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Abstract

A subset A of the Baire space ωω satisfies the polarized partition property if there
is an infinite sequence 〈Hi | i ∈ ω〉 of finite subsets of ω, with |Hi| ≥ 2, such
that

∏
iHi ⊆ A or

∏
iHi ∩ A = ∅. It satisfies the bounded polarized partition

property if, in addition, the Hi are bounded by some pre-determined recursive
function. DiPrisco and Todorčević [6] proved that both partition properties are
true for analytic sets A. In this paper we investigate these properties on the
∆1

2- and Σ1
2-levels of the projective hierarchy, i.e., we investigate the strength of

the statements “all ∆1
2/Σ1

2 sets satisfy the (bounded) polarized partition prop-
erty” and compare it to similar statements involving other well-known regularity
properties.

Keywords: Polarized partitions, projective hierarchy, descriptive set theory.

1. Introduction.

The property studied in this paper is motivated by the following combina-
torial question: suppose we are given a partition of the Baire space ωω into two
pieces, A and ωω \A, and an infinite sequence 〈mi | i < ω〉 of integers ≥ 2. Can
we find an infinite sequence 〈Hi | i < ω〉 of subsets of ω, with |Hi| = mi, which
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is homogeneous for the partition, i.e., such that the product
∏
iHi is completely

contained in A or completely disjoint from A?
As with other questions of this type, the solution depends on the complexity

of the partition. It is easy to see that the above property cannot be fulfilled for
all partitions of the Baire space. For instance, if � is a well-ordering of ωω and
if for every x we denote by yx the �-least real eventually equal to x, then the
following set is a counterexample:

A := {x | |{n | x(n) 6= yx(n)}| is even }

This is because if there were a sequence 〈Hi | i ≤ ω〉 with |Hi| ≥ 2 such that,
say,

∏
iHi ⊆ A, then any x ∈

∏
iHi could be changed to x′ ∈

∏
iHi by altering

just one digit, so that yx = yx′ but |{n | x′(n) 6= yx′(n)}| is odd, yielding a
contradiction.

The natural approach of descriptive set theory is to consider partitions of
limited complexity. For instance, Silver’s theorem—the statement that all ana-
lytic sets are Ramsey—implies a positive solution to our question if we consider
analytic partitions only. The same holds if we replace “analytic” by “having
complexity Γ”, for any projective pointclass Γ:

1.1 Lemma. (Folklore) Let Γ be any projective pointclass and assume that all
sets in Γ are Ramsey. Then our partition problem has a positive solution for
all partitions in Γ.

Proof. Suppose A ⊆ ωω is a given set of complexity Γ, and m0,m1, . . . are
integers ≥ 2. Let ω↑ω denote the space of strictly increasing sequences from ω to
ω, which we can identify with infinite subsets of ω via increasing enumerations.
Set A′ := A∩ω↑ω. Since A′ is still in Γ, by assumption there is an x ∈ ω↑ω which
is homogeneous for A′, i.e., such that x↑ω := {y ∈ ω↑ω | ran(y) ⊆ ran(x)} ⊆ A′

or x↑ω∩A′ = ∅. Now, simply take as H0 the first m0 values of x, as H1 the next
m1 values of x, and so on. Clearly, for every y ∈

∏
iHi we have ran(y) ⊆ ran(x)

and hence either
∏
iHi ⊆ A′ ⊆ A or

∏
iHi∩A′ = ∅. Since

∏
iHi only contains

increasing sequences, the latter case implies
∏
iHi ∩A = ∅.

The homogeneous x ∈ ω↑ω obtained from this proof can grow quite rapidly,
and in general there is no upper bound on its rate of growth. Hence the homo-
geneous sequence 〈Hi | i ≤ ω〉 obtained from x is also potentially unbounded.
We could ask what happens if we tighten the conditions of the original ques-
tion so as to rule out these “unbounded” solutions. Suppose that, this time,
we are given a partition A and two sequences of integers ≥ 2: m0,m1, . . . and
n0, n1, . . . . Can we find 〈Hi | i < ω〉 such that |Hi| = mi and Hi ⊆ ni which
is homogeneous for A? Here, we want the ni to increase at a much quicker
rate then the mi, since otherwise this property will fail even for very simple
partitions (e.g., closed).

In [6], DiPrisco and Todorčević first computed explicit upper bounds ~n as
a function of ~m and proved that with these bounds the problem has a positive
solution for analytic partitions. The techniques used there were fundamentally
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different from the unbounded case and did not invoke Silver’s theorem or the
Ramsey property. The computation of ~n in terms of ~m used a recursive but non-
primitive-recursive function (an Ackermann-style function) which was improved
by Shelah and Zapletal [16] to a direct, primitive-recursive computation using
the methods of creature forcing.

In this paper we will look at both partition problems mentioned above and
investigate what happens at the next level of the projective hierarchy: the Σ1

2-
and ∆1

2-level. But first we need to introduce some notation and give precise
definitions.

1.2 Definition.

1. We will refer to infinite sequences by H = 〈Hi | i ∈ ω〉 and use the short-
hand notation [H] instead of

∏
iHi. This corresponds to identifying the

sequence H with a finitely branching uniform perfect tree, so that [H] is
the set of branches through this tree.

2. Let m0,m1, . . . be fixed integers. A set A ⊆ ωω satisfies the (unbounded)
polarized partition property ω

ω
. . .

→
 m0

m1

. . .


if there is an H = 〈Hi | i ∈ ω〉 with |Hi| = mi, such that [H] ⊆ A or
[H] ∩A = ∅.

3. Let m0,m1, . . . and n0, n1, . . . be fixed integers ≥ 2 such that the ni’s are
recursive in the mi’s. A set A ⊆ ωω (or ⊆

∏
i ni) satisfies the bounded

polarized partition property n0
n1
. . .

→
 m0

m1

. . .


if there is an H = 〈Hi | i ∈ ω〉 with |Hi| = mi and Hi ⊆ ni, such that
[H] ⊆ A or [H] ∩A = ∅.

4. Let Γ be a projective pointclass. The notations Γ(~ω → ~m) and Γ(~n→ ~m)
abbreviate the statements “every A in Γ satisfies the partition property
(~ω → ~m)”, respectively “(~n → ~m)”. Similarly, if Φ is some other regu-
larity property for subsets of the Baire or Cantor space then Γ(Φ) is an
abbreviation of “every A in Γ satisfies property Φ”.

Our first observation is that as long as we are only interested in solutions
within a projective pointclass, the precise value of the right-hand-side integers
m0,m1, . . . is irrelevant:

1.3 Lemma. Let Γ be a pointclass and m0,m1, . . . and m′0,m
′
1, . . . two se-

quences of integers ≥ 2. Then
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1. Γ(~ω → ~m) holds if and only if Γ(~ω → ~m′) holds.

2. If Γ(~n → ~m) holds for some (sufficiently large) ~n, then there are ~n′ such
that Γ(~n′ → ~m′) holds.

Proof.

1. It is clear that decreasing any of the mi’s only makes the partition property
easier to satisfy. Suppose we know Γ(~ω → ~m) and we are given ~m′. Find
0 = k−1 < k0 < k1 < . . . such that for all i we have mki−1 ·mki−1+1 · . . . ·
mki−1 ≥ m′i:

(

product is ≥m′0︷ ︸︸ ︷
m0,m1, . . . ,mk0−1

product is ≥m′1︷ ︸︸ ︷
mk0 ,mk0+1, . . . ,mk1−1

product is ≥m′2︷ ︸︸ ︷
mk1 ,mk1+1, . . . ,mk2−1 . . . )

Now let ϕ : ωω −→ ωω be the continuous function given by

ϕ(x) := (〈x(0), . . . , x(k0 − 1)〉 , 〈x(k0), . . . , x(k1 − 1)〉 , . . . )

where 〈. . . 〉 is the canonical (recursive) bijection between ω and ωki−ki−1 ,
for the respective i. Let A ⊆ ωω be a set in Γ. Then A′ := ϕ−1[A] is in Γ
so by assumption there is an H ′ such that ∀i (|H ′i| = mi) and [H ′] ⊆ A′ or
[H ′]∩A′ = ∅. Define H by Hi := {

〈
r0, . . . , r(ki−ki−1)−1

〉
| rj ∈ H ′ki−1+j

}.
Then clearly |Hi| = mki−1

· . . . ·mki−1 ≥ m′i and it only remains to show
that [H] = ϕ“[H ′]. But that follows immediately from the definition of ϕ.

2. Here, use the same function ϕ but now note that we may choose H ′ to
be bounded by ~n, so that each H ′ki−1+j

is bounded by nki−1+j . Therefore

the possible elements of Hi are bounded by
〈
nki−1

, nki−1+1, . . . , nki−1
〉

(assuming that the coding is monotonous).

We will frequently use the generic notations (~ω → ~m) and (~n → ~m) to
refer to the unbounded resp. bounded partition properties, leaving ~n and ~m
unspecified if it is irrelevant.

The results of [6] and [16] cover analytic partitions. On the next level in the
projective hierarchy things start getting tricky: typically, when studying regu-
larity properties for sets of reals (e.g. Lebesgue measurability, Baire property,
Ramsey property), the assertion that all ∆1

2/Σ1
2 sets are regular is independent

of ZFC. For instance, an early theorem of Judah and Shelah [10] states that
all ∆1

2 sets have the Baire property if and only if for every a ∈ ωω there is a
Cohen real over L[a]. As a consequence, ∆1

2(Baire) is false in L but true in
the iterated Cohen model (i.e., the model obtained by an ω1-iteration of Cohen
forcing with finite support, starting from L). For Lebesgue measurability and
random-generic reals analogous results hold. Several other studies have been
carried out pursuing the connection between other regularity properties on the
second level and assertions about “transcendence over L”, notably [10, 9, 4, 3].

In [11] an abstract version of these results is proved based on the concept of
quasigenericity.
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1.4 Definition. Let I be a σ-ideal on ωω. If M is a model of set theory, an
x ∈ ωω is said to be I-quasigeneric over M if for every Borel set B ∈ I with
Borel code in M , x /∈ B.

Subsuming Cohen reals, random reals, as well as dominating reals, un-
bounded reals etc., quasigenericity is a very natural transcendence property.
Ikegami showed that for a wide class of proper forcing notions P one can canon-
ically define P-measurability and a σ-ideal IP such that P densely embeds into
BOREL(ωω)/IP, and so that (under certain conditions) the following are equiv-
alent:

1. all ∆1
2 sets are P-measurable, and

2. ∀a ∃x (x is IP-quasigeneric over L[a]).

Since transcendence assertions can, to some degree, be controlled by forcing,
characterizations like these are extremely useful for building models in which
specific regularity properties hold on the ∆1

2/Σ1
2-level while others fail. Consider

two regularity properties: Reg1 and Reg2. Does ∆1
2(Reg1) imply ∆1

2(Reg2), or
is there a model (obtained by iterated forcing starting from L) in which the
former holds but the latter fails? The same can be asked for Σ1

2 sets. One
of the earliest results in this direction was a theorem due to Raisonnier and
Stern [13], or independently to Bartoszyński [1], stating that if all Σ1

2 sets are
Lebesgue-measurable then all Σ1

2 sets have the property of Baire. The converse
is not true (see [2, Theorem 9.3.5. and 9.3.6.]), and neither is the analogue of
this statement for ∆1

2 sets (the iterated random model is a counterexample).
More theorems of this kind can be found in the papers quoted above, and a
survey including many regularity properties is contained in [5].

In these results, the regularity property is naturally connected to a forcing
notion, and is often actually derived from it. The property we are interested in
arises from a natural combinatorial question and is not a priori related to any
forcing. As a matter of fact, the most difficult part of our task proved to be
finding an adequate forcing that would allow us to build models for the partition
property. Moreover, the best candidate for such a forcing notion (see section 5)
is different from those typically encountered in the study of the continuum and
does not fall under the category of strongly arboreal forcings introduced in [11]
or idealized forcings developed by Zapletal [14, 15].

We were unable to prove a precise characterization in the style of Judah and
Shelah’s result. Nevertheless, we prove many non-trivial implications and non-
implications which locate the polarized partition property accurately among
other well-known regularity properties and transcendence statements.

In section 2 we prove a connection with eventually different reals and in
section 3 we do the same for E0-quasigeneric reals. In section 4 we look at some
non-implications, and in section 5 we construct a forcing notion which forces
Σ1

2(~n→ ~m) without adding unbounded or splitting reals.
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2. Eventually different reals

Two reals x and y are called eventually different if ∀∞n (x(n) 6= y(n)). We
say that a real x is eventually different over L[a] if for every y ∈ ωω ∩ L[a], x is
eventually different from y. By a theorem of Bartoszyński [2, Theorem 2.4.7.]
this is equivalent to saying that the reals of L[a] are meager.

By a bounded eventually different real over L[a] we mean a real x which is
eventually different over L[a] and moreover there exists a y ∈ ωω ∩ L[a] such
that x ≤ y.

2.1 Theorem.

1. ∆1
2(~ω → ~m) =⇒ ∀a ∃x (x is eventually different over L[a]).

2. ∆1
2(~n→ ~m) =⇒ ∀a ∃x (x is bounded eventually different over L[a]).

Proof. 1. Suppose, towards contradiction, that there is an a such that for all x,
there is a y ∈ L[a] such that ∃∞n (x(n) = y(n)).

Claim. For all x, there is also a y ∈ L[a] such that ∃∞n (x(n) = y(n) ∧ x(n+
1) = y(n+ 1)).

Proof. Given x, let x′ := (〈x(0), x(1)〉 , 〈x(2), x(3)〉 , . . . ). Let y′ ∈ L[a] be such
that ∃∞n (x′(n) = y′(n)). Now let y be such that (〈y(0), y(1)〉 , 〈y(2), y(3)〉 , . . . ) =
y′. Since we use recursive coding, y is also in L[a]. Now it is clear that y is as
required. (claim)

For each x, let yx denote the <L[a]-least real in L[a] such that ∃∞n (x(n) =
yx(n) ∧ x(n+ 1) = yx(n+ 1)). Now define the following set:

A := {x | least n s.t. x(n) = yx(n) is even}

To see that A is ∆1
2(a) we use a standard tool. We write: x ∈ A iff

∃M ∃y ∈ M [M countable, well-founded and M |=“χ(a) ∧ y is the
Ψ(a)-least real s.t. ∃∞n (x(n) = y(n)∧x(n+ 1) = y(n+ 1)) and the
first n s.t. x(n) = y(n) is even”]

where χ(a) is a formula stating that M is an initial segment of L[a] and Ψ(a)
defining an initial segment of <L[a]. This sentence is Σ1

2(a). Similarly, x /∈ A can
be written in the same form but with “even” replaced by “odd”, thus showing
that A is ∆1

2(a).

Now we show that A is indeed a counterexample. Suppose there is an H such
that [H] ⊆ A or [H] ∩ A = ∅, w.l.o.g. the former. Let x ∈ [H] ⊆ A. Since x
and yx coincide on two consecutive digits somewhere, we can easily alter x to
x′ by changing only finitely many digits, so that still x′ ∈ [H] but the first n for
which x′(n) = yx(n) is odd. Since x and x′ are eventually equal, yx = yx′ and
therefore x′ /∈ A, which is a contradiction.

2. Using an analogous proof, we will show that x can in fact be bounded by
the real ~n′ := (〈n0, n1〉 , 〈n2, n3〉 , . . . ) which is clearly in L[a]. Assume towards
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contradiction that for all x bounded by ~n′ there is a y ∈ L[a] infinitely equal
to it. Using the same method as before, it follows that for every x bounded by
~n, there is a y ∈ L[a] infinitely equal on two consecutive digits. The rest of the
proof proceeds analogously except that this time we define

A := {x ∈
∏
i

ni | least n s.t. x(n) = yx(n) is even}

and use the fact that the H given by (~n→ ~m) is contained within
∏
i ni.

3. E0-quasigenerics

For the next result we require several definitions.

3.1 Definition. Let E0 be the equivalence relation on 2ω given by xE0y iff
∀∞n (x(n) = y(n)). A partial E0-transversal is a set A which contains at most
one element from each E0-equivalence class, in other words, ∀x, y ∈ A : if x 6= y
then ∃∞n (x(n) 6= y(n)). Let IE0

be the σ-ideal generated by Borel partial
E0-transversals.

The Borel equivalence relation E0 is well-known in descriptive set theory and
played a key role in the study of the Glimm-Effros dichotomy in [8]. The ideal
IE0

was investigated by Zapletal [14, 15] who, among other things, isolated the
notion of an E0-tree.

3.2 Definition. (Zapletal) An E0-tree is a perfect tree T ⊆ 2<ω such that

1. there is a stem s0 with |s0| = k0, and

2. there are numbers k0 < k1 < k2 < . . . and for each i exactly two sequences
si0, s

i
1 ∈ [ki,ki+1)2, such that

[T ] = {s0_s0z(0)
_s1z(1)

_ · · · | z ∈ 2ω}

Based on results from [8], Zapletal proved the following dichotomy: every
Borel (even analytic) set is either in IE0

or contains [T ] for some E0-tree T .
It follows that the collection of E0-trees ordered by inclusion forms a proper
forcing notion densely embeddable into BOREL(2ω)/IE0

.
Recall the notion of a quasigeneric real from Definition 1.4. From the above

consideration, the existence of IE0-quasigenerics is an interesting transcendence
property from the forcing point of view. It is known that sets in IE0 are meager,
so IE0

-quasigenerics can certainly exist, in particular Cohen reals are such.

3.3 Theorem. ∆1
2(~ω → ~m) =⇒ ∀a ∃x (x is IE0

-quasigeneric over L[a]).

Proof. First, we define an auxiliary equivalence relation Eω0 , which is just like
E0 but on Baire space rather than Cantor space, i.e., for x, y ∈ ωω we define
xEω0 y iff ∀∞n (x(n) = y(n)). The notions of a partial Eω0 -transversal as well as
the σ-ideal IEω

0
are defined analogously.
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For a real x and a Borel set B, we say that x is eventually in B if there is a
y ∈ B such that ∀∞n (x(n) = y(n)). We denote this by x ∈∗ B.

We will first show that if ∆1
2(~ω → ~m) holds then there is an IEω

0
-quasigeneric

over each L[a]. Towards contradiction, suppose a is such that for every x there
is B ∈ IEω

0
coded in L[a] with x ∈ B. It is not hard to see that for Borel sets,

membership in IEω
0

is a Σ1
2-statement and hence absolute. Therefore, for each

x there is a Borel partial Eω0 -transversal B, with code in L[a] and x ∈ B. In
particular, there is also such a B with x ∈∗ B. Let Bx be the <L[a]-least such
Borel set (i.e., the Borel set with the <L[a]-least Borel code). Now form the
following two sets:

A0 := {x | ∃y ∈ Bx s.t. |{n | x(n) 6= y(n)}| is finite and even}

A1 := {x | ∃y ∈ Bx s.t. |{n | x(n) 6= y(n)}| is finite and odd}

The key observation here is that A0 and A1 form a disjoint partition of ωω. The
fact that A0 ∪ A1 = ωω follows immediately from x ∈∗ Bx, and if there were
an x ∈ A0 ∩ A1, then there would be two distinct y, y′ ∈ Bx both eventually
equal to x. But then y and y′ would also be eventually equal to each other,
contradicting the fact that Bx is a partial Eω0 -transversal. Hence A0 ∩A1 = ∅.

To see that A0 is Σ1
2(a) we use the same tool as in the proof of Theorem 2.1,

namely x ∈ A0 holds iff

∃M ∃c ∈ M [M countable, well-founded and M |=“χ(a) ∧ Bc is a
partial E0-transversal, and ∃y ∈ Bc such that |{n | x(n) 6= y(n)}|
is finite and even, and ∀d (Ψ(d, c, a)∧Bd is a partial E0-transversal
→ x 6∈∗ Bd)”]

Again χ(a) states that M is an initial segment of L[a] and Ψ(x, y, a) defines an
initial segment of <L[a]. Bc denotes the Borel set coded by the real c.

So A0 is Σ1
2(a), and an analogous argument with “even” replaced by “odd” shows

that A1 is Σ1
2(a), so in fact both are ∆1

2(a). It remains to show that they are
counterexamples to (~ω → ~m). Suppose there is an H with [H] ⊆ A0 (w.l.o.g.)
and let x ∈ [H]. Let y ∈ Bx be such that |{n | x(n) 6= y(n)}| is finite and even.
Change just one digit of x to form x′ ∈ [H], so that |{n | x′(n) 6= y(n)}| is
still finite but odd. Note that x′ ∈∗ Bx still holds, hence Bx = Bx′ . Therefore
x′ ∈ A1, a contradiction.

We have now proved that there exists an IEω
0

-quasigeneric over each L[a], but
we must still make the move to Cantor space. Consider the following continuous
function f : ωω → 2ω: for each x, let

f(x)(n) :=

{
1 if x((n)0) = (n)1
0 otherwise

where n = 〈(n)0, (n)1〉 in the canonical coding. In other words, f sends every
x to the characteristic function of the (encoded) graph of x. It is easy to see
that for all x, y ∈ ωω we have xEω0 y ⇐⇒ f(x)E0f(y). It follows that if x is
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IEω
0

-quasigeneric over L[a], then f(x) is IE0 -quasigeneric over L[a], as we had
to show.

It would have been desirable to extract a stronger transcendence property
from ∆1

2(~n→ ~m), in the same vein as Theorem 2.1 (2). Although we can easily
prove that ∆1

2(~n → ~m) implies the existence of a bounded IEω
0

-quasigeneric in
the Baire space (by the same reasoning), it is not clear what implications this
has for the IE0-quasigeneric.

On the other hand, we can take a closer look at the (~ω → ~m) property on
the Σ1

2-level and, this time, get a slightly stronger result. Recall that for many
tree-like forcing notions P, one can define an ideal NP as follows:

A ∈ NP :⇐⇒ ∀p ∈ P ∃q ≤ p ([q] ∩A = ∅)

Let NE0
be the ideal derived from E0-trees. By Zapletal’s dichotomy, it follows

that every Borel set is in NE0
if and only if it is in IE0

, although in general the
two ideals are not the same. We show that Σ1

2(~ω → ~m) implies the existence of
co-NE0-many IE0-quasigenerics.

3.4 Theorem. Σ1
2(~ω → ~m) =⇒ ∀a ({x | x not IE0-quasigeneric/L[a]} ∈ NE0)

Proof. Again, we first focus on the relation Eω0 on the Baire space. The instru-
mental Lemma is the following:

3.5 Lemma. Σ1
2(~ω → ~m) =⇒ ∀a ∃H = 〈Hi | i < ω〉, each |Hi| ≥ 2, such that

∀x ∈ [H] (x is Eω0 -quasigeneric over L[a]).

Proof. This Lemma is proved similarly to Theorem 3.3. Towards contradiction,
suppose a is such that for every H with |Hi| ≥ 2 there is x ∈ [H] and B ∈ IEω

0

coded in L[a], such that x ∈ B. As before, this means there is a partial Eω0 -
transversal B coded in L[a] with x ∈∗ B. Let Bx be the <L[a]-least such Borel
set, if it exists. Now form the following two sets:

A0 := {x | x is not IωE0
-quasigeneric over L[a] and ∃y ∈ Bx s.t.

|{n | x(n) 6= y(n)}| is finite and even}

A1 := {x | x is not IωE0
-quasigeneric over L[a] and ∃y ∈ Bx s.t.

|{n | x(n) 6= y(n)}| is finite and odd}

The same proof as in Theorem 3.3 shows that both A0 and A1 are Σ1
2(a).

However, while before the two sets were complements of each other, here A0

and A1 only form a partition of {x | x not Eω0 -quasigeneric}. Therefore we
cannot, in general, conclude that A0 and A1 are ∆1

2(a).

Now, if [H] ⊆ A0, then by assumption we can find x ∈ [H] which is non-
IωE0

-quasigeneric, and then proceed as before to alter one digit of x, produce
x′ ∈ [H] which is still non-IωE0

-quasigeneric but x′ ∈ A1, giving a contradiction.
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On the other hand, if [H] ∩ A0 = ∅ we again pick an x ∈ [H] which is non-
IωE0

-quasigeneric. But then x ∈ A1, and the contradiction proceeds analogously.
This completes the proof of the Lemma.

To finish the proof of Theorem 3.4, let T be an arbitrary E0-tree. We have to
find an E0-tree S ≤ T such that [S] contains exclusively E0-quasigenerics. Let
g be the natural bijection between 2ω and T , i.e., the map which sends every
z to s0

_s0z(0)
_s1z(1)

_ . . . , where sij are as in Definition 3.2. It is immediate
that g preserves E0. Let f be the mapping between ωω and 2ω from the proof
of Theorem 3.3, i.e., the continuous function such that xEω0 y iff f(x)E0f(y).
Let H be the product containing exclusively Eω0 -quasigenerics which exists by
Lemma 3.5. Shrink H, if necessary, so that |Hi| = 2 for every i. Identifying [H]
with the Cantor space, we can easily see that the relation Eω0 restricted to [H]
is isomorphic to E0, and it follows that [H] must be IEω

0
-positive. Since (g ◦ f)

preserves Eω0 relative to E0, (g ◦ f)“[H] is an IE0-positive Borel subset of [T ]
containing exclusively E0-quasigenerics. By Zapletal’s dichotomy, there exists
an E0-tree S with [S] ⊆ (g ◦ f)“[H], so we are done.

4. Implications and non-implications.

Let us sum up everything we have proved so far in a diagram. In addition to
the properties already mentioned, we consider Miller- and Laver-measurability,
the doughnut property and splitting reals.

4.1 Definition.

1. A set A ⊆ ωω is Miller-measurable if for every Miller (super-perfect) tree
T there is a Miller tree S ≤ T such that [S] ⊆ A or [S]∩A = ∅. Similarly,
A is Laver-measurable if the same holds for Laver trees.

2. Let a ⊆ b ⊆ ω be such that |b\a| = ω. Then [a, b]ω := {x ∈ [ω]ω | a ⊆ x ⊆
b} is called a doughnut. A set A ⊆ [ω]ω has the doughnut property if there
exists a doughnut which is either completely contained in A or completely
disjoint from A.

3. A real x ∈ [ω]ω is called a splitting real over L[a] if for all y ∈ [ω]ω ∩ L[a],
both y ∩ x and y \ x are infinite.

Miller- and Laver-measurability were studied in [4] where it was proved that
all Σ1

2 sets are Miller-measurable iff all ∆1
2 sets are Miller-measurable iff ∀a ∃x (x

is unbounded over L[a]), and the same for Laver-measurability and dominating
reals. The doughnut property is a generalization of the Ramsey property; for
more about it and the implications involving it, see [3].
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Σ1
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(b)
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(c′)
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Σ1
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(c)

��

(e′)

��

∆1
2(~n→ ~m)

(d′)
��

(b′)

rz nnnnnnnnnnnnnn

nnnnnnnnnnnnnn

Σ1
2(Laver)

∀a ∃ dom./L[a]

 (JJJJJJJJJJJ

JJJJJJJJJJJ

��

∆1
2(~ω → ~m)

(d)

��

(e)

��

∀a ∃ bounded
ev. diff./L[a]

(b′′)

t| ppppppppppppp

ppppppppppppp

Σ1
2(Miller)

∀a ∃ unb./L[a]
∀a ∃ ev. diff./L[a]

∀a {x | x not IE0
-

quasigeneric
/L[a]} ∈ NE0

��

∆1
2(doughnut)

t| rrrrrrrrrrrrrr

rrrrrrrrrrrrrr

��∀a ∃ IE0
-quasi-

generic/L[a]
∀a ∃ splitting/L[a]

In this diagram, the implications (b), (b′), (b′′), (c) and (c′) are trivial and
(a) is because of Lemma 1.1. The arrows (d) and (d′) are Theorem 2.1, and (e)
and (e′) are Theorems 3.3 and 3.4, respectively.

We are now interested whether the implications in this diagram are the only
possible ones. In particular, we would like to prove that all the new implications
are strict and cannot be reversed (i.e., they are not equivalences). We start by
looking at (e) and (e′).

4.2 Lemma. In the Cohen model, i.e., the model obtained by an ω1-iteration of
Cohen forcing with finite support starting from L, ∆1

2(doughnut) holds, {x | x
not IE0

-quasigeneric over L[a]} ∈ NE0
holds for every a, but ∆1

2(~ω → ~m) and
∆1

2(~n→ ~m) fail.

Proof. It is well-known that Cohen forcing does not add eventually different
reals, so in the ω1-iteration both polarized partition properties fail on the ∆1

2-
level. On the other hand, by [3, Proposition 3.7] all ∆1

2 sets (in fact all projective
sets and even all sets in L(R)) have the doughnut property. Moreover, it is easy
to see that Cohen forcing adds an E0-tree of Cohen reals, and thus an E0-tree
of IE0-quasigenerics. Using the natural homeomorphisms between E0-trees and
2ω, which preserve the E0-relation, it can easily be seen that in fact Cohen
forcing adds co-NE0

-many IE0
-quasigenerics. Therefore the arrows (e) and (e′)

cannot be reversed.
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Next, we turn to the arrows (b), (b′) and (b′′)—is the bounded partition prop-
erty really stronger then the unbounded one? Recall the following properties of
forcings:

4.3 Definition. A forcing P has the

1. Laver property if for every p ∈ P and every name for a real ẋ such that for
some y we have p  ẋ ≤ y̌, there is an infinite sequence S = 〈Sn | n < ω〉
with ∀n (|Sn| ≤ 2n), and some q ≤ p such that q  ẋ ∈ [Š].

2. weak Laver property if for every p ∈ P and every name for a real ẋ
such that for some y we have p  ẋ ≤ y̌, there is an infinite sequence
S = 〈Sn | n < ω〉 with ∀n (|Sn| ≤ 2n), and some q ≤ p such that
q  ∃∞n (ẋ(n) ∈ Šn).

In fact the weak Laver property has a simpler characterization:

4.4 Lemma. A forcing P has the weak Laver property iff it does not add a
bounded eventually different real.

Proof. Throughout the proof, let V be the ground model and VP the exten-
sion. Clearly, if for every bounded real x in VP there is y ∈ V infinitely
equal to x, then there is also a product S ∈ V with the same property—
any S containing y will do. So it remains to prove the converse: let x ∈ VP

be a real bounded by y ∈ V. Partition ω into {Bn | n ∈ ω} by letting
B0 := {0}, B1 := {1, 2}, B2 := {3, 4, 5, 6} and so on with |Bn| = 2n. For
convenience enumerate Bn = {bn0 , . . . , bn2n−1}. Let ϕ be the continuous function
defined by ϕ(x)(n) =

〈
x(bn0 ), . . . , x(bn2n−1)

〉
.

Clearly x′ := ϕ(x) is bounded by ϕ(y) ∈ V. Let S ∈ V be a product satisfying
∀n (|Sn| ≤ 2n) and ∃∞n (x′(n) ∈ Sn). Enumerate every Sn as {an0 , . . . , an2n−1}.
Now, let {sn0 , . . . , sn2n−1} be members of B

n

ω such that
〈
snj (bn0 ), . . . , snj (bn2n−1)

〉
=

anj for every j. Then from the definition of ϕ it follows that for every n, if
x′(n) ∈ Sn then x � Bn = snj for one of the j’s. Hence ∃∞n (x � Bn = snj for
some j). But then we can define a new real z by “diagonalizing” all the possible
snj ’s, that is, z(bni ) := sni (bni ). Then x is infinitely equal to z, and since z has
been explicitly constructed from S, it follows that z ∈ V. This completes the
proof.

4.5 Corollary. The Mathias model, i.e., the model obtained by an ω1-iteration
of Mathias forcing with countable support starting from L, Σ1

2(Ramsey) holds
while ∆1

2(~n→ ~m) fails.

Proof. It is well-known that Σ1
2(Ramsey) holds in the iterated Mathias model.

However, it is also known that Mathias forcing satisfies the Laver property (cf.
[2, Section 7.4]), and that this is preserved by the ω1-iteration. Therefore the
iteration certainly also has the weak Laver property. By the above Lemma that
implies that in the Mathias model there are no bounded eventually different
reals and therefore ∆1

2(~n→ ~m) fails.
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So the arrows (b), (b′) and (b′′) are also irreversible. The nature of implica-
tions (c), (c′), (d) and (d′) is still unknown. We conjecture that (d) and (d′) are
strict implications but efforts to prove this have so far been unsuccessful.

In the next section we prove a strong result which, in particular, will show
that the arrow (a) is irreversible.

5. A fat creature forcing

We will now construct a forcing notion P which yields Σ1
2(~n → ~m) without

adding unbounded or splitting reals. This forcing can be seen as a hybrid of two
forcing notions already existing in the literature: the one used by DiPrisco and
Todorčević in [6] to prove the original result Σ1

1(~n→ ~m) in ZFC, and a creature
forcing developed by Shelah and Zapletal in [16] and Kellner and Shelah in [12].
The latter forcing does not add unbounded or splitting reals by [16] and can
be applied directly to yield ∆1

2(~n→ ~m), but seems insufficient for Σ1
2(~n→ ~m).

The DiPrisco-Todorčević forcing, on the other hand, does yield Σ1
2(~n→ ~m) but

it is so combinatorially complex that it is difficult to prove preservation theorems
about it, such as being ωω-bounding or not adding splitting reals. That is why
we choose a “hybrid” solution.

We start with the following consideration: it is easy to compute integers
M0,M1, . . . such that the partition M0

M2

. . .

→
 2

2
. . .


holds for closed partitions. For a proof, see [7, Theorem 1] or use an argument
like in the proof of Theorem 5.7 (1). We fix such integers Mi for the rest of this
section. The next definition and the Lemma following it are instrumental in our
approach to constructing a model of Σ1

2(~n→ ~m).

5.1 Definition. Let M be a model of set theory and H an infinite product. We
say that H has the clopification property with respect to M if for every Borel
set B with Borel code in M , the set B ∩ [H] is clopen relative to [H] (i.e., in
the subset topology on [H] inherited from the standard topology on ωω).

5.2 Lemma. If for every a ∈ ωω there is a product H with |Hi| = Mi having the
clopification property with respect to L[a], then Σ1

2(~ω → ~2) holds. If, moreover,
H is bounded by some recursive 〈ni | i < ω〉, then Σ1

2(~n→ ~2) holds.

Proof. Let A be Σ1
2(a). If for some a, ω

L[a]
1 < ω1, then Σ1

2(~n → ~m) in fact
follows directly, by a standard argument using e.g. the forcing from [16]. So we

may assume that ∀a (ω
L[a]
1 = ω1). Then, using Shoenfield’s classical analysis

of Σ1
2 sets we can write A as

⋃
α<ω1

Bα where each Bα is a Borel set coded in
L[a]. Let H be the product with the clopification property. Then for each α,
Bα∩ [H] is clopen relative to [H], so A∩ [H] =

⋃
α<ω1

(Bα∩ [H]) is open relative
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to [H], and [H] \ A is closed relative to [H], so the result follows. The second
statement of the theorem is also clear.

We will construct a forcing notion P with the following three properties:

1. P adds a generic product HG, such that P“[ḢG] has the clopification
property with respect to the ground model, and is bounded by a recursive
sequence ~n ”,

2. P is proper and ωω-bounding (every new real is bounded by a real from
the ground model), and

3. P does not add splitting reals (for every a ∈ [ω]ω there is b ∈ [ω]ω in the
ground model with b ⊆ a or b ∩ a = ∅.)

It is well-known that being proper and ωω-bounding is a property preserved
by ω1-iterations with countable support. The property of not adding splitting
reals may not be preserved, however its conjunction with being ωω-bounding
is, by [14, Corollary 6.3.8., p 290]. So, assuming we are able to construct P we
have the following main result of this section:

5.3 Theorem. In the model obtained by an ω1-iteration of P, with count-
able support, starting from L, Σ1

2(~n → ~m) holds whereas both Σ1
2(Miller) and

∆1
2(doughnut) fail. In particular, implication (a) in the diagram cannot be re-

versed.

We now proceed with the construction of P. We start by defining, for each
n, a local partial order (Pn,≤n). After that P will be constructed roughly as a
product of the Pn.

5.4 Definition.

• For n, let εn be a given “small” positive real number, and let Xn be a
“large” integer. The precise nature of these two numbers will be deter-
mined later. Let prenormn : P(Xn) −→ ω be a function satisfying the
following condition:

For every c ⊆ Xn, if prenormn(c) ≥ 1 then for every partition
of [c]Mn into two parts A0 and A1, there exists a d ⊆ c such
that prenormn(d) ≥ prenormn(c) − 1 and [d]Mn is completely
contained in A0 or A1.

• Pn consists of tuples (c, k), where c ⊆ Xn and k is a natural number, such
that prenormn(c) ≥ k + 1. The ordering is given by (c′, k′) ≤n (c, k) iff
c′ ⊆ c and k ≤ k′.

• Let normn : Pn −→ R be any function such that for any (c, k), if normn(c, k) ≥
εn and (d, l) is such that prenormn(d) − l ≥ 1

2 (prenormn(c) − k), then
normn(d, l) ≥ normn(c, k)− εn. One particular such function is given by

normn(c, k) := εn · log2(prenormn(c)− k)

but any other function with this property would suffice, too.
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Note that one can have trivial partial orders satisfying the above conditions,
for example, by choosing the Xn small and the function prenormn to be con-
stantly 0. So we put an additional requirement: for each n, there must be at
least one condition (c, k) ∈ Pn such that normn(c, k) ≥ n. This can be ac-
complished by picking the Xn sufficiently large and using the finite Ramsey
theorem to define prenormn. In general the value of Xn will depend on εn, i.e.,
the smaller the latter is the larger the former must be. If normn is defined by
the explicit computation above, then Xn must be so large that for at least one
c ⊆ Xn, prenormn(c) ≥ 2(n/εn).

5.5 Definition. The forcing notion P contains conditions p which are functions
with domain ω, such that for some K ∈ ω:

• ∀n < K : p(n) ⊆ Xn and |p(n)| = Mn,

• ∀n ≥ K : p(n) ∈ Pn, and

• the function mapping n to normn(p(n)) converges to infinity.

K is the stem-length of p and p � K is the stem of p. For two conditions p and
p′ with stem-length K and K ′, the ordering is given by p′ ≤ p iff

• stem(p) ⊆ stem(p′),

• ∀n ∈ [K,K ′) : p′(n) ⊆ c, where p(n) = (c, k), and

• ∀n ≥ K ′ : p′(n) ≤n p(n).

This forcing is very similar to the creature forcing defined in [12] and [16]
and we refer the reader to these papers for some additional discussion about its
properties. The main difference is that our forcing notion P does not just add
one generic real, but a whole generic product of finite subsets of ω, defined from
the generic filter G by

HG :=
⋃
{stem(p) | p ∈ G}

By construction HG(n) ⊆ Xn and |HG(n)| = Mn. Each forcing condition con-
tains an initial segment of this generic product, namely the stem, concatenated
with a sequence of Pn-conditions with norms converging to infinity. Note that
this is only possible because we have chosen Xn to be sufficiently increasing.

Next, let us introduce some notation.

5.6 Notation.

1. If (c, k) ∈ Pn, we refer to the first coordinate c by “val”, i.e., val(c, k) = c.
By a slight abuse of notation, if p is a condition with stem-length K we
define val(p(n)) = p(n) for all n < K.

2. For p ∈ P, let T (p) := {s ∈ ω<ω | ∀n : s(n) ∈ val(p(n))}.
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3. Let Seq denote the set of all finite initial segments potentially in the
generic product, i.e.:

Seq := {σ : m→P(ω) | m ∈ ω and ∀n < m (σ(n) ⊆ Xn and |σ(n)| = Mn)}

For n, let Seqn := {σ ∈ Seq | |σ| = n}.
4. For p ∈ P, let Seq(p) := {σ ∈ Seq | ∀n : σ(n) ⊆ val(p(n))} and
Seqn(p) := {σ ∈ Seq(p) | |σ| = n}.

5. For σ ∈ Seq(p), let p ↑ σ be the P-condition defined by

(p ↑ σ)(n) :=

{
σ(n) if n < |σ|
p(n) otherwise

We will use the letters s, t, . . . for elements of ω<ω and σ, τ, . . . for elements
of Seq.

It is important to note that the forcing P is not separative. In particular
T (q) ⊆ T (p) does not imply q ≤ p. However, if there exists a K such that
T (q) � K ⊆ T (p) � K and ∀n ≥ K : q(n) ≤n p(n), then q is inseparable from p,
and hence forces whatever p forces. We shall need this fact several times in the
proofs.

In [12, 16], the main tools for proving results about the forcing notion were
so-called εn-bigness and εn-halving. In our setting, the former is significantly
stronger although the latter is essentially the same.

• “εn-bigness” is essentially a re-statement of the definition of prenorm. If
(c, k) ∈ Pn is any condition with normn(c, k) ≥ εn, then prenormn(c)−k ≥
2. In particular, if [c]Mn is partitioned into two pieces A0 and A1, then, by
the definition of prenorm, there is a d ⊆ c such that [d]Mn is completely
contained in A0 or A1 and prenormn(d) ≥ prenormn(c)−1. In particular,
prenormn(d)− k ≥ prenormn(c)− k − 1 ≥ 1

2 (prenormn(c)− k), therefore
(d, k) ≤n (c, k) is a valid Pn-condition with normn(d, k) ≥ normn(c, k)−εn.

• By “εn-halving” we mean the following phenomenon: if (c, k) ∈ Pn is any
condition with normn(c, k) ≥ εn, then let k′ := b 12 (prenormn(c)+k)c. The
condition (c, k′) ≤n (c, k) is called the half of (c, k), denoted by half(c, k).
It satisfies the following conditions:

– normn(c, k′) ≥ normn(c, k)− εn, and

– every (d, l) ≤n (c, k′) can be “un-halved” to (d, k) ≤n (c, k) with
normn(d, k) ≥ normn(c, k)− εn.
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The last inequality holds because prenormn(d)− k ≥ 1
2 (prenormn(c)− k).

−c // −c
--[[[[[[[[[[[[[[[

−d // −d
− l

$$HHHHHHHHHHHHHHHH
−k′

11dddddddddddddd

−k

77ppppppppppppp
−k

(c, k)

“half”

3;
(c, k′) ≥n (d, l)

“unhalf”

4<
(d, k)

5.7 Theorem.

1. Let P be the forcing described above, and assume that for all n, εn ≤
1/
(∏

i<nXi

)
. Then P“[ḢG] has the clopification property w.r.t. the

ground model and is bounded”.

2. Assume that, additionally, for all n, εn ≤ 1/
(∏

i<n

(
Xi
Mi

))
. Then P is

proper and ωω-bounding.

3. Assume that, additionally, for all n, εn ≤ 1/(
∏
i<n prenormi(Xi) · 2Xi).

Then P does not add splitting reals.

Recall that the numbers Xn depend on the value of εn. In this theorem,
we require that εn depends on the previous values of Xi. The combination
of these two requirements gives an inductive computation of the numbers Xn

which eventually form the upper bound ~n in the partition property (~n→ ~m).
Part 1 of this theorem is loosely based on [6] and Parts 2 and 3 are variations

of the proofs in [16]. The rest of this section is devoted to the proof of these
three claims.

Before starting on the proofs, let us stipulate how fusion works in the case
of P: for two conditions p and q and k ∈ ω, say that q ≤(k) p iff q ≤ p and there
is a K such that p � K = q � K and for all n ≥ K : normn(q(n)) ≥ k. It is
easy to verify that if p0 ≥(0) p1 ≥(1) p2 ≥(2) . . . is a fusion sequence, then the
natural (pointwise) limit q of this sequence is a P-condition below every pi.

Proof of 1. For every Borel set B, define DB := {p ∈ P | B ∩ [T (p)] is clopen in
[T (p)]}. Since every p ∈ P forces “[ḢG] ⊆ [T (p)]” it is sufficient to show that
every DB is dense. Define

CL := {A ⊆
∏
i

Xi | ∀p ∈ P ∀k ∃q ≤(k) p (A ∩ [T (q)] is clopen in [T (q)])}

We claim that:
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1. A is closed =⇒ A ∈ CL,

2. A ∈ CL =⇒ (
∏
iXi \A) ∈ CL, and

3. if An ∈ CL for every n, then
⋂
nAn ∈ CL.

In particular, all Borel sets are in CL and hence every DB is dense.

Point 2 of the claim follows trivially from the definition of CL. Also, once
we have proven point 1, point 3 will follow more or less immediately: by a
standard fusion construction

⋂
nAn can be rendered relatively closed, and by

an application of point 1, it can then be rendered relatively clopen. We leave
the details of this construction to the reader and instead focus our efforts on
the proof of point 1.

First we need to fix some terminology: let T be any tree, and X ⊆ T . For
t ∈ T we say that “the membership of t in X depends only on t � m” if

t ∈ X ⇐⇒ ∀s ∈ T (t � m ⊆ s → s ∈ X) and

t /∈ X ⇐⇒ ∀s ∈ T (t � m ⊆ s → s /∈ X)

Let P � m := {p � m | p ∈ P}. If h ∈ P � m is such that h = p � m, we define
T (h) := T (p) � m, i.e., the tree of finite sequences through h.

Now suppose C is a closed subset of
∏
iXi and let TC be the tree of C. Let

p ∈ P be a condition and k ∈ ω. FindK such that ∀n ≥ K : normn(p(n)) ≥ k+1.
We claim the following:

Subclaim. For all m > K, there is h ∈ P � m such that h � K = p � K,
∀n ∈ [K,m) : normn(h(n)) ≥ normn(p(n)) − 1, and for every t ∈ T (h), the
membership of t in TC depends only on t � K.

Proof. The proof works by backward-induction, from m down to K. First,
we set n := m − 1. Let {s0, . . . , sl−1} enumerate T (p) � n. Suppose p(n) =
(c, k). We partition c into two parts: A0 := {i ∈ c | s0_ 〈i〉 ∈ TC} and
A1 := c \ A0. Note that this can be viewed as a partition of [c]1. Our version
of “εn-bigness” is meant to take care of partitions of [c]Mn , so it certainly takes
care of partitions of [c]1. Therefore, there exists a (c0, k) ≤n (c, k) such that
normn(c0, k) ≥ normn(c, k) − εn and c0 ⊆ A0 or c0 ⊆ A1. Now, partition
c0 again into two parts: A′0 := {i ∈ c0 | s1_ 〈i〉 ∈ TC} and A′1 := c0 \ A′0.
Again, εn-bigness allows us to shrink to a condition (c1, k) ≤n (c0, k) such that
normn(c1, k) ≥ normn(c0, k) − εn and c1 ⊆ A′0 or c1 ⊆ A′1. We can continue
this procedure until we have dealt with all of the si. So in the end we have a
condition (cl−1, k) ≤n (c, k) such that normn(cl−1, k) ≥ normn(c, k)− εn · l and,
if we define h := p � n_ 〈(cl−1, k)〉, then for all t ∈ T (h), the membership of t
in TC depends only on t � n. Notice that l ≤

∏
i<nXi, so by the assumption on

the size of εn it follows that normn(cl−1, k) ≥ normn(c, k)− 1.

Now we go one step back, set n := m−2, let {s0, . . . , sl−1} enumerate T (p) � n,
and repeat exactly the same procedure. Again, we apply εn-bigness l times (for
the new value of l) and in the end get a new condition, say h(n), such that
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normn(h(n)) ≥ normn(p(n)) − 1 and for all t ∈ T (h), the membership of t in
TC depends only on t � n.

Finally we reach K, and see that we have constructed a partial condition h ∈
P � m, such that h � K = p � K, ∀n ∈ [K,m) : normn(h(n)) ≥ norm(p(n)) −
1 and for all t ∈ T (h), the membership of t in TC depends only on t � K.

(subclaim.)

Let T be the collection of all h that satisfy the statement of the subclaim
for some m > K, i.e., T := {h | h ∈ P � m for some m > K, h � K = p � K,
∀n ∈ [K,m) : normn(h(n)) ≥ normn(p(n)) − 1, and for all t ∈ T (h), the
membership of t in TC depends only on t � K}. Notice that if h ∈ T and j is
an initial segment of h with |j| > K, then j ∈ T. Therefore T is a tree with
respect to the ordering of initial segments. It is clearly a finitely branching tree,
but it is also an infinite tree by the subclaim. Therefore, by König’s Lemma, T
has an infinite branch, which we call q. It is now straightforward to verify that
q � K = p � K, that ∀n > K : normn(q(n)) ≥ normn(p(n))−1 ≥ k, and that for
every x ∈ [T (q)], the membership of x in C depends only on x � K. But this is
exactly to say that q ≤(k) p and C ∩ [T (q)] is clopen in [T (q)], thus completing
the proof.

Now we can look at the proof of part 2 of Theorem 5.7.

Proof of 2. Let α̇ be a name for an ordinal. If p ∈ P is a condition, we say that
p essentially decides α̇ if there is m such that ∀σ ∈ Seqm(p) : p ↑ σ decides
α̇. It is clear that if p essentially decides α̇ then p forces α̇ into a finite set in
the ground model. Therefore, what we must prove is that for each p ∈ P and k
there is a q ≤(k) p which essentially decides α̇—by standard techniques this will
allow us to build a fusion sequence showing that P is proper and ωω-bounding.

For a p ∈ P and σ ∈ Seq(p), we call σ deciding (in p) if p ↑ σ essentially
decides α̇, and bad (in p) if there is no p′ ≤ p ↑ σ with stem(p′) = σ which
essentially decides α̇.

5.8 Lemma. Let p ∈ P and K ∈ ω be such ∀n > K : normn(p(n)) ≥ N for
some N ≥ 1. Then there is a q ≤ p such that q � K = p � K, ∀n ≥ K :
normn(q(n)) ≥ N − 1, and every σ ∈ SeqK(q) is either deciding or bad (in q).

Proof. Let {σ0, . . . , σl−1} enumerate SeqK(p). Let p−1 := p and, by induction,
do the following construction: for each i, suppose pi−1 has been defined and for
all n ≥ K : normn(pi−1(n)) ≥ N − εn · i. Then there are two cases:

• Case 1: there is a p′ ≤ pi−1 ↑ σi such that ∀n ≥ K : normn(p′(n)) ≥
N−εn · (i+1) and p′ essentially decides α̇. Let pi := p � K_(p′ � [K,∞)).

• Case 2: it is not possible to find such a p′. Then, define pi by pi � K :=
p � K and ∀n ≥ K : pi(n) := half(pi−1(n)).

Finally let q := p � K_(pl−1 � [K,∞)). Clearly q ≤ p and for n ≥ K we have
normn(q(n)) ≥ N − εn · l. Since l ≤

∏
i<K

(
Xi
Mi

)
, the assumption on the size of

εn implies that normn(q(n)) ≥ N − 1.
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Every σi for which Case 1 occurred is clearly deciding (in q). If Case 2 oc-
curred, we will show that σi is bad. Suppose not, i.e., suppose there is a
q′ ≤ q ↑ σi such that stem(q′) = σi and q′ essentially decides α̇. Let L > K
be such that ∀n > L : normn(q′(n)) ≥ N − εn · (i + 1). For every n ∈ [K,L),
by assumption pi(n) = half(pi−1(n)). Since q′(n) ≤ q(n) ≤ pi(n), by the
property called “εn-halving” there exists a condition r(n) ≤ pi−1(n) such that
normn(r(n)) ≥ normn(pi−1(n)) − εn and val(r(n)) = val(q′(n)). Define r′ :=
σi
_(r � [K,L))_(q′ � [L,∞)). Then for all n ≥ K we have normn(r′(n)) ≥

N − εn · (i + 1). Moreover, ∀n ≤ L we know that val(r′(n)) = val(q′(n)) and
∀n > L : r′(n) = q′(n). As we mentioned before, this implies that r′ is insepara-
ble from q′, and since q′ essentially decides α̇, so does r′. But now the condition
r′ satisfies all the requirements for Case 1 to occur at step i of the induction,
which is a contradiction.

For the next Lemma, we fix the following terminology: let T ⊆ Seq be a
set closed under initial segments and X ⊆ T . For σ ∈ T we say that “the
membership of σ in X depends only on σ � m” if

σ ∈ X ⇐⇒ ∀τ ∈ T (σ � m ⊆ τ → τ ∈ X) and

σ /∈ X ⇐⇒ ∀τ ∈ T (σ � m ⊆ τ → τ /∈ X)

5.9 Lemma. Let p ∈ P and K < K ′ be such that ∀n ∈ [K,K ′) : normn(p(n)) ≥
1. Let X ⊆ SeqK′(p). Then there exists a q ≤ p such that q � K = p � K,
q � [K ′,∞) = p � [K ′,∞), for all n ∈ [K,K ′) : normn(q(n)) ≥ normn(p(n))−1,
and for all σ ∈ SeqK′(q), the membership of σ in X depends only on σ � K.

Proof. This proof works by backward-induction, analogously to the proof of the
subclaim in the proof of Theorem 5.7 (1) above. First we set n := K ′ − 1. Let
{σ0, . . . , σl−1} enumerate Seqn(p). Suppose p(n) = (c, k). We partition [c]Mn

into two parts: A0 := {b ⊆ c | |b| = Mn and σ0
_ 〈b〉 ∈ X}, and A1 := [c]Mn \A0.

By εn-bigness, there exists a condition (c0, k) ≤n (c, k) such that normn(c0, k) ≥
normn(c, k)− εn and [c0]Mn ⊆ A0 or [c0]Mn ⊆ A1. Now, partition [c0]Mn again
into two parts: A′0 := {b ⊆ c0 | |b| = Mn and σ1

_ 〈b〉 ∈ X}, and A′1 :=
[c0]Mn\A′0. Again, εn-bigness allows us to shrink to a condition (c1, k) ≤n (c0, k)
such that normn(c1, k) ≥ normn(c0, k) − εn and [c1]Mn ⊆ A′0 or [c1]Mn ⊆ A′1,
etc. Finally we get a condition (cl−1, k) ≤n (c, k) such that normn(cl−1, k) ≥
normn(c, k)−εn ·l. If we define pK′−1 := p � (K ′−1)_ 〈(cl−1, k)〉_(p � [K ′,∞)),
then for all τ ∈ SeqK′(pK′−1), the membership of τ in X depends only on
τ � (K ′− 1). Moreover, l ≤

∏
i<K

(
Xi
Mi

)
, so by the assumption on the size of εn

it follows that normn(cl−1, k) ≥ normn(c, k)− 1.

Now we repeat the same procedure for n := K ′ − 2 and find a new condition
pK′−2, such that pK′−2 � (K ′−2) = p � (K ′−2), pK′−2 � [K ′,∞) = p � [K ′,∞),
∀n ∈ {K ′ − 2,K ′ − 1} : normn(pK′−2(n)) ≥ normn(p(n)) − 1, and for all
τ ∈ SeqK′(pK′−2), the membership of τ in X depends only on τ � (K ′ − 2).

Finally we reach K, and see that we have constructed a condition q := pK such
that q � K = p � K, q � [K ′,∞) = p � [K ′,∞), ∀n ∈ [K,K ′) : normn(q(n)) ≥
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norm(p(n)) − 1, and for all τ ∈ SeqK′(q), the membership of τ in X depends
only on τ � K.

We are ready to prove the main result. Let p ∈ P and k be given. We
must find a q ≤(k) p which essentially decides α̇. Find K such that ∀n ≥ K :
normn(p(n)) ≥ k+ 2. Apply Lemma 5.8 with p and K to get a condition q ≤ p
such that q � K = p � K, ∀n ≥ K : normn(q(n)) ≥ k+ 1 and every σ ∈ SeqK(q)
is either deciding or bad. If every σ is deciding then q essentially decides α̇,
and q ≤(k) p holds, so the proof is complete. We will show that this is the only
possibility, i.e., that no σ ∈ SeqK(q) can be bad.

Towards contradiction, fix some σ ∈ SeqK(q) which is bad. By induction,
we will construct an increasing sequence of integers K0 < K1 < K2 < . . . and
conditions q0 ≥ q1 ≥ . . . . We start by setting K0 := K and q0 := q ↑ σ. The
induction hypothesis for stage i says that

1. ∀n ≥ Ki : normn(qi(n)) ≥ k + i+ 1, and

2. all τ ∈ SeqKi
(qi) are bad.

We will also guarantee that ∀i,∀j ≥ i+ 1,∀n ≥ Ki : normn(qj(n)) ≥ k + i.
Clearly, q0 satisfies the conditions since the only τ ∈ SeqK(q) is σ. Suppose

Kj and qj have been defined for j < i. We describe the i-th induction step. Let
Ki be such that ∀n ≥ Ki : normn(qi−1(n)) ≥ k + i+ 2. Apply Lemma 5.8 with
parameters qi−1 and Ki to find a condition q′i ≤ qi−1 such that q′i � Ki = qi−1 �
Ki, ∀n ≥ Ki : normn(q′i(n)) ≥ k+i+1 and every τ ∈ SeqKi

(q′i) is either deciding
or bad. Now apply Lemma 5.9 on the condition q′i and the interval [Ki−1,Ki)
to find a condition qi ≤ q′i such that qi � Ki−1 = q′i � Ki−1, qi � [Ki,∞) = q′i �
[Ki,∞), for all n ∈ [Ki−1,Ki) : normn(q(i)) ≥ normn(q′i(n))− 1 ≥ k + (i− 1),
and for all τ ∈ SeqKi

(qi), whether τ is deciding or bad depends only on τ � Ki−1.
If there is any τ ′ ∈ SeqKi−1

(qi) such that all τ ∈ SeqKi
(qi) extending τ ′ are

deciding, then τ ′ itself would be deciding (in qi), and hence τ ′ could not be bad
in qi−1, contradicting the induction hypothesis. Thus, in fact all τ ∈ SeqKi

(qi)
must be bad, which completes the i-th induction step.

In the end, let qω be the limit of this sequence. It is clear that ∀i ∀n ∈
[Ki,Ki+1) : normn(qω(n)) ≥ k + i and hence qω is a valid P-condition. By
construction, all τ ∈ Seq(qω) are bad. But there must be some r ≤ qω deciding
α̇, and then stem(r) cannot be bad. This contradiction completes the proof.

Finally, we turn to the splitting reals.

Proof of 3. Let ẋ be a name for an element of 2ω and p a condition. To show
that P does not add splitting reals, it suffices to find a condition q ≤ p such
that for infinitely many n, q decides ẋ(n). By the previous argument, we can
assume, w.l.o.g., that p essentially decides ẋ(i) for every i.

Here we need to introduce new notation. For two partial conditions h, j ∈
P � K, h ≤ j is defined as for conditions in P. For every p ∈ P, let SubK(p) :=
{h ∈ (P � K) | h ≤ p}. Consider any h ∈ SubK(p), where K > |stem(p)|. Call
such an h i-deciding (in p) if h_(p � [K,∞)) decides ẋ(j) for some j > i, and
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i-bad (in p) if there is no p′ ≤ p such that p′ � K = h which decides ẋ(j) for any
j > i.

5.10 Lemma. Let p ∈ P and K ∈ ω be such ∀n > K : normn(p(n)) ≥ N for
some N ≥ 1. Then for all i, there is a q ≤ p such that q � K = p � K, ∀n ≥ K :
normn(q(n)) ≥ N − 1, and every h ∈ SubK(q) is either i-deciding or i-bad (in
q).

Proof. This is proved exactly as Lemma 5.8. The only difference is that we
iterate over SubK(p) instead of SeqK(p). Note that for each p and each n, if
p(n) = (c, k) then there are at most 2Xn possibilities for values of c and at most
prenormn(Xn) possibilities for values of k. Therefore, for each p and each K,
there are at most

∏
i<K prenormi(Xi) ·2Xi members of SubK(p). The definition

of εn compensates for this precisely.

Now we construct a sequence p0 ≥ p1 ≥ . . . of conditions and a sequence
K0 < K1 < . . . of integers by the following induction. Let p−1 := p. For each
i, if pi−1 has been defined, pick Ki such that ∀n ≥ Ki : normn(pi(n)) ≥ i + 2.
Apply Lemma 5.10 with pi−1, Ki and i-decision/badness, and let pi be the new
condition. It is clear that in this way we get a fusion sequence whose limit q ≤ p
has the following property: ∀i ∀h ∈ SubKi

(q) : h is i-deciding or i-bad. Also
note that ∀n ≥ K0 : normn(q(n)) ≥ 1.

Claim. For each i, there is a condition qi ≤ q such that ∀n ≥ K0 : normn(qi(n)) ≥
normn(q(n))− 1 and qi decides ẋ(i).

Proof. Recall that q essentially decides ẋ(i), so let m be such that ∀σ ∈
Seqm(q) : q ↑ σ decides ẋ(i). Label each such σ “positive” or “negative” de-
pending on whether q ↑ σ  ẋ(i) = 1 or q ↑ σ  ẋ(i) = 0. Apply Lemma 5.9
on the condition q and the interval [K0,m) to form a new condition q′i such
that ∀n ∈ [K0,m) : normn(q′i(n)) ≥ normn(q(n))− 1 and for all σ ∈ Seqm(q′i),
whether σ is positive or negative depends only on σ � K0 (if m ≤ K0, skip this
step). Now shrink q′i further down to qi on the digits n < K0, by whatever
means necessary, to make sure that qi  ẋ(i) = 0 or qi  ẋ(i) = 1. (claim.)

Each forcing condition p ∈ P can be viewed as an element in the compact
topological space X :=

∏
n (P(Xn)× prenormn(Xn)). In such a space every in-

finite sequence has an infinite convergent subsequence, in particular this applies
to the sequence 〈qi | i ∈ ω〉. Let a ⊆ ω be an infinite set such that 〈qi | i ∈ a〉
converges to some r ∈ X . Since for all n ≥ K0, normn(qi(n)) is bounded from
below by normn(q(n)) − 1, the same is true for r(n) which shows that r is a
valid P-condition.

But now we see that r decides infinitely many values of ẋ: for any given i,
pick j ∈ a with j > i so that qj � Ki = r � Ki. Let h := r � Ki. Since qj ≤ q,
qj � Ki = h, and qj decides ẋ(j), h certainly cannot be i-bad in q. So then it
must be i-deciding in q, i.e., h_(q � [Ki,∞)) must decide ẋ(k) for some k > i.
But then r ≤ h_(q � [Ki,∞)) must do so, too.
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6. Open questions.

We have not been able to understand the nature of the arrows (c), (c′), (d)
and (d′) in the diagram from section 4. Recall that for the regularity properties
of being Ramsey, Miller- and Laver-measurable, the ∆1

2-statement is equivalent
to the Σ1

2-statement. However, this is not the case for Lebesgue measure, the
Baire property and, quite surprisingly, the doughnut property (see [3]). We
currently have no intuition as to what the situation is in the case of the polarized
partition properties.

Concerning eventually different reals, we believe that the arrows (d) and
(d′) are irreversible, i.e., that ∆1

2(~ω → ~m) is stronger than the existence of
eventually different reals. Indeed, we conjecture the following:

6.1 Conjecture. In the random model, i.e., the ω1-iteration of random forcing
with finite support starting from L, ∆1

2(~ω → ~m) fails.

An alternative way to go about this problem would be by searching for a
forcing notion which adds eventually different reals but not IE0-quasigenerics
(and the latter is preserved in ω1-iterations). Random forcing is not one of
them, but perhaps a more sophisticated partial order can be found to do the
job.

Finally, we would like to mention that, as an aside, our result answers a ques-
tion posed in [3, Question 6], namely whether the existence of IE0-quasigenerics
implies ∆1

2(doughnut). By Theorem 5.3 and Theorem 3.3, it does not.
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