
Real Logic and Logic Tensor Networks

MSc Thesis (Afstudeerscriptie)

written by

Haukur Páll Jónsson
(born July 28th, 1989 in Reykjav́ık, Iceland)

under the supervision of Frank van Harmelen and Jakub Szymanik, and submitted to
the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 28, 2018 Ronald de Wolf

Jaap Kamps
Miguel Angel Ŕıos Gaona

i

Abstract

In recent years interest has risen in combining knowledge representation and machine learning
and in this thesis we explore Real Logic (RL). RL offers a novel approach to this combination.
RL uses first-order logic (FOL) syntax and has a many-valued semantics in which terms are
interpreted as real-valued vectors. By making assumptions about the model space and the
relation between terms and predicates, we have a well-defined search procedure to search for
models to our logical theory in a framework implementing RL called Logic Tensor Networks
(LTN).

We evaluate RL and LTN in an empirical setting using the PASCAL-Part dataset and
describe the dataset using FOL and then search for a model which satisfies our logical descrip-
tion of the dataset. The task of Semantic Image Interpretation (SII) is used to evaluate RL
and compare different instantiations of RL. The goal of SII is to produce a scene graph given
an image and prior knowledge about entities in the image. Solutions to this task are expected
to take into account the prior knowledge when making predictions based on low-level features.
We will model the task using RL and demonstrate that logical constraints improve classifi-
cation of entities, relation and make predictions more logically consistent. Along the way,
we formulate hypotheses about the inner workings of the model and perform experiments to
test those hypotheses. The most notable hypotheses are the following four. A model trained
with logical constraints will have less variation in performance compared to an unconstrained
model. Some instantiations of RL will not work, or work poorly, in a neural network setting.
A model trained with logical constraints will produce more logically consistent predictions.
The predecessor of the LTN will perform equivalently to the LTN in this setting. We will see
from the theoretical results and experimental results that some these hypotheses are incorrect
whilst we establish the correctness of the others. We conclude the thesis by summarizing our
results and recognize the novel step RL takes in combining knowledge representation and
machine learning.

ii

Acknowledgements

I would like to acknowledge my partner Inga Rán and my son Arnar Flóki for their patience
and support during the making of this thesis. I could not have done it without their support.
Furthermore, I would like to thank my supervisors Frank van Harmelen and Jakub Szymanik
for their work in the making of this thesis. I would also like to thank Miguel Angel Ŕıos
Gaona and Jaap Kamps for taking part in the thesis committee and I hope that they enjoy
the thesis. Lastly, I would like to acknowledge the help I received from Shuai Wang, Peter
Bloem, Erman Acar, Emile van Krieken and Luciano Serafini. The discussions I had with all
of you helped make this thesis.

Contents

1 Theory 4
1.1 First Order Logic . 4
1.2 Many-valued Operators . 8
1.3 Real Logic . 11
1.4 Realization . 15

2 Experimental design 23
2.1 The Setting . 23
2.2 The Models . 26
2.3 Measures . 29
2.4 Hypotheses . 32

3 Experimental results 36

4 Discussion 43
4.1 T-norms and aggregations . 43
4.2 Biased features and variation . 45
4.3 Expressivity of LTN . 46
4.4 Logical constraints . 46

5 Conclusion 48

iii

Introduction

Knowledge Representation and Reasoning is one of the core areas of artificial intelligence.
The goal of knowledge representation is to model domain knowledge using a well-defined
language along with inference rules to deduce facts. On the other hand, the goal of machine
learning is to make predictions based on previous experiences by making assumptions about
the underlying process. In both fields, the goal is to infer new knowledge given some input,
but the structure of the input and assumptions made to do the inference differ quite a lot.
One fundamental difference between the two approaches is the way objects are represented.
Symbolic approaches tend to ignore the representation of the objects to be modelled and
define symbolic inference to be invariant of representation. Machine learning approaches
rely solely on the object’s representation when making predictions and one could say that
a major factor in recent progress in machine learning is due to advances in learning better
representations. Both approaches have enjoyed great success, but in order to solve tasks of
increased complexity a combination of both approaches is in order. In particular for problems
in which the problem statement is defined in terms of low-level representations and requires
reasoning. Statistical Relational Learning (SRL) explores such tasks and tackles complex
domains, which need to take into account uncertainty and complex relations between objects.

In this thesis, we will use one such task, the task of Semantic Image Interpretation (SII)
as an example to gain a better understanding of this combination. The goal of SII is to
output a scene graph, given an image and some background knowledge about objects in the
images. We want a solution to this task which is able to process an image from the raw
pixel values and produces a graph in which the nodes have labels representing the type of
object and labelled edges which describes their relationship in the image. Furthermore, we
expect the predicted relations and labels to be consistent with some background knowledge.
The labelling and edge-prediction tasks can be performed using machine learning alone, but
a problem arises when the predictions are not consistent with the background knowledge.
When the solutions are not logically consistent an object labelled as ”a cat” and another
labelled as ”a tail” might be predicted to be in the ”part of” relation such that ”a cat is a
part of a tail”, when it should much rather be ”a tail is a part of a cat” which we know from
common sense knowledge. We would like to reject such predictions and better yet, improve
the classifier in these cases.

This brings us to Real Logic (RL) (Serafini and Garcez, 2016; Serafini and d’Avila Garcez,
2016). RL is defined using the syntax of first-order logic (FOL) and has a many-valued se-
mantics in which terms are interpreted in an n-dimensional space and consequently function
symbols and predicate symbols as well. The intended application of RL is to describe knowl-
edge about some domain using FOL and then represent the objects of that domain in a
real-valued n-dimensional space. By assuming that terms which are represented ”close” to
one another should have similar truth values, we can make predictions about otherwise un-

1

CONTENTS 2

seen representations. By making this assumption, we can view the task of labelling and
edge-prediction as knowledge base completion which is based on the representation of the
terms. This further implies that all predictions are fundamentally limited by the represen-
tation and functions considered. Thus, when evaluating RL we want to make sure that the
representation is sufficiently informative, and together with the functions they are able to
satisfy our theory. The particular functions considered are made concrete when we introduce
the Logic Tensor Networks (LTN), which implement predicates of RL as a neural network.
By working under the assumption that the functions considered are differentiable, we will use
a search procedure from the gradient descent family.

In this thesis, we will evaluate RL by using the task of SII in two ways. First, we want
to know how well RL is able to increase the logical consistency of predictions as well as over-
all classification performance compared to a baseline model. This will give us an indication
whether RL is able to combine learning based on low-level representation and logical reason-
ing. Secondly, we want to know whether all instantiations of RL perform equally when using
a search procedure from the gradient descent family. This will allow us to study the inner
workings of RL and offer practical considerations based on theoretical and experimental evi-
dence. Along the way, we formulate a number of hypotheses about the behaviour of RL and
perform experiments to test them. This thesis is based on the works of Serafini et al. (2017)
and Donadello et al. (2017) who show that RL using LTN is able to increase classification
performance and performs well when trained on noisy data in the task of SII. In this thesis,
we replicate these experiments and put forward other hypotheses. We confirm the original
results but observe that the model does not learn in the way initially anticipated, the per-
formance is somewhat unstable and some adjustments needed to be made to the structure of
the model to achieve the same results. We start by making some observations how different
implementations of RL will propagate the model’s error and quickly see that some implemen-
tations will never work while other’s might. After viewing the experimental evidence and
discussing the results we see conclusively that, out of the models we consider, a single class
of models performs best. We experiment to see if the model is progressively able to satisfy
the constraints and if more constraints make the predictions more logically consistent. We
will see that the model does make the predictions more logically consistent and discuss how
the model is able to make the predictions better. We hypothesize that adding more con-
straints will decrease the variation in the performance of the model, and when we observe the
opposite, we try to understand the origin of the variation. We do not explain the variation
conclusively and only give a plausible explanation. Lastly, we compare the expressivity of
the LTN to its predecessor. We quickly see when we compare the models that the LTN will
probably outperform its predecessor in this setting and verify it during experimentation.

We start by setting the stage by defining all relevant concepts in section 1. In section 1.1
we define first-order logic, the notion of satisfiability and knowledge bases. In section 1.2
we define t-norms which generalise classical conjunction, its dual the s-norm, aggregation
functions which serve as semantics for the universal quantifier. We also explore the partial
derivatives of these operators and consider implementation issues. In section 1.3 we define
the RL framework, its semantics and the maximum satisfiability problem. In section 1.4 we
define the LTN and the Neural Tensor Network (NTN) as possible implementations for the
predicates of RL and derive the gradient of a sentence’s generic grounding.

In section 2 we describe how RL is used in the task of SII and how it will be evaluated.
In section 2.1 we describe the task and dataset on which all evaluations are based on. In
section 2.2 we define FOL language L which defines using the dataset as terms in the task

CONTENTS 3

of SII and present different implementations of RL which will be considered. In section 2.3
we describe how we will evaluate the performance of the model as we are interested in the
performances of the classification task, relation prediction as well as the logical consistency
of predictions. In section 2.4 we state our experimental hypotheses and motivate them.

In section 3 we will go through the results of each experimental hypothesis and in section 4
we will contemplate the results of the experiments and try to explain them.

In section 5 we conclude the thesis and summarize the results.
We conclude this thesis by discussing some interesting future directions of research based

on our observations and issues encountered and recognize the novel step RL takes in combining
knowledge representation and machine learning allowing us to, intuitively, describe data which
have complex relations and incorporate uncertainty.

Chapter 1

Theory

In this section, we define all relevant concepts required for different parts of the thesis. In
section 1.1, we start with some fundamental concepts in logic, namely the language and sat-
isfiability. In section1.2, we move to many-valued extensions of conjunction and universal
quantifiers. In section 1.3 RL is defined through the concept of a grounding, which is es-
sentially an interpretation in which satisfiability is defined over the real field, in the range
[0,1] and subsets of closed terms of the language are considered when evaluating the truth
of universal quantification. In section 1.4 we make assumptions about the space of possible
groundings, introduce the LTN, demonstrate how the gradient of the network is computed,
make observations based on the structure of the gradient and compare with the operators
defined in section 1.2.

1.1 First Order Logic

Let us start by introducing FOL syntax.

Definition 1 (Vocabulary of FOL L). The vocabulary of First-order logic language L consists
of variables x, y, z, . . . , logical constants ¬,∨,∧,⇒, ∀, ∃, non-logical constants which consist
of individual constants a, b, c, . . . , predicates P,R, . . . and function symbols f, . . . and other
auxiliary symbols.

We let P be the set of all predicates, F be the set of all function symbols and C be the set
of all constants for language L. Each P ∈ P and each f ∈ F is assigned a natural number,
the arity of the function α, α : P ∪F → N. We write α(P) = n to denote that the arity of P
is n. We note that function symbols of arity 0 can be used instead of the individual constants
but we refer to the constants C. We further assume that P and F are disjoint. The tuple
〈F ,P, σ〉 is called the signature of L.

Definition 2 (Terms of L). The terms of FOL L are

• The individual variables.

• The individual constants.

• If f is a function symbol of arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

• Nothing else is a term.

4

CHAPTER 1. THEORY 5

We refer to closed terms as terms which do not contain variables and denote them as
terms(L).

Definition 3 (Formulas of L). We define formulas for L inductively.

• If P ∈ P has arity n and t1, . . . , tn are terms then P (t1, . . . , tn) is a formula, also called
an atom or atomic formula.

• If ϕ is a formula then ¬ϕ is a formula.

• If ϕ and ψ are formulas then ϕ ∨ ψ and ϕ ∧ ψ are formulas.

• If ϕ is a formula which has at least one occurrence of variable x and does not contain
∀x or ∃x already, then ∀xϕ and ∃xϕ are formulas.

• Nothing else is a formula.

We let ϕ⇒ ψ be a short-hand for ¬ϕ∨ψ and use ϕ(t1, . . . , tn) to denote a formula defined
over terms t1, . . . , tn.

Definition 4 (Literal of L). Let ϕ be an atom of L then ϕ is a literal and ¬ϕ is a literal.

Definition 5 (Clause of L). Let ϕ1, . . . , ϕn be literals of L then ϕ1 ∨ · · · ∨ ϕn is a clause of
L.

Using this definition we can create formulas of the form ∀xP (y) ∧ R(x, y) which leads to
the definition of bound and free variables and the corresponding closed and open formulas of
L.

Definition 6 (Bound and free variables of L). A variable x is bound iff it occurs in ϕ of the
form ∀xϕ. A variable x is free if it is not bound.

Definition 7 (Closed and open formulas of L). A formula in which no variables occur free
is a closed formula, also called a sentence. Otherwise, the formula is open.

These definitions offer quite a range of writing FOL formulas and in later sections, we want
to limit our discussion to sentences which have a particular structure, therefore we introduce
three normal forms.

Definition 8 (Conjunctive Normal Form (CNF)). A formula of L is in CNF if it is a
conjunction of clauses.

Definition 9 (Prenex Normal Form (PNF)). A formula of L is in PNF if all the quantifiers
of the formula occur in a sequence at the beginning of the formula.

Definition 10 (Skolem Normal Form (SNF)). A sentence of L is in SNF if it is in PNF with
only universal quantifiers.

From now on, when we say a formula in its normal form, it is in CNF, PNF and SNF.
By assuming that a sentence is in a normal form, we know the sentence’s structure, which is
important when we explore the gradient of a sentence. Thus, we want to be sure that when
a sentence is expressed we can alter it to a normal form without affecting the satisfiability of
the sentence, allowing us to look for a model for sentence in a normal form. First, we need
to define what satisfiability is and it relies on the notion of an interpretation.

CHAPTER 1. THEORY 6

Definition 11 (Interpretation for FOL). An interpretation, I, for FOL is a pair 〈D,V〉, s.t.
D is a non-empty set of objects called the domain and V a valuation function which assigns
objects from D to individual constants and a set of ordered n-tuples of objects to predicates.

An interpretation is only defined in terms of the signature of the L and if we were to define
truth of a sentence only based on the signature we would not be able to talk about the truth
of a sentence which includes variables. This is addressed using the β-variant of interpretation
I.

Definition 12 (β-variant of interpretation I). Let β be an individual constant and I and
interpretation which assigns some element to β, then I* is a β-variant of interpretation I iff
I* and I differ only (if at all) in the assignment of β.

For formula ϕ, variable x, and constant c we denote ϕ[c/x] as the the formula in which
all occurrences of x have been replaced by c. We now have everything in place to define truth
in an interpretation of FOL.

Definition 13 (Truth in an interpretation). Let I be an interpretation for L, we define truth
in interpretation I as

• If P is a predicate of arity n and c1, . . . , cn are individual constants then P (c1, . . . , cn)
is true in I iff 〈V(c1), . . . ,V(cn)〉 ∈ V(P).

• ϕ is true in I iff ¬ϕ is not true in I.

• ϕ ∧ ψ is true in I iff ϕ and ψ are true in I.

• ϕ ∨ ψ is true in I iff ϕ or ψ are true in I.

• ∃xϕ is true in I iff ϕ[c/x] is true in some β-variant of of I.

• ∀xϕ is true in I iff ϕ[c/x] is true in every β-variant of of I.

Definition 14 (Logical consequence). Let Γ be a set of sentences (possibly empty) and ϕ a
sentence of L then ϕ is said to be a logical consequence of Γ iff whenever Γ is true then ϕ is
true. We denote this with Γ � ϕ.

When talking about particular interpretations, the following two notions are helpful.

Definition 15 (A model). Let Γ be a set of sentences of L and I be an interpretation s.t.
for all ϕ ∈ Γ ϕ is true in I then I is a model of Γ, denoted as M.

This leads to the definition of satisfiability of a set of sentences.

Definition 16 (Satisfiability). Let Γ be a set of sentences of L. If there exists a model for Γ
then Γ is satisfiable.

Now we come back to the normal forms.

Proposition 1 (Normal forms preserve satisfiability). A formula ϕ of L in some theory T
not in SNF or CNF can be converted to ϕ′ in CNF and SNF s.t. ϕ′ is in language L’ which
has been extended with a new function symbol in the process of skolemization and if M � ϕ
then M′ � ϕ′ where M′ is a model of the conservative extension of T with model M.

CHAPTER 1. THEORY 7

This proposition is a bit out of the scope of this thesis but let us briefly describe why
we need to extend the language and therefore consider these extra caveats. In the process
of skolemization we replace existential quantifiers with new function symbols. Let us assume
that we have a sentence ∀x∀y∃zϕ(x, y, z). When we read this sentence we read it such that
for every x and given this x for all y there exists some z such that ϕ. The existence of z
is dependent on the interpretation of x and y. So when we want to replace the existential
quantifier and substitute it with a new function symbol, the function must depend on x and
y.

Proof. We first transform ϕ to CNF. van Dalen (2004) (1.3.9) proves that such a trans-
formation preserves satisfiability. We can then transform the CNF sentence to PNF. van
Dalen (2004) (2.5.11) proves that such a transformation preserves satisfiability. Lastly, we
can transform the PNF sentence to SNF through the process of skolemization. In this process
the language L is extended with a new function symbol for each existential quantifier in the
formula, resulting in ϕ′. In van Dalen (2004) (3.4.4) it is proved if T ` ϕ then the (Skolem)
extension of T is conservative and for every model of T there is a Skolem expansion M′.

We could also have written ϕ′ � ϕ, which is roughly the same. This proposition implies
that instead of searching for models of ϕ we can equally search for models of ϕ′, which we
will do.

But let us now transform a sentence to CNF, PNF and SNF.

Example 1 (A sentence converted to normal form).

∀x(P (x)⇒ ∃yR(x, y))

∀x(¬P (x) ∨ ∃yR(x, y)) (CNF)

∀x∃y(¬P (x) ∨R(x, y)) (PNF)

∀x(¬P (x) ∨R(x, f(x))) (SNF)

¬P (x) ∨R(x, f(x)) (short-hand)

Indeed, in the last step the ∀ quantifier can be omitted since all variables are bound and
thus implicitly universally quantified. We will therefore consider all variables bound for the
rest of the thesis.

We have now defined all the required FOL concepts. In later sections, we will consider a
knowledge base KB, which is a consistent set of sentences in SNF and CNF which describes
knowledge in FOL and we look to extend it consistently. We will extend KB semantically
rather than syntactically. That is, we start with some model which should satisfy our knowl-
edge base and ask whether this model makes ϕ true, i.e. we check if KB � ϕ If ϕ is true, we
add it to our set, if not, the negation is added to KB. One of the problems we will encounter
is that finding a model for KB in the first place is hard, which should be no surprise. To
allow a systematic search procedure through the model space, the model space is reduced by
making assumptions about the domains and valuation functions considered.

In the next subsection, we will define many-valued extensions of conjunction, disjunction
and the universal quantifier as in RL we do not consider truth to be binary but rather in the
interval [0, 1].

CHAPTER 1. THEORY 8

1.2 Many-valued Operators

The truth of sentences in some natural language is not necessarily binary, in the sense that
they are either true or false, but rather they might have varying degrees of truth. For example,
assume that we have three people Bob, John and George. Bob is 180cm tall, George is 200cm
tall and John is 160cm. We can attempt to model facts about these three people using FOL,
one constant for each person and a single predicate for the property of being tall. Thus we
might consider Tall(George) to be true and Tall(John) to be false. But where would be
place Bob? In this example we might consider putting Bob between John and George, thus
using more values for truth than just two.

Fuzzy logic considers these generalizations to the truth values, in particular, truth values
in the range [0, 1] which we will use when RL is defined(Bergmann, 2008; Novák, 1987). The
continuity of the range is important, as later on it allows us to consider functions which are
differentiable over this range. We will now define the generalizations for conjunction and
disjunction which was developed along with many-valued logics but we will deviate from the
conventional approach of fuzzy logic when it comes to universal quantification and rather use
aggregation functions. The motivation here is that fuzzy logics are very strict when it comes
to the truth value of universal quantification, considering the greatest lower bound over all
β-variants(Bergmann, 2008). So if one β-variant has a truth value of 0, the whole sentence
has a truth value of 0. The RL framework is not this strict, and we will see that it is beneficial
when computing the gradient but the cost is that the existential quantifier will have the same
meaning as the universal quantifier. We are not too concerned with that, as we have already
assumed that all sentences are in SNF which does not contain existential quantification.

We will now start with the generalization for conjunction and disjunction for truth values
in the range of [0, 1]. Triangular norms, or simply t-norms, are binary operations T on the
interval [0, 1] which satisfy the following conditions.

Definition 17 (T-norm). A triangular norm or t-norm is a binary operation. T : [0, 1] ×
[0, 1]→ [0, 1] which satisfies the following conditions.

• T (x, y) = T (y, x) (commutativity)

• T (x, T (y, z)) = T (T (x, y), z) (associativity)

• y ≤ z ⇒ T (x, y) ≤ T (x, z) (monotonicity)

• T (x, 1) = x (neutral element 1)

T-norms serve to generalize the classical conjunction.

Example 2 (Examples of t-norms). See figure 1.1 for a contour plot of these functions.

• Gödel t-norm: TG(x, y) = min(x, y)

• Lukasiewicz t-norm: T L(x, y) = max(x+ y − 1, 0)

• Product t-norm: TP (x, y) = x · y

Due to associativity and commutativity T-norms can be extended to an n-ary opera-
tion Klement et al. (2004), n ∈ N. We denote the extended t-norms with T (x1, . . . , xn).

Example 3 (n-ary t-norms). We extend the t-norms from our previous example.

CHAPTER 1. THEORY 9

Figure 1.1: The three t-norms; Gödel, Lukasiewicz and Product t-norm and their values along [0, 1] × [0, 1].
Below the diagonal of the Lukasiewicz it takes the value 0.

• Gödel t-norm: TG(x1, . . . , xn) = min(x1, . . . , xn)

• Lukasiewicz t-norm: T L(x1, . . . , xn) = max(
∑n

i=1 xi − (n− 1), 0)

• Product t-norm: TP (x1, . . . , xn) =
∏n
i=1 xi

The reader can verify that these norms are indeed generalizations of classical conjunction
by checking that they result in the same values as the classical operators. At the same time,
they all behave quite differently on the same inputs.

Example 4 (Examples of t-norm computations). Let x1 = 0.3, x2 = 0.5, x3 = 0.3, x4 = 0.1.

TG(x1, x2, x3, x4) = min(0.3, 0.5, 0.3, 0.1) = 0.1

T L(x1, x2, x3, x4) = max(0.3 + 0.5 + 0.3 + 0.1− n+ 1, 0) = 0

TP (x1, x2, x3, x4) = 0.3 ∗ 0.5 ∗ 0.3 ∗ 0.1 = 0.0045

We notice that the Lukasiewicz t-norm might often result in 0 when n is large. For
example, with only two values, the average value needs to be greater than half to result in a
positive number. We will make this observation concrete in section 1.4. We also observe that
the product t-norm might cause issues in numerical computations, as computers do not handle
multiplication of small numbers well. We will see that this is indeed an issue in hypothesis 1.1
but we will also present a solution to this in section 1.4 and follow up with hypothesis 7.

We now define the dual of a t-norm, a t-co-norm, also called s-norm1. Similarly, s-norms
generalize the classical disjunction.

Definition 18 (S-norm). If T is a t-norm then S is an s-norm.

S(x, y) = 1− T (1− x, 1− y)

Example 5 (Examples of s-norms). We give the duals of the previous examples

• Gödel s-norm: SG(x, y) = max(x, y)

• Lukasiewicz s-norm: S L(x, y) = min(x+ y, 1)

1We will use s-norm instead of t-co-norm in the following discussion as it makes for an easier notation.

CHAPTER 1. THEORY 10

• Product s-norm: SP (x, y) = x+ y − xy

We also extend the s-norms to accept n inputs and denote it as S(xn, . . . , x1).

Example 6 (N-ary s-norms). We extend the s-norms from our previous example.

• Gödel s-norm: SG(x1, . . . , xn) = max(x1, . . . , xn)

• Lukasiewicz s-norm: S L(x1, . . . , xn) = min(
∑n

i=1 xi, 1)

• Product s-norm: SP (x1, . . . , xn) = 1−
∏n
i=1(1− xi)

Let us now explore how these s-norms work in computation.

Example 7 (Examples of t-norm computations). Let x1 = 0.3, x2 = 0.5, x3 = 0.3, x4 = 0.1.

SG(x1, x2, x3, x4) = max(0.3, 0.5, 0.3, 0.1) = 0.5

S L(x1, x2, x3, x4) = min(0.3 + 0.5 + 0.3 + 0.1, 1) = 0.9

SP (x1, x2, x3, x4) = 1− (0.7 ∗ 0.5 ∗ 0.7 ∗ 0.9) = 0.7795

Again, we see that the Lukasiewicz s-norm behaves quite strangely, we can almost trivially
satisfy it just by adding enough xi > 0. We will make this observation more concrete in
section 1.4.

We have now introduced generalizations of conjunction and disjunction for truth values in
the range [0, 1] and now we will introduce aggregation functions, which are used for universal
quantification in RL. The motivation to use the more generic aggregation functions instead
of the standard fuzzy logic universal generalization is because they are simply too strict in
the sense that a single β-variant can drag the truth value of the whole sentence down. We
look for a softer approach than this. As an example, consider a sentence stating ”all swans
are white”. We all know that this is sentence is false, as in fact ”most swans are white”. But
stating it to be false seems to ignore a lot of the evidence that went into the statement. One
could also consider the universal quantifier to be simply ”most” and thus the sentence would
be true, but then the question arises, where to draw the line? What is ”most”? Instead, RL
attempts to avoid this problem by considering generic aggregation functions2 so that one can
choose based on a modelling scenario.

Definition 19 (Aggregation function). An aggregation function A is a function A : [0, 1]n →
[0, 1] s.t.

• A(0) = 0.

• A(1) = 1.

If T = {x1, . . . , xn} then we denote A(T) to mean A(x1, . . . , xn) where we have ordered
the elements in some arbitrary order. One can think of aggregation functions which behave
differently w.r.t. the order of inputs, and we consider those later on, but then we assume that
the function itself orders the inputs.

2In fact, they are so generic in the original proposal that they consider all functions from [0, 1]n → [0, 1]. We
will deviate a bit from the original proposal (Serafini and d’Avila Garcez, 2016) here and present aggregation
functions which better capture the intended meaning.

CHAPTER 1. THEORY 11

Example 8 (Examples of aggregation functions). We give a few examples of aggregation
functions which capture the intended definition.

• Arithmetic mean: Aari(x1, . . . , xn) =
∑n

i=1 xi
n

• Harmonic mean: Ahar(x1, . . . , xn) =
(∑n

i=1 x
−1
i

n

)−1
= n∑n

i=1 x
−1
i

• Minimum: Amin(x1, . . . , xn) = min(x1, . . . , xn)

• Maximum: Amax(x1, . . . , xn) = max(x1, . . . , xn)

Out of the example aggregation functions the Amin is the only candidate which is consid-
ered as in fuzzy logic (Bergmann, 2008).

We will also consider a different class of aggregation operators known as the Ordered
Weighted Average (OWA). The OWA operator is an important aggregation function com-
monly used in multi-criteria decision making, see Yager (1993).

Definition 20 (Ordered weighted average function (OWA)). An ordered weighted average
function A is an aggregate function s.t.

Aowa(x1, . . . , xn) =
n∑
i=1

wixπ(i)

where π is a permutation from [n] to [n] s.t. xπ(i) is the i-th largest element of x1, . . . , xn and
wi are the weights of the operator s.t.

∑n
i=1wi = 1.

We use [n] to denote to the set {1, 2, . . . , n}. Take note that for w1 = 1 and wi = 0 for
all i 6= 1 then Aowa(x1, . . . , xn) = Amax(x1, . . . , xn). Similarly, for wn = 1 and wi = 0 for all
i 6= n then Aowa(x1, . . . , xn) = Amin(x1, . . . , xn) and for wi = 1/n then Aowa(x1, . . . , xn) =
Aari(x1, . . . , xn).

We have now defined the many-valued operators we will consider for RL. The t-norms
generalize the classical conjunction and s-norms generalize the classical disjunction. The
treatment of many-valued universal quantification as aggregation functions is proposed as a
more general approach than the standard fuzzy universal quantifiers, but we will show in the
next section that this comes with a cost. Furthermore, in section 1.4, we will make concrete
the limitations of the Lukasiewicz norms and analyse the partial derivative of the norms and
aggregation functions. Now everything is in place to define RL.

1.3 Real Logic

RL is defined using the syntax of FOL and semantics in which terms are interpreted in an
n-dimensional space and in turn function symbols and predicate symbols are defined over
the same domain with predicates taking truth values in the range [0,1]. The intended use
case for RL is to describe knowledge about the domain in which elements can be described
by their numerical features. RL proposes a novel way to combine logical expressions and
numerical features by leveraging ideas from fuzzy logic in addition to new semantics for
universal quantification. RL was originally proposed by Serafini and Garcez (2016); Serafini
and d’Avila Garcez (2016) and they simultaneously propose LTN to implement RL. Shortly

CHAPTER 1. THEORY 12

after the original proposal, two other papers demonstrate RL in action Donadello et al. (2017);
Serafini et al. (2017) and we plan to replicate their findings in this thesis.

RL assumes that there is an underlying domain of objects O = {o1, o2, . . . }, possibly
infinite. The objects are meant to be real-world objects which can be represented by a
vector of real values. The mapping from the set of objects to the domain of representation is
called a grounding, denoted by G. Thus, G(oi) is the vector representation of object oi. The
assumption is made that the representation of these objects preserves some latent structure
between the numerical properties and the relations defined on Oα(Ri), where Ri is some
relation on O with arity α(Ri). The purpose of this formalism is to infer knowledge about
the relational structure of O as well as to predict the numerical properties of G(oi), based on
the latent numerical properties and knowledge about O (Serafini and Garcez, 2016).

To explain the intuition behind a grounding let us assume that our objects are John,
George and Bob, as we did before. We would like to know whether George is taller than Bob
and if we were to represent Bob and George by their height, i.e. G(Bob) = (heightBob) and
G(George) = (heightGeorge) and we want to know, isTaller(George,Bob) where isTaller is
a binary predicate. Recall that Bob is 180cm tall, George is 200cm tall and John is 160cm.
If our grounding for the isTaller predicate accurately takes their height into account when
computing the truth value of isTaller(George,Bob) we should be able to decide this binary
predicate based on the representation of Bob and George. On the other hand, if we were to
represent Bob and George by something else than their height, for example, by how many
friends they have and hair color we would not expect to be able to decide whether George
is taller than Bob because we do not expect this grounding to preserve the latent structure
between the numerical properties and the relation considered. Let us now assume that we
do not know the height of John, but we do know that Tall(John) = 0.2, Tall(Bob) = 0.6
and Tall(George) = 0.9. Using the representation of ”tallness” we should also be able to
decide whether isTaller(George,Bob) and isTaller(Bob, John), if we further ensure that the
isTaller predicate is transitive we should also be able to infer that isTaller(George, John)
without ever needing to observe it. In the experimental setting, we consider these ”logical
representations” of the objects so it is good to keep this example in mind. Lastly, if we
use this representation we could also infer something about John’s actual height, based on
Tall(John) = 0.2, George’s and Bob’s height, Tall(Bob) = 0.6 and Tall(George) = 0.9.

We will now define a grounding, which is essentially an interpretation which assumes that
the domain is Rn and that predicates map to truth values in the range [0, 1].

Definition 21 (Grounding). A grounding G of the signature of L is a function s.t.

• G(c) ∈ Rn, for every c ∈ C

• G(f) ∈ Rn·α(f) → Rn for every f ∈ F

• G(P) ∈ Rn·α(P) → [0, 1] for every P ∈ P

We inductively extend the definition over sentences ϕ of L over t1, . . . , tm ∈ terms(L),
the closed terms of L.

• G(f(t1, . . . , tm)) = G(f)(G(t1), . . . ,G(tm))

• G(P (t1, . . . , tm)) = G(P)(G(t1), . . . ,G(tm))

• G(¬P (t1, . . . , tm)) = 1− G(P (t1, . . . , tm))

CHAPTER 1. THEORY 13

• G(ϕ1 ∧ · · · ∧ ϕn) = T (G(ϕ1), . . . ,G(ϕn))

• G(ϕ1 ∨ · · · ∨ ϕn) = S(G(ϕ1), . . . ,G(ϕn))

Where T is a t-norm and S the corresponding s-norm. As mentioned before, the semantics
of universal quantification deviates from the normal fuzzy logic semantics and is given in terms
of aggregation semantics. Aggregation semantics consider more generic functions and not all
β-variants need to be considered when evaluating the universal quantification.

Definition 22 (Aggregation semantics). Let ∀x1, . . . , xnϕ(x1, . . . , xn) be a sentence of L with
n variables3, T1, . . . , Tn ⊆ terms(L) and A is an aggregation operator from [0, 1]|T1|·····|Tn| →
[0, 1] then the aggregated truth value of ϕ(x1, . . . , xn) over T1 × · · · × Tn is

• G(∀x1, . . . , xnϕ(x1, . . . , xn)) = A({G(ϕ(tx1 , . . . , txn)) | (tx1 , . . . , txn) ∈ T1 × · · · × Tn})

We now denote ∀x1, . . . , xnϕ(x1, . . . , xn) as ϕ(x) where x is a vector of variables. We now
refer to the choice of aggregation operator, t-norm and corresponding s-norm operator as an
instantiation of RL.

Before continuing, let us carefully consider what is going on and start with an example.

Example 9 (Computing aggregation). Let us consider an aggregation using the arithmetic
mean and terms(L) = {a, b, c, d, e} and some sentence ϕ with two variables.

Let G(∀x1x2ϕ(x1, x2)) = Aari({G(ϕ(x1, x2)) | (tx1 , tx2) ∈ T1 × T2}) with T1 = {a, b, c} and
T2 = {a, c, d, e}.

Thus, Aari({G(ϕ(x1, x2)) | (tx1 , tx2) ∈ T1 × T2}) = Aari(G(ϕ(a, a)),G(ϕ(a, c)),G(ϕ(a, d)),
G(ϕ(a, e)),G(ϕ(b, a)),G(ϕ(b, c)),G(ϕ(b, d)),G(ϕ(b, e)),G(ϕ(c, a)),G(ϕ(c, c)),G(ϕ(c, d)),G(ϕ(c, e)))

Indeed it is a function [0, 1]12 → [0, 1]
Let us further assume that G(ϕ(b, a)) = 0 but for all the other pairs considered here the

grounding is 1.
Thus G(∀x1x2ϕ(x1, x2)) = 11

12 .

In this example we consider T1 and T2 to be proper subsets of terms(L) and from now on
when T is a proper subset of terms(L) we will denote the grounding G as a partial grounding
Ĝ. A partial grounding Ĝ is a grounding over a subset of the signature of L and a grounding
G is said to be an extension of a partial grounding Ĝ if G and Ĝ coincide w.r.t. Ĝ and G is
not a partial grounding4. But why do we need to consider partial groundings? The intuition
behind the partial grounding is to allow us to make approximations when computing, by only
considering a subset of the closed terms. In fact, just with a single 1-ary function symbol
and one constant, we already need to deal with an infinite amount of closed terms5 when
computing the aggregation value. Thus, when some Ti 6= terms(L) is used in a grounding
then the grounding is necessarily a partial grounding and we consider extensions of Ĝ to all
tx /∈ Ti and tx ∈ terms(L). The assumption about the terms representation is made clear
here, by assuming that the representation of terms and the function space of predicates and

3Here we could have also included open formulas of L with n free variables but since we focus on sentences
and all free variables are implicitly bounded by a universal quantifier in our setting, making them sentences,
it is not needed.

4We can of course also consider partial groundings w.r.t. either predicate or functions symbols but we will
not consider these in this thesis.

5f(a), f(f(a)), f(f(f(a))), . . .

CHAPTER 1. THEORY 14

function symbols generalizes from Ĝ to G, by generalizing from some finite T to terms(L).
In our experimental setting we assume that the space of functions is a particular class of
differentiable functions and the groundings of the objects are constants allowing us to search
through function parameters which best fit our expectations. Thus, in the experiments we
let T ⊂ terms(L) be a finite set and treat T as an estimation for terms(L) and estimate how
well Ĝ generalizes to G by testing it on previously unseen terms.

We pay a price when considering aggregation semantics. For some aggregation functions
we lose duality. The universal quantifier and the existential quantifier can be defined in terms
of one another as they are dual to each other. ∀xϕ(x) = ¬∃x¬ϕ(x). But when we consider
Aari then G(∀xϕ(x)) = G(∃xϕ(x)).

Proposition 2 (Aari does not preserve duality). If Aari is used as a grounding for the
universal quantifier then G(∀xϕ(x)) = G(∃xϕ(x)).

Proof.

G(∃xϕ(x)) = G(¬∀x¬ϕ(x)) = 1− G(∀x¬ϕ(x))

= 1−Aari({G(¬ϕ(a)) | a ∈ T}) = 1−
∑

a∈T (1− G(ϕ(a)))

|T |

= 1− 1 +

∑
a∈T (G(ϕ(a)))

|T |
= G(∀xϕ(x))

We show this for demonstration purposes only and we will not show this for other aggre-
gation functions. We will, like Donadello et al. (2017), not worry too much about this fact as
we do not consider sentences which contain the existential quantifier.

Let us now make clear what we are optimizing when evaluating potential groundings, by
first defining satisfiability of a sentence given a grounding.

Definition 23 (Satisfiability). Let ϕ(x) be a sentence in L, G a grounding of L, v ≤ w ∈ [0, 1]
then we say that G satisfies ϕ(x) in the interval [v, w] when G(ϕ) ∈ [v, w]. We use G �wv ϕ(x)
to denote the fact that G(ϕ) ∈ [v, w].

Again, take notice that since G is not a partial grounding then the aggregation semantics
are defined over the terms(L), not some subset of it. We continue as we want to be able to
address satisfiability in terms of multiple sentences and Ĝ.

Definition 24 (Ground theory). A ground theory is a pair 〈K, Ĝ〉 where K is a set of pairs
〈[v, w], ϕ(x)〉 where ϕ(x) is a sentence with variables x of L and Ĝ is a partial grounding.

Definition 25 (Satisfiable ground theory). A ground theory 〈K, Ĝ〉 is satisfiable if there exists
a grounding G which extends Ĝ s.t. for all 〈[v, w], ϕ(x)〉 ∈ K, G �wv ϕ(x).

Finally, we can address what we want to optimize.

Definition 26 (Loss/Error of a sentence in ground theory). For a ground theory 〈K, Ĝ〉 with
〈[v, w], ϕ(x)〉 ∈ K, the error of Ĝ with extension G w.r.t. ϕ(x) is

Loss(G, 〈[v, w], ϕ(x)〉) = min
v≤k≤w

|k − G(ϕ(x))|

CHAPTER 1. THEORY 15

Furthermore, we can see that Loss(G, 〈[v, w], ϕ(x)〉) = 0 iff G �wv ϕ(x). This loss is
based on the extended grounding which is defined over terms(L) (the Cartesian product of
terms(L)) thus it might encompass an infinite number of terms. Instead we consider the
empirical loss over some finite set of terms.

Definition 27 (Empirical loss/error of a sentence in ground theory w.r.t. T). For a ground
theory 〈K, Ĝ〉 with 〈[v, w], ϕ(x)〉 ∈ K, the error of Ĝ w.r.t. T = {(tx1 , . . . , txn) ∈ T1×· · ·×Tn)}
where T1, . . . , Tn ⊆ terms(L) and ϕ(x) is

Loss(Ĝ, 〈[v, w], ϕ(x)〉, T) = min
v≤k≤w

|k − Ĝ(ϕ(x))|

and Ĝ(c) is defined for all c ∈ T

Thus, we seek to minimize the empirical loss of the partial grounding Ĝ in our search for
the extension G. By minimizing the empirical loss, we are maximizing the satisfaction of the
Ĝ. In the experimental setting, we will only consider v = w = 1 for all sentences as we want
all of the sentences to be fully satisfied6. Up to this point we have not explicitly considered
any parameters for the model but essentially the parameters of the model are made concrete
when we consider certain classes of groundings. For now, let Ω be the parameters of the
model and denote Ĝ(· | Ω) as the grounding using parameters Ω. Thus, we can state the
optimization problem which minimizes the empirical loss.

Ω∗ = arg min
Ω′⊆Ω

(1− Ĝ(ϕ | Ω′)) = arg max
Ω′⊆Ω

Ĝ(ϕ | Ω′)

We add a regularizing term to this function to limit the size of the parameters to prevent
overfitting where λ is a hyperparameter.

Ω∗ = arg max
Ω′⊆Ω

Ĝ(ϕ | Ω′)− λ||Ω||22

We have now defined RL and a function which can be optimized to maximize satisfiability
of FOL sentences. In the experimental sections, we refer to a ground theory as a knowledge
base or as a set of constraints. In the next section, we will introduce a neural network which
makes our function space assumptions concrete and in the process gives us a well-defined
function parameter search procedure know as backpropagation. Since the search procedure
relies on the partial derivatives, we will also explore the partial derivatives of the many-valued
operators defined in section 1.2.

1.4 Realization

In this section we will define the LTN and the NTN as possible implementations for the
predicates of RL7. This will make our assumptions about the space of functions concrete and
ensures that the functions used to model the predicates are differentiable. After presenting

6One might consider other values, for example, [0.9, 1], if one expects a sentence not to be fully satisfiable,
but in this thesis, they are not considered.

7We will not present possible implementations for the function symbols as they are not explored in this
thesis and the implementation in Serafini and Garcez (2016); Serafini and d’Avila Garcez (2016) is simply a
linear transformation of the input and provides little insight to RL.

CHAPTER 1. THEORY 16

the predicates we will derive the gradient of a sentence’s generic grounding and analyse
the functions presented in section 1.2. We will end by deriving the logarithm of a generic
grounding which will allow us to experiment on the product t-norm. Let us now define the
implementations which we consider for the predicates.

Definition 28 (LTN grounding of predicate P). The LTN grounding of a predicate P of
arity m with terms t1, . . . , tm ∈ terms(L), with the corresponding n dimensional grounding
t1, . . . , tm and concatenation of terms as t = (t1, . . . , tm), is a function G(P)LTN : Rmn →
[0, 1] with the following composition.

G(P)LTN = G(P)(t1, . . . , tm) = σ(uTP tanh(tTW
[1:k]
P t + VP t + bP))

The parameters of the model are the following, W
[1:k]
P a 3-D tensor in Rmn×mn×k, VP a

matrix in Rk×mn, bP a vector in Rk and uTP a vector in Rk and σ is the sigmoid function
σ(x) = ex

ex+1 .

The LTN grounding was originally introduced alongside the RL framework as a generaliza-
tion of the NTN (Socher et al., 2013) which we will also consider as an implementation for the
predicates. Before defining the NTN let us recall our previous example of Bob, George and
John and let us consider how the LTN could decide whether isTaller(Bob,George) based
on their representation. Let us define the weights for the LTN so that we can compute
isTaller(George, John) based on the representation Tall(John) = 0.2 and Tall(George) =
0.9, that is, n = 1. We define G(John) = 0.2, G(George) = 0.9. We consider a single binary
predicate (m = 2), G(isTaller(x, y)) and we want G(isTaller(George, John)) to be close

to 1. We have no need for the added expressivity of k and set k = 1. Set W =

[
0 0
0 0

]
,

v = [100,−100], b = 0 and u = 10. Then we compute.

G(isTaller(George, John)) = G(isTaller)(G(George),G(John)) = G(isTaller)(0.9, 0.2)T

= σ(10 · tanh((0.9, 0.2)W (0.9, 0.2)T + (100,−100)(0.9, 0.2)T + 0))

= σ(10 · tanh(70)) ≈ σ(10) ≈ 1

This little toy example shows how the LTN can be used to compute the truth value of a
predicate. What this example does not show is how W works. If we were to make the
problem a bit more complex and consider an example with n = 2 which is even more related
to the experimental setting. We consider two terms, t1 and t2, a tail and a cat, respectively.
We represent each term by its ”tailness” and ”catness”, that is, G(t1) = (tail(t1), cat(t1))
and G(t2) = (tail(t2), cat(t1)). Lets assume that G(t1) = (0.9, 0.2) and G(t2) = (0.4, 0.9). We
would then like to know whether partOf(t1, t2) and we assume that this ”part of” relation
can be decided based on this representation. We would thus expect partOf(t1, t2) to have a
truth value close to 1 as t1 is a tail and t2 is a cat and it is quite possible that this tail is a
part of this cat. Conversely, we would not expect partOf(t2, t1) to be true, that is, we expect
the ”part of” relation to be asymmetric and furthermore expect it to be irreflexive. This
example might look a bit convoluted at first sight but it reflects the experimental setting well.

Consider these weights and notice the pattern in W . Set W =


100 0 0 0
0 −100 0 0
0 0 −100 0
0 0 0 100

,

CHAPTER 1. THEORY 17

v = [−5,−5,−5,−5], b = 0 and u = 10. We leave it to the reader to verify that, indeed
the truth value of partOf(t1, t2) is high and partOf(t2, t1), partOf(t1, t1) and partOf(t2, t2)
is low. This example shows two things, that W is important if we want to capture logical
properties of the relation and that there is symmetry in the LTN. In the next paragraph, we
will explore the symmetry in the LTN.

Training a neural network consists of finding values to the parameters of a function in order
to minimize the loss defined w.r.t.the output of the network. To do this, the parameters of the
function are updated after computing the loss w.r.t.each parameter. To keep the argument
simple consider the case with the dimension of terms as n, m = 2 and k = 1, without loss
of generality. That is, we are considering the case for a binary predicate like in the example
above and let us now consider the computation tTWP t or t1 · tT2WP t1 · t2 where · denotes
concatenation. Let us denote the weights in WP with w

ti1,t
j
2
, where ti1 refers to i-th dimension

of term t1 and tj2 refers to j-th dimension of term t2. Thus the single weight denoted by w
ti1,t

j
2

is the weight used in the computation for ti1 · t
j
2 · wti1,tj2 in which ti1 refers to the value in the

i-th dimension of t1. But then the weights w
ti1,t

j
2

and w
tj2,t

i
1

are used in different computations,

ti1 ·t
j
2 ·wti1,tj2 and tj2 ·ti1 ·wtj2,ti1 but we know that ti1 ·t

j
2 = tj2 ·ti1. This implies that loss computed

w.r.t. w
ti1,t

j
2

and w
tj2,t

i
1

on input ti1 and tj2 will be minimal for both weights at a single weight

w∗, thus w
ti1,t

j
2

and w
tj2,t

i
1

will both be updated to move towards w∗ in attempt to minimize the

loss. After some iterations, we would expect the weights to converge to the same value. This
argument demonstrates that there is redundancy in the LTN and the weights of the matrix
WP will contain symmetries. Thus these symmetries should be eliminated in implementation.

Let us now define the NTN grounding of a predicate and then compare these two models.

Definition 29 (NTN grounding of predicate P). The NTN grounding of a predicate P of
arity 2 with terms t1, t2 ∈ terms(L), with the corresponding n dimensional grounding t1, t2
and concatenation of terms as t = (t1, t2), is a function G(P)LTN : R2n → R with the
following composition.

G(P)NTN = G(P)(t1, t2) = uTP tanh(tT1 W
[1:k]
P t2 + VP t + bP)

The parameters of the model are the following, W
[1:k]
P a 3-D tensor in Rn×n×k, VP a matrix

in Rk×2n, bP a vector in Rk and uTP a vector in Rk.

There are two differences between the functions which we are not too concerned with.
First, the NTN does not accept more than two terms at a time, only allowing it to implement
binary predicates when the LTN can accept an arbitrary number of terms allowing it to
implement predicates of arity m ∈ N. Secondly, the NTN is a scoring function outputting
numbers in R which are then interpreted more generally than truth values, when the LTN
has a specific [0, 1] truth interpretation through the sigmoid function.

These two differences are not important in our experimental setting and for our purposes
we adjust the NTN function with the sigmoid function, making it suitable for truth evalua-

tions. To implement unary predicates we simply remove the 3-D tensor W
[1:k]
P , resulting in

the following function G(P1)NTN : Rn → R.

G(P1)NTN = G(P1)(t1) = uTP tanh(VP t + bP)

No other structural changes are done, thus the parameters of this model are VP a matrix in
Rk×n, bP a vector in Rk and uTP a vector in Rk.

CHAPTER 1. THEORY 18

Let us now compare what the LTN can express and the NTN cannot. Essentially, the LTN
can express tik · t

j
k ·wtik,tjk , k ∈ [m] and i ∈ [n], which the NTN can never express. Originally,

when comparing the expressivity of LTN and NTN we did not realize this and incorrectly
interpreted the redundancy result and hypothesized that the NTN and LTN would perform
equally. We will keep to this incorrect hypothesis (hypothesis 6) and report the results and
the results will show that this expressivity is beneficial in our setting.

Let us now derive the gradient of a sentence’s generic grounding. To derive the gradient
of a sentence we need to compute the partial derivative of the sentence w.r.t. every input
dimension. The partial derivative is the generalization of the derivative to many dimensions,
i.e. the slope of the function w.r.t. to some dimension. By deriving the partial derivative
w.r.t. to some arbitrary parameter we will see how the functions introduced in section 1.2
are present in a sentence’s gradient. As mentioned in section 1.1 all sentences have the same
structure as they are all in SNF and CNF. We now refer to definition 27 in which we defined
the empirical loss of a sentence ϕ(x) with variables x = (x1, . . . , xn) in a ground theory. Let
us compute the partial derivative w.r.t. some parameter p and note that the only parameters
of a grounding are parameters of either a predicate or a term. Thus we will compute the
gradient up to some literal which is based on the parameter p. We will assume that ϕ(x) is
in SNF and CNF, that is ϕ(x) = ψ1(x) ∧ · · · ∧ ψk(x) = T (ψ1(x), . . . , ψk(x)) and that each
ψi(x), i ∈ [k], is in PNF, that is, ϕ(x) is strictly speaking not in SNF as it is not in PNF but
we do this because this aligns better with the experimental setting and allows us to optimize
the universal quantification as not all ψi(x) contain the same variables. Thus, ψi(x) = ∀γ(x)
and γ(x) = l1(x) ∨ · · · ∨ lm(x) = S(l1(x), . . . , lm(x)) where each lj , j ∈ [m], is a literal. We
will assume that the universal quantification is over some set T of size o. Lastly, as mentioned
before, we assume v = w = 18.

Loss(Ĝ, 〈[v, w], ϕ(x)〉, T) = min
v≤k≤w

|k − Ĝ(ϕ(x))| = 1− Ĝ(ϕ(x)) = Ĝ(¬ϕ(x))

∂(1− Ĝ(ϕ(x)))

∂p
=
∂(1− Ĝ(ϕ(x)))

∂Ĝ(ϕ(x))

∂Ĝ(ϕ(x))

∂p
= −∂Ĝ(ϕ(x))

∂p
= −∂Ĝ(ψ1(x) ∧ · · · ∧ ψk(x))

∂p

= −∂T (Ĝ(ψ1(x)), . . . , Ĝ(ψk(x)))

∂p
= ∇T ·


∂Ĝ(ψ1(x))

∂p

· · ·
∂Ĝ(ψk(x))

∂p


Below we will explore ∇T 9. We assume that some Ĝ(ψi(x)), i ∈ [k], is a function of p and
continue for Ĝ(ψi(x)).

∂Ĝ(ψi(x))

∂p
=
∂Ĝ(∀γ(x))

∂p
=
∂A({Ĝ(γ(t)) | t ∈ T})

∂p
= ∇A ·


∂Ĝ(γ(t1))

∂p

· · ·
∂Ĝ(γ(to))

∂p


8Take note of the last equality sign in the first line. This special case can be considered as a refutation

proof.
9Here, and in the following partial derivatives, we omit the input to ∇T instead of writing

∇T (Ĝ(ψ1(x)), . . . , Ĝ(ψk(x))) for readability.

CHAPTER 1. THEORY 19

Figure 1.2: The flow of gradient through a sentence in an experimental setting. An arrow represents a partial
derivative and shows how the gradient splits based on input dimensions. ∇T , ∇A and ∇S are dependent on
the instantiation and this images shows the importance of ∇T 6= 0. The leaf nodes are not replicated in the
last layer to unclutter the image.

We assume that some Ĝ(γ(ti)), i ∈ [o] is a function of p and continue for Ĝ(γ(ti)).

∂Ĝ(γ(ti))

∂p
=
∂Ĝ(l1(ti) ∨ · · · ∨ lm(ti))

∂p
=
∂S(Ĝ(l1(ti)), . . . , Ĝ(lm(ti)))

∂p
= ∇S ·


∂Ĝ(l1(ti))

∂p

· · ·
∂Ĝ(lm(ti))

∂p


At this point we will stop but one can see how the partial derivatives could be taken w.r.t. a
literal, which might contain a negation, and then take the partial derivative of the predicate
as defined by either the LTN or the NTN. This shows us how ∇T , ∇A and ∇S are chained
in order as can be seen in figure 1.2. We can also see that if ∇T = 0 then the gradient of
the whole network will be 0. Thus, we want to see if some of our operators have 0 gradient
w.r.t. some input dimension or for some parts of the input domain. To make it clear, ∇T ,
∇A and ∇S are dependent on the instantiation of RL and we want to see how the choice of
many-valued functions impacts the gradient of our network.

Let us now compute the partial derivatives of the t-norms and start with the Gödel t-norm.

∂TG(x1, . . . , xn)

∂xi
=
∂min(x1, . . . , xn)

∂xi
=

{
1, if xi = min(x1, . . . , xn)

0, otherwise

}

We can see that ∂TG(x1,...,xn)
∂xi

is always 1 for a single xi (the minimum value). Thus, TG will
never have a zero gradient, as there is always a 1 along some dimension for all values of the
input domain, i.e. ∇TG(x1, . . . , xn) 6= 0 for all x1, . . . , xn ∈ [0, 1]10. Even though TG has a

10Here it is assumed that the maximum/minimum operator always picks a single element even though all of
them are equal. For our purposes, we do not care what element is picked. This is not stated in the definition
of the aggregate function in order to make it more readable.

CHAPTER 1. THEORY 20

non-zero gradient, it will only update parameters to one dimension at a time and in section 4.1
we argue that this can cause issues. Let us now explore partial derivative of the Lukasiewicz
t-norm.

∂T L(x1, . . . , xn)

∂xi
=
∂max(

∑n
j=1 xj − (n− 1), 0)

∂xi
=

{
1, if

∑n
i=1 xi > n− 1

0, otherwise

}

We can see that ∂T L(x1,...,xn)
∂xi

is 1 along all dimensions when
∑n

i=1 xi > n − 1, otherwise 0.
Essentially, the Lukasiewicz t-norm has 0 gradient when

∑n
i=1 xi < n−1. This motivates the

following proposition.

Proposition 3 (Lukasiewicz t-norm and input space). When the number of inputs tends to

infinity and ∂T L(x1,...,xn)
∂xi

6= 0 then
∑n

i=1 xi
n = 1.

Proof. If ∂T L(x1,...,xn)
∂xi

6= 0 then
∑n

i=1 xi > n − 1, given n > 0 then
∑n

i=1 xi
n > n−1

n we want

to know limx→∞
∑n

i=1 xi
n thus we use L’Hôpital’s rule on n−1

n and when the number of input

parameters tends to infinity then
∑n

i=1 xi
n = 1, that is, the average value approaches 1.

This tells us that when the number of inputs approaches infinity and we want the gradient
to be non-zero then the average value for each input approaches 1. At first, this might not
seem like a big issue for us in the experimental setting, but in fact this is an issue with n = 2.
Consider the case for n = 2, with x1 = 0.4 and x2 = 0.5, then the gradient will be 0. In our
experimental setting, all parameters of the network are initialized so that each xi will have a
value close to 0, thus the gradient will always be 0. We thus hypothesize that the Lukasiewicz
t-norm will not be trainable in our experimental setting. We will revisit this hypothesis in
section 2.4 in hypothesis 1.

Let us now compute the derivative of the product t-norm.

∂TP (x1, . . . , xn)

∂xi
=
∂
∏n
j=1 xj

∂xi
=

n∏
j=1∧j 6=i

xj

We can see that if some xj = 0 then the partial derivative will be 0 to all variables but xj .
This does not cause much alarm for us, as in our experimental setting these values might be
close to 0, but never actually 0. Again, we make note of the possible computational underflow
issues.

We will not compute the partial derivatives of the s-norms, as they are very similar to the
t-norms but we will address the issue of being ”easily satisfiable” we raised when introducing
the Lukasiewicz s-norm.

Proposition 4 (Lukasiewicz s-norm and input space). When the number of inputs tends to
infinity and all xi > 0 then min(

∑n
i=1 xi, 1) = 1

Proof. If xi > 0 then limn→∞
∑n

i=1 xi tends to infinity thus, min(limn→∞
∑n

i=1 xi, 1) = 1

This implies that the Lukasiewicz s-norm might become trivially satisfied when considering
many inputs. This does not impact our experimental setting that much and we will see in
the results of hypothesis 2 that the Lukasiewicz s-norm is indeed more easily satisfiable but
at the same time outperforming the Gödel t-norm. This issue is not as serious as with the

CHAPTER 1. THEORY 21

 Lukasiewicz t-norm, due to the structure of our sentences, but it would be if we considered
Disjunctive Normal Form instead of CNF. We will discuss the norms better in section 4.1.

Now similarly as we did with the norms, we want to compute the partial derivatives of the
aggregation functions. For the minimum and maximum, we refer to the partial derivatives
derived previously from the norms. That is, the gradient for Amin and Amax w.r.t. xi is
always 1 for a single xi, the minimum and maximum value, respectively. For all other input
variables, it is 0. Let us now derive the partial derivative of Aari.

∂Aari(x1, . . . , xn)

∂xi
=
∂
∑n

j=1 xj
n

∂xi
=

1

n

We see that Aari w.r.t. xi has a constant gradient for every input over the whole domain, but
we notice that if the number of input variables tends to infinity then the gradient tends to 0.
Despite this drawback, we suspect that Aari will be the most practical in high dimensional
implementations due to the simplicity in computation, as it is a constant. Let us now derive
the partial derivative of Ahar.

∂Ahar(x1, . . . , xn)

∂xi
=
∂ n∑n

j=1 x
−1
j

∂xi
=

n

x2
i (
∑n

j=1 x
−1
j)2

Similarly, the gradient for Ahar w.r.t. xi is always positive for every input over the whole
domain except when xi = 0 or all other xj = 0, j 6= i, then it is not defined. Again, despite
these drawbacks, we are not too worried about these properties of the Ahar and we will rely
heavily on it during experimentation.

We can also see that the partial derivative of Aowa w.r.t. xi is wi. This fact motivates the
hypothesis that in a high dimensional implementation the OWA operator might be useful by
limiting computation over only the elements which are less satisfied. Thus, we hypothesize
that an OWA operator which has 0 weights for the first elements and then distributes the re-
mainder over the last elements will outperform the arithmetic mean in large-scale experiments
and present this hypothesis in section 2.4 in hypothesis 8.

We will now address the issue of numerical underflow for the product norms. Instead of
computing G(ϕ) we will compute log(G(ϕ)). Let us start by pointing to the fact that the
log is a monotonically increasing function so the minimum of this function will also be the
minimum of the log of this function. This implies that we can just as well search for optimal
parameters of the log of the grounding, rather the grounding itself. Due to our sentence
structure, we need to make sure that when we take the log of the conjunction, it is passed
down, all the way to the disjunction. We start by considering the log-product t-norm.

Proposition 5 (The log-product t-norm). The log of the product t-norm is

log(TP (x1, . . . , xn)) = log(
n∏
i=1

xi) =
n∑
i=1

log(xi)

We can retrieve the product t-norm value from the log-product norm, TP (x1, . . . , xn) =
elog(TP (x1,...,xn)).

Next, we move to the aggregation functions and consider the logarithm of Ahar as we will

CHAPTER 1. THEORY 22

use it in the experimental setting to allow more numerically stable computation.

log(Ahar(x1, . . . , xn)) = log(
n∑n

i=1 x
−1
i

) = log(n)− log(

n∑
i=1

x−1
i)

= log(n)− log(
n∑
i=1

elog(x−1
i)) = log(n)− log(

n∑
i=1

e− log(xi))

We will then use a numerically stable estimation for f(x1, . . . , xn) = log(
∑n

i=1 e
xi) in the

implementation.
Lastly, we consider the log of the product s-norm.

Definition 30 (The log-product s-norm). The log of the product s-norm is

log(SP (x1, . . . , xn)) = log(1−
n∏
i=1

(1− xi)) = log1p(−e
∑n

i=1 log(1−xi))

Where log1p(x) = log(1 + x) is an optimized function for small x provided with many
numerical computation libraries.

These derivations allow us to use the product norms in computation and in hypothesis 7
we will see the benefits of this extra work.

We have now defined the LTN and the NTN as possible implementations for the predicates
of RL, this makes our assumptions about the space of functions concrete and ensures that
the functions used to model the predicates are differentiable. We also computed the gradient
of a sentence’s generic grounding and saw the importance of the role ∇T , ∇A and ∇S play
in RL when using a gradient method to update the parameters.

Chapter 2

Experimental design

In this section, we describe how RL is used in the Semantic Image Interpretation (SII) task
and how it will be evaluated. In section 2.1, we start by defining the task of SII and the
dataset which is used to perform the task. In section 2.2, we define a knowledge base which
describes the dataset along with logical properties of the dataset and define a grounding over
this knowledge base allowing us to perform the SII task. In section 2.3, we define the measures
used to evaluate classification performance and logical consistency of the model’s predictions.
In section 2.4, we state our experimental hypotheses and motivate them.

2.1 The Setting

On a high level, the task of SII is to produce a scene graph given an image. In the scene graph,
the nodes represent some object in the image and edges between nodes imply a relationship
between the objects (Donadello et al., 2017; Serafini et al., 2017). The task is then to label
objects and potential relations in the image. In addition to the image, we also base the
predictions on background knowledge in the form of a knowledge base. The knowledge base
describes properties about objects and relations in the image. We view the knowledge base
as additional constraints and expect the predictions of the model to be consistent with these
constraints.

We perform this task on the PASCAL-Part dataset (Chen et al., 2014) for the three
following reasons. First, it provides a good selection of images along with bounding boxes
around objects of interest in each image, its labelling and pair labellings. Second, a simple
ontology is provided with the dataset which is easy to model in FOL. Third, a lot of work
has already been done for this task on this dataset by Donadello et al. (2017); Serafini et al.
(2017) which provides a good place to start.

The PASCAL-Part dataset is a further annotated dataset of the PASCAL VOC 20101

dataset (Everingham et al., 2010). The original dataset contained 21,738 images (10,103
training, 9,637 testing) and 20 different classes for the classification task along with bounding
boxes around objects of interests, but did not contain training data for relation prediction.
This is added in the PASCAL-Part dataset, along with more fine-grained object classification.
In fact, the object classification is so fine-grained that the parts are separated based on
direction and alignment, f.ex. ”left leg” and ”right back upper leg”. We follow Donadello

1PASCAL is an acronym for Pattern, Analysis, Statistical Modelling an Computational Learning and VOC
is an acronym for Visual Object Classes.

23

CHAPTER 2. EXPERIMENTAL DESIGN 24

et al. (2017); Serafini et al. (2017) by merging these finer partitions into a single partition, i.e.
”left leg” and ”right back upper leg” are taken as ”leg”. After making this adjustment there
are 40 additional classes added to the dataset. These 40 classes are ”parts” of 20 original
”wholes”. For these classes we consider a single binary relation, the ”part of” relation for when
”x is a part of y”. The ontology provided states what ”parts” each ”whole” object consists
of. As an example, in the dataset a ”bicycle” is considered as a whole consisting of the
parts ”chain wheel”,”handlebar”, ”headlight”, ”saddle” and ”wheel”, thus ”saddle is a part
of bicycle” is a true statement according to the ontology. Thus, when we classify something
as a ”bicycle” and there is another object overlapping with ”bicycle” and that object is one
of ”chain wheel”,”handlebar”, ”headlight”, ”saddle” and ”wheel” we are inclined to infer
that these two are related. This is not always the case and in our experiments we want
to know whether a particular ”saddle” is a part of a particular ”bicycle”, based on their
representations. For practical reasons, these classes are then further separated into these
three categories: indoor objects, vehicles and animals. The following experiments are only
based on the PASCAL-Part training set (10,103 training examples) and we follow Donadello
et al. (2017); Serafini et al. (2017) and eliminate images smaller than 6× 6.

Figure 2.1: Class distribution of the training dataset. We can see that we have varying numbers of examples
of each class. The image also shows the effect of removing images smaller than 6× 6 from the dataset.

The dataset is split (80%/20%) to a training and testing set while maintaining the same
proportion of classes in both sets. We then train on the training data and test how well the
model generalizes on the test data. As can be seen in figure 2.1, there are unevenly distributed
number of examples of each class. Measures which do not account for class imbalance can give
a distorted view of the model’s performance and we will discuss those in a later section. We
can combat class imbalance in a few different ways, but ultimately they are all implemented
through the loss function of the model. By adjusting the loss function to account for class
imbalance we are essentially stating explicitly what we consider a ”good” model.

CHAPTER 2. EXPERIMENTAL DESIGN 25

(a) In this image we can see the different class
frequencies of an object in the ”part of” re-
lation as a ”part”. All parts take part in the
”part of” relation.

(b) Similar to figure 2.3a, in this image we
can see the different class frequencies of an
object in the ”part of” relation as a ”whole”.
All the wholes are ”bottle”, ”pottedplant”,
”tvmonitor”, ”chair”, ”sofa”, ”diningtable”
but since ”chair”, ”sofa” and ”diningtable”
do not have any parts they are never in the
”part of” relation.

Figure 2.2: Class distribution over the training dataset with only
indoor objects with small images removed. There are in total 11
classes.

Since the correct classification
of classes impacts how well the
”part of” relation can be predicted,
we are interested in learning more
about this relation. For example,
how sparse is the relation? That
is, for all possible pairs of bounding
boxes, how often are two bound-
ing boxes related? Furthermore,
what types of objects are most of-
ten the ”wholes” and ”parts” in
the ”part of” relation? We will
use the ”indoor” objects dataset to
answer these questions. See fig-
ure 2.2 for the class distribution of
the ”indoor” dataset. In the indoor
dataset there are 2135 images bro-
ken into 8535 bounding boxes, thus
roughly 4 bounding boxes per im-
age. There are in total 76037 pairs
of bounding boxes of which only 3049 are positive examples of the ”part of” relation or 4%.

As we can see in figures 2.3a and 2.3b the class imbalance is not that dramatic when
it comes to the ”part of” relation so we can treat each class equally and during training
we will sample each class equally. In some settings, this might lead to overfitting for the
class prediction but we see as a result of hypothesis 4 that this is not an issue and the class
prediction generalizes well.

The following experiments are all based on intermediary data. That is, we do not use

CHAPTER 2. EXPERIMENTAL DESIGN 26

the images themselves as data, but rather use precomputed representations by Donadello
et al. (2017). The representations are based on the output of a Fast R-CNN as well as
additional hand-crafted features (Girshick, 2015). By using this representation we side-step
the task of predicting bounding boxes in the image as well as computing representations of
those bounding boxes. Predicting bounding boxes dynamically, using reasoning, sounds like
a challenging task which we will not explore now. We want to know if RL can use logical
constraints to improve binary classification, relation prediction and make the predictions
logically consistent. We demonstrate that it can, by applying it directly to this representation,
which is effectively the predictions of the Fast R-CNN.

2.2 The Models

In the following section, we will define a FOL language L in which we will describe the
elements of PASCAL-Part dataset and logical constraints which apply to it. These FOL
sentences are then considered as a knowledge base and we train the model to minimize the
empirical loss of these sentences. During training we search for a partial grounding Ĝ which
is able to satisfy our knowledge base the most. The grounding is partial because the universal
quantifiers are limited and 2147 constants withheld during training. Thus we optimize Ĝ
w.r.t. to the training set and evaluate it on the withheld constants. During the experiments
we observe that no Ĝ is able to satisfy the training dataset in the interval [1, 1], or even
[0.95, 1], indicating that the model space is not expressive enough, that is, the representation,
as well as the functions considered, cannot account for the data.

Let us now define a FOL L by defining a FOL signature which we use to describe a
domain of bounding boxes. We let Btrain = {b1, . . . , b8525} be the training domain and
Btest = {b8526, . . . , b10672} be the testing domain, thus B = Btrain ∪ Btest is the domain we
want to model and we refer to each bounding box with a constant symbol bi.

We model the object types as unary predicates P1 = {P1, . . . , P60} and the ”part of”
relation as a binary predicate P2 = {R}, thus P = P1 ∪ P2 = {P1, . . . , P60, R}. We will not
consider any function symbols for this task, F = ∅. Thus, L = 〈C,P, ∅〉.

Before continuing and defining a grounding G over this language we need to discuss ground-
ings of pairs of bounding boxes. In the following definition we follow Donadello et al. (2017);
Serafini et al. (2017) and define groundings w.r.t. pairs of bounding boxes. This is not well
defined for RL as RL defines groundings over the signature of L. If we were to use the current
definition of groundings and treat pairs as constants we will need to adjust the RL definition
quite a lot to make it work. We rather consider an extension of RL which also considers
pairs of constants as separate entities, that is, we assume that G(a, b), where a and b are
constants, is a function C × C → R2n+k where k ≥ 0 and n is the dimension of grounding of
constants. We thus consider the possibility of adding extra dimensions to the representations
when grounding pairs of constants. In the following paragraph we will define use this exten-
sion to define a pair grounding. Lastly, when we consider the pairs, Bpairs ⊆ B × B we do
not consider all possible pairs of bounding boxes but rather only pairs derived from the same
image, greatly reducing the number of possible pairs.

Now we will define the grounding of L. We use the output of the Fast R-CNN to define the
grounding of constants in addition to the bounding box’s location information. The output
of the Fast R-CNN given a bounding box b, dentoted as p(b), is a probability distribution
over all classes P1, . . . , P60 and the location information is the bottom-left location (x1, y1) of

CHAPTER 2. EXPERIMENTAL DESIGN 27

the box along with the top-right location (x2, y2). The grounding of a single bounding box
bi ∈ B is

G(bi) = (p(P1 | bi), . . . , p(P60 | bi), x1(bi), y1(bi), x2(bi), y2(bi))

As mentioned above, we don’t represent pairs just as the concetination of two representations
of a bounding but we also add additional information in form of the inclusion ratio ir(bi, bj)
for the pair of bounding boxes (bi, bj) ∈ Bpairs.

ir(bi, bj) =
area(bi ∩ bj)
area(bi)

G(bi, bj) = (G(bi),G(bj), ir(bi, bj), ir(bj , bi))

We then define the baseline we want to compare to also in terms of groundings, for each
j ∈ [|P1|]

Gb(Pj)(G(bk)) =

{
1 if j = arg max

|P1|
i=1 G(bk)i

0 o.w.

Where G(bk)i is the i-th dimension of the grounding for bounding box bk. Essentially, we
choose the type with the highest predicted value from the Fast R-CNN for each bounding
box. For the ”part of” relation, we consider two baselines.

G1
b (R)(G((bi, bj))) =

{
1 if ir(bi, bj) ≥ th

0 o.w.

G2
b (R)(G((bi, bj))) =

{
1 if ir(bi, bj) ≥ th and the resolved type of bi is ”part of” bj

0 o.w.

That is, G2
b (R) takes into account type compatibility.

The unary predicate baseline can either predict a special type of class, which has no
positive examples in neither the training nor testing datasets, the ”background” class. This
baseline will predict this class on a number of occasions, as this is what the Fast R-CNN will
do. This will always lead to strictly worse performance. We will consider two baselines, one
which predicts the ”background” class and another which will never predict this class. We
do this to offer an additional comparison to our model, but essentially, our model will never
predict this class.

Furthermore, the framework needs to be instantiated with some t-norm, s-norm, aggre-
gation function and predicate implementations and in the following experiments we consider
some combinations of these instantiations and denote them in the subscript; GLTN,har,TG(ϕ)
refers to the LTN implementation of predicates, the harmonic mean as an aggregation op-
erator and the Gödel t-norm and s-norm. But since this notation is very verbose, we omit
LTN , har and TG from the notation, that is, G(ϕ) = GLTN,har,TG(ϕ) and when some other
t-norm is used instead, we indicate that using this notation. Thus, GLTN,har,T L

(ϕ) is denoted
as GT L

(ϕ).
We have yet to define our knowledge base using L which we want to satisfy. Recall that

the empirical loss is defined w.r.t. 〈[v, w], ϕ(x)〉 ∈ K.

Loss(Ĝ, 〈[v, w], ϕ(x)〉, T)

CHAPTER 2. EXPERIMENTAL DESIGN 28

For every sentence we need to stipulate the range of satisfaction and as mentioned before, we
will only consider fully satisfied sentence and thus omit it when we define K. For the training
we define ϕPi = ∀xPi(x) along with Ti = {b | b ∈ B and b is of type Pi} and similarly
ϕ¬Pi = ∀x¬Pi(x) with Ti’s compliment B \Ti. We furthermore limit the size for each Ti (and
compliment) and sample with replacement. We do the same for the ”part of” relation, namely
ϕR = ∀xyR(x, y) along with TR = {(b, b′) | b, b′ ∈ B and b is a part of b′} and similarly we
have ϕ¬R. Thus,

K = {ϕP1 , ϕ¬P1 , . . . , ϕP60 , ϕ¬P60 , ϕR, ϕ¬R}

We then define Kf = {
∧
ϕ∈K ϕ}, where the f stands for ”facts”. K can be considered as the

”normal” classification setting in ML.
Now we define additional constraints in addition to our set of facts. In order to make the

discussion about the constraints more intuitive, some more notation is helpful. Let Wholes =
{P | P ∈ P, P is a whole} and Parts = {P | P ∈ P, P is a part}. Note that in our dataset
Wholes∩Parts = ∅, which motivates sentences 2.5 and 2.6 below. Lastly, it is often helpful
to talk about parts of a specific whole and the converse, we abuse the notation a bit and
denote this with Parts(P) where P is a whole and Wholes(P) where P is a part. The
following sentences in L describe logical constraints which the dataset should satisfy based
on our knowledge2. We additionally tested the data w.r.t. these sentences and saw that this
is indeed the case.

∀xy(R(x, y) =⇒ ¬R(y, x)) (Asymmetric) (2.1)

∀x(¬R(x, x)) (Irreflexive) (2.2)

∀x(
∨
P∈P1

P (x)) (Every x is some type) (2.3)

P ∈ P1,∀x((P (x) =⇒ ¬(
∨

P ′∈P1\{P}

P ′(x)))) (Disjoint types) (2.4)

P ∈Wholes,∀xy(P (x) =⇒ ¬(R(x, y))) (Whole is not a part) (2.5)

P ∈ Parts,∀xy(P (x) =⇒ ¬(R(y, x))) (Part is not a whole) (2.6)

P ∈Wholes,∀xy(P (x) ∧R(y, x) =⇒ (
∨

P ′∈Parts(P)

P ′(y))) (Whole’s parts) (2.7)

P ∈ Parts,∀xy(P (x) ∧R(x, y) =⇒ (
∨

P ′∈Wholes(P)

P ′(y))) (Part’s wholes) (2.8)

Take note that sentences 2.4-2.8 are schemas and are therefore instantiated as multiple sen-
tences.

Notice that the universal quantifiers for all the above sentences either quantify over x
or both x and y. One would initially expect quantification over x to only quantify over the
bounding boxes and ∀xy to quantify over pairs, but it is not that simple, as sentence 2.2 is
referring to pairs of bounding boxes but still only quantifying over x. Thus, during implemen-
tation we treat these universal quantifiers somewhat equally, that is, they are all quantifying
over some sampled subset T ⊂ Bpairs. For sentences 2.5-2.8, we need to take care of segment-
ing the pairs correctly, passing the x part of the pair to the unary predicate. For sentences 2.3
and 2.4, it can be argued that quantifying over B is sufficient, but we use the same sample

2The following constraints are not written in CNF but are of course implemented in CNF.

CHAPTER 2. EXPERIMENTAL DESIGN 29

and only consider the first object in the pair. We use a similar trick for sentence 1 and mirror
the representation. For sentence 2.2 we use the same trick again, we segment the pairs and
then recombine the first object in the pair with itself and set both inclusion ratios to 2.1.

Example 10 (Treatment of quantifiers). Let T = {(b1, b1), (b1, b3), (b2, b3)} be the sample and
we want to evaluate sentence 2.1.

G(∀xyR(x, y) =⇒ ¬R(y, x)) =

A(G(¬R(b1, b1) ∨ ¬R(b1, b1)),G(¬R(b1, b3) ∨ ¬R(b3, b1)),G(¬R(b2, b3) ∨ ¬R(b3, b2)))

Similarly, sentence 2.2 will be evaluated as

G(∀x¬R(x, x)) =

A(G(¬R(b1, b1)),G(¬R(b1, b1)),G(¬R(b2, b2)))

During the experiments, we consider different combinations of these sentences as con-
straints. We denote the union of Kf and the set of all constraints as Kall. We then denote
the combination of Kf and other axioms in the subscript, f.ex. the combination of the facts,
asymmetry and irreflexivity as Kasym,irr. We have now everything in place to describe differ-
ent instantiations of the RL w.r.t. operators and different constraints. For example, consider
G and Kdisj,one,parts,wholes. G refers to LTN implementation of the predicates, the Gödel t-
norm and s-norm and the harmonic mean. Kdisj,one,parts,wholes refers to all the facts and the
following constraints: disjoint types, every x is some type, whole’s parts and part’s wholes,
respectively.

Lastly, we define a single training iteration as a single forward pass on the network along
with a backward pass to compute and update the parameters. There are quite a few hyper-
parameters in this model which affect the performance of the model, especially when consider-
ing different instantiations, but we chose a set of hyper-parameters which most instantiations
performed well on. In the following experiments the number of positive examples per class,
|Ti|, is set to 200 and the number of negative examples per class, the complement of |Ti| is
set to 2000 during training. We use the same sampling parameters for positive and negative
examples of the ”part of” relation. For the universal quantifiers, we use a sample size of 2000.
We then run 50 iterations before resampling new constants. We set λ = 10−10 We use the
RMS prop algorithm with a learning rate of 0.01 and decay of 0.9 (Tieleman and Hinton,
2012). The dimension k of the predicates (the slices) is set to 6. We then report results
after 300 iterations. When evaluating the performance of the model we define the universal
quantifiers over the whole test set to evaluate the logical constraints.

We have now defined a FOL L in which we describe the elements of PASCAL-Part dataset
and logical constraints which apply to it. These sentences are our knowledge base. We defined
a grounding over the knowledge base and we search for the partial grounding which is able to
maximize satisfiability of our knowledge base. We will experiment with different instantiations
of RL and different logical constraints. In the next section, we will discuss how we will measure
the performance of these combinations.

2.3 Measures

CHAPTER 2. EXPERIMENTAL DESIGN 30

Figure 2.3: Confusion matrix for
binary classification.

In this section, we will introduce two types of measures used to
evaluate the performance of the model. We will use F1 scores
to measure the performance of the model w.r.t. correct classi-
fication. Since there are multiple class types, we aggregate the
F1 scores of the types to report a single number, the macro
F1 score. Similarly, we report the F1 score of the model for
the ”part of” relation. In order to measure logically consis-
tent predictions, we report two other measures, the grounding
satisfaction and modus ponens satisfaction, both of which are
measured w.r.t. all of the logical constraints (sentences 1–8
above). The F1 score indicates whether the model is making
correct predictions but we also want to know whether the model
is making logically consistent predictions and we will see that
an increase in logical consistency of predictions does not nec-
essarily imply an increase in F1 score. The measures are computed using the complete test
dataset.

Let us start with an underlying concept used to compute the F1 score, the confusion
matrix, see figure 2.3 for a binary confusion matrix. The confusion matrix is used to compute
measures such as accuracy, precision and recall in classification tasks, which are then used to
compute other measures like the F1 score and Precision-Recall Area-Under-Curve (PR AUC).
The confusion matrix is a two-dimensional matrix in which each element cij represents the
count how often the model predicted class i when the actual class according to the correct
label was j. In our setting, we assign each bounding box a to a single class, not multiple
classes. We assign a to the class arg maxP∈P1

G(P)(G(a)). We refer to predictions which
correctly assign a class to an example as a true positives, similarly a true negative is when
the classifier correctly does not assign the class to a particular example. A false positive is
an incorrect prediction in which the classifier assigned the class incorrectly to the example,
similarly, a false negative is the incorrect prediction in which the classifier did not assign the
class to the example, when it should have. The confusion matrix gives rise to many different
measures. For example, accuracy is intuitively defined as

accuracy =
TP + TN

TP + TN + FP + FN
=

c11 + c22

c11 + c22 + c12 + c12

We will not use accuracy as a measure here as there are two problems in using accuracy as
a measure in our setting. The first is that it leads to the problem that a small increase in
accuracy can be a great improvement in unbalanced datasets. The second problem is that
when we see an improvement in the measure it tells us little about the improvement. A
common example used to describe this problem has to do with cancer classification. Let us
assume that we are making a classifier to detect cancer cells on images and that most pictures
do not contain any cancer cells. Thus, the number of true negatives is very high but we do not
want to overlook images which potentially contain cancer cells, so the cost of false negative is
high. The cost of a false positive is also high, but not as high as an untreated cancer patient.
Now, a classifier might have a high accuracy if it classified everyone as not having cancer
and when the accuracy increases, we want to know if it is making progress in predicting true
positives and how it is reflected w.r.t. false positives and false negatives. That is, we want to
be able to characterise different improvements of the classifier. Take for example a classifier
with the following counts, TP = 500, FP = 100, FN = 400, TN = 9000. The accuracy is

CHAPTER 2. EXPERIMENTAL DESIGN 31

TP+TN
TP+TN+FP+FN = 500+9000

500+9000+100+400 = 9500
10000 = 0.95. Let us now consider a different classifier

with the following counts, TP = 600, FP = 100, FN = 300, TN = 8900. This classifier has
the same accuracy as the previous classifier but we would much rather choose this classifier
as it has less false negatives. The following definitions give us the tools to characterise the
differences between these two classifiers.

Definition 31 (Precision, Recall and F1 score). Given a confusion matrix for k classes, the
classification precision of class i ∈ [k] is

precisioni =
cii∑k
j=1 cij

The recall of a class i is

recalli =
cii∑k
j=1 cji

The F1 score of a class is then defined as

F1i =
2

1
recalli

+ 1
precisioni

= Ahar(recalli, precisioni)

If a model predicts ”cancer” for everything in the dataset, then the precision is the fraction
”cancers” in the whole dataset. In this case the recall will be 1, as the model was able to
predict all of the cancers.

The first classifier has precision and recall

precision1 =
c11∑2
j=1 c1j

=
500

500 + 100
= 0.83

recall1 =
c11∑k
j=1 cj1

=
500

500 + 400
= 0.56

while the second classifier has precision 600
600+100 = 0.85 and recall 600

600+300 = 0.67. Of course,
these measures decreased w.r.t. the complement class, but precision and recall further allow
us to characterise that change for the compliment class if we so want. Essentially, accuracy
is a measure over all classes whilst recall and precision is a measure over individual classes
and thus generalizes well to settings which have multiple classes. As the indoor dataset has
11 classes and we want to have the possibility of reporting a single measure for each model
we define two aggregates over F1 scores.

Definition 32 (Micro and macro F1 score). The macro average F1 score of a classifier over
k classes is

F1macro = Ahar(Aari(recall1, . . . , recallk), Aari(precision1, . . . , precisionk)

The micro average F1 score is

F1micro = Ahar(

∑k
i=1 cii∑k

l=1

∑k
j=1 clk

,

∑k
i=1 cii∑k

l=1

∑k
j=1 ckl

) =

∑k
i=1 cii∑k

l=1

∑k
j=1 clk

= accuracy

CHAPTER 2. EXPERIMENTAL DESIGN 32

F1micro = accuracy does not hold in a multi-label setting, in which each element can be
assigned multiple labels. In the following section we report the F1macro score aggregate over
the object types and report the F1 score for the ”part of” relation.

The F1 score gives a good idea of how the model is performing w.r.t. the binary classifi-
cation task and relation prediction task but we are also interested in knowing how well the
model satisfies the logical constraints.

Definition 33 (Grounding satisfaction). The grounding satisfaction of sentence ϕ is G(ϕ)
over the whole testing set.

Essentially, the grounding satisfaction for some sentence ϕ is just 1 minus the loss of G(ϕ)
and therefore tells us something about the loss of the model. We evaluate the grounding
satisfaction for each logical constraint and compute the mean of the logical constraints based
on the grouping of the 8 sentences above. We report the grounding satisfaction of a model as
the mean grounding satisfaction over all groups. That is, the sum of the grounding satisfaction
per group divided by the number of groups. Note that this treatment places high numerical
salience on sentences which are not schemas, f.ex. the irreflexivity axiom

Example 11 (Computing the grounding satisfaction). Let Γ = {ϕ,ψ1, ψ2} and G(ϕ) = 0.5,
G(ψ1) = 0.0 and G(ψ2) = 1.0, where ψ1 and ψ2 are sentences based on the same schema. The

grounding satisfaction for Γ is
0.5+ 0.0+1.0

2
2 = 0.5.

Since the F1 score make our predictions binary, in the sense that we assign each bounding
box a single label, we would also like to know how well the sentences are satisfied, given
those predictions. Thus, we want a measure which is based on the class assignments using
truth values {1, 0}, not the fuzzy predicate values. Furthermore, most of the constraints are
implications in which the premise is false for most elements of the dataset as it addresses
very particular elements. We want to be able to see the satisfaction given that the premise
is true. This motivates the definition of modus ponens satisfaction in which we only evaluate
the constraints after class assignment and when the premise is true, to compute satisfaction.
The name comes from the fact that we are trying to measure how often given ϕ(x) and
ϕ(x) =⇒ ψ(x) is ψ(x) true.

Definition 34 (Modus ponens satisfaction). For a sentence ϕ(x) =⇒ ψ(x), the modus
ponens satisfaction of this sentence over T is the fraction

mp(ϕ(x) =⇒ ψ(x)) =
|{a | a ∈ T and ϕ(a) ∧ ψ(a) is true}|
|{a | a ∈ T and ϕ(a) is true}|

For constraints which are not implications we consider the premise always true.

We have now introduced two types of measures to evaluate the performance of the model.
First, the F1 score to measure correct classification and we will report the F1 score for the
”part of” relation and macro F1 score for the types classification. We then report two mea-
sures the grounding satisfaction and the modus ponens satisfaction which measure how well
the logical constraints are satisfied. We have now a clear idea of how different instantiations
and logical theories can be expressed in this framework and how the performance of these
combinations can be measured. In the next section we state a number of hypotheses about
the framework and how we can test them.

CHAPTER 2. EXPERIMENTAL DESIGN 33

2.4 Hypotheses

Serafini et al. (2017) find through experimentation that Real Logic implemented with the LTN
performs better than a baseline model in terms of binary classification and relation prediction
and predictions are robust when the data are noisy. Donadello et al. (2017) only makes the
first claim but we plan to replicate both experiments. In addition to replicating these original
experiments, we will do more experiments on different instantiations of the framework. We
will explore different t-norms, different predicate implementations and explore the variation
of F1 scores of the models.

Recall that we refer to GLTN,TG,har as G or GTG . In this section, we will go through each
hypothesis, motivate it and explain how we will test and measure it. We will start with two
fundamental experiments which have an effect on how the following experiments are done.

Hypothesis 1. The Gödel t-norm will outperform the Lukasiewicz and plain product t-norm.

As mentioned in section 1.2, if we do not use the log product t-norm (resp. s-norm) we
expect large conjunction (resp. disjunction) of product t-norms (resp. s-norms) to result in
numerical underflow, making both unusable with gradient descent. We also mentioned that
the Lukasiewicz will have gradient 0 over most of the input space, also making it unusable
with gradient descent. We will see that this is indeed the case. To test this hypothesis we will
train the following instantiations GTG , GT L

and GTP using both Kf and Kall as we want to see
whether either conjunction length will work for Lukasiewicz and product t-norm. Originally,
before implementing the log product t-norm (and s-norm), the conclusion of this experiment
forced us to do the following experiments based on the Gödel t-norm. Thus, most of the
following experiments are based on the Gödel t-norm. We will compare the Gödel t-norm
(and s-norm) to the log product t-norm (and s-norm) in hypothesis 7. In this experiment,
we will see that adding logical constraints can degrade the performance of the Gödel t-norm,
which we will explore closer in hypothesis 3. We accept this hypothesis if the F1 score of the
GTG is consistently higher than the others.

Hypothesis 2. Using the harmonic mean instead of the Gödel and Lukasiewicz t-norms
over the set of clauses will result in increased binary classification and relation prediction
performance.

That is, instead of evaluating the loss based on T ({ϕ | ϕ ∈ K}) then instead we evaluate
Ahar({ϕ | ϕ ∈ K}). We do this experiment for two reasons. First, so that we can replicate
the experiments reported by Serafini et al. (2017); Donadello et al. (2017) as their findings
are based on this evaluation. Second, for the Gödel s-norm we suspect that evaluating all
clauses at the same will lead to better performance, so we use the harmonic mean as a tool
to that goal. By using this method we achieve considerably better performance for the Gödel
and Lukasiewicz s-norms and we are able to replicate their findings, with some hesitation.
We denote the grounding in which a t-norm T is substituted by an aggregation function A
as GT/A, f.ex. GTG/har. To test this hypothesis we will replace the Lukasiewicz and the Gödel
t-norm with the harmonic mean, both in fully constrained and unconstrained setting. That
is, we will train GTG/har and GT L/har using both Kf and Kall. We will also see that GT L/har

has high grounding satisfiability but low modus ponens satisfiability, which is not what we
want for this setting, yet it still outperforms GTG/har. We will evaluate performance using
F1 scores and compare each s-norm separately. We will further discuss why this substitution
improves predictions in section 4.

CHAPTER 2. EXPERIMENTAL DESIGN 34

Hypothesis 3. Applying logical constraints in addition to positive and negative examples will
increase binary classification and relation prediction performance.

Resolving the classification task and relation prediction task simultaneously or depen-
dently will lead to increased performance since these two are related. To test this we will
train the same model instantiation using four different logical theories. The instantiation is G
and the four sets of constraints are Kf , Kdisj,one,parts,wholes, Kirr,asym and Kall. We will start
by comparing our results to the results of Serafini et al. (2017). We will compare the per-
formance of these experiments to the baselines introduced before and measure performance
w.r.t. the F1 score in the classification task and relation prediction. We also compare the
baselines to the results of hypothesis 2. As mentioned in hypothesis 1 this experiment only
uses the Gödel t-norm but this limitation turns out to be quite educative as we will discuss
in section 4.1. We will see that, in general, the constraints lead to better performance and
further explore when they might not in section 4.2 and discuss their impact on the task in
section 4.4. We accept this hypothesis if constraining the model consistently leads to better
performance.

Hypothesis 4. Applying logical constraints in addition to positive and negative examples
offers less variation in performance.

That is, we expect the logical constraints to be less disrupted by initial settings of the
model and converge to similar predictions regardless of the initial conditions. Here we train 20
G instantiations using both Kf and Kall, 40 models in total. With the results of hypothesis 2
in mind, we also train 10 GTG/har using both Kf and Kall, 20 models in total. We will see that
constraints have the adverse effect for the ”part of” relation, standard deviation increases
with constraints. Similarly, we will see that G has higher standard deviation than GTG/har
and in sections 4.2 and 4.1 we will explain these results. We evaluate all models using the F1
score and report the mean and standard deviation.

Hypothesis 5. Applying logical constraints in addition to positive and negative examples
offers robustness in performance when trained on noisy data.

Here, robustness is interpreted as maintaining higher performance in light of noisy data
compared to an unconstrained baseline. To evaluate the model under noise, incorrect labelling
is introduced in the training data by sampling k-%, k ∈ {10, 20, 30, 40} per cent of examples of
each class and replace those labels with an incorrect label, sampled uniformly from the other
examples. This ensures that each class is affected equally by the noise and the distribution
of classes remains roughly the same. Initially, this experiment was done with G but the
performance showed no particular pattern and quickly dropped to random guessing. We will
thus do this experiment in the same way as presented by Donadello et al. (2017) using GTG/har
and both Kf and Kall on the noisy data and measure the F1 score. We expect performance
to drop w.r.t. F1 scores for both models but we will accept this hypothesis if we see the
constrained model consistently outperforming the unconstrained model with increased noise.
We will see that the performance of the models do not drop as much as one would expect and
discuss this in section 4.2.

Hypothesis 6. The NTN will perform equally well as the LTN.

As previously discussed in section 1.4, a large proportion of the parameters of the LTN
are redundant and initially we did not expect the added expressivity of the LTN to result in

CHAPTER 2. EXPERIMENTAL DESIGN 35

better performance. We train two instantiations, GNTN,TG and GNTN,TG/har using Kall and
compare with G and GTG/har from the results of hypothesis 4. In order to get more conclusive
results, we train 10 of each instantiation. We will see that in this setting the LTN does indeed
perform better than the NTN and discuss why this is the case in section 4.3.

Hypothesis 7. The log product norms will outperform the Gödel norms.

As previously discussed in section 1.2 the partial derivative of the Gödel norms is 0 for
all but one dimension while the log product norms have a non-zero partial derivative for all
dimensions. We expect this property to be beneficial during training and allows the model
to train all clauses at the same time. To test this hypothesis we will train 10 Glog(TP) using
both Kf and Kall and compare with results from hypotheses 3 and 4. We will see that this
property is even more important than we initially expected and discuss why this is the case
in section 4.1.

Hypothesis 8. The OWA operator which takes into account the worst 50% performing ele-
ments will perform better than the arithmetic mean.

We initially expected the knowledge base to be satisfiable and that the OWA operator
would allow us to get even more precise results by increasing the loss w.r.t. poorly satisfiable
examples. When observing that the knowledge base was far from being satisfiable we decided
not to perform this experiment. We will keep this hypothesis here but in section 4.1 we will
discuss how this approach might lead to similar issues as we observed with the Gödel norms.

Chapter 3

Experimental results

In this section, we will present results based on the hypothesis introduced in the previous
section and begin each discussion by stating the hypothesis again.

Hypothesis 1. The Gödel t-norm will outperform the Lukasiewicz and plain product t-norm.

As previously stated, we trained GTG , GT L
and GTP using both Kf and Kall. In figure 3.1

we can see that, indeed, only the Gödel t-norm produces predictions better than random
guessing, thus we accept our hypothesis. This was also visible when training the model
as the loss never changed and the predictions are based on random weight initializations.
Additionally, we see that GTG tends to perform better given fewer constraints, and we will
explore this result closer in hypothesis 3 when we measure the effectiveness of constraints and
find out that this is indeed a result of the Gödel t-norm.

Hypothesis 2. Using the harmonic mean instead of a t-norm over the set of clauses will
result in increased classification and relation prediction performance.

As mentioned in the previous section, in these experiments we use the harmonic mean
instead of the t-norm when evaluating the clauses. In figure 3.2 we can see using the harmonic
mean instead of both t-norms greatly improves performance in both tasks. If we compare
these results to the results of hypothesis 1, an F1 score of 0.538 in classification and 0.311 in
relation prediction we can see that all models here outperform these results.

Similarly, we can see in figure 3.3 that this substitution also greatly improves both ground-
ing satisfaction and modus ponens satisfaction. We can also see the discrepancy between the
grounding satisfaction and the modus ponens satisfaction caused by the easily satisfiable
 Lukasiewicz s-norm, most salient in Kf . This further implies that the poor performance
seen in result 2 is somewhat caused by the Gödel t-norm and Lukasiewicz t-norms. We can
thus accept that this hypothesis is true and we will discuss the reasons for this increased
performance in section 4.1.

Hypothesis 3. Applying logical constraints in addition to positive and negative examples will
increase classification and relation prediction performance.

This is the core claim presented by Serafini et al. (2017) and Donadello et al. (2017)1. Ser-
afini et al. (2017) report results for GLTN,TG/har,har, using the substitution from the previous

1This claim is not explicitily stated, but it

36

CHAPTER 3. EXPERIMENTAL RESULTS 37

Figure 3.1: Left: The macro F1 scores in the classification task for GTG , and GTP using both Kf and Kall.
Right: Results for the ”part of” relation in the same experiment. We can see that only the Gödel t-norm
produces any results better than random guessing and that more constraints give worse results. The ”nan” is
because the model never predicted the ”part of” relation, causing division by 0.

Figure 3.2: F1 scores for GTG/har and GT L/har using both Kf and Kall. We can see that using the harmonic
mean instead of both t-norms greatly improves performance in both tasks, compared to figure 3.1 and that
the constraints do improve performance.

CHAPTER 3. EXPERIMENTAL RESULTS 38

Figure 3.3: Modus ponens and grounding satisfaction for GTG/har and GT L/har using both Kf and Kall. We
can see that using the harmonic mean instead of both t-norms greatly improves satisfaction and the GT L/har

outperforms GTG/har. We can also see the difference between the modus ponens and grounding satisfaction of
GT L/har using Kf .

experiment, and Kall along with Kf . They report the (simple) average F1 score of the classes,
an F1 score of 0.706 for the constrained model and 0.700 for the unconstrained model. For
the ”part of” relation, they report an F1 score of 0.750 for the constrained model and 0.759
for the unconstrained model. In both cases, they beat the baseline, which has an F1 score
of 0.658 for the classes and 0.663 for the ”part of” relation. In their experiments, they do
not limit themselves to only indoor objects, but they use the whole dataset, thus we cannot
expect to get the exact same results.

In figure 3.4 we can see four different baselines. Two of which are constrained with
the type compatibility which only affects the ”part of” relation prediction. The constrained
models are denoted with ”Con” and unconstrained with ”Uncon”. The constraint leads to
worse performance w.r.t. the F1 score since the recall drops by a large margin but precision
increases. Furthermore, we report both baselines, one which predicts the background, denoted
with ”bg” and another which does not. The baselines were evaluated with a few different
inclusion thresholds for the ”part of” relation. An inclusion threshold of 0.6 was ultimately
selected based on best performance.

Serafini et al. (2017) report the constrained baseline which will predict the background,
which in our setting of only indoor objects results in an F1 score of 0.671 for the classification
and 0.434 for the ”part of” relation. From these results, we can see that none of the models
presented here beat any of the baselines. If we compare with the previous result in hypoth-
esis 2, we achieved an F1 score of 0.716 in the classification task and 0.515 in the relation
prediction task using GTG/har and Kall, we beat the baseline reported by Serafini et al. (2017)
but we do not beat the best performing baseline for the ”part of” relation. We are thus able
to reproduce the same results as reported by Serafini et al. (2017).

Let us now try to decide whether the hypothesis is correct or not. Are the logical con-
straints able to improve predictions? If we look closer at G trained using Kirr,asym in figure 3.4,
we can see that this model seems to be performing worse than the others in terms of macro F1
score. Though if we look at figure 3.5 we can see that these predictions are becoming more log-

CHAPTER 3. EXPERIMENTAL RESULTS 39

Figure 3.4: F1 scores for G using Kf , Kirr,asym, Kdisj,one,parts,wholes, and Kall and all baselines. We can see
that no model is able to beat the baselines. If these results are compared to 2 we indeed to beat the Con+bg
baseline as reported in the original experiments.

Figure 3.5: Left: Modus ponens satisfaction of GLTN,TG,har along trained with Kf , Kirr,asym,
Kdisj,one,parts,wholes, and Kall. Right: Grounding satisfaction for the same experiment.

CHAPTER 3. EXPERIMENTAL RESULTS 40

(a) G using Kf (b) Kirr,asym (c) Kdisj,one,parts,wholes (d) Kall

Figure 3.6: Detailed modus ponens satisfaction of G with different constraints.

ically consistent. The satisfaction difference between Kirr,asym and Kdisj,one,parts,wholes seems
to indicate that the latter model is doing considerably worse, but we refer to section 2.3 where
we mention that the numerical salience of the irreflexivity and asymmetry constraint is more
pronounced in this measure. In figures 3.6a,3.6b,3.6c and 3.6d we can see the breakdown of
the modus ponens satisfaction. In general (satisfaction for the whole model), we see that
the constraints do indeed increase the satisfaction, implying that the predictions are more
logically consistent. But then why does Kirr,asym perform this poorly w.r.t. the F1 score?
In section 4.1 we argue that when computing the gradient for some predicate, it needs to
be computed w.r.t. all atoms of the sample which refer to that predicate and the Gödel
norms do not do this and only update a single literal in one clause. If this is not done,
then the training of that predicate is unstable which leads to the model not being able to
train the other predicates sufficiently. This effect is particularly noticeable when we add the
irreflexivity and asymmetry clause as they both refer to the same predicate. When adding
the other clauses, we refer more often to the unary predicates. In section 4.4 we will discuss
the effects of applying logical constraints and consider a different setting in which the effects
of constraints might be even more effective.

Hypothesis 4. Applying logical constraints in addition to positive and negative examples
offers less variation in performance.

G Kall Kf
”part of” 0.216±0.045 0.282±0.042
macro F1 0.509±0.048 0.572±0.034

Table 3.1: Variation results for G. We can see that
the standard deviation for the ”part of” relation is
similar for the constrained and the unconstrained
model. The standard deviation of the macro F1
score seems to be less for the unconstrained model.

GTG/har Kall Kf
”part of” 0.495±0.046 0.433±0.024
macro F1 0.719±0.004 0.722±0.004

Table 3.2: Variation results for GTG/har. We
can see that the standard deviation for the ”part
of” relation is considerably lower for the uncon-
strained model and the macro F1 score has very
low standard deviation for in both settings.

Here we trained 20 G instantiations and 10 GTG/har using both Kf and Kall and we hoped
to see more consistent performance w.r.t. the variation of F1 score for the constrained model,
we see the opposite in table 3.1. We see that for G that the standard deviation for the ”part of”
relation is similar for Kf and Kall and the standard deviation of the macro F1 score seems to
be less for Kf . We see similar results in table 3.2 for GTG/har. Kf has lower standard deviation
than Kall for the ”part of” relation while both models have very low standard deviation in
the F1 macro score. We can safely say that this hypothesis is not correct and we will attempt
to explain this result in section 4.2.

CHAPTER 3. EXPERIMENTAL RESULTS 41

Figure 3.7: F1 scores for GTG/har using Kf and Kall in trained on dataset with increasing noise. We can see
that the performance decreases less than expected in both tasks. For the relation prediction task we can see
that Kall consistently outperforms Kf .

Hypothesis 5. Applying logical constraints in addition to positive and negative examples
offers robustness in performance when trained on noisy data.

Here we trained GTG/har using both Kf and Kall with increasing amount of noise. We
refer to figure 3.7 for the F1 scores and we can see that indeed the fully-constrained models
perform consistently better. Furthermore, we can see that performance decreases less than
expected in both the classification task and relation prediction task. We can thus infer that
the noise is not having much effect on the inner workings of the model. This is most likely
due to the fact that the features the model uses to solve the tasks remain the best features
even in light of more noise. We will discuss these results in section 4.2.

Hypothesis 6. The NTN will perform equally well as the LTN.

GNTN,TG Kall Kf
”part of” 0.168±0.055 0.178±0.024
macro F1 0.215±0.078 0.290±0.058

Table 3.3: Variation results for GNTN,TG . We can
see that GNTN,TG performs worse than G (results
in figure 3.1) and has higher standard deviation.

GNTN,TG/har Kall Kf
”part of” 0.434±0.047 0.404±0.019
macro F1 0.720±0.007 0.720±0.005

Table 3.4: Variation results for GNTN,TG/har. We
can see that GNTN,TG/har performs worse than
GTG/har (results in figure 3.2).

Here we compare GNTN,TG , GNTN,TG/har, G and GTG/har using Kall. We can see the results
in tables 3.3 and 3.4 which clearly show that the NTN does not perform as well as the LTN. We
will argue in section 4.3 that this is because of bias in the data towards the extra expressivity
the LTN offers in this task.

Hypothesis 7. The log product norms will outperform the Gödel norms.

To test this hypothesis we trained 10 Glog(TP) using both Kf and Kall want to compare
with results from hypotheses 3 and 4. Let us first note that these are by far the best results.

CHAPTER 3. EXPERIMENTAL RESULTS 42

GTP Kall Kf
”part of” 0.586±0.029 0.452±0.020
macro F1 0.729±0.004 0.702±0.018

Table 3.5: Variation results for GTP .

Compared to GTG/har which achieves 0.495±0.046 for the ”part of” relation and 0.719±0.004
for the macro F1 score, thus we can safely say that this hypothesis is correct. If we compare
these results to the baselines, we are still not able to beat the best baseline which achieves
0.613 and 0.760 F1 scores for the ”part of” relation and types, respectively. We will try to
explain why the product norms perform so well in section 4.1. We will also try to explain the
high standard deviation in the constrained model in section 4.2.

Hypothesis 8. The OWA operator which takes into accounts the worst 50% performing
elements will perform better than the arithmetic mean.

As previously mentioned this experiment was not performed and we will discuss why this
hypothesis is likely to be false in section 4.1.

We have now gathered all the results and will discuss the theoretical results and the
experimental results in the next section and try to understand better how the model works.

Chapter 4

Discussion

In the following section, we discuss the theoretical and experimental results and try to answer
the original question posed in this thesis. First, do all instantiations of RL perform equally
when using a search procedure from the gradient descent family? We saw immediately in
section 1.4 that this is not the case and verified this in result 1. We also noticed once in
result 3 that when adding constraints, the F1 score degraded while satisfaction improved.
We argue that this is because the Gödel t-norm does not consider all examples which refer
to the same predicate when computing the gradient, also mentioned in result 2. This will
lead us to the conclusion that the log-product norm is the best candidate for RL, as we also
saw in result 7 and that the OWA hypothesis 8 is likely to be incorrect. Second, we will
attempt to explain the variation seen in result 4 and noise performance results in 5. We
believe both results are due to the biased features in addition to the universal quantification
sampling. Third, is the additional expressivity of the LTN better than the NTN? Again, we
saw immediately in section 1.4 that the LTN is able to express more complex function than
the NTN, but contains redundancy, and in result 6 we saw that the LTN performs better than
the NTN. As a consequence of this exploration, we also consider a different generalization
of the LTN and the NTN which captures n-ary predicates in a more ”multiplicative” way.
Lastly, is RL able to improve logical consistency in predictions and improve classification?
In result 3 we saw somewhat inconclusive results, but we refer to the above to explain the
exception. We argue that RL is able to improve predictions but different instantiations handle
contradictory examples in the data very differently.

4.1 T-norms and aggregations

As mentioned in section 1.2, we want the gradient of our knowledge base to be non-zero over
the whole input domain. The way our knowledge base is set up, using conjunction to join all
the sentences together, it is paramount that ∇T 6= 0. This is not the case for the Lukasiewicz
t-norm and result 1 reflected this. We still saw the Lukasiewicz s-norm perform well in result 2
outperforming the Gödel s-norm. The Gödel s-norm only has a positive gradient over a single
input, thus it will only direct gradient to a single literal, one for each clause, in each iteration.
This indicates that it is better to compute the gradient w.r.t.all elements of the disjunction.
Why is this?

Let us now look closely at the performance of the Gödel t-norm, in particular in result 3.
In figure 4.1a we can see grounding satisfiability of a few selected clauses during training for

43

CHAPTER 4. DISCUSSION 44

(a) Grounding satisfaction for ∀x(¬R(x, x)),
∀x(R(x, y) =⇒ ¬R(y, x)), ϕR and ϕ¬R using the
Gödel t-norm during training on Kirr,asym. We
can see that in some iterations one clause goes up
when another goes down.

(b) Grounding satisfaction for the same sentences
as 4.1a but rather using the harmonic mean in-
stead of the Gödel t-norm. In this figure we can
see that the grounding satisfaction of the clauses
move together. We can also see the drop when
a new sample for the universal quantifier is taken
(every 50 iterations).

G for Kirr,asym. Note that when the model is updating other clauses, the satisfaction of the
clauses we track remains unchanged. It seems that in almost every iteration one of the four
clauses of positive examples of ”part of”, negative examples of ”part of”, irreflexivity and
asymmetry is the least satisfied clause and the Gödel t-norm updates it. This will affect the
satisfiability of the other clauses since they are all based on the same predicate, sometimes
making them jump over one another. If we were to compute the gradient for all literals which
refer to the ”part of” predicate, we can guarantee that in the next iteration that the total loss
w.r.t.that predicate will decrease or stay the same. If we do not do this, we cannot guarantee
that the total loss w.r.t.predicate will go down. See figure 4.1b for grounding satisfiability of a
few selected clauses during training for GTG/har for Kirr,asym. Consider we define two clauses
which contradict one another, P (a) ∧ ¬P (a) and try to satisfy them using the Gödel t-norm
(P contains some parameters). When either goes over the 0.5 mark, the Gödel t-norm will
start updating the other one. If we consider both at the same time then we add the gradients
together, partially cancelling each other out. Thus in these cases, we would expect the model
to converge to 0.5. We suspect that the data is somewhat contradictory as we are never able
to find a grounding which satisfies our data.

This explains why we saw better performance using the harmonic mean instead of the
Gödel t-norm. The harmonic mean computes the gradient for all the clauses, which implies
that we compute the gradient w.r.t.all predicates (in our case), but not necessarily all atoms
which refer to those predicates. This leads to better performance for all predicates. This
also explains why the Lukasiewicz s-norm performed better than the Gödel s-norm. Because
then we compute the gradient for every atom which refers to every single predicate, by
computing the gradient for every atom. This also points to the fact that the OWA experiment
is fundamentally flawed as the setup we consider is susceptible to the same scenario.

Since the product norms both have a non-zero gradient for every input it is the best
choice and result 7 shows that. Furthermore, the product norm guarantees that atleast a
single element in a disjunction is true if the whole disjunction is true. The Lukasiewicz

CHAPTER 4. DISCUSSION 45

s-norm does not guarantee that.
We do not report any results for experimentation on aggregation functions as they were

not that relevant in our experiments, but one can think of a setting in which they will begin
to have more effect. If our data were satisfiable, that is, we would be able to find a grounding
which satisfies our data very close to 1 and each sample of the data were large, i.e. the
universal quantifier is computed over many elements then we might easily overlook examples
which are not satisfied. We might want to make those examples more salient in the universal
quantification and at the same time keep the computation somewhat reasonable.

4.2 Biased features and variation

Let us now try to explain the high standard deviation of the ”part of” relation, which only
seems to increase when we add logical constraints, opposite to what we initially expected. We
argue that the high standard deviation of the ”part of” relation is due to biased features in
addition to the sampling of the universal quantifier. We also suspect that the noise robustness
is due to the biased features as the biased features continue to be the best indicator of the
objects actual class, even in light of the noise.

Recall that the grounding for pairs of objects are concatenations of the unary features
along with the inclusion ratio and we know from the baseline that the inclusion ratio is highly
correlated with the ”part of” relation. Thus when we sample data for the universal quantifiers
we can expect each sample to rely differently on the inclusion ratio, thus resulting in different
predictions for the ”part of” relation during testing. Adding more logical constraints, in
particular, irreflexivity and asymmetry make the model even more sensitive to these biased
features by adding more seemingly contradictory examples (very high inclusion ratio but not
a ”part of”) thus placing higher loss on the inclusion ratio. Thus, we expect that the model
will be biased towards the last sample of the universal quantification before stopping training
and the biased features only make this bias more salient in our setting. That is, we see the
model overfit on the universal quantification sampling. This is not surprising when viewed in
this way.

Let us now consider the unary predicates and recall that the features of the unary pred-
icates are also biased towards the object’s class, as the ”catness” feature is very indicative
of the object being ”a cat”. We saw that the standard deviation was high when using the
Gödel t-norm and we suspect that was because the model never got around to training the
unary predicates properly as it was constantly fighting the ”part of” relation as we discussed
in section 4.1. When using the harmonic mean we saw the standard deviation drop a lot. We
suspect that this is simply due to the biased features and the fact that we do not train the
unary predicates over seemingly contradictory examples like we did for the ”part of” relation.

Let us now consider the noise experiment. We believe that the biased features remain the
best indicator of an object actual class even when trained on noisy data. So when the model
is evaluated on the testing data, it still expects ”catness” to be a good indicator for ”a cat”
and will not stop considering that until it sees something else becomes a better predictor for
”cat”, and we would need a lot of noise or biased noise to do that. The noise experiment
shows that the model, mostly, continued predicting based on the same features as it had
before, as the biased features were more often right than wrong.

CHAPTER 4. DISCUSSION 46

4.3 Expressivity of LTN

As mentioned in section 1.4, we saw that there is some redundancy in the LTN but at the
same time it is able to express more complex functions than the NTN. We originally expected
the LTN and the NTN to perform similarly but as we saw during experimentation the LTN
performed consistently better than the NTN. The possibility of deciding a predicate based
on a single term is clearly beneficial in this setting. In this setting objects considered to
be ”wholes” (resp. ”parts”) are more commonly found as the first term and ”parts” (resp.
”wholes”) as the latter term in a positive (resp. negative) example of the ”part of” relation.
Thus, we must reject our hypothesis and accept that the LTN does perform better than the
NTN on this dataset and note that this is probably in all cases where a binary predicate is
biased in this way.

Let us now consider how the LTN represents a ternary relation. For ternary relations,
there is no direct interaction between features of all three terms in the form of multiplication,
which Socher et al. (2013) argues is what makes the bilinear model (Jenatton et al., 2012;
Sutskever et al., 2009), a precursor to the NTN, better than its predecessors. The LTN
only defines multiplication based on two features. If one wants to add interaction between
all three terms, an extra dimension needs to be added. If the LTN were to be generalized
so that another dimension would be added then for m = 3, W would be a 3-D tensor of
dimensions 3n× 3n× 3n, assuming n dimensions for every term. The number of parameters
of this implementation is roughly O(nα(P)α(P)), where α(P) is the arity of P , compared to
O(nα(P)2) of the LTN. This generalization further increases redundancy and it would be
interesting to compare this ternary generalization to the ternary generalization of the LTN
and see if it is worth the exponential growth.

4.4 Logical constraints

In this section, we will discuss the effects of the logical constraints. We saw during the
experiments that logical constraints made the predictions more logically consistent and we
consider this a great success for RL, as this was not shown in either Serafini et al. (2017)
nor Donadello et al. (2017). In addition to making the predictions more logically consistent
we also saw that they improve classification, most notable in the F1 score of the ”part of”
relation as can be seen in result 2, 3, 4 and 7. We saw in result 3 without the logical
constraints the model made illogical predictions, most notably in the case of irreflexivity, and
needed to be trained not to, by training on a particular class of negative examples. It also
makes clear the requirement for the logical properties of the relation to be present as logical
constraints during training, especially when dealing with biased features as we saw in the
discussion above. That is, the relation needs to be trained w.r.t.the logical properties of the
relation to counter-act biased features. That is, the most conclusive results are the ones based
on the logical properties of the relation being modelled.

Let us consider also the logical constraints which describe rules among the entities. That
is, we consider constraints like ”when we have a tail and we know that it is a part of something,
that something is a cat”. How do these constraints improve classification? These constraints
have the effect that the ”cat classifier” is provided with additional samples to train on. In
addition to providing more examples to train on, these examples might be labelled differently or
not at all in the training data. This is not the case in our dataset as all our data are correctly

CHAPTER 4. DISCUSSION 47

and completely labelled for our classifiers. We thus suspect this to be more beneficial when
training on possibly incorrect data or incomplete data. This effect could be beneficial in the
noise experiment, but the experiment would need to be done differently. At some point, we
would need to stop training on the positive and negative examples which might contradict the
logical rules, as the noisy data are incorrect and/or incomplete. That is, we would need to
start by using the supervised training examples and then switch to an unsupervised setting by
removing Kf from the set of constraints, otherwise, we will continue training on contradicting
examples. This is called semi-supervised learning and we believe that the logical constraints
could be even more beneficial in that setting.

Chapter 5

Conclusion

We have now seen how RL allows us to phrase problems in FOL. Allowing us to express
problems of classification, regression, clustering, relation prediction in a uniform framework
where logic and logical constraints are defined w.r.t.the data. We challenge the reader to
consider how regression can be performed using RL1.

We saw that different instantiations of RL are not all equivalent when using the gradient
to approximate maximum satisfiability. In particular, the Lukasiewicz t-norm is ill-behaved
in this setting and we cannot think of any reason to use it. The Lukasiewicz s-norm is better
but it cannot guarantee that when it is evaluated as true, that a single element is true, which
is a useful property in many modelling scenarios. We also saw the importance of using some
method which computes the gradient over all atoms of a particular predicate, presenting an
argument against the use of the Gödel t-norm and s-norm. The log-product norms have none
of these weaknesses and perform best. When viewing ML problems in light of RL we can also
see the log-product in many forms.

We compared the LTN and the NTN and found that indeed the LTN can express more
functions than the NTN but argue that the LTN’s generalization of the NTN does not capture
n-ary predicates in a multiplicative way and consider a different generalization of the LTN
or the NTN which can capture that. We also tested the LTN and NTN in an experimental
setting and find that the LTN does indeed perform better, demonstrating that on this dataset
the increased expressivity is beneficial.

Lastly, we saw how RL using LTN is able to improve the logical consistency of predictions
as well as overall classification performance in SII. We noticed that enforcing logical properties
of the relation is important to avoid inconsistent predictions but does not necessarily imply
better classification performance. We saw that constraints which describe logical rules improve
classification, but in this setting, the reward was limited and the model very unstable due to
biased features.

There are many interesting questions still unanswered and we will now mention a few of
them for future research. First, what implications does it have for the framework that we
define grounding over pairs? If we view the framework from a machine learning stand-point
the implications do not seem to be so serious but it is hard to justify this treatment from a
logical perspective. There are also some philosophical implications, implying that the whole
is more than just its parts. We, however, believe that this is the right way to go and should

1Hint: consider a binary predicate representing ”equal”, where equality is defined in terms of some distance,
transform the distance to a value between 0 and 1 and consider the log-product t-norm.

48

CHAPTER 5. CONCLUSION 49

be explored further. Second, RL needs to be evaluated in a setting which requires longer
chains of reasoning and an analysis needs to be done on what the effects of different values
of satisfaction have on these longer chains. The intuition is that the longer the reasoning
chain is, the less can be guaranteed. Lastly, it would be interesting to see how well the model
performs in a semi-supervised setting as well, as that setting much rather allows changes in
logical constraints during training.

RL does indeed offer a novel approach in combining knowledge representation and ma-
chine learning allowing us to, intuitively, describe domains which have complex relations and
incorporate uncertainty, all through the language of FOL. One then wonders how the same
concept could be extended for different logics, for example, temporal modal logics and agent-
based logics. We should put these logics to the test and combine them with data, leveraging
the power of deduction and induction at the same time.

Bibliography

Bergmann, M. (2008). An introduction to many-valued and fuzzy logic: semantics, algebras,
and derivation systems. Cambridge University Press.

Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., and Yuille, A. (2014). Detect what
you can: Detecting and representing objects using holistic models and body parts. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Donadello, I., Serafini, L., and Garcez, A. d. (2017). Logic tensor networks for semantic image
interpretation. arXiv preprint arXiv:1705.08968.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010). The
PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448.

Jenatton, R., Roux, N. L., Bordes, A., and Obozinski, G. R. (2012). A latent factor model
for highly multi-relational data. In Advances in Neural Information Processing Systems,
pages 3167–3175.

Klement, E. P., Mesiar, R., and Pap, E. (2004). Triangular norms. position paper i: basic
analytical and algebraic properties. Fuzzy Sets and Systems, 143(1):5 – 26. Advances in
Fuzzy Logic.

Novák, V. (1987). First-order fuzzy logic. Studia Logica, 46(1):87–109.

Serafini, L. and d’Avila Garcez, A. S. (2016). Learning and reasoning with logic tensor
networks. In Adorni, G., Cagnoni, S., Gori, M., and Maratea, M., editors, AI*IA 2016 Ad-
vances in Artificial Intelligence, pages 334–348, Cham. Springer International Publishing.

Serafini, L., Donadello, I., and Garcez, A. d. (2017). Learning and reasoning in logic tensor
networks: theory and application to semantic image interpretation. In Proceedings of the
Symposium on Applied Computing, pages 125–130. ACM.

Serafini, L. and Garcez, A. d. (2016). Logic tensor networks: Deep learning and logical
reasoning from data and knowledge. arXiv preprint arXiv:1606.04422.

Socher, R., Chen, D., Manning, C. D., and Ng, A. (2013). Reasoning with neural tensor
networks for knowledge base completion. In Advances in neural information processing
systems, pages 926–934.

50

BIBLIOGRAPHY 51

Sutskever, I., Tenenbaum, J. B., and Salakhutdinov, R. R. (2009). Modelling relational data
using bayesian clustered tensor factorization. In Bengio, Y., Schuurmans, D., Lafferty, J. D.,
Williams, C. K. I., and Culotta, A., editors, Advances in Neural Information Processing
Systems 22, pages 1821–1828. Curran Associates, Inc.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26–31.

van Dalen, D. (2004). Logic and structure. Springer.

Yager, R. R. (1993). On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. In Readings in Fuzzy Sets for Intelligent Systems, pages 80–87. Elsevier.

	Theory
	First Order Logic
	Many-valued Operators
	Real Logic
	Realization

	Experimental design
	The Setting
	The Models
	Measures
	Hypotheses

	Experimental results
	Discussion
	T-norms and aggregations
	Biased features and variation
	Expressivity of LTN
	Logical constraints

	Conclusion

