159 4.181 288  0.0000

verbs, but also that it has a negative effect in the case of Vg4 verbs. The
only case where performance on selftrained verbs is significantly higher than on
untrained verbs is for the V 4k class, but the difference is extremely small, and
accuracy in both cases is very low (0.0773 and 0.0112 accuracy on selftrained
and untrained verbs, respectively). Based on the results for sentences with
selftrained verbs, it is clear that the model has failed to rely on bootstrapping
processes to acquire new verbs.

Given that performance on untrained verbs is also very poor, it is likely that
the model is not capable of relying on contextual information to make adequate
inferences about the verbs. As noted earlier, most verbs occur in ambiguous
contexts, suggesting that the model fails to learn verbs because it cannot in-
corporate information from multiple frames during selftraining.® Indeed, the
highest accuracy score for both selftrained and untrained verbs is with those of
the Vi class (0.1542 and 0.1805 accuracy on untrained and selftrained verbs,
respectively), whose interpretation is unambiguous.

To determine whether ambiguity is indeed the main cause of the model’s
failure to acquire novel verbs, further research is needed. Another possible ex-
planation is that verbs are more complex than nouns, in the sense that they
impose both syntactic and semantic requirements on their arguments. To suc-
cessfully learn these verbs, the model must therefore attend not only to the
syntactic contexts in which they occur, but also to the causality of the event,
and the semantic features of the surrounding nouns.

4.3.3 Nouns

Table 4.3 and Figure 4.6 gives the model’s performance on sentences where the
critical word is a noun appearing in an ambiguous contexts. Results for sentences
with selftrained and untrained nouns appearing in unambiguous contexts are
shown in Table 4.4 and Figure 4.7.

These results show that selftraining can lead to the acquisition of some lexi-
cal items, since the model’s performance on sentences with selftrained inanimate

5However, as shown by the results on generalization presented in section 4.2, the model can
keep track of information presented over multiple frames when trained in supervised fashion.
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Figure 4.6: Mean accuracy on sentences where a selftrained or untrained noun
appears in an ambiguous context. Results are averaged over all networks and
nouns in each group.

Table 4.4: Results on sentences where a selftrained or untrained noun
appears in an unambiguous context. Columns 2 and 3 (‘Selftrained’ and
‘Untrained’) give the mean accuracy on each data set, averaged over all
networks and nouns in each group.

Set Selftrained Untrained ¢-value dfs p-value
Animate nouns 0.0003 0.1175 -4.7421 121  0.0000
Inanimate nouns 0.6588 0.4510  5.0201 101  0.0000
All nouns 0.3002 0.2694 1.2073 223  0.2286
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Figure 4.7: Mean accuracy on sentences where a selftrained or untrained noun
appears in an unambiguous context. Results are averaged over all networks and
nouns in each group.

nouns is very good. In addition, in both ambiguous and unambiguous contexts,
performance on sentences with selftrained inanimate nouns is significantly higher
than on matched sentences with untrained inanimates. In ambiguous contexts,
mean accuracy for sentences with selftrained inanimate nouns is 0.8496, com-
pared with 0.4561 for matched sentences with untrained nouns (p & 0); in unam-
biguous contexts, performance on sentences with selftrained inanimate nouns is
lower than in ambiguous contexts, but still significantly higher than on matched
sentences with untrained inanimate nouns (0.6588 and 0.4510 for selftrained and
untrained nouns, respectively, p & 0).

Nevertheless, performance on sentences with selftrained or untrained ani-
mate nouns is very poor. As in the case of verbs, this suggests that the model
does not make correct inferences, and is not capable of integrating information
from multiple frames during selftraining. In ambiguous contexts, low accu-
racy is not unexpected when the critical word is an untrained noun, because
the learner simply does not have sufficient information to infer all the required
information, but performance on selftrained nouns in any context should be
good, if the model has acquired these vocabulary items. This is clearly not the
case. However, it is only when performance on untrained sentences is good that
accuracy on sentences with selftrained words is higher than on corresponding
sentences with untrained words. In particular, performance on sentences with
untrained inanimate nouns is 0.4561 and 0.4510 in ambiguous and unambigu-
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ous sentences, respectively. Given that the evaluation measure is very strict,
these are both good scores. This suggests that when the learner can make good
inferences about novel words based on context alone, bootstrapping can lead to
vocabulary acquisition.

The difference in performance on animate versus inanimate nouns is most
likely due to the fact that inanimates have a more restricted distribution. In-
deed, inanimates rarely appear as subjects, and except when they appear as
subjects of Vy;: verbs, they are assigned an Undergoer role. Their semantic
representations are therefore less varied than those of animate nouns, which
often appear as subjects, but also as direct objects. In addition, the role as-
signed to animate nouns is not easily predictable because they can be Agents
or Undergoers.

It is puzzling that performance on sentences with critical words appearing in
ambiguous contexts is better than on sentences where they are in unambiguous
contexts, even though the difference is not very large, especially for untrained
words. One possible explanation is that this is an effect of the trained words in
the utterances. For example, one unambiguous context is the object position
of Vinake verbs, which license only inanimate objects. Since no other transitive
verb class imposes animacy restrictions on direct objects, it could be that the
model expects animate nouns to be licensed in this context as well, and therefore
incorrectly interprets sentences with verbs of this class.

Moreover, the subject position of transitive verbs is typically unambiguous,
because several verbs license the structure NP,,;,,» V NP. In fact, all transitive
verbs other than Vj;; appear in this configuration, so it may well be that the
learner has difficulty selecting the correct verb. If the model assigns a low
probability to the verb because of this uncertainty, the resulting performance
score will be very low. This could explain why performance in unambiguous
contexts is poor. In addition, since the subject position of most transitive verbs
is filled by animate nouns, and accuracy on these is also low, it is likely that
there is a correlation between the model’s performance on sentences where the
critical word is animate, and sentences where the critical word appears in an
unambiguous context. Further research is needed to determine precisely which
factors affect the model’s performance in these cases, and to obtain a clearer
understanding of the connection between them.
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Chapter 5

Conclusion

In this thesis, I investigated whether a connectionist network could exploit sys-
tematicity in language to acquire novel words over the course of development.
The model was trained to output a semantic representation (roughly corre-
sponding to ‘who did what to whom’) for given sentences.

To investigate whether syntactic bootstrapping could successfully lead to
lexical development, a semi-supervised training algorithm was used, with the
model presented with both labelled and unlabelled data. Crucially, some vo-
cabulary items were presented only in unlabelled sentences. In these cases, the
network needed to infer (part of) of the word’s meaning (e.g. grammatical cat-
egory, animacy features) based on the surrounding context. The network then
used its own output (i.e. its interpretation of the words and sentences) to train
itself. The objective was to investigate whether the model could make use of
inferred knowledge during training to acquire new vocabulary over time.

The model was able to successfully acquire the language when trained in
supervised fashion. Performance on test sentences containing words presented
in labelled examples was excellent, as was the model’s ability to generalize.
This indicates that the model was able to learn the syntax, semantics, and
form-meaning correspondences of the language.

Nonetheless, the model did not succeed in learning novel words presented
only in unlabelled examples. In most cases, performance on test sentences with
words learned only through self-supervised training (‘selftraining’) was very
poor. There was only one exception to this generalization: the model’s inter-
pretation of utterances containing inanimate nouns was very good. Although
it is not entirely clear why the model successfully learned these words and not
others, this may have been due to the fact that the distribution of inanimate
nouns was more restricted than that of other lexical items.

For this project I experimented with different vocabulary sizes, training pa-
rameters (learning rate, percentage of examples withheld from training) and
network sizes. Results (not reported in the thesis) were qualitatively similar for
different variable settings, suggesting that the model’s failure to acquire novel
words is due to other factors, such as the distributional properties of the artificial

o1



language, or the nature of the selftraining algorithm.

However, with respect to the selftraining algorithm, the fact that the model
did acquire some lexical items suggests that the procedure was successful. More-
over, the model was trained not only on unlabelled examples with novel words,
but also on unlabelled examples composed only of words that also appeared in
labelled examples (trained words). The model’s accuracy on these unlabelled
examples with only trained words was nearly identical to accuracy on labelled
training examples, as illustrated in Figure 4.4. This suggests that selftraining
was indeed successful, at least when supported by supervised training. This is
important because bootstrapping is based on the notion that children can rely
on both linguistic and extralinguistic cues to acquire vocabulary.

The most likely explanation for the model’s failure to acquire words from
selftraining is that it was unable to correctly infer the meaning of novel words
based on context. For bootstrapping to lead to long-term learning, a number
of prerequisites must be met. First, the learner must learn the syntax and
semantics of the language, as well as the correspondences between form and
meaning. Given that the network performed well on examples consisting only
of words learned from labelled examples, this was achieved. Second, the learner
must be able to use linguistic context to infer the (partial) meaning of a novel
word appearing in a familiar syntactic frame.

To investigate whether the model could succeed at this task, it was tested
on two types of examples: sentences containing words seen during selftraining
(selftrained words), and words never seen during training (untrained words).
In most cases, the model did not accurately interpret sentences with untrained
words, even when these were presented in unambiguous contexts, where, in
principle, enough linguistic cues were available to allow the learner to make
correct inferences about novel words.

It is particularly interesting to note that in the case of inanimate nouns,
which the model was able to learn, performance on sentences with untrained
words was good. This suggests that when the learner could correctly infer the
meaning of a novel word, it was capable of integrating this inferred knowledge
with already-existing knowledge.

Experimental research on children’s ability to rely on bootstrapping pro-
cesses has shown that children can indeed rely on syntactic cues to infer the
meaning of novel words. Thus, if indeed this is sufficient for word learning,
bootstrapping processes are likely to play an important role not only for the
interpretation of novel words, but also for vocabulary acquisition. Neverthe-
less, since the network failed to acquire most selftrained words, only tentative
conclusions about language acquisition can be drawn based on this model.

Further research is needed to determine precisely which factors lead to the
model’s success in acquiring some selftrained words, and its failure to acquire
others. Future work could include simulations with different language models
and different input languages. The main contribution of this thesis is the de-
velopment of the selftraining procedure. It would be particularly interesting to
investigate this use of this method with input data having statistical properties
resembling those found in child-directed speech.
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