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Abstract

We introduce an atomic formula ~y ⊥~x ~z intuitively saying that the variables
~y are independent from the variables ~z if the variables ~x are kept constant. We
contrast this with dependence logic D [5] based on the atomic formula =(~x, ~y),
actually a special case of ~y ⊥~x ~z, saying that the variables ~y are totally determined
by the variables ~x. We show that ~y ⊥~x ~z gives rise to a natural logic capable of
formalizing basic intuitions about independence and dependence. We show that
~y ⊥~x ~z can be used to give partially ordered quantifiers and IF-logic a composi-
tional interpretation without some of the shortcomings related to so called signal-
ing that interpretations using =(~x, ~y) have.

Of the numerous uses of the word “dependence” we focus on the concept of an at-
tribute1 depending on a number of other similar attributes when we observe the world.
We call these attributes variables. We follow the approach of [5] and focus on the
strongest form of dependence, namely functional dependence. This is the kind of de-
pendence in which some given variables absolutely deterministically determine some
variables, as surely as x and y determine x+ y and x · y in elementary arithmetic. The
idea is that weaker forms of dependence can be understood in terms of the strongest.
Functional dependence of x on ~y is denoted in [5] by the symbol =(~y, x). If we adopt
the shorthand

=(~y, ~x) for =(~y, x1) ∧ . . .∧ =(~y, xn)
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we get a more general functional dependence. Although there are many different intu-
itive meanings for =(~y, ~x), such as “~y totally determines ~x” or “~x is a function of ~y”,
the best way to understand the concept is to give it semantics:

Definition 1 ([3, 5]). Sets of assigments are called teams. A team X satisfies =(~y, ~x)
in M , in symbols M |=X =(~y, ~x), or just X |= =(~y, ~x), if

∀s, s′ ∈ X(s(~y) = s′(~y)→ s(~x) = s′(~x)). (1)

Condition (1) is a universal statement. As a consequence it is closed downward,
that is, if a team satisfies it, every subteam does. In particular, the empty team satisfies
it for trivial reasons. Also, every singleton team {s} satisfies it, again for trivial reasons.

Functional dependence has been studied in database theory and some basic prop-
erties, called Armstrong’s Axioms have been isolated [1]. These axioms state the
following properties of =(~y, ~x):

1. =(~x, ~x). Anything is functionally dependent of itself.

2. If = (~y, ~x) and ~y ⊆ ~z, then = (~z, ~x). Functional dependence is preserved by
increasing input data.

3. If ~y is a permutation of ~z, ~u is a permutation of ~x, and =(~z, ~x), then =(~y, ~u).
Functional dependence does not look at the order of the variables.

4. If =(~y, ~z) and =(~z, ~x), then =(~y, ~x). Functional dependences can be transitively
composed.

These rules completely describe the behavior of =(~y, ~x) in the following sense: If
T is a finite set of dependence atoms of the form =(~y, ~x) for various ~x and ~y, then
=(~y, ~x) follows from T according to the above rules if and only if every team that
satisfies T also satisfies =(~y, ~x). Let us see how Armstrong [1] proved this: Suppose
T |= =(~y, ~x). Let ~z ⊇ ~y be the list of variables z such that =(~y, z) can be derived
from T . Let x ∈ ~x. We show x ∈ ~z. Suppose not. Let X be the team {s, s′}, where
s(z) = s′(z) = 0 for all z ∈ ~z, but s(u) = 0, s′(u) = 1 for all u 6∈ ~z. Note that
X 6|= =(~y, ~x) because x 6∈ ~z. So it suffices to showX |= T . Suppose =(~u,~v) ∈ T . Let
v ∈ ~v. We show X |= =(~u, v). If ~u∩−~z 6= ∅, then s(~u) 6= s′(~u). So w.l.o.g. ~u ⊆ ~z. If
v is not x, then s(v) = s′(v). So w.l.o.g. v is the variable x. But now transitivity gives
x ∈ ~z, contradiction. QED

We shall now give the concept of independence a similar treatment as we gave
above to the concept of dependence. Again we start from the strongest conceivable
form of independence of variables x and y, a kind of total lack of connection between
them, which we denote We can read this in many ways:

• x and y are completely independent from each other.

• x and y occur totally freely.

• x and y give absolutely no information of each other.

• Knowing one of x and y does not help to say anything about the other.
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• Every conceivable pattern occurs for x and y.

Suppose balls of different sizes and masses are dropped from the Leaning Tower of
Pisa in order to observe how the size and mass influence the time of descent. One may
want to make sure that in this test:

The size of the ball is independent of the mass of the ball. (2)

How to make sure of this? Ideally one would vary the sizes and the masses freely so
that if one mass is chosen for one size it would be also be chosen for all the other sizes,
and if one size is chosen for one mass it is also chosen for all other masses. This would
eliminate any dependence between size and mass and the test would genuinely tell us
something about the time of descent itself. We would then say that the size and the
mass were made independent of each other in the strongest sense of the word.

Suppose we have data about tossing two coins and we want to state:

Whether one coin comes heads up is independent
of whether the other coin comes heads up. (3)

To be convinced, one should look at the data and point out that all four possibilities
occur. Probability theory has its own concept of independence which however is in
harmony with ours, only we do not pay attention to how many times certain pattern
occurs. In probability theory, roughly speaking, two random variables are independent
if observing the other does not affect the (conditional) probability of the other. We
could say the same without paying attention to probabilities as follows: two variables
are independent if observing one does not restrict in any way what the value of the
other is.

If we look at any demographic data except for rather small data we may observe:

A person’s gender is independent
of whether the person speaks Spanish. (4)

We would use a given data as support of the truth of this by finding in the data a
male and a female that speak Spanish, and a male and a female that do not speak
Spanish. Once this is established it would be rather difficult to claim that there is some
dependence in the given data between the gender and the ability to speak Spanish.
Of course this analysis again ignores the probabilities. That is, the data may have
many females who speak Spanish but only one male that speaks Spanish and still our
requirement for independence would be satisfied. This just shows that our criterion is
really of a logical kind, not of a probabilistic kind.

When Galileo dropped balls of the same size from the Leaning Tower of Pisa he
was able to observe:

Their time of descent is independent of their mass. (5)

What did this mean? It means that each ball has the same time of descent, a constant,
and therefore Galileo could conclude that it is independent of the mass. Being constant
is a kind of strong independence different from the above examples where we empha-
sized that in a sense all possible patterns should occur. When Galileo dropped balls
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from the tower he did not observe all possible patterns and still he was able to conclude
a certain independence.

Einstein stated in his theory of special relativity that:

The speed of light is independent of the observer’s state of motion. (6)

This is another famous example of independence where one of the variables is constant.
Of course the constancy of the speed of light was not considered a scientific fact at the
time, although observations supported it.

So we should accept that one form of total independence is when one of the vari-
ables is a constant.

Another feature of the strongest possible independence is symmetry. In our ex-
ample (2)-(6) there is a total symmetry of the variables. There are weaker forms of
independence where symmetry is not present. For example: The result of collecting
data about trading might support the claim:

This investor’s trading is independent of non-public
information about the company. (7)

However, there would be no reason to believe that as a consequence:

Non-public information about the company is independent of
this investor’s trading. (8)

Let us now introduce the semantics of x ⊥ y:

Definition 2. A team X satisfies the atomic formula y ⊥ x if

∀s, s′ ∈ X∃s′′ ∈ X(s′′(y) = s(y) ∧ s′′(x) = s′(x)). (9)

What this definition says is the following criterion for a team X of “data” to man-
ifest the independence of x and y: Knowing s(x) alone for a given s ∈ X gives no
information about s(y), because there may be s′ ∈ X with s′(y) 6= s(y), and then (9)
gives s′′ ∈ X with s′′(x) = s(x) and s′′(y) = s′(y). So just when we were going to
say that s(x) is enough evidence to conclude that the value of y is s(y), we see this
other s′′ with the same value for x but a different value for y.

We can immediately observe that a constant variable is independent of every other
variable, including itself. To see this, suppose x is constant inX . Let y be any variable,
possibly y = x. If s, s′ ∈ X are given, we need s′′ ∈ X such that s′′(x) = s(x) and
s′′(y) = s′(y). We can simply take s′′ = s′. Now s′′(x) = s(x), because x is constant
inX . Of course, s′′(y) = s′(y). Conversely, if x is independent of every other variable,
it is clearly constant, for it would have to be independent of itself, too. So we have

=(x) ⇐⇒ x ⊥ x.

We can also immediately observe the symmetry of independence, because the cri-
terion (9) is symmetrical in x and y. More exactly, s′′(y) = s(y) ∧ s′′(x) = s′(x) and
s′′(x) = s′(x) ∧ s′′(y) = s(y) are trivially equivalent.

Our observations on constancy and symmetry lead to the following definition:
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Definition 3. The following rules are called the Independence Axioms

1. If x ⊥ y, then y ⊥ x (Symmetry Rule).

2. If x ⊥ x, then y ⊥ x (Constancy Rule).

It may seem that independence must have much more content than what these two
axioms express, but they are actually complete in the following sense:

Theorem 4 (Completeness of the Independence Axioms). If T is a finite set of de-
pendence atoms of the form u ⊥ v for various u and v, then y ⊥ x follows from T
according to the above rules if and only if every team that satisfies T also satisfies
y ⊥ x.

Proof. Let us see how this follows: Suppose T |= y ⊥ x. We try to derive y ⊥ x from
T . If y ⊥ x ∈ T or x ⊥ y ∈ T , we are done by the Symmetry Rule. So we assume
y ⊥ x /∈ T and x ⊥ y /∈ T . Let V be the set of variables such that x ⊥ x ∈ T . If
x ∈ V or y ∈ V , we are done by the Constancy Rule, so we assume V ∩ {x, y} = ∅.
Consider a domain consisting of V and two new elements 0 and 1. For d ∈ {0, 1} let
Xd consist of all s such that if v ∈ V , then s(v) = v, and moreover s(y) = s(x) = d.
Finally, let X = X0 ∪X1.

Let us first observe that X 6|= x ⊥ y, because there are s ∈ X with s(x) = 0 and
s′ ∈ X with s′(y) = 1 but there is no s′′ ∈ X such that both s′′(x) = 0 and s′′(y) = 1.

Let us then show that X |= T . Suppose u ⊥ v ∈ T . If u ∈ V or v ∈ V , then
clearly X |= u ⊥ v. So we may assume {u, v}∩V = ∅. In particular, u 6= v. Suppose
u = x, u = y, v = x or v = y. By symmetry we may assume u = x. We may then
also assume v /∈ {x, y} for otherwise we are done. Let now s, s′ ∈ X be arbitrary. Let
s′′(u) = s(u), s′′(v) = s′(v) and s′′(w) = w for w ∈ V . Then s′′ ∈ X . So we have
proved X |= u ⊥ v in this case. The final case is that {u, v} ∩ {x, y} = ∅. In this case
it is trivial that X |= u ⊥ v.

The independence atom y ⊥ x turns out to be a special case of the more general
notion

~y ⊥~x ~z
the intuitive meaning of which is that the variable ~y are totally independent of the
variables ~z when the variables ~x are kept fixed.

Suppose objects of different forms (balls, pins, etc), different sizes and different
masses are dropped from the Leaning Tower of Pisa in order to observe how the form,
size and mass influence the time of descent. One may want to make sure that in this
test:

For a fixed form, the size of the object is
independent of the mass of the object. (10)

How to make sure of this? Ideally one would vary for each form separately the sizes
and the masses freely so that if one mass is chosen in that form for one size it would
be also be chosen in that form for all the other sizes, and so on. We would then say
that the size and the mass were made independent of each other, given the form, in the
strongest sense of the word.

5



We now give exact mathematical content to ~y ⊥~x ~z:

Definition 5. A team X satisfies the atomic formula ~y ⊥~x ~z if for all s, s′ ∈ X such
that s(~x) = s′(~x) there exists s′′ ∈ X such that s′′(~x) = s(~x), s′′(~y) = s(~y), and
s′′(~z) = s′(~z)).

In the case of the sentence (10) this means the following: A set of observation
concerning the falling objects is said to satisfy the requirement (10) if for any two tests
s and s′ where the form of the objects was the same there is a test s′′ still with the same
form but which picks the size from test s and the weight from test s′. Note that this
in harmony with there having been just one test, but of course no scientific experiment
would be satisfactory with just one test. So when there are several tests the requirement
of (10) being satisfied actually pushes the number of tests up.

Here are some elementary properties of ~y ⊥~x ~z:

Lemma 6. =(~x, ~y) logically implies ~y ⊥~x ~z.

Proof. Suppose X satisfies =(~x, ~y). To prove that X satisfies ~y ⊥~x ~z, let s, s′ ∈ X
such that s(~x) = s′(~x). Note that s(~y) = s′(~y). We can choose s′′ = s′, for then
s′′ ∈ X , s′′(~x) = s(~x), s′′(~y) = s(~y), and s′′(~z) = s′(~z).

Lemma 7. ~y ⊥~x ~z logically implies =(~x, ~y ∩ ~z).

Proof. Suppose X satisfies ~y ⊥~x ~z. To prove that X satisfies =(~x, ~y∩~z), let s, s′ ∈ X
such that s(~x) = s′(~x). We show s(~y ∩ ~z) = s′(~y ∩ ~z). Let us choose s′′ ∈ X
such that s′′(~x) = s(~x), s′′(~y) = s(~y), and s′′(~z) = s′(~z). Let w ∈ ~y ∩ ~z. Then
s(w) = s′′(w) = s′(w).

Corollary 8. =(~x, ~y) ⇐⇒ ~y ⊥~x ~y

So dependence is just a special case of independence, when independence is defined
in the more general form. This has the pleasant consequence that when we define
independence logic I by adding the atomic formulas ~y ⊥~x ~z to first order logic, we
automatically include all of dependence logic.

We get the following reformulation of the corollary:

Corollary 9. ~y ⊥~x ~y ⇒ ~y ⊥~x ~z (Constancy Rule)

Here are some rather trivial properties

Lemma 10. 1. ~x ⊥~x ~y (Reflexivity Rule)

2. ~z ⊥~x ~y ⇒ ~y ⊥~x ~z (Symmetry Rule)

3. ~yy′ ⊥~x ~zz′ ⇒ ~y ⊥~x ~z. (Weakening Rule)

4. If ~z′ is a permutation of ~z, ~x′ is a permutation of ~x, ~y′ is a permutation of ~y, then
~y ⊥~x ~z ⇒ ~y′ ⊥~x′

~z′. (Permutation Rule)

A little less trivial are the following properties:

Lemma 11. 1. ~z ⊥~x ~y ⇒ ~y~x ⊥~x ~z~x (Fixed Parameter Rule)
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2. ~x ⊥~z ~y ∧ ~u ⊥~z~x ~y ⇒ ~u ⊥~z ~y. (First Transitivity Rule)

3. ~y ⊥~z ~y ∧ ~x ⊥~y ~u⇒ ~x ⊥~z ~u (Second Transitivity Rule)

Note that the Second Transitivity Rule gives by letting ~u = ~x:

~y ⊥~z ~y ∧ ~x ⊥~y ~x⇒ ~x ⊥~z ~x,

which is the transitivity axiom of functional dependence. In fact Armstrong’s Axioms
are all derivable from the above rules. It remains open whether our rules permit a
completeness theorem like Armstrong’s Axioms do.

Now we can define a new logic by adding the independence atoms ~y ⊥~x ~z to first
order logic just as dependence logic D was defined in [5]:

Definition 12. We define independence logic I as the extension of first order logic by
the new atomic formulas

~y ⊥~x ~z

for all sequences ~y, ~x, ~z of variables. The negation sign ¬ is allowed in front of atomic
formulas. The other logical operations are ∧,∨,∃ and ∀. The semantics is defined for
the new atomic formulas as in Definition 5 and in other cases exactly as for dependence
logic in [5].

There is an obvious alternative game-theoretic semantics based on the idea that a
winning strategy should allow “mixing” of plays in the same way Definition 5 mixes
assignments s and s′ into a new one s′′. As we see below, this means that the existential
player cannot use her own moves to code signals to herself and thereby go around
requirements of imperfect information.

Let us recall the following characterization of dependence logic:

Theorem 13 ([4]). The expressive power of formulas φ(x1, ..., xn) of dependence logic
is exactly that of existential second order sentences with the predicate for the team
negative. More exactly, let us fix a vocabulary L and an n-ary predicate symbol S /∈ L.
Then:

• For every L-formula φ(x1, ..., xn) of dependence logic there is an existential
second order L ∪ {S}-sentence Φ(S), with S negative only, such that for all
L-structures M and all teams X:

M |=X φ(x1, ..., xn) ⇐⇒ M |= Φ(X). (11)

• For every existential second order L∪{S}-sentence Φ(S), with S negative only,
there exists an L-formula φ(x1, ..., xn) of dependence logic such that (11) holds
for all L-structures M and all teams X 6= ∅.

The question arises, whether there is a similar characterization for independence
logic. We do not know the answer. However, we may note the following:
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Proposition 14. The expressive power of formulas φ(x1, ..., xn) of independence logic
is contained in that of existential second order sentences with a predicate S for the
team. More exactly, let us fix a vocabulary L and an n-ary predicate symbol S /∈ L.
Then for every L-formula φ(x1, ..., xn) of independence logic there is an existential
second order L ∪ {S}-sentence τφ(S) such that for all L-structures M and all teams
X: M |=X φ(x1, ..., xn) ⇐⇒ M |= τφ(X).

Proof. The construction of τφ(x1,...,xn)(S) is done by induction on φ(x1, ..., xn). The
construction is done exactly as in [5, Theorem 6.2] except for the independence atoms.
Consider an independence atom

xi⊥xjxk.

In this case τφ(x1,...,xn)(S) would be:

∀y1 . . . yn∀z1 . . . zn((S(~y) ∧ S(~z) ∧ yj = zj)→
∃u1 . . . ∃un(S(~u) ∧ uj = yj ∧ ui = yi ∧ uk = zk)).

It is obvious how to generalize this to independence atoms among tuples (xi)i∈I ,
(xj)j∈J and (xk)k∈K for any index sets I, J,K ⊆ {1, . . . , n}.

For sentences φ of I we define as for D: M |= φ ⇐⇒ M |={∅} φ.

Corollary 15. For sentences independence logic and dependence logic are equivalent
in expressive power.

Proof. Suppose φ is a sentence of independence logic. There is an existential second
order sentence τφ(S) such that for every model M we have

M |= φ ⇐⇒ M |= τφ({∅}).

By Theorem 13, there is a sentence ψ of dependence logic such that for every model
M we have

M |= τφ({∅}) ⇐⇒ M |= ψ.

Thus the sentences φ and ψ are equivalent.

Note that formulas of independence logic need not be closed downward, for exam-
ple x ⊥ y is not. This is a big difference to dependence logic. Still, the empty team
satisfies every independence formula.

The sentence
∀x∀y∃z(z ⊥ x ∧ z = y)

is valid in harmony with the intuition that the existential player should be able to make
a decision to be independent of x when she chooses z whether she lets z = y or not.

The sentence
∀x∃y∃z(z ⊥ x ∧ z = x)

is not valid in harmony with the intuition that the existential player needs to follow
what the universal player is doing with his x in order to be able to hit z = x. In
independence friendly logic ([2]) the sentence

∀x∃y∃z/x(z = x),
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is valid which is often found counter-intuitive. The trick (called “signaling”) is that
the existential player stores the value of x into y and then chooses z on the basis of
y, apparently not needing to know what x is. In fact one might consider the entire
independence friendly logic with the following interpretation:

[∃x/~yφ(x, ~y, ~z)]∗ = ∃x(~y ⊥~z x ∧ [φ(x, ~y, ~z)]∗)

As we have seen above this interpretation is not necessarily entirely faithful. However,
the atom ~y ⊥~z x has one clearly distinguishable meaning of independence of ~y from x
so it might be interesting to look at independence friendly logic with this interpretation.

Our independence atom works well also in giving partially ordered quantifiers com-
positional semantics as the following lemma illustrates:

Lemma 16.
(
∀x ∃y
∀u ∃v

)
R(x, y, u, v) ⇐⇒ ∀x∃y∀u∃v(v ⊥ x ∧R(x, y, u, v))

The main open question raised by the above discussion is the following, formulated
for finite structures:

Open Problem: Characterize the NP properties of teams that correspond to formulas
of independence logic.

Note that for dependence logic this is solved by Theorem 13: They are exactly those
NP properties of teams that can be expressed in Σ1

1 with a predicate that occurs only
negatively.
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