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Abstract

In this thesis, we develop a Gödel-style translation of a positive calculus, that is,

a calculus that is equivalent to the positive fragment of classical propositional

logic that is sound and complete with respect to bounded distributive lattices,

into a suitable expansion of classical logic. In order to accomplish this, we build

on a known correspondence between bounded distributive lattices and Boolean

algebras with so-called lattice subordinations. We introduce a strict implication

calculus that is sound and complete with respect to the class of Boolean alge-

bras with a lattice subordination, which, as a consequence of the duality between

the category of Boolean algebras with a lattice subordination and the category

of quasi-ordered Priestley spaces, will also serve to reason about quasi-ordered

Priestley spaces. For the positive calculus, we chose to work with a hyperse-

quent framework, because it allows for nontrivial extensions of the calculus that

correspond to proper subclasses of the class of bounded distributive lattices. We

present a translation Tr(−) from the positive calculus to the strict implication

calculus and show that it is full and faithful. We consider extensions of both

calculi and show that every extension of the positive calculus is embedded via

Tr(−) into some extension of strict implication calculus and vice versa, that for

every extension of the strict implication calculus there exists a positive calculus

that is embeddable in it via Tr(−).
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Chapter 1

Introduction

This thesis is concerned with the development of a Gödel-style translation of a

positive calculus, that is, a calculus that is equivalent to the positive fragment

of classical propositional logic, into a suitable expansion of classical logic.

In 1933, Gödel [24] described an embedding of the intuitionistic proposi-

tional logic IPC, as axiomatised by Heyting [26], into the modal expansion S4 of

classical logic. The embedding prefixes the modal operator � to every subfor-

mula of a given intuitionistic propositional formula ϕ, with the intended mean-

ing of � to be ‘is provable’, hereby providing a formal interpretation of the

(informal) intuitionistic semantics that a statement is true if it has a proof.1

Gödel’s conjecture, that a formula ϕ is provable in IPC if and only if its trans-

lation T (ϕ) is provable in S4, was later shown to be true by McKinsey and

Tarski in the 40s [32]. They established the translation, henceforth known as

the Gödel-McKinsey-Tarksi translation T , to be full and faithfull. McKinsey

and Tarski also presented the Gödel embedding in algebraic form, by show-

ing that IPC and S4 are strongly sound and complete with respect to Heyting

algebras and S4-algebras respectively.2 In the 50s the Gödel translation was

lifted to the whole class of intermediate logics by Dummett and Lemmon [17],

associating with each intermediate logic L = IPC + {ϕi}i∈I the S4 extension

τL = S4 ⊕ {T (ϕi)}i∈I . Grzegorszyk later discovered that IPC can also be em-

bedded into S4Grz = S4 ⊕ �(�(p → �p) → p) → p, a proper extension of S4

1Actually the initial translation by Gödel in [24] does not prefix � to conjunctions and dis-
junctions. However, this difference does not affect the embeddings of IPC nor of its extensions.

2Throughout this thesis, we will use the typesetting ‘S4’ to denote the logic and will use
‘S4’ when referring to the corresponding algebra.
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CHAPTER 1. INTRODUCTION

[25].3 Systematic further investigations of the lattice ExtIPC of extensions of IPC

and the lattice NExtS4 of normal extensions of S4, launched by, among others

Maksimova and Rybakov [30], Blok [9], and Esakia [20,21], have shown that for

each normal extension M of S4 there is a unique intermediate logic ρM embed-

dable in it, termed its superintuitionistic fragment, with M the modal companion

of ρM. It was demonstrated that there are a continuum of modal companions

for each intermediate logic L [36], with a smallest companion τL and a largest

companion σL. Moreover, the mapping τ between ExtIPC and NExtS4 tran-

spired to be a lattice isomorphism. Blok [9] and Esakia [20] further discovered

the largest companion for each L to be σL = τL ⊕ S4Grz, with their research

culminating in the Blok-Esakia theorem that the map σ is a lattice isomorphism

of the ExtIPC onto NExtGrz (for a detailed survey of the development of the

theory of intermediate logics and modal companions, see for instance [12]).

Thus, at the syntactic level, the Gödel translation results in an embedding

of every intermediate logic L into an interval [τL, σL] of normal extensions of

S4. At the algebraic level, where we interpret intuitionistic formulas in Heyting

algebras and modal formulas in S4-algebras, this embedding manifests itself by

the fact the algebras of open elements (that is, the elements a of an S4-algebra

for which a = �a) of S4-algebras are precisely Heyting algebras and that every

Heyting algebra is isomorphic to the algebra of open elements of a befitting

S4-algebra.

The algebraical side of the Gödel embedding has been generalised by [3] to an

embedding of bounded distributive lattices into analogues of S4-algebras. In

particular, [3] introduces binary relations ≺ on Boolean algebras called lattice

subordinations, which resemble de Vries proximities from [16] and naturally gen-

eralise to so-called subordinations by dropping some of the specified conditions

(the exact definitions will be presented in the following chapter). The theory

of subordinations is closely related to several other lines of research. They are

in fact the dual concept of the pre-contact relations (also known as proximity

relations) introduced by Düntsch and Vakarelov in [18] and are in a 1-1 cor-

respondence with the quasi-modal operators introduced by Celani [11]. These

three notions have been shown to be equivalent, and hence in this work we could

take any one of them as primitive. In this thesis we choose to work with the sig-

natures ≺ and in line with our main references, in order to directly apply their

3In fact, the axiom above, though known as Grzegorczyk’s axiom, is due to Sobocinński [39].
Grzegorczyk [25] used the axiom �(�(p→ �q) → �q) ∧�(�(¬p→ �q) → �q) → �q) which
turned out to be equivalent in the system S4.
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key concepts and results. In [3] it has been shown that, for every Boolean algebra

with a lattice subordination, the lattice of reflexive elements (that is, elements

a ∈ B for which a ≺ a) is a bounded distributive lattice and conversely, each

bounded distributive lattice is isomorphic to the bounded distributive lattice of

reflexive elements of a suitable Boolean algebra with a lattice subordination.

The main objective of this thesis is to develop a syntactic counterpart for the

aforementioned generalised Gödel embedding, that is, to define a positive calcu-

lus that is sound and complete with respect to bounded distributive lattices and

one likewise for Boolean algebras with a lattice subordination and furthermore,

to develop analogues for the concepts of modal companions and superintuition-

istic fragments. In this thesis, we define such a translation Tr(−) and our main

result establishes it to be full and faithful. In our choice for a positive calculus

whe are faced with the problem that there can be no nontrivial extension of a

positive sequent calculus (and thus no nontrivial extensions of a positive logic).

However, we will see that for hypersequent calculi, such extensions do exist. As

we are interested in developing analogues for nontrivial superintuitionistic log-

ics, that is, extensions of a positive calculus that correspond to subclasses of the

class of bounded distributive lattices, the hypersequent framework is a comme il

faut choice. As for Boolean algebra with a lattice subordinations, there are two

observations to make, concerning semantics and the nature of the calculus re-

spectively. First, due to the presence of the binary relation ≺, a Boolean algebra

with a lattice subordination is formally not an algebra. We follow the solution

of [5], that every (lattice) subordination can be described equivalently by a char-

acteristic function  on a Boolean algebra.4 For our choice of a calculus, the

class of Boolean algebras with a lattice subordination is not a universal class,

but an inductive one. We build on the work of [5] that introduces a calculus

RC that is sound and complete with respect to the class of Boolean algebras

with a reflexive subordination. They introduce a specific sort of nonstandard

rules, so-called Π2-rules and show that, RC extended by Π2-rules correspond

to inductive subclasses.

1.1 Outline

The structure of this thesis is as follows. In Chapter 2, we define the concepts

and structures that are used throughout this thesis, among which subordinations,

4The work in [5] is based on the Master’s thesis [38]. In this thesis, we will be drawing
extensively on both sources though we mostly refer to [5].
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1.1. OUTLINE CHAPTER 1. INTRODUCTION

lattice subordinations, and Heyting lattice subordinations on Boolean algebras,

as well as their corresponding strict implication algebras. We present Stone-

like dualities for Boolean algebras with a subordinations and restrictions hereof,

and corresponding categories of topological spaces. In order to do so, we first

recall relevant concepts and definitions and known results among which Stone

and Priestley duality.

In Chapter 3, we present a positive propositional language and an algebraic

semantics based on bounded distributive lattices. We present a positive hyperse-

quent calculus PC+ and show that it is sound and complete with respect to the

class of bounded distributive lattices. We motivate our choice of a hypersequent

setting, by showing that there can be no nontrivial extension of a positive se-

quent calculus (and thus no nontrivial extensions of a positive logic), whereas we

show that, for hypersequent calculi, such extensions do exist. Although sound-

ness and completeness of the hypersequent calculus with respect to the class of

bounded distributive lattices has been known, to the knowledge of the author

there has been no spelled-out proof in the literature, hence we present the proof

in full detail.

Thereafter, in Chapter 4, we set out a classical propositional language en-

riched by a binary connective  called a strict implication. We present an

algebraic semantics for this language based on Boolean algebras with a strict

implication. We recall the results from [5] that presents a calculus RC (by [5]

termed SIC) which is sound and complete with respect to the class of Boolean al-

gebras with a reflexive subordination. Following [5], we define so-called Π2-rules

and recall their result that RC extended with Π2-rules is sound and complete

with respect to inductive subclasses of the aforementioned class. We introduce

a specific Π2-rule, ρqp and show that the system BC , the extension of RC 
with ρqp, is sound and complete with respect to the class of Boolean algebras

with a lattice subordination.

In Chapter 5 we present the main result of our thesis, namely, a translation

Tr(−) from positive hypersequent rules into sequent rules in the strict implication

language. We show that every such strict implication sequent rule is equivalent

to a strict implication formula. We proceed to show that a positive hyperse-

quent rule is derivable in PC+ if and only if the strict implication formula that

corresponds to its translation is derivable in the calculus BC and hence, that

Tr(−) defines an embedding of PC+ into BC . We explain why this is, in

fact, a generalisation of the Gödel translation and lift it to extensions of PC+

and corresponding extensions of BC . We define the notions of superpositive
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fragment and strict implication companions and provide examples thereof.
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Chapter 2

Preliminaries

The study of categorical dualities between classes of algebras and classes of topo-

logical spaces finds its early beginnings in Marshall’s Stone’s 1936 seminal pa-

per on the representation of Boolean algebras [40]. Stone showed that Boolean

algebras can be represented as algebras of clopen sets of associated compact

zero-dimensional Hausdorff spaces (now commonly known as Stone spaces) and,

that such Stone spaces can be represented via associated Boolean algebras. This

extends to a dual equivalence between the category of Boolean algebras together

with Boolean algebra homomorphisms and the category of Stone spaces and con-

tinuous maps. Such (dual) equivalences between categories allow us to translate

mathematical structures, theorems, problems, and concepts from one category

into structures, theorems, problems, and concepts of its associated category -

and to alternate between them. Hence, following Stone, in the course of the

second half of the 20th century, other categories of algebras and of topological

spaces have been investigated and related to one another by categorical dual

equivalences. Generalisations and extensions of Stone duality that are specifi-

cally relevant to this thesis, are Priestley duality for bounded distributive lattices

(presented below), de Vries duality for compact Hausdorff spaces, Esakia duality

for Heyting algebras, and Jónnson-Tarski duality for modal algebras.

In this chapter, we recall the formal results of Stone and Priestley dualities,

followed by a specific Stone-type duality from [3] between Boolean algebras with

a so-called subordination and Stone spaces ordered by a closed relation. Follow-

ing [3] we then present a restriction of this duality between Boolean algebras with

a so-called lattice subordination and quasi-ordered Priestley spaces. As shown

in [3], from a lattice subordination, we can identify a bounded distributive sub-

lattice of a Boolean algebra. We proceed by connecting back the Priestley spaces

13



2.1. STONE AND PRIESTLEY DUALITYCHAPTER 2. PRELIMINARIES

obtained from bounded sublattices to the dual quasi-ordered Priestley space of

the Boolean algebra with a lattice subordination in question. We conclude this

section by restricting the above correspondences to the special case of Heyting

lattice subordinations.

2.1 Stone Duality and Priestley Duality

In this section, we review the celebrated Stone and Priestley dualities. The

first establishes a dual equivalence between the category of Boolean algebras

together with Boolean algebra homomorphisms and the category of Stone spaces

(topological spaces that are compact, Hausdorff, and zero-dimensional) together

with continuous maps. By the latter duality, the category of bounded distributive

lattices with bounded lattice homomorphisms is dually equivalent to the category

of Priestley spaces (which are Stone spaces partially ordered by a relation R that

satisfies the Priestley axiom) and order-preserving continuous maps. Though

Stone duality chronologically precedes Priestley duality, we will first set out the

latter since, as we will see, Priestley duality generalizes Stone duality. First, we

give a brief overview of the basic concepts and properties needed to set out these

dualities. The material of this section is based on [10, 15], and, unless stated

otherwise, the full details and proofs can be found therein.

We recall that a binary relation R on a set S is called a quasi-order or a pre-

order if it is reflexive and transitive, and a partial order if, additionally, it is

anti-symmetric. We will often denote R by ≤ if it is a pre-order. Then, for a

pre-order R on a set S, a subset P of S is called an upset if, for all a, b ∈ S,

whenever a ∈ P and aRb we also have b ∈ P . A nonempty set L with a partial

order ≤ is called a lattice if, for all a, b ∈ L, the least upper bound and greatest

lower bound of a and b exist. The least upper bound of a and b is denoted by

a ∨ b and the greatest lower bound of a and b by a ∧ b, which are called meet

and join respectively. A lattice is bounded if it has both a least and greatest

element, that we denote by 0 and 1. We call a subset F of a lattice L a filter if

it satisfies for all a, b ∈ L, (i) F 6= ∅; (ii) if a ∈ F and a ≤ b then b ∈ F ; (iii) if

a, b ∈ F then a ∧ b ∈ F . Furthermore, a proper filter F on L is called a prime

filter if it satisfies (iv) a ∨ b ∈ F implies a ∈ F or b ∈ F . And, a proper filter F

on L is called an maximal filter if it is maximal among all proper filters, that is,

if G is a proper filter on L such that F ⊆ G then F = G.

Proposition 2.1.1. A structure (L,∨,∧, 0, 1) with L a nonempty set and binary

14
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functions ∧ : L2 → L and ∨ : L2 → L on L is a bounded lattice if and only if,

for all a, b, c ∈ L it satisfies the following identities,

(L1) (i) a ∨ b = b ∨ a
(ii) a ∧ b = b ∧ a (Commutative laws)

(L2) (i) a ∨ (b ∨ c) = (a ∨ b) ∨ c
(ii) a ∧ (b ∧ c) = (a ∧ b) ∧ c (Associative laws)

(L3) (i) a ∨ a = a

(ii) a ∧ a = a (Idempotent laws)

(L4) (i) a = a ∨ (a ∧ b)
(ii) a = a ∧ (a ∨ b) (Absorption laws)

(L5) (i) a ∨ 0 = a

(ii) a ∧ 1 = a

Proof. The right-to-left direction boils down to verifying that each bounded lat-

tice satisfies (L1)-(L5). For the converse, we define a partial order ≤ by

a ≤ b if and only if a ∧ b = a or, equivalently, a ∨ b = b.

The details of the proof are spelled out in [15, Thm. 2.9,2.10].

We say that a lattice (L,≤) is distributive if, for all a, b, c ∈ L it satisfies,

(D1): a ∧ (b ∨ c) = (a ∨ b) ∧ (a ∨ c);
(D2): a ∨ (b ∧ c) = (a ∧ b) ∨ (a ∧ c).

A structure (B,∨,∧,¬, 0, 1) is called a Boolean algebra if (B,∨,∧, 0, 1) is a

bounded distributive lattice and ¬ : B → B a unary operator that satisfies

for all a ∈ B, a ∨ ¬a = 1 and a ∧ ¬a = 0.

2.1.1 Priestley duality

Let BDL denote the category whose objects are bounded distributive lattices

and whose morphisms are bounded lattice homomorphisms. Given a topological

space X, a pre-order R on X is said to satisfy the Priestley separation axiom if,

for all x, y ∈ X with ¬(xRy), there exists a clopen upset U of X with x ∈ U
and y 6∈ U . The relation R is called a Priestley order if it is a partial order that

satisfies the aforementioned Priestley axiom. We recall that a collection C of

subsets of X is said to cover X, and is called a cover of X, if the union of its

elements is equal to X. Then, a covering C of X is called an open covering if

it is a collection of open subsets of X. We say that X is compact if every open

covering C contains a finite subset CFin ⊆ C that also covers X. Furthermore, X

15
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is called zero-dimensional if it has a basis of clopen sets and is called Hausdorff

if, for distinct points x, y ∈ X, there exist an open set U containing x and an

open set V containing y so that U∩V = ∅. We call X a Stone space provided it is

Hausdorff, compact, and zero-dimensional [33]. We call a pair (X,R) a Priestley

space if X is a Stone space and R a Priestley order on X. For topological spaces

X and Y , a map f : X → Y is said to be continuous if, for every open U ⊆ Y ,

its inverse image f−1(U) is open in X. Then, by Priest we refer to the category

whose objects are Priestley spaces and whose morphisms are continuous order-

preserving maps.

Let XD be the set of all prime filters in a bounded distributive lattice D. We

define the map φ : D → P(XD) by φ(a) := {x ∈ XD | a ∈ x}.

Lemma 2.1.2 ([15, Prop. 11.2, Prop. 11.3, Sec. 11.17]). Let D be a bounded

distributive lattice and XD the set of prime filters in D. Then we have that the

set S := {φ(a) | a ∈ D} ∪ {φ(a)c | a ∈ D} forms a subbasis for a topology T on

XD that is compact, Hausdorff, and zero-dimensional. In other words, (XD, T )

is a Stone space.

We define a map (−)∗ : BDL→ Priest as follows.

(i) For an object D ∈ BDL, let D∗ := (XD, R), where XD denotes the set

of prime filters in D with a topology T generated by the subbasis S as

described in Lemma 2.1.2, and R the subset relation on XD.

(ii) For a bounded lattice homomorphism f : D → C, define f∗ : C∗ → D∗ by

f∗ := f−1.

Now define (−)∗ : Priest→ BDL as follows.

(i) For a Priestley space (X,R), let (X,R)∗ := ClopUp(X), the bounded dis-

tributive lattice of clopen upsets under ⊆.

(ii) For a continuous order-preserving map f : Y → X, define f∗ : X∗ → Y ∗

by f∗ := f−1.

From [15, Sec. 11.30] we know that (−)∗ : BDL→ Priest and (−)∗ : Priest→ BDL

are well-defined contravariant functors. Now, for a category C, let IdC de-

note the identity functor on C. Following [15, Sec. 11.30], we define a func-

tion η : IdBDL → (−)∗ ◦ (−)∗ that assigns to each object D ∈ BDL and arrow

16
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ηD : D → (D∗)
∗ of BDL by mapping each a ∈ D to φ(a). Secondly, we define

a function ε : IdPriest → (−)∗ ◦ (−)∗ assigning to each object X ∈ Priest an

arrow εX : X → (X∗)∗ of Priest by letting εX(x) := {V ∈ ClopUp(X) | x ∈ V }.
In [15, Sec. 11.30, Thm. 11.31] it is shown that the maps η and ε are natu-

ral transformation such that, for each object D ∈ BDL the arrow ηD defines

isomorphism between D and (D∗)
∗ and, for each X ∈ Priest, εX an isomor-

phism between X and (X∗)∗. Hence, the functions η : IdBDL → (−)∗ ◦ (−)∗ and

ε : IdPriest → (−)∗ ◦ (−)∗ are natural isomorphisms which, together with the

functors (−)∗ : BDL→ Priest and (−)∗ : Priest→ BDL, define a dual equivalence

between the categories BDL and Priest. Thus, we have the following theorem.

Theorem 2.1.3 (Priestley Duality [35]). BDL is dually equivalent to Priest.

2.1.2 Stone duality

Let Stone denote the category whose objects are Stone spaces and whose mor-

phisms are continuous maps. By Bool, we refer to the category whose objects are

Boolean algebras and whose morphisms are Boolean algebra homomorphisms.

Observe that every Stone space can be identified with Priestley space of the

form (X,=), where = denotes the discrete order, and every Boolean algebra is a

distributive lattice. Moreover, the morphisms of Stone are exactly those of Priest

between Stone spaces with a discrete order and, bounded lattice homomorphisms

between Boolean algebras are in fact Boolean algebra-homomorphisms. Thus,

Stone and Bool may be identified with full subcategories of Priest and BDL respec-

tively. Furthermore, note that the functor (−)∗ takes Boolean algebras to Stone

spaces. We know that, for every Boolean algebra B, its prime filters coincide

with its ultrafilters. Hence, for all prime filters F and G on a Boolean algebra

B, we have that F ⊆ G implies F = G and thus the order on the dual space

XB is discrete. When working with Boolean algebras, we can simplify the set S

defined in Lemma 2.1.2 that generates the topology associated with the functor

(−)∗ to the set {φ(a) | a ∈ B} since, for all a ∈ B, we have φ(a)c = φ(¬a). Also,

observe that the second functor (−)∗ takes Stone spaces to Boolean algebras.

Since, for a Stone space X with the discrete order, the family of clopen upsets in

X coincide with the family of clopen sets of X and, for any topological space X,

the clopen subsets of X form a Boolean algebra under ⊆. Thus, the maps (−)∗
and (−)∗ are two well-defined contravariant functors between the categories Bool

and Stone (for a proof hereof, see for instance [15, Sec. 11.30]). As for natural

isomorphisms, we can reuse the maps η and ε and restrict them to IdBool and

17



2.2. SUBORDINATIONS CHAPTER 2. PRELIMINARIES

IdStone respectively. Of course, in this case we may define εX : X → (X∗)∗ by

εX(x) := {V ∈ Clop(X) | x ∈ V } since the set of clopen upsets under a discrete

order equals the set op clopens. From [10, Thm. 4.6] we know that the maps η

and ε in the Bool and Stone context also define natural isomorphisms. Hence,

we obtain the following theorem.

Theorem 2.1.4 (Stone Duality [40]). Bool is dually equivalent to Stone.

Thus, we can view Stone duality as a special case of Priestley duality. Stone du-

ality follows from Priestley duality when we restrict BDL to the full subcategory

Bool and Priest to the full subcategory that has as objects all and only the Stone

spaces with a discrete order.

2.2 Subordinations on Boolean algebras

In this section, we present the formal definition of a binary relation ≺ on a

Boolean algebra B, called a subordination, and distinguish so-called reflexive,

transitive, and compingent subordinations amongst them. We note that sub-

ordinations on a Boolean algebra correspond to the precontact relations (also

known as proximity relations) introduced by Düntsch and Vakarelov in [18] and

the quasi-modal operators of [11]. We further observe that subordinations can be

characterised in terms of a characteristic function  , called a strict implication.

These notions have been shown to be equivalent, so we could take any of them as

primitive. In this thesis, we will be working with subordinations primarily and

make use of their corresponding strict implications. The choice of signatures ≺
and is that of our main references, in order to directly apply their key concepts

and results. Following [3], we then show that the category of Boolean algebras

with a subordination is dually equivalent to Stone spaces ordered by a closed

relation R; that the category of Boolean algebras with a reflexive subordination

corresponds to the category of Stone spaces ordered by a closed relation R that

is reflexive; and Boolean algebras with a transitive subordination to Stone spaces

ordered by a closed relation R that is a transitive.

Definition 2.2.1 (Subordination [6, Def. 2.3]). A binary relation≺ on a Boolean

algebra B is called a subordination if it satisfies for all a, b, c, d ∈ B,

(B1) 0 ≺ 0 and 1 ≺ 1;

(B2) a ≺ b, c implies a ≺ b ∧ c;
(B3) a, b ≺ c implies a ∨ b ≺ c;
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(B4) a ≤ b ≺ c ≤ d implies a ≺ d. a

We will often use a ≺ b ≺ c to abbreviate “a ≺ b and b ≺ c”, for a, b, c ∈ B. Ob-

serve that subordinations on Boolean algebras are the dual concept of precontact

relations, defined as follows.

Definition 2.2.2 (Precontact relation [18]). A binary relation δ on a Boolean

algebra B is called a precontact relation or a proximity on B if it satisfies the

following conditions,

(P1) aδb implies a, b 6= 0;

(P2) aδ(b ∨ c) if and only if aδb or aδc;

(P3) (a ∨ b)δc if and only if aδc or bδc. a

Given a subordination ≺ on a Boolean algebra B, we can define a precontact

relation δ≺ on B by aδ≺b iff a 6≺ ¬b, where 6≺ denotes the complement of the

relation ≺. Conversely, if δ is a precontact relation on B, the relation ≺δ defined

by a ≺δ b iff a�δ¬b, is a precontact relation, where �δ denotes the complement of the

relation δ. Moreover, we have δ = δ≺δ and ≺=≺δ≺ . Hence, subordinations are

in 1-1 correspondence with precontact relations (see [6, Sec. 2]). As mentioned

above, another closely related concept to both subordinations and precontact

relations is that of a quasi-modal operator.

Definition 2.2.3 (Quasi-modal operator [11]). Let B be a Boolean algebra and

I(B) denote the lattice of ideals of B. A quasi-modal operator on B is a function

∆ : B → I(B) such that, for all a, b ∈ B,

Q1. ∆(a ∧ b) = ∆a ∩∆b;

Q2. ∆1 = B. a

Precontact relations and subordinations are also in 1-1 correspondence with

quasi-modal operators on Boolean algebras. Let ≺ be a subordination on a

Boolean algebra B. For every a ∈ B, define ∆≺(a) := {b ∈ B | b ≺ a}. Then

∆≺(a) is an ideal of B and thus ∆≺ : B → I(B) is well-defined. Moreover, it

is easily verified that ∆≺ is a quasi-modal operator. Conversely, if ∆ is a quasi-

modal operator on B, define ≺ by a ≺∆ b iff b ∈ ∆(a). Again, it is easy to check

that ≺∆ is a subordination on B. Moreover, ∆ = ∆≺∆ and ≺=≺∆≺ (see, e.g.,

[4, Remark 2.6]). Thus, we see that precontact relations, subordinations, and

quasi-modal operators are interdefinable and hence equivalent notions. In this

thesis, we chose to work with subordinations primarily. In Chapter 4, we will

present a language that we interpret in Boolean algebras with a subordination.
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However, due to the presence of the binary relation ≺, these are not algebras,

strictly speaking. Below we present a characteristic function  , called a strict

implication, that is also in a 1-1 correspondence with subordinations and will

enable us to develop an algebraic semantics based on Boolean algebras with a

subordination.

Definition 2.2.4 (Strict implication [4, Def. 3.1]). Let B be a Boolean algebra.

A characteristic function  : B × B → {0, 1} ⊆ B is called a strict implication

on B if, for all a, b, c, d ∈ B, it satisfies the following properties,

(I1) 0 a = a 1 = 1;

(I2) (a ∨ b) c = (a c) ∧ (b c);

(I3) a (b ∧ c) = (a b) ∧ (a c). a

Given a subordination ≺ on a Boolean algebra B, we can define a strict impli-

cation  ≺ by,

a ≺ b :=

{
1 if a ≺ b,
0 otherwise.

Conversely, given a function  : B ×B → {0, 1}, we can define a subordination

≺ on B by a ≺ b iff a b = 1. Moreover, we have = ≺ and ≺=≺ ≺ (see

[4, Sec. 3]). Thus, there exists a bijective correspondence between subordination

relations and strict implications on Boolean algebras. Hence, we can view any

pair (B,≺), where B is a Boolean algebra and ≺ a subordination on B, as an

algebra (B, 1,∨,¬, ) and vice versa.

Definition 2.2.5 (Reflexive subordination [6, Def. 2.3]). We call a subordination

≺ on B a reflexive subordination if, for all a, b ∈ B, it satisfies,

(B5) a ≺ b implies a ≤ b. a

Definition 2.2.6 (Transitive subordination [6, Def. 2.3]). We call a subordina-

tion ≺ on B a transitive subordination if, for all a, b ∈ B, it satisfies,

(B6) a ≺ b implies there is c ∈ B such that a ≺ c ≺ b. a

Definition 2.2.7 (Compingent relation [16] see also, [6, Def 2.8]). A subordi-

nation ≺ on a Boolean algebra B is called a compingent relation or a de Vries

subordination if in addition to axioms (B5) and (B6) for all a, b ∈ B it satisfies,

(B7) a ≺ b implies ¬b ≺ ¬a;

(B8) a 6= 0 implies there exists c ∈ B with c 6= 0 and c ≺ a. a
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As noted in [6, Sec. 2], for all a, b ∈ B, both the additional axioms (B5) and

(B6) have a corresponding strict implication axiom (I5) and (I6) listed below.

We skip (I4) in our numbering of additional strict implication axioms to match

the numbering of axioms (B5) and (B6).

(I5) a b ≤ a→ b;

(I6) a b = 1 implies there exists c ∈ B such that a c = 1 and c b = 1.

We denote by Sub the category whose objects are pairs (B,≺) that consist of

a Boolean algebra B and a subordination ≺ on B. The morphisms of Sub are

Boolean algebra homomorphisms h : A→ B that satisfy, for all a, b ∈ A, if a ≺A
b then h(a) ≺B h(b). We will refer to Boolean algebra homomorphisms satisfying

the aforementioned condition as subordination homomorphisms. Furthermore,

we denote by RSub the full subcategory of Sub consisting of Boolean algebras

with a reflexive subordination.

2.2.1 Duality for Boolean algebras with a subordination

Let X be a topological space. Recall that we call a binary relation R on X a

closed relation if R is a closed subset in the product topology on X×X. If X is a

Stone space and R is a closed relation on X, we call the pair (X,R) a subordinated

Stone space. Let X1, X2 be sets and R1, R2 relations on X1 and X2 respectively.

We call a map f : X1 → X2 a stable map if, for all x, y ∈ X1, we have that xR1y

implies f(x)R2f(y). Then, by StR we refer to the category whose objects are

subordinated Stone spaces and whose morphisms are continuous stable maps.

Following [6], we present two contravariant functors (−)∗ : Sub → StR and

(−)∗ : StR→ Sub that establish a dual equivalence between the categories Sub

and StR. Thereafter, we present a second functor (−)+ : StR → Sub as defined

in [3] and show that the subordination ≺+
R associated with the functor (−)+ is

a subset of the subordination ≺∗R associated with the functor (−)∗. We then

present a counterexample to show that, in general, the converse does not hold.

The relation ≺∗R is not a subset of ≺+
R. However, when we restrict ourselves

to subordinated Stone spaces (X,R) whereof the relation R is a pre-order that

satisfies the Priestley separation axiom, the relations ≺+
R and ≺∗R do coincide.

Before we set out our duality, following [6], for (B,≺) ∈ Sub and S ⊆ B we

define ↑↑S to be the upset of S with respect to ≺, that is,

↑↑S := {b ∈ B | ∃a ∈ S : a ≺ b}.
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Now, define (−)∗ : Sub→ StR as follows.

(i) For (B,≺) ∈ Sub, let (B,≺)∗ := (XB, R), where XB is the Stone dual of

B and xRy if and only if ↑↑x ⊆ y.

(ii) For Sub-morphism h : (B,≺B)→ (A,≺A), define h∗ : (A,≺A)∗ → (B,≺B)∗
by h∗ := h−1. That is, for each ultrafilter F ∈ (XA, R) let h∗(F ) = h−1(F ).

From Stone duality (Thm. 2.1.4) we already know that for all (B,≺) ∈ Sub, XB

defines a Stone space. In [6, Lem. 3.5] it is shown that the relation R associated

with (B,≺)∗ is a closed relation on XB and thus, we have (B,≺)∗ ∈ StR. More-

over, [6, Lem. 3.7] proves that h∗ defines a continuous stable map. Hence, (−)∗
is a well-defined contravariant functor between Sub and StR.

Let X be a set and R ⊆ X ×X a binary relation on X. For a subset U of X,

we define R[U ] and R−1[U ] by,

R[U ] := {y ∈ X | ∃x ∈ U with xRy},

R−1[U ] := {x ∈ X | ∃y ∈ U with xRy}.

We define (−)∗ : StR→ Sub as follows.

(i) For (X,R) ∈ StR let (X,R)∗ := (BX ,≺∗R), whereBX is the Boolean algebra

of clopen subsets of X and U ≺∗R V if and only if R[U ] ⊆ V .

(ii) For f : (X2, R2) → (X1, R1) define f∗ : (X1, R1)∗ → (X2, R2)∗ by

f∗ = f−1.

Again, by Stone duality we know that, for all (X,R) ∈ StR, BX defines a Boolean

algebra. In [6, Lem. 3.10] it has been proved that ≺∗R associated with (X,R)∗

defines a subordination on BX , thus, we have (BX ,≺∗R) ∈ Sub. Moreover, from

[6, Lem. 3.12] we know that for a continuous stable map f , the map f∗ defines a

subordination homomorphism. Thus, (−)∗ is a well-defined contravariant functor

from Sub to StR.

Recall that the map η : IdBool → (−)∗◦(−)∗ associates with each Boolean algebra

B a Boolean isomorphism ηB : B → (B∗)
∗. In [6, Lem. 3.14] it has been shown

that for all Boolean algebras B with a subordination ≺ on B, for all a, b ∈ B
we have a ≺ b iff φ(a) ≺ φ(b). Thus, each (B,≺) is isomorphic to ((B,≺)∗)

∗

via ηB and hence η : IdSub → (−)∗ ◦ (−)∗ is a well-defined natural isomorphism.

Moreover, recall that the map ε : IdStone → (−)∗ ◦ (−)∗ associates with each
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Stone space X an arrow εX : X → (X∗)∗ by εX(x) := {V ∈ Clop(X) | x ∈ V }.
In [6, Lem. 3.15] it has been show that for all x, y ∈ X we have xRy iff

εX(x)RεX(y). Hence, (X,R) is isomorphic to ((X,R)∗)∗ via εX . Then the

map ε : IdStR → (−)∗ ◦ (−)∗ also defines a natural isomorphisms. Together with

the functors (−)∗ and (−)∗ described above, η and ε yield the following duality

result.

Theorem 2.2.8 ([6, Thm. 3.16]). Sub is dually equivalent to StR.

We now present a second functor from StR to Sub as given in [3].

Define (−)+ : StR→ Sub as follows.

(i) For (X,R) ∈ StR let (X,R)+ := (BX ,≺+
R), where BX is the Boolean

algebra of clopen subsets of X and U ≺+
R V if and only if there exists a

clopen upset W of X such that U ⊆W ⊆ V .

(ii) For f : (X2, R2) → (X1, R1) define f+ : (X1, R1)+ → (X2, R2)+ by

f+ = f−1.

Lemma 2.2.9. Let (X,R) ∈ StR. Then (X,R)+ ∈ Sub.

Proof. From Stone duality it follows that BX is a Stone space. Since the least

element 0X of BX is ∅, and the greatest element 1X is X, by the reflexivity of ⊆
it immediately follows that (B1) holds, that is, 0X ≺+

R 0X and 1X ≺+
R 1X . Pick

U, V1, V2 ∈ BX such that U ≺+
R V1, V2. Then there are clopen upsets W1,W2

such that U ⊆ W1 ⊆ V1 and U ⊆ W2 ⊆ V2. The set W1 ∩W2 is clopen and

U ⊆ W1 ∩W2 ⊆ V1 ∩ V2, hence U ≺+
R V1 ∩ V2, and so axiom (B2) is satisfied.

That (BX ,≺+
R) satisfies (B3) is shown analogously. Now pick V1, V2, V3, V4 ∈ BX

such that V1 ⊆ V2 ≺+
R V3 ⊆ V4. Then there exists clopen upset W such that

V1 ⊆ V2 ⊆ W ⊆ V3 ⊆ V4. Clearly it follows that V1 ≺+
R V4 and hence, (BX ,≺+

R)

satisfies (B4).

Lemma 2.2.10. Let (X,R) be a subordinated Stone space and U and V be clopen

subsets of X. Then U ≺+
R V implies U ≺∗R V , i.e, the relation ≺+

R is a subset of

the relation ≺∗R.

Proof. Suppose that U ≺+
R V holds. By definition of ≺+

R, this means that there

exists a clopen upset W such that U ⊆W ⊆ V . Now, pick y ∈ R[U ]. Then,

for some x ∈ U , we have xRy. Since x ∈ U and U ⊆ W , it must be x ∈ W .

Now, since W is an upset, it follows that y ∈ W . Then y ∈ V and hence,

R[U ] ⊆ V .
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x

y

z

U

V = R[U ]

Table 2.1: The space (X,R)

The converse of Lemma 2.2.10 does not hold

in general. Consider the counterexample in Ta-

ble 2.1 of a three-element subordinated Stone

space (X,R) consisting of elements x, y, z with

the discrete topology and R := {(x, y), (y, z)}.
Let U = {x} and V = {y}. Then R[U ] ⊆ V

but, there is no clopen upset W such that

U ⊆ W ⊆ V . We show that the converse of

Lemma 2.2.10 holds in case that R is a pre-

order and X satisfies the Priestley axiom. In

what follows, we make use of the fact that the

closed subsets Y of a compact space X are compact subsets of X (see, for in-

stance [33, Thm. 26.2]).

Lemma 2.2.11 ([34, Thm. 4]). Let (X,R) be a pair consisting of a Stone space

X and a preorder R on X satisfying the Priestley separation axiom. Then, for

each pair of closed subsets U and V of X, if R[U ]∩R−1[V ] = ∅ then there exists

a clopen upset W such that U ⊆W and V ∩W = ∅.

Proof. Let U and V be closed subsets of X such that R[U ] ∩ R−1[V ] = ∅.
First, observe that for all x ∈ U , for all y ∈ V , we have ¬(xRy). Towards a

contradiction, suppose otherwise. Then there would exist x ∈ U and y ∈ V such

that xRy, hence y ∈ R[U ]. Now, since y ∈ V and (by the reflexivity of R) yRy,

it follows that y ∈ R−1[V ]. Then y ∈ R[U ] ∩ R−1[V ], but this contradicts the

assumption that R[U ] ∩R−1[V ] = ∅.
Then, for all x ∈ U and y ∈ V , from ¬(xRy) by the Priestley separation

axiom it follows that there exists a clopen upset Wxy such that x ∈ Wxy but

y 6∈ Wxy. For all y ∈ V , we let Wy denote the collection of clopen upsets Wxy

such that there exists x ∈ U with x ∈Wxy and y 6∈Wxy.

Observe that, given any y ∈ V , for all x ∈ U there exists such a clopen upset

Wxy and thus U ⊆
⋃
Wy. And, since Wy is a collection of clopen (and thus

open) sets, by the compactness of U it follows that there exists a finite subset

WFin
y ⊆ Wy such that U ⊆

⋃
WFin
y . We will denote the union

⋃
WFin
y by W∗y .

Clearly, y 6∈ W∗y and so, y ∈ X \ W∗y . Note that W∗y is the finite union

of clopen upsets and thus, itself a clopen upset. It then follows that X \ W∗y
is a clopen downset. Now, let C denote the collection of all clopen downsets

X \ W∗y , for y ∈ V . Since, for all y ∈ V we have y ∈
⋃
C, it holds that V ⊆

⋃
C

and thus, by compactness of V , there exists a finite subset CFin of C such that
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V ⊆
⋃
CFin. Since CFin is a finite collection of clopen downsets,

⋃
CFin is also a

clopen downset. Let W ∗ denote X \
⋃
CFin. Then, W ∗ is a clopen upset such

that V ∩W ∗ = ∅. Now, since, for all y ∈ V we have U ⊆ W ∗y , it must be that

U ∩ X \ W∗y = ∅. Then also U ∩
⋃
C∗ = ∅ and so U ⊆ W ∗, which is what we

wanted to show.

Lemma 2.2.12. Let (X,R) be a subordinated Stone space such that R is a pre-

order and X satisfies the Priestley axiom. Let U and V be subsets of X. Then

U ≺∗R V if and only if U ≺+
R V , i.e, we have ≺∗R=≺+

R.

Proof. The right-to-left direction follows immediately from Lemma 2.2.10. For

the other direction, pick clopen subsets U, V ⊆ X such that U ≺∗R V , in other

words, so that R[U ] ⊆ V holds. Since V is clopen, its complement X \ V is also

clopen (and thus closed). And, since R[U ] ⊆ V , we have R[U ] ∩ X \ V = ∅.
Then we also have R[U ] ∩R−1[X \ V ] = ∅. Otherwise, there would exist y ∈
R[U ]∩R−1[X \ V ]. Then, y ∈ R[U ] and y ∈ R−1[X \ V ]. This means that there

are x ∈ U and z ∈ X \ V so that xRy and yRz. From the transitivity of R it

follows that xRz and thus, z ∈ U . But this contradicts that R[U ] ∩X \ V = ∅.
Hence, it must be that R[U ]∩R−1[X \V ] = ∅. From Lemma 2.2.11 stated above,

it follows that there exists a clopen upset W such that U ⊆W and W∩X\V = ∅.
Then W ⊆ V , and so we have U ≺+

R V .

Lemma 2.2.13 ([6, Lem. 6.1]). Let (B,≺) ∈ Sub and (B,≺)∗ := (XB, R).

(i) (B,≺) satisfies axiom (B5) if and only if R is reflexive;

(ii) (B,≺) satisfies axiom (B6) if and only if R is transitive.

Proof.

(i) Suppose that (B,≺) satisifies (B5), pick x ∈ XB, and consider b ∈ ↑↑x. By

definition there exists a ∈ x such that a ≺ b. From axiom (B5) it follows that

a ≤ b. Now, since x is a filter, a ∈ x and a ≤ b imply that b ∈ x. Thus ↑↑x ⊆ x

and so xRx. Hence, R is reflexive.

Conversely, assume thatR is reflexive and pick a, b ∈ B such that a ≺ b. Then

φ(a) ≺ φ(b) in ((B,≺)∗)
∗, which means that R[φ(a)] ⊆ φ(b). By reflexivity of R

it follows that φ(a) ⊆ R[φ(a)] and hence φ(a) ⊆ φ(b). Thus, a ≤ b and so (B,≺)

satisfies (B5).

(ii) Now suppose that (B,≺) satisfies (B6), pick x, y, z ∈ XB such that xRy and

yRz, and pick b ∈ ↑↑x. Then, there exists a ∈ x with a ≺ b. By axiom (B6)

it follows that there exists c ∈ B with a ≺ c ≺ b. Then c ∈ ↑↑x and so c ∈ y.
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This means that b ∈ ↑↑y and hence b ∈ z. Thus ↑↑x ⊆ z and so xRz. Hence, R is

transitive.

Suppose R is transitive and pick a, b ∈ B such that a ≺ b. Then φ(a) ≺ φ(b)

in ((B,≺)∗)
∗ and so R[φ(a)] ⊆ φ(b), which means R[φ(a)] ∩XB \ φ(b) = ∅. By

transitivity of R, it must be that R[φ(a)] and R−1[XB \ φ(b)] are also dis-

joint. Hence, there exists a clopen U ⊆ XB such that R[φ(a)] ⊆ U and

U ∩R−1[X \ φ(b)] = ∅. The latter implies that R[U ] ⊆ φ(b). This shows that,

whenever a ≺ b, there exists U in ((B,≺)∗)
∗ such that φ(a) ≺ U ≺ φ(b). Then,

since ((B,≺)∗)
∗ and (B,≺) are isomorphic, it must be that there exists a c ∈ B

for which a ≺ c ≺ b. Hence, (B,≺) satisfies (B6).

2.3 Lattice subordinations on Boolean algebras

In this section, following the results of [3] we define a special kind of subordina-

tions on Boolean algebras, the so-called lattice subordinations. Thereafter, we

generalise Priestley spaces to quasi-ordered Priestley spaces and show that the

category of Boolean algebras with a lattice subordination is dually equivalent to

the category of quasi-ordered Priestley spaces.

Definition 2.3.1 (Lattice Subordination [3, Def. 2.1]). Let B be a Boolean

algebra. A subordination ≺ on B is called a lattice subordination if, for all

a, b ∈ B, it satisfies the additional axiom,

(QP) a ≺ b implies there exists c ∈ B such that c ≺ c and a ≤ c ≤ b. a

Equivalently, we can characterize lattice subordinations in terms of the operator

by adding the following axiom to (I1) - (I3).

(QP′) a b = 1 implies there exists c ∈ B such that c c = 1 and a ≤ c ≤ b.

We will now prove some additional facts about lattice subordinations that will

be of use for the duality proof to come.

Lemma 2.3.2 ([3, Lem. 2.2]). Let B be a Boolean algebra and ≺ a lattice sub-

ordination on B. For a, b, d ∈ B,

(i) a ≺ b implies a ≤ b, i.e., (B,≺) satisfies (B5);

(ii) a ≺ b implies there exists c ∈ B with a ≺ c ≺ b, (B,≺) satisfies (B6);

(iii) a ≺ b if and only if there exists c ∈ B such that c ≺ c and a ≤ c ≤ b;
(iv) a ≺ d ≺ b implies a ≺ b.
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Proof.

(i) Suppose a ≺ b. From (QP) it follows that there exists c ∈ B such that c ≺ c
and a ≤ c ≤ b. Thus we have a ≤ b.

(ii) Suppose again a ≺ b. By (QP) there exists c ∈ B with c ≺ c and a ≤ c ≤ b.

Since ≤ is reflexive, we know that c ≤ c. Then we have a ≤ c ≺ c ≤ c. Hence, by

(B4) also a ≺ c. Similarly we deduce c ≺ b from c ≤ c ≺ c ≤ b. Thus, a ≺ c ≺ b
follows.

(iii) Given (QP), we only need to show the right-to-left direction. Suppose there

exists c ∈ B such that c ≺ c and a ≤ c ≤ b. Then a ≤ c ≺ c ≤ b. By (B4) we

derive a ≺ b.

(iv) Suppose a ≺ d ≺ b. By (QP) it follows from a ≺ d that there exists c such

that c ≺ c and a ≤ c ≤ d. By (i) of this lemma we know that d ≺ b entails d ≤ b.
Thus, we have a ≤ c ≺ c ≤ b. By (B4) it follows that a ≺ b.

Henceforth, by BLS we will refer to the full subcategory of Sub whose objects

are pairs (B,≺) that consist of a Boolean algebra B and a lattice subordination

≺ on B.

In this section and Section 2.2, in definitions 2.2.1, 2.3.1, and 2.2.4 we have

presented conditions (B1)−(B6) and (QP) for a binary relation ≺ on a Boolean

algebra, as well as corresponding conditions (I1)−(I3), (I5), (I6), and (QP′) for

a characteristic function  on B. As we will frequently refer to these condi-

tions throughout this thesis, for the convenience of the reader these axioms are

recollected in Table 2.2.
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(B1)

(B2)

(B3)

(B4)

0 ≺ 0 and 1 ≺ 1

a ≺ b, c implies a ≺ b ∧ c.
a, b ≺ c implies a ∨ b ≺ c.
a ≤ b ≺ c ≤ d implies a ≺ d.

(I1)

(I2)

(I3)

0 a = a 1 = 1.

(a ∨ b) c = (a c) ∧ (b c).

a (b ∧ c) = (a b) ∧ (a c).

(B5) a ≺ b implies a ≤ b. (I5) a b ≤ a→ b.

(B6) a ≺ b implies there is c′ ∈ B
such that a ≺ c′ ≺ b.

(I6) a b = 1 implies there exists c ∈ B
with a c = 1 and c b = 1.

(QP) a ≺ b implies there exists c ∈ B
with c ≺ c and a ≤ c ≤ b.

(QP′) a b = 1 implies there exists c ∈ B
with c c = 1 and a ≤ c ≤ b.

(B1)-(B4): Subordination Sub

(B1)-(B4) + (B5): Reflexive subordination. RSub

(B1)-(B4) + (B6): Transitive subordination

(B1)-(B4) + (QP): Lattice subordination BLS

Table 2.2: Axiom list ≺ and  .

2.3.1 Duality for Boolean algebras with a lattice subordination

Given a set X, we call a binary relation R on X a Priestley quasi-order if it is a

quasi-order and it satisfies the Priestley separation axiom. We call a pair (X,R)

a quasi-ordered Priestley space if X is a Stone space and R a Priestley quasi-order

on X. By QPS we refer to the full subcategory of StR whose objects are quasi-

Priestley spaces. In the context of QPS, we will refer to continuous stable maps

between quasi-ordered Priestley spaces as continuous order-preserving maps.

The contravariant functors (−)∗ and (−)+ as defined in 2.2.1 restrict to the

categories BLS and QPS. For convenience, we will denote (−)∗ in this setting by

(−)+.

Define (−)+ : BLS→ QPS as follows.

(i) For (B,≺) ∈ BLS, let (B,≺)+ := (XB, R), where XB is the Stone dual of

B and xRy if and only if ↑↑x ⊆ y;

(ii) For BLS-morphism h : (B,≺B) → (A,≺A), let h+ : (A,≺A)+ → (B,≺B
)+ be defined by h+ := h−1, that is, for each ultrafilter F ∈ (XA, R) let

h+(F ) = h−1(F ).
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Lemma 2.3.3. Let (B,≺) ∈ BLS.

(i) For all S ⊆ B we have ↑↑S = ↑↑↑↑S. That is, ↑↑ : P(B)→ P(B) is idempotent;

(ii) For all S1, S2 ⊆ B, if S1 ⊆ S2 then ↑↑S1 ⊆ ↑↑S2. That is, ↑↑ : P(B)→ P(B)

is monotone.

Proof.

(i) Pick S ⊆ B and consider b ∈ ↑↑S. Since b ∈ ↑↑S, there exists a ∈ S such that

a ≺ b. By Lemma 2.3.2 item (ii) it follows that there exists c ∈ B such that

a ≺ c ≺ b. Since a ≺ c we have c ∈ ↑↑S. Since c ≺ b we have b ∈ ↑↑↑↑S. Thus,
↑↑S ⊆ ↑↑↑↑S. Now pick b ∈ ↑↑↑↑S. This means that there exists c ∈ ↑↑S such that

c ≺ b. Then there exists a ∈ S such that a ≺ c. By Lemma 2.3.2 (iv) it follows

that a ≺ b. So b ∈ ↑↑S and thus, ↑↑↑↑S ⊆ ↑↑S. Hence, ↑↑S = ↑↑↑↑S.

(ii) Pick S1, S2 ⊆ B such that S1 ⊆ S2 and consider b ∈ ↑↑S1. Since b ∈ ↑↑S1,

there exists a ∈ S1 such that a ≺ b. Since S1 ⊆ S2 we have a ∈ S2, so also

b ∈ ↑↑S2. Thus, ↑↑ is monotone.

Observe that condition (ii) of Lemma 2.3.3 does not necessarily hold for pairs

(B,≺) where B is a Boolean algebra and ≺ a subordination on B that is not

transitive. Consider the four-element chain C4 = {0, a, b, 1} with a partial order

≤ such that 0 ≤ a ≤ b ≤ 1. Let ≺ be a reflexive subordination on B defined by

0 ≺ x and x ≺ 1 for all x ∈ C4 and a ≺ b. It is readily seen that (C4 ≺) satisfies

(B1)-(B5) and thus defines a reflexive subordination on C4. However, we have

that ↑↑{a} = {b, 1} 6= {1} = ↑↑↑↑{a}, therefore ↑↑ : P(B)→ P(B) is not idempotent

for all (B,≺) ∈ RSub.

Lemma 2.3.4 ([3, Cor. 5.3]). Let (B,≺) ∈ BLS. Then (B,≺)+ ∈ QPS.

Proof. From Stone duality we know that XB is a Stone space. We show that R

is a Priestley quasi-order on XB. Pick x ∈ XB and consider ↑↑x. For arbitrary

b ∈ ↑↑x there exists a ∈ x such that a ≺ b. By Lemma 2.3.2 (i) we know that

a ≺ b implies a ≤ b. Since x is a filter and we have a ∈ x and a ≤ b, we also

have b ∈ x. Then ↑↑x ⊆ x and thus xRx. Hence, R is reflexive.

Now pick x, y, z ∈ XB such that xRy and yRz. Then ↑↑x ⊆ y and ↑↑y ⊆ z. By

2.3.3 (ii), it follows from ↑↑x ⊆ y that ↑↑↑↑x ⊆ ↑↑y. Since also ↑↑y ⊆ z, it follows

that ↑↑↑↑x ⊆ z. Moreover, since ↑↑ is idempotent by 2.3.3 (i), ↑↑x = ↑↑↑↑x. Hence, R

is transitive and so R is a quasi-order.
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We now show that (XB, R) satisfies the Priestley axiom. Pick x, y ∈ XB such

that ¬(xRy). Then ↑↑x 6⊆ y, so there exists b ∈ ↑↑x with b 6∈ y, which means there

exists a ∈ x such that a ≺ b. From a ≺ b, by (QP) it follows that there exists

c ∈ B such that c ≺ c and a ≤ c ≤ b. Now, consider φ(c). Observe that that

φ(c) belongs to the clopen subbasis of XB. We show that φ(c) is also an upset.

Pick x ∈ φ(c) and consider y ∈ XB such that ↑↑x ⊆ y. From c ∈ x and c ≺ c it

readily follows that c ∈ ↑↑x and thus c ∈ y. Moreover, φ(c) separates x and y.

Since a ∈ B, a ≤ c, and the fact that x is a filter, we have c ∈ x and so, x ∈ φ(c).

Also, since b 6∈ y, c ≤ b, and the fact that y is a filter, it cannot be that c ∈ y,

thus y 6∈ φ(c). Thus, φ(c) is a clopen upset that contains x but not y. Hence,

(XB, R) satisfies the Priestley axiom.

Lemma 2.3.5. Let (X,R) ∈ QPS. Then (X,R)+ ∈ BLS.

Proof. Let (X,R) ∈ QPS and consider (BX ,≺+
R). From Stone duality and

Lemma 2.2.9 it follows that BX is a Boolean algebra that satisfies the axioms

(B1)-(B4). Now, pick U, V ∈ XB such that U ≺+
R V . Then there exists a clopen

upset W such that U ⊆ W ⊆ V . Thus, we have U ≤ W ≤ V in BX . Moreover,

from the reflexivity of ⊆ it follows that W ≺+
R W . Hence, (BX ,≺+

R) also satisfies

(QP) and so (X,R)+ ∈ BLS.

Moreover, from the preceding section 2.2.1 we know that, since h+ and f+ are

defined in the same way as h∗ and f∗, the map h+ defines an order-preserving

continuous map between quasi-ordered Priestley spaces and f+ defines a sub-

ordination homomorphism between Boolean algebras. Thus, the maps (−)+

and (−)+ restricted to the categories of BLS and QPS are well-defined func-

tors. Now, note that from Lemma 2.2.12 it follows that the functors (−)∗ and

(−)+ restricted to quasi-ordered Priestley spaces are equal. Hence, from sec-

tion 2.2.1 it follows that, for (B,≺) ∈ BLS, the map ηB : (B,≺) → ((B,≺)+)+

defined by ηB(a) := φ(a) is an isomorphism between (B,≺) and ((B,≺)+)+.

And, for each (X,R) ∈ QPS, the map εX : (X,R) → ((X,R)+)+ defined

by by εX(x) := {V ∈ Clop(X) | x ∈ V } is an isomorphism between (X,R)

and ((X,R)+)+. In other words, we can define two natural isomorphisms

η′ : IdBLS → (−)+ ◦ (−)+ and ε′ : IdQPS → (−)+ ◦ (−)+ in the same way as

we have defined the maps η : IdSub → (−)∗ ◦ (−)∗ and ε : IdStR → (−)∗ ◦ (−)∗.

Hence, we obtain the theorem below.

Theorem 2.3.6 ([3, Cor. 5.3]). BLS is dually equivalent to QPS.
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2.4 Boolean algebras with a bounded sublattice

In this section, we show a correspondence between lattice subordinations ≺ on a

Boolean algebra B and bounded sublattices D of B. We define the category BDA

of Boolean algebras with a bounded sublattice and establish a dual equivalence

between the categories BLS and BDA. Furthermore, we identify a subcatergory

GBDA of BDA that is equivalent to the category of bounded distributive lattices

BDL.

Definition 2.4.1 ([3, Def. 2.3]). Given a pair (B,≺) where B is a Boolean

algebra and ≺ a lattice subordination on B, we define D≺ to be the set of

reflexive elements under ≺. That is,

D≺ := {a ∈ B : a ≺ a}. a

Lemma 2.4.2 ([3, Lem. 2.4]). Let B be a Boolean algebra and ≺ a lattice sub-

ordination on B. Then D≺ is a bounded sublattice of B.

Proof. Let (B,≺) ∈ BLS and consider D≺. Then D≺ 6= ∅ since, by (B1),

0, 1 ∈ D≺. Now, pick a, b ∈ D≺. Since a ∧ b ≤ a ≺ a ≤ a, by (B4) we have

a∧ b ≺ a. Analogously we obtain a∧ b ≺ b. Thus, by (B2) we have a∧ b ≺ a∧ b.
Furthermore, since a ≤ a ≺ a ≤ a ∨ b we have a ≺ a ∨ b and, analogously ob-

tained, b ≺ a∨ b. Thus, by (B3) we have a∨ b ≺ a∨ b. Hence, D≺ is a sublattice

of B. Moreover, since 0, 1 ∈ D≺, D≺ is a bounded sublattice of B.

Definition 2.4.3 ([3, Def. 2.5]). Let D be a bounded sublattice of a Boolean

algebra B. We define a binary relation ≺D on B as follows. For a, b ∈ B,

a ≺D b if and only if there exists c ∈ D with a ≤ c ≤ b. a

Lemma 2.4.4 ([3, Lem. 2.6]). If D is a bounded sublattice of a Boolean algebra

B, then ≺D as defined above is a lattice subordination on B.

Proof. Let B be a Boolean algebra, D a bounded sublattice of B, and ≺D as

defined above. Since D is a bounded sublattice of B we have 0, 1 ∈ D. Then,

from reflexivity of ≤ it immediately follows that 0 ≺D 0 and 1 ≺D 1 and thus

(B,≺D) satisfies (B1). Now, pick a, b, c ∈ B such that a ≺D b, c. Then there

exists c1, c2 ∈ D such that a ≤ c1 ≤ b and a ≤ c2 ≤ c. Since D is a sublattice of

B, from c1, c2 ∈ D it follows that c1 ∧ c2 ∈ D. a ≤ c1 ∧ c2 ≤ b∧ c. So a ≺D b∧ c
and hence, (B,≺D) satisfies (B2). That (B,≺D) satisfies (B3) is shown similarly.

Assume a, b, c, d ∈ B such that a ≤ b ≺D c ≤ d. Then there exists c′ ∈ D such
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that b ≤ c′ ≤ c. Thus, a ≤ c′ ≤ d and so a ≺D d, which means that (B,≺D)

satisfies (B4). Lastly, suppose a ≺D b for a, b ∈ B. Then there exists c ∈ D such

that a ≤ c ≤ b. By reflexivity we have c ≺D c. Hence, (B,≺D) also satisfies

(B5) and thus D≺ defines a lattice subordination on B.

Observe that for each D ∈ BDL we have D = D≺D , and for each (B,≺) ∈ BLS,

≺=≺D≺ . Let BDA denote the category whose objects are pairs (B,D) where B

is a Boolean algebra and D a bounded sublattice of B and whose morphisms are

Boolean homomorphisms h : A→ B which satisfy the condition that if a ∈ DA

then h(a) ∈ DB. We describe the two functors Φ and Ψ between BLS and BDA

that establish a categorical isomorphism as defined by [3] below. For detailed

proofs thereof, we refer the reader to [3].

Define Φ : BLS → BDA by (i) for (B,≺) ∈ BLS, let Φ(B,≺) := (B,D≺), where

D≺ is as in Definition 2.4.1; (ii) for a BLS-morphism h : (B,≺B)→ (A,≺A), let

Φ(h) := h.

Let Ψ : BDA → BLS be defined as follows, (i) for an object (B,D) ∈ BDA, let

Ψ(B,D) := (B,≺D), where B≺ is as in Definition 2.4.3; (ii) for BDA-morphism

h : (B,D)→ (A,D), define Ψ(h) := h.

Theorem 2.4.5 ([3, Thm. 2.10]). BLS is isomorphic to BDA.

Corollary 2.4.6 ([3, Thm. 5.2]). BDA is dually equivalent to QPS.

In this section, we have seen that, for each (B,≺) ∈ BLS, the set of elements

D≺ := {a ∈ B | a ≺ a} forms a bounded distributive lattice. Conversely, as

is shown in [3], for each bounded distributive lattice D ∈ BDL there exists a

suitable (B,≺) ∈ BLS such that D is isomorphic to D≺ which we identify as

follows. Let (B,D) ∈ BDA. We say that B is generated by D or that B is

D-generated if B is the smallest Boolean subalgebra of B that contains D and

call B the Boolean envelope of D [3, Def. 6.1]. We let GBDA denote the full

subcategory of BDA that has as objects pairs (B,D) where B is D-generated.

Theorem 2.4.7 ([3, Thm. 6.3]). GBDA is equivalent to BDL.

Thus, the category BDL can be embedded into the category of BLS. In the

following section, we look at their dual categories Priest and QPS respectively,

and how they relate.
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2.5 Quasi-ordered Priestley spaces and Priestley spaces

From the previous sections we know that the category BLS is dually equivalent

to the category QPS and that BLS is isomorphic to the category BDA. Now, we

also know that the full subcategory GBDA of BDA is isomorphic to the category

BDL and hence, dually equivalent to the category Priest. This means that, for

a given (B,≺) ∈ BLS we can form the dual space (XB, R≺) ∈ QPS and the

isomorphic structure (B,D≺) ∈ BDA. From D≺ we can construct a dual space

(XD≺ , RD≺) ∈ Priest. In this section, we will show how, for any (B,≺) ∈ BLS,

the spaces (XB, R≺) and (XD≺ , RD≺) relate.

Definition 2.5.1. Let R be a pre-order on a set X. We let ∼R be the equivalence

relation on X defined by,

x ∼R y iff xRy and yRx, for all x, y ∈ X.

For all x ∈ X, by the cluster of x under R we mean the equivalence class,

[x]∼R := {y ∈ X | x ∼R y}.

We denote the collection of clusters of X under R by X∼. Given a cluster [x]∼R ,

we will drop the subscript ∼R when this is clear from the context. We define a

binary relation R∼ on X∼ by,

CR∼C ′ iff there exist x ∈ C and y ∈ C ′ such that xRy, for all C,C ′ ∈ X∼.

Let (X, τ) be a topological space and ∼ an equivalence relation on X. Denote

by X∼ the set of equivalence classes of X. Recall that the quotient mapping

q : X → X∼ is the map defined by x 7→ [x] and the quotient topology τ∼ on

X∼ is the family of sets U such that q−1(U) ∈ τ . Furthermore, we recall from

[23, p. 361] that, given a Stone space X and an equivalence relation ∼ on X,

the relation ∼ is called Boolean if, for any two distinct equivalence classes C,C ′

of ∼, there exists a clopen subset V ⊆ X that is the union of a collection of

equivalence classes of ∼ and includes either C or C ′.

Lemma 2.5.2 ([23, Lemm. 37.1]). Let X be a Stone space and ∼ an equivalence

relation on X. The quotient space X∼ is a Stone space iff the relation ∼ is

Boolean.

Lemma 2.5.3 ([22, Prop. 8]). Let (X,R) be a quasi-ordered Priestley space.

The set X∼ ordered by R∼ together with the quotient topology forms a Priestley

space.
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Proof. We first show that the relation ∼R is Boolean. Pick C,C ′ ∈ X∼ such that

C 6= C ′. Then C 6⊆ C ′ or C ′ 6⊆ C. Without loss of generality, assume C 6⊆ C ′.

Then there exist x ∈ C with x 6∈ C ′. Now pick y ∈ C ′. Note that x 6∼R y, so x��Ry

or y��Rx. Without loss of generality, assume x��Ry. By the Priestley separation

axiom, there exists a clopen upset W ⊆ X with x ∈ W but y 6∈ W . It follows

that C ⊆ W but C ′ 6⊆ W . Now, suppose W is not the union of a collection of

equivalence classes of X∼. Then there exists an equivalence class D of X under

∼R such that D 6⊆W and D∩W 6= ∅. Pick z1 ∈ D with z1 6∈W and z2 ∈ D∩W .

Since z1, z2 ∈ D, we have z1 ∼R z2 and so z2Rz1. Since W is an upset, it follows

that z1 ∈ W , but this cannot be. Hence, ∼R is Boolean and by Lemma 2.5.2,

X∼ is a Stone space.

We now show that X∼ satisfies the Priestley separation axiom. Pick C,C ′ ∈ X∼

with C��R∼C ′ and pick x ∈ C and y ∈ C ′. Then x��Ry, so, by the Priestley

separation axiom, there exists a clopen upset W ⊆ X with x ∈ W but y 6∈ W .

We already know that W can is the union of a collection of equivalences classes

W∼ of X under ∼R. Observe that q−1(W∼) = W , so W∼ is clopen. Clearly

C ∈ W∼ but C ′ 6∈ W∼ and, moreover, W∼ is an upset. Hence, (X∼, R∼) is

satisfies the Priestley separation axiom and thus is a Priestley space.

In what follows, for the dual space (XB, R≺) of any (B,≺) ∈ BLS, for all x ∈ XB,

we define x≺ := {a ∈ x | a ≺ a}. We recall that for S ⊆ B we have defined set
↑↑S is to be the upset of S with respect to ≺, that is,

↑↑S := {b ∈ B | ∃a ∈ S : a ≺ b}.

Lemma 2.5.4. Let (B,≺) ∈ BLS and (XB, R≺) denote its dual space. Then,

for all x, y ∈ XB,

↑↑x ⊆ y if and only if x≺ ⊆ y≺.

Proof.

(⇒): Assume that x, y ∈ XB are such that ↑↑x ⊆ y and consider b ∈ x≺. Then

b ≺ b and thus b ∈ ↑↑x ⊆ y. Hence b ∈ y≺.

(⇐): Now chose x, y ∈ XB such that x≺ ⊆ y≺ and pick b ∈ ↑↑x. Then there

exists a ∈ x such that a ≺ b. From axiom (QP) it follows that there exists c ∈ B
such that c ≺ c and a ≤ c ≤ b. Now, x is a filter, so it must be that c ∈ x

and thus c ∈ x≺ ⊆ y≺. Then also c ∈ y, and thus b ∈ y since y is a filter and

c ≤ b.
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Corollary 2.5.5. Let (B,≺) ∈ BLS and (XB, R≺) denote its dual space. For

all x, y ∈ XB,

↑↑x ⊆ y and ↑↑y ⊆ x if and only if x≺ = y≺.

Lemma 2.5.6. Let (B,≺) ∈ BLS. For every ultrafilter x ∈ XB we have x≺ ∈
XD≺.

Proof. Pick x ≺∈ XB. Clearly, x≺ is a filter in D≺ and, since x is a prime filter,

for any a, b ∈ D≺ with a∨b ∈ x, it must be that a ∈ x or b ∈ x, so, x ∈ XD≺ .

Lemma 2.5.7. Let (B,≺) ∈ BLS. For every prime filter x ∈ XD≺, there is an

ultrafilter y ∈ XB for which x = y≺.

Proof. Let x be a prime filter in D≺. Observe that ↑x defines a filter in B and

that ↓(D≺ \ x) defines an ideal in B such that ↑x∩↓(D≺ \ x) = ∅. By the prime

filter theorem (see e.g., [2, Thm. III.4.1]), there exists a maximal filter y in B

such that ↑x ⊆ y and y ∩ ↓(D \ x) = ∅. Then, it must be that y≺ = x.

Theorem 2.5.8. Let (B,≺) ∈ BLS. We define a map (−)× : XD≺ → X∼B from

the dual space of D≺ to the set of clusters of XB by,

(x)× = {y ∈ XB | x = y≺}.

Then, (−)× : XD≺ → X∼B is a well-defined bijection from XD≺ to X∼B .

Proof. Pick x ∈ XD. By Lemma 2.5.7 we know that there exists y ∈ (x)× with

x = y≺ and y ∈ XB. Now, for any y, z ∈ (x)× we have y≺ = z≺. Then, by

Corollary 2.5.5 it follows that xRBy and yRBx. Hence, (x)× is a cluster of XB

under RB and the map (−)× is well-defined. Now pick x, y ∈ XD≺ such that

(x)× = (y)×. Then for all z ∈ XB we have x = z≺ if and only if y = z≺, so

x = y and thus (−)× is injective. Furthermore, (−)× is surjective, since, from

Lemma 2.5.6 we know that for any cluster [x], x≺ is a prime filter in D≺ and so

(x≺)× = [x].
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(B,≺) (X,R)

(B,D) (BD, D) (D) (X ′, R′)

(X∼, R∼)

BLS QPS

BDA PriestGBDA BDL

(−)∗

(−)∗

ΦΨ

(−)∗

(−)∗

d∼

∼= t

A d∼∼

Table 2.3: Categorical isomorphisms (∼=), equivalences (∼), dual equivalences

(
d∼), and full subcategories (@).

Category Objects Section

Priest Priestley spaces 2.1.1

Stone Stone spaces 2.1.2

StR Stone spaces with a closed relation 2.2

QPS Quasi-ordered Priestley spaces 2.3

We summarize the categorical correspondences that have been presented from

section 2.1.1 onwards in the following scheme. The outer square depicts the

correspondences between categories and the inner square the maps between their

objects.
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Category Objects Axioms Section

BDL Bounded distributive lattices 2.1.1

Bool Boolean algebras 2.1.2

Sub Boolean algebras with a subordination (B1)-(B4) 2.2

RSub Boolean algebras with a reflexive subordination (B1)-(B5) 2.2

BLS Boolean algebras with a lattice subordination (B1)-(B4, (QP) 2.3

BDA Boolean algebras with a bounded sublattice 2.4

GBDA D-generated objects of BDA 2.4

2.6 Heyting lattice subordinations

In this section we present Heyting lattice subordinations introduced in [3] and

show that the category of Boolean algebras with a Heyting lattice subordination

is isomorphic to the category of S4-algebras.

Definition 2.6.1 (Heyting lattice Subordination [3, Def. 2.1]). Let B be a

Boolean algebra. A lattice subordination ≺ on B is called a Heyting lattice

subordination if, for all a ∈ B, the set {b ∈ B | b ≺ a} has a largest element,

denoted by �≺a. a

Lemma 2.6.2 ([3, Lem. 4.2]). Let ≺ be a Heyting lattice subordination on a

Boolean algebra B. Then, for all a, b ∈ B,

(i) a ≺ a if and only if �≺a = a;

(ii) �≺a ≺ �≺a;

(iii) a ≺ b implies �≺a ≺ �≺b;
(iv) �≺a ≤ a;

(v) a ≺ b if and only if a ≤ �≺b.
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Proof.

(i) Pick a ∈ B such that a ≺ a. Since ≺ is a lattice subordination (B,≺) satisfies

(B5) and so, for all b with b ≺ a, we have b ≤ a. Then since a ≺ a, a must be

the largest element of {b ∈ B | b ≺ a}, which means that �≺a = a.

(ii) Pick a ∈ B. By definition, �≺a ≺ a. From axiom (B6) it follows that there

exists c ∈ B with �≺a ≺ c ≺ a. Since �≺a is the largest element of {b ∈ B | b ≺ a},
it must be that �≺a = c and so �≺a ≺ �≺a. The converse is immediate.

(iii) Pick a, b ∈ B such that a ≺ b. By axiom (QP), it follows that there exists

c ∈ B with c ≺ c and a ≤ c ≤ b. By item (ii) of this lemma we have �≺c ≺ �≺c
and from a ≤ c ≤ b it follows that �≺a ≤ �≺c ≤ �≺b. Hence, �≺a ≺ �≺b.

(iv) Since �≺a ≺ a and the fact that lattice subordinations are reflexive it holds

that �≺a ≤ a.

(v) Pick a, b ∈ B such that a ≺ b. Then a ≤ �≺b, since �≺b is by definition the

greatest element with this property. Conversely, suppose a ≤ �≺b. By items (ii)

and (iv) of this lemma we know that a ≤ �≺b ≺ �≺b ≤ b. By axiom (B4) herefrom

it follows that a ≺ b.

Let BLH denote the category whose objects are Boolean algebras with a Heyting

lattice subordination and whose morphisms are subordination homomorphisms

h : A→ B that satisfy for all a ∈ A, if there exists e ∈ B such that e ≺B �≺h(a)

then there exists b ∈ A with b ≺A a and e ≺B h(b). We will refer to the

morphisms of BLH as BLH-morphisms.

Definition 2.6.3. An S4-algebra (or interior or closure algebra) is a pair (B,�)

where B is a Boolean algebra and � : B → B a unary function on B such that

for all a, b ∈ B,

(1) �1 = 1;

(2) �(a ∧ b) = �a ∧�b;
(3) �a ≤ ��a;

(4) �a ≤ a. a

Given a Boolean algebra homomorphism h between S4-algebras (A,�A) and

(B,�B), we call h a modal algebra homomorphism whenever, for all a ∈ A,

h(�Aa) = �Bh(a). We let S4 denote the category of S4-algebras and modal

algebra homomorphisms.

Define a functor (−)? : BLH→ S4 as follows.
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For (B,≺) ∈ BLH, let (B,≺)? := (B,�≺), where �≺ : B → B denotes the

unary operator on B that associates with every a ∈ B the element �≺a, the

largest element of the set {b ∈ B | b ≺ a}. For BLH-morphism h, define

h? := h.

Lemma 2.6.4. Let (B,≺) ∈ BLH. Then (B,≺)? ∈ S4.

Proof. Given that 1 is the largest element of B and 1 ≺ 1, it must be that

�≺1 = 1, so (B,�≺) satisfies S4-axiom 1. To see that (B,�≺) satisfies S4-axiom

(2), observe that from a ∧ b ≤ a, b it follows that �≺(a ∧ b) ≤ �≺a,�≺b and thus

also �≺(a ∧ b) ≤ �≺a ∧�≺b. Furthermore, since for all a, b ∈ B we have �≺a ≺ a

and �≺b ≺ b it must be that �≺a ∧�≺b ≺ a ∧ b. Now, since �≺(a ∧ b) is the largest

element in the set {c ∈ B | c ≺ a ∧ b} and �≺(a ∧ b) ≤ �≺a ∧�≺b, it must be that

�≺(a ∧ b) = �≺a ∧ �≺b. Hence, (B,�≺) satisfies S4-axiom (2). To see that (B,�≺)

satisfies S4-axiom (3), recall from Lemma 2.6.2 item (ii) that for all a ∈ B we

have �≺a ≺ �≺a. Then, by item (v) of Lemma 2.6.2, it immediately follows that

�≺a ≤ �≺�≺a. Hence, (B,�≺) satisfies S4-axiom (3). That (B,�≺) satisfies S4-axiom

(4) follows from 2.6.2 (v).

Define (−)? : S4→ BLH as follows.

For (B,�) ∈ S4, let (B,�)? := (B,≺�), where ≺� is a binary relation on

B defined by a ≺� b if and only if a ≤ �b, for all a, b ∈ B. For modal

algebra homomorphism h, define h? := h.

Lemma 2.6.5. Let (B,�) ∈ S4. Then (B,�)? ∈ BLH.

Proof. It is a routine check to see that (B,≺�) satisfies (B1)-(B4). To see that

(B,≺�) satisfies (QP), pick a, b ∈ B such that a ≺� b, i.e., a ≤ �b. From S4-

axiom (3), we know that �b ≤ ��b, hence �b ≺� �b. By S4-axiom (4) we also

have �b ≤ b. Since �b ≺� �b and a ≤ �b ≤ b, we have that (B,≺�) satisfies

(QP). Thus, ≺� is a lattice subordination on B. Moreover, by reflexivity of ≤
for any a ∈ B we have �a ≤ �a, so the set {b ∈ B | b ≺� a} has a largest

element. Thus, (B,≺�) ∈ BLH.

Remark 2.6.6. Observe that for all Boolean algebras B, given a Heyting lat-

tice subordination ≺ on B, from Lemma 2.6.2 item (iv) it follows that for all

a, b ∈ B we have a ≺ b if and only if a ≺�≺ b. Moreover, given a unary operator

� on B that satisfies the S4-axioms, for all a, the largest element of the set

{b ∈ B | b ≺� a} is �a, so �a = �≺�a.
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Lemma 2.6.7 ([3, Thm. 4.8]). Let (A,�A) and (B,�B) be S4-algebras and ≺A
and ≺B denote ≺�A and ≺�B respectively. Let h : A→ B be a Boolean algebra

homomorphism. Then h(�Aa) = �Bh(a) for all a ∈ A iff (i) for all a, b ∈ A
we have that a ≺A b implies h(a) ≺B h(b) and, (ii) for all a ∈ A, c ≺B �≺h(a)

implies there exists b ∈ A with b ≺A a and c ≺B h(b).

Proof. Suppose that h(�Aa) = �Bh(a), for all a ∈ A. Pick a, b ∈ A such that

a ≺A b, i.e., a ≤ �≺Ab. It follows that h(a) ≤ h(�≺Ab) = �≺B(h(b)) and hence

h(a) ≺B h(b). Now pick a ∈ A such that c ≺B �≺Bh(a) for some c ∈ B and let

b := �≺Aa. Then b ≺A a and since h(b) = h(�≺Aa) = �≺Bh(a), also c ≺B h(b).

Conversely, assume h satisfies condition (i) and (ii). Pick a ∈ A. From

�Aa ≺ a it follows that h(�Aa) ≺ h(a). By Lemma 2.6.2 item (iv) this means

that h(�Aa) ≤ �Bh(a). Now recall that by Lemma 2.6.2 item (ii) we have

�Aa ≺A �Aa and hence h(�Aa) ≺B h(�Aa). By condition (ii) stated above, it

follows that there exists b ∈ A with b ≺A a and h(�Aa) ≺B h(b). From b ≺A a
we obtain b ≤ �Aa and so h(b) ≤ h(�Aa). By S4-axiom (4), �Bh(b) ≤ h(b), so

�Bh(b) ≤ h(�Aa). Hence, h(�Aa) = �Bh(a).

Theorem 2.6.8 ([3, Cor. 4.9]). BLH is isomorphic to S4.

Proof. Lemmas 2.6.4, 2.6.5, and 2.6.7 show that (−)? : BLH → S4 and (−)? :

S4 → BLH are well-defined functors. From Remark 2.6.6 it follows that for all

(B,≺) ∈ BLH we have (B,≺) = ((B,≺)?)
? and for all (B,�) ∈ S4 we have

(B,�) = ((B,�)?)?. Thus, BLH is isomorphic to S4.

2.6.1 Heyting algebras and Heyting lattice subordinations

In section 2.4 we have seen that, given a lattice subordination ≺ on a Boolean

algebra B, we can identify a corresponding bounded sublattice D≺ of B and, vice

versa, by means of a bounded sublattice D of a Boolean algebra B, we can define

a lattice subordination ≺D on B. In this section we will see that for Heyting

lattice subordinations, the corresponding bounded distributive lattice D≺ is in

fact a Heyting algebra. Conversely, for every bounded sublattice D of B, if D is

a Heyting algebra, then ≺D defines a Heyting lattice subordination.

Definition 2.6.9. A Heyting algebra (H,∨,∧,→, 0, 1) is a bounded distributive

lattice endowed with a binary operation → called Heyting implication such that

for every a, b ∈ H there exists an element a→ b such that, for all c ∈ H,

c ≤ a→ b if and only if a ∧ c ≤ b. a
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By Heyt, we denote the category that has as objects Heyting algebras and mor-

phisms Heyting algebra homomorphisms. Let (B,�) be an S4-algebra. We call

the elements a ∈ B that are such that �a = a the fixed points or open elements

of B and, define B� := {a ∈ B | �a = a}.

Lemma 2.6.10 (see e.g.,[13, Prop. 8.31]). For all S4-algebras (B,�), the set

of fixed points B� := {a ∈ B | �a = a} is a sublattice of B with a Heyting

implication given by a→ b := �(¬a ∨ b).

Lemma 2.6.11 (see e.g.,[13, Cor. 8.35]). For every Heyting algebra H, there

exists an S4-algebra (B,�) such that B� ∼= H.

Lemma 2.6.12 (Cf., [3, Lem. 4.5]). Let B be a Boolean algebra and ≺ a Heyting

lattice subordination on B. Then D≺ is a bounded sublattice of B that is a

Heyting algebra.

Proof. From 2.6.4 we know that (B,�≺) is an S4-algebra and by Lemma 2.6.11

that B�≺ defines a Heyting algebra. By Lemma 2.6.2 item (i) it immediately

follows D≺ = B�≺.

Lemma 2.6.13 (Cf., [3, Lem. 4.5]). If a bounded sublattice D of a Boolean

algebra B is such that D it has a Heyting implication, then ≺D is a Heyting

lattice subordination on B.

In this chapter, we have seen how the category BDL of bounded distributive

lattices relates to the category BLS of Boolean algebras with a lattice subordi-

nation. Specifically, for every Boolean algebra with a lattice subordination, the

lattice of reflexive elements is a bounded distributive lattice and conversely, each

bounded distributive lattice is isomorphic to the bounded distributive lattice of

reflexive elements of a suitable Boolean algebra with a lattice subordination.

Moreover, we have looked at the specific case of Boolean algebras with a Heyt-

ing lattice subordination and Heyting algebras. In what follows we will look at

the syntactic analogue of the correspondence between BDL and BLS. We will

first present a positive hypersequent calculus that is sound and complete with

respect to the class of bounded distributive lattices and introduce a calculus that

is sound and complete with respect to the class of Boolean algebras with a lattice

subordination. Thereafter, we will define a translation that embeds the positive

calculus in the latter one and show that it is full and faithfull.
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Chapter 3

Positive calculus

In this chapter, we introduce a calculus PC+ of hypersequent rules and prove

that it is sound and complete with respect to the class BDL of bounded distribu-

tive lattices. First, we introduce our formal language (a positive logic) L+ and

a semantics for this language. Thereafter, we present the axioms and rules of

the system PC+ and prove strong soundness and completeness with respect to

BDL. As we will see, the basic hypersequent system PC+ is in fact equivalent

to a sequent calculus SC+ with respect to the derivation of single-component

hypersequents (i.e., regular sequents). That is, for all sequents S, PC+ derives

the sequent S if and only if the sequent calculus SC+ derives S. Of course

PC+ derives many hypersequents with multiple components, yet these do not

make sense in the context of SC+. However, we will see that the additional

hypersequent context is a sensible choice. Similar to the results of [14], we show

that every positive sequent rule that is consistent (a positive rule is consistent

if there exists a non-trivial bounded distributive lattice that validates the rule),

then this positive sequent rule is already derivable in the calculus SC+. Thus,

we would not be able to identify proper subclasses of BDL by extensions of SC+.

3.1 Syntax and semantics

Let Prop be a countably infinite set of propositional variables. We generate the

positive language L+ from Prop using the connectives ∧ and ∨ and constants >
and ⊥. The well-formed formulas ϕ of L+ are called positive formulas or terms

and are given by the grammar:

ϕ ::= p | > | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ, p ∈ Prop.
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A positive sequent is an expression of the form Γ⇒ ∆, where Γ and ∆ are finite

(possibly empty) multisets of positive formulas. A positive hypersequent is a

finite multiset of positive sequents,

Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n

where, for all i ≤ n, Γi ⇒ ∆i is an ordinary positive sequent called a component

of the hypersequent.

A substitution is a function σ : Prop → L+. We extend this function recur-

sively to a map (−)σ : L+ → L+ from formulas to formulas in the usual

way. Then, given a substitution σ and a multiset of formulas Γ, we let Γσ

denote the multiset {ϕσ | ϕ ∈ Γ} with the convention that the multiplicity

of ϕσ in Γσ is that of ϕ in Γ. Furthermore, given a sequent Γ ⇒ ∆, we let

(Γ ⇒ ∆)σ denote the sequent Γσ ⇒ ∆σ. And, similarly, given a hypersequent

Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n, we let (Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n)σ denote the hyperse-

quent (Γ1 ⇒ ∆1)σ | ... | (Γn ⇒ ∆n)σ.

We interpret the formulas of the language above in bounded distributive lattices

D, where D is regarded as an algebra (D,∨,∧, 0, 1). Then, a valuation v is a

map v : Prop → D. We extend this map to a map J−Kv : L+ → D that assigns

a valuation to positive formulas in the usual recursive fashion,

Jϕ ∧ ψKv := JϕKv ∧ JψKv,
Jϕ ∨ ψKv := JϕKv ∨ JψKv,

J>Kv := 1,

J⊥Kv := 0.

For a multiset of positive formulas Γ we follow the convention that if Γ = ∅ then

J
∧

ΓKv = 1, and J
∨

ΓKv = 0 for any valuation v.

We say that a positive sequent Γ ⇒ ∆ is true in a distributive lattice D un-

der a valuation v (or, in other words, that D satisfies Γ ⇒ ∆ under v) iff

J
∧

ΓKv ≤ J
∨

∆Kv, and write (D, v) � Γ⇒ ∆. We extend this to positive hyper-

sequents by saying that a positive hypersequent Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n is true

in D under a valuation v if it satisfies a component Γi ⇒ ∆i of the hypersequent

under v. Furthermore, a positive (hyper)sequent H is said to be valid in D if it

is true under all valuations v on D, in which case we write D � H.

We derive the notion of truth of a positive formula ϕ by saying that ϕ is true in

D under a valuation v iff the sequent > ⇒ ϕ is true in D under that valuation
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v. And, we say that a positive formula ϕ is valid if the corresponding sequent

> ⇒ ϕ is.

Definition 3.1.1 (Cf., [8]). A positive hypersequent rule is a pair M = 〈H, S〉,
where H is a finite set of positive hypersequents and S a single positive hyper-

sequent. We write 〈H, S〉 as H/S or, if H = {H0, H1, ...,Hn} we write,

H0 H1 ... Hn
(M)

S

We call H and S the premises of the rule and the conclusion respectively. If

H = ∅ we call (M) an axiom. a

We say that D ∈ BDL validates a positive hypersequent rule H/S if, for all

valuations v, the conclusion S is true under v whenever all the premises in the

set H are true under that valuation v, and write D � H/S or H �D S. Given

an arbitrary subclass K of BDL, we write H �K S if for all D ∈ K, we have

H �D S.

3.2 Positive hypersequent calculi HC+

In this section, we present the hypersequent calculus PC+ for the positive lan-

guage L+ and show algebraic soundness and completeness concerning the deriv-

ability of positive hypersequent rules with respect to bounded distributive lat-

tices.

3.2.1 The calculus PC+

Definition 3.2.1. Let ϕ,ϕ1, ϕ2, ψ1, ψ2 be positive formulas and Γ,∆,Γ′,∆′ be

finite multisets of positive formulas. The hypersequent calculus PC+ consists of

the following rules.

Axioms

G | Γ,⊥ ⇒ ∆ G | Γ⇒ >,∆ G | Γ, ϕ⇒ ϕ,∆

Cut rule

G | Γ⇒ ϕ,∆ G | ϕ,Γ′ ⇒ ∆′

(cut)
G | Γ,Γ′ ⇒ ∆,∆′
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Logical rules

G | Γ, ϕ1, ϕ2 ⇒ ∆
(∧l)

G | Γ, ϕ1 ∧ ϕ2 ⇒ ∆

G | Γ⇒ ψ1,∆ G | Γ⇒ ψ2,∆
(∧r)

G | Γ⇒ ψ1 ∧ ψ2,∆

G | Γ, ψ1 ⇒ ∆ G | Γ, ψ2 ⇒ ∆
(∨l)

G | Γ, ψ1 ∨ ψ2 ⇒ ∆

G | Γ⇒ ψ1, ψ2,∆
(∨r)

G | Γ⇒ ψ1 ∨ ψ2,∆

Internal structural rules

G | Γ⇒ ∆
(iw)

G | Γ,Γ′ ⇒ ∆,∆′

G | Γ′,Γ,Γ⇒ ∆
(icl)

G | Γ′,Γ⇒ ∆

G | Γ⇒ ∆,∆,∆′

(icr)
G | Γ⇒ ∆,∆′

External structural rules

G
(ew)

G | Γ⇒ ∆

G | Γ⇒ ∆ | Γ⇒ ∆
(ec)

G | Γ⇒ ∆

By a positive hypersequent calculus we mean any collection of positive hyperse-

quent rules extending the calculus PC+. Now, let {H,H1, ...,Hn} be a set of

positive hypersequents and let

G0 G1 ... Gn
(M)

G

be a positive hypersequent rule. Following [8], we say that a hypersequent H

is obtained from H1, ...,Hn by an application of the rule (M), if there exist a

substitution σ and a hypersequent G′ such that H is of the form G′ | Gσ and

Hi is of the form G′ | Giσ for i ≤ n. Let H∪ {S} be a set of hypersequents and

HC+ a positive hypersequent calculus. We say that S is derivable (or provable)

from H over HC+ and write H `HC+ S, if there exists a finite sequence of

hypersequents H1, ...,Hm such that Hm is the hypersequent S and for all i < m

either Hi belongs to H or Hi is an axiom or Hi is obtained by applying a rule

from HC+ to some subset of {Hj | j < i}. If S is not derivable fromH over HC+

we write H 0HC+ S. Furthermore, we say that a positive hypersequent rule H/S
is derivable in a calculus HC+ if we have H `HC+ S. We will sometimes write

`HC+ H/S or HC+ ` H/S to indicate that we are referring to the derivability

of a rule. Finally, for sets of positive hypersequent rules R1 and R2, we say

that R2 is derivable from R1 over HC+ if all the rules of R2 are derivable in

HC+ ∪ R1 and express this by R1 `HC+ R2. The sets R1 and R2 are said to

be equivalent over HC+ if we have both R1 `HC+ R2 and R2 `HC+ R1.
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Observe that any hypersequent rule is equivalent to a finite set of hyperse-

quent rules the premises of which are all single-component hypersequents (i.e.,

sequents).

Definition 3.2.2. let ρ be an arbitrary positive hypersequent rule consisting

of the premises α11 | ... | α1m, ..., αk1 | ... | αkn and conclusion G. We define a

corresponding set Rρ of positive hypersequent rules as follows,

Rρ := {{α1i ... αkj}/G | αlp is a component of α11 | ... | α1m, ..., and αkj of αk1 | ... | αkn}. a

Lemma 3.2.3 ([8, Lem. 7]). Let HC+ be a positive hypersequent calculus, H a

set of positive hypersequents, α a positive sequent, and G a positive hypersequent.

Then,

H ∪ {α} `HC+ G and H `HC+ α | G imply H `HC+ G.

Proof. Assume that H `HC+ α | G. Then, for any hypersequent G′, if H ∪
{α} `HC+ G′, by an induction on the derivation of G′ it follows that H `HC+

G′ | G. In particular, this means that whenever H∪{α} `HC+ G it must also be

that H `HC+ G | G. By an application of the rule external weakening, it follows

that H `HC+ G.

Corollary 3.2.4. Let HC+ be a positive hypersequent calculus, H a set of posi-

tive hypersequents, {α1, ..., αn} a finite set of positive sequents, and G a positive

hypersequent. Then,

H `HC+ G | α1 | ... | αn and H∪ {αi} `HC+ G, for all i ≤ n, imply H `HC+ G.

Proof. Assum that H `HC+ G | α1 | ... | αn and H∪{αi} `HC+ G, for all i ≤ n.

By (ew),H∪{α1} `HC+ G impliesH∪{α1} `HC+ G | α2 | ... | αn. Together with

H `HC+ G | α1 | ... | αn, by Lemma 3.2.3 this entails H `HC+ G | α2 | ... | αn.

Applying this reasoning n− 1 times, we obtain H `HC+ G.

Theorem 3.2.5. Let ρ be an arbitrary positive hypersequent rule and let Rρ be

as defined above. Then, for any positive hypersequent calculus HC+ we have (i)

ρ `HC+ Rρ and, (ii) Rρ `HC+ ρ.

Proof.

(i) Let ` denote `HC+∪{ρ}. We show that for each rule α1i ... αkj/G ∈ Rρ it

holds that {α1i, ..., αkj} ` G. Observe that, by applying the rule (ew) m − 1

times on the premise α1i, ..., and n− 1 times on the premise αkj , we can derive

the all premises of ρ, that is, α11 | ... | α1m, ..., αk1 | ... | αkn, from α1i, ...,
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and αkj . Then, by the application of ρ, we derive G. Thus, each rule α1i ...

αkj/G ∈ Rρ is derivable in HC+ ∪ {ρ}. Hence the set of rules Rρ is derivable

from ρ over HC+.

(ii) Let ` denote `HC+∪Rρ and H the set {α11 | ... | α1m, ..., αk1 | ... | αkn},
consisting of the premises of ρ. We show that H ` G. Observe that if

k = 1, what needs to be shown follows immediately from Corollary 3.2.4. As-

sume that k > 1. From {α11, α21, ..., αk1}/G ∈ Rρ and (ew) it follows that

H ∪ {α11, α21, ..., αk1} ` G | α12 | ... | α1m. Since α11 | α12 | ... | α1m ∈ H,

we have H ∪ {α21, ..., αk1} ` G | α11 | α12 | ... | α1m. By Lemma 3.2.3, this im-

plies that H ∪ {α21, ..., αk1} ` G | α12 | ... | α1m. By Lemma 3.2.3 and given that

H ∪ {α21, ..., αk1} ∪ {α12} ` G | α13 | ... | α1m, thereby it follows that we have

H ∪ {α21, ..., αk1} ` G | α13 | ... | α1m.

Applying the argument m− 2 more times, we obtain H∪ {α21, ..., αk1} ` G. By

the same argument, for α21 | ... | α2j ∈ H, from {α11, α2i, α31, ..., αk1}/G ∈ Rρ,
it follows that H ∪ {α2i , α31, ..., αk1} ` G, for all i ≤ j. By corollary 3.2.4, from

H ∪ {α31, ..., αk1} ` G | α21 | ... | α2j , it follows that H ∪ {α31, ..., αk1} ` G. It-

erating this process k − 2 times, we obtain H ` G.

Theorem 3.2.5 will prove useful in Chapter 5 where we translate positive hy-

persequent rules into strict implication hypersequent rules. By Theorem 3.2.5,

it suffices to define a translation for positive rules with only single-component

premises, since, every rule with premises of a higher complexity corresponds to

a finite set of such rules with single-component premises.

Remark 3.2.6. Observe that since we interpret positive sequents as inequal-

ities in bounded distributive lattices, they correspond to equations in the lan-

guage of bounded distributive lattices. From this, we see that positive hyper-

sequents α1 | ... | αn correspond to disjunctions of equations e1 or ... or en,

where ei is the equation corresponding to αi, and that any positive hyper-

sequent rule {H1, ...,Hm}/H corresponds to a universal formulas of the form

(ANDmi=1Ei) =⇒ E, where Ei denotes the disjunction corresponding to Hi. As

a special case, we obtain that sequent rules correspond to quasi-equations, that

is, expressions of the form (ANDni=1ei) =⇒ e.

The following derivations provide two concrete examples of derivations that will

be of use for the completeness proof below.
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Derivation 3.2.1.

ϕ,ψ ⇒ ϕ,ϕ ∧ χ ϕ, ψ ⇒ ψ,ϕ ∧ χ
(∧r)

ϕ,ψ ⇒ ϕ ∧ ψ,ϕ ∧ χ
ϕ, χ⇒ ϕ ∧ ψ,ϕ ϕ, χ⇒ ϕ ∧ ψ, χ

(∧r)
ϕ, χ⇒ ϕ ∧ ψ,ϕ ∧ χ

(∨l)
ϕ,ψ ∨ χ⇒ ϕ ∧ ψ,ϕ ∧ χ

(∧l)
ϕ ∧ (ψ ∨ χ)⇒ ϕ ∧ ψ,ϕ ∧ χ

(∨r)
ϕ ∧ (ψ ∨ χ)⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

Derivation 3.2.2.

ϕ,ψ ⇒ ψ, χ
(∨r)

ϕ,ψ ⇒ ψ ∨ χ ϕ, ψ ⇒ ϕ
(∧r)

ϕ,ψ ⇒ ϕ ∧ (ψ ∨ χ)
(∧l)

ϕ ∧ ψ ⇒ ϕ ∧ (ψ ∨ χ)

ϕ, χ⇒ ψ, χ
(∨r)

ϕ, χ⇒ ψ ∨ χ ϕ, χ⇒ ϕ
(∧r)

ϕ, χ⇒ ϕ ∧ (ψ ∨ χ)
(∧l)

ϕ ∧ χ⇒ ϕ ∧ (ψ ∨ χ)
(∨l)

(ϕ ∧ ψ) ∨ (ϕ ∧ χ)⇒ ϕ ∧ (ψ ∨ χ)

Lemma 3.2.7. Let Γ and ∆ be finite sets of positive formulas. Then,∧
Γ⇒

∨
∆ `HC+ Γ⇒ ∆.

Proof. Let Γ := {γ1, ..., γn} and ∆ := {δ1, ..., δm}. Note that, for all i ≤ n and

all j ≤ m, the sequents γ1, ..., γn ⇒ γi and δj ⇒ δ1, ..., δm are instances of the

axiom G | Γ, ϕ⇒ ϕ,∆. By applying the (∧r)-rule n− 1 times, and the (∨l)-rule

m−1 times, we derive the sequents γ1, ..., γn ⇒
∧n
i=1 γi and

∨m
j=1 δj ⇒ δ1, ..., δm.

Then, from the assumption
∧n

1=i γi ⇒
∨m

1=j δj by applying (cut) twice, we obtain

the sequent γ1, ..., γn ⇒ δ1, ..., δm.

Note that this also follows if Γ or ∆ is empty. We know that, if Γ = ∅ then∧
Γ = > and, if ∆ = ∅ then

∨
∆ = ⊥. By the same argument as above, from the

assumption > ⇒
∨

∆ and
∨

∆⇒ ∆ we have > ⇒ ∆. Similarly, from
∧

Γ⇒ ⊥
we obtain the sequent Γ⇒ ⊥.

3.2.2 Soundness and completeness

In this section, we establish soundness and completeness of derivability of positive

hypersequent rules with respect to bounded distributive lattices.

Lemma 3.2.8 (Algebraic soundness, cf., [8, Thm. 2.5]). Let HC+ be a positive

hypersequent calculus and let H/S be a hypersequent rule. If the rule H/S is

derivable in HC+ then all distributive lattices validating HC+ also validate H/S.
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Proof. Let C(HC+) be the class of bounded distributive lattices that validate

HC+. We show by induction on derivation length that for all positive hyperse-

quent rules H/S and for all D ∈ C(HC+),

H `HC+ S implies H �D S.

This amounts to showing that all the axioms of PC+ are valid and all the rules

of PC+ preserve validity in all D ∈ C(HC+). We spell out the proof that (cut)

preserves validity. The other cases are proved in the same vain.

Observe that, for our soundness proof, we can disregard all side hyperse-

quents G that occur in the premises as well as in the conclusion. Since, if a

side hypersequent G in the premises is true, then, for any hypersequent G′, the

hypersequent G | G′ is also true. Now, pick arbitrary D ∈ C(HC+) such that

the sequents Γ ⇒ ϕ,∆ and ϕ,Γ′ ⇒ ∆′ are valid in D. Then, for all valua-

tions v on D we have J
∧

ΓKv ≤ Jϕ ∨
∨

∆Kv and Jϕ ∧
∧

Γ′Kv ≤ J
∨

∆′Kv. We show

that J
∧

Γ ∧
∧

Γ′Kv ≤ J
∨

∆ ∨
∨

∆′Kv follows by showing that, for all distributive

lattices D, for all a, a′, b, c, c′ ∈ D,

a ≤ b ∨ c and b ∧ a′ ≤ c′ implies a ∧ a′ ≤ c ∨ c′.

Let D be an arbitrary distributive lattice and pick a, a′, b, c, c′ ∈ D such that

a ≤ b∨c and b∧a′ ≤ c′. It follows that a∧a′ ≤ (b∨c)∧a′ and (b∧a′)∨c ≤ c′∨c.
Note that we also have (b ∨ c) ∧ a′ ≤ ((b ∨ c) ∧ a′) ∨ c. Now, since we assumed

D to be distributive and by absorption, the following equality holds,

((b ∨ c) ∧ a′) ∨ c = (b ∧ a′) ∨ (c ∧ a′) ∨ c = (b ∧ a′) ∨ c.

This means that, (b ∨ c) ∧ a′ ≤ (b ∧ a′) ∨ c. Then, by transitivity of ≤ it follows

that a ∧ a′ ≤ c ∨ c′. And so, in particular, J
∧

Γ ∧
∧

Γ′Kv ≤ J
∨

∆ ∨
∨

∆′Kv follows

from J
∧

ΓKv ≤ Jϕ ∨
∨

∆Kv and Jϕ ∧
∧

Γ′Kv ≤ J
∨

∆′Kv, which is what we wanted

to show. Thus, Γ,Γ′ ⇒ ∆,∆′ is valid inD and hence, (cut) preserves validity.

We now proceed to establish algebraic completeness. In what follows, for a set

of positive hypersequents H ∪ {S}, let the set P(H, S) denote the propositional

variables occurring in H∪{S} and let Form+(P(H, S)) denote the set of positive

formulas over P(H, S).

Definition 3.2.9. Let HC+ be a positive hypersequent calculus and H ∪ {S}
a set of positive hypersequents. We say that H is maximal with respect to S in

HC+ if (i) we have H 0HC+ S and (ii) for all positive hypersequents S′ over the

set Form+(P(H, S)) for which S′ 6∈ H holds, we have H, S′ `HC+ S. a
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Lemma 3.2.10 (Lindenbaum Lemma). Let H be a set of positive hypersequents

and S a single hypersequent such that H 0HC+ S. Let P(H, S) denote the propo-

sitional variables occurring in H ∪ {S} and Form+(P(H, S)) the set of positive

formulas over P(H, S). Then there exists a set of positive hypersequents H̃ based

on Form+(P(H, S)) such that H ⊆ H̃ and H̃ is maximal with respect to S.

Proof. Let G := {Gm}m∈N be an enumeration of all hypersequents based on

Form+(P(H, S)). We construct an increasing chain ∆0 ⊆ ∆1 ⊆ ∆2 ⊆ ... of sets

of positive hypersequents that do not derive S as follows,

∆0 := H

∆n+1 :=

{
∆n ∪ {Gn}, if ∆n, Gn 0HC+ S

∆n, otherwise.

Let H̃ =
⋃
m∈N ∆m. Clearly, we have H ⊆ H̃. We show that H̃ is maximal with

respect to S. Observe that, for all n ∈ N we have ∆n 0HC+ S. Now, if we have

H̃ `HC+ S, then there exists a finite sequence of hypersequents H∗ = H1, ...,Hk

such that Hk = S and for all i < k either Hi ∈ H̃ or Hi is obtained by applying

a rule from HC+ to some subset of {Hj | j < i}. Note that each Hi from H∗

occurs indexed in G. Let j be the highest index assigned to the hypersequents

H∗. Then, at ∆j , all the hypersequents of H∗ that belong to H̃ are in ∆j . So it

must be that ∆j `HC+ S, which leads to a contradiction. Thus, it must be that

H̃ 0HC+ S.

Now, pick a hypersequent Sj for some j ∈ N such that Sj 6∈ H̃. Then in the

increasing chain constructed above, at stage j the hypersequent Sj is not added

and we have ∆j = ∆j−1, so it must be that ∆j , Sj `HC+ S. Since ∆j ⊆ H̃, by

weakening it follows that H̃, Sj `HC+ S. We may conclude that H̃ is maximal

with respect to S.

In what follows, given a set of hypersequents H ∪ {S}, let P(H, S) denote the

set of propositional variables that occur in H ∪ {S} and Form+(P(H, S)) the

set of positive formulas over P(H, S). If additionally H 0HC+ S for some hy-

persequent calculus HC+, let H̃ denote a set of positive hypersequents based

on Form+(P(H, S)) that extends H and is maximal with respect to S in HC+

(observe that, by Lemma 3.2.10, such a set exists).
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Definition 3.2.11. Let HC+ be a positive hypersequent calculus and H∪ {S}
a set positive hypersequents such that H 0HC+ S. We define a relation ≈+ on

Form+(P(H, S)) as follows,

ϕ ≈+ ψ iff H̃ `HC+ ϕ⇒ ψ and H̃ `HC+ ψ ⇒ ϕ.

For all positive formulas ϕ, let [ϕ] denote the class of formulas {ψ | ϕ ≈+ ψ}. a

Lemma 3.2.12. Let HC+ be a positive hypersequent calculus and H ∪ {S} a

set positive hypersequents such that H 0HC+ S.

(i) The relation ≈+ defines a congruence relation on Form+(P(H, S)).

(ii) The quotient Form+(P(H, S))/≈+ with constants [⊥] and [>] and binary

operations ∧ and ∨ defined by [ϕ] ∧ [ψ] := [ϕ ∧ ψ] and [ϕ] ∨ [ψ] := [ϕ ∨ ψ]

is a bounded distributive lattice.

(iii) Let ≤ denote the partial order associated with the lattice Form+(P(H, S))/≈+

and let Γ and ∆ be finite sets of positive formulas. Then,

[
∧

Γ] ≤ [
∨

∆] iff H̃ `HC+ Γ⇒ ∆.

(iv) Let Γ ⇒ ∆ be a positive sequent based on Form+(P(H, S)) and pick an

arbitrary valuation v : P(H, S)→ Form+(P(H, S))/≈+. Let σv denote the

substitution determined by the valuation v. Then,

H̃ `HC+ Γσv ⇒ ∆σv if and only if J
∧

ΓKv ≤ J
∨

∆Kv.

Proof.

(i) It is easy to see that ≈+ defines an equivalence relation on Form+(P(H, S))

since, ≈+ is reflexive, symmetric, and from the cut rule it follows that ≈+ is

also transitive. Now, pick ϕ,ψ, ϕ′, ψ′ ∈ Form+(P(H, S)) such that ϕ ≈+ ψ

and ϕ′ ≈+ ψ′. This means that the sequents ϕ ⇒ ψ, ψ ⇒ ϕ, ϕ′ ⇒ ψ′,

and ψ′ ⇒ ϕ′ are derivable from H̃ over HC+. Then, for some finite subset

{H1, ...,Hm, H
′
1, ...,H

′
m} ⊆ H̃ we can construct the following derivations,

[H1]...[Hi]
...

ϕ⇒ ψ
(iw)

ϕ,ϕ′ ⇒ ψ

[Hj ]...[Hm]
...

ϕ′ ⇒ ψ′
(iw)

ϕ,ϕ′ ⇒ ψ′
(∧r)

ϕ,ϕ′ ⇒ ψ ∧ ψ′
(∧l)

ϕ ∧ ϕ′ ⇒ ψ ∧ ψ′

[H ′1]...[H ′i]
...

ψ ⇒ ϕ
(iw)

ψ,ψ′ ⇒ ϕ

[H ′j ]...[H
′
m]

...
ψ′ ⇒ ϕ′

(iw)
ψ,ψ′ ⇒ ϕ′

(∧r)
ψ,ψ′ ⇒ ϕ ∧ ϕ′

(∧l)
ψ ∧ ψ′ ⇒ ϕ ∧ ϕ′
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Thus, it follows that the sequents ϕ ∧ ϕ′ ⇒ ψ ∧ ψ′ and ψ ∧ ψ′ ⇒ ϕ ∧ ϕ′

are derivable from H̃ over HC+ and so we have ϕ ∧ ϕ′ ≈+ ψ ∧ ψ′. The

argument for ϕ ∨ ϕ′ ≈+ ψ ∨ ψ′ is analogous. Hence, ≈+ is a congruence

relation on Form+(P(H, S)).

(ii) The proof that Form+(P(H, S))/≈+ is a bounded distributive lattice, is a

matter of routine checking that Form+(P(H, S))/≈+ satisfies the equations

(L1)-(L5) and (D1) or (D2). We spell out the (D1)-case. Pick arbitrary

positive formulas ϕ,ψ, and χ. Observe that [ϕ] ∧ ([ψ] ∨ [χ]) = [ϕ ∧ (ψ ∨ χ)]

and ([ϕ] ∧ [ψ]) ∨ ([ϕ] ∧ [χ]) = [(ϕ ∧ ψ) ∨ (ϕ ∧ χ)]. We want to show that

[ϕ ∧ (ψ ∨ χ)] = [(ϕ ∧ ψ) ∨ (ϕ ∧ χ)] holds. In order to do so, we will show

that ϕ ∧ (ψ ∨ χ) ≈+ (ϕ ∧ ψ) ∨ (ϕ ∧ χ). From Derivation 3.2.1 and Deriva-

tion 3.2.2 we know that both `HC+ ϕ ∧ (ψ ∨ χ)⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ χ) and

`HC+ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)⇒ ϕ ∧ (ψ ∨ χ) hold. By weakening, herefrom it

follows that we also have H̃ `HC+ ϕ ∧ (ψ ∨ χ)⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ χ) and

H̃ `HC+ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)⇒ ϕ ∧ (ψ ∨ χ). By the definition of ≈+, this

means that we have ϕ ∧ (ψ ∨ χ) ≈+ (ϕ ∧ ψ) ∨ (ϕ ∧ χ).

(iii) (⇒): Let Γ and ∆ be finite sets of positive formulas so that [
∧

Γ] ≤ [
∨

∆].

This means that the [
∧

Γ] = [
∧

Γ ∧
∨

∆] and thus,
∧

Γ ∧
∨

∆ ≈+
∧

Γ.

Then, by definition of ≈+ we have H̃ `HC+

∧
Γ ∧

∨
∆ ⇒

∧
Γ and

H̃ `HC+

∧
Γ⇒

∧
Γ ∧

∨
∆. The following derivation shows that from∧

Γ⇒
∧

Γ ∧
∨

∆ we can derive
∧

Γ⇒
∨

∆.

‘

(ax)∨
∆⇒

∨
∆

(iw)∧
Γ,

∨
∆⇒

∨
∆

(∧l)∧
Γ ∧

∨
∆⇒

∨
∆

∧
Γ⇒

∧
Γ ∧

∨
∆

(cut)∧
Γ⇒

∨
∆

From Lemma 3.2.7 we know that if
∧

Γ ⇒
∨

∆ is derivable, then so is

Γ⇒ ∆, which is what we wanted to show.

(⇐): Now suppose that H̃ `HC+ Γ ⇒ ∆. We show that [
∧

Γ] ≤ [
∨

∆].

This amounts to showing that [
∧

Γ] ∧ [
∨

∆] = [
∧

Γ]. That is, that∧
Γ ∧

∨
∆ ≈+

∧
Γ holds. Observe that, for |Γ| = n and |∆| = m, by

applying (∧l) n times, and (∨r) m times, we derive
∧

Γ ⇒
∨

∆ from
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Γ ⇒ ∆. Since we also have H̃ `HC+ Γ ⇒ ∆, for some finite subset

{H1, ...,Hm} ⊆ H̃ we can construct the following derivations,

(ax)∧
Γ⇒

∧
Γ

(iw)∧
Γ,

∨
∆⇒

∧
Γ

(∧l)∧
Γ ∧

∨
∆⇒

∧
Γ

(ax)∧
Γ⇒

∧
Γ

[H1]...[Hm]
...

Γ⇒ ∆
...∧

Γ⇒
∨

∆
(∧r)∧

Γ⇒
∧

Γ ∧
∨

∆

Hence, we have H̃ `HC+

∧
Γ∧

∨
∆⇒

∧
Γ, and H̃ `HC+

∧
Γ⇒

∧
Γ∧

∨
∆

and thus
∧

Γ ∧
∨

∆ ≈+
∧

Γ.

(iv) (⇒): Suppose H̃ `HC+ Γσv ⇒ ∆σv . Observe that, since Γ and ∆ are

finite, we have Γ = {ϕ1, ..., ϕn} and ∆ = {ψ1, ..., ψm} for some n,m ∈ N
and hence, Γσv = {ϕσv1 , ..., ϕσvn } and ∆σv = {ψσv1 , ..., ψσvm }. By (iii) of this

lemma, it follows that [
∧n
i=1 ϕ

σv
i ] ≤ [

∨m
j=1 ψ

σv
j ]. By an argument of in-

duction on the complexity of ϕ, it is seen that for all ϕ ∈ Γ ∪∆ we have

[ϕσv ] = JϕKv. From (ii) of this lemma we know that [
∧n
i=1 ϕ

σv
i ] =

∧n
i=1[ϕσvi ]

and [
∨m
j=1 ψ

σv
j ] =

∨m
j=1[ψσvj ] and from the definition of a valuation that∧n

i=1JϕiKv = J
∧n
i=1 ϕiKv and

∨m
j=1JψjKv = J

∨m
j=1 ψjKv. Herefrom it follows

that J
∧n
i=1 ϕiKv ≤ J

∨m
j=1 ψjKv and so J

∧
ΓKv ≤ J

∨
∆Kv.

(⇐): Now suppose H̃ 0HC+ Γσv ⇒ ∆σv . By an analogous argument as

above, it follows that J
∧

ΓKv 6≤ J
∨

∆Kv.

Lemma 3.2.13 ([8, Thm. 2.5]). Let HC+ be a positive hypersequent calculus

and H/S a positive hypersequent rule such that H 0HC+ S. There exists a

bounded distributive lattice L+(H, S) that validates all the rules and axioms of

HC+ but does not validate H/S.

Proof. Define a bounded distributive L+(H, S) := Form+(P(H, S))/≈+, as con-

structed above. From Lemma 3.2.12 (ii) we know that L+(H, S) is a bounded

distributive lattice. We show that it validates HC+ and that there exists a

valuation v that makes all the hypersequents H ∈ H true but not S.

First, observe that for all positive hypersequents α1 | ... | αn it holds that,

If H̃ `HC+ α1 | ... | αn | S then H̃ `HC+ αi, for some i ≤ n.
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Suppose this would not be the case. That is, that both H̃ `HC+ α1 | ... | αn | S
and H̃ 0HC+ αi, for all i ≤ n hold. This means that we would have αi 6∈ H̃,

and thus by the maximality of H̃, also H̃, αi `HC+ S, for all i ≤ n. From

H̃, α1 `HC+S it follows by (ew) that H̃, α1 `HC+ α2 | ... | αn | S. Together with

H̃ `HC+ α1 | α2 | ... | αn | S by Lemma 3.2.3 this implies H̃ `HC+ α2 | ... | αn | S.

By applying this argument n−1 more times, we obtain H̃ `HC+ S, which contra-

dicts the maximality of H̃ with respect to S. Hence, it must be that H̃ `HC+ αi
for some i ≤ n.

Now, let G/G be an arbitrary rule in HC+ with G := {G1, ..., Gn} and v a valu-

ation that makes all Gi ∈ G true. Then, for all i ≤ n we have J
∧

ΓKv ≤ J
∨

∆Kv
for some component Γ ⇒ ∆ of Gi. Let σv denote the substitution determined

by v. From Lemma 3.2.12 (iv) it follows that H̃ `HC+ Γσv ⇒ ∆σv . This means

that for all Gi ∈ G we have H̃ `HC+ Gσvi . Now, since G/G is a rule from HC+,

it must be that also H̃ `HC+ Gσv . Then, by applying weakening it follows that

H̃ `HC+ Gσv | S and thus, from our observation above, that H̃ `HC+ Γσv ⇒ ∆σv

for some component Γσv ⇒ ∆σv of Gσv . By Lemma 3.2.12 (iv) again, it follows

that J
∧

ΓKv ≤ J
∨

∆Kv and thus, since v makes one of the components of the

hypersequent G true, v also makes G true. Hence, L+(H, S) validates HC+.

We now construct a valuation v on L+(H, S) such that all the hypersequents

H ∈ H are true in L+(H, S) under v but the hypersequent S is not. Let the valu-

ation v : P(H, S)→ L+(H, S) be defined by p 7→ [p]. Then, since ≈+ is a congru-

ence, v extends to positive formulas ϕ by JϕKv = [ϕ]. Pick α1 | ... | αn ∈ H. Since

H ⊆ H̃, we have H̃ `HC+ α1 | ... | αn. By (ew) we obtain H̃ `HC+ α1 | ... | αn | S
and thus, by our observation above we have H̃ `HC+ αi, for some i ≤ n. Now,

the since αi is a positive sequent, it is of the form Γ⇒ ∆ for some finite sets of

positive formulas Γ and ∆. By Lemma 3.2.12 (iii) it follows that [
∧

Γ] ≤ [
∨

∆]

and, by our definition of v this means that J
∧

ΓKv ≤ J
∨

∆Kv. Thus, the sequent

αi is true under v and so is the hypersequent α1 | ... | αn. Hence, v makes all

H ∈ H true. Now, since H̃ 0HC+ S, for all components Γ ⇒ ∆ of S we have

that H̃ 0HC+ Γ ⇒ ∆. By Lemma 3.2.12 (iii) it must be that [
∧

Γ] 6≤ [
∨

∆].

This means that no component of S is true under v, so v does not make the

hypersequent S true.

Theorem 3.2.14 (Algebraic soundness and completeness [8, Thm. 2.5]). Let

HC+ be a positive hypersequent calculus and let H/S be a positive hypersequent

rule. Then,
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H `HC+ S iff H �HC+ S

Proof. The left-to-right direction is established by 3.2.8. Its converse follows

immediately from Lemma 3.2.13.

3.3 The sequent calculus SC+

Let SC+ denote the sequent calculus consisting of the axioms, logical rules,

internal structural rules, and the cut rule of PC+, all with the side-hypersequents

dropped. We show that SC+ and PC+ are equivalent with respect to derivability

of sequent rules. That is, that PC+ derives a sequent S, (i.e., a hypersequent

with only one component), if and only if the sequent calculus SC+ derives S.

Thereafter, we motivate the adoption of PC+ by showing that every consistent

sequent rule is already derivable in SC+ and hence, that there are no non-trivial

extensions of the calculus SC+.

Theorem 3.3.1 (Cf., [14, Prop. 5.3]). For all positive sequent rules (r), (r) is

derivable in PC+ if and only if (r) is derivable in SC+.

Proof. By induction on derivation length.

Corollary 3.3.2 (Algebraic soundness and completeness of SC+ for sequents).

Let (r) be a positive sequent. Then,

`SC+ (r) iff �BDL (r). a

In order to show that, if a nontrivial bounded distributive lattice D validates

a positive sequent rule, then all bounded distributive lattices do, we first recall

some concepts and results from universal algebra (see e.g., [10]). A congruence

relation θ on an algebra A is an equivalence relation that is compatible with the

structure A. For a given algebra A, we let ConA denote the set of all congruences

on A and 4A the diagonal relation {〈a, a〉 | a ∈ A} on A. The direct product of

a family (Ai)i∈I of algebras of type F is the algebra that has as underlying set

the Cartesian product A =
∏
i∈I Ai, and for each n and each n-ary operation

symbol f ∈ F , for all a1, ..., an ∈ A, fA(a1, ..., an) is defined fAi(a1(i), ..., an(i))

for i ∈ I, i.e., fA in A is defined coordinate-wise. For each i ∈ I, we define

the ith projection map πi : A → Ai by πi(a) = a(i). An algebra A is called a

subdirect product of an indexed family (Ai)i∈I of algebras if A is a subalgebra of

Πi∈IAi and πi(A) = Ai for each i ∈ I. Recall the following characterization of

subdirectly irreducible algebras.
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Lemma 3.3.3 (See e.g. [2, Thm. I.9.3] and [10, Thm. 8.4]). an algebra A is sub-

directly irreducible if and only if A is trivial or there is a minimum congruence

in
⋂

(ConA \ {4A}).

Let 2 denote the two-element bounded distributive lattice {0, 1}. GivenD ∈ BDL,

for a ∈ D, we note that both θ(↑ a) := {(b, c) ∈ D2 | b ∧ a = c ∧ a} and

θ(↓ a) := {(b, c) ∈ D2 | b ∨ a = c ∨ a} are well-defined congruence relations on D.

The following lemma shows that 2 determines all and only the subdirectly irre-

ducible members of BDL.

Lemma 3.3.4 ([2, Thm. II.10.1]). Every nontrivial D ∈ BDL can be represented

as a subdirect product of copies of 2.

Proof. Since 2 has only two congruence relations, clearly, 2 is subdirectly irre-

ducible. For the converse, towards a contradiction, suppose that D is subdirectly

irreducible and that D > 2. Then there exist distinct elements a < c < b ∈ D.

Observe that θ(↑ c) ∩ θ(↓ c) = 4. For any (d1, d2) ∈ θ(↑ c) ∩ θ(↓ c) by dis-

tributivity of D it follows that d1 = d2, thus (d1, d2) ∈ 4. Since we assumed D

to be subdirectly irreducible by Theorem 3.3.3, the set
⋂

(ConD \ {4D}) has a

minimum congruence and thus, it must be that θ(↑ c) = 4 or θ(↓ c) = 4. This

cannot be, since for distinct a, b, c we have (a, c) ∈ θ(↑ c) and (b, c) ∈ θ(↓ c).
We therefore see that for every nontrivial D ∈ BDL, D is subdirectly irreducible

if and only if D = 2. By Birkhoff’s Theorem (see e.g., [10, Thm. 8.6] and

[2, Thm. I.10.4]) we know that every algebra D is isomorphic to a subdirect

product of subdirectly irreducible algebras that are homomorphic images of D

. For bounded distributive lattices in particular, it hereby follows that every

bounded distributive lattice can be represented as a subdirect product of copies

of 2.

Thus, in order to show that a property holds for every D ∈ BDL, it suffices to

show that the property holds for the subdirectly irreducible members of BDL,

and that it is preserved under the formation of subalgebras and direct products.

We recall from Remark 3.2.6 that positive sequent rules correspond to quasi-

equations, expressions of the form (s1 ≈ t1 and ... and sn ≈ tn) =⇒ s0 ≈ t0,

where si and ti are terms, for all i ≤ n. Hence, to show that a sequent rule (r) is

valid in a nontrivial D ∈ BDL if and only if it is valid in all D ∈ BDL, it suffices

to show that quasi-equations are preserved under the formation of subalgebras

(by which 2 validates (r)) and direct products (since 2 validates (r), by which

all D ∈ BDL validate (r)).
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Lemma 3.3.5 (See e.g. [37, Thm. 1.2.19]). Quasi-equations are preserved under

the formation of subalgebras and direct products.

Corollary 3.3.6. For every positive sequent rule (r), either the rule (r) is in-

consistent or (r) is valid on all bounded distributive lattices.

Proof. Assuming (r) is not inconsistent, there exists a non-trivial D ∈ BDL

validating it. Since 2 is a sublattice of D, by Lemma 3.3.5 it follows that 2

validates (r). Since quasi-equations are preserved under the formation of direct

products, every power of 2 also validates (r). By Lemma 3.3.4, any bounded

distributive lattice is a subdirect product of two-element algebras and so in

particular, a bounded sublattice of a power of 2. Therefore, every bounded

distributive lattice validates (r).

Theorem 3.3.7 (Cf., [14, Cor. 7.2]). For every positive sequent rule (r), either

the rule (r) is derivable in SC+ or SC+ ∪ {(r)} derives every positive sequent

in SC+.

Proof. Let (r) be a positive sequent rule. By Corollary 3.3.6 we know that (r) is

inconsistent or (r) is valid on all bounded distributive lattices. Observe that by

completeness (Theorem 3.3.2), if the rule (r) is inconsistent then SC+ ∪ {(r)}
derives all sequent rules. If (r) is not inconsistent, it is valid on all distributive

lattices, which means that �BDL (r). By completeness of SC+ with respect to

BDL it follows that `SC+ (r).

Observe that, unlike sequent rules, proper hypersequent rules are not preserved

under the formation of direct products, hence, we cannot conclude that every

bounded distributive lattice validates a positive hypersequent rule whenever 2

does. Consider the hypersequent rule (ρlc) and the bounded distributive lattice

product 2 × 2 given in Table 3.1. A bounded distributive lattice D validates

the rule (ρlc) if and only if ∀a1, b2, a2, b1 ∈ D a1 ≤ b2 and a2 ≤ b1 implies that

a1 ≤ b1 or a2 ≤ b2. Then, clearly 2 validates ρlc but the product 2× 2 does not

since (0, 1) ≤ (0, 1) and (1, 0) ≤ (1, 0) but (0, 1) 6≤ (1, 0) and (1, 0) 6≤ (0, 1).

Hence, we can have non-trivial positive hypersequent rules even though we can-

not have any such sequent rules.
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G | φ1 ⇒ ψ2 G | φ2 ⇒ ψ1
(ρlc)

G | φ1 ⇒ ψ1 | φ2 ⇒ ψ2

1

0

(1, 1)

(0, 0)

(0, 1) (1, 0)

2 2× 2

Table 3.1: The positive hypersequent rule (ρlc) and the product lattice 2× 2.
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Chapter 4

Strict implication logic

In this chapter we introduce a formal language L (a strict implication lan-

guage) that is an augmentation of the classical language by a binary operator

 . We present a semantics where the language L is interpreted in Boolean

algebras with strict implications that correspond to lattice subordinations. Our

aim thereafter, is to define a calculus BC that is sound an complete with re-

spect to the class BLS of Boolean algebras with lattice subordinations. In order

to do so, we build on the results from [5], that introduces a calculus RC 
1

that is sound and complete with respect to RSub and shows that the extensions

of RC enhanced with a particular kind of nonstandard rules are sound and

complete with respect to subclasses of RSub axiomatised by universal-existential

statements.2 In light hereof, and given that BLS is such a subclass of RSub ax-

iomatised by universal-existential statements, we define a Π2-rule that we call

ρqp and show that the calculus BC = RC ∪ {ρqp} is sound and complete

with respect to BLS.

4.1 Syntax and semantics

Let Prop be a countably infinite set of propositional variables. We generate the

strict implication language L from Prop using the unary connective ¬ and the

1In [5], the authors use SIC to denote the respective calculus. We refer to SIC as RC in
this thesis to keep a consistent terminology.

2We recall that a universal-existential formula (also known as Π2-statements, ∀∃-statements,
or ∀2-statements, are first-order formulas of the form ∀v1, ...∀vn∃w1...∃wmφ(v, w), where φ is a
quantifier-free formula [28, Sec. 2.4]. Note that, if m = 0, then ∀v1, ...∀vn∃w1...∃wmφ(v, w) is a
universal statement. Thus, universal statements are particular universal-existential statements.
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binary connectives ∨ and  . The well-formed formulas ϕ of L , called strict

implication formulas, are defined as follows,

ϕ ::= p | ⊥ | ϕ ∨ ϕ | ¬ϕ | ϕ ϕ, p ∈ Prop.

We make use of the standard abbreviations > := ¬⊥, ϕ∧ψ := ¬(¬ϕ∨¬ψ), and

ϕ→ ψ := ¬ϕ ∨ ψ. Additionally, we let �| ϕ abbreviate the formula >  ϕ. A

strict implication sequent, strict implication hypersequent, and strict implication

hypersequent rule, are defined analogous to positive sequents and hypersequents,

but build from finite (possibly empty) multisets of strict implication formulas.3

Now that we have the connective →, we can consider the meaning of a strict

implication sequent to be the formula
∧

Γ →
∨

∆, that is, the conjunction of

all the formulas in Γ implies the disjunction of all the formulas in ∆ (with the

convention that, if Γ is empty, then
∧

Γ = > and
∨

Γ = ⊥). We will drop ‘strict

implication’ in the usage of our terminology where it is clear from the context

that we are working with the strict implication language. This should not give

rise to confusion.

In the strict implication context, a substitution is a function σ : Prop→ L . In

the same way as we have done for the positive language, we extend this function

to a map (−)σ : L → L from formula to formula, to sets of formulas Γ, and

to (hyper)sequents.

We interpret formulas in Boolean algebras with a lattice subordination (B,≺),

where we regard (B,≺) as an algebra (B, 1,∨,¬, ). Recall from section 2.2

that we define the binary operator  as,

a b :=

{
1 if a ≺ b,
0 otherwise.

Then, a valuation v is a map J−Kv : Prop→ B. This map is extended recursively

to formulas as follows,

J>Kv := 1,

J¬ϕKv := ¬JϕKv,
Jϕ ∨ ψKv := JϕKv ∨ JψKv,

Jϕ ψKv := JϕKv  JψKv.
3In this chapter, we will not yet make use of the strict implication hypersequent setting. In

the following chapter however, we will translate positive hypersequent rules into strict implica-
tion hypersequent rules, which motivates the introduction of strict implication hypersequents
in this section.
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Let (B,≺) ∈ BLS. Analogous to the case of a positive sequent, we say that a

strict implication sequent Γ⇒ ∆ is true in (B,≺) under a valuation v or that v

on (B,≺) satisfies a sequent iff J
∧

ΓKv ≤ J
∨

∆Kv. We derive the notions of truth

of a strict implication formula and hypersequent in the same way as we have

done for the positive logic. Likewise, the notion of validity for strict implication

formulas, (hyper)sequents, and hypersequent rules, is defined in the same way

as in the case of positive logic. We define a strict implication hypersequent rule

H/S as we have defined a positive hypersequent rule, with the exception that

the set H ∪ {S} is a set of strict implication hypersequents. Similar to the

case of positive hypersequent rules, we say that (B,≺) ∈ BLS validates a strict

implication hypersequent rule H/S if, for all valuations v, the conclusion S is

true under v whenever all the premises in the set H are true under that valuation

v, and write (B,≺) � H/S or H �(B,≺) S. Given an arbitrary subclass K of

BLS, we write H �K S if for all (B,≺) ∈ K, we have H �(B,≺) S.

4.2 The strict implication calculus BC 

In this section, we present a deductive system BC that is strongly sound and

complete with respect to the class BLS. We first recall the required concepts and

results from [5], which presents the calculus RC and shows strong soundness

and completeness with respect to the universal class RSub and will use RC as

our base calculus.4 Standard extensions of RC , that is, RC together with

a set of rules {Γi/φi}i∈I (where Γ ∪ {φ} is a set of strict implication formulas

and Γ possibly empty) correspond to universal subclasses of RSub. However, we

are interested in subclasses of RSub that are axiomatised by universal-existential

statements, and in particular the subclass BLS axiomatised by adding (QP). By

a further result in [5], it is known that the calculus RC together with so-called

Π2-rules (which are non-standard rules that correspond, as we will see, to Π2-

statements, hence the name) is sound and complete with respect to the inductive

subclass K of RSub that validates these corresponding Π2-statements.5 After

having recalled the required concepts and aforementioned results, we present a

specific Π2-rule that we call ρqp, and show that the calculus RC ∪{ρqp} denoted

4In [5], the authors use SIC to denote the respective calculus. We will refer to SIC as RC ,
so as to keep a consistent terminology in this thesis.

5A class of algebras is said to be an inductive class if it is closed under taking the union of
chains (see e.g., [27, Sect. 8.2]). A famous theorem known as the Chang- Loś-Suszko Theorem,
establishes that inductive subclasses are exactly those that can be axiomatised by universal-
existential statements (see for instance, [27, Thm. 6.5.9]).
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by BC is sound and complete with respect to BLS.

4.2.1 The calculus RC 

Definition 4.2.1 ([5, Def. 4.1]). The strict implication calculus RC is the

smallest set that contains all the axioms of CPC and the strict implication axioms

(A1)-(A8) listed hereafter,

(A1) (⊥ ϕ) ∧ (ϕ >);

(A2) (ϕ ψ) ∧ (ϕ χ)↔ (ϕ ψ ∧ χ);

(A3) (ϕ χ) ∧ (ψ  χ)↔ (ϕ ∨ ψ  χ);

(A4) (ϕ ψ)→ (ϕ→ ψ);

(A5) �| (ϕ→ ψ) ∧ (ψ  χ)→ (ϕ χ);

(A6) (ϕ ψ) ∧�| (ψ → χ)→ (ψ  χ);

(A7) (ϕ ψ)→ (χ (ϕ ψ));

(A8) ¬(ϕ ψ)→ (χ ¬(ϕ χ)),

and is closed under the following inference rules,

ϕ ϕ→ ψ
(MP)

ψ

ϕ
(R)

�| ϕ
a

In [5, Thm. 4.4] it is established that the derivation system RC is strongly

sound and complete with respect to the class RSub considered as a universal

class of strict implication algebras. That is, for a set of formulas Γ and a formula

φ,

Γ `RC φ if and only if Γ �RSub φ.

Thus, for any set of strict implication inference rules {Γi/φi}i∈I (with Γi possibly

empty), the extension of the calculus RC by {Γi/φi}i∈I corresponds to the

universal subclass K of RSub, defined K := {D ∈ RSub | Γi �D φi, i ∈ I}.

4.2.2 Adding Π2-rules to RC 

In this section, following [5], we present so-called Π2-rules and soundness and

completeness of RC extended by Π2-rules with respect to inductive subclasses

of RSub. We define a particular Π2-rule that we call ρqp and show that RC 
together with ρqp corresponds to the inductive subclass BLS.
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Definition 4.2.2 (Π2-rule [5, Def. 5.1]). Let F and G be formulas, χ be a

formula, ϕ a tuple of formulas, and p a tuple of propositional letters. A derivation

rule is called a Π2-rule if it is of the form,

F (ϕ, p)→ χ
(ρ)

G(ϕ)→ χ

We associate the following universal-existential first-order formula Φρ with the

rule ρ,

Φρ := ∀x, z(G(x) 6≤ z → ∃y : F (x, y) 6≤ z). a

The Π2-rules defined above are non-standard in virtue of their application.

Namely, they are subject to the side-condition that the propositional letters

p cannot occur in the history of the derivation, a notion made precise in the

definition of proof given below. The rule ρqp together with the corresponding

Φqp formula given in Table 4.1 is a particular example of a Π2-rule that we will

use to extend the calculus RC later on in this chapter.

((p p) ∧ (ϕ p) ∧ (p ψ))→ χ
(ρqp)

ϕ ψ → χ

Φqp := ∀abd(a b 6≤ d→ ∃c((c c) ∧ (a c) ∧ (c b) 6≤ d))

Table 4.1: The rule ρqp and formula Φqp.

Let {ρi}i∈I denote a collection of Π2-rules, such that, for all i ∈ I,

Fi(ϕ, p)→ χ
(ρi)

Gi(ϕ)→ χ

whereof the tuples ϕ and p may vary in length. By an extended strict implication

calculus RC + {ρi}i∈I we denote the calculus RC together with {ρi}i∈I .
Then, a RC + {ρi}i∈I proof is a finite sequence of strict implication formulas

ψ1, ..., ψn. And, a formula ψk for k ≤ n is said to be an assumption of the proof

unless one of the following conditions holds,

(i) there exists a substitution σ such that ψk = ϕσ, for some axiom ϕ of RC ;
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(ii) ψk follows from ψi, ψj for i, j < k by an application of the rule (MP);

(iii) ψk follows from ψi for i < k by and application of the rule (R);

(iv) for some tuple of formulas ϕ and formula χ, for some i ∈ I, we have that

ψk := Gi(ϕ)→ χ such that there exists j < k for which ψj := Fi(ϕ, p)→ χ,

satisfying the condition that the propositional letters p do not occur in ϕ,

χ, nor in any of the assumptions ϕm for m ≤ k.

If Γ′ denotes the set of assumptions of a proof ψ1, ..., ψn, then, for all sets of

formulas Γ such that Γ ⊆ Γ′ we say that ψ1, ..., ψn is a proof over RC +{ρi}i∈I
for Γ `{ρi}i∈I ψn. If ψ1, ..., ψn has no assumptions we say that ψn is a theorem

of RC + {ρi}i∈I , and write `{ρi}i∈I ψn. We say that a formula φ is derivable

or provable from Γ over RC + {ρi}i∈I if there exists a proof for Γ `{ρi}i∈I ϕ.

Theorem 4.2.3 ([5, Thm. 5.5]). Let {ρi}i∈I be a set of Π2-rules. Then RC +

{ρi}i∈I is strongly sound and complete with respect to the inductive subclass K

of RSub axiomatised by the statements {Φρi}i∈I .

Lemma 4.2.4. Let (B,≺) ∈ RSub. Then (B,≺) satisfies the axiom (QP) if and

only if it satisfies the first-order formula Φqp.

Proof.

(⇒): Suppose that (B,≺) satisfies (QP) and pick a, b, d ∈ B such that a  
b 6≤ d. Then it must be that d 6= 1 and a  b 6= 0 and so a  b = 1.

Thus, a ≺ b and by (QP) there exists c ∈ B for which c ≺ c and a ≤ c ≤ b.

Now, since (B,≺) satisfies (B5), from c ≺ c it follows that c ≤ c. Then, from

a ≤ c ≺ c ≤ c and c ≤ c ≺ c ≤ b by (B4) we obtain a ≺ c and c ≺ b. Then

c c = a c = c b = 1 and so (c c) ∧ (a c) ∧ (c b) = 1 6≤ d. Hence,

(B,≺) satisfies Φqp.

(⇐): Suppose that (B,≺) satisfies Φqp and pick a, b ∈ B such that a ≺ b. Then

a b = 1. Now, either 1 6≤ 0, or (B,≺) is the trivial RSub-algebra and 1 = 0. If

1 6≤ 0, then by Φqp there exists c ∈ B such that (c c)∧ (a c)∧ (c b) 6≤ 0.

Then it must be that c  c = a  c = c  b = 1, otherwise the meet would

equal zero. This means that we also have c ≺ c, a ≺ c, and c ≺ b. Now, since

(B,≺) satisfies (B5), it follows that a ≤ c and c ≤ b. Thus, (B,≺) satisfies (QP).

If (B,≺) is the trivial RSub-algebra, then a = 1 = b and so a ≤ 1 ≤ b. Since by

(B1) we have 1 ≺ 1, in this case (B,≺) also satisfies (QP).

Definition 4.2.5. We let BC denote the calculus RC ∪ {ρqp}. a
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By Lemma 4.2.4, we see that the RSub-algebras that validate ρqp are precisely

the BLS-algebras. Therefore, from Theorem 4.2.3 and Lemma 4.2.4, we conclude

that BC is sound and complete with respect to BLS.

Theorem 4.2.6. Let Γ be a set of formulas and φ a formula,

Γ `BC φ if and only if Γ �BLS φ.

In this chapter, we have introduced the calculus BC and showed that it is

sound and complete with respect to the class of Boolean algebras with a lattice

subordination. In the previous chapter, we have introduced a positive hyper-

sequent calculus PC+ which is sound and complete with respect to the class

of bounded distributive lattices. Moreover, we have seen that there is a cor-

respondence between bounded distributive lattices and Boolean algebra with a

lattice subordination. Specifically, for each Boolean algebra with a lattice sub-

ordination the set of reflexive elements forms a bounded distributive lattice and

conversely, for each bounded distributive lattice there exists a suitable Boolean

algebra with a lattice subordination whereof the set of reflexive elements forms

an isomorphic bounded distributive lattice. In the following chapter, we present

the syntactic counterpart of this correspondence by translation Tr(−) from pos-

itive hypersequent rules to strict implication ones and show that it is full and

faithfull.
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Chapter 5

A translation from PC+-rules

to BC -formulas

In this chapter, we define a translation from positive hypersequent rules to strict

implication formulas. In order to do so, we first show that every strict implica-

tion hypersequent rule is in fact equivalent to a strict implication formula. That

is, we show that for all (B,≺) ∈ BLS, we have that (B,≺) validates a strict

implication hypersequent rule if and only if it validates the corresponding strict

implication formula. Next, we define a translation Tr(−) from positive hyperse-

quent rules with single-component premises into strict implication hypersequent

rules. We then show the main theorem of this chapter, namely that a positive

hypersequent rule is derivable in the calculus PC+ if and only if the formula

that corresponds to the translation of the rule is derivable in the calculus BC .

In other words, Tr(−) defines an embedding of the positive logic into a strict

implication system based on classical logic. We spell out the relation between

the translation Tr(−) and the Gödel-McKinsey-Tarski translation. We conclude

this chapter by presenting so-called strict implication companions for extensions

of the calculus PC+, as an analogue of modal companions, and present two

examples thereof.

5.1 From strict implication rules to strict implication

formulas

In this section, we show that every strict implication hypersequent rule corre-

sponds to a strict implication formula. Recall from Theorem 3.2.5 that every pos-
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itive hypersequent rule is equivalent to a finite set of positive hypersequent rules

the premises of which are all single-component hypersequents (i.e., sequents).

This means that, for a translation from positive hypersequent rules to strict im-

plication ones, it will suffice to consider hypersequent rules of the aforementioned

simpler kind. Moreover, we will see that the premises of a translated hyperse-

quent rule do not have more components then the premises of the initial rule.

Thus, given that we will only encounter strict implication rules that come from

positive ones, in defining corresponding formulas it also suffices to consider the

simpler case of hypersequent rules with single-component premises.

Definition 5.1.1. Let ρ be a strict implication hypersequent rule consisting

of the single-component premises Γ1 ⇒ ∆1, ..., Γm ⇒ ∆m and conclusion

Γm+1 ⇒ ∆m+1 | ... | Γn ⇒ ∆n. We define a strict implication formula φ ρ that

corresponds to ρ as follows.

φ ρ :=
m∧
i=1

�| (
∧

Γi →
∨

∆i)→
n∨

j=m+1

�| (
∧

Γj →
∨

∆j) a

Lemma 5.1.2. Let ρ and φ ρ be as in Definition 5.1.1. For all (B,≺) ∈ BLS,

(B,≺) � ρ if and only if (B,≺) � φ ρ .

Proof.

(⇒): Suppose (B,≺) ∈ BLS validates ρ and pick a valuation v on (B,≺). Ob-

serve that for any formula φ, the formula �| φ evaluates to 1 if and only if φ

evaluates to 1 and that �| φ evaluates to 0 otherwise. Thus, for each i ≤ m it

must be that J�| (
∧

Γi →
∨

∆i)Kv ∈ {0, 1}. Then clearly for their meet, the

antecedent of φ ρ , it also holds that J
∧m
i=1�| (

∧
Γi →

∨
∆i)Kv ∈ {0, 1}.

Assume that J
∧m
i=1�| (

∧
Γi →

∨
∆i)Kv = 0 is the case. Note that for any

a ∈ B we have 0→ a = 1. Thus, it follows that J>Kv ≤ Jφ ρ Kv, which means that

φ ρ is true on (B,≺) under v. Now suppose that J
∧m
i=1�| (

∧
Γi →

∨
∆i)Kv = 1.

Then for each i ≤ m, the equality J�| (
∧

Γi →
∨

∆i)Kv = 1 holds, otherwise their

meet would equal 0. And so for each i ≤ m, the equality J
∧

Γi →
∨

∆iKv = 1

also holds. Now note that, for all a, b ∈ B, we have a→ b = 1 if and only

if a ≤ b. Then, for all i ≤ m, from J
∧

Γi →
∨

∆iKv = 1 it follows that

J
∧

ΓiKv ≤ J
∨

∆iKv. This means that all the premises of ρ are true under v.

Since (B,≺) validates ρ, it must be that the conclusion of ρ is also true under

v. Hence, for some j with m+ 1 ≤ j ≤ n we have J
∧

ΓjKv ≤ J
∨

∆jKv and so
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J
∧

Γj →
∨

∆jKv = 1. Then J�| (
∧

Γj →
∨

∆j)Kv also evaluates to 1 and there-

from it follows that J
∨n
j=m+1�| (

∧
Γj →

∨
∆j)Kv = 1. Since both the antecedent

and consequent of φ ρ evaluate to 1 under v, we have J>Kv ≤ Jφ ρ Kv. Thus, if

(B,≺) validates ρ, it also validates φ ρ .

(⇐): Now suppose that (B,≺) ∈ BLS is such that (B,≺) � φ ρ and pick a

valuation v on (B,≺) such that J
∧

ΓiKv ≤ J
∨

∆iKv for all i ≤ m. Then for all

i ≤ m we have J
∧

Γi →
∨

∆iKv = 1 and so, J
∧m
i=1�| (

∧
Γi →

∨
∆i)Kv = 1. Thus,

v makes the antecedent of φ ρ true. Now, since (B,≺) validates φ ρ , it must be

that its consequent J
∨n
j=m+1�| (

∧
Γj →

∨
∆j)Kv = 1 otherwise, φ ρ would not

evaluate to 1 under v. Recall that for every formula φ we have J�| φKv ∈ {0, 1}.
Then, since J

∨n
j=m+1�| (

∧
Γj →

∨
∆j)Kv = 1, at least one of the conjuncts

should evaluate to 1. Hence, there must be a j with m + 1 ≤ j ≤ n such that

J
∧

Γj →
∨

∆jKv = 1 and so J
∧

ΓjKv ≤ J
∨

∆jKv. Thus, v makes the conclusion

of ρ true and so (B,≺) validates ρ.

5.2 From positive rules to strict implication formulas

In this section, we define a translation Tr(−) that translates positive hyperse-

quent rules into strict implication sequent rules. Thereafter, we establish that a

positive rule is derivable in PC+ if and only if the formula φ Tr(ρ) that corresponds

to the translated rule Tr(ρ) is derivable in the calculus BC .

Definition 5.2.1 (Rule Translation). We define a translation Tr(−) from pos-

itive hypersequent rules with only single-sequent premises to strict implication

sequent rules as follows. Let (ρ) be an arbitrary positive hypersequent with

premises Γ1 ⇒ ∆1,..., Γm ⇒ ∆m and conclusion G and let {pi}i≤n denote the

set of propositional letters occurring in ρ. Then Tr(ρ) is defined by,

> ⇒
∧n
i=1 pi  pi Γ1 ⇒ ∆1 ... Γm ⇒ ∆m

Tr(ρ)
G

a

Lemma 5.2.2. Let (B,≺) ∈ BLS and D≺ be the reflexive elements under ≺.

Let ρ be an arbitrary D-rule. Then

(B,≺) � Tr(ρ) if and only if D≺ � ρ.
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Proof.

(⇒): Suppose (B,≺) validates the rule Tr(ρ) and pick a valuation v : Prop→ D≺
such that J

∧
ΓjKv ≤ J

∨
∆jKv for all j ≤ m. Observe that v also defines a val-

uation on (B,≺) since all the elements of D≺ are contained in B. Since v

maps each propositional variable p ∈ Prop on an element of D≺, for all p ∈ Prop

we have JpKv ≺ JpKv. In particular, this means that, for all propositional

variables pi occurring in ρ we have JpiKv ≺ JpiKv. Herefrom it follows that

J>Kv ≤ JpiKv  JpiKv = Jpi  piKv. Then, v makes the premises of Tr(ρ) true in

(B,≺) and so it must be that v also makes G true in (B,≺), and hence in D≺.

(⇐) Suppose that D≺ validates ρ and pick a valuation v on (B,≺) such that

J>Kv ≤ Jpi  piKv and J
∧

ΓjKv ≤ J
∨

∆jKv for all i ≤ n and j ≤ m. Since

J>Kv ≤ Jpi  piKv for all propositional variables pi occurring ρ, it must be that

JpiKv ≺ JpiKv and thus JpiKv ∈ D≺. Observe that for all j ≤ m, the positive for-

mulas
∧

Γj and
∨

∆j are build from elements of D≺, and thus
∧

Γj ,
∨

∆j ∈ D≺.

Then if we restrict v to D≺ we have J
∧

ΓjKv ≤ J
∨

∆jKv and since D≺ validates

ρ, it must be that v makes G true in D≺ and subsequently in (B,≺).

Lemma 5.2.3. Let D ∈ BDL and (BD,≺D) ∈ BLS be such that BD is the

Boolean envelope of D and ≺D a subordination on BD as described in Definition

2.4.3. Let ρ be an arbitrary D-rule. Then,

(BD,≺D) � Tr(ρ) if and only if D � ρ.

Proof. Observe that from Lemma 5.2.2 it follows that (BD,≺D) � Tr(ρ) if and

only if D≺D � ρ. Since D≺D = D, it immediately follows that (BD,≺D) � Tr(ρ)

if and only if D � ρ.

The following theorem establishes the relation between positive derivability and

strict implication derivability, namely that the positive calculus PC+ can be

embedded into the strict implication calculus BC .

Theorem 5.2.4. For any positive hypersequent rule ρ we have,

`PC+ ρ if and only if `BC φ Tr(ρ).

Proof. For both directions, we will prove the contrapositive, namely that 0BC 

φ Tr(ρ) if and only if 0PC+ ρ.

(⇒): Suppose that 0BC φ Tr(ρ). By completeness of BC with respect to BLS

(Theorem 4.2.6) it follows that there exists (B,≺) ∈ BLS so that (B,≺) 2 φ Tr(ρ).
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By Lemma 5.1.1 this means that (B,≺) 2 Tr(ρ). Then, given Lemma 5.2.2 it

must be that D≺ 2 ρ. From soundness of PC+ with respect to BDL (Theo-

rem 3.2.14) we have that 0PC+ ρ.

(⇐): Suppose that 0PC+ ρ. By completeness of PC+ with respect to BDL

(Theorem 3.2.14) it follows that there exists D ∈ BDL such that D 2 ρ. Let BD
denote the free Boolean algebra generated by D and let ≺D be as in in Definition

2.4.3. From Lemma 5.2.3 it follows that (BD,≺D) 2 Tr(ρ). By Lemma 5.1.1

this means that (BD,≺D) 2 φ Tr(ρ). Then, by soundness of BC with respect to

BLS (Theorem 4.2.6) we have that 0BC φ Tr(ρ).

5.3 The connection with the Gödel translation

In this section, we recall the Gödel-McKinsey-Tarski translation, which embeds

the intuitionistic propositional logic IPC into the modal expansion S4 of classical

propositional logic and show that the translation Tr(−), in the restricted case,

is equivalent to the Gödel-McKinsey-Tarski translation with respect to positive

rules.

5.3.1 Intuitionistic logic

By L, we denote the propositional language generated from a countably infinite

set of propositional variables Prop using the binary connectives ∧, ∨, and →,

and constant >. The well-formed formulas ϕ of L are given by the grammar,

ϕ ::= p | ⊥ | ϕ ∧ ϕ | φ ∨ ϕ | ϕ→ ϕ, p ∈ Prop.

We make use of the abbreviations ¬ϕ := ϕ→ ⊥ and > := ¬⊥. A (hyper)sequent

and hypersequent rule are defined analogous to positive (hyper)sequents and

hypersequent rules, but build from finite (possibly empty) multisets of formulas

of L. By a substitution, we refer to a function σ : Prop → L. In the same

way as we have done for the positive language, we extend this function to a

map (−)σ : L → L from formula to formula, to sets of formulas Γ, and to

(hyper)sequents.

We interpret the formulas of the language L in Heyting algebras. Given a Heyting

algebra H, we define a valuation v to be a map J−Kv : Prop → H and extend

this map to formulas in the standard way. Analogous to the case of a positive
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sequent, we say that an sequent Γ⇒ ∆ is true in a Heyting algebra H under a

valuation v or that v on H satisfies a sequent iff J
∧

ΓKv ≤ J
∨

∆Kv. We derive the

notions of truth of a formula and hypersequent and define the notion of validity

for formulas, (hyper)sequents, and hypersequent rules in the same way as in the

case of positive logic.

We denote the intuitionistic propositional calculus by IPC.

Theorem 5.3.1 (see e.g. [13, Thm. 7.21]). IPC is sound and complete with

respect to the class of Heyting algebras.

5.3.2 Modal logic S4

We generate the modal language ML from a countably infinite set of propo-

sitional variables Prop using the binary connectives ∧, ∨, and →, the unary

connective �, and the constant >. The well-formed formulas ϕ of ML, called

modal formulas, are given by the grammar,

ϕ ::= p | �ϕ | ⊥ | ϕ ∧ ϕ | φ ∨ ϕ | ϕ→ ϕ, p ∈ Prop.

We make use of the abbreviations ¬ϕ := ϕ → ⊥, ♦ϕ := ¬�¬ϕ, and > := ¬⊥.

Again, (hyper)sequents and hypersequent rules are defined analogous to positive

(hyper)sequents and hypersequent rules, but build from finite (possibly empty)

multisets of formulas of ML. A substitution is a function σ : Prop → ML
that we extend, in the same way as we have done for the positive language, to

a map (−)σ : L →ML from formula to formula, to sets of formulas Γ, and to

(hyper)sequents.

Formulas of the languageML are interpreted in S4-algebras. For any S4-algebra

(B,�), we define a valuation v to be a map J−Kv : Prop → B. This map is

extended to formulas in the usual recursive fashion. As in the case of a positive

sequent, we say that a modal sequent Γ ⇒ ∆ is true in an S4-algebra (B,�)

under a valuation v or that v on (B,�) satisfies a sequent iff J
∧

ΓKv ≤ J
∨

∆Kv.
We derive the notions of truth of a modal formula and hypersequent in the same

way as we have done for the positive logic. Likewise, the notion of validity for

modal formulas, (hyper)sequents, and hypersequent rules, is defined in the same

way as in the case of positive logic.

Definition 5.3.2. The calculus S4 is the smallest set that contains all the

axioms of CPC and the following axioms,
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(K) �(ϕ→ ψ)→ (�ϕ→ �ψ);

(T) �ϕ→ ϕ;

(K4) �ϕ→ ��ϕ;

and is closed under the rules Modus Ponens and Necessitation. a

Theorem 5.3.3. The calculus S4 is sound and complete with respect to the class

of S4-algebras.

Definition 5.3.4 (see, e.g., [13, Sect. 3.9]). The Gödel translation associates

with each well-formed formula ϕ of L the modal propositional formula T(ϕ)

which is defined recursively as follows, for all p ∈ Prop,

T (p) := �p;
T (⊥) := ⊥;

T (ϕ ∧ ψ) := T (ϕ) ∧ T (ψ);

T (ϕ ∨ ψ) := T (ϕ) ∨ T (ψ);

T (ϕ→ ψ) := �(T (ϕ)→ T (ψ)). a

Theorem 5.3.5 (Gödel-McKinsey-Tarski (see e.g., [13, Thm. 3.83]). For any

propositional formula ϕ, we have,

`IPC ϕ if and only if `S4 T(ϕ).

5.3.3 Relating translation Tr(−) and translation T

To spell out the connection between the translation Tr(−) and the translation

T , we first observe that each positive hypersequent rule ρ is equivalent to a

corresponding intuitionistic formula ψρ when evaluated on a Heyting algebra.

We recall that each Boolean algebra with a Heyting lattice subordination can

be equivalently seen as an S4-algebra. Next, we show that the translation Tr(ρ)

of ρ, when evaluated on Boolean algebras with a Heyting lattice subordination,

is equivalent to a a hypersequent rule Tr�(ρ) based on the modal propositional

language. We remark that such modal hypersequent rules Tr�(ρ) correspond to

modal propositional formulas ψ�Tr(ρ). Thereafter, by soundness and completeness

for IPC and S4 respectively, we conclude that IPC derives ψρ if and only if S4

derives ψ�Tr(ρ).

Definition 5.3.6. Let ρ be a positive hypersequent rule with single-component

premises Γ1 ⇒ ∆1, ..., Γm ⇒ ∆m and conclusion Γm+1 ⇒ ∆m+1 | ... | Γn ⇒ ∆n.
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We define a corresponding formula ψρ in the intuitionistic propositional language

as follows.

ψρ :=

m∧
i=1

(
∧

Γi →
∨

∆i)→
n∨

j=m+1

(
∧

Γj →
∨

∆j) a

We recall that a Heyting algebra H is said to be well-connected if, for all a, b ∈ H
we have that a ∨ b = 1 implies a = 1 or b = 1.

Lemma 5.3.7. Let ρ be a positive hypersequent rule that has only single-component

premises and ψρ be as defined above. For any well-connected H ∈ Heyt,

�H ρ if and only if �H ψρ.

Proof. It is routine to check that ρ and ψρ are equivalent on each well-connected

Heyting algebra.

Definition 5.3.8. Let ρ be a positive hypersequent rule with premises Γ1 ⇒ ∆1,

..., Γm ⇒ ∆m and conclusion Γm+1 ⇒ ∆m+1 | ... | Γn ⇒ ∆n, let {pi}i≤n denote

the set of propositional letters occurring in ρ, and let Tr(ρ) denote its translation.

We define a modal propositional rule Tr�(ρ) that corresponds to Tr(ρ) as follows.

> ⇒
∧n
i=1�pi ↔ pi Γ1 ⇒ ∆1 ... Γm ⇒ ∆m

Tr(�ρ)
G

a

Lemma 5.3.9. For all (B,≺) ∈ BLH and each a ∈ B,

a a = 1 if and only if �≺a↔ a = 1.

Proof. Let (B,≺) ∈ BLH and pick a ∈ B. Observe that a  a = 1 if and only

if a ≺ a. Recall Lemma 1.4.1 item (iv) that a ≺ a if and only if a ≤ �≺a. Now,

a ≤ �≺a if and only if a→ �≺a = 1. Note that for all a ∈ B we have �≺a ≤ a and

thus �≺a→ a = 1. Therefore a ∈ B, a a = 1 if and only if �≺a↔ a = 1.

Lemma 5.3.10. Let ρ be a positive hypersequent rule with only single-component

premises, let Tr(ρ) denote its translation and Tr�(ρ) be as defined above. For

each (B,≺) ∈ BLH and for each (B,�) ∈ S4,

(i) (B,≺) � Tr(ρ) if and only if (B,�≺) � Tr�(ρ).

(ii) (B,�) � Tr�(ρ) if and only if (B,�≺) � Tr(ρ).
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Proof. Let {pi}i≤n denote the set of propositional letters occurring in ρ. Ob-

serve that, the rules Tr(ρ) and Tr�(ρ) only differ with respect to the premises

> ⇒
∧n
i=1 pi  pi and > ⇒

∧n
i=1�pi ↔ pi in Tr(ρ) and Tr�(ρ) respectively.

Hence, both items (i) and (ii) of this lemma follow immediately from Lemma

5.3.9.

Definition 5.3.11. Let ρ be a hypersequent rule based on the modal proposi-

tional language with single-component premises Γ1 ⇒ ∆1, ..., Γm ⇒ ∆m and

conclusion Γm+1 ⇒ ∆m+1 | ... | Γn ⇒ ∆n. We define a corresponding formula

ψ�ρ in the modal propositional language as follows.

ψ�ρ := �
m∧
i=1

(
∧

Γi →
∨

∆i)→ �
n∨

j=m+1

(
∧

Γj →
∨

∆j) a

We recall that an S4-algebra (B,�) is well-connected if, for all a, b ∈ B, whenever

�a ∨�b = 1 it follows that a = 1 or b = 1 [37, Def. 1.10].

Lemma 5.3.12. Let ρ be a hypersequent rule based on the modal propositional

language with only single-component premises and ψ�ρ be as defined above. For

any well-connected S4-algebra (B,�),

�(B,�) ρ if and only if �(B,�) ψ
�
ρ .

Proof. It is routine to check that ρ and ψ�ρ are equivalent on each well-connected

S4-algebra.

Lemma 5.3.13. For all (B,�) ∈ S4 and all H ∈ Heyt,

(i) If (B,�) is well-connected, then so is the Heyting algebra H≺�.

(ii) If H is well-connected, then so is the S4-algebra (BH ,�≺H).

Proof. (i) Let (B,�) ∈ S4 be well-connected and pick a, b ∈ H≺� such that

a∨H b = 1H . Since H≺� is a bounded sublattice of B, we also have a, b ∈ B
and it must be that a ∨B b = a ∨H b = 1H = 1B. Now, since a, b ∈ H≺� ,

we have a ≺� a and b ≺� b, which means that a ≤ �a and b ≤ �b.
It follows that a ∨B b ≤ �a ∨B �b, thus �a ∨B �b = 1B. Then, since

(B,�) is well-connected, a = 1B = 1H or b = 1B = 1H . Hence, H≺� is

well-connected.
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(ii) Let H ∈ Heyt be well-connected and pick a, b ∈ (BH ,�≺H) such that

�≺Ha ∨BH �≺Hb = 1BH . Note that �≺Ha ≤ �≺H �≺H a and �≺Hb ≤ �≺H �≺H b,

thus we have �≺Ha ≺H �≺Ha and �≺Hb ≺H �≺b. Recall that H = H≺BH , so

�≺Ha,�≺Hb ∈ H. Then �≺Ha ∨H �≺Hb = 1H , and since H is well-connected,

it follows that �≺Ha = 1H or �≺Hb = 1H . W.l.o.g., assume that �≺Ha = 1H .

Then also �≺Ha = 1B and since �≺Ha ≤ a this means that a = 1BH . Hence,

(BH ,�≺H) is well-connected.

Theorem 5.3.14. Let ρ be a positive hypersequent rule. Then

`IPC ψρ if and only if `S4 ψ�Tr�(ρ).

Proof. We show the contrapositive that 0S4 ψ
�
Tr�(ρ) if and only if 0IPC ψρ.

(⇒): Suppose that 0S4 ψ�Tr�(ρ). By completeness of S4 with respect to the

class of well-connected S4-algebras (Theorem 5.3.3) it follows that there exists

(B,�) ∈ S4 such that (B,�) 2 ψ�Tr�(ρ). By Lemma 5.3.12 this means that

(B,�) 2 Tr�(ρ) and therefrom by Lemma 5.3.10 item (ii) that (B,≺�) 2 Tr(ρ).

Then, given Lemma 5.2.2 it must be that D≺� 2 ρ. Now, by Lemma 2.6.12

and Lemma 5.3.13 we know that D≺� ∈ Heyt and that it is well-connected,

so by Lemma 5.3.7 D≺� 2 ψρ. From soundness of IPC with respect to Heyt

(Theorem 5.3.1) we have that 0IPC ψρ.

(⇐): Suppose that 0IPC ψρ. By completeness of IPC with respect to the class

of well-connected Heyting algebras (Theorem 5.3.1) it follows that there exists

H ∈ Heyt such that H 2 ρ. Let BH denote the free Boolean algebra generated

by H and let ≺H be as in in Definition 2.4.3. From Lemma 2.6.13 it follows

that (BH ,≺H) 2 Tr(ρ) and by Lemma 5.3.10 item (i) that (BH ,≺�≺H ) 2 Tr�(ρ).

By Lemma 5.3.13 and Lemma 5.3.12 this means that (BH ,≺�≺H ) 2 ψ�Tr�(ρ).

Then, by soundness of S4 with respect to S4 (Theorem 5.3.3) we have that

0S4 ψ
�
Tr�(ρ).

Theorem 5.3.14 above shows that the translation Tr(−), when restricted to pos-

itive rules that are valid on Heyting algebras, is equivalent to the Gödel trans-

lation T . Thus, at the syntactic level Tr(−) translates positive rules into strict

implication rules and, whenever a positive rule ρ is valid in the class of Heyting

algebras and hence the corresponding intuitionistic formula ψρ is derivable IPC,

then the modal formula ψ�Tr�(ρ) that corresponds to Tr(ρ) is derivable in S4.
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Vice versa, if S4 derives the formula ψ�Tr�(ρ) then IPC derives ψρ. This connec-

tion reflected algebraically by the fact that the category Heyt is a subcategory

of BDL and that the category S4 is isomorphic to the subcategory BLH of BLS.

We summarize this in the Table 5.1 below.

PC+ BC 

BDL GBDA BDA BLS

Tr(−)

∼ ∼=

Heyt GBHA BDH BLH S4

IPC S4
T(−)

∼ ∼= ∼=

∪ ∪ ∪ ∪

Table 5.1: Categorical isomorphisms (∼=), equivalences (∼), and full subcate-
gories (⊂), and embedding of calculi ↪→.

5.4 Strict implication companions of positive calculi

In this chapter, we have seen that the calculus PC+ can be embedded into

the calculus BC . In this section, we look at extensions of both calculi PC+

and BC with the objective to develop strict implication analogues of modal

companions. We show that every extension of PC+ is embedded via Tr(−) into

some extension of BC and that, for every BC extension there exists a PC+

extension that is embeddable in it via Tr(−). We will conclude this section with

two examples of such extensions.

By a superpositive calculus we mean a positive hypersequent calculus C+ that

extends the positive calculus PC+.

Definition 5.4.1. A strict implication logic L ⊇ BC is said to be a strict

implication companion of a superpositive calculus C+ ⊇ PC+ if L is embedded

in C+ by the translation tr(−). That is, if for every positive hypersequent rule

we have,
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`C+ ρ if and only if `L φ Tr(ρ).

Given a modal companion L of C+, we call C+ the superpositive fragment of L

and denote C+ by %L. a

In what follows, by HypR(L+) we denote the set of positive hypersequent rules

generated by the set of well-formed positive formulas Form(L+).

Theorem 5.4.2. For every L ⊇ BC there exists a superpositive calculus C+

such that C+ = %L.

Proof. Let C+ := {ρ ∈ HypR(L+) | L ` φ Tr(ρ)}. Given that L ⊇ BC , by

Theorem 5.2.4 we know that L ` φ Tr(ρ), for all rules ρ ∈ PC+. Hence, C+ is

an extension of the calculus PC+ and thus defines a superpositive calculus for

which L is a strict implication companion, in other words, C+ = %L.

By Theorem 5.4.2, we see that % defines a function from the set of extensions of

BC+ to the set of extensions of PC+. Given a set of positive hypersequent rules

{ρi}i∈I , we associate with every superpositive calculus C+ = PC+ ∪{ρi}i∈I the

strict implication logic τC+ := BC ∪ {φ Tr(ρi)
}i∈I .

Theorem 5.4.3. For every superpositive calculus C+, τC+ is a strict implica-

tion companion of C+, that is,

`C+ ρ if and only if `τC+ φ Tr(ρ).

Proof. For both directions, we prove the contrapositive, namely that 0τC+ φ Tr(ρ)

if and only if 0C+ ρ.

(⇒): Suppose that 0τC+ φ Tr(ρ). Let K(τC+) denote the subclass of BLS that

validates all the formulas of {φ Tr(ρi)
}i∈I . Observe that, since {φ Tr(ρi)

}i∈I is a

set of Π2-statements, K(τC+) constitutes an inductive subclass of RSub. Hence,

by Theorem 4.2.3, τC+, which equals RC + {ρqp} + {φ Tr(ρi)
}i∈I , is strongly

sound and complete with respect to the inductive subclass of RSub axiomatised

by the statements {Φqp} ∪ {φ Tr(ρi)
}i∈I . It follows that there exists a (B,≺) ∈

K(τC+) such that (B,≺) 2 φ Tr(ρ). By Lemma 5.1.1 we know that this entails

(B,≺) 2 Tr(ρ) and moreover, that (B,≺) � Tr(ρi), for all i ∈ I. Then, given

Lemma 5.2.2 it must be that D≺ 2 ρ and D≺ � ρi, for all i ∈ I. From strong

soundness of PC+ with respect to BDL (Theorem 3.2.14) we have that 0C+ ρ.

(⇐): Suppose that 0C+ ρ. Let K(C+) denote the subclass BDL that validates

{ρi}i∈I . By completeness of PC+ with respect to BDL (Theorem 3.2.14) it
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follows that 2K(C+) ρ hence, there exists D ∈ K(C+) such that D 2 ρ. Let

BD denote the free Boolean algebra generated by D, and let ≺D be as in in

Definition 2.4.3. From Lemma 5.2.3 it follows that (BD,≺D) 2 Tr(ρ), and,

given that D � ρi, for each i ∈ I, that (BD,≺D) � Tr(ρi), for each i ∈ I. By

Lemma 5.1.1 this means that (BD,≺D) 2 φ Tr(ρ) and (BD,≺D) � φ Tr(ρi)
, for

each i ∈ I. Then (BD,≺D) ∈ K(τC+) and thus, by by Theorem 4.2.3 we have

0τC+ φ Tr(ρ).

From Lemma 5.4.3 above it immediately follows that C+ = %τC+, therefore, %

is in fact surjective.

Corollary 5.4.4. For any superpositive calculus C+, τC+ is the smallest strict

implication companion of C+. In other words, τC+ is the smallest element in

%−1(C+) with respect to ⊆.

5.4.1 Strict implication companions: examples

In this section, we spell out two positive hypersequent rules that characterise a

subclass of bounded distributive lattices and define their respective strict impli-

cation companions.

G | φ ∧ ψ ⇒ ⊥
(ρkc)

G | φ⇒ ⊥ | ψ ⇒ ⊥

G | φ1 ⇒ ψ2 G | φ2 ⇒ ψ1
(ρlc)

G | φ1 ⇒ ψ1 | φ2 ⇒ ψ2

Table 5.2: The positive hypersequent rules ρkc and ρlc.

Recall that, for a set X and a partial order R on X, we say that R is directed if

for all x, y ∈ X there is an z ∈ X such that xRz and yRz. And, R is said to be

linear if for all x, y ∈ X we have xRy or yRx.

Theorem 5.4.5. Let D be a bounded distributive lattice and (XD, R) denote its

dual Priestley space. Then,
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(i) D validates the rule ρkc if and only if the partial order R is directed.

(ii) D validates the rule ρlc if and only if the partial order R is linear.

Proof.

(i) Suppose that D validates ρkc and pick x, y ∈ XD. Consider z := D \ {0}.
Since we assumed D to satisfy ρkc, if a 6= 0 and b 6= 0 we have that a ∧ b 6= 0.

Thus, for all a, b ∈ z it must be that a ∧ b ∈ z. From here it is easy to see that

z is a prime filter with x ≤ z and y ≤ z.
Now, for the right-to-left direction assume that D does not validate ρkc.

Then there exists a, b ∈ D with a ∧ b = 0 but a 6= 0 and b 6= 0. Consider the

filter ↑ a and ideal ↓ b. Since these are disjoint, from the prime ideal theorem

for distributive lattices (see e.g., [2, Thm. III.4.1]) it follows that there exists a

prime filter x ∈ XD such that ↑ a ⊆ x and ↓ b ∩ x = ∅. Analogously, for the

filter ↑ b and ideal ↓ a there exists a prime filter y ∈ XD such that ↑ b ⊆ y and

↓ a∩y = ∅. Now observe that, if there would exist z ∈ XD with x ⊆ z and y ⊆ z
then a, b ∈ z and so also, a ∧ b ∈ z. But since a ∧ b = 0 and z is a proper filter,

this cannot be. Hence, R on XD is not directed.

(ii) Suppose that D satisfies ρlc and pick x, y ∈ XD. Towards a contradiction,

suppose that x 6⊆ y and y 6⊆ x. Then, there exists a ∈ x with a 6∈ y and b ∈ y
such that b 6∈ x. Now D validates ρlc thus, for all a1, a2, b1, b2 from a1 ≤ b2 and

a2 ≤ b1 it follows that a1 ≤ b1 or a2 ≤ b2. Then, since a ≤ a and b ≤ b, it must

be that a ≤ b or b ≤ a. Now, x and y are filters, so it would follow that b ∈ x or

a ∈ y, which contradicts our initial assumption. Hence, it must be that x ⊆ y

or y ⊆ x. Thus, R on XD is linear.

For the other direction, assume that D does not satisfy ρlc. Then there exist

a1, a2, b1, b2 ∈ D with a1 ≤ b2 and a2 ≤ b1 but a1 6≤ b1 and a2 6≤ b2. Consider

the filter ↑ a1 and ideal ↓ b2. Since ↑ a1∩ ↓ b2 = ∅, by the Prime filter theorem

for distributive lattices, there exists a prime filter x ∈ XD such that ↑ a1 ⊆ x

but ↓ b2 ∩ x = ∅. Similarly, for the filter ↑ a2 and ideal ↓ b2 there exists a prime

filter y ∈ XD ↑ a2∩ ↓ b1 = ∅. Now, since a1 6≤ b1 and a2 6≤ b2, it cannot be that

x ⊆ y or y ⊆ x and thus, R on XD is not linear.

Before we proceed to present the respective companions of the rules ρkc and ρlc,

we make some observations to simplify the literal translation of these rules. We

let ♦| denote the dual operator of �| defined by ♦| φ := φ ⊥.

Lemma 5.4.6. Let (B,≺) ∈ BLS and let φ denote an arbitrary strict implication

formula.
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(i) (B,≺) � ♦| φ if and only if (B,≺) � �| ¬φ;

(ii) (B,≺) � �| φ if and only if (B,≺) � ♦| ¬φ.

Proof. (i) Observe that, for all valuations v on (B,≺), 1 ≤ J♦| φKv if and only if

1 ≤ Jφ  ⊥Kv if and only if JφKv ≤ 0 if and only if 1 ≤ J¬φKv if and only if

1 ≤ J> ¬φKv if and only if 1 ≤ J�| ¬φKv.
For item (ii), observe that 1 ≤ J�| φK if and only if 1 ≤ J> φKv if and only

if 1 ≤ JφKv if and only if J¬φKv ≤ 0 if and only if 1 ≤ J¬φ  ⊥Kv if and only if

1 ≤ J♦| ¬φKv.

This enables us to simplify the formulas φ Tr(ρkc)
and φ Tr(ρlc)

to equivalent for-

mulas φkc and φlc given in Table 5.3 below.

For formulas φ and ψ, let {pi}i≤n denote the set of propositional variables occurring in φ and ψ.

φkc := ((
∧n
i=1 pi  pi) ∧ ♦| (φ ∧ ψ))→ (♦| φ ∨ ♦| ψ).

φ Tr(ρkc)
:= (�| (> → (

∧n
i=1 pi  pi)) ∧�| (φ ∧ ψ → ⊥))→ (�| (φ→ ⊥) ∨�| (ψ → ⊥)).

φlc := ((
∧n
i=1 pi  pi) ∧�| (φ1 → ψ2) ∧�| (φ2 → ψ1))→ (�| (φ1 → ψ1) ∨�| (φ2 → ψ2)).

φ Tr(ρlc)
:= (�| (> → (

∧n
i=1 pi  pi)) ∧�| (φ1 → ψ2) ∧�| (φ2 → ψ1))→ (�| (φ1 → ψ1) ∨�| (φ2 → ψ2)).

Table 5.3: The strict implication axiom schemes φkc and φlc.

Lemma 5.4.7. Let (B,≺) ∈ BLS. Then,

(i) (B,≺) validates φ Tr(ρkc) if and only if it validates φkc;

(ii) (B,≺) validates φ Tr(ρlc) if and only if it validates φlc.

Proof. It is readily checked that for any formula φ we have that (B,≺) validates

�| (> → (φ φ) if and only if it validates φ φ. Herefrom it follows that item

(ii) of this lemma holds. Item (i) follows from the additional observation that, by

Lemma 5.4.6, for every formula φ we have that �| (φ→ ⊥) = ♦| ¬(¬φ) = ♦| φ.
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Chapter 6

Conclusion

In this thesis, we have seen that the hypersequent calculus PC+, which is sound

and complete with respect to the class of bounded distributive lattices, can be

embedded into the strict implication calculus BC , which is sound and com-

plete with respect to the class of Boolean algebras with a lattice subordination.

Moreover, since the category BLS of Boolean algebras with a lattice subordina-

tion is dually equivalent to the category QPS of quasi-ordered Priestley spaces,

the calculus BC can be used to reason about quasi-ordered Priestley spaces.

Furthermore we have seen that for each extension C+ of PC+ there exists an

extension L of BC such that C+ can be embedded in it, which we termed

the strict implication companion of C+. Vice versa, for each L extending the

calculus BC , we have seen that there exists an extension C+ of PC+, termed

the positive fragment of L, such that C+ is embeddable in L. We have provided

two examples PC+ ∪ {ρkc} and PC+ ∪ {ρlc} of such extensions and their strict

implication companions, which demonstrates the possibility for a theory of strict

implication companions of positive calculi. Further points of research would be

whether positive calculi have least and greatest companions and if an analogue

of the Blok Esakia theorem can be established.

85





Bibliography

[1] S. Awodey, Category Theory, Oxford Logic Guides, vol. 49, The Clarendon Press Oxford

University Press, 2006.

[2] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, 1975.

[3] G. Bezhanishvili, Lattice subordinations and Priestley duality, Algebra Universalis 70

(2013), 359–377.

[4] G. Bezhanishvili, N. Bezhanishvili, N. Santoli, and Y. Venema, Irreducible equivalence

relations, Gleason spaces, and de Vries duality, Applied Categorical Structures 25 (2017),

no. 3, 381–401.

[5] , A simple propositional calculus for compact Hausdorff space, Prepublication (PP)

Series (2017), PP–2017–06.

[6] G. Bezhanishvili, N. Bezhanishvili, S. Sourabh, and Y. Venema, Subordinations, closed

relations, and compact Hausdorff spaces, Prepublication (PP) Series (2014), PP–2014–23.

[7] G. Bezhanishvili, R. Mines, and P. J. Morandi, The Priestley separation axiom for scattered

spaces, Order 19 (2002), no. 1, 1–10.

[8] N. Bezhanishvili and S. Ghilardi, Multiple-conclusion rules, hypersequents syntax and step

frames, Advances in Modal Logic 10 (AiML) 2014, 2014, pp. 54–61.

[9] W. J. Blok, Varieties of interior algebras, dissertation, 1976.

[10] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate texts in

mathematics, vol. 78, Springer-Verlag, 1981. Revised edition online at http://thoralf.

uwaterloo.ca/htdocs/ualg.html.

[11] S. A. Celani, Quasi-modal algebras, Mathematica Bohemica (2001), 721–736.

[12] A. V. Chagrov and M. Zakharyaschev, Modal companions of intermediate propositional

logics, Studia Logica 51 (1992), no. 1, 49–82.

[13] , Modal Logic, Oxford logic guides, vol. 35, Oxford University Press, 1997.

[14] A. Ciabattoni, N. Galatos, and K. Terui, From axioms to analytic rules in nonclassical

logics, Logic in Computer Science (2008), 229–240.

[15] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd ed., Cambridge

University Press, 2002.

[16] H. de Vries, Compact spaces and compactifications. An algebraic approach., Ph.D. Thesis,

1962.

87



BIBLIOGRAPHY BIBLIOGRAPHY

[17] M. A. E. Dummett and E. J. Lemmon, Modal logics between S4 and S5, Zeitschrift fur

mathematische Logik und Grundlagen der Mathematik 5 (1959), 250–264.

[18] I. Düntsch and D. Vakarelov, Region–based theory of discrete spaces: A proximity approach,

Annals of Mathematics and Artificial Intelligence 49 (2007Apr), no. 1, 5–14.

[19] R. Engelking, General Topology, Heldermann Verlag, 1989.

[20] L. L. Esakia, On varieties of Grzegorczyk’s algebras, Studies in Nonclassical Logics and Set

Theory, 1979, pp. 257–287. (Russian).

[21] , To the theory of modal and superintuitionistic systems, Logical Deduction, 1979,

pp. 147–172. (Russian).

[22] M. Gehrke, Canonical extensions, Esakia spaces, and universal models, Leo Esakia on

Duality in Modal and Intuitionistic Logics, 2014, pp. 9–41.

[23] S. Givant and P. Halmos, Introduction to Boolean Algebras, Undergraduate Texts in Math-

ematics, Springer New York, 2008.

[24] K. Gödel, Eine Interpretation des intuitionistischen Aussagenkalküls, Ergebnisse eines
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