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Abstract. Let κ be an uncountable regular cardinal with κ<κ = κ. We

consider two totally ordered fields κ-R and Rκ, due to Sikorski and the sec-

ond author, respectively, that serve as the κ-analogues of the real line and

consider generalisations of the Bolzano-Weierstraß theorem for them, show-

ing that for Rκ, the weak κ-Bolzano-Weierstraß theorem is closely related

to the tree property of κ.

1. Introduction

The study of the set theoretic properties of the real numbers R was one of the

driving forces for the development of set theory and is currently one of set theory’s

most important subfields. Set theorists often do not study the topological space

R, but rather Baire space ωω, the space of functions from ω to ω, which is similar,

yet different: it is homeomorphic to R\Q which means that it differs from R only

by a countable set, but removing this countable dense set from R creates gaps

that make Baire space totally disconnected. This means that certain set theoretic

properties easily transfer from ωω to R, but others do not.

A property that does not transfer between R and ωω is the Bolzano-Weierstraß

theorem BWT, i.e., “every sequence with bounded range has a cluster point”. The

property BWT concerns the interplay between boundedness and sequential com-

pactness, i.e., the relation between the order and the topology. Hence, the validity

of BWT is not a purely topological property: it is not preserved by homeomor-

phisms and, moreover, BWT fails on ωω.1 Another fundamental property of the

real line is the Heine-Borel theorem HBT, i.e., “for every subset X of R we have

that X is compact if and only if X is closed and bounded”. The BWT and the

HBT are closely related: for ordered fields K, K is Dedekind-complete if and

Date: September 14, 2018 (Version 29).
1Let x(n) be the sequence (0n0 . . .). The sequence (x(n) ; n ∈ ω) is bounded in ωω , but has

no cluster point.
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only if K satisfies BWT if and only if K satisfies HBT (cf., e.g., [22, Chapter

5, Theorem 7.6]). Like BWT, the HBT is a property which is not preserved by

homeomorphism and, in particular, it does not transfer from R to ωω.2

In recent years, set theorists have become increasingly interested in generalised

Baire spaces κκ, the set of functions from κ to κ for an uncountable cardinal κ

(for a survey and a list open questions, cf. [19]). Some of the classical results

for Baire space generalise to the uncountable case, but others do not. These

failures of generalisation are particularly interesting, as they shed light on struc-

tures and properties hidden in the classical setting. In this paper, we consider

generalisations of BWT and HBT.

As mentioned, BWT and HBT both fail on Baire space, so the natural set-

ting for uncountable generalisations of these theorems would not be κκ, but an

appropriate space which can play the role of the real line for κκ. We shall con-

sider two of these spaces, introduced by Sikorski [25] and the second author [13],

respectively.

In the classical setting, the Bolzano-Weierstraß theorem is closely related to

Weak Kőnig’s lemma WKL, i.e., “every infinite binary tree has an infinite branch”.

This relationship was made precise by Brattka, Gherardi, and Marcone [2] in the

setting of computable analysis where the computational strength of theorems is

studied with the notion of Weihrauch reducibility : ∀∃-theorems are interpreted as

partial multi-valued functions, and Weihrauch reducibility, denoted by ≤W, is a

pre-order whose corresponding equivalence relation ≡W measures the theorem’s

strength. In this paper, we are not dealing with a Weihrauch analysis of the the-

orems discussed and no knowledge of Weihrauch reducibility is needed anywhere

in this paper; we refer the reader to [3, 17] for more information.

Brattka, Gherardi, and Marcone replace the term “bounded” by “relatively

compact” in BWT and obtain a (weaker) purely topological version of Bolzano-

Weierstraß, BWTtop, i.e., “every sequence with relatively compact range has a

cluster point”. In contrast to BWT, BWTtop holds in Baire space (the failure

of BWT in ωω corresponds to the fact that not all bounded subsets of ωω are

relatively compact). Writing BWTtop
X for the statement “every sequence in X with

relatively compact range has a cluster point in X”, there is a proper hierarchy of

principles

BWTtop
2 <W BWTtop

3 <W ... <W BWTtop
N <W BWTtop

R ≡W BWTtop
ωω ≡W WKL′,

2For s ∈ ω<ω , the basic clopen set [s] is bounded but not compact.
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where WKL′ denotes the jump of WKL.3

In this paper, we shall discuss generalisations of BWT to uncountable cardinals

κ. For one of these, called the weak κ-Bolzano-Weierstraß theorem, we prove that

if κ is inaccessible, then the weak κ-Bolzano-Weierstraß theorem holds for the

generalised reals if and only if κ has the tree property (which is the generalisation

WKL to the κ-setting; cf. Corollary 4.23).

The paper is organised as follows: in § 2, we discuss totally ordered sets, groups

and fields, and their properties; in § 3, we shall introduce the two generalisations

of the real line κ-R and Rκ due to Sikorski and the second author, respectively,

and discuss their topological properties; in § 4, we shall study generalisations of

the Bolzano-Weierstraß theorem on κ-R and Rκ; finally, in § 5, we shall study of

a generalised version of the Heine-Borel theorem.

2. Basic definitions

2.1. Totally ordered sets. Let (X,≤) be any totally ordered set; as usual, we

use < for the irreflexive relation associated to ≤ (x < y if and only if x ≤ y

and x 6= y). We define sets (y, z) := {x ∈ X ; y < x < z}, (−∞, z) := {x ∈
X ; x < z}, and (z,∞) := {x ∈ X ; z < x}. We call these sets (open) intervals;

we topologise totally ordered sets by taking the topology generated by the open

intervals. Intervals of the form (y, z) for y, z ∈ X are called proper intervals; as

usual, we define closed intervals [y, z] := (y, z) ∪ {y, z}, and half-open intervals

(x, z] := (x, z) ∪ {z} and [y, x) := (y, x) ∪ {y} for x ∈ X ∪ {−∞,∞}. A subset

Z ⊆ X is bounded if it is contained in a proper interval. As usual, if Y, Z ⊆ X,

we write Y < Z if for all y ∈ Y and all z ∈ Z, we have y < z. In order to reduce

the number of braces, we write y < Z for {y} < Z and Y < z for Y < {z}. A

subset Z ⊆ X is called convex if for any z, z′ ∈ Z and x such that z ≤ x ≤ z′, we

have that x ∈ Z. Clearly, every interval is convex.

We call Z ⊆ X cofinal if for every x ∈ X there is a z ∈ Z such that x ≤ z;

similarly, we call Z ⊆ X coinitial if for every x ∈ X there is a z ∈ Z such that

z ≤ x. The coinitiality and the cofinality of a totally ordered set (X,≤) are the

sizes of coinitial or cofinal sets minimal in cardinality, respectively, and we write

3In the Weihrauch setting, the jump corresponds to an application of the monotone conver-

gence theorem which allows us to do a transition from the subsequence produced by WKL to

the cluster point needed by BWT; WKL is not sufficient to do that transition (in other words,

WKL <W BWT). Note that BWTtop
X and BWTX are not in general Weihrauch equivalent for

arbitrary ordered spaces X; however, they are in the case X = R (because of HBT). Therefore,

BWTR ≡W WKL′.
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coi(X,≤) and cof(X,≤) for them. If the order ≤ is implicitly clear, we omit it

from the notation.

A pair (L,R) of non-empty subsets of X is called a Dedekind cut in (X,≤) if

L 6= ∅ 6= R, L has no maximum, R has no minimum, L ∪R = X and L < R.

Let λ be a cardinal. We say that (X,≤) is an ηλ-set4 if for any L,R ⊆ X such

that L < R and |L|+ |R| < λ, there is x ∈ X such that L < x < R.

The property of ηλ-ness relates to the model theoretic property of saturation:

any densely ordered set (X,≤) without endpoints is λ-saturated in the sense of

model theory if and only if it is an ηλ-set [4, Proposition 5.4.2]. In the following,

we often refer to ηλ-ness as “saturation”.

We now introduce the notion of spherical completeness which is a weakening

of saturation and known from the theory of ultrametrics (cf., e.g., [23, § 20]). Let

I = {Iγ ; γ < α} be a family of closed intervals. We call such a family nested if

for γ < γ′, we have Iγ ⊇ Iγ′ . Let (X,≤) be a totally ordered set, λ be a regular

cardinal. Then (X,≤) is λ-spherically complete iff for every α < λ and for every

nested family I = {Iγ ; γ < α} of closed intervals, we have that
⋂
I 6= ∅.

Proposition 2.1. Let (X,≤) be a totally ordered set and λ be a regular cardinal.

If X is an ηλ-set, then X is λ-spherically complete.

Proof. Let I = {Iγ ; γ < α} be a nested family of closed intervals with Iγ =

[xγ , yγ ] for some α < λ. Then apply saturation to the pair ({xγ ; γ < α}, {yγ ; γ <

α}) to obtain an element in the intersection of I. �

Note on the other hand that there are λ-spherically complete ordered sets

which are not ηλ-sets: e.g., the real line R is ℵ1-spherically complete, but not an

ηℵ1-set. (Let L = N ⊆ R and R = ∅.)

2.2. Totally ordered groups and fields. Let (G,+, 0,≤) be a totally ordered

group. We denote the positive part of G as G+ := {x ∈ G ; x > 0}. Moreover,

following [8, Definition 1.19], we call bn(G) := coi(G+) the base number of G.5

The following definition is due to Sikorski [26]: let X be a set and (G,+, 0,≤)

be a totally ordered abelian group; a function d : X ×X → G+ is a G-metric if

for all x, y, z ∈ X, we have

(1) d(x, y) ≥ 0,

(2) d(x, y) = 0 if and only if x = y,

4Note that our notation differs from Hausdorff’s: his ηα would correspond to our ηℵα .
5This number was called the degree of G, in symbols deg(G), in [12, 13, 14]. Sikorski says

that G has character κ if (in our notation) bn(G) ≤ κ [25]. The term base number is due to

Dales and Woodin who use the notation δ(G) for our bn(G).
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(3) d(x, y) ≤ d(x, z) + d(z, y),

(4) d(x, y) = d(y, x).

As in the case of a metric, we can define open balls with respect to a G-metric d:

Bd(c, r) = {x ∈ X ; d(c, x) < r}

where c ∈ X and r ∈ G+. If λ is a regular cardinal, then we will say that

a topological space (X, τ) is λ-metrisable if there is a totally ordered abelian

group (G,+, 0,≤) with bn(G) = λ and a G-metric d : X × X → G such that

{Bd(c, r) ; c ∈ X ∧ r ∈ G+} is a base for τ .

Using the fact that G is totally ordered, we can measure the distance of ele-

ments in G by

|x− y| :=
{
x− y if x− y ∈ G+ and

y − x otherwise,

and this is a G-metric. Therefore, every totally ordered abelian group (G,+, 0,≤)

with bn(G) = λ is λ-metrisable. If C and C ′ are two convex sets, we say that

C and C ′ are separated by a distance of at least ε ∈ K+ if for all x ∈ C and all

y ∈ C ′, we have that |x− y| > ε.

Now let (K,+, ·, 0, 1,≤) be a totally ordered field. As usual, we identify the

element

1 + . . .+ 1︸ ︷︷ ︸
n times

with the natural number n and thus assume that N ⊆ K. The field K is called

Archimedean if N is cofinal in K.

The field operations ensure that the order structure of K is homogeneous as

order-theoretic phenomena can be shifted around in the field. E.g., if one considers

subsets of K+, the map x 7→ x−1 transforms sets that are cofinal in K+ into sets

that are coinitial in K+ and vice versa; therefore bn(K) = coi(K+) = cof(K).

Also, if (a, b) and (c, d) are any proper intervals in K, then the map π : z 7→
d−c
b−a (z−a)+c is a linear transformation of the one-dimensional K-vector space K

such that the interval (a, b) is bijectively and order-preservingly mapped to (c, d).

Clearly, this map translates subsets of (a, b) into subsets of (c, d) while preserving

properties such as convergence and divergence:

Lemma 2.2. Let (K,+, ·, 0, 1,≤) be a totally ordered field and (a, b) and (c, d)

proper intervals in K. If s : α → (a, b) is a convergent or divergent sequence,

then so is π ◦ s : α→ (c, d).
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The following results (Lemmas 2.3, 2.4, 2.5, 2.7, 2.8 and Corollary 2.6) are

explaining how the properties of a field relates to the existence of divergent and

convergent sequences of a given length. These will prove to be the main tools for

our later proofs.

Lemma 2.3. Let (K,+, ·, 0, 1,≤) be a non-Archimedean totally ordered field and

C be a convex subset of K with at least two elements. Then there are strictly

increasing and strictly decreasing ω-sequences inside C.

Proof. We only construct the strictly decreasing sequence, the existence of a

strictly increasing sequence follows by symmetry. Let x, y ∈ C be such that

x < y. Since K is non-Archimedean, we find k ∈ K such that N < k. Set

ε := y−x
k and define yn := y − n · ε ∈ C for each n ∈ ω. Clearly, this is a strictly

decreasing ω-sequence in C. �

Lemma 2.4. Let λ be an uncountable regular cardinal and (K,+, ·, 0, 1,≤) be a

totally ordered field such that bn(K) = λ. Then the following are equivalent:

(1) K is λ-spherically complete,

(2) for every α < λ, every nested family I = {Iγ ; γ < α} of non-empty open

intervals has non-empty intersection.

Proof. Clearly, (2) implies (1). For the other implication, fix I = {Iγ ; γ < α}
with Iγ =: (xγ , yγ). We only have to consider the case α ≥ ω. By (1), we

have that
⋂
γ<α[xγ , yγ ] 6= ∅, so pick x ∈

⋂
γ<α[xγ , yγ ]. Since bn(K) = λ > α

and λ is regular, there is ε > 0 such (x − ε, x + ε) ⊆
⋂
γ<α[xγ , yγ ] Note that

(x− ε, x+ ε) ⊆
⋂
γ<α(xγ , yγ) which proves the claim. �

Clearly, if K is an ηλ-set, then bn(K) ≥ λ. Having large base number provides

us with a weaker version of ηλ-ness that is sometimes sufficient for our arguments:

Lemma 2.5. Let λ be a regular cardinal and (K,+, ·, 0, 1,≤) be a totally ordered

field with bn(K) = λ. Let F ⊆ K be finite and X ⊆ K be such that |X| < λ.

Then if X < F , there is some x ∈ K such that X < x < F . Similarly, if F < X,

then there is some x ∈ K such that F < x < X.

Proof. Since the proofs are similar, we only deal with the case X < F . The case

F = ∅ follows directly from bn(K) = λ. Let F = {x0, ..., xn} with x0 < x1 <

... < xn, let µ := cof(X) ≤ |X| < λ, and let s : µ→ X be strictly increasing and

cofinal in X. If γ < λ, let εγ := x0− s(γ). Since bn(K) = λ > µ, we find ε ∈ K+

such that for all γ < µ, we have x0 − ε > s(γ). But then X < x0 − ε < F . �
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Corollary 2.6. Let λ be a regular cardinal and (K,+, ·, 0, 1,≤) be a totally or-

dered field with bn(K) = λ.

(i) If I is an open interval in dK, then cof(I) = coi(I) = bn(K).

(ii) If µ < λ, then every µ-sequence is bounded and it is either eventually

constant or divergent.

(iii) Every infinite convex set C contains strictly descending and strictly in-

creasing λ-sequences bounded in C; in particular, it contains bounded and

divergent µ-sequences for every µ < λ.

Proof. Statement (i) and (ii) are obvious from Lemma 2.5. For statement (iii),

find x, y ∈ C and apply (i) to (x, y) to find coinitial and cofinal sequences of length

λ; apply (ii) to see that the initial segments of these of length µ are divergent. �

The weight of a totally ordered field (K,+, ·, 0, 1,≤) is the size of the smallest

dense subset of K and is denoted by w(K). Since every dense set is cofinal, we

have that bn(K) ≤ w(K).

Lemma 2.7. Let λ be a regular uncountable cardinal and (K,+, ·, 0, 1,≤) be a

totally ordered field such that w(K) = λ and K is an ηλ-set. Then every interval

(x, y) ⊆ K contains a convex bounded subset B ⊆ (x, y) without least upper or

greatest lower bound such that coi(B) = cof(B) = λ.

Proof. Clearly, the assumptions imply that K is non-Archimedean. Pick z ∈
(x, y) and use Lemma 2.3 to find a strictly increasing sequence s : ω → (x, z) with

S := ran(s) and a strictly decreasing sequence s′ : ω → (z, y) with S′ := ran(s′);

in particular, S < S′. By Corollary 2.6 (ii), both s and s′ are bounded and

divergent; also, z is both an upper bound for S and a lower bound for S′. Let

B := {b ∈ (x, y) ; S < b < S′} be the set of these elements. Clearly, B is convex;

a greatest lower bound for B would be a least upper bound for S and a least

upper bound for B would be a greatest lower bound for S′, but since s and s′

are divergent, these do not exist, so B has neither greatest lower nor least upper

bound.

We shall now show that coi(B) = cof(B) = λ. The two proofs are similar, so

let us just discuss the proof for coinitiality.

Clearly, if X ⊆ B with |X| < λ, then X cannot be coinitial by saturation. So

coi(B) ≥ λ. We shall now construct a coinitial set of size λ. For this, let D be a

dense set of size w(K) = λ, let B′ := B∩D and let σ : λ→ B′ be a surjection. We

construct a strictly decreasing coinitial λ-sequence t : λ → B: Pick any element

t(0) ∈ B. Suppose α < λ and assume that t�α has been defined and is a strictly
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descending sequence. Then B∗ := ran(t�α)∪ran(σ�α) has size |B∗| ≤ |α×2| < λ.

By saturation, we find b such that S < b < B∗; then let t(α) := b.

We claim that t is coinitial: if b ∈ B is arbitrary, then by saturation, we find

some z ∈ B such that S < z < b. Now density of D means that we find some

d ∈ D with S < z < d < b. Clearly, d ∈ B′. Find α such that σ(α) = d. Then

t(α+ 1) < d < b. �

Lemma 2.8. Let λ be an uncountable regular cardinal and (K,+, ·, 0, 1,≤) is a

λ-spherically complete totally ordered field. Let µ < λ, s : µ → K be a bounded

divergent strictly decreasing sequence with S := ran(s), and L := {b ∈ K ; b < S}
be the set of lower bounds of S. Then cof(L) ≥ µ+. (The same is true for a

strictly increasing sequence and its set of upper bounds.)

Proof. Suppose t : µ → L is a cofinal sequence in L with T := ran(T ). For

γ < µ, let Iγ := [t(γ), s(γ)]. Then λ-spherical completeness implies that there is

some x with T < x < S, but that contradicts the fact that s was divergent. �

The final technical result of this section will be the core of our constructions

in the main proofs, allowing us to split intervals:

Lemma 2.9. Let λ be an uncountable regular cardinal and (K,+, ·, 0, 1,≤) be a

totally ordered field with bn(K) = λ. If I = (x, y) is an open interval in K with

half-way point x+y
2 and µ < λ is a cardinal, then there is a family {Iα ; α < µ} of

pairwise disjoint non-empty subintervals of I with union U :=
⋃
α<µ Iα such that

(1) there is an ε0 ∈ K+ such that for all z ∈ U , we have |z − x| > ε0 and

|z − y| > ε0,

(2) x+y
2 /∈ U , and

(3) there is ε1 ∈ K+ such that for all α 6= β < µ, Iα and Iβ are separated by

a distance of at least ε1 (i.e., for all xα ∈ Iα, and xβ ∈ Iβ, we have that

|xα − xβ | > ε1).

Proof. Pick any x′, y′ ∈ (x, x+y2 ) and work inside I ′ := (x′, y′). Clearly, any

family of subintervals contained in I ′ will trivially satisfy (1) and (2). By Corollary

2.6 (i), cof(I ′) = λ, so let s : λ → I ′ be a strictly increasing sequence cofinal in

I ′. Suppose that ν < µ is a limit ordinal and n ∈ N. We define

Iν+n := (s(ν + 2n+ 1), s(ν + 2n+ 2))

and claim that this sequence of intervals satisfies (3). If α < β = ν + n < λ, then

the distance between Iα and Iβ is at least

δβ := s(ν + 2n+ 1)− s(ν + 2n) > 0.
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Apply Lemma 2.5 to the sets {0} and {δβ ; β < µ} to find ε1 > 0 as required by

(3). �

2.3. Completeness. Given a totally ordered field (K,+, ·, 0, 1,≤), a Dedekind

cut (L,R) in K, is called a Veronese cut6 if for each ε ∈ K+ there are ` ∈ L and

r ∈ R such that r < `+ ε.

A totally ordered field (K,+, ·, 0, 1,≤) is called Dedekind complete if there are

no Dedekind cuts in K and it is called Veronese complete if there are no Veronese

cuts in K. Clearly, Dedekind completeness implies Veronese completeness, but

the converse is not true in general. In fact, a totally ordered field is Dedekind

complete if and only if it is isomorphic to R (cf. [5, Corollary 8.7.4] or [27, Theorem

2.4]).

We need to generalise the standard definitions from real analysis to accommo-

date transfinite sequences:

Definition 2.10 (Cauchy sequences). Let (K,+, ·, 0, 1,≤) be a totally ordered

field and α be an ordinal. A sequence (xi)i∈α of elements of K is called Cauchy

if

∀ε ∈ K+∃β < α∀γ, γ′ ≥ β(|xγ′ − xγ | < ε).

The sequence is convergent if there is x ∈ K such that

∀ε ∈ K+∃β < α∀γ ≥ β(|xγ − x| < ε).

In this case, we shall say that x is the limit of the sequence. The field K is called

Cauchy complete if every Cauchy sequence of length bn(K) converges.

Theorem 2.11 (Folklore). A totally ordered field is Veronese complete if and

only if it is Cauchy complete.

Proof. Cf., e.g., [8, Proposition 3.5]. �

By Theorem 2.11 and [16, Theorem 3.11], if K is Archimedean, then Dedekind

completeness and Veronese completeness coincide.

In light of Theorem 2.11, we shall from now on only use the more common term

“Cauchy completeness” (even though we shall be using the property of Veronese

completeness in our proofs).

Lemma 2.12. Let (K,+, ·, 0, 1,≤) be a Cauchy complete totally ordered field.

For every convex set C ⊆ K the following hold:

6The term “Veronese cut” is used by Ehrlich to honour the pioneering contributions of

Giuseppe Veronese in the late XIXth century to theory of infinity and infinitesimals; the same

concept has various other names in the literature, e.g., Cauchy cut or Scott cut.
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(1) If C has no supremum, there is ε ∈ K+ such that for every x ∈ C we

have x+ ε ∈ C.

(2) If I has no infimum, there is ε ∈ K+ such that for every x ∈ C we have

x− ε ∈ C.

(3) If C has neither infimum nor supremum, then there is ε ∈ K+ such that

for every x ∈ C the interval (x− ε, x+ ε) is a subinterval of C.

Proof. Clearly, (2) follows from (1) by considering {−c ; c ∈ C} and (3) follows

from (1) and (2). We now prove (1). Since C is convex with no supremum

〈C, {y ∈ K ; C < y}〉 is not a Veronese cut. Therefore there is ε such that for

every x ∈ C we have x+ ε < {y ∈ K ; C < y}. �

3. Generalising the real line

The symbol κ will be reserved for an uncountable regular cardinal κ such that

κ<κ = κ. There are many different approaches for generalising the real line for

very different purposes (for an overview, cf. [10]) of which we shall introduce two

in §§ 3.1 & 3.3.

3.1. The real ordinal numbers κ-R. The real ordinal numbers were introduced

by Sikorski [25], studied by Klaua [20], and recently independently re-discovered

by Asperó and Tsaprounis [1].

The underlying idea is to do the classical set theoretic construction of the reals,

but instead of starting with the natural numbers N, we start with an ordinal δ,

considered as a total order (δ,≤). Since ordinal addition and multiplication are

not commutative, we use instead the Hessenberg operations ⊕ and ⊗ (also called

natural sum and natural product) which are commutative. If δ is a delta number

(i.e., an ordinal number closed under multiplication, or, equivalently, δ = ωω
β

for some β), then (δ,⊕,⊗, 0, 1,≤) is a commutative ordered semi-ring. As in the

standard construction of Q from N, one can define δ-Z := δ∪{−α ; 0 < α < δ} and

δ-Q as the ∼-equivalence classes of δ-Z×(δ\{0}) where (±α, β) ∼ (±α′, β′) if and

only if α⊗ β′ = α′ ⊗ β; with the usual operations of addition and multiplication

defined on δ-Z and δ-Q (cf., e.g., [20]). Furthermore, we let δ-R be the Cauchy

completion of δ-Q.

Theorem 3.1 (Sikorski). If δ is a delta number, then δ-Z is a totally ordered

ring, δ-Q is a totally ordered field, and δ-R is a Cauchy complete totally ordered

field with bn(δ-Q) = bn(δ-R) = cof(δ).

Furthermore, if δ is a regular cardinal, then δ-Q is Cauchy complete, and

therefore δ-Q = δ-R and w(δ-R) = δ.



THE BOLZANO-WEIERSTRASS THEOREM IN GENERALISED ANALYSIS 11

Proof. The usual proof in which ω is substituted by κ works, see, e.g., [25,

20]. �

This result was further extended by Asperó and Tsaprounis in [1], where they

showed that for every delta number δ with uncountable cofinality, δ-Q = δ-R.

Sikorski also observed that the real ordinal numbers are very non-saturated:

Theorem 3.2 (Sikorski). If δ is an infinite cardinal, then δ-R is not an ηℵ1-set.

Proof. This result was proved in [25], a more recent proof for delta ordinals can

be found in [1, Corollary 4.4]. �

3.2. Surreal numbers. The second construction that we shall give in § 3.3 uses

Conway’s surreal numbers. For details, we refer to [6, 15] and give a basic sketch

of the construction:

A surreal number is a function from an ordinal α ∈ On to {+,−}, i.e., a

sequence of pluses and minuses of ordinal length. For notational purposes, it is

sometimes useful to introduce a third value ↑ representing “undefined”, and we

formally order the set {+,−, ↑} as follows: − < ↑ < +. In this notation, surreal

numbers are class-functions defined on the class of all ordinals with the property

that dom(x) := {β ∈ On ; x(β) 6= ↑} is an ordinal. We shall denote the class of

surreal numbers by No. The length of a surreal number is its domain, and for

x ∈ No, we write `(x) := dom(x). We write

No<α := {x ∈ No ; `(x) < α} and

No≤α := {x ∈ No ; `(x) ≤ α}.

We order the surreal numbers lexicographically, i.e., if x 6= y and β is least such

that x(β) 6= y(β), then x < y if x(β) < y(β).

Theorem 3.3 (Conway’s Simplicity Theorem). Let L and R be two sets of surreal

numbers such that L < R. Then there is a unique surreal z of minimal length

such that L < {z} < R. We say in this case that the pair of sets (L,R) represents

z and write z = [L,R].

Proof. Cf. [15, Theorem 2.1]. �

The Simplicity Theorem 3.3 allows us to switch back and forth between surreal

numbers and their representations. Exploiting this, one can define addition and

multiplication on No and show that No with these operations satisfies the axioms

of real closed fields and that R is a subfield of No≤ω. Moreover, Ehrlich proved

that it is the universal real closed field in the sense that every real closed field is

isomorphic to a subfield of No; cf., e.g., [9].
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Theorem 3.4 (van den Dries & Ehrlich). If ε is an epsilon number (i.e., an

ordinal closed under exponentiation or, equivalently, ε = ωε), then No<ε is a real

closed field. In particular, for every cardinal λ, No<λ is a real closed field.

Proof. Cf. [28, Proposition 4.7]. �

Proposition 3.5 (Folklore). Let κ be an uncountable cardinal such that κ<κ = κ.

Then |No<κ| = bn(No<κ) = w(No<κ) = κ and No<κ is an ηκ-set.

Proof. Cf., e.g., [12, Propositions 3.4.3 & 3.4.4]. �

3.3. The generalised real line Rκ. As before, κ is an uncountable cardinal

such that κ<κ = κ. We shall now use the theory of surreal numbers from § 3.2

to define the second generalisation of the real number continuum which is due to

the second author [12, 13, 14]. Let us call a field K ⊇ R a super dense κ-real

extension of R if it has the following properties:

(1) K is a real closed field,

(2) w(K) = κ,

(3) K is an ηκ-set,

(4) K is Cauchy complete, and

(5) |K| = 2κ.

Since the theory of real closed fields is complete [21, Corollary 3.3.16], any super

dense κ-real extension of R has the same first order properties as R. In [12, 13],

the second author argues why being a super dense κ-real extension of R is an

adequate demand for being an appropriate κ-analogue of R.

Theorem 3.4 and Proposition 3.5 tell us that No<κ has almost all the properties

that we want from Rκ except for (4) and (5) (for the failure of (4), cf., e.g., [11,

Lemma 1.32]). Therefore, we define

Rκ := No<κ ∪ {x ; x = [L|R] where 〈L,R〉 is a Veronese cut on No<κ}.

Theorem 3.6 (Galeotti). Let κ be an uncountable cardinal with κ<κ = κ. Then

Rκ is the unique super dense κ-real extension of R. Moreover, bn(Rκ) = κ.

Proof. Cf. [13, Theorem 4]. �

4. The Bolzano-Weierstraß theorem

4.1. The classical Bolzano-Weierstraß theorem. Let (K,+, ·, 0, 1,≤) be a

totally ordered field. Then the Bolzano-Weierstraß theorem for K, abbreviated

as BWTK , is the statement “every bounded sequence of elements of K has a

convergent subsequence”. In this statement, by “sequence” we mean a sequence

of length ω.
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Theorem 4.1. Let (K,+, ·, 0, 1,≤) be a totally ordered field. Then BWTK holds

if and only if K is Dedekind complete.

Proof. Cf. [22, Theorem 7.6]. �

We had seen in § 2 that this means that up to isomorphism, R is the only field

satisfying the Bolzano-Weierstraß theorem.

Corollary 4.2. Let κ be an uncountable regular cardinal such that κ<κ = κ.

Then BWTκ-R and BWTRκ do not hold.

The reason for this is that the statement of BWTK talks only about sequences

of length ω, but bn(κ-R) = bn(Rκ) = κ, so these sequences are simply too short

to have convergent subsequences (using Corollary 2.6 (ii)).

4.2. The generalised Bolzano-Weierstraß theorem. We identified the prob-

lem with BWT to be the length of the sequences; consequently, the following

generalisation due to Sikorski is natural:

Let (K,+, ·, 0, 1,≤) be a totally ordered field and λ be a regular cardinal.

Then the λ-Bolzano-Weierstraß theorem for K, abbreviated as λ-BWTK , is the

statement “every bounded λ-sequence of elements of K has a convergent λ-

subsequence”.

The property λ-BWTK was studied by several authors, cf., [25, 24, 7]; clearly,

ℵ0-BWTK is the same as BWTK .

We say that a totally ordered field (K,+, ·, 0, 1,≤) is λ-divergent if and only if

every interval contains a strictly monotone divergent λ-sequence.

Observation 4.3. If λ is an uncountable regular cardinal and (K,+, ·, 0, 1,≤) is

a λ-divergent totally ordered field then λ-BWTK fails.

A cardinal λ is called weakly compact if λ → (λ)22 holds, i.e., if for every

partition of λ × λ into two sets there is a subset H of λ of cardinality λ such

that all the pairs of elements of H are all in the same set of the partition. For λ

weakly compact we can reformulate the λ-Bolzano-Weierstraß theorem in terms

of λ-divergence.

Theorem 4.4. Let λ > ω be a weakly compact cardinal and (K,+, ·, 0, 1,≤) be a

totally ordered field. Then the following are equivalent:

(1) the field K is λ-divergent and

(2) λ-BWTK does not hold.
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Proof. By Observation 4.3, we only need to prove “(2)⇒(1)”. By Lemma

2.2, it is enough to show that there is an interval with a monotone divergent

λ-subsequence. Let s be a bounded λ-sequence which has no convergent λ-

subsequence. We will show that s has a monotone subsequence. Define the

following partition of λ× λ: f(α, β) := 1 if α < β and s(α) < s(β), f(α, β) := 0

otherwise. Since κ is weakly compact there is H ⊆ λ such that either for all

h ∈ H ×H, f(h) = 1 or for all h ∈ H ×H, f(h) = 0. Without loss of generality

assume the former. Now, we define recursively a subsequence s′ of s. Assume

we that have already defined s�α, we define: s′(α) := s(β) where β is the least

ordinal in H \ {s′(γ) | γ ∈ α}. It is easy to see that s′ is strictly increasing.

Indeed, if α < β then s′(α) = s(γ) and s′(β) = s(γ′) for some γ, γ′ ∈ H such that

γ < γ′, but then f(γ, γ′) = 1 which implies s(γ) < s(γ′) as desired. �

We do not know whether there is a non λ-divergent field K such that λ-BWTK
fails.

In some cases, we can prove or refute λ-BWTK using elementary arguments:

Theorem 4.5. Let (K,+, ·, 0, 1,≤) be a totally ordered field.

(1) If λ > |K|, then λ-BWTK holds.

(2) If λ < bn(K), then λ-BWTK does not hold.

(3) If w(K) < λ, then every convergent sequence of elements of K of length λ

is eventually constant. Consequently, if w(K) < λ ≤ |K|, λ-BWTK does

not hold.

Proof. (1) follows from the pigeonhole principle: every λ-sequence in K contains

a constant λ-subsequence. For (2), observe that by Corollary 2.6 (ii) & (iii), if

λ < bn(K), then K is λ-divergent. Then Observation 4.3 implies the claim.

For (3), let D be a dense subset of K of cardinality κ < λ. Towards a con-

tradiction, let s : λ → K be a convergent sequence with limit ` ∈ K that is

not eventually constant. Without loss of generality, we can assume that for each

α < λ, s(α) 6= s(α+ 1) and furthermore that ` /∈ ran(s). Thus, since D is dense,

for each α < λ, we find some dα ∈ (D ∩ (s(α), s(α+ 1))) ∪ (D ∩ (s(α+ 1), s(α)))

such that dα 6= `. We define ŝ : λ→ K by ŝ(α) := dα.

By construction s and ŝ both converge to the same limit `. Since |D| < λ there

is an element d ∈ D which appears λ many times in ŝ. Hence, ŝ has a subsequence

of length λ which is eventually constant (and converges to the same limit as ŝ,

i.e., `). But this is a contradiction since ` is not an element of ran(ŝ). �
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Theorem 4.5 covers all cases except for bn(K) ≤ λ ≤ w(K). It turns out that

in this case, the answer depends on the saturation properties of K. We shall now

have a closer look at this case:

Theorem 4.6 (Sikorski). Let λ be an uncountable regular cardinal. Then λ-

BWTλ-R holds.

Proof. This result was proved by Sikorski in [25]. We give a sketch of the

proof. Let s : λ → λ-R be a bounded λ-sequence. Without loss of generality, by

regularity of λ, we can assume s to be injective. By using the fact that elements

of λ-R can be represented as finite sequences of ordinals and rational numbers,

see, e.g., [1, Theorem 3.4], it is not hard to see that s has a monotone bounded

λ-subsequence b : λ → λ-R. By [1, Proposition 4.2] every monotone bounded

λ-sequence in λ-R is Cauchy. Therefore, b is Cauchy. Finally, since λ-R is by

definition Cauchy complete, b is a convergent subsequence of s as desired. �

Theorem 4.6 heavily relies on the fact that λ-R is not saturated (Theorem 3.2).

Saturated fields behave very differently, as the following observation shows.

Theorem 4.7. Let λ be a regular uncountable cardinal and (K,+, ·, 0, 1,≤) be a

totally ordered field. If w(K) = λ and K is an ηλ-set, then K is λ-divergent.

Proof. Fix any interval I; by Lemma 2.7, we find a convex set B ⊆ I without

least upper bound and cof(B) = λ. Any cofinal λ-sequence in B must be divergent

since B has no least upper bound. �

Corollary 4.8. Let λ be a regular uncountable cardinal and (K,+, ·, 0, 1,≤) be

a totally ordered field. If w(K) = λ and K is an ηλ-set, then λ-BWTK does not

hold.

Proof. Follows directly from Observation 4.3 and Theorem 4.7. �

In fact, we do not need full saturation for this: for successor cardinals, spherical

completeness is sufficient:

Lemma 4.9. Let λ be any cardinal and let (K,+, ·, 0, 1,≤) be a λ+-spherically

complete totally ordered field with w(K) = bn(K) = λ+. Then K is λ+-divergent.

Proof. The proof is a variant of that of Lemma 2.7: Fix any interval I. Corollary

2.6 (ii) & (iii) gives us a strictly decreasing divergent λ-sequence s : λ → I

bounded in I; as usual, we write S := ran(s). Let L := {b ∈ I ; b < S} be the

set of lower bounds of S. By Lemma 2.8, we know that cof(L) ≥ λ+. We use

w(K) = λ+, exactly as in the proof of Lemma 2.7, to get that cof(L) = λ+.
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κ-R Rκ
λ < κ No No

λ = κ Yes No

κ < λ ≤ 2κ Yes No

2κ < λ Yes Yes

Table 1. Does λ-BWTK hold for K = κ-R and K = Rκ?

Any cofinal sequence of length λ+ must be divergent, thus witnessing that K is

λ+-divergent (since I was arbitrary). �

Corollary 4.10. Let λ be any cardinal and let (K,+, ·, 0, 1,≤) be a λ+-spherically

complete totally ordered field with w(K) = bn(K) = λ+. Then λ+-BWTK does

not hold.

Proof. Follows directly from Observation 4.3 and Lemma 4.9. �

For an uncountable cardinal κ with κ<κ = κ, we shall summarise the results

of this section concerning the fields κ-R and Rκ in Table 1. In the table, we are

using Theorems 4.5 & 4.6 and Corollary 4.8, as well as the facts that |κ-R| = κ <

2κ = |Rκ| and that bn(κ-R) = w(κ-R) = bn(Rκ) = w(Rκ) = κ and that Rκ is an

ηκ-set (Theorems 3.1 & 3.6).

4.3. Weakening the generalised Bolzano-Weierstraß theorem, part I: a

first step. In § 4.2, we have seen that the failure of the λ-Bolzano-Weierstraß

theorem is closely related to the existence of bounded convex sets that are not

intervals; their cofinal or coinitial sequences provide potential counterexamples to

the Bolzano-Weierstraß theorem. This suggests a rather natural weakening of the

Bolzano-Weierstraß theorem by restricting our attention to sequences that avoid

this situation.

In this section, we shall define this natural weakening. As we will see, this

weakened principle, the intermediate version of Bolzano-Weierstraß, is still too

strong to hold in Rκ. Moreover, we will show that, for κ weakly compact, the in-

termediate version of Bolzano-Weierstraß theorem and the κ-Bolzano-Weierstraß

theorem are equivalent.

Definition 4.11. Let λ be a regular cardinal and (K,+, ·, 0, 1,≤) be a totally

ordered field. Let s : λ→ K be a λ-sequence in K and S := ran(s). We say that
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s is weakly interval witnessed if for every bounded convex set C in K such that

|S ∩ C| = λ, there is an interval (x, y) = I ⊆ C such that |S ∩ I| = λ.

We then say that K satisfies the intermediate λ-Bolzano Weierstraß theorem

if every bounded weakly interval witnessed λ-sequence in K has a convergent

λ-subsequence. We abbreviate this statement with λ-iBWTK .

Theorem 4.12. Let λ be an uncountable regular cardinal and (K,+, ·, 0, 1,≤) be

a λ-divergent totally ordered field. Then λ-iBWTK fails.

Proof. Fix a bounded strictly increasing λ-sequence t : λ → K which exists

by the assumption. Let S be the set of strictly increasing λ-sequences in K and

T := λ<ω be the full tree of finite sequences of ordinals in λ; this is a λ-branching

tree of height ω. We now recursively assign elements of S to the nodes of T by

a function L : T → S. For each p ∈ T , we write Tp := ran(L(p)) and also write

Tn :=
⋃
p∈λn Tp.

We let L(∅) := t. If p ∈ λn and L(p) is already defined, then for each γ < λ,

L(p)(γ) < L(p)(γ + 1), so (L(p)(γ), L(p)(γ + 1)) is a non-empty open interval.

By the assumption, we find a strictly increasing divergent λ-sequence tp,γ in this

interval and let L(paγ) := tp,γ .

By construction, it is clear that if x = L(p)(γ) and y = L(p′)(γ′), then

(∗) x < y if and only if p <lex p
′ or (p = p′ and γ < γ′),

where <lex is the lexicographic order.

Now fix a bijection f : λ → λ<ω × λ with f(γ) = (f0(γ), f1(γ)) and define

s : λ→ K by

s(γ) = L(f0(γ))(f1(γ));

as usual, we write S := ran(s).

We claim that s is weakly interval witnessed. For this, let C be a bounded

convex set such that |S ∩ C| = λ. Pick any x, y ∈ S ∩ C with L(p)(γ) = x < y

for some p ∈ T and γ < λ. By (∗) and by the construction of L, we know that

tp,γ is a λ-sequence all of whose elements lie strictly between x and y, and so

|S ∩ (x, y)| = λ.

Finally, we claim that every λ-subsequence of s is divergent. Consider any

injective s′ : λ → S with S′ := ran(s′) and observe that since S =
⋃
n∈ω Tn and

λ is regular, there is some n ∈ ω such that |S′ ∩ Tn| = λ.

Case 1. There is some p ∈ λn such that |Tp ∩ S′| = λ. Then s′ is a subsequence

of L(p) which, by construction, is a strictly increasing divergent λ-sequence and

hence has no convergent subsequences.
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Case 2. If that is not the case, then for every p ∈ λn, |Tp ∩ S′| < λ. Define

W := {p ∈ λn ; 0 < |Tp ∩ S′|} and for each q ∈ T , Wq := {p ∈ W ; q ⊆ p}. We

say that q is sparse if |Wq| < λ and we say that q is cofinal if {γ ; Wqaγ 6= ∅} is

cofinal in λ.

We now claim that there is a cofinal q ∈ T :

We first observe that if q ∈ λn, then Wq has either zero or one elements, so all

sequences of length n are sparse. Also, since

λ = |S′ ∩ Tn| = |
⋃
p∈W

S′ ∩ Tp|,

we know that |W | = |W∅| = λ, so ∅ is not sparse. If all immediate successors

of q are sparse, then (using the regularity of λ) either q is cofinal or q is sparse.

Assume now towards a contradiction that there is no cofinal sequence, then by

induction, we get that ∅ is sparse. Contradiction; so there is a cofinal sequence

q ∈ T .

Towards a contradiction, let us assume that s′ converges to a limit `. Therefore,

all of its subsequences converge to ` as well. We now construct recursively a

subsequence s′′ of s′: suppose that s′′�α is already defined with the property that

for all γ < α, there is some pγ ∈ Wq such that s′′(γ) ∈ Tpγ . For each such

pγ , let γ̂ be the unique ordinal such that pγ ∈ Wqaγ̂ . Since q was cofinal, find

β > sup{γ̂ ; γ < α} such that Wqaβ 6= ∅. Pick p ∈Wqaβ and x ∈ S′ ∩ Tp and let

s′′(α) := x. As usual, we let S′′ := ran(s′′).

By construction, L(q)(β) < x < L(q)(β + 1), so S′′ is cofinal in Tq, and

therefore, L(q) converges to ` as well. But by construction, L(q) was a divergent

sequence; contradiction! �

Corollary 4.13. Let λ be a regular uncountable cardinal and (K,+, ·, 0, 1,≤) be

a totally ordered field. If w(K) = λ and K is an ηλ-set, then λ-iBWTK does not

hold.

Proof. Follows from Theorems 4.7 & 4.12. �

Therefore, for κ > ω such that κ<κ = κ, κ-iBWTRκ fails.

Corollary 4.14. Let λ be any cardinal and let (K,+, ·, 0, 1,≤) be a λ+-spherically

complete totally ordered field with w(K) = bn(K) = λ+. Then K does not satisfy

the λ+-iBWT.

Proof. Follows from Lemma 4.9 and Theorem 4.12. �

Corollary 4.15. Let λ be a weakly compact cardinal and (K,+, ·, 0, 1,≤) be a

totally ordered field. Then the following are equivalent:
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(1) λ-BWTK and

(2) λ-iBWTK .

Proof. The direction “(1)⇒(2)” is obvious, the other direction follows directly

from Theorems 4.4 & 4.12. �

4.4. Weakening the generalised Bolzano-Weierstraß theorem, part II:

the main result. In this section, we shall finally define the version of the

Bolzano-Weierstraß theorem that can hold for Rκ and then characterise those

κ for which it holds. Once more, κ is a regular uncountable cardinal such that

κ<κ = κ.

As usual, a tree is a partial order (T,≤) such that for each t ∈ T , the set

predT (t) := {s ∈ T ; s < t} is wellordered by <. The height of t in T , denoted

by htT (t) is the order type of predT (t). We call lvlT (α) := {t ∈ T ; htT (t) = α}
the αth level of the tree T . The height of the tree is defined by ht(T ) := sup{α+

1 ; lvlT (α) 6= ∅}. A branch of T is a maximal subset of T wellordered by <; the

length of a branch is its ordertype. A tree (T,<) is called λ-tree if ht(T ) = λ

and for all α, |lvlT (α)| < λ. A cardinal λ has the tree property if every λ-tree has

a branch of length λ. Note that if λ is strongly inaccessible then κ has the tree

property if and only if λ is weakly compact; cf., e.g., [18, Theorem 7.8].

In § 4.2, we have studied counterexamples to the λ-Bolzano-Weierstraß theo-

rem, and in the proof of Theorem 4.12, we saw how to produce a weakly interval

witnessed counterexample. We implement the lessons learned from this construc-

tion and strengthen the requirement as follows:

Definition 4.16. Let λ be an uncountable regular cardinal, let (K,+, ·, 0, 1,≤)

be a totally ordered field, and let s : λ → K be a λ-sequence with S := ran(s).

The sequence s is called interval witnessed if for every bounded convex set C in

K such that |S ∩ C| = λ and every ε ∈ K+, there is a µ < λ and a family of

pairwise disjoint intervals of size µ, i.e., {Iα ; α < µ} ⊆ ℘(C) such that

(1) for each α < µ, the diameter of Iα is < ε, and

(2) |(S ∩ C) \
⋃
α<µ Iα| < λ.

We say that K satisfies the weak λ-Bolzano-Weierstraß theorem if every bounded

interval witnessed λ-sequence in K has a convergent λ-subsequence. We abbrevi-

ate this statement with λ-wBWTK .

Theorem 4.17. Let λ be an uncountable regular cardinal and (K,+, ·, 0, 1,≤) be

a Cauchy complete, λ-spherically complete totally ordered field with bn(K) = λ.

Then λ-wBWTK implies that λ has the tree property.
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Proof. Fix a λ-tree (T,≤) and a strictly decreasing coinitial sequence δ : λ →
K+. For each t ∈ T , we shall assign an open interval L(t) in K by recursion on

the level of the node t:

If lvlT (t) = 0, we let L(t) := (0, 1). Let us assume that we have assigned

intervals L(t) to all nodes of level α and assign intervals to their successors:

suppose lvlT (t) = α, then since T is a λ-tree, the set of immediate successors of t

has size µ < λ and thus can be written as {tα ; α < µ}. Apply Lemma 2.9 to L(t)

to obtain a family {Iα ; α < µ} of pairwise disjoint intervals with the additional

properties (1) to (3) and assign L(tα) := Iα.

Now let α be a limit ordinal and assume that for all t ∈ T of level less than α,

an interval L(t) has been assigned. Suppose lvlT (s) = α and let bs := predT (s)

be the branch leading to s, a sequence of nodes of the tree of length α < λ. For

γ < α, if tγ ∈ bs is the uniquely defined node of level γ, we write Iγ := (xγ , yγ)

and L(tγ) := Iγ for the interval assigned to it. Clearly, C :=
⋂
γ<α Iγ is a convex

set, and since K is λ-spherically complete, we can apply Lemma 2.4 to find c ∈ C
and then apply Lemma 2.5 to the pair ({c}, {yγ ; γ < α}) to find a non-empty

open interval (c, d) contained in C. Without loss of generality, we can find c and

d such that |d− c| < δ(α).

Note that two different nodes s 6= s′ of level α might have the same predecessors

bs = bs′ , however, since T was a λ-tree, the number of nodes sharing the same

branch must be some µ < λ. Apply Lemma 2.9 to obtain a pairwise disjoint

family of subintervals that can be assigned to each of the nodes sharing the same

branch.

This completes the assignment of intervals t 7→ L(t) to the nodes t ∈ T . Note

that if t < t′, then L(t) ⊇ L(t′).

Claim 4.18. For every α < λ there is ε ∈ K+ such that if t, t′ ∈ lvlT (α) and

t 6= t′ then L(t) and L(t′) are separated by a distance of at least ε (i.e., for every

x ∈ L(t) and y ∈ L(t′) we have |x− y| > ε).

Proof. We show the claim by induction on α. For α = 0, there is nothing to

show. Fix α > 0 and assume that for all β < α, there is some εβ such that for

any s 6= s′ ∈ lvlT (β), the intervals L(s) and L(s′) are separated by a distance of

at least εβ .

For each pair (t, t′) ∈ lvlT (α)2 with t 6= t′, we shall assign an εt,t′ such that

L(t) and L(t′) are separated by a distance of at least εt,t′ .

Case 1. There is a γ < α with s, s′ ∈ lvlT (γ), s < t, s′ < t′, and s 6= s′. Then by

induction hypothesis, L(s) and L(s′) are separated by a distance of at least εγ .

Since L(t) ⊆ L(s) and L(t′) ⊆ L(s′), we can set εt,t′ := εγ .
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Case 2. Otherwise (i.e., the sets of predecessors of t and t′ are the same). Then

by construction, L(t) and L(t′) were constructed by an application of Lemma

2.9. By property (3) in Lemma 2.9, there is some ε1 such that L(t) and L(t′) are

separated by a distance of at least ε1, so let εt,t′ := ε1.

Since T was a λ-tree, we have that |lvlT (α)| < λ, and thus we can apply Lemma

2.5 to the pair ({0}, {εt,t′ ; t 6= t′ ∈ lvlT (α)}) to obtain some ε that works as a

uniform bound for all intervals assigned to nodes in lvlT (α). �

We write L(t) = (xt, yt) and define rt := xt+yt
2 . Since T was a λ-tree, there is

a bijection π : λ→ T , and we can define a λ-sequence r : λ→ K by r(α) := rπ(α).

Note that by construction (using Lemma 2.9 (2)), the function r is injective. As

usual, we let R := ran(r).

Claim 4.19. The sequence r is interval witnessed.

Proof. Let C ⊆ (0, 1) be a bounded convex set such that |C ∩ R| = λ and let

ε0 ∈ K+ be arbitrary. Without loss of generality, let us assume that C has neither

a supremum nor an infimum; apply Lemma 2.12 to obtain ε1 ∈ K+ such that for

all x ∈ C, (x− ε1, x+ ε1) ⊆ C. Now let ε := min{ε0, ε1}.
Since δ was coinitial in K+, find a limit ordinal α < λ such that δ(α) < ε. By

construction, if t is a node of level α or higher, then the interval L(t) assigned to

t has diameter <δ(α) < ε. We claim that for a node t of level α, the following

are equivalent:

(i) L(t) ⊆ C,

(ii) r(t) ∈ C, and

(iii) L(t) ∩ C 6= ∅.

The directions (i)⇒(ii)⇒(iii) are obvious. The direction (iii)⇒(i) follows from

the choice of ε and the fact that L(t) has diameter <ε. Note that if t is a node of

level α and t′ > t, then r(t′) ∈ L(t). The above equivalence therefore shows that

(†) if r(t′) ∈ C, then r(t) ∈ C.

Let X := {t ∈ lvlT (α) ; r(t) ∈ C}. Since T was a λ-tree, the set lvlT (α) has

size <λ and so, there is some µ < λ such that |X| = µ; write X = {tγ ; γ < µ}
and write Iγ := L(tγ). By construction, each Iγ is a subset of C and the diameter

of Iγ is less than ε.

We still need to show property (2) of Definition 4.16: by (†) and the above

equivalence, if t′ is any node of level at least α and t its predecessor of level α,

then r(t′) ∈ C if and only if there is a γ such that t = tγ . In particular, r(t′) ∈ Iγ
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by construction. This means that

(R ∩ C)\
⋃
γ<µ

Iγ ⊆ {r(t) ; ∃β < α(t ∈ lvlT (β)}

=
⋃
β<α

{r(t) ; t ∈ lvlT (β)}.

Because T was a λ-tree and λ was regular, this shows that the size of this set is

less than λ. �

Using Claim 4.19, we can apply λ-wBWTK to r and obtain a convergent λ-

subsequence v with V := ran(v). Since r was injective, we have that |V | = λ

and |TV | = λ for TV := {t ∈ T ; r(t) ∈ V }. We write ` for the limit of v, so in

particular, for every ε, we have that

(‡) |{t ∈ TV ; |`− r(t)| > ε}| < λ.

Claim 4.20. For every α < λ, there is exactly one t ∈ lvlT (α) such that ` ∈ L(t).

Proof. Note that since the intervals assigned to the nodes of level α are disjoint,

there can be at most one such t ∈ lvlT (α). We shall show by induction that each

level contains such a t. By construction, we have ` ∈ (0, 1), which resolves the

case α = 0.

Let α > 0 be arbitrary and assume that for each β < α, there is a node

t ∈ lvlT (β) such that ` ∈ L(β). Note that these nodes must form a branch b

through the tree of height α. Since T is a λ-tree, we let lvlT (α) = {tγ ; γ < µ}
for some µ < λ. We write T<α :=

⋃
β<α lvlT (β) and T↓γ := {t ∈ T ; tγ ≤ t} and

observe that we can write T as a disjoint union

T = T<α ∪
⋃
γ<µ

T↓γ .

Clearly, by the fact that T was a λ-tree and by regularity of λ, |T<α| < λ.

We shall consider TV ∩ T↓γ for each γ < µ and observe that there are three

possible cases:

Case 1: the set of predecessors of tγ is not the branch b. That means that there

is some level β < α where the path to s diverged from the branch b. Let ε1 be the

separation bound for the intervals assigned to nodes of level β. Then for every

element x ∈ L(tγ) (and thus for every x ∈ L(s) where s is a successor of tγ), we

have that |`− x| > ε1. By (‡), we see that |TV ∩ T↓γ | < λ.

Case 2: the set of predecessors of tγ is the branch b, but ` /∈ L(tγ). The intervals

assigned to the immediate successors of tγ are constructed using Lemma 2.9, and
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so there is an ε2 such that for each successor s of tγ and each x ∈ L(s), we have

|`− x| > ε2. Once more, by (‡), we see that |TV ∩ T↓γ | < λ.

Case 3: the set of predecessors of tγ is the branch b and ` ∈ L(tγ). In the

induction step, we need to show that there is a γ such that this case occurs.

If we now suppose towards a contradiction that Case 3 never occurs, then

TV = TV ∩

(
T<α ∪

⋃
γ<µ

T↓γ

)
= (TV ∩ T<α) ∪

⋃
γ<µ

(TV ∩ T↓γ),

where by Cases 1 & 2 each of the summands has size smaller than λ, so by

regularity of λ, we obtain |TV | < λ. Contradiction! �

Claim 4.20 directly gives us a branch of length λ through the tree T . �

Theorem 4.21. Let κ be an uncountable strongly inaccessible cardinal and

(K,+, ·, 0, 1,≤) a Cauchy complete ordered field with bn(K) = κ. If κ has the

tree property then K satisfies the κ-wBWT property.

Proof. Let s : κ → K be an interval witnessed bounded κ-sequence (without

loss of generality, s is an injective function), S := ran(s) and δ : κ → K+ be a

strictly decreasing sequence coinitial in K+. Let (x∗, y∗) be any interval in K

containing S. For each α < κ, we define a set of pairwise disjoint intervals Tα by

recursion. The construction will guarantee that

(1) for each α < κ, |Tα| < κ,

(2) for each α < κ and each I ∈ Tα, we have that |S ∩ I| = κ, and

(3) for each α < β < κ and every I ∈ Tβ , there is a J ∈ Tα such that I is a

subinterval of J ,

so in particular ⋃
{I ; I ∈ Tβ} ⊆

⋃
{I ; I ∈ Tα}.

We define Sα := S ∩
⋃
{I ; I ∈ Tα} and Mα := S\Sα. Property (2) implies that

for each α < κ, |Sα| = κ. We shall furthermore check that

(4) for each α < κ, we have |Mα| < κ.

Case α = 0. We let T0 := {(x∗, y∗)}. Properties (1), (2), and (3) are obviously

satisfied. Note that by choice of (x∗, y∗), we have that S0 = S and so M0 = ∅,

whence (4) is satisfied as well.

Case α = β + 1. If (x, y) ∈ Tβ , define Lx,y := (x, x+y2 ), Rx,y := (x+y2 , y), and

Tα := {Lx,y ; (x, y) ∈ Tβ and |Lx,y∩S| = κ}∪{Rx,y ; (x, y) ∈ Tβ and |Rx,y∩S| =
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κ}. Clearly, |Tα| ≤ |2 × Tβ | < κ, so (1) is satisfied. Properties (2) and (3) are

satisfied by construction. Since |Tβ | < κ and κ is regular, we know that both

Lα :=
⋃
{S ∩ Lx,y ; |S ∩ Lx,y| < κ} and Rα :=

⋃
{S ∩Rx,y ; |S ∩Rx,y| < κ} have

size less than κ. Thus

Sβ = Sα ∪
{
x+ y

2
; (x, y) ∈ Tβ

}
∪ Lα ∪Rα,

so using inductively property (4) for Mβ , we have that |Mα| = |Mβ | + |Tβ | +
|Lα|+ |Rα| < κ and thus (4) is satisfied.

Case α limit ordinal. Consider the tree T<α :=
⋃
β<α Tβ ordered by reverse inclu-

sion and let B be the set of branches through this tree. The strong inaccessibility

of κ implies that |B| < κ. For b ∈ B, the set Cb :=
⋂
{I ; I ∈ b} is a convex set.

Claim 4.22. We have that S\
⋃
β<αMβ = S ∩

⋃
b∈B Cb.

Proof. “⊆”: If x is not in any Mβ , then for every β < α, there is an Iβ ∈ Tβ
such that x ∈ Iβ . By construction, these intervals form a branch b := {Iβ ; β < α}
in the tree T<α and x ∈ Cb. “⊇”: If x ∈ S ∩Cb, then the elements of the branch

b witness that x /∈Mβ for any β < α. �

By regularity of κ and the inductive assumption that all earlier levels satisfy

property (4), we know that
⋃
β<αMβ has size less than κ, so by Claim 4.22, we

know that |S ∩
⋃
b∈B Cb| = κ. Since |B| < κ, we know that there are branches

b ∈ B such that |S ∩ Cb| = κ.

Consequently, we can apply the fact that s was interval witnessed to such a

convex set Cb and find a set Ib of fewer than κ many subintervals of Cb with

diameter <δ(α) such that |S ∩ (Cb\
⋃
Ib)| < κ. Now let Tα := {I ; there is a

b ∈ B such that |S ∩ Cb| = κ and I ∈ Ib and |S ∩ I| = κ}.
Property (1) follows from the facts that κ is regular, |B| < κ, and for each

b ∈ B, |Ib| < κ. Property (2) and (3) are clear by construction. Let W0 :=
⋃
{S∩

Cb ; |S∩Cb| < κ}; once more, by regularity of κ and |B| < κ, we get that |W0| < κ.

Furthermore, let W1 :=
⋃
{S ∩ (Cb\

⋃
Ib) ; |S ∩ Cb| = κ}; again, regularity of κ

and the choice of Ib implies that |W1| < κ. But Mα =
⋃
β<αMβ ∪W0 ∪W1, so

it has size less than κ, and thus we checked that property (4) holds as well.

This finishes the recursive construction. From property (1), it follows that the

resulting tree T :=
⋃
α<κ Tα is a κ-tree, so by the tree property, T has a branch

b = {Iα ; α < κ}. For each α < κ, pick some rα ∈ S ∩ Iα. By the choice of the

diameter of the intervals at the limit levels, the sequence α 7→ rα is a Cauchy

subsequence of s, thus by Cauchy completeness of K, it is convergent. �
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Corollary 4.23. Let κ be an uncountable strongly inaccessible cardinal and let

(K,+, ·, 0, 1,≤) be a Cauchy complete and κ-spherically complete totally ordered

field with bn(K) = κ. Then the following are equivalent:

(1) κ has the tree property and

(2) κ-wBWTK holds.

In particular, κ has the tree property if and only κ-wBWTRκ holds.

As we have seen in § 4.3, if κ is weakly compact then the κ-Bolzano-Weierstraß

theorem and the intermediate κ-Bolzano-Weierstraß theorem are equivalent. In

this case, as Corollary 4.23 shows, the weak κ-Bolzano-Weierstraß theorem be-

comes a natural generalisation of the classical Bolzano-Weierstraß theorem.

5. The generalised Heine-Borel theorem

We end this paper by considering a generalised version of the Heine-Borel

theorem. First recall that the Heine-Borel theorem for R can be stated as follows:

Theorem 5.1. For every set X ⊆ R, the following are equivalent:

(i) X is closed and bounded,

(ii) every open cover of X has a finite subcover, i.e., X is compact.

In order to generalise the Heine-Borel theorem to uncountable cardinals, we

remind the reader of the concept of κ-metrisability from § 2.2: since every totally

ordered group of base number κ is trivially κ-metrisable, κ-R and Rκ are both

κ-metrisable topological fields. Since κ-R is a totally ordered subgroup of Rκ,

every (κ-R)-metrisable space is also Rκ-metrisable, and thus κ-R is Rκ-metrisable.

Moreover, [26, Theorems viii & x] show that Rκ is (κ-R)-metrisable. We do not

know whether notions of (κ-R)-metrisability and Rκ-metrisability coincide.

Let (X, τ) be a topological space and λ be a cardinal. Then (X, τ) is λ-compact

if every open cover of X of cardinality λ has a subcover of cardinality <λ; (X, τ)

is λ-sequentially compact iff every λ-sequence has a convergent λ-subsequence.

Theorem 5.2. Let (X, τ) be λ-metrisable. Then (X, τ) is λ-compact if and only

if it is λ-sequentially compact.

Proof. The standard proof of the equivalence of compactness and sequential

compactness transfers directly to the case of G-metrics for a totally ordered group

(G,+, 0,≤) with bn(G) = λ. �

The following natural generalisation of the Heine-Borel theorem is due to

Cowles and LaGrange [7]:
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Definition 5.3. Let (K,+, ·, 0, 1,≤) be a totally ordered field and λ be a cardinal.

Then we shall say that K satisfies the λ-Heine-Borel theorem if for every X ⊆ K
the following are equivalent:

(1) X is closed and bounded,

(2) X is λ-compact.

We abbreviate this statement as λ-HBTK .

Theorem 5.4 (Cowles & LaGrange, 1983). Let K be ordered field with bn(K) =

λ. Then λ-BWTK holds if and only if λ-HBTK holds.

Proof. Cf. [7, p. 136]. �

Corollary 5.5. For every regular cardinal λ, we have that λ-HBTλ-R holds.

Proof. Follows from Theorem 5.4 and Theorem 4.6. �

Corollary 5.6. Let λ be an uncountable regular cardinal and let (K,+, ·, 0, 1,≤)

be a totally ordered field with w(K) = λ which is an ηλ-set. Then λ-HBTK does

not hold.

Proof. Follows from Theorem 5.4 and Theorem 4.7. �

In particular, if κ is such that κ<κ = κ, then Rκ does not satisfy the κ-Heine-

Borel theorem. The underlying reason for this is that closed intervals in Rκ are

not κ-compact.

Proposition 5.7. Let κ be an uncountable cardinal such that κ<κ = κ. Then

closed intervals in Rκ are not κ-compact.

Proof. Let I be a closed interval; we use the proof of Lemma 2.7 to find a

strictly increasing ω-sequence s : ω → I such that the set B of its upper bounds

has coinitiality κ. Take a coinitial sequence t : κ → B and two elements x < I

and y > I. Then the family

{(x, s(n)) ; n ∈ ω} ∪ {(t(α), y) ; α < κ}

is an open cover of I that has no subcover of size less than κ. �

In line with the definitions from § 4.4, we say that a topological space (X, τ)

is called interval witnessed κ-sequentially compact if every interval witnessed κ-

sequence in X has a convergent subsequence. If (K,+, ·, 0, 1,≤) is a totally or-

dered field and κ be a cardinal, we shall say that K satisfies the weak κ-Heine-

Borel theorem (in symbols: κ-wHBTK) if for every X ⊆ K, the following are

equivalent:
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(1) X is closed and bounded,

(2) X is interval witnessed κ-sequentially compact.

As for the classical case it turns out that for ordered fields of base number κ,

κ-wHBT and κ-wBWT are equivalent.

Theorem 5.8. Let λ be an uncountable regular cardinal and (K,+, ·, 0, 1,≤) be

a totally ordered field with bn(K) = λ. Then λ-wBWTK holds if and only if

λ-wHBTK holds.

Proof. Clearly, if λ-wHBTK , then λ-wBWTK . Also, if X is bounded and closed

and λ-wBWTK holds, then X is interval witnessed λ-sequentially compact.

So, let us now assume that λ-wBWTK holds and that X is interval witnessed

λ-sequentially compact. If s : λ → X is a sequence converging in K, then this

is a Cauchy sequence, and hence interval witnessed. Thus by interval witnessed

λ-sequential compactness, s must converge to an element of X; hence, X is closed.

Finally, assume towards a contradiction that X is unbounded in K, so there is a

strictly increasing sequence t : λ→ X cofinal in K. But then, no bounded convex

set contains λ many elements of ran(t) and therefore, t is trivially interval wit-

nessed. By interval witnessed λ-sequential compactness, t converges contradicting

the assumption that it is cofinal in K. �

We combine Corollary 4.23 with Theorem 5.8:

Corollary 5.9. Let κ be an uncountable strongly inaccessible cardinal and

(K,+, ·, 0, 1,≤) be a Cauchy complete κ-spherically complete ordered field with

bn(K) = κ. Then the following are equivalent:

(1) κ has the tree property,

(2) κ-wBWTK holds, and

(3) κ-wHBTK holds.

In particular, κ has the tree property if and only if κ-wBWTRκ holds if and only

if κ-wHBTRκ holds.
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