
A Constructive Approach Towards Formalizing
Relativization Using Combinatory Logic

MSc Thesis (Afstudeerscriptie)

written by

Marlou M. Gijzen
(born May 9th, 1994 in Haarlem, The Netherlands)

under the supervision of Dr Benno van den Berg and Dr Leen Torenvliet, and
submitted to the Board of Examiners in partial fulfillment of the requirements for

the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September 12, 2018 Dr Benno van den Berg

Dr Ronald de Haan
Frederik Lauridsen MSc
Dr Floris Roelofsen (Chair)
Dr Leen Torenvliet
Prof Dr Rineke Verbrugge

Abstract

We present a formal system, ACT, that is used to express the time-complexity of
computing functions. Every proof that can be made within the system relativizes.
The system uses combinatory logic instead of Turing machines. We do show that it is
invariant with respect to Turing machines.

We obtained that ACT is conservative over HA. We also present an extension to the
system that allows for the usage of diagonalization. We then show that the P vs NP
problem is independent from this system.

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Basic notions from complexity theory . 2

2.1.1 Some complexity classes . 3
2.1.2 Oracle machines . 3
2.1.3 Relativization and diagonalization 4

2.2 Heyting arithmetic . 5

3 Absolute Complexity Theory 6
3.1 The formal system ACT . 6
3.2 Relativized worlds . 8

4 Conservativity over HA 9
4.1 Coding sets and pairs . 10
4.2 Defining the mapping . 10
4.3 Conservativity of ACT . 11

5 Functions and Lists 13
5.1 The length of a term . 13
5.2 Lambda abstractions . 13

5.2.1 Complexity of rewriting lambda abstractions 14
5.3 A fixpoint combinator . 15
5.4 Arithmetical operations . 15

5.4.1 Addition . 15
5.4.2 Subtraction . 16
5.4.3 Multiplication . 17
5.4.4 Division . 17
5.4.5 Exponentiation . 18
5.4.6 Equality . 18

5.5 Lists . 19
5.5.1 Lists of natural numbers . 19
5.5.2 Operations on lists . 20

6 Invariance with respect to Turing Machines 21
6.1 A Turing machine that rewrites terms 21

6.1.1 Encoding terms in binary . 21
6.1.2 Simulating the reduction steps 23

v

6.2 A term that simulates Turing machines 25

7 Complexity Results 27
7.1 Universal computation . 27
7.2 Enumerating the terms . 28
7.3 Complexity classes . 29
7.4 Time Hierarchy Theorem . 30
7.5 P vs NP is independent from ACT + U 31

7.5.1 Relativized world where P = NP 31
7.5.2 Realizability with truth . 32
7.5.3 Relativized world where P 6= NP 33
7.5.4 Independence result . 34

8 Conclusion 36

9 Acknowledgements 38

10 Bibliography 39

11 Appendix 40
11.1 Proofs of Chapter 5 . 40
11.2 Proof of Lemma 6.1.3 . 46

vi

1 Introduction

In this work, we present a system that can be used to express the time-complexity of
computations. Furthermore, every proof in the system relativizes.

The notion of relativization plays a mayor role in computational complexity. We say
that a proof relativizes when it also holds relative to any oracle. Oracle machines are
used to define Turing reductions. They have also been used to obtain a series of results
that tell us which proof-techniques we can and cannot use to solve certain problems.
We know for example that we need non-relativizing proof-techniques to solve the P vs
NP problem.

However, it has never been proven that a proof-technique does not relativize, even
though that has been said about, for example, arithmetization.

With this system we formalize the notion of relativization. The axiomatic system is
called Absolute complexity theory, ACT, and it is an extension of Heyting arithmetic,
HA. It uses combinatory logic as a model for computation. The length of the reduction
serves as a benchmark for measuring the time-complexity of solving specific problems.

We expect that this system could be used to gain insight in non-relativizing proof-
techniques. This information is necessary in order to obtain certainty about the use-
fulness of proof-methods for tackling specific problems. We also hope to be able to
obtain independence of the P vs NP problem from general intüıtionistic logics with
future work.

In Chapter 2 we outline some preliminary notions. In the following chapter the
system ACT is presented.

Chapter 4 treats the conservativity of ACT over HA. In the next chapter we give
several terms that compute functions such as addition and multiplication, and we prove
the complexity of those computations.

We do not use Turing machines as a model for computation, in contrast to standard
computational complexity. However, in Chapter 6 we do show that the system is
invariant with respect to Turing machines: both models can simulate each other with
only a polynomially-bounded overhead in time.

We are unable to define an encoding of terms within ACT. However, this encoding
is needed to use certain proof-techniques. In Chapter 7 we extend the system with
axioms that enable us to use diagonalization, which is regarded as a relativizing proof-
technique. We show some known results from standard computational complexity and
we obtain that the P vs NP problem is independent from the system.

1

2 Preliminaries

The formal system that will be presented in Chapter 3 can be used to describe the
time-complexity of computations. It is based upon Heyting arithmetic. When we
mention a reduction we mean a rewriting-step from one term into another. A term in
normal form cannot be reduced to any other term.

In this chapter we will outline some notions from complexity theory that will be
used for the formal system, as well as a description of Heyting arithmetic.

2.1 Basic notions from complexity theory

In computational complexity theory problems are categorized according to their diffi-
culty. We try to measure the difficulty of problems by considering the amount of some
resource that a Turing machine needs to solve a problem.

Definition 2.1.1 ([3, Sec. 1.2]). A Turing machine is described by a tuple (Γ, Q, δ):

• Γ is a finite set of tape symbols, the alphabet.

• Q is a finite set of states.

• δ is a transition function: Q× Γ→ Q× Γ× {L,R, S}.

It has a one-way infinite read/write tape, a head that it uses for reading and writing
on the cells of the tape and a register that holds the state of the machine. A single
computation step is described by one application of the transition function: it reads a
symbol in a specific state, and then writes down a symbol on that location, gets into
some state and the head moves to the left, right or stays on that location.

A (regular) Turing machine works in a deterministic manner. We can also consider
machines that work nondeterministically :

Definition 2.1.2 ([3, Sec. 2.1.2]). A nondeterministic Turing machine is a Turing
machine with two transition functions. At each step, the machine chooses which of its
transition functions it will apply. When dealing with 0/1-valued functions, we say that
a nondeterministic machine accepts an input when one of its possible computational
paths accepts (or outputs 1).

A Turing machine usually works with binary strings, and it thus computes functions
f : {0, 1}∗ → {0, 1}∗. We will consider the amount of time needed for computations.
In the case of Turing machines, this is measured as the number of steps that a machine
takes before it halts. Since the exact number of steps is dependent on the size of the

2

input, we will refer to functions T : N → N to describe the computation times. T (n)
gives the number of steps that a machine needs in the worst case for a computation
on an input of size n.

2.1.1 Some complexity classes

In standard computational complexity we usually consider the complexity of 0/1-
valued functions or decision problems - i.e., f : {0, 1}∗ → {0, 1}.

The exact number of steps that are needed for a computation are not important, we
are only interested in the biggest growing term of the function T (n). We thus use the
Big-Oh notation:

Definition 2.1.3. For f , g : N → N, f = O(g) when there exists a constant c and
some n0 ∈ N such that f(n) ≤ c · g(n) for all n ≥ n0.

In this paper we will refer to three different complexity classes:

Definition 2.1.4 ([7]). The class P is the class of decision problems for which there
exists a Turing machine that computes the problem and runs in time O(p(n)) for some
polynomial p.

Definition 2.1.5 ([7]). The class EXP is the class of decision problems solvable by
a Turing machine in time O(2p(n)) for a polynomial p.

Definition 2.1.6 ([7]). The class NP consists of problems solvable in polynomial-
time by a nondeterministic Turing machine. We say that the machine accepts when
at least one computation path accepts, and it rejects when all computation paths do
so.

Equivalently, a decision problem f is in NP when there are polynomials p and q
such that there exists a Turing machine M that runs in time O(p(n)) and for every
x ∈ {0, 1}∗,

f(x) = 1⇔ ∃u ∈ {0, 1}q(n) s.t. M accepts on input (x, u)

2.1.2 Oracle machines

In addition to the classical notion of a Turing machine, we will also talk about Turing
machines that have black-box access to some function:

Definition 2.1.7 ([10, p. 43]). An oracle Turing machine is a Turing machine with
access to some oracle O. The machine has an extra one-way read/write tape, the
oracle tape, and a corresponding head. The oracle O represents some function f . The
machine also has two additional states: sq, the query state, and sa, the answer state.
When the machine writes an input x on the oracle tape, and when it gets into the
state sq, in one step the contents of the oracle tape are replaced by the output f(x),
and the machine will go into the state sa.

3

We will refer to computations performed by such machines with oracle access to
an oracle O as computations relative to O. We can also consider complexity classes
relative to oracles. The class PO denotes the class of problems solvable in polynomial
time by an oracle Turing machine with access to O.

In standard computational complexity the oracles that are used are generally also
decision problems (or sets). We can use any function as an oracle, but if a machine
runs within a specific time-bound, then this puts a limit on the number of bits that
the machine can read from the output of the oracle.

2.1.3 Relativization and diagonalization

We call proof-techniques in complexity theory relativizing when the result also holds
relative to any oracle. For example, the Time Hierarchy Theorem [8] is shown using
diagonalization, which is regarded as a relativizing proof-technique. The theorem has
as a result that P 6= EXP, so this means that we also have that PO 6= EXPO for any
oracle O.

Cantor was the first to use diagonalization in proofs and it can similarly be used in
complexity theory.

For diagonalization in standard computational complexity, we need an enumeration
of Turing machines and a way to (efficiently) simulate the machines.

For the enumeration, we use some fixed way of describing the Turing machines as
binary strings. How this can be done is described in [3, Sec. 1.4]. We make use of two
conventions. Firstly, that we can describe every Turing machine with a binary string
and every string represents some Turing machine. Secondly, that there is an infinite
number of binary strings that represents one Turing machine.

Generally, we use a universal Turing machine to simulate Turing machines based
on their description:

Theorem 2.1.1 ([3, Th. 1.9]). There exists a Turing machine U such that for every
two inputs x, α ∈ {0, 1}∗, U(x, α) = Mα(x), where Mα denotes the machine repre-
sented by the string α. If Mα halts within T steps on input x, then U halts within
CT log T steps on inputs x and α (with C a number independent of x).

A typical diagonalization proof then goes as follows. For an input x ∈ {0, 1}n,
we run U(x, x) for g(n) steps, where g is some function. We can do this by adding
a counter for the number of steps to the machine. If the machine halted by then,
output the opposite. We then have a function that no machine that runs within time
O(
√
g(n)) can compute.

Since in most proofs we could just as well diagonalize against oracle Turing machines,
diagonalization is believed to be a relativizing proof-technique.

The notion of relativization gives us insight in the proof techniques that we need
to solve certain problems. We know that we need non-relativizing proof techniques to
solve the P vs NP problem, since it has conflicting relativizations:

Theorem 2.1.2 (Baker, Gill, Solovay, 1975, [5]). There exist oracles A,B such that
PA = NPA and PB 6= NPB.

4

2.2 Heyting arithmetic

Heyting arithmetic, HA, is a formal system that describes intüıtionistic first order
arithmetic. It uses first-order intüıtionistic predicate logic with equality.

It has a constant 0 (zero), a unary function constant S (the successor), and function
symbols for all primitive recursive functions.

We have the axioms from the first-order predicate logic, axioms for all the primitive
recursive functions, and the following:

¬S0 = 0

Sx = Sy ⇒ x = y

A(0) ∧ ∀x[A(x)→ A(Sx)]⇒ ∀xA(x)

In HA every element is a natural number. We can denote the number n by Sn0,
successive application of S. We have that ⊥ can be defined as 0 = S0 [12, Sec. 3.3].

5

3 Absolute Complexity Theory

We will introduce a formal system called ACT: Absolute complexity theory. It is
based upon the system TAPP, defined by Troelstra in [12, p. 475]. ACT offers a way to
describe the complexity of solving partial functions from N to N, using combinatory
logic.

We will write
x→n y

when a program x can be rewritten into y with n time-steps. In the case of computation
relative to an oracle f we write x→f

n y.

3.1 The formal system ACT

The system uses first order intüıtionistic predicate logic with equality (‘=’).
There is a unary predicate N , corresponding to being a natural number:

∀x[N(x)⇔ x ∈ N]

We have a constant 0, the successor function S, and function symbols for all primitive
recursive functions.

We also adopt the following axioms:

H.1 0 ∈ N

H.2 x ∈ N⇒ Sx ∈ N

H.3 ∀x[¬Sx = 0]

H.4 ∀x, y ∈ N[Sx = Sy ⇒ x = y]

H.5 ϕ(0) ∧ ∀x ∈ N[ϕ(x)⇒ ϕ(Sx)]⇒
∀x ∈ Nϕ(x)

We also add the axioms for the primitive recursive function symbols, only we add
the predicate N to the axioms such that the variables range over the natural numbers.

With respect to equality we have the following axioms:

E.1 ∀x[x = x]

E.2 ∀x, y[x = y ⇒ y = x]

E.3 ∀x, y, z[x = y ∧ y = z ⇒ x = z]

E.4 ∀x, y[x = y ∧ ϕ(x)⇒ ϕ(y)]

Besides this, we have a total binary operation denoted by a dot ‘·’, which stands for
application of terms. We assume left associativity and often leave out the ‘·’: when
we write xyz, we mean (x · y) · z.

There is also a ternary predicate, the computation, described with ‘→’.

6

We have a several combinators: k, s, p, p0, p1, succ, pred and d. The k and s are
well-known from combinatory logic. The p is used for paring and p0 and p1 for projec-
tions. We have succ and pred as successor and predecessor combinators. Finally, the
d-combinator represents an if-then-else-construct. We thus have the following basic
axioms for the combinators:

B.1 ∀x, y[kxy →1 x]

B.2 ∀x, y, z[sxyz →1 xz(yz)]

B.3 ∀x, y[p0(pxy)→1 x]

B.4 ∀x, y[p1(pxy)→1 y]

B.5 ∀x, y[p(p0x)(p1x)→1 x]

B.6 ∀x[succx→1 Sx]

B.7 ∀x[predSx→1 x]

B.8 pred0→1 0

B.9 ∀x, y, z[d(Sx)yz →1 y]

B.10 ∀y, z[d0yz →1 z]

We have the following axioms that we use to rewrite terms:

A.1 ∀x, y, z[x→z y ⇒ z ∈ N]

A.2 ∀x, y, n[x→n y ⇒ ∀m ≥ n[x→m y]]

A.3 ∀x, y, z, n,m[x→n y ∧ y →m z ⇒ x→n+m z]

A.4 ∀x, y, z, n[x→n y ⇒ x · z →n y · z]

A.5 ∀x, y, z, n[x→n y ⇒ z · x→n z · y]

A.6 ∀x, n, y1, y2[x→n y1 ∧ x→n y2 ⇒ ∃z,m[y1 →m z ∧ y2 →m z]]

A.7 ∀x[N(x)⇒ ∀y, n[x→n y ⇒ y = x]]

Axiom A.1 ensure that the ternary predicate→ has a natural number to denote the
number of steps for rewriting. Axiom A.2 says that if we can deduce y from x within
n steps, then it is also possible for any number of steps bigger than n. Axiom A.3
enables us to combine different reductions. The axioms A.4 and A.5 are needed for
the ability to rewrite certain parts of a term at a time. Axiom A.6 expresses that the
order of the reductions has no influence on the final result (as in the Church-Rosser
Theorem). Axiom A.7 states that natural numbers are in normal form.

We also use the following abbreviations:

x→ y := ∃n[x→n y]

x
.
= y := ∀n ∈ N∃z,m ∈ N[x · n→m z ∧ y · n→m z]

In Chapter 6, we will see that our system is Turing complete.

7

3.2 Relativized worlds

We will define another axiomatic system, extending ACT. For any total computable
function f : N→ N, that is definable in ACT, we have a system ACTf , where f can be
used as an oracle for the computations.

Since f is computable, we thus have by assumption that there exists an term that
computes the function and we will fix a canonically chosen term tf .

Instead of using → as a symbol for the ternary predicate, we will now use →f to
denote computations relative to f .

The axioms of ACTf are the same as those of ACT, except we use the symbol →f

everywhere. We also add one combinator and a corresponding axiom. Let f(x) denote
the output of f on input x. Then:

B.11 ∀x ∈ N[ofx→f
1 S

f(x)0]

We thus have that ACT ` ∀x ∈ N∃m ∈ N[tfx→m f(x)].
We have that every query to the oracle can be replaced by actually computing f ,

and the other way around. Thus, for any term tf that computes f , and for any x in

the domain of f , there exists an m such that tf · x→f
m f(x)⇔ of · x→f

1 f(x).

Since all the other axioms of ACTf are the same axioms as in ACT, we have the
following:

Corollary 3.2.1. For all ϕ, ACT ` ϕ⇒ ACTf ` ϕ

Every statement in ACT has a relative variant in ACTf for any total computable f .
Put differently, anything that can be proven within ACT relativizes.

8

4 Conservativity over HA

We would like to show that the systems ACT and ACTf for any f are conservative
over HA.

Definition 4.0.1. A theory T ′ is a conservative extension of a theory T iff

T ′ ` ϕ⇒ T ` ϕ

for all formulas ϕ in the language of T .

If we achieve this, we can conclude that ACT is consistent, given the consistency of
HA. We also know that ACT says as much about the natural numbers as HA does.

However, there is one problem. In HA all free variables are natural numbers and we
only quantify over natural numbers. This is not the case in ACT. Since we are only
interested in formulas that are expressible in the language of HA, we will instead show
the following:

ACT ` ϕN ⇒ HA ` ϕ

for all formulas ϕ in the language of HA. The mapping ·N takes formulas to similar
formulas, but the free variables are natural numbers and quantifiers range over natural
numbers.

This means that we will not achieve actual conservativity over HA. However, we
will be able to conclude the things that we wanted to know about ACT (consistency
and expressibility with respect to natural numbers).

We define ·N formally as follows:

Definition 4.0.2.

φ(x1, . . . , xn)N := N(x1) ∧ . . . ∧N(xn) ∧ φ(x1, . . . , xn) for atomic formulas φ

(φ ∗ ψ)N := φN ∗ ψN for ∗ ∈ {∨,∧,→}
(∀xφ)N := ∀x ∈ NφN

(∃xφ)N := ∃x ∈ NφN

In the rest of this chapter we will focus on a mapping J·K from formulas of the
language of ACT to formulas of the language of HA, which serves as a way to interpret
ACT in HA. We will then show

ACT ` ϕ⇒ HA ` JϕK.

9

After proving that
HA ` (JϕNK⇔ ϕ)

for formulas ϕ in the language of HA, we can conclude that

ACT ` ϕN ⇒ HA ` ϕ

for all formulas ϕ in the language of HA. This is also how Troelstra suggests showing
that TAPP is conservative over HA [12, p. 489]. The case for ACTf is similar.

For the mapping J·K, we will focus us on RE(ω), recursively enumerable subsets of
N. In HA we have function symbols for the primitive recursive functions, so we can
describe all elements of RE(ω) (the range of a primitive recursive function is recursively
enumerable). Since Kleene’s T -predicate is also primitive recursive, we can describe
all elements of RE(ω) using only a single primitive recursive function symbol. This
allows us to quantify over the elements of RE(ω).

Kleene’s T-predicate relies on a Gödel numbering that assigns functions to natural
numbers. We then have that T (nx,m, z) is true when z encodes a valid and halting
computation of the computable function with index nx on input m. A set X in RE(ω)
can be described as {m | ∃z(T (nx,m, z))} or {m | ϕ(nx,m)}.

4.1 Coding sets and pairs

First, we have to fix a coding p for pairs. We will choose the well-known function
p(x, y) = 1

2 (x+ y)(x+ y + 1) + y, but we will write (x, y) as an abbreviation. We will
also use a coding for finite sets:
{k0, . . . , kp} :=

∑p
i=0 2ki

{∅} := 0
Note that 2n codes {n}.

4.2 Defining the mapping

As in [12, p. 484], we can define a total application operation · by:
X · Y := {z | ∃y ⊂ Y ((y, z) ∈ X)}. When we say y ⊂ Y then we mean that the set

that is coded by y is a subset of Y . We let JX · Y K := JXK · JY K.
The application of two recursively enumerable sets is again recursively enumerable.

This can be seen as follows: for an input z, we enumerate the elements of both Y and
X step-by-step. With every new element of Y in the enumeration, for all pairs (y, z)
in the enumeration of X, we check whether y encodes a subset of the already listed
elements of Y . If yes, we accept z.

Variables are mapped to themselves. For the constants that are also in the language
of HA we do the following:

J0K := {0}
JS(n)K := {n+ 1}

JF (x1, . . . , xn)K := {F (x1, . . . , xn)}

10

Also as defined in [12] we have the following definitions for the combinators:

JkK := {(x, (y, z)) | z ∈ x}
JsK := {(x, (y, (z, w))) | z′ ⊂ z((z′, (u,w)) ∈ x) ∧ ∀u′ ∈ u∃z′ ⊂ z((z′, u′) ∈ y)}

JsuccK := {(2n, n+ 1) | n ∈ N}
JpredK := {(2n, n− 1) | n ∈ N}

JpK := {(2n, (0, 2n)) | n ∈ N} ∪ {(0, (2m, 2m+ 1)) | m ∈ N}
Jp0K := {(22n, n) | n ∈ N}
Jp1K := {(22n+1, n) | n ∈ N}
JdK := {(2n, (x, (y, z))) | n = 0 ∧ z ∈ y ∨ ¬n = 0 ∧ z ∈ x}

We also have the following predicates:

JX = Y K := JXK = JY K
JX →n Y K := JXK = JY K ∧ JN(n)K

JN(X)K := ∃n[2n = X]

For ∨, ∧, ⇒, ∀x and ∃y we let J·K act as a homomorphism.

4.3 Conservativity of ACT

Lemma 4.3.1. For all formulas ϕ, ACT ` ϕ⇒ HA ` JϕK

Proof. We prove this by showing that all axioms of ACT (that are not already in HA)
hold in HA under the mapping.

From the basic axioms, we will show that (JkK ·X) ·Y = X, and leave the verification
of the other basic axioms to the reader.

(JkK ·X) · Y = {a | ∃x ⊂ X((x, a) ∈ JkK)} · Y
= {b | ∃y ⊂ Y ((y, b) ∈ {a | ∃x ⊂ X((x, a) ∈ JkK)})}
= {b | ∃y ⊂ Y ∧ ∃x ⊂ X((x, (y, b)) ∈ JkK)}
= X

Now for the other axioms:

A.1 ∀x, y, zJx→z y ⇒ N(z)K = ∀X,Y, Z[X = Y ∧ ∃n(2n = Z)⇒ ∃n(2n = Z)]

Which always holds.

A.2 ∀x, y, nJx→n y ⇒ ∀m ≥ n[x→m y]K
= ∀X,Y, n[X = Y ∧ ∃z(2z = n)⇒ J∀m ≤ nK[X = Y ∧ ∃z(2z = m)]]

This should hold, because of how ‘n ≤ m’ is defined in HA. In the following we
will leave out the “∃m(2m = X) ”.

11

A.3 ∀x, y, z, n,mJx →n y ∧ y →m z ⇒ x →n+m zK = ∀X,Y, Z[X = Y ∧ Y = Z ⇒
X = Z]

This is obviously true. The last two axioms also follow quite easily:

A.4 ∀x, y, z, nJx→n y ⇒ x · z →n y · zK = ∀X,Y, Z[X = Y ⇒ X · Z = Y · Z]

Assume that X = Y. Then:

X · Z = {a | ∃z ⊂ Z((z, a) ∈ X)}
= {a | ∃z ⊂ Z((z, a) ∈ Y)}
= Y · Z

A.5 ∀x, y, z, nJx→n y ⇒ z · x→n z · yK = ∀X,Y, Z[X = Y ⇒ Z ·X = Z · Y]

Assume that X = Y. Then:

Z ·X = {a | ∃x ⊂ X((x, a) ∈ Z)}
= {a | ∃y ⊂ Y ((y, a) ∈ Z)}
= Z · Y

�

Theorem 4.3.2. ACT ` ϕN ⇒ HA ` ϕ for all formulas ϕ in the language of HA

Proof. We will show that for formulas ϕ in the language of HA: HA ` (ϕ ⇔ JϕNK).
Then, with Lemma 4.3.1 the theorem follows.

We will show this by induction on the formulas. First, we consider atomic formulas.
We have that HA ` Ja = bK is equal to HA ` JaK = JbK, where a and b could be of the

form 0, S(n) or F (x1, . . . , xn). Looking at the definition of J·K for these (functional)
constants, we see that HA ` Ja = bK⇔ a = b, since the left side is equality of singletons
that are equal to a and b itself.

For most logical connectives, J·K and ·N act as a homomorphism. The only noticeable
cases are the quantifiers, since then ·N acts differently.

The axioms concerning the primitive recursive function symbols and the successor
symbol were modified in ACT such that they quantified over natural numbers only. In
HA every variable is a natural number, and thus it quantifies solely over the natural
numbers. So we can conclude that for all ϕ, HA ` (ϕ⇔ JϕNK). �

Corollary 4.3.1. ACTf ` ϕN ⇒ HA ` ϕ for all formulas ϕ in the language of HA
and total recursive f that are definable in ACT.

Proof. Let tf be the chosen term that computes the function f . We let Jof K := Jtf K.
In ACT we should have a proof of ∀x ∈ N∃m ∈ N[tf · x→m f(x)]. Then with Lemma
4.3.1 and the proof of Theorem 4.3.2 we can can prove the corollary. �

12

5 Functions and Lists

In this chapter, we will define several functions and discuss the complexity of solving
them. We will also outline how we can use lists in ACT. We will restrict our attention
to lists of natural numbers and functions from N to N. In order to make the definitions
of functions easier, we will explain how we can introduce lambda abstractions such as
λx.t(x).

5.1 The length of a term

Before we can start to work with lists and the complexity of solving lambda abstrac-
tions, we will have to define the length of a term. We will avoid terms that contain
primitive recursive function symbols. As we will see in Chapter 6, for each primi-
tive recursive function there exists a term that computes that function using only the
combinators and the binary application symbol.

Definition 5.1.1 (The length of a term).

`(0) = 1

For all x, `(Sx) = 1 + `(x)

For all combinators c, `(c) = 1

For variables x, `(x) = 1

`(t1 · t2) = 1 + `(t1) + `(t2)

As a result, we have that for n ∈ N, `(n) = n+ 1.

5.2 Lambda abstractions

We can rewrite terms such that they behave similarly to reducing lambda abstractions:

Proposition 5.2.1. For each expression t(x) with a variable x, there exists a term
λx.t(x) such that for each term b in the language of ACT, ACT ` λx.t(x) · b = t(b),
where t(b) is a term in the language of ACT with b in place of the variable x.

For example, the term λx.d(x)(1)(0) will return ‘1’ when a b applied to it is a natural
number bigger than zero, and it will return ‘0’ when b = 0.

We have that `(d(x)(1)(0)) = 8.

13

Proof of Proposition 5.2.1. We will built λx.t(x) with induction on the structure of
t(x), similarly to for example [12, Prop. 9.3.5]. If t(x) is x itself, then λx.t(x) = skk. If
t(x) is a variable or constant c different from x, then λx.t(x) = kc. If t = t1(x) · t2(x),
then λx.t(x) = s(λx.t1(x))(λx.t2(x)). �

5.2.1 Complexity of rewriting lambda abstractions

For all terms λx.t(x) and b, we can calculate the time it takes to rewrite λx.t(x) ·b into
t(b). This does not take into account the time to rewrite t(b) into a term in normal
form. We will eventually prove the following theorem:

Theorem 5.2.1. For all t(x1, . . . , xn) there exists a k ∈ N such that for all b1, . . . , bn
ACT ` λx1, . . . xn.t(x1, . . . , xn) · b1 · . . . · bn →k t(b1, . . . , bn).

In order to make general statements about the complexity of rewriting terms with a
lambda abstraction, we have to say something about the length of those abstractions.
We will prove the following lemma:

Lemma 5.2.2. `(λx.t(x)) ≤ 5`(t(x))

Proof. We will show this by induction on the structure of t(x). When t(x) is x itself,
then `(λx.t(x)) = 5. When t(x) is a variable or constant c different from x, then
`(λx.t(x)) = 2 + `(c).

If t = t1(x) · t2(x), then `(λx.t(x)) ≤ 3+ `(λx.t1(x))+ `(λx.t2(x))
I.H.
≤ 3+5`(t1(x))+

5`(t2(x)) ≤ 5 + 5`(t1(x)) + 5`(t2(x)) = 5(1 + `(t1(x) + `(t2(x))) = 5`(t(x)). �

We can now say something about the complexity of rewriting lambda expressions:

Lemma 5.2.3. For all b, λx.t(x) · b→2`(t(x)) t(b)

So to continue with our previous example, we will calculate the n such that

λx.d(x)(1)(0) · b→n d(b)(1)(0).

For all lambda abstractions, this n is independent of b.

Proof. We will show this by induction on the complexity of t(x).
If t(x) is is x itself, then λx.t(x) · b = skkb →2 b. When t(x) is a constant c, then

λx.t(x) · b = kcb→1 c.
Now for the induction step, assume that t(x) = t1(x) · t2(x). Then `(t(x)) = 1 +

`(t1(x)) + `(t2(x)).

14

λx.t(x) · b = s(λx.t1(x))(λx.t2(x))b

→1 λx.t1(x) · b(λx.t2(x) · b)
(I.H.)→2`(t1(x)) t1(b)(λx.t2(x) · b)
(I.H.)→2`(t2(x)) t1(b)(t2(b))

= t(a)

And 1 + 2`(t1(x)) + 2`(t2(x)) ≤ 2`(t(x)). �

We can now turn to the proof of the main theorem:
Proof of Theorem 5.2.1. We will show that the theorem holds with

k = 2`(t(x1, . . . , xn))×
n−1∑
i=0

5i.

We will use induction. Lemma 5.2.3 shows us that the statement is true for n = 1.
Now assume that it holds for n and let |x| = (x1, . . . , xn+1).

Then by the induction hypothesis, we need 2`(λxn+1t(x1, . . . , xn+1))×
∑n−1
i=0 5i steps

to rewrite λx1. . . . λxn+1 · t(|x|) · b1 · . . . · bn+1 into λxn+1.t(b1, . . . , bn, xn+1) · bn+1.
Then, by Lemma 5.2.3, we need 2× `(t(|x|)) steps to rewrite it into t(b1, . . . , bn+1).
Then, with Lemma 5.2.2, we have that the total number of steps is

2`(λxn+1.t(|x|))×
∑n−1
i=0 5i + 2`(t(|x|)) = 2× 5× `(t(|x|))×

∑n−1
i=0 5i + 2`(t(|x|))

= 2`(t(|x|))×
∑n
i=0 5i. �

5.3 A fixpoint combinator

In order to reproduce recursion, we will use a fixpoint combinator. There exists a
fixpoint combinator F for the SK-calculus:

Definition 5.3.1 ([13, p. 6]). F = ssk(s(k(ss(s(ssk))))k)

We have the following:

Proposition 5.3.1. There exists a k such that for all x, ACT ` Fx→k x(Fx):

Proof. Trivial. �

5.4 Arithmetical operations

5.4.1 Addition

We can define a term that calculates the sum of two natural numbers:

15

Definition 5.4.1.

plus′ := λx.λy.λz.d(z)(succ(x · y · (predz)))(y)

plus := F · plus′

As a recursive algorithm it would look like this:

plus (n,m) :
I f m = 0 ,

output n
else
−> plus (n , m−1) + 1

Proposition 5.4.1. ACT ` ∃c∀n,m ∈ N[plus · n ·m→c(m+1) n+m].

Proof. We will show this with induction. Assume that m = 0. Then,

plus · n · 0 = F · plus′ · n · 0
(Prop. 5.3.1)→k plus′ · plus · n · 0

(Th. 5.2.1)→c′ d(0)(succ(plus · n · (pred0)))(n)

→1 n

If we take c = k + c′ + 3 then plus · n · 0→c n+m
Now assume that the statement holds for m.

plus · n ·m+ 1 = F · plus′ · n ·m+ 1

→k plus′ · plus · n ·m+ 1

→c′ d(m+ 1)(succ(plus · n · (predm+ 1)))(n)

→1 succ(plus · n · (predm+ 1))

→1 succ(plus · n ·m)

(I.H.)→c(m+1) succ(n+m)

→1 n+m+ 1

We have that k + c′ + 1 + 1 + c(m+ 1) + 1 = c(m+ 2). �

5.4.2 Subtraction

The following function works on two natural numbers x and y, and calculates x − y,
but it gives 0 when x < y.

16

Definition 5.4.2.

min′ := λx.λy.λz.d(z)(pred(x · y · (predz)))(y)

min := F ·min′

As a recursive algorithm it would be written like this (but in ACT, 0− 1 or pred0
gives 0).

min(n,m) :
I f m = 0 ,

output n
else
−> min(n , m−1) − 1

Proposition 5.4.1. ACT ` ∃c∀n,m ∈ N[min · n ·m→c(m+1) n−m].

The proof of this proposition, and the rest of the propositions in this chapter, can
be found in the Appendix.

5.4.3 Multiplication

We can perform multiplication of natural numbers with this term:

Definition 5.4.3.

times′ := λx.λy.λz.d(z)(d(predz)(plus(x · y · (predz))y)(y))(0)

times := F · times′

times(n,m) :
I f m = 0

output 0
else

i f m=1
output n

else
−> t imes (n , m−1) + n

Proposition 5.4.2. ACT ` ∃c∀n,m ∈ N[times · n ·m→c(m+1)(n+2) n×m].

5.4.4 Division

We will give a function that for two natural numbers x and y, calculates dxy e:

17

Definition 5.4.4.

div′ := λx.λy.λz.d(predz)(d(min · y · z)(succ · (x · (min · y · z) · z))(1))(y)

div := F · div′

div(n,m) :
I f m > 1

i f n > m
−> div (n−m, m) + 1

else
output 1

else
output n

Proposition 5.4.3. ACT ` ∃c∀n,m ∈ N[div · n ·m→c(m+2)d n
m e d

n
me].

5.4.5 Exponentiation

The following terms allow us to compute the exponent of two numbers.

Definition 5.4.5.

exp′ := λx.λy.λz.d(z)(times · y · (x · y · (predz)))(1)

exp := F · exp′

exp(n,m) :
I f m=0
−> t imes (n , exp (n , m−1))

else
output 1

Proposition 5.4.4. ACT ` ∃c∀n,m ∈ N[exp · n ·m→c(n+2)
∑m−1

i=0 (ni+1) n
m].

5.4.6 Equality

The following functions works on two natural numbers. It outputs 1 when they are
equal, and 0 when the numbers are unequal.

Definition 5.4.6.

e′ := λx.λy.λz.d(y)(d(z)(x · (predn) · (predm))(0))(d(z)(0)(1))

e := F · e′

18

e(n,m) :
i f n > 0

i f m > 0
−> e (n−1, m−1)

else
output 0

else
i f m > 0

output 0
else

output 1

Proposition 5.4.5. Let min(x, y) denote the minimum of x and y. Then,

ACT ` ∃c∀n,m ∈ N[ec(min(n,m)+1)z],

where z = 1 when n and m are equal and z = 0 otherwise.

5.5 Lists

5.5.1 Lists of natural numbers

Lists are constructed by repeated pairing. We need something to represent the empty
list. Because our if-then-else combinator d works with natural numbers in the if-
statement, it is the most convenient to somehow denote the empty list with natural
numbers. We therefore chose to represent the empty list with p00. In order to distin-
guish the 0’s in the empty list from the other natural numbers, we will add 1 to every
number in the list. A delimited list [a0, a1, . . . , an−1] is then represented by

p(a0 + 1)(p(a1 + 1) . . . (p(an−1 + 1)p00) . . .).

We will denote the length of a list t by lh(t). In Section 5.5.2 we will give functions
for giving the length of a list and obtaining an element at a certain index. We have
that `(p00) = 5 and lh(p00) = 0. We also have the following:

Lemma 5.5.1. When t is a list of natural numbers, all smaller than some N , then
`(t) ≤ (N + 5)× lh(t) + 5.

Proof. Let t be a list of natural numbers of length m, so t = pn0pn1p · · ·pnm−1p00.
Then `(t) will be equal to 5 plus the number of p′s in t without the p00. Thus, `(t)
is equal to lh(t) plus the number of applications, which is 2lh(t) plus the sum of the

natural numbers that appear in t. So `(t) = 5 + 3lh(t) +
∑lh(t)−1
i=0 (`(ti) + 1). Since all

natural numbers in t are bounded by N , and for an n ∈ N `(n) = n+ 1, we have that∑lh(t)−1
i=0 (`(ti) + 1) ≤ (N + 2)× lh(t). We conclude that `(t) ≤ (N + 5)× lh(t) + 5. �

19

5.5.2 Operations on lists

We will define functions that give the length of a list, and give an element at a certain
index of the list. We will denote elements of a sequence s at index i with si, where
the first element has index 0. The following function will give the length of a list:

Definition 5.5.1.

len′ := λx.λy.d(p0y)(succ(x · (p1y)))(0)

len := F · len′

len (s) :
I f s has a f i r s t element x
−> l en (t a i l (s)) + 1

else
output 0

The function tail(s) is taken from the programming language Haskell and gives the
list s without the first element. The first element of a list s is given by head(s).

We can give the complexity of calculating the length of a list of natural numbers,
but ACT has no way of checking that some term s is actually such a list.

Proposition 5.5.1. When s is a sequence of natural numbers of length n, then

ACT ` ∃c[len · s→c×n n].

The following function gives an element at a certain index:

Definition 5.5.2.

ind′ := λx.λy.λz.d(z)(x · (p1y)(predz))(p0y)

ind := F · ind′

ind(s ,n) :
I f n=0

output head (s)
else
−> ind (t a i l (s) , n−1)

Proposition 5.5.2. When s is a sequence of natural numbers of length n, then

ACT ` ∃c∀m ≤ n[ind · s ·m→c×m sm].

20

6 Invariance with respect to Turing
Machines

We have to argue that the system ACT acts a reasonable model of computation. A
definition of a reasonable model is stated in the Invariance Thesis, from Slot and van
Emde Boas [11]:

Invariance Thesis. Reasonable models of computation simulate each other with poly-
nomially bounded overhead in time and constant factor overhead in space.

It was already proven that lambda calculus is such a reasonable model with respect
to time-bounded computation [1, 2]. In order to prove that this also holds for ACT, we
will show two things. Firstly, that there is a Turing machine that can rewrite a term
using the axioms of ACT with a number of steps that is at most polynomially many
more than we would have used in the system itself. Secondly, that for each Turing
machine there is a term that will simulate it using at most polynomially many more
steps than the machine itself.

There is one issue: the rewriting of terms is not deterministic. We will fix a specific
rewriting rule for showing these two results. Namely, we will rewrite the terms using
the axiom for the leftmost combinator that can be rewritten.

6.1 A Turing machine that rewrites terms

We will describe a Turing machine that simulates the rewriting of terms in ACT. That
is, we prove the following theorem:

Theorem 6.1.1. There is a Turing machine that with the binary description of a term
t as an input, outputs z in poly(n`(t)) steps when t →n z using a leftmost reduction-
technique and z is in normal form.

Before we do this, we need to show how we represent terms as binary strings.

6.1.1 Encoding terms in binary

We can uniquely encode terms as binary strings, and give an upper bound to the length
of the encoding. This work is inspired by the work of Tromp [13]. We will represent
binary strings as a concatenation of the numbers 0 and 1 in bold, so 014 ≡ [0, 1, 1, 1, 1].

The encoding 〈·〉 is as follows:

21

Definition 6.1.1.

〈k〉 ≡ 012

〈s〉 ≡ 013

〈p〉 ≡ 014

〈p0〉 ≡ 015

〈p1〉 ≡ 016

〈succ〉 ≡ 017

〈pred〉 ≡ 018

〈d〉 ≡ 019

For n ∈ N, 〈n〉 ≡ 01n+10

〈x · y〉 ≡ 01〈x〉〈y〉

Each binary sequence encodes a term. For a sequence s, we will denote the cor-
responding term with s. Any sequence of zeroes at the end of the encoding can be
ignored. So, for all terms t and n ∈ N, 〈t〉 = 〈t〉0n = t.

We can give the following upper-bound on the length of the encoding:

Lemma 6.1.2. We have that `(〈x〉) ≤ 82 · `(x), so the length of the encoding is linear
in the size of the represented term.

Proof. This can be shown with induction. We have that:

`(〈n〉) = `(01n+10)

(Lem. 5.5.1) ≤ (2 + 5) · (n+ 11) + 5

= 7(n+ 1) + 75

= 7(`(n)) + 75

≤ 82`(n)

Now assume that the statement holds for x and y. Then:

`(〈x · y〉) = `(01〈x〉〈y〉)
= `(01)− 5 + `(〈x〉)− 5 + `(〈y〉)

(I.H.) ≤ 11 + 82`(x)− 5 + 82`(y)

≤ 82(1 + `(x) + `(y))

= 82`(x · y)

�

22

6.1.2 Simulating the reduction steps

Before we can introduce the algorithm that rewrites the terms, we will need to verify
that our terms cannot grow too fast in length, similarly to how invariance for lambda
calculus was proven in [1]. We also need an additional definition:

Definition 6.1.2. We say that x is a subterm of t when x is t itself or x appears in
t by application with other terms.

In order to verify that the terms cannot grow exponentially using a polynomially
number of steps, we will show the following:

Lemma 6.1.3. When t →k u, by always applying the axiom for the leftmost com-
binator that can be rewritten, then at every reduction-step, nothing that is dupli-
cated contains two identical subterms that appeared by a single-step duplication, so
`(u) ≤ (k + 1)`(t).

The proof of this lemma can be found in the Appendix.
We also need to make sure that choosing the subterm that we will apply one of the

axioms to does not take too much time:

Lemma 6.1.4. Finding the combinator for which we will use the corresponding axiom
for the reduction of a term t can be done in time polynomial in `(t).

Proof. A Turing program for finding the combinator that we will apply one of the
basic axioms to can be described as follows. We assume that we are working with a
Turing machine with extra work tapes, so that we can make use of counters.

The machine will read the term from left to right, searching for the combinator that
is closest to the beginning. We know that we’ve found a combinator when we have at
least two 1’s after a 0.

By reading the number of 1’s we can figure out which of the combinators it repre-
sents. Then, we will denote the location of the combinator and we will check whether
what comes after the combinator is such that we can apply the corresponding axiom.
If we cannot reduce this combinator then from there we go further to the right to
search for another combinator, making use of the denoted location.

We will describe how we can check whether the combinator can be reduced with
an example. Suppose we found the s combinator and we want to know whether the
subterm is of the form s · x · y · z, or, whether there’s 010101013〈x〉〈y〉〈z〉 written on
the tape.

We need to make sure whether there are three separate subterms written after the
013. We start with x. That can be a combinator, or some application of two other
terms t1 · t2.

We can think of terms as trees: see Figure 6.1. We go trough the substring 〈x〉 from
left to right. We denote the location of the beginning of the subterm x, which we will
use in the proof of Theorem 6.1.1. We will also use a counter, which is initially set
at zero. The maximum number that the counter will show gives the depth of the tree
that represents the subterm x. Each time we read an application (or 01), we add one

23

s x

· y

· z

·

t′′1 t′′1

t′1 ·

· t2

·

Figure 6.1: Terms as trees

to the counter. Each time we read a combinator, we subtract one from the counter. If
we read a combinator while the counter is at zero, then we’ve reached the end of the
subterm. This works, since with every application, we allow for one extra combinator
in the term. We then continue to check the next subterms this way, and we also denote
the location of the beginning of them.

This process of checking a subterm needs time linear in the length of the string and
thus also in the length of the term (using Lemma 6.1.2).

If what comes next is not correct for applying the axiom (so no 〈x〉〈y〉〈z〉 for some
x, y and z), we will go back to that combinator. This can also be done within linear
time. From there we will go to the right again, looking for the next combinator, we
denote the location of that one and we start again.

This process will repeat itself until we’ve found a combinator that we can rewrite
(and if this doesn’t happen then we are done and we output what’s on the tape). We
need to iterate this at most `(t) times. In order to find a combinator to rewrite we
would thus use a number of steps that is polynomial in `(t). �

We can now give the proof of the main theorem:
Proof of Theorem 6.1.1. Assume that we have a term t, and t →n z, with z in
normal form, where we always used the axiom for the leftmost combinator that could
be rewritten.

By Lemma 6.1.4, we know that we can find the combinator for the reduction step
of a term s in polynomial time. By Lemma 6.1.3, we know that every term that
appears in the computation has length at most (n+ 1)`(t). So each time, finding the
combinator that we will apply one of the basic axioms to will need time polynomial in
(n+ 1)`(t).

Because we denoted the locations of the subterms that are going to get changed by
the reduction, rewriting the term can also be done in polynomial time.

We then repeat this process n times. The entire computation can thus be done in
time polynomial in `(t) and n �

24

6.2 A term that simulates Turing machines

In this section we will describe how for each Turing machine, we can find a term that
simulates that Turing machine.

We will adapt the Turing machine such that it is a machine with only one one-
way infinite tape and that its computation halts when the head is located at the first
bit of the output. For any Turing machine there exists another machine that is of
this form and computes the same function with a polynomially bounded overhead in
time [3, Ch. 1]. We also assume that the machine reads the entire input during the
computation, which is often done in standard computational complexity.

We have that Γ is the alphabet with size l, that Q the set of k states, where q1 is
the starting state and qk the halting state, and that δ : Q× Γ→ Q× Γ× {L,R, S} is
the transition function.

In order to describe a single configuration of the Turing machine during its compu-
tation, we will use the following tuple of four [14]:

C = (q, [T (n)], [T (n− 1), T (n− 2), . . . , T (0)], [T (n+ 1), T (n+ 2), . . . T (n+m)]).

The symbol q will be a number that represents the state of the Turing machine. T (n)
is the symbol under the head of the Turing machine. The other lists describe the
symbols before and after T (n).

In reality the Turing machine has an infinite tape, with an infinite number of
“blank”-symbols going both sides, but we do not need to encode these in order to
simulate the computation. We will denote the empty list by ’[]’, (see Section 5.5.1).

Assume that a Turing machine M will receive the input x ∈ {0, 1}n, and that it
runs in time f(n). We describe a term ∆ that will simulate the computation of the
machine on input (0, x0, [], [x1, . . . , xn−1]).

Definition 6.2.1.

∆ · C := when q1 = C0

when qk−1 = C0

when qk = C0

⇒

⇒

⇒

when γ1 = C1

when γl = C1

pC1C3

⇒ ∆ · (q, γ, C ′2, C ′3)

We cannot really perform recursion like this in ACT. However, using lambda ab-
stractions and the F -combinator will unnecessarily complicate the description of this
term. As we saw in Chapter 5, using this definition will have no influence on the
complexity-analysis of the actual ∆’s.
Ci is shorthand for indCi (see Section 5.5.2), and for checking equality we will use

enm (Section 5.4.6).
The 4-tuple (q, γ, C ′2, C

′
3) will be set for each case, depending on δ:

25

1. When δ(qi, γj) = (qi′ , γj′ , L), then we put (qi′ ,p0C2,p1C2,pγj′C3).

2. When δ(qi, γj) = (qi′ , γj′ , R), then we put (qi′ ,p0C3,pγj′C2,p1C3).

3. When δ(qi, γj) = (qi′ , γj′ , S), then we put (qi′ , γj′ , C2, C3).

We will show that the term ∆ reduces to a term in normal form with a number of
steps that is polynomial in f(n).

Theorem 6.2.1. For each TM M , there is a term t such that for x ∈ {0, 1}n, ACT `
t · x→m M(x), where m is polynomial in the computation time of M .

Proof. Let M be the Turing machine described in the beginning of this section.
Assume that M runs in time f(n).

It is clear that there exists a term that on input [x0, . . . , xn−1], in linear time com-
putes (q1, x0, [], [x1, . . . , xn−1]).

We will then give this to ∆, which will compute M(x). The rest of the proof will
be a time-analysis of ∆.

Since there is a constant number of states, each qi will be a natural number bounded
by some constant. Since enm runs in time linear in min(n,m), we will have that
checking the equality for the states can be done in constant time. The same holds for
checking equality for the symbols γi. Creating the new 4-tuple can also be done within
a constant number of steps for each input.

We will need to perform f(n) recursive applications of ∆, since M makes f(n) steps.
So the total time that ∆ needs is c · f(n) for some c. �

26

7 Complexity Results

In this chapter we will prove some results from standard computational complexity. As
stated in Section 2.1.3, diagonalization is referred to as a relativizing proof-technique.
However, we need more axioms before we can actually use diagonalization. Therefore,
we will introduce an extension to ACT. We then define several complexity classes, and
deduce some results concerning those.

7.1 Universal computation

In order to use diagonalization, we need the following:

1. An enumeration of all programs

2. A program that can simulate other programs

We will formalize these two statements in several axioms. We introduce two ex-
tra combinators: an encoding, enc, and its inverse, dec. We also have a universal
combinator, u, that can simulate other terms.

U.1 ∀x∃n ∈ N[enc · x→1 n ∧ dec · n→1 x]

U.2 ∀n ∈ N∃x[dec · n→1 x ∧ enc · x→1 n]

U.3 ∀n1, n2, n3, n4 ∈ N∃m ∈ N[u · n1 · n2 · n3 · n4 →n2
1
m ∧ (m = 1 ∨m = 0)]

U.4 ∀nx, ni, nt,m ∈ N[(dec · nx) · ni →nt
m⇒ u · nt · nx · ni ·m→ 1]

U.5 ∀nx, ni, nt,m ∈ N[¬((dec · nx) · ni →nt
m)⇒ u · nt · nx · ni ·m→ 0]

The universal combinator is in some way able to tell us whether x ·ni →nt
m or not,

even though this is not decidable in ACT itself. We also have that the first natural
number that u is applied to, gives us a bound on the total computation time of u.
The combinator eventually always outputs 0 or 1.

We call the system ACT together with these axioms and the symbols for enc, dec
and u the system ACT+U. Similarly, we have ACTf +U, where of course in the axioms
U.1 until U.5 we use →f . We also have the following:

Corollary 7.1.1. For all total recursive f and for all formulas ϕ:

ACT + U ` ϕ⇒ ACTf + U ` ϕ.

27

7.2 Enumerating the terms

What seems useful in proofs that use diagonalization, is to actually have an enumera-
tion of terms that satisfies the following properties:

i Every number represents a term.

ii Every term occurs infinitely many often in the enumeration.

The first property is satisfied by axiom U .2. We will use the following enumeration
to satisfy the second property:

1. (1, 1)

2. (2, 1)

3. (2, 2)

4. (3, 1)

5. (3, 2)

6. (3, 3)

7. (4, 1)

8. · · ·

We ensured that each number appears infinitely-many often on the right side of
the pairs. We also have that for any numbers m and c, there exists a pair (k,m)
in the enumeration such that c ≤ k. Later on, we will see that this is useful for
diagonalization.

There is a program that on input n, gives the pair (k,m) from the enumeration in
polynomial time. We will not prove this formally, but since we have that 1+2+· · ·+k =
k(k+1)

2 , the following algorithm will work:

enum(n) :
For i = 1 , . . .

i f n − i (i +1)/2 <= i
i f n − i (i +1)/2 = 0

output (i , i)
else

output (i +1, n − i (i +1)/2)

We thus have the following term:

28

Definition 7.2.1.

enum′′ := λx.λn.λc.

d
(
min(minn(div(timesi(succi))2))i

)(
d(e0(minn(div(timesi(succi))2)))

(pii)

(p(succi)(minn(div(timesi(succi))2)))
)(

xn(succi)
)

enum′ := F · enum′′

enum := λn.enum′ · n · 1

We will assume that for any n, enum · n will give the pair (k,m) in polynomial
time.

7.3 Complexity classes

In the system ACT, complexity classes are represented by formulas. We will only
consider the complexity of terms that compute functions from N to N. A standard
complexity class will look like this:

For a term t, Cg(t) holds when ∃t′, t′ .= t and ∀n ∈ N ∃m ∈ N s.t. t′ · n→g(n) m.
The class of polynomial-time 0,1-valued functions can be described in the following

way:

Definition 7.3.1. For a term t, P (t) is true when there exists a term t′, t
.
= t′, and

constants c, c′, such that for all n ∈ N there exists an m, m = 0 or m = 1, and
t′ · n→nc+c′ m.

There is a difference between the formula P and the class P from standard compu-
tational complexity. For the complexity, we consider functions that are polynomials
in the input, instead of polynomials in the length of the input.

We defined the length of a natural number n to be n+ 1, so we can consider this as
functions in the length of n. We could’ve chosen to consider functions as log(n)c+c′, to
capture the length of the binary string that represents n. However, choosing the actual
natural number as input for the complexity bound gives complexities of for example
addition and multiplication that are in correspondence with the Turing complexities
of those functions.

We also have exponential-time computation:

Definition 7.3.2. For a term t, EXP (t) is true when there exists a term t′, t
.
= t′,

and constants c, c′, such that for all n ∈ N there exists an m, m = 0 or m = 1, and
t′ · n→2nc+c′ m.

29

We can describe a formula that is true when s is a binary sequence:

∃n,m[lens→n m ∧ ∀i ≤ m(indsi = 0 ∨ indsi = 1)].

With that, we will define nondeterministic polynomial-time as follows:

Definition 7.3.3. For a term t, NP (t) is true when for all n there exists an m such
that t · n→m 0 or t · n→m 1. We also need that there exists a term t′, constants c, c′,
and a polynomial p, such that for all n ∈ N and binary sequences s of length p(n),
there exists an m, m = 0 or m = 1, such that t′ · (n, s)→nc+c′ m. We have that

∀n[t · n→ 1⇔ There exists a binary sequence s(lens ≤ p(n) ∧ t′ · (n, s)→nc+c′ 1)].

We only focused on 0/1-functions in this section. The classes P and EXP could of
course also be defined for all functions. This is however not possible for NP .

7.4 Time Hierarchy Theorem

We will outline how to reproduce the Time Hierarchy Theorem of Hartmanis and
Stearns with ACT + U.

Theorem 7.4.1 ([8]). ACT + U ` P 6= EXP

The original Time Hierarchy Theorem gives a sharper bound. The version that we
prove here is easier to understand and gives the reader an impression of the proof-
method that was used.
Proof. We will show the statement by actually showing the following

ACT + U ` ∃t[EXP (t) ∧ ¬P (t)].

We let t = λn.d
(
u · (plus · (exp · (p1(enum · n)) · (p0(enum · n))) · (p1(enum · n))) ·

(p1(enum · n)) · (p1(enum · n)) · 1
)(

0
)(

1
)
.

Or:

t (n) :
enum(n) = (k ,m)
I f u (mˆk + k , m, m, 1) −> 1

Output 0
else

Output 1

So on input n, let enum · n→ (k,m). The algorithm checks whether

(dec ·m) ·m→mk+k 1.

If yes, we output 0 and if no we output 1.
It is obvious that ACT + U ` EXP (t). Now we show that ACT + U ` ¬P (t). So

assume that P (t) holds. Then there exists a term t′ and constants c and c′, such that

30

t
.
= t′ and t′ · n→nc+c′ 0/1. By Axiom U.2 we have that there exists an m such that

dec·m→1 t
′. By the enumeration of the programs, we have that there exists an n such

that enum ·n = (k,m) and mc+ c′ ≤ mk +k. This means that t′ ·m→ 1⇒ t ·m→ 0
and t′ ·m→ 0⇒ t ·m→ 1. Contradiction. �

7.5 P vs NP is independent from ACT+ U

In this section, we will show the following theorem:

Theorem 7.5.1. P = NP is independent from ACT + U.

We will obtain this result by giving oracles fA, fB such that ACTfA +U ` P = NP
and ACTfB +U 6` P = NP . Then, together with Corollary 7.1.1, we have the theorem.

7.5.1 Relativized world where P = NP

Lemma 7.5.2. [5] There exists a total recursive fA such that ACTfA + U ` P = NP

The proof of this lemma is based upon [3, Th. 3.7].
Proof. We assume that we have a suitable encoding and decoding for triples, that can
be computed within polynomial time, such that for any n ∈ N, there exists x, y, z ∈ N
with n = (x, y, z).

We let tfA := λ(x, y, z).u · (exp · 2 · x) · y · z · 1. The decoding of the triple is part of
the computation of tfA · n. tfA will thus simulate a computation (dec(y) on input z)
for exponential time (2x) and tell us whether the program accepted.

We can assume that ACTfA + U ` ∀x[P (x) ⇒ NP (x)].We will now argue that
ACTfA + U ` ∀x[NP (x)⇒ P (x)].

Assume that for some t we have that NP (t) holds. Then for all n, t ·n→ 0/1. There
also exists a term t′, constants c, c′ and a polynomial p, such that for all n, t · n→ 1
iff there exists a binary sequence s such that lens ≤ p(n) ∧ t′ · (n, s)→nc+c′ 1.

We can now make a make a term x as follows. On input n, we enumerate all binary
sequences of length at most p(n). This can be done in exponential time. For each of
such sequences s, we run t′ on input (n, s). This is done in polynomial time. If for one
sequence t′ gives 1, x also outputs 1. If this doesn’t happen for any sequence then x
outputs 0.

In total, x runs in exponential time, say, 2q(n) for some q. We also have that there
exists a term m such that enc · x→1 m. With this, we can make a term y as follows.

On input n, encode a triple (m, q(n), n) and give this to the oracle ofA . Then output
the same result. We have that y needs polynomial time for the computation, and y

.
= t.

So P (t) holds. �

31

7.5.2 Realizability with truth

We cannot actually use the known proof of Baker, Gill and Solovay in [5] to show
that there exists a function fB such that ACTfB + U ` P 6= NP . This is because
our universal term does not allow us to have specific behaviour depending on what
string is given to the oracle. Also, the creation of the oracle fB in several stages poses
a problem. However, with results from Chapter 6, on the invariance of ACT with
respect to Turing machines, we can argue for the existence of a term that acts as a
universal machine and has somewhat more flexibility with respect to its behaviour.
We will show the following theorem, which still depends on results from [5]:

Theorem 7.5.3. There exists an oracle fB and a term t such that ACTfB +U ` NP (t)
but ACTfB + U 6` P (t).

This theorem is implies that ACTfB +U 6` P = NP . However, some of the reasoning
in the proof can thus only be done in the meta-theory. In order to obtain a contra-
diction after assuming that ACTfB + U ` P (t), we need to make sure that statements
from ACTfB + U about terms also extend to the meta-theory. We thus first need to
show the following:

Lemma 7.5.4. When ACTf +U ` ∃xϕ(x), then there exists a closed term t such that
ACTf + U ` ϕ(t).

We will do this by using realizers. First, for any formula ϕ, we define another
formula x rt ϕ as follows:

Definition 7.5.1.

x rt φ := φ if φ is an atomic formula

x rt (φ ∧ ψ) := p0x rt φ ∧ p1x rt ψ

x rt (φ ∨ ψ) := (p0x = 0⇒ (p0p1x)0 rt φ) ∧ (p0x 6= 0⇒ (p1p1x)0 rt ψ)

x rt (φ⇒ ψ) := (φ⇒ ψ) ∧ ∀y(y rt φ⇒ x · y rt ψ)

x rt ∃yφ := p1x rt φ(p0x)

x rt ∀yφ := ∀y(x · y rt φ)

We can now turn to the proof of the lemma. Since the proof is quite similar to how
this is shown other systems, such as for HA∗ in [6], we will not fill in all the details.

Proof sketch. We will first show that x→n y and y rt ϕ implies that x rt ϕ.
This is done with induction on the complexity of ϕ. When it is an atomic formula

then the statement obviously holds. When y rt ϕ and ϕ := φ ∧ ψ, then by definition
p0y rt φ and p1y rt ψ. We have that x →n y implies that p0x →n p0y. So by the
induction hypothesis, also p0x rt φ. The case for p1y is similar.

We can show the other cases for ϕ in the same way. We conclude that

(x→n y ∧ y rt ϕ)⇒ x rt ϕ.

32

We have that for any ϕ without free variables, if ACTf + U ` ϕ then there exists a
closed term t in the language of ACTf +U such that ACTf +U ` t rt ϕ. This can be
shown by giving terms that realize the axioms. For implications we show that realizers
for the premises give us realizers for the conclusions.

The combinators are realized by themselves. The axiom for induction can be realized
with the following term i:

i′ := λxλyλzd(z)(p1y · (pred · z) · (x · y · (pred · z)))(p0y)

i := F · t

Now assume that ACTf +U ` ∃xϕ(x). Then there exists an s such that ACTf +U `
s rt ∃xϕ(x). So, by definition, p1s rt ϕ(p0s). If we let t = p0s, then the lemma
follows. �

7.5.3 Relativized world where P 6= NP

We will first describe how we can construct a universal term. Take the Turing machine
that simulates computations of terms, Theorem 6.1.1. Then simulate this Turing
machine with the term that simulates Turing machines, Theorem 6.2.1. We now have
such a universal term u′.

What’s more, this term simulates other terms with only a polynomial overhead in
time. Recall the encoding of terms as binary strings, Definition 6.1.1. Note that we
can decide whether a binary string encodes a valid term. We can decide to let u′

immediately output 0 on strings that do not encode a term. Then we also have that
the representation of terms as binary strings satisfies the following two criteria:

i Every binary string represents a term.

ii Every term is represented by infinitely many binary strings.

We can also make a term u′′ that works as u′ only it can also read of -combinators
for a specific f , with an obvious modification to the binary representation of terms.
We can expand the universal term even more, by giving it a counter to keep track of
the reduction steps that are done. This way we can give an additional natural number
as input and let the universal term simulate for at most that many steps.

There is one problem: for the proof we need that the oracle fB is actually a function
that takes binary strings as input. As was argued in Section 7.3, there is a formula
that can tell us when a term is a binary string. We need to alter the axiom for the
of -combinator such that it also allows for oracles that are functions in binary strings.

Thus, let f(x) denote the output of f on input x. Then:

B.11 (∀x : domf (x))[ofx→f
1 f(x)]

33

We can now mimic the known proof of Baker, Gill and Solovay to show Theorem
7.5.3:

Proof sketch. We will define a term tfB that computes function fB , and for all binary
sequences x, decide whether fB(x) = 1 (tfB · x → 1) or fB(x) = 0 (B · x → 0). We
will do this in several stages. During this process, we need to keep track of sequences
which we already considered. We will do this by updating list, L, that contains binary
strings. We ‘remember’ L using recursion.

The rest of the proof then proceeds as outlined in for example [3, p. 74].
The idea is as follows. We will look at the function g that on input n, gives 1 when

there is a binary sequence x of length n with and tfB · x → 1. If there isn’t such a
sequence x then g(n) = 0.

There exists a term t that computes this function g with ACTfB ` NP (t). This is
because we can create a term t′ that gets as an input an n and s, computes ofB · s and
outputs the result.

We will now define tfB such that we cannot have that P (t) holds. We do this with
diagonalization, for several stages.

In stage i, with the universal term, we can simulate a term ti represented by string
i on some input ni for 2ni

10 steps. We choose ni such that it is bigger than the strings
that we’ve previously put in the list L. During the computation, ti can query the
oracle for several strings, but at most 2ni

10 many of them, so there are always strings
of length ni that ti cannot query. If i halted within that time, then depending on
whether ti · ni → 1 or ti · ni → 0 we can decide to put a string that it hasn’t queried
in the list L or put no strings of length ni in L. We make sure that ti gives the wrong
answer on whether there exists a string of length ni in L or not.

The term tfB then runs as follows: on input x ∈ {0, 1}n it goes through all stages
starting from 1 until we simulate a term on an input ni ≥ n. It then checks whether
x ∈ L or not and outputs 1 or 0 accordingly to the answer. So tfB · x → 1 ⇔ x ∈ L.
By our construction of L and tfB , we have that all terms that run in polynomial-time
have at least one input on which it differs with g.

So, when we assume that ACTfB +U ` P (t), we have in ACTfB +U that there exists
a t′, t′

.
= t, and that there exists constants c, c′, such that for all n ∈ N there exists

an m, m = 0 or m = 1, and t′ · n →2nc+c′ m. Then, by Lemma , we have that there

exists a closed term t′′ such that in ACTfB + U the above holds. However, this is in
contradiction with our construction of tfB .

We can conclude that there exists a term t such that ACTfB + U ` NP (t) and
ACTfB + U 6` P (t). �

7.5.4 Independence result

Lemma 7.5.5. ACTfB + U 6` P = NP

Proof. We have that ACTB+U ` NP (t) for the term t of Theorem 7.5.3. The theorem
also shows that there cannot exist a term s such that ACTB + U ` t .= s ∧ P (s).

34

Assume, towards a contradiction, that ACTB + U ` P = NP . Then we also have
that ACTB + U ` ∃x[t

.
= x ∧ P (x)]. With Lemma 7.5.3, we have that there exists a

term s such that ACTB + U ` t .= s ∧ P (s). Contradiction. �

Theorem 7.5.6. P vs NP is independent of ACT + U

Proof. Suppose that ACT+U ` P = NP or ACT+U ` P 6= NP . Then, by Corollary
7.1.1, for all f , also ACTf + U ` P = NP or ACTf + U ` P 6= NP . But this is in
contradiction with lemmas 7.5.2 and 7.5.5. �

Corollary 7.5.1. ACT + U is consistent.

35

8 Conclusion

We’ve presented a system, ACT, in which we can express the complexity of solving
problems. Everything that can be proven in ACT also relativizes.

The system uses combinatory logic to perform computations and it is invariant with
respect to Turing machines.

A small extension of the system enables us to reason about computations relative to
oracles. For any total computable function f , there exists the system ACTf , where all
computations are relative to the oracle f . Any proof in ACT can also be done within
ACTf for any f , which ensures that all proofs from ACT relativize. Both the systems
ACT and ACTf are consistent.

In ACT, we are only able to consider the time-bounded complexity of functions. It
would be interesting to extend the system such that it can also express space-bounded
complexity. The length of a term seems to be a good measure for this, and also allows
for an orthodox interpretation of the invariance thesis (a single simulation achieves the
polynomial overhead in time and constant factor overhead in space bounds). However,
ACT is not able to talk about the length of its own terms.

A way of defining nondeterministic and probabilistic computations is also something
to consider in future work. With probabilistic computations we can try to say more
about proof-methods such as arithmetization, which is regarded as non-relativizing.

An important thing to note is that ACT cannot tell us which proof-methods do not
relativize. We can only be sure that statements that can be proven within ACT are
relativizing. Still, it is expected that we can obtain information on non-relativizing
techniques with further studies.

But even then, it is difficult to mimic all proofs of standard computational complex-
ity, since a lot of proofs are dependent on the exact workings of a Turing machine. To
mimic the proof of the construction of the oracle relative to which P 6= NP we had
to use binary sequences. The proof could also not be done within the system itself,
but only in the meta-theory. It would be better when this was possible within ACT
and when we could construct an oracle that worked for natural numbers, instead of
an oracle for binary sequences.

There has been done some work similar to this. In [4] and [9] a system based on
Cobham’s characterization of the polynomial-time functions was used. It was argued
that in this system every proof relativizes. By adding axioms to the system the au-
thors showed that non-relativizing results could be proven. This gives insight in the
non-relativizing aspects of proofs. Since the system was based on polynomial-time
functions, it is only possible to give definitions based on those. In ACT we can use any
function for the time-bounded complexity.

36

In this work, we only used computable oracles. This was more in line with the
constructive approach that we wanted to take. Besides this, in standard computational
complexity almost all oracles that are used are actually computable.

We also chose to only have total functions as an oracle, even though perhaps par-
tial functions would’ve worked as well. We did this, because it fits nicer with the
requirement that the oracle is computable.

There is still a lot of work that needs to be done before we can obtain a system
that is more expressive. So far we can only talk about the time-bounded complexity
and deterministic computations. However, ACT sets a basis for further studies on this
matter.

37

9 Acknowledgements

In the process of writing this thesis, my two supervisors where the most important. I
would like to thank Benno van den Berg for giving me the idea to create this formal
system. I also want to thank him for answering the numerous questions that came up
throughout the whole process, even though he had perhaps too many other things to
do. I also have lot of gratitude towards Leen Torenvliet. No matter the topic, he was
always able to give me related papers to expand my background knowledge. But most
of all, he was very supportive and believed in me, even when I didn’t do this myself. I
hope that in the future there will be more opportunities to collaborate with the both
of them.

Since this thesis also finalizes my time in the Master of Logic, I want to say some
things about the program. I very much enjoyed all the opportunities I got for conduct-
ing research in my own interests. But most of all, I was happy to be able to spend so
much time together with the other students. They were inspiring in many ways and
I’ve never felt like I fitted in as much as I did among them.

38

10 Bibliography

[1] Beniamino Accattoli and Ugo Dal Lago. “Beta reduction is invariant, indeed”. In:
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference
on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). ACM. 2014, p. 8.

[2] Beniamino Accattoli and Ugo Dal Lago. “On the invariance of the unitary cost
model for head reduction”. In: LIPIcs-Leibniz International Proceedings in In-
formatics. Vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2012.

[3] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[4] Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus
nonrelativizing techniques: the role of local checkability. 1992.

[5] Theodore Baker, John Gill, and Robert Solovay. “Relativizations of the P=?NP
question”. In: SIAM Journal on computing 4.4 (1975), pp. 431–442.

[6] Samuel R Buss. Handbook of proof theory. Vol. 137. Elsevier, 1998.

[7] Complexity Zoo. https://complexityzoo.uwaterloo.ca/Complexity_Zoo.
Accessed: 07/2018.

[8] Juris Hartmanis and Richard E Stearns. “On the computational complexity of
algorithms”. In: Transactions of the American Mathematical Society 117 (1965),
pp. 285–306.

[9] Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. “An ax-
iomatic approach to algebrization”. In: Proceedings of the forty-first annual ACM
symposium on Theory of computing. ACM. 2009, pp. 695–704.

[10] Dieter van Melkebeek. Randomness and Completeness in Computational Com-
plexity. Vol. 1950. Jan. 2000. isbn: 3-540-41492-4.

[11] Cees Slot and P Boas. “On tape versus core an application of space efficient
perfect hash functions to the invariance of space”. In: Proceedings of the sixteenth
annual ACM symposium on Theory of computing. ACM. 1984, pp. 391–400.

[12] Anne S Troelstra and Dirk van Dalen. Constructivism in mathematics, an In-
troduction. Vol. 1 and 2. North-Holland, 1988.

[13] John Tromp. “Kolmogorov Complexity in Combinatory Logic”. In: (2002).

[14] Alan M Turing. “Computability and Lambda-Definability”. In: The Journal of
Symbolic Logic 2.4 (1937), pp. 153–163.

39

https://complexityzoo.uwaterloo.ca/Complexity_Zoo

11 Appendix

11.1 Proofs of Chapter 5

Proposition 5.4.1. ACT ` ∃c∀n,m ∈ N[min · n ·m→c(m+1) n−m].

Proof. This is done by induction on m. If m = 0:

min · n · 0 = F ·min′ · n · 0
(Prop. 5.3.1)→k min′ ·min · n · 0

(Th. 5.2.1)→c′ d(0)(pred(min · n · (pred0)))(n)

→1 n

We take c = k + c′ + 3. Now assume that the statement holds for n′ ≤ m.

min · n ·m+ 1 = F ·min′ · n ·m+ 1

→k min′ ·min · n ·m+ 1

→c′ d(m+ 1)(pred(min · n · (predm+ 1)))(n)

→1 pred(min · n · (predm+ 1))

→1 pred(min · n ·m)

(I.H.)→c(m+1) pred(n−m)

→1 n−m− 1

We have that k + c1 + 3 + c(m+ 1) = c(m+ 2). �

Proposition 5.4.2. ACT ` ∃c∀n,m ∈ N[times · n ·m→c(m+1)(n+2) n×m].

Proof. This is done by induction on m. If m = 0:

times · n · 0 = F · times′ · n · 0
(Prop. 5.3.1)→k times′ · times · n · 0

(Th. 5.2.1)→c1 d(0)(d(pred0)(plus(times · n · (pred0))n)(y))(0)

→1 0

40

We take c = max(k + c1 + 4, c2)(n+ 2), with c2 coming from plus:

times · n ·m+ 1 = F · times′ · n ·m+ 1

(Prop. 5.3.1)→k times′ · times · n ·m+ 1

(Th. 5.2.1)→c1 d(m+ 1)(d(predm+ 1)(plus(times · n · (predm+ 1))n)(n))(0)

→1 d(predm+ 1)(plus(times · n · (predm+ 1))n)(n)

→1 d(m)(plus(times · n · (predm+ 1))n)(n)

→1 plus(times · n · (predm+ 1))n

→1 plus(times · n ·m)n

(I.H.)→c·(m+1)(n+1) plus(n×m)n

(Prop. 5.4.1)→c2(n+1) n× (m+ 1)

We have that k+ c1 + c2(n+ 1) + 4 + c(m+ 1)(n+ 2) ≤ c(n+ 2) + c(m+ 1)(n+ 2) =
c(m+ 2)(n+ 2). �

Proposition 5.4.3. ACT ` ∃c∀n,m ∈ N[div · n ·m→c(m+2)d n
m e d

n
me].

Proof. This is done by induction on m. If m = 1:

div · n · 1 = F · div′ · n · 0
(Prop. 5.3.1)→k div′ · div · n · 1

(Th. 5.2.1)→c1 d(pred1)(d(min · n · 1)(succ · (div · (min · n · 1) · 1))(1))(n)

→1 d(0)(d(min · n · 1)(succ · (div · (min · n · 1) · 1))(1))(n)

→1 n

We take c = max(2c2, k + c1 + 5), with c2 coming from min:

41

div · n ·m+ 1 = F · div′ · n ·m+ 1

(Prop. 5.3.1)→k div′ · div · n ·m+ 1

(Th. 5.2.1)→c1 d(predm+ 1)(d(min · n ·m+ 1)(succ · (div · (min · n ·m+ 1) ·m+ 1))(1))(n)

→1 d(m)(d(min · n ·m+ 1)(succ · (div · (min · n ·m+ 1) ·m+ 1))(1))(n))

→1 d(min · n ·m+ 1)(succ · (div · (min · n ·m+ 1) ·m+ 1))(1)

(Prop. 5.4.1)→c2(m+2) d(n− (m+ 1))(succ · (div · (min · n ·m+ 1) ·m+ 1))(1)

→1 succ · (div · (min · n ·m+ 1) ·m+ 1)

(Prop. 5.4.1)→c2(m+2) succ · (div · (n− (m+ 1)) ·m+ 1)

→1 succ · (div · (min · n ·m+ 1) ·m+ 1)

(I.H.)→
c·(m+3)dn−(m+1)

m+1 e succ · (dn− (m+ 1)

m+ 1
e)

→1 d
n− (m+ 1)

m+ 1
e+ 1 = d n

m+ 1
e

We have that k + c1 + 2c2(m+ 2) + 5 + c · (m+ 3)dn−(m+1)
m+1 e ≤ c(m+ 3) + c · (m+

3)dn−(m+1)
m+1 e = c(m+ 3)(dn−(m+1)

m+1 e+ 1) = c(m+ 3)d n
m+1e. �

Proposition 5.4.5. Let min(x, y) denote the minimum of x and y. Then,

ACT ` ∃c∀n,m ∈ N[ec(min(n,m)+1)z],

where z = 1 when n and m are equal and z = 0 otherwise.

Proof. This is done by induction on n+m. If n+m = 0:

e · 0 · 0 = F · e′ · 0 · 0
(Prop. 5.3.1)→k e′ · e · 0 · 0

(Th. 5.2.1)→c′ d(0)(d(0)(e · (pred0) · (pred0))(0))(d(0)(0)(1))

→1 d(0)(0)(1)

→1 1

If we take c = k + c′ + 4 then e · 0 · 0→c·(1) n+m
Now assume that the statement holds for n+m. For n+m+ 1 we can have n+ 1

and m or n and m+ 1. Both cases work similarly so we’ll only show one of them:

42

e · n+ 1 ·m = F · e′ · n+ 1 ·m
(Prop. 5.3.1)→k e′ · e · n+ 1 ·m

(Th. 5.2.1)→c′ d(n+ 1)(d(m)(e · (predn+ 1) · (predm))(0))(d(m)(0)(1))

→1 d(m)(e · (predn+ 1) · (predm))(0)

→1 e · (predn+ 1) · (predm)

(I.H.)→c (min(n,m− 1) + 1)z

We have that k + c′ + 4 + c(min(n,m − 1) + 1) = k + c′ + 4 + cmin(n + 1,m) =
c(min(n+ 1,m) + 1). �

Proposition 5.4.4. ACT ` ∃c∀n,m ∈ N[exp · n ·m→c(n+2)
∑m−1

i=0 (ni+1) n
m].

Proof. We use induction. If m = 0:

exp · n · 0 = F · exp′ · n · 0
(Prop. 5.3.1)→k exp′ · exp · n · 0

(Th. 5.2.1)→c1 d(0)(times · n · (exp · n · (pred0)))(1)

→1 1

Now for m+ 1:

exp · n ·m+ 1 = F · exp′ · n ·m+ 1

(Prop. 5.3.1)→k exp′ · exp · n ·m+ 1

(Th. 5.2.1)→c1 d(m+ 1)(times · n · (exp · n · (predm+ 1)))(1)

→1 times · n · (exp · n · (predm+ 1))

→1 times · n · (exp · n ·m)

(I.H.)→c(n+2)
∑m−1

i=0 (ni+1) times · n · nm

(Prop. 5.4.2)→c2(n+2)(nm+1) n
m+1

We have that there exists a c such that k + c1 + 2 + c2(n + 2)(nm + 1) + c(n +

2)
∑m−1
i=0 (ni + 1) = c(n+ 2)

∑m
i=0(ni + 1). �

Proposition 5.5.1. When s is a sequence of natural numbers of length n, then

ACT ` ∃c[len · s→c×n n].

43

Proof. We will show this with induction on n. Assume that n = 0 (and thus s = p00).
Then,

len · s = F · len′ · s
(Prop. 5.3.1)→k len′ · len · s

(Th. 5.2.1)→c′ d(p0s)(succ(len · (p1s)))(0)

→1 d(s0)(succ(len · (p1s)))(0)

→1 0

Now assume that it works for lists of at most length n. Then for an s with lh(s) =
n+ 1:

len · s = F · len′ · s
(Prop. 5.3.1)→k len′ · len · s

(Th. 5.2.1)→c′ d(p0s)(succ(len · (p1s)))(0)

→1 d(s0)(succ(len · (p1s)))(0)

→1 succ(len · (p1s))

→1 succ(len · ([s1, . . . , sn−1]))

(I.H.)→cn succ(n)

→1 n+ 1

If we set c = 4 + k + c′ then the proposition follows. �

Proposition 5.5.2. When s is a sequence of natural numbers of length n, then

ACT ` ∃c∀m ≤ n[ind · s ·m→c×m sm].

Proof. We will show this with induction on n. Assume that n = 0. Then,

ind · s · 0 = F · ind′ · s · 0
(Prop. 5.3.1)→k ind′ · index · s · 0

(Th. 5.2.1)→c′ d(0)(ind · (p1s) · pred0)(p0s)

→1 p0s

→1 s0

Now assume that it works for indexes up to n.

44

ind · s · 0 = F · ind′ · s · n+ 1

(Prop. 5.3.1)→k ind′ · ind · s · n+ 1

(Th. 5.2.1)→c′ d(n+ 1)(ind · (p1s) · (predn+ 1))(p0s)

→1 ind · (p1s) · (predn+ 1)

→1 ind · ([s1, . . . , sn]) · (predn+ 1)

→1 ind · ([s1, . . . , sn]) · (n)

(I.H.)→cn sn+1

→1 s0

If we set c = 3 + k + c′ then the proposition follows. �

45

11.2 Proof of Lemma 6.1.3

Here we will present the proof of the following lemma:

Lemma. When t→k u, by always applying the axiom for the leftmost combinator that
can be rewritten, then at every reduction-step, nothing that is duplicated contains two
identical subterms that appeared by a single-step duplication, so `(u) ≤ (k + 1)`(t).

To make it easier for the reader, we repeat the basic axioms here:

B.1 kxy →1 x

B.2 sxyz →1 xz(yz)

B.3 p0(pxy)→1 x

B.4 p1(pxy)→1 y

B.5 p(p0x)(p1x)→1 x

B.6 succx→1 Sx

B.7 predSx→1 x

B.8 pred0→1 0

B.9 d(Sx)yz →1 y

B.10 d0yz →1 z

In the following, we will use the abbreviation of x ∈ B when x is a term that is as
a term on the left side of the arrow of one of the basic axioms (a redex). So kxy ∈ B
for all x, y, etc.

We apply the axiom for the leftmost combinator that can be rewritten (we use
a leftmost-outermost rewriting strategy). This can be formalized with the following
axioms. We adapt axioms A.1 until A.3. For axiom A.4 and A.5 we will use the
following rules:

• When x · z 6∈ B and x→1 y then x · z →1 y · z

• When z is in normal form, z · x 6∈ B and x→1 y then z · x→1 z · y.

These rules cannot be formalized within ACT, but they are stricter than A.4 and
A.5, so rewriting by using these axioms can be done within ACT.

We will now prove the lemma, by going over all possible terms for which the situation
of the lemma can occur.
Proof. The first observation that we make, is that the only combinator that will
duplicate subterms is the s-combinator. So we will only need to show the following:
assume that we have t →1 t

′, where t had the subterm a and t′ the subterm b, with
a →1 b by applying the axiom for an s in a (so a subterm of a is doubled). Then for
further reduction steps, we will never encounter terms t′′ and t′′′ such that t′′ →1 t

′′′

by reducing sxyb →1 xb(yb), for some x and y. In other words: once we’ve copied
subterms we will not copy them again with a single step.

We will show this by going over all possible situations for which we can have that
a→1 b.

We observe that when a is the leftmost subterm of t, then b is the leftmost subterm
of t′ and then we will never end up with sxyb somewhere in the derivation, so we’re
already done.

46

We have the following two other possibilities: either t = x · a for some x, or t = x · y
for some x and y.

t = x · a First assume that t = x · a. Because we used the leftmost rewriting strategy for
t →1 t

′, x has to be in normal form and x · a 6∈ B. Since x is in normal form,
the only way to change the expression x · b is when x · b ∈ B. We only have
that x · a 6∈ B and x · b ∈ B with the axioms of pairing or the successor and
predecessor axioms.

t = x · y Now assume that t = x · y. Here we also have to consider several cases. First,
assume that a is a subterm of y. We have three possibilities. t = x · (z · a) for
some z, t = x · (a · z) for some z or t = x · (z1 · z2) for some z1 and z2, where a is
either a subterm of z1 or z2.

t = x · (z · a) We consider the first possibility: t = x · (z · a). Then we need that x and z
are in normal form, x·(z ·a) 6∈ B and z ·a 6∈ B. Could it be that x·(z ·b) ∈ B?
This is only possible when we have p(p0b)(p1a)→1 p(p0b)(p1b)→ b. What
if x · (z · b) 6∈ B and z · b ∈ B? This is only the case when we have that z
is either the successor or predecessor combinator, because in all the other
cases we would have that z · a ∈ B also. The other option is that x · (z · b)
is in normal form and then we’re done.

t = x · (a · z) Now the second possibility: t = x · (a · z). Because we used the leftmost-
outermost rewriting strategy for t →1 t

′, we have that x · (a · z) 6∈ B. We
then have that x · (b · z) ∈ B only when we apply one of the pairing axioms.
If x·(b·z) 6∈ B, we can have that b·z ∈ B, but then we will not double b with
an s-combinator. We can rewrite z but if x · (b · z) 6∈ B then x · (b · z′) 6∈ B
for any z′. Again, if b · z′ ∈ B for some z′ then we will also not duplicate b.

t = x · (z1 · z2) For the third possibility, t = x · (z1 · z2) with a a subterm of z1 · z2, we need
that x is in normal form and x · (z1 · z2) 6∈ B. Rewriting (z1 · z2) cannot
change what is in x (so x will remain in normal form). If x · y 6∈ B (or
x · (z1 · z2) 6∈ B), then only x · y′ ∈ B for one of the pairing axioms or
the successor/predecessor cases. The only option for b to double is then by
rewriting z1 ·z2. If a is a subterm of z1, then this is the same as considering
x′ · y′ with a a subterm of x′, since x will remain in normal form. We will
consider this case later.

Assuma that a is a subterm of z2. Since x will stay in normal form, no
matter what z1 ·z2 will reduce to, if we want to duplicate b then it will have
to be done by rewriting z1 ·z2. So this is the same as considering x′ ·y′ with
a a subterm of y′, as we are considering now.

We can go trough all possibilities for what z2 could look like. Since x is
in normal form, it will remain the same. As mentioned before, rewriting
z1 · z2 into some term z′ will not enable us to rewrite x · z′ unless x is the
successor or predecessor combinator. We can then only consider rewriting
z1 · z2 and view it as x′ · y′ with a a subterm of y′. This is similar to the
case of t = x · y. We can then again go over the possibilities for what z2

47

looks like. But the term t has a finite length and we can continue to apply
this reasoning. So eventually we will have to end up with a situation that
was previously discussed.

Now the only thing left to do is to consider t = x · y with a a subterm of x. We
can assume that x · y 6∈ B. Here we have two possibilities: t = (z · a) · y for some
z, or t = (z1 · z2) · y for some z1 and z2.

t = (z · a) · y For the first possibility, we need that z is in normal form and z · a 6∈ B.
Then z · b ∈ B only happens for pairing, successor and predecessor. If
(z · b) · y ∈ B (but (z · a) · y 6∈ B), then this only happens when we had
p(p0a)(p1b)→1 p(p0b)(p1b)→1 b.

t = (z1 · z2) · y The second possiblity, t = (z1 ·z2) ·y, has two sub-possibilities: a can either
be a subterm of z1 or of z2.

a a subterm of z1 We have two options for when a is a subterm of z1 (when we assume
that a is not the leftmost subterm of t): ((w ·a)·z2)·y and ((w ·v)·z2)·y.

((w · a) · z2) · y We have that w is in normal form, and that all the subterms of
((w · a) · z2 · y are not in B. We have that w · b ∈ B only for pairing,
predecessor or successor. We have considered (w · b) · z2 ∈ B before
(this happens only for p(p0a)(p1b) →1 p(p0b)(p1b) →1 b). The
case when ((w · b) · z2) · y ∈ B but not with a only happens with
the d-combinator.

((w · v) · z2) · y Now consider ((w · v) · z2) · y, where a is either a subterm of w or v.
When ((w · v) · z2) · y 6∈ B with the subterm a, then also not when
we reduce a to b. If we consider rewriting (w · v) · z2, then this is
the same as considering (z′1 · z′2) · y′, as we are doing now.

a a subterm of z2 Finally, we will look at the possibilities for when a is a subterm of z2.
We have that z1 then needs to be in normal form.

(z1 · (a · w)) · y The only option for when (z1 · (b · w)) · y ∈ B is with pairing and
b = p0. The case for z1 · (b ·w) ∈ B is the same as x′ · (a · z′). The
possibility of b · w ∈ B is also considered there.

(z1 · (w · a)) · y Again, the only possiblity for when (z1 · (w ·a)) ·y ∈ B is for pairing
(p(p0a)(p1b) →1 p(p0b)(p1b) →1 b). The case for z1 · (w · b) ∈ B
is as x′ · (z′ · a) as we considered before.

(z1 · (w · v)) · y Also (z1 ·(w′ ·v′))·y ∈ B only for the pairing axioms. For considering
z1 · (w′ · v′) we can look at the previously covered x′ · (z′1 · z′2) with
a a subterm of z′1 · z′2.

�

48

	Introduction
	Preliminaries
	Basic notions from complexity theory
	Some complexity classes
	Oracle machines
	Relativization and diagonalization

	Heyting arithmetic

	Absolute Complexity Theory
	The formal system ACT
	Relativized worlds

	Conservativity over HA
	Coding sets and pairs
	Defining the mapping
	Conservativity of ACT

	Functions and Lists
	The length of a term
	Lambda abstractions
	Complexity of rewriting lambda abstractions

	A fixpoint combinator
	Arithmetical operations
	Addition
	Subtraction
	Multiplication
	Division
	Exponentiation
	Equality

	Lists
	Lists of natural numbers
	Operations on lists

	Invariance with respect to Turing Machines
	A Turing machine that rewrites terms
	Encoding terms in binary
	Simulating the reduction steps

	A term that simulates Turing machines

	Complexity Results
	Universal computation
	Enumerating the terms
	Complexity classes
	Time Hierarchy Theorem
	P vs NP is independent from ACT + U
	Relativized world where P=NP
	Realizability with truth
	Relativized world where P =NP
	Independence result

	Conclusion
	Acknowledgements
	Bibliography
	Appendix
	Proofs of Chapter 5
	Proof of Lemma 6.1.3

